COMPUTATION OF THE SPECTRA OF TURBULENT BOUNDARY LAYER SURFACE-PRESSURE

FLUCTUATIONS

By
JOHN H. LINEBARGER
Bachelor of Science United States Naval Academy Annapolis, Maryland 1955
Master of Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 1961

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1972

FLUCTUATIONS

Thesis Approved:

ACKNOWLEDGMENTS

I wish to thank the Ames Research Center of NASA for the funding under NASA Grant NGR 37-002-083 for this study. In addition, I am indebted to NASA for a traineeship furnished the first year of my work and HEW for two years of support under NDEA.

Any work, to a certain degree, is a cooperative effort. In this regard I owe particular thanks to the chairman of my committee, Dr. R. L. Panton, whose patience, insights, and encouragement made it possible for me to complete this study. To Dr. J. P. Chandler, I am indebted. Without his assistance it is doubtful that I would have been able to complete the numerical analysis necessary to achieve the major goal of this work. I am also grateful to the members of my doctoral committee for their willingