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CHAPTER I 

INTRODUCTION 

One of the inherent characteristics of a turbulent boundary layer 

is the presence of pressure fluctuations which extend to the surface 

on which the boundary layer has developed. These pressure flU:etua­

tions travel in the streamwise direction at a velocity of the order 

of the local mean velocity of the flow and are coherent for distances 

of the order of the boundary layer thickness. Sometimes they are. 

called 'near field' noise. This 'near field' noise induces surface 

vibration. The flow induced vibrations can cause acoustical dis­

turbances internal to the su't'face, i.e. the cabin of an aircraft, 

and/or structural failure. Thus, a knowledge of the pressure fluc­

tuations at the surfa~e is important for design purposes, In addi­

tion, the investigation of these disturbances is, as Wills (1970) 

stated, "impo:i:tan.t in its own right for the information it can yield 

on the structure of t1,1rbulence in the boundary layer." 

The principle method used in studying the fluctuating components 

of turbulent flow is statistical in nature.· Either the autocorrela­

tion or its equivalent, the power spectral density is used. The 

most common experimental measurement is the single point measure­

ment made with one pressure transducer. The signal can be pro­

cessed electronically to introduce a time delay. When multiplied 

with the original signal, the autocorrelation results. The Fourter 



transform of the autocorrelation is the frequency power spectrum. 

A more receqt method is based on the Fourier transform of experi­

mental filtered spatial correlations (Wills, 1970). 

Bies (1966) reviewed the results of wind tunnel and in-flight 

measurements. His composite plot of the wind tunnel data is shown 

in Figure 1. He concluded that there is a wide range of variation 

among the results of the various wind tunnel investigations even 

though most investigators presented self-consistent data. In one 

of the investigations, however, a g:treat number of measurements were 

made over an extended region of the test section. These results 

were not self-consistent, but were within the scatter of the data of 

th~ other investigations. Flight measurements were in general 

agreement with wind tunnel measurements but with les:s scatter. 

When the measurements were taken in flow situations where the free 

stream was not uniform, the low frequency portion of the spectrum 

was higher. Then the spectrum approached the uniform free stream 

spectrum at higher frequencies. 

In addition to perturbed outer flow fields, acoustical distur­

bances are known to contribute to the measured low frequency portion 

of the spectrum. Hodgson (1962) reported on a sequence of experi­

ments designed to isolate the influence of acoustical and flow dis­

turbances from the flow. His final experimental configuration was 

a microphone mounted on the upper surface of the wing of a glider. 

Additional glider experiments have recently been done by Panton, 

Lowery and Reischman (1971). The pressure transducers were in­

stalled on the fuselage of an SGS2-32 sailplane. Both of these 

investigations showed that the boundary layer itself contributes 

2 



very little to the low frequency portion of the spectrun:i. Wills 

(1970) removed the acoustical contribution to the low frequencies 

from his wind tunnel measurements by calculating the contribution 

from correlation measurements. His findings led him to speculate 

that the entire contribution to the Fourier transform of the longi­

tudinal space-time covariance below 100 Hz is acoustical. He summa­

rized the situation when he stated that the low frequency portion of 

the spectrum is quite dependent on "the conditions of the experiment 

and not necessarily on the boundary layer itself." 

3 

At high frequencies the finite size of the transducer is a 

problem. It causes the measured spectrum to be underestimated. 

Corrections have been proposed with limited success. Perhaps the 

best indication of the qualitative behavior of the spectrum at high 

frequencies is the data taken by Hodgson in 1967 and reported by 

Wills (1970). Just beyond the frequency at which the spectrum peaks, 

the decay rate is approximately w -.s As at frequency just a bit 

higher than.w = 10.0, the decay rate increases dramatically. These 

are the frequencies which typify the scale of the disturbances in 

the viscous sublayer. 

Kraichnan (1956b) laid the foundation for the mathematical 

computation of the wall-pressure fluctuations. He used the Fourier 

transform method of solving the differential equation and assumed 

a 'mirrow flow' model of. the turbulence field. He computed a 

family of relative wave number .,pectra which varied with a one -

parameter model of the mean-shear gradient. Hodgson (1962) followed 

this procedure using an average mean-shear and computed the frequency 

spectrum which is shown in Figure 2. Lilley and Hodgson (1960) and 
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Hodgson (1962) solved the differential equation using a Green's 

function. Hodgson, after making a number of simplifying assumptions, 

computed the frequency spectrum which also is shown in Figure 2. 

The level of the predicted spectra in Figure 2 must be set in 

some arbitrary manner because of the assumptions in each method. 

In both cases the isotropic form of the velocity correlation coeffi­

cient Raa has been used. An anisotropy model was introduced by 

Kraichnan (1956a), but he predicted the mean-square pressure and 

not the frequency spectrum. An obvious deficiency in the predicted 

spectra is the rapid decay at high frequencies which Hodgson (1962) 

attributed to a deficiency in the assumed form of Raa· 

Because of the assumptions in each of these predictive methods, 

the level of the spectrum must be set in some arbitrary manner. In 

both cases the turbulence has been as.sumed isotropic. The predicted 

spectra decay too rapidly at high frequencies. Kraichnan (1956a) 

also used an anisotropy model for which he determined the mean­

square pressure. 

Approach and Scope of This Study 

Two contributions to the calculations of pressure spectra are 

made in this work. First, the analysis of Hodgson is reworked to 

include an isotropy of the integral turbulence scales. The closed 

form nature of the solution is preserved and the results are presented 

as a one-parameter (anisotropy factor) family of curves. 

The second contribution is a more complete and accurate calcula­

tion of the wave number spectra. The wave number equation for the 

wall-pressure fluctuations is solved with a Monte Carlo numerical 
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integration scheme. This allows the integrand to be modeled with 

empirical data. The mean-shear gradient, the turbulence intensity, 

and certain anisotropic characteristics of the flow are allowed to 

vary across the boundary layer. With this technique a one-parameter 

family of wave number spectra is computed, Figure 15. Kraichnan's 

scale anisotropy model is used and the magnitude of the parameter, 

~, is allowed to be a function of the streamwise wave number 1'1 • 

Using~ (k1 ), a wave number spectrum is constructed, Figure 16. 

Then Taylor's hypothesis is applied to the result to predict the 

frequency power spectrum, Figure 17. 



CHAPTER II 

GEN~RAL MATHEMATICAL FORMULATION AND PREVIOUS WORK 

In this chapter the problem is posed and general methods for 

mathematical solution discussed. The two different methods of solu-

tion are a Green's function solution by Lilley and Hodgson (1960) and 

Hodgson (1962) and a Fourier transform solution proposed by Kraichnan 

(1956b). The general formulations reviewed here are background for 

the work presented in later chapters. 

The Problem 

The problem concerns the pressure fluctuations produced by a 

turbulent boundary layer on the surface of an infinite flat plate. 

The flow is assumed incompressible and without a pressure gradient. 

The governing equations are the continuity equation, 

(2-1) 

and the momentum equation, 

(2-2) 

An equation for the pressure is derived by taking the divergence 

of equation (2-2) and using equation (2-1). 
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If the right hand side is known, this is a linear non-homogeneous 

equation called 'Poisson's equation'. Next, the ~ean flow is con-

sidered parallel and two-dimensional while the fluctuating components 

are unrestricted. 

~ (X4}J : ~ (Xi_} + U1. (X~ 1 t) 

U,(x .. , t) = u 2 LXi.J t.) 

"fX.s(xiJt.) =- u.lcx~;-1:) 

P(x~1 -1::.) -= .Plx~Jt) +- plx~Jt.) 

(2-4) 

The subscript '1' stands :ror the streamwise direction, '2' stands 

for the dire~tion normal to the plate, and 1 3 1 stands for the span-

wise direction. Substituting equations (2-4) into equation (2-3) 

and subtracting the time-average of equation (2-3) yields an equation 

for the fluctuating pressure. 

(2-5) 

The first term on the right hand side of equation (2-5) is 

called the linear source term or the 'mean-shear:turbulenae' term 

(M-T term), The second is called the 'turbulence:turbulence' term 

(T-T term) and is actually the sum of a number of terms. Both 

Kraichnan (1956b) and Hodgson (1962) estimatedi:the relative magni-

tude of these terms. For uniform shear in a homogeneous turbulence 



field, Kraichnan calculated that p;_T/p~-r""" 1.5%. Hodgson computed 

the power spectral density contribution of the T-T term using 

Kraichnan's 'mirror-flow' turbulence model and the assumption that 

the turbulence intensity has Gaussian distribution. He found that 

P;_T/p;_r""" 4.0% and that the contribution of the T-T term to the 

power spectral density was negligible over the important frequency 

range. For these reasons and for mathematical simplicity, the T-T 

term is neglected leaving 

8 

- 'T( x· +.) 
"J 

(2-6) 

This is the basic equation to be solved. It's worth noting 

that the solution of equation (2-6) represents the contribution of 

the M-T term to the fluctuation pressure, and because the problem 

is linear the T-T contribution could, in principle, be added later. 

The boundary conditions are that the derivative of the pressure 

fluctuations in the normal direction vanish at the plate and that 

the fluctuations die out far from the plate. The first boundary 

condition is approximate. It has been substantiated by order of 

magnitude arguments due to Townsend (1956). 

Green's Function Solution 

Equation (2-6) can be solved by usinf? the appropriate Green's 

function considering the boundary conditions. This solution is given 

in detail in Appendix A. The resulting equation for the fluctuating 

pressure at a point on the plate is 
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(2-7) 

where dV(y.) is a volume element at y, and s(x.,y.) is the distan~e 
1 1 1 1 

from xi to yi. The integration extends over all space above the 

piate. 

The pressure covariance between two points on the plate, x. and 
1, 

I • h I Q ' X, W1t X.2 = X2 = , 18 
1 

Then, 

(2-8) 

/(/Xi. x[ -r-) -:;:; ~( ku).(~1.'i><u~(~~f> d fi;(~JJIJ;(iJ'.) d)7<.,. (~. ~.' ~)dv/~)JVc ,) 
'Pf> :J 1 ~ JS(x.:,~~) s'(xiJC-jt1 d~2. dff. ~~ ~ J 1 'I• ¥~, 

(2-9) 

where l<n (~,, 'j/J ~) = ll2 ~~'.J t) 4, t([J-t.+1-) 

<u~ ct2V<. u:1.c 'l:J> 
(2-10) 

) 

Equation (2-9) is simplified by noting that R22 and its 

derivatives vanish at infinity in the y 2 direction and by assuming 

that the flow is homogeneous in planes parallel to the plate. The 

last assumption is justified as follows. Both R and R22 are 
PP 



known to approach zero in a distance of the order of a few boundary 

layer thicknesses. Over this distance the boundary layer growth is 

very small, especially when the pressure gradient is zero. This 

assumption, however, will be least applicable to the large-scale 

disturbances i~ the flow. The homogeneity assumption allows R 
pp 

to be a function of s. = x. - x~ in lieu of x. and x~. 
i i i i i 

10 

The mathematical details of the simplification of equation (2-9) 

are in Appendix B. The result is the two-point pressure correlation, 

(2-11) 

The autocorrelation is obtained from equation (2-11) by differentiat­

ing with respect to s 1 and letting g\ = I; 3 = 0. The frequency 

power spectrum is the Fourier transfonn of the autocorrelation. 

CIC 

'7T'(w) ~ ~..t,,f R,,).o,o, o,-,·)exp(-lw?:) d?- (2-lla) 

- CID 

Equation (2-11) is the key in Hodgson's formulation, Because 

of its importance, consider the terms in the integrand. There are 

four: the mean-shear distribution, dU1 /dy 2 , the turbulence in-

tensity distribution, <tia >, the velocity correlation coefficient, 

Raa, and a weighting term which depends on the geometry of the 

positions on the plate and in the flow. Of the four terms, the 
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correlation coefficient, R22 is the most difficult to determine 

because of the paucity of experimental information of turbulent 

flows. The mean-shear distribution and the turbulence intensity 

distribution are known empirically except for the viscous sublayer 

region. 

Hodgson (1962) continued to solve for the frequency power spec-

trum from equation (2-11). He used isotropic turbulence and average 

values of mean-shear and intensity. The details of this work are a 

special case of an anisotropic model which will be given in Chapter III. 

Fourier Transform Solution 

Another method of solving equation (2-6) uses the Fourier 

transform. By doubly transforming the equation with respect to 

two space variables, an ordinary differential equation evolves for 

v,7hich the solution is known. A more rigorous approach follows the 

. same methodology but uses the Fourier-Stieltjes integrals (Lilley, 

1960 or Hodgson, 1962). 

The double Fourier transform of equation (2-6) with respect to 

(2-12) 

where 

(2-13) 
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ooc:ic, 

A'.x.,k.,k,, I) = 1!,_1f ( x,, V>,t) exp[-i ck, x, ~ *, x3 )]dx, d x3 (2-14) 

and 

0000 

Ff, (X,, k,, ~, t) = 17,;;. J 1'!1 x, ,\, X, J '/.) e y.p[-L (k, X. I- k, ~ ~d x, J !<;, 

-co-°" 
Equation (2-12) is a linear inhomogeneous ordinary differential 

equation with constant coefficients. Its general solution is 

00 

f!(x,j,,<,,t) • R ~ck x,)+ 8 •'f>i· kx.) + i ~(-k.l ~· • xJ) Ti~,, k,, k,, t)dj, (2-16) 

-oo 

After applying the boundary conditions, 

00 

Pcx,,k .. ,k,, t) =-}kf exp (-k /~,- x,1) T'l!j,:; ,k,, l J dt z + .. , 

... . ytell{'{-i<+p(:-k~ 'llr,J,, k,, i)df,. 
(2-17) 

On the plate x.2 = 0, so the surface-pressure transform is 

(2-18) 

The two-dimensional wave number spectrum function is found by 

multiplying equation (2-18) by its complex conjugate and taking 

the time average with zero time delay. 
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I ~00 

'lt<~v~ ~ 4 f 5}>,Pf-lt <r,+v;iJiff (f!,)iff-~ f /v., 'I:.).+.,"' )~,1~ < 2-19) 

·i 22 is the two-4imensional wave number spectrum function of u 2 

velocity. 

Equation (2-11) and Hodgson's equation (2-19) are quite similar 

in that essentially the same assumptions have been made in their 

derivations. Equation (2-11) has the advantage of giving two-point 

correlation information. Equation (2-19) has the advantage of pro-

ducing power spectruminformation as a function of the size of the 

disturbances, i,e. wave number. 

The one-dimensional wave number power spectrum is obtained 

from Tr 2 by integrating the k 3 dependence. 

00 

7'/f ti<,> _171. (o, k,.J k,)d Ir, c2-20J 

Then the frequency power spectrum may be obtained by substituting 

(2-21) 

Equation (2-21) is Taylor's hypothesis which means that all of the 

time dependence in the flow arises by convection of a relatively 

slow changing spatial pattern. It is possible in this formulation 

to let U be a function of wave number. c . 
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Equations (2-19) and (2-20) are the key equations in the Fourier 

transform formulation. Essentially the same physical information is 

needed to solve these equations as is required in the Green's function 

approach. In this regard, note that ~ 22 is the two-dimensional 

Fourier transform of R22 • 

Previous Fourier Transform Solutions 

Kraichnan (1956b) represented the turbulence field by a 'mirror-

flow' ~odel. The details concerning this model are found in Appendix 

C. Essentially, this model represents the turbulence field by mirror-
= 

ing two homogeneous fields in the wall. If ~ 22 is the two-dimension-

al wave number spectrum function of a homogeneous flow field, then 

The negative features of this model are that u 1 and u 3 do not 

vanish at the plate and that the intensity of the turbulence is finite 

at infinity. Kraichnan contends that the model is viable in that 

the viscous sublayer makes little contribution to the surface-pressure 

field and that the finite intensity at infinity is not unreasonable 

considering experimental results. It can also be argued that the 

indefinite extent of the intensity should not seriously affect the 

answer as the mean-shear term goes to zero in the far field. 

Kraichnan (1956b) computed a family of relative wave number 

power spectra for various lllean-shear profiles. He called ·,,,, 

the relative wave number and so the convective 

assumption w = k 1 U cannot directly be applied. Later Hodgson c 
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(1962) calculated a frequency spectrum with the mirror flow model, 

He used equations (2-19) and (2-20) to predict the frequency power 

spectrum. Following Kraichnan, he modeled the mean-shear gradient by 

(2-23) 

This, along with equation (2-22), is substituted into equation (2-19). 

G>O 

n}o, k,,k..i = "-lf'k. Y~t4l0Ydj,]Ji k ~ 11 
0 (2-24) 

The interim mathematical steps between equations (2-21) and (2-24) 

are reviewed in Appendix D. ~ 22 (y 2 , k 1 , k 3 ) mµst be an even 

function of y 2 • Next let 

~ ;:: o . .31 I 6>,f (2-25) 

and as~ume that the turbulence field is isotropic. This assumption 

will be considered in more detail in Chapter III. It allows 

t 22 (Y2 , k 1 , k 3 ) to be represented analytically with the 

following relationships: 

co 

ir.,k,,k,) =J iik,,k., k,)exp(iy,k,)t/1.,,, J 

- oO 

(2-26) 
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2. 

j E C'!)/'f ff (2-27) 

where 
z. , I~ '-~ 

j = I<, + I(,., +- ~3 

00 

and fl':f):. /;- Jur t(r) 'f'r'[sis('jr)/'i'r - CA!>('l'Y')]dr (2-28) 

f:) 

.,' 

where f(r) = exp(-r/L). 

In principle, substituting equations (2-25), and (2-27) into equation 

(2-24) determines the two-dimensional wave number power spectrum, 

n 2 (0, k 1 , k 3 ). Then the frequency spectrum is computed with the 

aid of equations (2-20) and (2-21). Hodgson used L = l.So* and 

U (k1 ) = .8U00 for this computation. c 

Hodgson is very vague about the details of this calculation 

and at what stage numerical estimates were made. His result, the 

frequency power spectrum, is shown in Figure 2. This figure has 

been reproduced from Hodgson (1962). It is important to note that 

the dependent variable has been normalized with T 2 and that Hodgson 
w 

fixed the level of the theoretical curves by using his experimental 

value of~, p2/qa as 2.2Cf" 

Lilley and Hodgson (1960) also compared their simplified 

isotropic calculation of the relative wave number spectrum with 

Kraichnan's 'mirror flow'model simplified in the same manner. They 

concluded that no substantial differences existed. Also, in the 

same paper they made an estimate for the 'big-eddie' contribution. 



This u~ed a scale anisotropy model similar to Townsend and Grant. 

Their estimati,ng expression lead them to conclude that the 'big 

eddie' contributions would be sensitive to the different integral 

scales. 
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CHAPTER III 

ANISOTROPIC GREEN'S FUNCTION SOLUTION 

The method of Hodgson (1962) and Lilley and Hodgson (1960) for 

determining the power spectrum is modified to include anisotropy. 

The anisotro~y model assumes the integral scale of the turbulence 

is largest in the streamwise direction. A family of frequency 

spectra is derived showing the effect of various degrees of aniso­

tropy. 

Simplified Frequency Spectrum Problem 

The method of obtaining the frequency spectrum from the 

correlation equation, (2-11), is to perform the ~ a differentia­

t:i,.on and the~ let--~ 1 and ~- 3 go to zero. The resulting auto­

correlation can be Fourier transformed giving the frequency 

spectrum. Hodgson simplified the integrand to the point that 

analytic integration was possible. The simplifications neglect 

variations of quantities across the boundary layer. His hope was 

that the computed spect~um would be qualitatively correct. 

The first step is to remove the Ya dependence from all the 

terms in the integrand except the weighting function. Therefore, 

let 

(3-1) 
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and take g 0 as a mean value. Then remove the Ya dependence from 

Raa which means that the flow is assumed homogeneous in the normal 

direction. The correlation equation, (2-11), reduces to 

By rearranging the limits in equation (3-2), it can be inte-

grated. with respect to y,2 • Then it is necessary to take an average 

value of the integrand with respect to r 2 prior to differentiating 

with respect to S 1 Taking s 1 and s 3 as zero gives the auto-

correlation of the pressure fluctuations at a point on the plate. 

The details are found in Appendix E. 

000000 V 

Rpp(r·J = t):_( ( ( c~ + 13'-) R c r. t-)clr.dr..dr: (3-3) , . ) j j ,. a I l.L ' J .3 " J. 

-oa D-OCI 

Raa must be even in r a • 

In order to obtain an analytical expression for Raa , assume 

that the turbulence is isotropic. An isotropic field is one in 

which the turbulence is invariant with respect to coordinate system 

rotations and reflections. This assumption is considered good on 

a 'local' basis for the fine-scale turbulence structure and a first 

approximation to the large-scale turbulence structure (Hinze, 1959). 

The form of the isotropic velocity correlation coefficient with zero 

time delay is 
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(3-4) 

Equation (3-4) must be modified to include a time delay and 

also an explicit relationship for f(r). Hodgson assumed that 

(3-5) 

QO 

where Lis defined as J f(r) dr, the integral scale of the turbu­
o 

lence. The time delay is introduced by Taylor's hypothesis. The 

velocity correlation in a moving reference frame is separated into 

the product of a spatially dependent term and a time dependent 

term, By assuming the flow is 'frozen', i.e. Taylor's hypothesis, 

the correlation is transformed into a fixed reference frame (see 

AppeI\dix F) • 

(3-6) 

The convective velocity Uc is assumed a constant. 

Equation (3-6) is substituted into equation (3-3) and then non-

dimensionalized according to 

(3-7) 

Woting that the integrand is even in ~a, the autocorrelation i~ 
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The Fourier transform of equation (3-8) is the frequency power 

spectrum ()() 

Ww; = -.·1 1,JRpplt')exp{-it15 -f)d/, 
~fl"' riJ,. (3-9) 

-oo 
\/ 

where .w = wL/U • Performing the substitution and expanding as in c 

Appendix E yields 

(3-10) 

Equation (3-10) is for isotropic turbulence and was integrated by 

Hodgson ,(1962). It is a special case of the anisotropic case which 

will be introduced next. 

Scale Anisotropy 

The 'eddy' model of turbulent flow envisages regions in the 

boundary layer of various scales within which the properties such 

as velocity and pressure are correlated. The larger the scale of 

the 'eddy'~ the greater the region of correlation. The larger 

eddies are the size of the boundary layer and are greatly influenced 
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by both the wall and the free stream. Experimental evidence shows 

that the large-scale structure is more anisotropic in nature than 

the small-scale structure. It is generally accepted that this large-

scale structure is the major contributor to th~ lower frequencies 

in the spectrum. Thus, the anticipated change with an anisotropic 

model would be to improve the prediction at the lower frequencies. 

Kraichnan (1956a) proposed a simple scale anisotropy model 

of the velocity correlations. This is motivated by the difference 

in the integrals scales as seen in Figure 3. This data, taken from 

Grant (1958),shows the integral scale to be larger in the streamwise 

direction than in the other directions. The analytical form of the 

isotropic velocity correlation component is 

no sum on i. (3-11) 

If the turbulence were isotropic, all of the data points of Figure 3 

would collapse and lie along a single curve. 

The elongation of the integral scale in the streamwise direction 

was modeled by letting R22 have the isotropic form in stretched coor-

I 
dinates, r 1 • 

I 

r'l. 

I 

r2 

= r1 foe 

= ra (3-12) 

In equations (3-12)G(; ~ 1.0. Kraichnan demonstrated that the new 

I I 
correlation coefficient Rjk (ri) satisfies the continuity equation. 

Power Spectrum Equation. 

The effect of the anisotropy model on the power spectrum is 
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elevated by substituting equation (3-12) into (3-6). 

(3-13) 

When equation (3-13) is processed through equations (3-7), (3-8), 

and (3-9), the equivalent of equation (3-10) is the frequency power 

spectrum equation, 

v ~ ~l((ff~ \~ ~ 'tr'( if, jd-) = ;!ft lr: "J)) t y.r1-f xp(· r;'-/.i.')e.l-Pf c~ ..... ~ jl~d ~d ,r .... 
c;;O () 0 

• J e.v,(· i!'b(")l!Ds(i +'-t1.- ~'.: ~ "',(,(' -f'.~~c.osh ~~ft.<)+- , , , ( 3-14) 

0 

,• · • &~f1o1i)si°-nh~~f1o1.1Jd!-

Integration of this equation follows the procedure outlined by Lilley 

and Hodgson (1960). The details of this work are found in Appendix H. 

The final result is a closed form solution. 

'ff'c,t; ·«)= y;i.fqt,~ol,.r~t[ii-~ +-j-J E; ( wy4)-1- ••.• 
J ~.. . 

••• ~~c. i:':iyo1)[4f Co?/o<'" -1) +- J - 1/-<-0 J 
(3-15) 

where E1 is the exponential integral, 

It is eonnnon to plot the spectrum as a function of w*, defined as 

W*°: W f}/ Cl"oo (3-16) 



The following constants are defined: 

C1 = o */L, 

U /U c 00 , 

Also t;he independent variable is normalized so that 

The final equation is 

'I If I ' 
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(3-17) 

(3-18) 

(3-19) 

(3-20) 

(3-21) 

Figure 4 is a plot of equation (3-21) for various values of alpha. 

The value of Gs as defined in equation (3-19) and used to compute 

these curves is 1.0. Except for the difference in normalizing and 

the value of Cs, the Ct= 1 curve of Figure 4 and Hodgson's (or Lilley 

and Hodgson (1960)) Green's function solution of Figure 2 are equi-

valent. 

The curves are very sensitive to small changes in alpha with the 

larger values of alpha increasing the spectrum at the lower frequen-

cies. Now the zero frequency valueTI(O;a) is the mean-square value of 

the fluctuating pressure p', which is, of course, O. Equation (3-21) 

gives·n(O;ot) = 1-l/a 2 • The reason for this anomaly is not known. 



CHAPTER IV 

FOBMULATION OF THE ONE-DIMENSIONAL WAVE NUMBER PROBLEM 

In this chapter the one-dimensional wave number equation to be 

numerically integrated is developed. The calculation incorporates 

realistic variations across the boundary layer of the mean-shear, 

turbulence scale, and turbulence intensity. The anisotropic turbu­

lence model of Chapter III is also retained. 

· When deciding which of the two methods, the Fourier transform 

method or the Green's function method, to integrate numerically, 

the inherent singularity in the Green's function solution makes it 

the least likely candidate. Essentially the same assumptions have 

been made in the developments of each method. However, there is 

one difference which proves to be important. The Fourier transform 

method is expressed in the wave numb-er domain. This allows the aniso­

tropy factor and the convective velocity to be considered as functions 

of the ,ave number and assumed after the integration is coinpleted. 

The Non-Dimensional Equation 

It is desired to non-dimensionalize the problem so that the 

answer is as independent of Reynolds numbe~ as possible. Starting 

point for the procedure is n 1 (k1 ), the one-dimensional wave number 

spectrum of the wall-pressure fluctuations. 
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CXJoor:;,o 

tJ:ck,) = "lf1J /{ exp{-k(d,+ ~:E'J;-ipi dt~ d!~d~ 
-e>00 o 

(4-l) 

This is the integration over k 3 of the two-dimensional spectrum 

givell in equation (2-19)-

In equation (4-1), ~ 2 2 is the Fourier transform of the velocity 

correlation function. 

0000 

i{ 'J• J 'J; / k, 1 "3) : I.I.(~.) IJ~(~:) r ~,_{if, 1 'J~'r./i, )eXp(-rlk. r,)exp(· 1 ~ f,)J "4d Ii 
~ fr J)~' . 

-oo~ 
(4-2) 

where u 2 =l u~ (y 2 )1 and u'2 = ~ u~ 
I I 

(Y2 ) • It will include the 

effect of ani~otropic structure. Philosophically, it is important 

to note that it is ~ 2 2 and not R22 which is assumed. · An expression 

for R22 will be integrated and the result motivates an assumption 

for i 22 • This procedure is masked because, for computational 

purposes, equation (4-2) is substituted into equation (4-1). 

The correlation coefficient R.22 is an even function of r 1 

and r 3 • · Substituting equation (4-2) into equation (4-1) and noting 

that the result i_s even in k 1 yields 

(4-3) 



Empirical forms of the mean-shear and the intensity are fairly 

independent of Reynolds number when the length scale is 6*, the 

displacement thickness, and the velocity scale is u~, the fric-
1" 

tion velocity, This aspect is discussed more fully later on. On 

the other hand, the customary form used for experimental frequency 

spectra requires the non-dimensional dependent variable, 

~ ~ / f s. = //1. /9/ <5*° • In non-dimensional variables the problem 

reduces to 
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(4-4) 

where 

The Reynolds number dependence of the wave number spectrum will 

be discussed in Chapter VI. 

Mean-Shear Expression 

Bull (1969) studied expressions for the mean-shear in a zero 

pressure gradient boundary layer. He divided the boundary layer 

into three regions and concluded that the following equations best 

represent the experimental information. 

,..., 
where Ya 

Inner region: 

= Ya 6*U N 
1" 

Limits, 0 s: Ya< 32.2 '.)/6*U 
1" 

(4-5) 



Middle region: Limits, l;u 2\1 :S: y 2 < O! c 6 /6 * 
T 
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(4-6) 

where K = .41, TT = .QO, and O! c 

Outer region: 

where m = 1. 67 

= .837 

The inner region consists of the viscous sublayer and the 

buffer layer. The extent and the profile in this region depend 

(4-7) 

upon Reynolds number. For the majority of calculations a Reynolds 

number of U O*/v = 6000 was assumed. The middle region is the 
00 

customary 'log law' plus the 'law of the wake'. The constant K 

is universal while TT, and O! depend on pressure gradient. The 
c 

shape factor, o/6*, also depends somewhat on the Reynolds number. 

Bull proposed:the outer region equation to compensate for the fail-

ure of the 'law of the wake' at the edge of the boundary layer, 

These equations are valid for a wide range of Reynolds numbers. 

Turbulence Intensity 

Klebanoff (1954) measured the intensity, u2 (y 2 ) in the 

boundary layer. He extrapolated the data further toward the wall 

using the pipe flow results of Laufer (1954). In the region of 

overlap these data agreed very well when plotted in wall layer 

variables. More recently, Ki~ et al. (1968) measured the 
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intensity near the wall of a low Reynolds number boundary layer. 

This data is also in good agreement when plotted in wall layer 

variables. 

However, for y* < 8 (viscous subiayer) there are no measure-

ments. The data were extrapolated to the wall as follows. The 

,.. 
continuity equation, when evaluated at the wall, shows that u 2 

,.. 2 ,.. 
increases at least as y 2 • Thus, it is assumed that ua is para-

bolic out to y* = 8 where y,'< = Ya U,/'J. This defines the outer 

boundary of the viscous sublayer. From that point the experimental 

data are used. The equations fit the data with an error of less 

than 5%. 

,.. 
27 (y·~ /A) O s; " 8'J 

ll:3' = , Ya< u o ,'< (4-8) 
T 

J. 
~~ .0170 ,.. "2 " 2 " Ua = 27(.3Ya - 1.63ya ) , u o·k Ya< "8 * (4-9) 

T 

" 27[ .0395 <Ya - 1) 2 /1. 24] 
.0170 " .10 

Ua = - , 
o* 

::;; Ya< 6* (4-10) 

,.. 
Ua = 27[.0394 - (y 2 ... 14) 2 /21.5] , (4-11) 

" U2 
" 27(.0638 - .057y 2 ) , (4-12) 

27[ .0068 + <Ya - 1) 2 /1.25] , (4-13) 
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In equation (4-8), A is determined by solving equations (4-8) and 

(4-9) at y* = 8. 

(4 .. 14) 

The equations above depend upon Reynolds number in the inner-

most layers, i.e. equations (4-8) and (4-9). Calculations were 

first run with a low Reynolds number, When a check was run at a 

larger Reynolds number a surprisingly large effect was observed. 

This effect was thought to result from the fact that the equations 

above are actually valid only for the large Reynolds number Re6* = 

9 ,. 9: 10 3 • They must be modified in the region O < y* < 32 for any 

other Reynolds number, Calculations were rerun at the proper 

3 Re6* = 9.9:10 • At this time the innermost equation was modified 

to the fo'J;lll ay2 + by 3 , The addition of the cubic term allows the 

slope of the data to be matched at y* = 8, This modification was 

in~luded because the inner layers contributed much more to the 

spectrum (at hi~h wave numbers) than anticipated. The values of 

a and b were 4,17:10 3 and -7,:9:10 5 respectively. 

'!he value of the boundary layer thickness, 6, in Klebanoff's 

(1954) data had to be changed to be consistent with the form of the 

mean-shear, particularly equation (4-6), Klebanoff's mean velocity 

profile was matched to the 'law of the wall and wake'. A value of 

6 = 2.76 inches was computed to replace the value 6 = 3 inches 

reported by Klebanoff. Figures 5 and 6 are plots of the scaled 

intensity equations. Figure 12 shows the variation of the product 

of the velocity intensity and mean-shear across the boundary layer. 



This variation proves to be important in devising a technique for 

numerically integrating the spectrum equation. 

Turbulence Correlation 

The turbulen~e correlation information enters the problem through 

This is the Fourier transform on 11 and 

A ~ Al A A rs of the two point correlation, R22 (.)l 2 , y 2 , t:: 1 , rs ) , with 

zero time delay, equation (4-2). As previously emphasized, it is 

~ 22 and not R22 which is assumed. The theoretical procedure is 

to Fourier transform the scale anisotropic model of R22 g"'v7n in 

Chapter II. The anisotropy factor a is taken as constant in this 

integration, This would be the exact value of 1 22 if all of the 

disturbances in the flow had the same anisotropy factor. Next alpha 

is allowed to be a function of wave number. Thus, it no longer can 

be claimed that the original R22 is proper for the flow field. For 

the numerical calculation, the procedure is to substitute equation 

(4-2) into equation (4-1) and use an analytic expression for R22. 

The isotropic form of R 22 is given in equation (J .. 4). It 

involves the longitudinal correlation function, f(r). For the 

calculations it is assumed that f(r) = exp (-r/L), in lieu of 

2 I 2 f(r) = exp (-r L ). Hodgson (1962) showed that the former 

representation more adequately represents the experimental data, 

particularly at the higher frequencies •. Substituting the apropos 

non-dimensional variables into equation (3-4), R2 2 is 

(4-15) 
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where C1 
"2 "2 "'2 "'2 

= & * /L and r = r 1 + r 2 + r :3 • 

Grant's (1958) velocity correlation data motivate two modifi-

cations to equation (4-15). The first is the dependence of the 

integral scale across the boundary layer, as seen in Fi~ure 7. 

The second is the increase in the streamwise direction of the in-

tegral scale as modeled previously by~. Figure 3. A third modi-

fication would be in the orientation of the turbulence vorticity 

vector. Townsend found a preferred orientation of 45° for large 

scale boundary layer disturbances. Kraichnan found that scale 

anisotropy had the greater influence on the mean-square pressure. 

The R22 
,.. 

dependence on y 2 can be modeled by making C1 in 

" equation (4-15) dependent on y 2 • The value of C1 is found at 

various values of y 2 /6 by a least squares fit to the data in 

Figure 7. Then a least squares fit of these values to an expo-

nential is used to determine C1 (y 2 ). The details are found in 

Appendix I, and the result is plotted in Figure 8. As before, the 

streamwise stretching in the integral scale is accounted for by 

changing the definition of r to 

(4-16) 

" ,._ I A 

With these two modifications and by noting that r2 ..., Y2 - Y2 

the expression for R22 is 

(4-17) 

"' 2 "'2 - Y2 ) + r .'3 • 
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Since the small-scale structure of the turbulence is more 

isotropio in character than the large-scale structure, it is reason-

" able to let alpha be a function of k 1 , the streamwise wave number. 

This functional relationship need not be chosen until it is desired 

to convert the wave number spectra into a frequen~y spectrum. This 

will be done in Chapter VI. 

Final Problem Statement 

The equation to be solved is obtained by substituting equation 

(4-18) 

,,.. 'I I 
The finite limits on Ya and Ya are due to the mean-shear going to 

zero at the outer edge of the boundary layer. It will be convenient 

at a later stage to have transformed rl and r~ to polar coordinates. 

Then equation (4-18) becomes 
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(4-19) 

"2 "2 A2 , -l,.. ,.. ,. ,.. 
where r = p 1 + r 3 , 9 = sin (r:; /r), and p 1 = r 1 /Ot. Equation 

(4-19) is the final statement of the problem. The method, used to 

integrate it is the subject of the next chapter. 



CHAPTER V 

THE MONTE CARLO NUMERICAL INTEGRATION 

This chapt~r will describe how the wave number spectrum equation, 

equation (,4-19), was prepared for computer progrannning and evaluation 

by a Monte Carlo technique. 

Numerical evaluation of one-dimensional integrals is a well 

perfected art. When these schemes are generalized to multidimensional 

problems, the number of points required increases exponentially. If 

M points are required on each variable, then M5 points are required 

for a five-dimensional integral. Take Mas a modest 50 points, then 

M5 is 1,562,500,000. The Monte Carlo technique is based on principles 

which are independent of the space dimension. The number of points 

required to apply the method increases with the variance of the 

function, For this reason the Monte Carlo technique was chosen and 

5000 iterations or 25,000 non-zero producing points gave acceptable 

results. 

The Monte Carlo Method 

Integration by a sampling technique for a Monte Carlo method is 

an unbiased, iterative, numerical method based on the 'Strong Law of 

Large Numbers' (Davis and Rabinowitz, 1967). To illustrate this con­

sider a one-dimensional example. Let the integral be 
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b 

rfr.x>dx (5-1) 

From the ·~ean-Value Theorem', an estimator for I would be 

N 
I C i:,;.t J_ fcx;) = ( b -a.)• Mean-value of f (x) (5-2) 

l= .J. 

The values of x. are chosen from a set of random numbers which are 
l. 

uniformly distributed on the interval (a, b). The 'Strong Law of 

Large Numbers' says that 

Probabilityfl•"Wi 
f..,V-,oo 

N 

{- [..f cxt) = I/(b-c1-~ ... j_ 
~·J. 

(5-3) 

Thus, as the number of samples, N, becomes infinite, the technique 

converges to an exact, i.e. unbiased, answer. 

Instead of selecting random numbers from a stored list, it is 

more convenient to calculate a sequence of numbers which passes the 

statistical tests for randomness. Such a sequence is called pseudo-

random. It is even more desirable to use a sequence of numbers 

which is quasirandom. A quasirandom sequence is non-random. It 

passes only those statistical tests for randomness necessary for 

the application. The quasirandom sequences used in this work are 

Halton sequences obtained from the Fortran subroutine CORPUT written 

by Professor J.P. Chandler of Oklahoma State University. The quasi-

rando~ sequence has two distinct advantages. Firstly, the numbers 

are generated serially in the same sequence each time the subroutine 
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is used. This is useful in comparing the answers from separate 

computer runs •. Secondly, the statistical error from a fixed sample 

size is less than that resulting from the use of a random or pseudo-

random sequence. 

If f(x) in equation (5-2) were a constant, only one sample would 

be required to find its mean-value. If f(x) has large variations, it 

may take many samples to compute its mean-value. It turns out that 

therms or variance measures the difficulty of computing an integral 

by the Monte Carlo technique. The successful application of Monte 

Carlo integration employs various tricks known as variance reduction 

techniques. They reduce the statistical error for a fixed sample 

size or more important, reduces the sample size for an acceptable 

statistical error. 

Importance sampling is a variance reduction technique where 

more samples are taken from the 'important' region of the interval. 

This is accomplished by changing the independent variable in such 

a way that the new integrand is flatter. As an example, consider 

the previous problem and introduce a function p(x), 

h b 

I=.~ fcx)dx{ =fcx) pcx>dx J ~ pl-t.) 
ZA:. ~ 

(5-4) 

with the conditions that 

fCX) > 0 (5-5) 

and 

{" 
Jpcx)dx= .1 

""' 

(5-6) 
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From a statistical viewpoint the function, p(x), is called the prob-

ability density function. 

Let a new variable, u(x), be defined by the inversion equation, 

(5-7) 

Another important condition is that p(x) possess a closed form integral 

so that equation (5-7) can be evaluated, otherwise there is another 

numerical integration. Since p(x) > 0 is the Jacobian, u(x) will 

be single valued and may be inverted either explicitly or numerically 

to obtain 

)(.. = x (U..) (5-8) 

Substituting the change of variable into equation (5-4) gives the 

new problem 

J,. 

= ( f [ Xlu.il Ju_ 
I J p[xt.u.)] 

D 

(5-9) 

The new integrand has less variance on the new interval (0, 1) than 

f(x) had on the interval (a, b). In the limit, as the variance 

approaches zero, the new integrand would approach a constant value 

on the interval (0, 1). If this were true, then the integral I 

would be known after sampling one value of u .• 
l. 

This result is 

trivial as the value of I would be known 'a priori' to within 

a constant and there would be no need to use the Monte Carlo technique. 

However, the moral of the preceeding story is that p(x) should mimic 

f(x) on the interval (a, b). This causes each point on the new 



interval (0, 1) to be relatively as important as any other point. 

In a multidimensional integrand p(x. 
l 

, . • . x) is chosen to mimic 
n 
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the dominant behavior of the independent variables in f(x 1 , . • • x ) • 
n 

Often p(x 1 , • x) is chosen to be a product of functions, n 

P = P1 (x 1 ) • • • p (x ), for simplicity. 
n n This implies that the 

variance reduction on x 1 is independent of the variance reduction 

on the other variables. In truly complicated problems this would 

not be expected.~ 

Variance Reduction of the Problem 

In order to apply the importance sampling technique to the 

current problem, the probability density functions must be chosen 

and the inversion equations deduced. Taking the variables one at 

a time, the integrand is inspected to find the dominant role of 

that variable. Then the probability density function can be chosen 

to mimic that behavior. 

Consider first thee variable in equation (4-19). It appears 

in a complex oscillatory manner in the argument of both sine and 

cosine functions, Its behavior is very difficult to mimic. For-

tunately, it is unnecessary since the variance is relatively 

small and the computation worked well without any reduction. 

The variable r appears in the expression 

(5-10) 

" This term goes to zero at the origin and as r approaches infinity 

it tends toward 
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(5-11) 

This would be a likely candidate for the probability density function 

except that it is not always greater than zero. This problem was 

circumvented by separating equation (4-19) into two integrals at the 

,., .... z 
minus sign between the rand r dependencies. Then the wave number 

spectrum is 

(5-12) 

(5-13) 

where 
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The dominant r dependence in I 1 is 

'r tiXp (-Cr) (5-16) 

where C is used in lieu of C = C. 1 (y 2 ) and C must be constant. 
1 

Let p 1 , the probability density function for r in 1 1 , be propor-

tional to term (5-16). Applying condition (5-6) where a is zero 

and b is infinite, 

A.(r) =C.. ~ exp(-C. ~) (5-17) 

From equation (5-7) the inversion equation is 

(5-18) 

In this instance equation (5-18) must be inverted numerically to 

obtai,n 
;. ,. 
r = Y(X) (5-19) 

The Fortran subroutine<X:t,fEAX developed by Professors J.P. Chandler 

performs the inversion. 

Following steps similar to those used to determine the r 
dependence in l, the probability density function for r in 1 2 is 

1 

(5-20) 

and the inversion equation is 

C~ AL 

Z= ( ~'( + (5-21) 

Equation (5-21) also is inverted numerically by subroutine XMEAX. 

Having selected the probability density functions and the result-

ing inversion equations for r in 11 and 12, the same must be done 
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"' "' ""I for k 3 , Ya, Ya variables. These variables can not be isolated as 

was ~. They play a dominant and symmetric role in the expression 

(5-22) 

" Howeyer, k 3 also enters the first expone~tial and the multiplier 

A closer examination of the term i1 2 dU*/d~a reveals that it 

changes considerably over the range O.s: Ya s: 6/6* (see Figure 12). 

The Ya variables were importance sampled in different ways on each 

of three regions. This technique is known as stratified sampling 

(Hammersley and Handscomb, 1967). The computational regions are 

divided as follows: 

1. 

2. 

3. 

,. 
Inner: 0 s: Ya s: .025; denoted by IN. 

Middle: .025 6 /6* < Ya< • 26 /6*; denoted by MD. 

Outer: .26 /6* ~ Ya s: 6 /6*; denoted by OT. 

Because of the symmetry in Ya and y~, the stratified ~ampling 

separates both I 1 and Ia in equation (5-12) into nine integrals 

each. · Symbolically 1 1 and Ia are composed of 

(5-23) 



In a five-dimensional format, a typical integral in 11 which 

in~ludes the probability distribution function is expressed as 

Likewise a typical integral in Ia is 

In equations (5-24) and (5-25) the upper limit don ks is finite 

but large enough not to change the value of the integral. The 

" " I limits a, band e, f on Ya and Ya are permuted to correspond to 

the regions IN, MD, and OT. 

The probability density function p 3 i must satisfy conditions 

analogous to equations (5-5) arid (5-6). 
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(5-27) 

The apropos probability density function which satisfies these 

conditions is 
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II. 

f . t;,~"'(1:) .... 

(5-28) 

In equation (5-28) the cons.tants Ci are determined by the region 

that is being sampled. In the inner region Ci= CI= 14.0, in the 

m:1,ddle region Ci= CM= 1.6, and C. =CM= 0.3. The constants were 
l. 

selected to allow p 3 i to mimic the behavior of the product 

" dU*/dya each of the regions. The U:;i in inversion equations 

u(fc, " A I " " " I w (tc.3 " "I 
Ya ' Ya ) , v(k3 ' Ya ' Ya ) and ' Ya ' Ya ) must be 

compatible with the Jacobian of the three-dimensional transformation. 

Two of the inversion equations can be selected arbitrarily. The 

third is OP111puted from the first two and the selected probability 

density function (the Jacobian of the transformation). The mathe-

matical det~ils of this work and some additional comments on the 

selection of p 3 • are found in Appendix K. The inversion equations 
l. 

(5-29) 
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They can be inverted explicitly to obtain 

(5-32) 

(5-33) 

(5-;34) 

All of the elements of the problem are now defined such that it is 

ready to be progranuned for the computer. 

Program Operation 

The computer program executes the following steps in sequence 

for a multidimensional integral each ·iteration: 

l. Select M quasirandom numbers on the interval (0, 1). M 

is the number of variables in the problem. If the variable is not 

being importance sampled, the random variable Mis the value of 

the variable used in the integrand. In this program, 0 is not being 

importance sampled. 

2. Compute the value of the variables which are being impor-

tanee sampled using the explicit inversion equations or numerical 



46 

inversion schemes. In this problem, one of the quasirandom numbers 

is used to compute two values of r from equations (5-18) and (5-21). 

Two of the other numbers are used to compute three values of the vari-

ables y2 
,,.. I 

and y 2 from equations (5-33) and (5-34). A value is needed 

for each of the regions IN, MD, and OT. The final number is used 

to compute the value of k3 using equation (5-32). 

3. The variables are then substituteq into the original 

;i.ntegrands, equations (5-13) and (5-14), and the probability distri-

bution functions, equations (5-17), (5-20), and (5-28), to compute 

the;i.r values. 

4. The value of the integrands are divided by the product of 

the probability distribution functions to produce the integrands 

of equations (5-24) and (5-25). This is analogous to equation (5-9) 

for one-dimension. This quotient is the contribution to the itera-

tion to the integral. 

5. As in equation (5-9) the value of the iteration is added 

to the sum of the previous iterations. When the desired number of 

samples is reached, the accumulated sum is divided by the total 

number of samples or iterations. 

Appendix K, is a listing of the integration program and Appendix 

L is a detailed discussion of the program chronology. Included is 

a list of the definitions of the program pseudonyms. 

It is important that the contribution of each iteration be non-

zero, If no contribution is made to the integral on a particular 

iteration and the iteration is counted as a sample, an erroneous 

answer results. In the program for this problem, 5000 non-zero 

producing samples were desired. It took approximately 5500 
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iterations to reach the stated goal. Dividing the smaller number 

by the larger yields an efficiency of 90%. But note that the 

integral value is determined by dividing the accumulated sum of con-

tributions to the integrand by 5000, not 5500. Efficiency is an 

important feature of the Monte Carlo technique. It indicates that 

the proper importance sampling technique is employed. 

The Monte Carlo ,technique is unbiased, thus a finite number of 

samples will not guarantee an exact answer. It is desirable to es-

timate how close the computed answer is to the exact answer. The 

measure of this closeness is called the statistical error and is 

measured in terms of the statistical quantities variation and standard 

deviation. 

The standard deviation for 5000 it:er&t:Lons· using quasi~andom 

numbers is 

<!~-coo= f-1. i VAf<i.ao , 

where K is unknown. Had random or pseudorandom numbers been used, 

the standard deviation would be 

~ 000= 7 VA~/r._r-1)' (5-36) 

VAR.~0 , the variation for 100 samples, and J are obtained by divid-

ing the 5000 iteration blocks into fifty, one-hundred iteration 

blocks. Then J is 50. The variance of these small blocks can be 

computed by 

le" A .Z. VA'4oo = ~oo,,. - I~) (5-37) 
t~1 
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In equation (5- 37), I 1oo, i is the value of the integral calculated 

independently for each small block, and 16000 is the value of the 

integral after 5000 iterations. The standard deviation, cr 100 , is 

defined by 

C!.too =l VA RJ.a~ (5-38) 

In order to estimate the order of magnitude of Kin equation 

(5-35), cr 5000 was computed using the procedure used to compute cr 100 • 

where 

The results are the three data points shown in Figure 20. In this 

case J was limited to 5 because it took 16 minutes of IBM 360/65 

computer time to compute five, 5000 iteration blocks. The value 

of K turned out to be about 1. This is considered an order of 

magnitude estimate in that only five blocks were computed. Had 

this number been increased, K would have been a bit larger. The 

error is about 1% and is plotted in Figure 20 as computed by equation 

(5-35) with K = 1. 

Figures 18 and 19 are plots of the regional contributions of 

the boundary layer to the wave number spectra. The division of the 

It. A I boundary layer into three regions in y2 and y2 causes the 

total integral to be the sum of nine integrals. The contributions 

of three of these integrals were used to optain the data for 

Figures 18 and 19. Figure 18 is a plot of the relative contribution 
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of each of these integrals relative to the contribution of the sum 

of the three. Figure 19 is a plot of the ratio of the contribution 

of the integral representing the inner region to the total value 

of the spectrum at that wave number. The three integrals are 

(5-41) 

( 5 -4-2.) 

(5-43) 

The symbolic integrand in these equations is the integrand in equa-

tion (4-19). In the figures, !IN is referred to as the INNER-INNER 

integral and likewise with !MD and r 0T. Figure 19 gives a better 

picture of the contribution of the inner region of the boundary layer, 

ya /5 ~ .025, to the spectrum. The data in Figure 18 tends to over-

estimate the contribution of the inner region at moderate to high 

wave numbers in the region of the peak of the wave number spectrum. 

It also tends to overestimate the c9ntribution of the inner region 

to the low wave numbers. The results will be discussed in more 

detail in the next chapter. 



CHAPTER VI 

DISCUSSION OF RESULTS 

The final chapter contains discussions of the wave number spectra, 

anisotropy, and the freqµen~y--spec;tra. Followip.g these discussions, 

the conclusions are-· .s4ilft}ari-zed. 

Wave Number Spectra 

The principle results of thi1 study are the wave number spectra 

glven in Figures 14 and 15. A family of curves for a value of the 

anis9tropy parameter from 1 to 4 is presented. The advantage of 

presenting the data as a function of wave number is that the spectra 

can be computed without introducing the convective velocity assump-

tion or a particular anisotropy factor assumption. These assumptions 

are detennined as a function of wave number and are added subsequently 

in order to predict the frequency spectrum. 

""'- a The spectrum behaves about like k ·· in the low wave number 
1 

region with alpha simply shifting the level of the curves. The 
I 

wave number at which the spectrum peaks decreases with increasing 

alpha. The opposite is true of the peak magnitude. It increases 

with increasing alpha. Just beyond the peak, the constant slope 
....,_ 75 

region decays at a rate equal to about'k 1 ' for~= 1. This 
,,,,_ 1 

compares with Bradshaw's (1967) prediction of ki This initial 

constant slope region spans the values ofk..1 from 5,5 to 34.5. 
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At that point the spectrum transitions to another constant slope 
,..., 

region with slope equal to -1.1. This region terminates at k 1 ~ 140. 

From that point the spectrum decays at a much faster rate approach-

Wills (1970) predicted that the k~ 1 region is bounded 
l 

by wo*/U = 0.6 and wv/U 2 . = 0,5. He proposed these limits on the 
00 'T' 

basis of the 'eddy' scales being comparable with the spatial limits 

o{ the wall similarity region. In these computations, the lower 

limit :i,.s k: 1 
,..., 

= 5.5 and the upper limit is k 1 = 85.5. 

Recall that the computation of the spectrum was broken into 

nine regional contributions. Three of these integrals, inner-inner, 

middle-middle, and outer-outer are purely single region contribu-

tions while the remainder are cross contributions. Figure 18 

plots the relative contributions of the single region integrals 

as a function of wave number. To get a more complete story 

Figure 19 should be considered where the contribution of inner-

inner integral as a percentage of the total integration is dis-

played, Physically the inner region is the viscous layer plus 

the buffer region out to y* = 40, for the Reynolds number of these 

computations. The middle region is the log region and the outer 

region is the last 80% of the boundary layer. 

The middle and outer regions are responsible for the spectrum 

at low wave numbers up to and slightly over the peak. The inner 

--.75 
contribution begins to pick up in the k 1 section and is 50% 

atk 1 = 27 .6 (k 1 = 4). At k: 1 = 138 (t: 1 = 20) and beyond the 

inner region is solely responsible for the spectrum. 

The spectra are strictly applicable to only one Reynolds 

number, Re0* = 9.9•10 3 • This :i,.s dictated by Klebanoff's intensity 
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data. The mean-shear equations compensate for changes in Reynolds 

number but the intensity equations do not. 

(6-1) 

and the independent variable is 

~-= kJ.&::. t a161t (6-2) 

,... ("o A A 2 
Since the program computes TI (K 1 ) andTI(k 1 )/Gf j the independent 

and dependent variables must be scaled as shown in equation (6-1). 

It is anticipated that this selection of variables will remove 

most of the Reynolds number sensitivity from the spectrum, especially 

at low wave numbers. 

It can be justified in the following manner. Assume that equa-

tion (4-3) is non-dimensionalized with length scale 6 instead of O*, 

and that the intensity and mean-shear are the most sensitive terms 

in the integrand to Reynolds number. In the middle and outer regions 

these terms will be essentially free of Reynolds number dependence, 

when normalized with U and o. From Figure 18, it can be seen 
T 

that the inner-inner region relative contribution is less than 3% 

below fc 1 = .25. Since the region beyond the buffer layer contri-

butes the greatest portion of the spectrum at low wave numbers, 

,w "' the integrand and thus TI (k 1 ) as defined in equation (6-1) will 

be relatively Reynolds number independent. This is not the case 

N ""' at high wave numbers. TI (k 1 ) will depend on Reynolds number but 

it is not anticipated that the dependence at high wave numbers is 

strong. In order to test this hypothesis by computation, the:· 

modificat:i.on of the,-intensity -equations-; rneti~!'ohed- e~rliet, 
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is ·'necessary. · · " 

Anisotropy 

Two kinds of anisotropy are accounted for in the calculations. 

The first is actually a local isotropy which changes through the 

boundary layer by allowing the integral scale to be a function of 

... 
ya. It is incorporated in the wave number spectrum calculation. 

The second kind of anisotropy is the scale anisotropy where ot 

measures the elongation of the integral scale in the flow direction 

compared to the other directions. Alpha as a function of wave 

number can be assumed after the spectrum is calculated (but before 

the frequency spectrum is obtained). 

The variation of the integral scale (C. 1 (ya) = 6*/L(y·s )) 

across the boundary layer has a profound effect on the magnitude 

of the wave number spectrum. Prior to the inclusion of C 1 (Ya ) , 

the program was run with constant C1 • The value used was that 

proposed by Hodgson (1962), C1 = 2/3. Selected points of the 

spectrum had values one to two orders of magnitude too high. The 

c1 (y 2 ) curve is one of the weakest points in the analysis since 

there is not much experimental data to determine this curve. 

Scale anisotropy dramatically changes the spectrum at low 

frequencies when it was used in Hodgson's simplified solution 

(Figure 4). As previously mentioned, this result is deemed quali-

tatively correct, but of questionable quantitative value. The 

qualitative effect of alpha on the wave number spectra is similar 

to its effect on the frequency spectra. It is generally agreed 

that low wave number disturbances hav~ a high alpha and should 
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tend to isotropy at the higher wave numbers, Considering the eocperi-

mental data from several angles, Figure 9 has been produced as a 

N 

best guess for ~(k ). The wave number spectrt.nn in Figure 16 was 
l 

constructed using this functional form of 0'~1 ) • 

When alpha is allowed to be a function of ~ 1 it is incorrect 

' to consider the correlation R22 used in the calculation procedure as 

the actual assumption. 
,.. A A A ~ ,.. A 

R22 (r , r2, rs, Y2) and'i'22 (k1, r2 
l 

,.. " k 3 , y 2 ) are a Fourier transform pair and R22 should not be a 

function of i 1 • The numerical analysis used the following calcula-

tion procedure to determine § 22 • 

(6-3) 

The scale anisotropy form of R22 was integrated and then an assump-

tion for ~(k 1 ) introduced. The correct R22 could be found by 

the inverse transform 

O" C)C) 

,~)~, t ~;~,.) = J J L_t(~;tj.) .... 
-c::ia -oo 

(6-4) 

One might say that the ~ 1 
' dependence of ~ 22 has been defined by 

a procedure. The procedure can be checked against experimental , 
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,..., " " ,..., " (I data for Raa (r 1 , O, 0, Ya ) and R11 (r 1 , 0, 0, Ya ) • 

Consider the inner integral in equation (6-3) and define the 

one-dimensional transform 

(6-5) 

This can be computed for ra = i-3 = 0 with the scale anisotropy 

model, equation (4-17), for R2 a • 

(6-6) 

,..., 
with~= ~(~ 1 ) given in Figure 9. ·The correct R2 a was found by 

numerically performing the Fourier transform 
QO 

-- _(;0 A. /\ ~ 
Ru, ( t pP,j~) =J U\,.,.ck. iDP, ~ .. ) exp( /.k < 'r;) d k,. 

- oc 

(6-7) 

The results are compared to the experimental data of Grant (1958) 

in Figure 10. 

Comparison with Grant's Rll (r1 /-00 , 0, d) data was also 

made. R11 is defined by an equation similar to (6-5), the analogue 

"' of equation (6-6) is produced, and R11 calculated numerically by 

the Fourier transform. Figure 11 gives the results. Results for 

constant alphas of 1 and 2 are shown for reference. 

The model assumed for ~(~ 1 ) succeeds rather well in bringing 
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(r1 /6 , 0, 0) at Ya /6 = .45 in coincidence with the data. 
0 . 

This is more apparent when it is remembered that for isotropy, i.e. 

0/ ,,. .. 1, 

(6-8) 

The model does not do as well in matahing"i.22 (r 1 /6 , 0, 0) to the 
0 

data. lt does have tQe proper qualitative behavior and does match 

well for small values of r· 1 /6 , 
0 

Frequency Spectra 

The predicted frequency spectrum in Figure 17 was constructed 

from the wave number spectrum of F,igµre 16 usi::ng''Taylor's hypothesis. 

In this instance Taylor's hypothesis means that the spatial correla-

tion pattern with zero time delay,.TI(k 1 ), is convected past a 

fixed point producing a frequency spectrum. The frequency is given 

by·w = U (k1 )•k1 • The convectj;ve velocity data of Wills (1970), c 

Figure 13 waa used... WilLs' ,data was .extr~apola:t.ed at, the high and 
' . ' : 

low wave number portions of the curve. -Wills, himself, questions 

the downward trend at low wave numbers since it is based on limited 

data. Bradshaw (1967) observed a similar behavior and attributed 

·it to boundary layer growth. The growth of the boundary layer was 

not a factor in Wills' data. 

Landahl (1967) computed the c,onvective velocity from a wave-

guide model of turbulence. His results were slightly Reynolds 

number dependent but this would have negli,ible effect. However, 

it would be well to note that Wills' data wa.s obtained at 
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3 Re0* = 13.5·10 • The trend of Landahl's data showed a general 

decrease in convective velocity with Reynolds number. 

Favre, et al, (1958) found that Taylor's hypothesis is a good 

approxifuation from y 2 /o = .06 to y 2 = o. From Figure 19 it can 

be seen that at k1 = 4.0 ork 1 = 27.6 and above, 50% or more of 

the contribution to the spectrum originates well below this region 

(y 2 /o < .025). If Favre's findings are assumed accurate, the 

practice of using Taylor's hypothesis at high frequencies or wave 

numbers is questionable. 

Three types of experimental data are shown for comparative 

purposes. Hodgson's (1962) and Panton 1 s et al. (1971) glider data 
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are best for comparison at low frequencies. Serafini's (1963) data 

is shown for comparison at high frequencies. Hodgson's wind tunnel 

data is shown for qualitative comparison at high frequencies. Note 

that in Figure 17 Hodgson's data is plotted on a different scale 

from the other data both in the ordinate and abscissa. His boundary 

layer data was not available to allow the simple conversion to the 

coordinate system of the other data. Since Hodgson has not as 

yet published this data, permission was obtained to plot only the 

outline of the curve. No effort has been made to smooth the result. 

The predicted spectrum is in good qualitative agreement with the 

measured results, but quantitatively it is high in the mid to high 

frequency region. Transducer size. corrections and measurements 

are most difficult in this region. If the computed results are 

greater than the true power spectrum, the most probable cause is 

the function used for the variation of the integral scale (l/C 1 ) 

across the boundary layer. Close to the wall C1 (y 2 /o) becomes 
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infinite. The function modeling it does not. The data does not 

give a clear picture of how the curve should approach this limit. 

Since the region close to the wall dominates the high frequency 

portion of the spectrum, an increase in G1 near the wall will lower 

the prediction in that portion of the spectrum only. More data 

at higher Reynolds numbers is needed to formulate a better model 

for G 1 (y 2 /6) than was used in this study. Such work may prove 

that G1 has a significant Reyno·lds number dependence similar to 

that of the mean-shear and intensity at small values of y 2 /6. 

Statement of Conclusions 

The major conclusions of this study are as follows: 

1. It is feasible to numerically integrate the five dimen-

sional integral for the 'M-T' contribution to the wave number 

spectrum. This evolves from the Fourier transform solution of the 

governing differential equation. The technique used is a Monte 

Carlo scheme using quasirandom numbers and a variance reduced 

integrand. The statistical error for 5000 non-zero producing 

iterations is about 1%, and a non-zero contribution is made to 

the integrand about 90 out of every 100 iterations. 

2. The 'M-T' contribution to the spectrum thus computed is 

the major one, particularly at high frequencies. This is consistent 

with the findings of Kraichnan (1956b), Lilley and Hodgson (1960), 

and Hodgson (1962). It does not appear that the contribution at 

low frequencies can be other than a spectrum which approaches 

2 
zero as ki even when anisotropic effects are considered. 

3. The predicted frequency spectrum is in good qualitative 
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and quantitative agreement at low frequencies with those spectra 

measured in an exper"imental environment uncontaminated at low 

frequencies. It is in good qualitative agreement with the measured 

spectra most representative of the high frequency contribution 

but is quantitatively high. In general it is superior to previous 

computed spectra, particularly at high frequencies. 

4. Anisotropic characteristics of the flow which effect the 

integral scale of the turbulence have a strong influence on the 

magnitude of the spectrum and a lesser influence on its shape. 

5. The region of the boundary layer from the wall to y 2 /6 = 

.025 contributes at least 50% of the spectrum at wave numbers~ = 
1 

4.0 or k 1 = 27.6 and above. This, coupled with the work of Favre 

et al. (1958) causes the use of Reynolds analogy at high frequencies 

or wave numbers to be questionable. 

6. The same region of the boundary layer discussed in item 

number 5 accounts for about 2% or less of the spectrum at wave 

numbers k" 1 = 13.8. 

7. It is postulated that the proper variables in which to 

plot the wave number spectrum to free the low wave number portion 

from Reynolds number dependence are .TT (k 1 ) = p2 (k. 1 ) h: and 

k 1 = k 1 6.' It is thought that the high wave number dependence on 

Reynolds number in these variables will not be strong. 
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APPENDIX A 

GREEN'S FUNCTION SOLUTION Of. EQUATION (2-6) 

One method of solving Poisson's equation is to use Poisson's 

formulp which evolves from Green's second identity. This Appendix 

reviews the material presented by Lilley and Hodgson (1960) and 

Hodgson (1962). The governing partial differential equation is 

(A-1) 

where 

(A-2) 

Its at-t.endant-. boundary conditions are 

:::;;;; 0 (A-3) 

and 

f 0 (A-4) 

~-=O 

Boundary condition (A-3), though not exact, has been substantiated 

by previous authors on the basis of some experimental measurements 
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by Townsen~ (1956). 

The solution of equation (A-1) is given by Poisson's formula 

as 

plx,, t) ~f Gcx;.; ~:) 'Tf.1,, t) ,/Ve f J 
v 

+jtGt.x,, ~ ,ftl!J :;t.) .. . 
,s 

(A-5), 

where the Green's function G(xi, yi) satisfies the equation 

(A-6) 

In equation (A-6), sis the length 

and 6 is the Dirac delta function. In equation (A-5), Vis the 

semi-infinite volume bounded by the surface of the plate, y 2 ~ 0, 

and Sis the surface of the volume. 

The conditions on Gare that it must satisfy the boundary 

conditions and not introduce any more singularities in the region 

of the integration. These requirements are met by the linear 

combination 

(A-8) 

In equation (A-8), G is the solution to the unbounded problem and 
0 

Gi is the solution to the unbounded problem in an image plane 



described by 

Since the solution to G is 
0 

I ~;/, :::. -'l.l., 

jl = j:z-

from the symmetry in equations (A-9) 
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(A-9) 

(A-10) 

(A-11) 

Substituting equations (A-10) and (A-11) into equation (A-8), 

the function G and its normal derivative on the plate are 

(A-12) 

(A-13) 

The pressure fluctuations on the plate can be computed from 

equation (A-5) by setting x 2 to zero and substituting equations 

(A-12) and (A-13) 

p(X1; O; XJ; t) =-1&0 (X.1.JOJX!J; iL) n.1"J t) dV?!/1.) 
v 

f .. , . 

(A-14) 

The surface integral in equation (A-14) vanishes because of the 
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bo~ndary conditions. The final form is determined by subst~tuting 

the values of T(y, t) from equation (A-2) and G from equation 
i O 

(A~lO) into equation (A-14). 

(A-15) 



APPENDIX B 

INTEGRATION OF' EQUATION (2~9) 

Equation (2-9) as given in Chapter II is 

(B-1) 

Experimental evidence confirms that R22 and its derivatives vanish 

at infinity in the longitudinal direction~ Thus equation (B-1) 

can be simplified by integrating by parts twice. 

t:><, p() PO 

Rpp" ~ j + ~}i A?z~drJl , , , , (B-2) 

-oe ~ ~ o ... ~ 

Rpp~r;[±ff;,~1;_fo~·~(-k)d1Jj[ ... 
l> _IIC> 

The first term on the right hand side of equation (B-3) is zet;"o. 

I 
A similar integration is carried out with respect to y 1 , leaving 
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,::,,0 QC oC ..0 ,:;,D 

l<Jx,, x:, t-) = f j JI f 1~,1.~,)>(141~/ qc~5~c~ .. . 
-- 0 -"° ;;.oot::) 

(B-4) 

Using the homogeneity in x 1 and x 3 and 

and 
(B-5) 

equation (B-4) becomes 

(B-6) 

The subsequent y 1 and y 3 partial integrations of equation 

(B-6) follow Hodgson (1962). Define 1 1 as 

(B-7) 
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Hodgson'~ vector notation will be adopted for simplicity. 

(B-8) 

sex!,~~,~·)= le.'-~- .ti 

Then, 

(B-9) 

Since 1 

I!. - r1 
is not a function of rand r is constant in the 

integration, 

(B-10) 

._. .. ' 

(B-11) 

The first integral in equation (B-11) is zero and the differentia-

o o 
tion, ~, in the second integral can be replaced by or which 

Y1 1 

can be confirmed by mechanically performing the operations. Then 

or1 can be taken outside the integral. 
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(B-12) 
-= .. oc, 

Remembering t~e relationships, 

'j=x'-x - - -
(B-13) 

a change of variable will be made which is a change in origin in 

an infinite integral. 

(B-14) 

Use the notation I '-.I = C , 

(B-15) 

Introduce the integral identity, 

00 

--=/Q-,.:-Q/- = Ho.~ ~1,tl.. d~ 
0 

(B-16) 

where a 2 = IC - zl 2 and b 2 = C 2 • Change the integration variable - -
to 

I 

f = '! -- -
2 - (B-17) 

and substitute equations (B-16) and (B-17) into (B-15) and assuming 
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the order of integration can be changed, 

(B-18) 

o2 o co) Let~=- -.-
or1 Orl O Z,1 

from equation (B-14) and perform the differ-

entiation with respect to z 1 inside the integrals. 

(B-19) 

where 0: 1 has entered from equation (B-14). The double integration 

I I 
with respect to C1 and c~ can be performed by using polar coordi-

nates. 

However, xa 
I 

= Xa = 0 on the surface of the plate. 

, a = -Ya and za = ra from equations (B-14) and 

(B-20) 

Hence, 

(B-21) 

(B-22) 
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Noting that the denominator in equation (B-22) is the sixth power 

in~, define 1 2 as 

(B-23) 

(B-24) 

which when evaluated is 

r.__ = (B-25) 

where ot is the largest root of 

1,,. I/ 

(x2..-p) - 8x r'~ - ~ 9 =- o (B-26) 

Splving for ot, 

(B-27) 

Now 1 2 is 

(B-28) 

Substit~ting equation (B-28) into equation (B-20) and finally 
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(B-29) 



.APPENDIX C 

THE MIRROR-FLOW MODEL 

The motivation for the 'mirror-flow' model is the desire to 

obtain a functional representation for ~ 2 2 (y 2 , y~, k 1 , k 3 ) 

which will be characteristic of the turbulence velocity field and 

simplify the mathematics. By using this model they~ integration 

in equation (2-19) can be performed. Let y.* be the mirror image 
l. 

with respect to the y 2 = 0 plan~, i.e. 

Y1 * = Y1 ,' Ya* = - Ya , Ys * = Ys 

Then the turbulence velocity field is described by 

and 

The velocity, ui(yi, t), satisfies continuity if ui(yi, t) does 

and the boundary conditions on the plate 

and 

(C-3) 

(C-5) 
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are satisfied. However u 1 and u 3 do not vanish at the plate nor 

does the turbulence vanish at large distances from the plate i.n the 

normal direction. 

Equations (C-3) cause the velocity correlation coefficient, 

Raa, to be given by 

The two dim~nsional Fourier tran~formation of equation (C-6) is 



APPENDIX D 

IN'l'EGRATION OF EQUATION (r2-19) 

When equations (2-2~) and (2-23) are substituted into equation 

(D-1) 

Let I be defined as the double integral with its integrand in eq-

uation (D-1) and show only the functional dependence of the inte-

gration variable in Y2 and y~ • 

Changing the integration variable in equation (D-2), it becomes 

Dr: "). I) e~~ ck,~) 1Jdvjer.p[ck+p)'i] _{c~)d$ 
0 -oo 

cC QC . ·f ~f e~p[-CI< '"p) '5] Jc.'!) d ! 

~,. 

' ' ' 

(D .. 3) 
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After integrating equation (D-3) by parts, 

0 ~ 

r = #~P8 k~!~;;J {rv,>dr-z 1~~ expf(kr(J)r~ fc~.)d,,,. (D-4) 

-~ 0 

Change the integration variable ~n the first of the two integrals 

in equation (D-4) so that 

PO QC) 

I=~f e)pf(k~)~a.]{c-~2.)12. j,. ex;,[-(IH(d)~Jfj1.)ef~,_ <n-s) 
0 0 

Then if IP (-y 2 ) = IP (Ya ) , i.e. if IP is an even fun~tion of Ya , 

c:,o 

I=f[k:~ - f/exp[-Ck+t3)1J£<~,)d111- <n-6J 
0 

With equation (D-6), equation (D-1) becomes 

00 

77;c o)k,J ~) = ;,If k,1 j:, ,~1~~--~f Xffr k¥)~d}i~-i~ k,)dvl. 

O (D-7) 



APPENDIX E 

S!M;r?LIFl€ATION OF EQUATION (3-2) 

From Chapter III, equation (3-2) is 

(E-1) 

Equation (E-1) can be integrated with respect to Ya by changing 

the limits and seque-qq~ of integration on the Ya and ra integrals. 
co co 

The area of the Ya and r2 integrations, J dy:3 I dr2 ' is 
0 -Ya 

shown be1ow. 

The same area of integration is represented by the sum 

(E-2) 
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First perform the y 2 integrations indicated in (E-2). The inte-

grand from equation (E-1) is 

1. 
(E-3) 

where A 2 = (!; 1 - r 1 ) 2 + r: + (S ~ 

and deriominator of (E-3) by 2y 2 + r; 

- r 3 ) 2 • Multiply numerator 

-J 4y~ + 4ra Ya + A a'. 

(E-4) 

Let the two Ya integrals in (E-2) be split so that 

(E-5) 

aq.d 

(E-6) 

Subsequent to the integration of equation (E-5) and (E-6), 

(E-7) 

and 

(E-8) 

Substitute equations (E-7) and (E-8) into equation (E-2), 
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-I- .. ' • 

0 

(E-9) 

By ehanging the limits of integration on the second integral in 

equation (E-9), 
r::x:i v 

r -=f -~'" c:: r2, 1--) cl Ii. 
O A - r2-

(E-10) 

with the cpndition that R22 is an even function of r 2 • Substitu-

ting equation (E-10) into (E-1), 

c;lC) pOC::,O 

~pC~.1 oJ;.) 1") = ~t~:~/( DH&) Jt,.cr'-J 1" ), d~d~d~ <E-nJ 
· ,n-- ~~.! U [l!.rrj,tf-r-a.2.+("SJ·rat]12.-li 

... c,,0 

If it is assumed that equation (E-11) can be approximated by 

averaging in r:a , 

(E-12) 

Differentiate the tntegrand with respect to g1 and let g1 and 

~' go to zero. 
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APPENDIX F 

II 
DEVELOPMENT OF Raa (r. ,T) 

l. 

The spatially dependent isotropic velocity correlation, 

R22 (r.), is given in equation (3-4) as 
:i,. 

+- ( !,2.-+- 'i~) dfcr) 
~ ~ r d;-

With this relationship, consider a field of turbulence which is 

homogeneous in parallel planes as seen from a reference frame 

(F-1) 

moving with a constant mean velocity Uc in a direction parfillel 
11 

to the planes of homogeneity. The two point correlation coeffi-

V, I 
cient that is measured in this moving frame is R.k(r., T) where 

] l. 

I I I I 
r. = (r 1 , r 2 , r 13 ) is the separation vector between the two points 

l. 

in the moving coordinate frame. Assume that the spatially dependent 

V1 I 
portion of R.k(r., T) can be separated from the time dependent por­

J l. 

tion in the following manner. 

(F-2) 

In a stationary reference frame the turbulence appears to be 

convected past at a speed Uc in the r 1 direction. The correlation 

coefficient in this frame is 

(F-3) 
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I I I 
where (r 1 , r 2 , r~ , T) = (r 1 - u,?, r 2 , r 3 , T). Since the 

spatial structure of the turbulence is the same in either reference 

frame, the functional form of the spatial variation does not change 

from equation (F-2) to equation (F-3), however the independent 

variables are modified by the mean velocity in the r 1 direction. 

In equation (F-3) time enters explicitly in two ways, the 

convective time effect and the 'true' time effect. Taylor's hypo-

thesis says that the flow essentially is frozen, i.e. the ~on-

vective time effect is much greater than the 'true' time effect. 

Favre's space-time correlation experiments showed this to be a 

valid approximation in all but that 6% of the boundary layer next 

to the plate. With this assumption, 

Since eqµation (F-1) is the correlation coefficient in the moving 

.' "2 . 2 frame, if we let f (r ) = exp ( ... r /L ) /1; 

~2.Crz; ~) ::::[1.- ~·/J!'- - (r;-t:1;.-,..);Lz]e,xpf('fi·t1c.~)7t~e4"(~~tt)µj 
(F-5) 

,-..·· 



APPENDIX G 

FOURIER TRANSFORMATION OF EQUATION (3-8) 

'I " Represent the T and r 1 integrals obtained from substituting 

equation (3-8) into equation (3-9) by 
00 c:::>O 

I {exp(-t'M) di j f < ( -h \/la 
-oo -,;;,c, 

(G-1) 

Express equation (G-1) as a sum 

00 <::?O 

I=JexpC-itf>t')d; Jf<f, -f' )._ d /, -t- • ·" 
O CJ 

... fxpc.-t.&hd1f cr.-1- >"cl;, 
0 - e;,O 

+- •••• 

(G-2) 

, · ·'·f :xpt-Wlf)c/f fac~-f)'t;f, .,.. I ' I I 

-...o O 

Pefine I in equation (G-2) as 

(G-3) 

respectively. 
°" 0 f ' " of' d't(dJ v )'_/ ..... I; = ex p(-1.- w ~) j T C ~ - t c, t; 

0 -¢ 

(G-4) 
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By rearranging limits and with appropriate changes in the integra-

tion variable, 
oO ~ 

I:,. f x,o(-i ,J;f) .111 c r, +-+') 2c/ /f 
0 0 

Likewise, 
.:::0 ,;,<) 

r3 =fexp ( id! fJdrjrJ<Y. -1-f J'-dli 
D ~ 

(G-6) 

and 
oo 00 

I.t=-f xp (i tfi{, )di,(G.-·h2·cl)f (G,7) 

0 0 
Therefore, 

c;i,O QO al) 

1? jcos( tXj ,f)df Ut((;+l)"dli{f <r flr/ (} (G-8) 

O O O 

The Fourier transformation of equation (3-8) is then 
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Expanding th~ exponents and using the hyperbolic identity, 

. v 'I" v .t: ' h ii ~\ exp ( t ~ Yj_ 'r) = C () sh (Pl ft'/"') !;. ~ 141 (,R f1_ 1:, (G-10) 

equation (G-9) becomes 



APPENDIX H 

INTEGRATION OF EQUATION (3-14) 

Equation (3-14) is 

~ 

· .. d!jdr{df,fopc-1-~)~s(tf;fJ[[t- ~'"- 'r,1;~<--fft',J ... 
0 (H-1) 

where 

c=iO 

IiJ1=[ C()s(.t1/J expr...-~1~?..J&shc~~{;µ,2.)df J (H-3) 
0 

(;II:) 

I~,2:{ c.osoX,/!) eXf(.-~"-'<~ f'-~sh (.; r.f/r1,' )df (H-4) 
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and 
oO 

I 1,: =f Cllsliil f J elf C· f 1,,(') f .m-,h rA f, fl<( .. )d f (H-s > 

0 

The procequre for evaluating equations (H-3), (H-4), and (H-5) is 

the same. Equation (H-3) will be integrated to demonstrate the 

procedure. Because the integrand is even in r, 

'T.,,£'' t .Fs(.:fJ f) t°,Kf' (-f '-/-,r2.) CJ>.sh (.;/ ~ f;.,<2.) di (H-6) 

-·oe 

Us~ the identity, 

and substitute it in equation (H-6). 

C:::00 

-4,r v v V'~ dv I.1.,t= "Jcos(wf'Jexp[-c1'1=.:J.r,~J/o1.2-J t'+- ••.• 

-c,() 

(H-8) 

.~ 'f v • v v v ~7d v · · · ·1i eoscw t'J exp [- c ~2.+- 6< Yi r) l~J ? 

-C:::,O 

Define the first integral in equation (H-8) as IA and the second 

as IB. To evaluate IA' complete the square in the exponent. 
00 

J;. = Jj e xpC Y, ~h<,. J_fosc tf)f Jextf-{ f- ~ J /r;{':} cl .f (H-9) 

-QC) 

ti \/ 
Let A = T - r 1 in equation (H-9). 

c;;,O 

I;. = '1f exp C (,~a!fas[ & CA -1- ~)] e)(,P (-;\ 01.,,(2 )d A 
-.;,,:) 

(H-10) 
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Expand the double angle cosine in terms of a single angle identity. 

oO 

1; ~ ¥ e.xpt. l '!'1 ') cos c VJ [ f c;:,s c ,xi A) ef' c-11 fol 2. )dA 
-"° 

~ , , , 

(H-11) 

00 

· · · · f; l"Yf>( ri ';,k2) ~( JJi;1sin ( J511) e.xp {-~;l.1z)d/1 

The second integral in equation (H-11) vanishes as the integrand 

is odd in A. Now equation (H-11) can be integrated, 

(H-12) 

If IB is integrated, the result is identical to equation IA. Thus, 

Using the same integration procedure, 

and (H-14) 

(H-15) 

Now substitute equations (H-13), (H-14), and (H-15) into equation 

(H-2). 



Define I 2 as 

From the integral identity, 

/<i Ct) 
f 

where K1 is a modified Bessel fvnction, Put equation (H-20) 

back into equation (H-17). 
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(H-18) 

(H-20) 
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The symmetry in r 2 and r 3 suggests the use of cylindrical coordi-

nates. Thus, let 

(H-22a) 

and 

(H-22b) 

Now define ~3 as 

fr/2.. oO 

L3 : ti eXp(-o< 2-J; '/4) f; J .f 'e Yf CY''-) Ki C J;y,) " " 

0 0 
(H-23) 

( .1 llz_ ?- ))d 
• • • • .1. - t,;(~'f + t :z~ - :f Ct) sf j 'f 

Divide equation (H-23) into two integrals and perform the~ inte-

grat;ion. 

r::,O (H - 24) 

.. ·ff'-I<, (ii! 'f) (:l "f (-.tl)d.f - (o/1) c'v e l('(-d'w/,;) · · · 
0 

t:10 

· · j.:t 'I kt (.,f;J')elf)(.-Y'')d.J' 
0 

Let C 2 ::: ;\. 
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i;;,C 

rdff )d!expt,,<•t15J!I)~ - j., ,. t~ )j r;c ~ Ctf'J A*-) eJ<ptA )d A 
e>() 0 

... { f) I:, t'lf(....,(2,}ff 4 f J/~ k;_ { ,15 ,i Yi..) e ;y:,(-).) d). 

(H-25) 

0 

Define IA and IB from equation (H-25) as 

t:::)C 

~= f Xf'r_-.,\) ,1Y2- k,_ { ,.';J ,1*-)d,,J (H-26) 

0 
and 

t?O 

TajeXp{-,l.)). .y,. k;_ ( JJ X1• JdA (H-27) 

0 

The following identities and relationships will be useful in inte~ 

grating equations (H-26) and (H-27). 

c;;>O f e;.pc-t) [% k {,;;_ (r f / .. )dt = I'ea/zJf {1-a) (H-2s, 

o « ,1o/z. e J.p t..- ~) 

wher~ the real part of a is less than 1 and r~a, z1 is the incomplete 

Gamma function. 

(H-29) 

/(;(J)t,xpg_a-1) fri]-lt/!) t!!.p/P +4)trJ-=- ~a, ttE-)elfJ(a tri) 

(H-30) 
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where :i, = 1-1. 

Integrate equation IA by letting a~ -1, z = ~2 /4, and t = A in 

equation (H-28) and using equation (H-29). 

V2 E-1, w /4t can be evaluated from 

L,=ctiJ/4)exp(d51J'/./)f~ (JJ2/'-I) r (o/tt,..)e!f1 C-?l>142 

Tp integrate IB' first express K1 Ezt in terms of Ka Ezt and 

K~ Ezt using equation (H-30), 

Then, 

(H-31) 

(H-33) 

(H-34) 

ex, oL) 

Ie1e1<f' (-,,/),If .. A; ( tfJ ~ V.)cl ,,/ - (,,, I J; 1 ext'(--,,/)). /(,.( ,/;). 'li-)d ~ 
O o (H-35) 

Each of the integrals in equation (H-35) can be integrated in a 

manner similar to IA. 

r,r( WM~y.p{.,J, 1'1 )r~ +- '%) t; { .fiil! )-R if;>,.,; )j d59~-r:5J,; g 
(H-36) 
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Combining equations (H-24), (H-33), and (H-35) and substituting 

them into equation (H-21), the final result is 

r .. ,. 



APPENDIX I 

DETERMINATIO~ OF C 1 (ya ) 

The integral scale, C1 = 6*/L in equation (4-15),is a strong 
.... 

function of Ya. This is shown in Grant's (1958) data, Figure 7. 

This figure is a plot of the velocity correlation components at 

various values of Ya /6 • 6 is defined as the value of Ya where 
0 0 

U a = Um - U"l" and is equal to • 69 6 • For this data Re6 * = 3 • 10 3 

and 6*/6 = , 158, 

The scale anisot~opy model of these components are from (4-17) 

(I-1) 

exp(-C1. Y;,) (t-2) 

(I-3) 

The values of C1 (Ya ) can be computed by fitting any equation (I ... 1) 

through (l-3) to Grant's data. This was done using the method of 

least squares and a minimization routine to optimize the value 

of C1 • The values are plotted in Figure 8. 

' When equation (I~l) was used an iteration scheme was necessary. 



F:i,rst a :; 1 was used and C1 determined. This C1 was employed 

to find a(r) to improve the fit. a(r) varied from .9 to 2.1. 

Finally the new c1 was found. There was not much difference 

between the last C1 and the first so the iteration was stopped. 

The equation chosen to fit the variation of C1 was 

94 

+ A 
(.1. -!- Bja./¢ )e. 

(I .. 4) 

The constants A, a, and C were computed by the method of least 

squares using the multi4imensional, numerical, minimization Fortran 

sq.broutine STEPlT d.eveloped by Professor J. P, Chandler. The final 

result in terms of the non~dimensional variables of the probl<am is 

This eurve is plotted in Figure 8 with the independent variable 

Y:a /6. 



APPENDIX J 

PROBABILITY DISTRIBUTION FUNCTION p 3 i(k3 , 9a, Y~) 
AND ITS INVERSION EQUATIONS 

" /I "' The method used to obtain p 3 i(k 3 , Ya, Ya) was 'stumbled upon' 

~fter attempting to importance sample each of the three variables 

separately, i.e. 

In thh case, 

(J-2) 

(J-3) 

(J-4) 

These function were derived after looking at the function format of 

(5.-22). Later it was realized that the three one-dimensional 

probability density functions of equation (J-1) can be combined 

into one three-dimensional proba~ility density £unction. From 

equation (5-24) or (5-25), 

(J-5) 

Since (5-2~ is symmetric in the variables Ya A I I " A 

and Ya, Psi (ks, Ya) 

will be used in the derivation in lieu of p 3i. Thus, 

13; (~1 j;_)dk~ dfj:, = du d v- (J-6) 
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Motivated PY equations (J-2) and J-1), let 

(J-7) 

This form satisfies the necessary conditions for the probability 

density function 

(J-8) 

and 

&/ ( (j..J > 0 (J-9) 

Equations (J-8) and (J-9) are not sufficient to get the in-

version equations for u and y. One of the inversion equations can 

be selected arbitrarily in conjunction with the form of equation 

• (J-7). The other is computed from the choice of the first, equa-

tion (J-6),noting that it is Jacobian of the two-dimensional 

transformation. Compute the equation for u by assuming u = u(k~) 

and 

(J -10) 

Then 

(J -11) 

is one of the inversion equations from which 
i\ "' r . ,:1i) ka -: k_j ~n LU "0n-.t(d / ~) (J-l,2) 

To obtain the other inversion equation, v = v(k~, Ya), use 
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the Jacobian of the two-dimensional tra~sformation which is equal 

I I\ f\ 
to p3.(Y2, k 3) in equation (J-6). 

l. 

From equation (J:-11), 

and 

Supstituting equations (J-14) and (J-15) into equation (J-13), 

After substituting equation (J .. 7) into equation (J -16) and in-

Let g(k~) = 0, then 

When inverted, 

(J -13) 

(J-14) 

(J -15) 

(J -16 ),, 

(J-17) 

(J-18) 
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Because of the symmetry in Y2 "I and y 2 , 

(J-20) 

A "'] 1-ex -(lo~c~) &. 
(J -21) 

and 

f: = -!t.1{t- w[el<f[-d: .cJe]-e;rpf-ck+cJ{JJ]/d+e;) 
(J-22) 



CARl> 
0001 C 
0002 C 
0003 C 
0004 C 
0005 C 
0006 C 
0001 C 
0008 C 
0009 C 
0010 C 
0011 C 
oou c 
0013 C. 
OOH C 
0015 C 
0016 C 
0017 C 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0018 
0029 
0030 C 
0031 
0032 
0033 
0034 
0035 
0036 C 
0037 
0038 
0039 C 
0040 
0041 
0042 
0043 C 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 

APPENDIX K 

COMPUTER PROGRAM LISTING 

• • • • • • • • • • * • • * • ··• * * * * • • • * * * * * * * * * * * MCAROOlO 
MO.NTE CARLO INTEGRAT.ION OF THE WAVE NUUBER SPECTRUM EQUATION FOR THE MCAR0020 
SURFM:E-PRESSURE FLUCTUATIONS UNDER A TURBULENT BOUNDARY. LAVER. MCAR0030 

• * • • • • *·* * * ~• * • • * * • • • • • • • * • • • • • * • * * * MCAROd40 
PROGRAM INPUTS: MCAR0050 
ENTER THE BOUNDARY LAVER PARAMETERS IN BLOCK DATA. THOSE NEEDED ARE MCAR006.Q 
DEL - B.L. THI.CKNESS IFT.I; DELST - Bolo DISPLACEMENT THICKNESS IFT.IMCAR007Q 

~~uL;.,F~~c~~~N.,!~t~~~vw!::~!;u:~~: ~R:~::D~~=E:~s~E~~c~~:P~::~ 1~RoM:~::gg:g 
ANU - THE KINEMATIC VISCOSITY IFT.SQ/SECI. ENTER N, THE NUMBER OF MCAROlOO 
NON-ZERO ITERATIONS IN CARD flCAR0340o ENTER ALPHA, THE SCAU ANISO- MCAROllO 
TRDPV FACTOR IN CARD MCAR0350. ENTER BRKl, THE STREAMWISE WAVE MCAR0120 
NUMBER IN CARO NUMBER MCAR0370oo AFTER N ITERATJONS THE INTEGRAL MCAR0130 
VALUE, ERROR VALUES, AND R.EGIONAL CONTRIBUTIONS ARE PRINTED OUT. MCAR0140 

* * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * • * * MCAR0150 
MCAR0160 
MCAR0170 

COMMON/BL PAR/ ANU,DEL,OELST, UTAU,UINFN,VKC, TURPI ,ALFAC,EM,A, B MCAR0180 
CDMMON/BLCMP/ TREND, SLOLM, SVKl, SVK3, SVK4, SVK5, SVK6, SVK7, M.CAR0190 

*SVK8,Bl,DELRA,ALIM,AK,BK . MCAR0200 
COMMON BRKl, BARI<, ALPHA MCAR0210 
DIMENSION TERMC2001 . MCAR0220 
DOUBLE PRECISION SAV15,SAVlf,,SAV25,SAV26,SAV35,SAV36,SAV45tSAV46,SMCAR0230 

$AV55,$AV56,SAV65,SAV66,SAV75,SAV76,SAV85,SAV86,SAV95,SAV96 MCAR0240 
WRITE16,5.0U . MCAR0250 

501 FORMATl1Hl,50X,'M O NT E C AR LO ',/,51X,' . MCAR0260 
$ __ , ,/,43X,•M U l T I P LE I N T E GR A T I O N •,/,43X, MCAR0270 
S'---.-.-- • ,/,53X,•T E C H N I Q MC~0280 

U E',/,53x,·~ 'I MCAR0290 

PI• 3olltl7 
P12•PI/2o 
K•lOO 
N•5000 
ALPHA•lo 

BRKi•lo 
BK lSQ•BRKl **2. 

• PROGRAM MULTIPL.IERS AND .CONSTANTS *MCAR0300 
MCAR0310 
MCAR0320 
MCAR0330 
MCAR0340 

* Kl * 

• Cl FOR VARIANCE REDUCTIO~ * 
C11N•lo+olll/l.71t78E~1+.0251••·9367 
ClMD•l.+.lll/1.l418E-7+.201**•9367 

MCAR0350 
MCAR0360 
MCAR0370 
MCAR0380 
MCAR0390 
MCAR0400 
MCAR04iO 
MCAR0420 
MCAR0430 
MCAR0440 

C1DT•l.+.lll/l.7478E-7+1.1**•9367 . 

VRAT • UTAU/UINFN 
DELRA•DELST/DEl. 
TREND• UTAU*DEL/ANU 
SLOLM • 33.2/TRENO 
SVKl • l oO/VKC 
SVK2 • ALFAC•VKC 
SVK3 • Pl*TURPI/SVK2 
SVK4 • PI/ALFAC 
SVK5 • 1.0/SVK2 
SVK6 • 1.0 - ALFAC 
SVK7 • EM .. loO 

* BOUNDARY LAYER PARAMETERS* 

MCAR0450 
MCAR0460 
MCAR0470 
MCAR0480 
MCAR01t90 
MCAR0500. 
MCAR0510 
MCAR0520 
MCAR0530 
MCAR0540 
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I 

CARD 
0055 SVK8 ,.TRENO/A MCAR0550 
0056 Bl • leO/B MCAR0560 
0057 c * SUBLAYER PARAMETERS* MCAR0570 
0058 YSTR•8. MCAR0580 
0059 AllM.,YSTR/TRENO MCAR0590 
0060 AK•. 751 AllM**l• 5-16.3 MCAR0600 
0061 BK•-.45/ALIM*•2.5 MCAR0610 
0062 c MCAR0620 
0063 c * K3 UPPER LIMIT* MCAR0630 
0064 ULIMK•50. MCAR0640 
0065 ARGXl•ATANIULIMK/BRKlJ MCAR0650 
0066 c * INTEGRAL MUL TIPllER * MCAR0660 
0067 CFSQ•4.•VRAT**4 MCAR0670 
0068 FACT1•8.*ALPHA*CFSQ/Pl**2 MCAR0680 
0069 VOLX l•PI 2*8RK1 MCAR0690 
0010 VOLX4•2.*PI MCAR0700 
0011 FACT•VOLXl*VOLX4*FACTl MCAR0710 
0072 c * INITIALIZE • HCAR0120 
0013 SUM•O. HCAR0730 
0074 SUMSQ•O. MCAR0740 
0075 SUMT•O. MCAR0750 
0076 SUMIN•O. MCAR0760 
0011 SUMMD•O. MCAR0170 
0078 SUMOTaO. MCAR0780 
0079 1•0 MCAR0790 
0080 KOUNT""O MCAR0800 
0081 J•O MCAR0810 
0082 c * Kl LOOP* MCAR0820 
0083 40 SUM15•0. MCAR0830 
0084 SUM16•0. MCAR0840 
0085 SUM25a0 0 MCAR0850 
0086 SUM26•0. HCAR0860 
0087 SUM35"'0• MCAR0870 
0088 SUH36sO. MCAR0880 
0089 SUH45•0. MCAR0890 
0090 SUM46•0. MCAR0900 
0091 SUM55•0. HCAR0900 
0092 SUM55""0• MCAR0910 
0093 SUM56.sO. MCAR0920 
0094 SUM65•0. MCAR0930 
0095 S.UM66;:o0• MCAR0940 
0096 SUM75•0. MCAR0950 
0097 SUM76•0. MCAR0960 
0098 SUH85.,0. MCAR0970 
0099 SUM86•0. MCAR0980 
0100 SUM95•0. MCAR0990 
0101 SUM96•0. MCARlOOO 
0102 c * ITERATION STARTING POINT* MCAR1010 
0103 50 l•I+l MCAR1020 
0104 M•O MCAR1030 
0105 c * VARIABLE FOR KTIL3 * MCAR1040 
0106 Ul•CORPUTC 1, M J MCAR1050 
0107 XlA•TANCARGXl*Ull MCAR1050 
0108 Xl•BRKl*XlA MCARl060 
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CARD 
0109 IJRl<"S"Q*BKlSQ+Xl••z . 1"C'A'lt1M'O 
0110 BARK•SQRTCBRKSQ) MCARlOBO 
0111 c * VARIABLE FOR. YTIL2 * MCAR1090 
0112 U2•CORPUTC2,M) MCARllOO 
0113 c * INNER REGION* MCARlllO 
0114 CIN•14.+BARK MCAR1120 
0115 EXPIN~t.-EXP(-.025*CIN/DELRA) MCAR1130 
0116 VOL IN•EXPIN/CIN MCAR1140 
0117 X2Al•l.-U2*EXPIN MCAR1150 
0118 X21•-ALOGCX2AII/CIN MCAR1160 
0119 XF21":VOLIN/X2AI MCARll 70 
0120 ARG2 I•DELRA*X2 l MCARllBO 
0121 c * MIDDLE REGION .• MCAR1190 
0122 CMO- l .6+BARK MCAR1200 
0123 XPMD•EXPC-.025*CMD/DELRAI MCAR1210 
0124 EXPMD•XPMD-EXPl-.2*CMD/OELRAI MCAR1220 
0125 VOLMD•EXPMD/CMD MCAR1230 
0126 X2AM•XPMD-U2*EXPMD MCAR1240 
0127 X2M•-ALOGCX2AMI/CMD MCAR1250 
0128 XF2M•VOLMD/X2AM MCAR1260 
0129 ARG2MsDELRA*X2M MCAR1270 
0130 c * OUTER REGION* MCAR1280 
0131 COT•a3+BARK MCAR1290 
0132 XPOT•EXPC-.2*COT/DELRA) MCAR1300 
0133 IFCXPOTl50,50,200 MCAR1310 
0134 200 EXPOT•XPOT-EXPI-COT/DELRAI MCAR1320 
0135 VOLOT•EXPOT/COT MCAR1330 
0136 X2AT•XPOT-U2*EXPOT MCAR1340 
0137 X2T•-ALOGCX2ATI/COT MCAR1350 
0138 XF2T•VOLOT /X2AT MCAR1360 
0139 ARG2T•DELRA*X2T MCAR1310 
0140 c * VARIABLE FOR YTIL2' * MCAR1380 
0141 U3•CORPUTC 3, M) MCAR1390 
0142 c * INNER REGION* MCAR1400 
0143 X3Al•l.-U3*EXPIN MCAR1410 
0144 X31•-ALOGIX3AII/CIN MCAR1420 
0145 XF3I•VOLIN/X3AI MCAR1"30 
0146 AR G3 I =OEL RA*X3 I MCAR1440 
0147 c • MIDDLE REGION* MCAR1450 
0148 X3AM•XPMD-U3*EXPMD MCAR1460 
0149 X3M•-ALOGCX3AM)/CMD MCAR1470 
0150 Xf3M•VOLMD/X3AM MCAR1480 
0151 ARG3M•OELRA*X3M MCAR1490 
0152 c • OUTER REGION* MCAR1500 

. 0153 X3AT•XPOT-U3*EXPOT MCAR1510 
0154 X3T•-ALOG(X3ATI/COT MCAR1520 
0155 XF3T•VOLOT /X3AT MCAR1530 
0156 ARG3T•OELRA*X3T MCAR1540 
0157 c * VARIABLE FOR THETA* MCAR1550 
0158 U4•CORPUT(4,MI MCARl560 
0159 X4a2.•PUU4 MCAR1570 
0160 c * Cl FOR FUNCTION COMPUTATION* MCARl580 
0161 Cll•l.+.lll/(.7478E-7+0ELRA*X21)**•9367 MCAR1590 
0162 ClM•l.+.llllC.7478E-7+0ELRA*X2Ml**•9367 MCAR1600 
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CARD 
0163 ClT•l.+.u 111 • 71t78E-HDELRA•x2n••.9367 MCAR1610 
0164 c * VARIABLE FOR RTIL TERMS * MCAR1620 
0165 U5•CORPUT l 5,MI MCAR1620 
0166 c * VARIABLE FOR RTJL * MCAR1630 
0167 CALL XMEAXll,-ClIN,U5,X5,XF51 MCAR061t0 
Ol6il X5I•X5 MCAR0650 
0169 XF51•XF5 MCAR1660 
0170 CALL XMEAXll,-ClMO,U5,X5,XF51 MCAR1670 
0171 X5M•X5 MCAR1680 
0172 XF5MaXF5 MCAR1690 
0173 CALL XMEAXll,-ClOT,U5,X5,XF51 MCAR1700 
0174 X5T•X5 MCARl710 
0175 XF5TsXF5 MCARl 720 
0176 c • VARIABLE FOR RTILSQ • MCARl 730 
0177 CALL XMEAXC2,-Cl1N,U5,X6,XF61 MCAR171t0 
0178 X6J•X6 MCAR1750 
0179 XF61=-XF6 MCARl 760 
0180 CALL XMEAXC2,-ClMO,U5,X6,XF61 MCAR1770 
0181 X6MaX6 MCARl 780 
0182 XF6M•XF6 MCAR1790 
0183 CALL XMEAXC2,-ClOT,U5,X6,XF61 MCAR1800 
0181t X6T•X6 MCAR1810 
0185 XF6T•XF6 MCAR1820 
0186 c MCAR1830 
0187 c • TERMS OF TOTAL INTEGRAL• MCAR1840 
0188 c MCAR1850 
0189 c • X2 TCRMS * MCAR1860 
0190 CALl. SUBX2CFX2,X21,ARG21,XF211 MCAR1870 
0191 IFCFX2150,50,210 MCAR1880 
0192 21"0 FX2JaFX2 MCAR1890 
0193 CALL SUBX2CFX2,X2M,ARG2M,XF2MI MCAR1900 
0194 IFCFX2150,50,220 MCAR1910 
0195 220 FX2MsFX2 MCAR1920 
0196 CALL SUBX21FX2,X2T,ARG2T,XF2TI MCAR1930 
0197 IFIFX2)50,50,230 MCAR1940 
0198 230 FX2TaFX2 MCAR1950 
0199 c • X3 TERMS * MCAR1960 
0200 CALL SU8X31FX3,X31,ARG31,XF31) MCAR1970 
0201 IFIFX3150,50,240 MCAR1980 
0202 240 FX3JaFX3 MCAR1990 
0203 CALL SU8X3lfX3,X3M,ARG3M,XF3M) MCAR2000 
0204 IFCFX3150,50,250 MCAR2010 
0205 250 FX3M•FX3 MCAR2020 
0206 CALL SUBXJCFX3,X3T,ARG3T,XF3T) MCAR2030 
0207 IFIFX3150,50,260 MCAR2040 
0208 260 FX3T•FX3 MCAR2050 
0209 c * X4,X5,&X6 TERMS* MCAR2060 
0210 c MCAR2070 
0211 CALL SUBU5(~1,X21,X3J,X4,X5J,X61,C11,XF51,~F6l,FX5,FX61 MCAR2080 
0212 FlX5•FX5 MCAR2090 
0213 FlX6sFX6 MCAR2100 
021" JFCFX5.EQ.O.I GO TO 50 MCAR2110 
0215 JFIFX6.EQ.O.I GO TO 50 MCAR2120 
0216 CALL SUBU51Xl,X21,X3M,X4,X51,X61,Cll,XF51,XF61,FX5 1 FX6) MCAR2130 



CAR't> 
0217 
0218 
0219 
0220 
0221 
OU2 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 
0256 
0257 C 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 

· i';!*5•'f'X5 
f2X6•FX6' 
IFCFX5.EQ.O.I GO TO 50 
IFCFX6.EQ.O.I GO TO 50 
CALL SUBU51Xl,X21,X3T,X4 1 X51 1 X61,Cll,XF51,XF6l,FX5,FX61 
F3X5sfX5 
F3X6=FX6 
IFCFX5.EQ.O;I GO TO 50 
IFCFX6.EQ.O.I GO TO 50 
CALL SUBU51Xl,X2M,X31,X4,X5M,X6M,C1M,XF5M,XF6M,FX5,FX61 
f4X5:fX5 
F4X6=FXo 
IFCFX5.EQ.O.I GO TO 50 
IFIFX6.EQ.O.I GO TO 50 
CALL SUBU51Xl,X2M,X3M,X4 1 X5M 1 X6M,C1M,XF5M,XF6M,FX5,FX61 
f5)(5sfX5 
F5X6=FX6 
IFCFX5.EQ.O.I GO TO 50 
IFIFX6.EQ.O.I GO TO 50 
CALL SUBU51Xl,X2M,X3T,X4,X5M,X6M,C1M,XF5M,XF6~,FX5,FX6) 
F6X5=FX5 
F6X6=FX6 
IFIFX5.EQ.O.I GO TO 50 
IFIFX6.EQ.O.I GO TO 50 
CALL SUBU51Xl,X2T,X31,X4,X5T,X6T,C1T,XF5T,XF6T,FX5,FX61 
F7X5=FX5 
F1X6•FX6 
IFCFX5.EQ,O.I GO TO 50 
IFIFX6,EQ.O.I GO TO 50 
CALL SUBU51Xl,X2T,X3M,X4,X5T,X6T,C1T,XF5T,XF6T,FX5,FX61 
FBX5=FX5 
F8X6=FX6 
IFIFX5.EQ.O,I GO TO 50 
IFIFX6,EQ.O.I GO TO 50 
CALL SUBU51Xl,X2T,X3T,X4,X5T 1 X6T,C1T,XF5T 1 XF6T,FX5 1 FX61 
F9X5•FX5 
F9X6=FX6 
IFIFX5.EQ,O.I GO TO 50 
IFIFX6,EQ,O,I GO TO 50 
KOUNT:KOUNT+l 

fl5•FX21*FX31*FlX5 
Fl6=FX21*FX31*flX6 
f25=FX21*FX3M*F2X5 
F26=f X2 I *F X3M*F2X6 
F35=FX21*FX3T*F3X5 
F36=FX21*FX3T*F3X6 
F45•FX2M*FX31*f4X5 
F46=FX2M*fX31*F4X6 
F55•fX2M*FX3M*F5X5 
F56=FX2M*FX3M*f5X6 
F65=FX2M*FX3T*f6X5 
f66=FX2M*fX3T*F6X6 
f75•FX2T*FX31*F7X5 

* COMPUTE INTEGRAND* 
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·MtAR2140 
MCAR2150 
MCAR2160 
MCAR2170 
MCAR2180 
MCAR2190 
MCAR2200 
MCAR2210 
MCAR2220 
MCAR2230 
MCAR2240 
MCAR2250 
MCAR2260 
MCAR2270 
MCAR2280 
MCAR2290 
MCAR2300 
MCAR2310 

,MCAR2320 
MCAR2330 
MCAR2340 
MCAR2350 
MCAR2360 
MCAR2370 
MCAR2380 
MCAR2390 
MCAR2400 
MCAR2410 
MCAR2420 
MCAR2430 
MCAR2440 
MCAR2450 
MCAR2460 
MCAR2470 
MCAR2480 
MCAR2490 
MCAR2500 
MCAR2510 
MCAR2520 
MCAR2530 
MCAR2540 
MCAR2550 
MCAR2560 
MCAR2570 
MCAR2580 
MCAR2590 
MCAR2600 
MCAR2610 
MCAR2620 
MCAR2630 
MCAR2640 
MCAR2650 
MCAR2660 
MCAR2670 



CARD 
0271 
0272 
0273 
0274 
0275 
0276 C 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 
0295 
0296 C 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305. 
0306 
0307 
0308 
0309 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 

F76•FX2T*FX3l*F7X6 
F85•FX2T*FX3M*F8X5 
F86•F X2T*F X3M*F8X6 
F95•FX2T*F X3T*F 9X5 
F96•FX2T*FX3T*F9X6 

SUMl 5•SUM15+fl5 
SUM16=SUM16+Fl6 
SUM25aSUM25+F25 
SUM26=SUM26+F26 
SUM35-sSUM35+F35 
SUM3 6=SUM36+F36 
SUM45•SUM45+F45 
SUM46zSUM46+F46 
SUM55•SUM55+F55 
SUM56•SUM56+F56 
SUM65=SUM65+F65 
SUM66•SUM66+F66 
SUM75•SUM75+F75 
SUM76zSUM76+F76 
SUM85zSUM85+F85 
SUM86=SUM86+F 86 
SUM95zSUM95+f95 
SUM96=SUM96+F96 
lFIKOUNT.lT.KIGO TO 50 

AJ•lOO 
SAV15=SUM15/AJ 
SAV16=SUM16/ Al 
SAV25zSUM25/AJ 
SAV26=SUM26/AJ 
SAV35•SUM35/AJ 
SAV36=SUM36/AJ 
SAV45=SUM45/AI 
SAV46•SUM46/Al 
SAV55=SUM55/AI 
SAV56zSUM56/AI 
SAV65sSUM65/AJ 
SAV66zSUM66/Al 
SAV75=SUM75/AI 
SAV76•SUM76/AI 
SAV85•SUM85/AI 
SAV86zSUM86/Al 
SAV95zSUM95/AJ 

* SUM INTEGRAND* 

* COMPUTE OUTPUT* 

SAV96zSUM96/Al 
SAV5•SAV15+SAV25+SAV35+SAV45+SAV55+SAV65+SAV75+SAV85+SAV95 
SAV6zSAVl6+SAV26+SAV36+SAV46+SAV56+SAV66+SAV76+SAV86+SAV96 
VAll•FACT*ISAV5-SAV61 
SUMINzCSAV15-SAVl6l+SUMIN 
SUMMD=CSAV55-SAV56l+SUMMO 
SUMOTzCSAV95-SAV96l+SUMOT 
K=K+lOO 
J=J+l 
SUMT•SUMT+VAll 
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HCAR2680 
MCAR2690 
MCAR2700 
MCAR2710 
MCAR2720 
MCAR2730 
MCAR2740 
MCAR2750 
MCAR2760 
MCAR2770 
MCAR2780 
MCAR2790 
MCAR2800 
MCAR2810 
MCAR2820 
MCAR2830 
MCAR2840 
MCAR2850 
MCAR2860 
MCAR2870 
MCAR2880 
MCAR2890 
MCAR2900 
MCAR2910 
MCAR2920 
MCAR2930 
MCAR2940 
MCAR2950 
MCAR2960 
MCAR2970 
MCAR2980 
MCAR2990 
MCAR3000 
MCAR3010 
MCAR3020 
MCAR3030 
MCAR3040 
MCAR3050 
MCAR3060 
MCAR3070 
MCAR3080 
MCAR3090 
MCAR3100 
MCAR3110 
MCAR3120 
MCAR3130 
MCAR3l40 
MCAR3150 
MCAR3l60 
MCAR.3170 
MCAR3180 
MCAR3190 
MCAR3200 
MCAR3210 



CARD 
0325 
032.6 
0327 
0328 
0329 
0330 
0331 
0332 
0333 
0334 
0335 
0336 C 
0337 
0338 
0339 
0340 
0341 
0342. 
0343 
0344 C 
0345 
0346 
0347 
0348 
0349 
0350 
0351 
0352 
0353 
0354 
0355 
0356 
0357 
0358 
0359 
0360 
0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 C 
0313 C 
0374 
0375 C 
0376 C 
0377 C 
0378 C 

TERM( JI •VALl 
AJ ... J 
VAL2 .. SUHT I AJ. 
VAL3=VAL2/CFSQ 
AVIN=SUHIN/AJ 
AVHD=SUHMD/AJ 
A°YOT=SUHOT/AJ 
SUMmAVlN+AVMO+AVOT 
RATIN.,AVIN/SUH 
RATHD=AVHD/SUM 
RATOT.,AVOT /SUH 
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MCAR3220 
MCAR3230 
MCAR3240 
MCAR3250 
MCAR3260 
MCAR3270 
MCAR3280 
MCAR3290 
MCAR3300 
MCAR3310 
MCAR'3320 

* PRINT OUT OF VALUES * MCAR3330 
WRlTE(6,101 MCAR3340 

10 FORMAT(///1 MCAR3350 
WRITE(6,60l1VAL2,SAV5,SAV6,SAV15,SAV16,SAV25,SAV26,SAV35,SAV36,SAVMCAR3360 

S45,SAV46,SAV55,SAV56,SAV65,SAV66,SAV75,SAV76,SAV85,SAV86,SAV95,SAVMCAR3370 
$96,KOUNT,1,J MCAR3380 

601 FORMAT( 2><, 3El 5. 8,5015.8/2)(, 8015. 8/2X,5Dl5. 8, 3161 MCAR3390 
IF(KOUNT-Nl40,60~60 MCAR3400 

* ERROR COMPUTATION LOqP * MCAR34 l0 
60 00 70 Lzl ,J MCAR3420 
70 SUMSQ=(TERMIL)-VAL2l**2+SUMSQ MCAR3430 

VAR=SUMSQ/AJ . MCAR3440 
SlGsSQRTIVAR/AJ) MCAR3450 
SlGl=SQRTIVARI/AJ MCAR3466 
WRITEl6,5021 MCAR3470 

502 FORMATl//7X, 1 Kl',8X, 1 ALPHA 1 1 HCAR3480 
WRITE16,500tBRK1,ALPHA MCAR3490 

500 FORHATl/2(5X,F6.3lt MCAR3500 
WRITE16,201 HCAR35l0 

20 FORHATl//3X, 1 1NTEGRAL VALUE 1 ,6X,•ERROR 1',10X, 1 ERROR 21 ,7X, 1 SPECTRHCAR3520 
SUH VALUE 1 /I MCAR3530 

WRITE16 1 30)VAL3,SIG,SIG1,VAL2 MCAR3540 
30 FORMATl412X,El5.8)t MCAR3550 

WRITE16,251 MCAR3560 
25 FORMAT I //6 ><,'INSIDE', llX, 1 MIDDLE', lOX, 'OUTSIDE') MC AR3570 

WRITE16,341AVIN,AVMO,AVOT MCAR3580 
34 FORMATl/312X,El5.81,3X,'MAGNITUOE'I MCAR3590 

WRITE16,351RATIN,RATMO,RATOT MCAR3600 
35 FORHATl/312X,El5.81,3X, 1 RELATIVE CONTRIBUTION'I MCAR3610 

STOP MCAR3620 
END MCAR3630 
BLOCK DATA HCAR3640 
COHMON/BLPAR/ANU,DEL,DELST,UTAU,UINFN,VKC,TURPl,ALFAC,EM,A,B MCAR3650 
DATA ANU,OEL ,DEL ST ,UTAU,Ul NF N,VKC, TURPI, ALFII.C, EM, A, B/l .69E-04,0 .23MCAR3660 
,.03333,1.85,050.0,0o41,0.60,0.B37,l.67,4.0,1300.0/ MCAR3670 
ENO MCAR36BO 

SUBROUTINE XMEAX IMH,AA,UU,XX,POFI 

GENERATES A RANDOM NUMBER FROM THE PROBABILITY DENSITY FUNCTION 
PROPORTIONAL TO X**M*EXPIA*XI, WHERE MIS EQUAL TO 1 OR 2 ANO 
A IS .LT. ZERO. 
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CARO 
0379 c BEFORE CALLING XHEAX, SET UU EQUAL TO A PSEUDO-RANDOM. OR 

) 0380 c QUASI-RANDOM NUMBER UNIFORMLY DISTRIBUTEO ON I0,11. 
0381 c XX RETURNS THE RANDOM NUMBER AND PDF RETURNS THE PROPERLY NORMALIZED 
0382 c VALUE OF THE PROBA.Bll ITV DENSITY FUNCTION. 
0383 c 
0384 c J. P • CHANDLER, COMPUTER SCI ENCE DEPT•• OKLAHOMA STATE UNIVERSITY 
0385 c 
0386 FAIX,EXl•EX*IA*X-1.l+U 
0387 F 81 X, EX l•-EX*I ASQ•x•x12.-A•x+1.1 +U 
0388 c 
0389 KW.al 
0390 KW=6 
0391 RATa2. 
0392 RELEP ... 0001 
0393 ACK•l.5 
0394 NPR"'l 
0395 NPRzO 
0396 81Gs90. 
0397 M=HM 
0398 AaAA 
0399 U=UU 
0400 ASQsA*A 
0401 FAC,..ACK 
0402 X=-1. 
0403 NIT=O 
0404 IFIA14,5,5 
0405 4 IFIU 11,1,2 
0406 l X=-EIIG/A 
0407 GO TO 5 
0408 2 IF I U-1. 1°6, 7, 7 
0409 7 X=O. 
0410 GO TO 5 
0411 6 IFIU-.5180,80,81 
0412 80 X ... ALOGI U II A 
0413 EX=U 
0414 GO TO 82 
0415 81 X=-SQRTll.-Ul/A 
0416 EX=EXPIA*XI 
0417 82 IFIEXH,1,lO 
0418 10 IFIM-1111,11,12 
0419 11 F=FAI X,EXI 
0420 GO TO 35 
0421 12 F=F81 X, EXI 
0422 35 IFINPR171,71,72 
0423 72 WRITEIKW,211XA,FAA,X8~F88,X,F 
0424 21 FORMATl6El2.4l 
0425 71 IFIFl30,5,31 
0426 c BRACKET X FROM ABOVE. 
0427 30 XA ... X 
0428 FAA=F 
0429 X=XA*FAC 
0430 FACafAC*AC.K 
0431 EX=E XPIA*X l 
0432 IFIEX136,36,37 
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0433 37 IF(M-'1132,32,33 
0434 32 f 3 fAIX,EXl 
0435 GO TO 34 
0436 33 F•FBIX,EXI 
0437 34 IFIF135,5,36 
0438 36 xe .. x 
0439 FBB=f 
0440 GO TO 38 
0441 "c BRACKET X FROM BELOW. 
0442 31 XB=X 
0443 FBB•F 
0444 X=XB/FAC 
0445 FAC=FAC*ACK 
0446 EX=EXPIA*X l 
0447 IFCM-1140,40,41 
0448 40 F=FACX,EXI 
0449 GO TO 42 
0450 41 f=FBI X,EX) 
0451 42 lflf)43,5,35 
0452 43 XA=X 
0453 FAA=F 
0454 c USE A VARIATION ON HAMMING-S VERSION OF 
0455 c REGULA FALSI. 
0456 38 DENOM=FBB-FAA 
0457 IFCDENOM15,5,47 
0458 47 X•XA-FAA*(XB-XAt/OENOM 
0459 EX=EXPCA*Xl 
0460 IFCX-XAl5,5,48 
0461 48 lfCX-XBl49,5,5 
0462 49 IFCM-1150,50,51 
0463 50 F=FACX,EXI 
0464 GO TO 52 
0465 51 F=FBCX,EX) 
0466 52 N IT=NITH 
0467 IFCNPR173,73,74 
0468 74 WRITE CKW,551NIT,XA,FAA,XB,FBB,X,EX,F 
0469 55 FORMATC1Xl3,7El2.4l 
0470 73 IF I FI 53, 5, 54 
0471 53 XA=X 
0472 FAA:F 
0473 IFCFBB-RAT*C-FAA1)57,57,6l 
0474 61 FBB=.5*F88 
0475 GO TO 57 
0476 54 XB=X 
0477 FBB=F 
0478 IFC-FAA-RAT*FBBJ57,57,62 
0479 62 FAA=. 5*FAA 
0480 57 IFCCXB-XA)-RELEP*XBl5,5,38 
0481 c 
0482 5 XX=X 
0483 IFIM-1144,44,45 
0484 44 DFDX=ASQ*X*EX 
0485 GO TO 46 
0486 45 DFDX=-ASQ*A*X*X*EX/2. 
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0487 
0488 
0489 
04«:!0 
0491 
0492 
0493 C 
0494 C 
0495 
0496 
0497 
0498 
0499 
0500 C 
0501 C 
0502 
0503 
0504 
0505 · 
0506 
0507 C 
0508 C 
0509 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 C 
0527 C 
0528 
0529 
0530 
0531 
0532 
0533 
0534 
0535 
0536 
0537 
0538 
0539 
0540 

·46· ·PBF•·DfDX 
IFINPRt75,75,76 

76 WRITECKW,56INIT,XA,FAA,XB,F88,X,EX,F,DFDX 
56 FORMATl1Kl3,8El2·41 
75 RETURN 

END 

SUBROUTINE SUBX2CFX2,X2,ARG2,XF21 
COMM(}N BRKl,BARK,ALPHA 
FX2,.EXPC-C BARK*X21 l*SGI ARG21*VI IARG21 *Xf 2 
RETURN 
END 

SUBROUTINE SUBX31FX3,X3,ARG3,XF31 
COMMON BRKl,BARK,ALPHA 
FX3=EXPC-(8ARK*X3ll*SGIARG31*Vl(ARG31*XF3 
RETURN 
END 

SUBROUTINE SUBU5CX1,X2,X3,X4,X5,X61Cl,XF5,XF6,FX5,FX61 
COMMON BRKl,BARK,ALPHA . 
YZ=CX3-X21••2 
XP5•SQRTCX5•*2+YZI 
XP6• SQR HX6**2+Yl I 
f1X5,.X5•EXPC-Cl*XP5• . 
f lX6•CCl 12. l•C X6••3IXP6 I •EXPI-Cl•XP6i° 

. 'A=BRKl•ALPHUCOSCX41 . 
B=Xl•SINIX4l 
f2X5sCOS.1 A*X5 I 
f2X6=Cos·, UX6J 
F3X5,.COSIB*X5J 
f3X6•COSIB*X61 
FX5=flX5*F2X5*F3X5/XF5 
FX6•F 1X6*F 2X6•F 3X6/XF6 
RETURN 
END 

FUNCTION VICYBAR21 

.,: ,_·:).·', •,. 

'·'!.' 

COMMON/BLCMP/ TREND, SL OLM, SVKl, SVK3, SVK4, SVK5, SVK61 SVK7, 
*SVK8 1 81,DELRA,ALIM,AK,BK 

RATl0=27. 
YBAR2=3 .•YBAR212. 76 
lFCYBAR2.GT.l.lGO TO 5 
IFIYBAR2.GT •• 9IGC TO 10 
IFCYBAR2.GT •• 575JGO TO 20 
JF(YBAR2.GT •• 11GO TO 30 
JFCYBAR2oGT .. Ol 71GO TO 40 
IFCYBAR2.GT .ALJMIGO TO 50 
Vl=RATIO•CAK•YBAR2••2+BK*YBAR2••31 
RETURN 
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0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 C 
0555 C 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
0568 
0569 
0570 
0571 
0572 
0573 
0574 C 
0575 C 
0576 
0577 C 
0578 C 
0579 C 
0580 C 
0581 C 
0582 C 
0583 C 
0584 C 
0585 C 
0586 C 
0587 C 
0588 C 
0589 C 
0590 C 
0591 C 
0592 C 
0593 C 
0594 C 

"5 -v1 xR"A,TO* • '0'0615 
RETURN 

10 VlzRATIO•C.0068+CYBAR2-l.1**2/l.251 
RETURN 

20 v1~RATIO•C.0638-.057•YBAR2t 
RETURN 

30 Vl=RATIO•C.0394-CY8AR2-.14t••2121.51 
RETURN 

40 Vl•RATIO•C.0395-CYBAR2-.lt•*2/lo24t 
RETURN 

50 Vl=RATIO*CSQRTC.09*YBAR2t-16.3*YBAR2**2t 
RETURN 
END 

FUNCTION SGCYBAR21 
COMMON/BlPAR/ ANU, DEL, OELST, UTAU, UINFN, VKC, TRUPI, AlFAC, EM, 

$A, B 
COMMON/BLCMP/ TREND, SLOLM, SVKl, SVK3, SVK4, SVK5, SVK6, SVK7, 

*SVK8 1 Bl,DELRA,Al1M,AK,BK 
IFCYBAR2.GE.l.Ot GO TO 30 
IFCYBAR2.GE.ALFACt GO TO 10 
IFCYBAR2.GT.SLOlMt GO TO 20 
YSTR = SVK8*YBAR2 
SG • DELRA*TRENO•Cl.O + YSTR+0.5*YSTR**2 + Bl*YSTR**6l*EXPC-YSTRI 
RETURN 

10 SG = DELRA*SVK5*CC1.0 - YBAR2t/SVK6t**SVK7 
RETURN 

20 SG = DELRA*CSVKl/YBAR2 + SVK3*SINCSVK4*YBAR211 
RETURN 

30 SG = O.O 
RETURN 
END 

FUNCTION CORPUTINR,NRESETI 

QUASI-RANDOM NUMBERS BY VAN DER CORPUT-S METHOD 
QUA 
J.P. CHANDLER, F.s.u. PHYSICS DEPT., TALLAHASSEE, FLORIDA 

CORPUT RETURNS THE NEXT Cl-THI NUMBER IN THE R-TH VAN DER CORPUT 
SEQUENCE, PSUBRI 11, WHERE R IS THE NR-TH PRIME. 
NR MUST BE GREATER THAN ZERO AND LESS THAN OR EQUAL TO NMAX. 
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CORPUT l 
CORPUT 2 
CORPUT 3 
CORPUT 4 
CORPUT 5 
CORPUT 6 
CORPUT 7 
CORPUT B 
CORPUT 9 
CORPUTlO 

REFERENCES.... CORPUTll 
YU. SHREIDER, ED., THE MONTE CARLO METHOD (PERGAMONt CORPUT12 
P. J. DAVIS AND Po RABINOWITZ, NUMERICAL INTEGRATION IBLAISDELLICORPUT13 
J.M. HAMMERSLEY AND D. C. HANDSCOMB, MONTE CARLO METHODS CORPUT14 

IMETHUENI CORPUT15 

IF NRESET JS NONZERO, THE NR-TH SEQUENCE IONLYI IS RESTARTED AND 
THE FIRST VALUE IS RETURNED. 

CORPUT16 
CORPUTl 1 
CORPUT18 
CORPUT19 
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0595 C THE NUMBER Of CALLS TO CORPUT WITH ANY "PARTICULAR V.ALUE Of NR, CORPUT20 
0596 C WITHOUT RESTARTING, MUST NOT EXCEED THE LARGEST FORTRAN INTEGER. CORPUT21. 
0597 C (THIS SHOULD NOT BE A PROBLEM AT PRESENT DAV SPEEDS IF THE INTEGER CORPUT22 
0598 C LENGTH IS MORE THAN ABOUT 26 OR 27 BITS.) CORPUT23 
0599 C A CHECK FOR INTEGER OVERFLOW IS PERFORMED WHICH SHOULD WCRK ON MOST CORPUT24 
0600 C COMPUTERS.... CORPUT25 
0601 C CORPUT26 
0602 C PROVISION IS MADE FOR THE USE OF A FASTER ROUTINE FOR NR=l, CORPUT27 
0603 C IF ONE IS AVAILABLE. ION A BINARY MACHINE THE INTEGER CAN BE CORPUT28 
0604 C STORED IN BIT-REVERSED FORM, AND INCREMENTED BY DOING THE CARRIES CORPUT29 
0605 C -BY HAND-.) SUCH A ROUTINE EXISTS FOR THE CDC 6400. IT IS ABOUT CORPUT30 
0606 C FIVE TIMES AS FAST AS CORPUT FOR SMALL 1, ANO HAS A GREATER CORPUT31 
0607 C ADVANTAGE FOR LARGE 1. CORPUT32 
0608 C CORPUT33 
0609 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * CORPUT34 
0610 C CORPUT35 
0611 DIMENSION NPRIMEC25) 1 JPC25) CORPUT36 
0612 C CORPUT37 
0613 DATA NFIRST/7/ CORPUT38 
0614 C NMAX IS THE DIMENSION OF NPRIME AND JP. CORPUT39 
0615 DATA NMAX/25/ CORPUT40 
0616 DATA NPRIME/2,3,5,7,11,13,17 1 19,23 1 29,31 1 37,41 1 43,47 1 53 1 59,61,67,7CORPUT41 
0617 1,73,79,83,89,97/ CORPUT42 
0618 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * CORPUT54 
0619 C CORPUT55 
0620 C MOVE THE ARGUMENTS. CORPUT56 
0621 MRzNR CORPUT57 
0622 MRESET=NRESET CORPUT58 
0623 C CHECK FOR ILLEGAL VALUES OF NRo CORPUT59 
0624 IFCMR-1)20,40,10 CORPUT60 
0625 10 IFCMR-NMAX)50 1 5e,20. CORPUT61 
0626 20 PRINT 30,MR,NMAX CORPUT62 
0627 30 FORMATC/53H ILLEGAL VALUE OF NR IN FUNCTION CORPUT. NR, NMAX = CORPUT63 
0628 * 218 //1 CORPUT64 
0629 STOP CORPUT65 
0630 40 CONTINUE CORPUT66 
0631 C CALL A FASTER ROUTINE FOR BASE 2, IF ONE CORPUT67 
0632 C IS AVAILABLE. CORPUT68 
0633 C CORP=CORPUSCMRESET) CORPUT69 
0634 C GO TO 180 CORPUT70 
0635 C INITIALIZE ALL SEQUENCES ON THE FIRST CALL.CORPUT71 
0636 50 IFCNFIRSTl60,80,60 CORPUT72 
0637 60 NFJRST=O CORPUT73 
0638 C GET THE PRIMES FROM SUBROUTINE PRIMES, CORPUT74 
0639 C IF DESIRED. CORPUT75 
0640 C CALL PRIMESCNPRIME,NMAX) CORPUT76. 
0641 C CORPUT77 
0642 00 70 J=l,NMAX CORPUT78 
0643 70 JPCJ)=O CORPUT79 
0644 GO TO 140 CORPUT80 
0645 C RESTART THE NR-TH SEQUENCE IF REQUESTED. CORPUT81 
0646 80 IFCMRESET)l40,90,85 CORPUT82 
0647 85 JPCMR) = MRESET CORPU82A 
0648 GO TO 150 CORPU82B 
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0649 c INCREMl1NT 'fcff'E 'lffll:t;'.E'R 'FU:R .. THl S SEQU·f"NC'E, tORPUT83 
0650 c ANO TEST FOR OVERFLOW. CORPUT84 
0651 90 JOLO•JPIMRI CORPUT85 
0652 JP(MRl=JP(MRl+l CORPUT86. 
0653 IF(JP(HR,,120,120,100 CORPUT87 
0654 100 IF(JP(MRI-JOL01120,120,110 CORPUT88 
0655 110 JCOMP=JP(MR)-1 CORPUT89 
0656 IFIJCOHP-JOLDl120,150,120 CORPUT90 
0657 120 PRINT 130,HR CORPUT91 
0658 130 FORMATl/38H OVERFLOW IN FUNCTION CORPUT FOR NR'"' 15, CORPUT92 
0659 * 23H • SEQUENCE RESTARTED.) CORPUT93 
0660 140 JP(MRl=l CORPUT94 
0661 c SET UP FOR THE LOOP. CORPUT95 
0662 150 JINTzJP(MR, CORPUT96 
0663 NPRzNPRIHE(MRI CORPUT97 
0664 PR=NPR CORPUT98 
0665 POW=PR CORPUT99 
0666 CORP=O. CORPUlOO 
0667 GO TO 170 CORPUlOl 
0668 c FORM THE QUASI-RANDOM NUMBER BY REVERSING CORPU102 
0669 c THE DIGITS (BASE NPRI OF JINT. CORPU103 
0670 160 POW=POW*PR CORPU104 
0671 JINT=K CORPU105 
0672 170 K=JJNT/NPR CORPU106 
0673 A=JINT-K*NPR CORPU107 
0674 CORP=CORP+A/ POW CORPU108 
0675 IFIKI 180,180, 160 CORPU109 
0676 c CORPUllO 
0677 180 CORPUTzCORP CORPUll l 
0678 RETURN CORPU112 
0679 ENO CORPU113 



APPENDIX L 

THE INTEGRATION PROGRAM CHRONOLOGY 

This Appendix contains a discussion of the logic sequence of 

the integration program, the interface between the analytical 

development and the numerical computation, and a listing of the 

computer pseudonyms and their definitions. The discussion follows 

the sequence of the program listing found in Appendix K. On the 

right hand side of the program listing, headings are found which 

describe what the ensuing program block is accomplishing. These 

same headings are used in this Appendix in order to correlate the 

discussion with the program listing. 

* PROGRAM MULTIPLIERS AND CONSTANTS* 

Pseudon.Y!!! 

K 

N 

ALPHA 

BRKl 

BKlSQ 

Definition 

Number of iterations between computa­
tions of the answer. 

Total number of iterations 

Scale anisotropy parameter 

The wave number, t: 
l 



Pseudonym 

ClIN 

ClMD 

Cl OT 
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* Cl FOR VARIANCE REDUCTION* 

Definition 

The value of the exponent, C, for the 
inner region used in the variance 
reduction of the f: dependent terms. 
It is computed from the equation for 
C 1 (y 2) at y 2 = • 0256 /8 *. 
The same as ClIN except it is for the 
middle region. It is computed at 
y 2 = • 20 /o ~'(. 

The same as ClIN except it is for the 
outer region. It is computed at 
Y2 = o /o*. 

Cl IN, CHU), and Cl OT are the three values for C used in equation 

(J-19). The value of C is the lowest value of C1 for that region, 

This insures that the transformed function has the proper behavior 

. "' as r gets large. 

Pseudonym 

VRAT 

UTAU 

UINFN 

DELRA 

DEL 

DELST 

TRENO 

SL OLM 

SVKl 

* BOUNDARY LAYER PARAMETERS* 

Definition 

Velocity ratio. 

U, friction velocity, from BLOCK DATA. 
'T 

U00 , free stream velocity, from BLOCK 
DATA. 

o*/o, boundary layer thickness ratio 
from BLOCK DATA. 

o, boundary layer thickness, from 
BLOCK DATA. 

o*, displacement thickness, from BLOCK 
DATA. 

A turbulence Reynolds number, U o/v. 
'T 

The y 2/o lower limit on the mean-shear. 

Shear velocity constant #1, the re­
ciprocal of the Von Karman Constant. 



Pseudonym 

VKC 

SVK2 

SVK3 

TURPI 

SVK4 

SVK5 

SVK6 

ALF AC 

SVK7 

EM 

SVK8 

A 

BI 
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Definition 

Von Karman Constant. 

Shear velocity constant #2, the denom­
inator of the multiplier of equation 
(4-6). 

Shear velocity constant #3, the multi­
plier of the sine term in equation 
(4-6), 

Turbulence pi, TT, from BLOCK DATA. 

Shear velocity constant #4, part of 
the argument sine term in equation 
(4-6). 

Shear velocity constant #5, the re­
ciprocal of SVK2. 

Shear velocity constant #6, used in 
equation (4-7). 

et· ' in equation (4-7). 
c 

Shear velocity constant #7, the 
exponent in equation (4-7). 

The parameter, m, in the exponent of 
equation (4-7). 

Shear velocity constant #8, the term 
Y:a /a in equation (4-5). 

The parameter, a, in equation (4-5) 
from BLOCK DATA. 

The reciprocal of the parameter, b, 
in equation (4-5) from BLOCK DATA. 

The equations for computing the shear gradient are found in 

the subroutine SG(YBAR2). The argument, YBAR2, is y2 /&. 
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*SUBLAYER PARAMETERS* 

PseudonYil:1 

YSTR 

ALIM 

AK, BK 

Definition 

Y-STAR, the value of Ya* at the outer 
boundary of the viscous sublayer. 

The value of Ya at the outer boundary 
of the vis~ous sublayer. 

Constants in viscous sublayer intensity 
equation. 

These values are used in the subroutine VI(YBAR2) which computes 

the velocity intensity. 

PseudonYil:1 

ULIMK 

ARGXl 

PseudonYil:1 

CFSQ 

FACTl 

VOLXl 

VOLX4 

* K3 UPPER LIMIT* 

Definition 

Upper limit of the wave number, ~ 3 • 

It is the value, d, in equation (5-23). 

Argument for the transformed value of 
l 3 designated as Xl. It is in the 
denominator of equation (J-8), 

* INTEGRAL MULTIPLIER* 

Definition 

c:, Cf is the friction factor, 

Factor #1, the integral multiplier in 
equation (4-19). 

Volume Xl, this is the value of 
k 2 /l2 in the integrand of equation 
(4-19). Since the importance sampling 
of this factor is exact, the contri­
bution of this term is known after one 
sample or iteration. 

Volume X4, which is the multiplier 
contributed by the variable·0. Part 
of 8rr factor in equation (4-19). 
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*INITIALIZE* 

This block initializes the program counters for each run. SUM, 

SUMT, SUMIN, SUMMD, and SUMOT will be defined under the heading, 

COMPUTE OUTJ;>UT .. , 

PseudonY! 

I 

KOUNT 

J 

Definiztion 

The total number of iterations. 

The total number of non-zero iterations. 

Incre~ents one every time KOUNT 
sequences K iterations. 

* Kl LOOP* 

The program sequences to this point every time J increments. 

The SUMlS, SUM16, etc. terms will be defined under the heading, 

SUM INTEGRAND. They are initialized when J increments. 

Pseudonym 

M 

* ITERATION STARTING POINT* 

Definition 

Parameter in the argu~ent of the sub­
routine CORPUT. It specifies the 
starting point in the sequence of 
quasi'random numbers •. 

This is the point at which all iterations start or loop to 

whether they contribute or not to the integrand. Should a number 

other than zero be desired for M, substitute for the statement M = 0 

the statement M =I+ NUMBER where NUMBER is desired starting 

integer number. 

Pseudonym 

Ul 

* VARIABLE FOR KTIL3 * 

Definition 

The quasirandom. value of the trans­
formed variable, u, for ~ 3 • (Equation 
J-11). 



Pseudonym 

XlA 

Xl 

BRKSQ 

BARK 

Definition 

Program variable. 

The t·ransformed variable for k 3 • 

(Equation J·-12). 
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The term, k 2 , where k 2 = k~ + k; . 

This block computes the transformed variable for k 3 and some 

of the terms in which it appears, 

Pseudonym 

U2 

Pseudonym 

CIN 

EXP IN 

VOLIN 

X2AI 

X2I 

XF2I 

ARG2I 

* VARIABLE FOR YTIL2 * 

Definition 

The quasirandom value of the trans-,. 
formed variable, v for y 2 • (Equa-
tion J-17). 

* INNER REGION* 

Definition 

The term C. + k where C. = c1 . 
1 1 

The term exp[ - (k + C . ) a] 
1 

- exp[-(k + Ci)b] where Ci= c1 , a= 0, 

and b = .0256/6*, see equation (J-19). 

EXPIN/CIN 

The argument of 'ln' in equation 
(J-18) for the inner region. 

y2 for the inner region as in equa­
tion (J-18). 

The y2 contribution to the probability 
density function, equation (J-19), for 
the inner region. (Includes part of 
k~ term through BARK). 

The term Yaa*/e:, for the inner region. 
This term is used to evaluate the shear 
gradient and the velocity intensity. 



PaeudonY! 

CMD 

EXP MD 

VOLIN 

X2AM 

XF2M 

ARG2M 
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* MIDDLE REGION* 

Definition 

Ci+~ where Ci= CMD. 

Analogous to EXPIN except a= .0256/6* 
and b = • 26 /6 *. 

EXPMD/CMD. 

Middle region analog of X2AI. 

Middle region analog of XF2I. 

Middle region analog of ARG2I. 

* OUTER REGION* 

This ~egion is analogous to the other two regions. 

* VARIABLE FOR YTIL21 * 
This block is analogous to the previous, VARIABLE FOR YTIL2, 

block be~ause of the symmetry in Ya "'I 
and Ya • 

Pseudonym 

U4 

X4 

cu 

ClM 

ClT 

* VARIABLE FOR THETA* 

Definition 

The quasirandom ,. value used to select 
theta for each iteration. 

Theta. 

* Cl FOR FUNCTION COMPUTATION* 

C. 1 for the inner region. 

C. 1 for the middle region. 

C 1 :for the outer region. 



PseµdonYil!: 

us 

Pseudonym 

XMEAX 

XS 

XF5 
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* VARIABLE FOR R TERMS* 

Definition 

The quasirandom ·, value of the trans­
formed value for the 'r' terms. 

* VARIABLE FOR R * 

Definition 

M 
X exp(AX), the subroutine to compute 
the p.d.f. and the value of r. 
The value of r, equation (5-19). 

The value of the p.d.f., equation (5-17). 

The remainder ot this block computed the values of the above 

for the inner, middle and outer regions. 

* VARIABLE FOR RSQ * 

This block is analogous to the one above except that the apropos 

equations are (5-20) and (5-21). 

* TERMS OF THE TOTAL INTEGRAL* 

Having computed the p,d.f. values and the transformed variables 

or, as in the case of e, the value of the variable itself, the 

fallowing block is used to compute the contribution of an iteration 

to the integrand. 

PseudonY!:!1 

SUBX2 

FX2I, FX2M, FX2T 

* X2 TERMS* 

Definition 

The subroutine used to compute the 
contribution to the integrand of the 
term "" dU* ... ,.. " 

exp(-ky:a)~d (Y2)u2(Y2) • 
Y:a 

The value computed in SUBX2 for the 
inner, middle, and outer regions. 



P~eudonym 

SUBX3 

FX3 I, FX2M, FX3T. 
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* X3 TERMS* 

Definition 

Analogous to SUBX2 for t " . 
The value computed in SUBX3 for the 
inner, middle, and outer regions. 
Note that each term is checked in 
this bloc~ to see if it is zero. 

* X4, XS, and X6 TERMS* 

Pseudonym 

SUBU5 

FXS 

FX6 

Definition 

The subroutine that computes the con­
tribution to the integrand of the term, 

.cos(6'k rcos6)cos(k3 rsin0). 
1 

The contribution to the integrand of 
the term, 

? exp[-C.t[Y-2.r cy.:- f1-t]Y3 , .. 

. . • cos(~k1 rcos9)cos(~3 rsin0). 

The contribution to the integrand of 
the term, 

••• cos(G'k.1 rcos0)cos(k.3 rsin0). 

The integrand is separated into I 1 and Ia as per equation 

(5-12). The number, 5, in a term is associated with the integral, 

1 1 , and the number, 6, is associated with the integral, Ia. Each 

of these integrals is separated into the sum of nine integrals, 

equation (5-23), The contribution to each of these eighteen integl;'als 

of either FXS or FX6 is computed in this block. Thus, FlXS, F2X5, 
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F3X5, etc, contribute to 1 1 , FlX6, F2X6, F3X6, etc. to ! 2 • Each 

of the terms is checked for the value zero before continuing the 

iterationf KOUNT is incremented if none of the preceeding terms is 

zero. 

* COMPUTE INTEGRAND* 

This block is best explained by two equations. 

1 1 = Fl5 + F25 + F35 + F45 + F55 + F65 + F75 + F85 + F95. 

(L .. l) 

1 2 = Fl6 + F26 + F36 + F46 + F56 + F66 + F76 + F86 + F96. 

(L-2) 

* SUM INTEGRAND* 

The SUM terms correspond to the terms in equations (L-1) and 

* COMPUTE OUTPUT* 

The SAV15, etc. terms are the average values of the eighteen 

integrands for K iterations. 

Pseudonym 

SAV5 

SAV6 

VALl 

SUMIN 

SUMMD 

SUM OT 

Definition 

,< " n(k 1), equation (4-19), for Kiter-
ations. 

A measure of the contribution to TI(k 1 ) 

by the inner region. 

Analogous to SUMIN for the middle 
region. 

Analogous to SUMMD for the outer 
region, 



Pseudonym 
I 

SUMT 

TERM(J) 

VAL2 

VAL3 

AVIN, AVMD, AVOT 

SUM 

RATIN, RATMD, RATOT 

Definition 

The sum of the values computed for 
VALl every K iteration. 
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This term stores VALl for error com­
putation purposes. 

The value of TI (k 1 ) every K1cJ iterations. 

The average values of the inside, 
middle, and outer region contributions. 
Each of these is the sum of two of the 
eighteen integrals inTI(k 1 ). 

The SUM of the inside, middle, and 
outer region contributions. 

Contribution ratios. 

*PRINTOUT OF VALUES* 

The values are printed out every K iterations and after K*J 

iterations. 

Pseudonym 

SUMSQ 

VAR 

SIG 

SIGl 

* ERROR CONTRIBUTION* 

Definition 

A term in the statistical variation 
equation (5-37). 

The variation, equation (5-37). 

A first estimate of the standard 
deviation, equation (5-36). 

A second estimate of the standard 
deviation, equation (5-35). 

This is the end of the main program. 
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SUBROUTJ:NES 

BLOCK DATA 

The boundary layer data is entered here as defined in the main 

progri;im. 

SUBROUTINE XMEAX 

The use of this subroutine has been explained tn the main 

program. In addition it ~ontains its own comment cards. 

SUBX2, SUBX3, AND SUBU5 

These subroutines have been explained in the main program, 

FUNCTION SG(YBAR2) 

This is the subroutine which computes the shear gradient as 

per equations (4-5) through (4-7). 

FUNCTION VI(YBAR2) 

In this subroutine the velocity intensity as per equations 

"Z "3 (4-9) through (4-18) and the viscous sublayer model ay 2 + by 2 • 

RATIO is U00 /UT from Klebanoff's data, 

SUBROUTINE CORPUT 

This subroutine contains its own comment cards. 

PROGRAM OUTPUT 

After K iterations the value of n(k1) for the total number of 

iterations to that point and the contribution of each of the eighteen 

integrals for those K iterations is pointed out. Upon completion of 

N non-zero iterations the values of k 1 and a head the output followed 

by: 



Title 

INTEGRAL VALUE 

ERROR 1 

ERROR 2 

SPECTRUM VALUE 

INSIDE MAGNITUDE 

MIDDLE MAGNITUDE 

OUTER MAGNITUDE 

INSIDE RELATIVE CONTRIBUTION 

MIDDLE RELATIVE CONTRIBUTION 

OUTSIDE RELATIVE CONTRIBUTION 

Definition 

,; (k1) 1c;. 
First estimate of cr. 

Second estimate of cr, 

11 (k 1 ) • 

Equation (5.-41) 

Equation (5.-42) 

Equation (5.-43) 
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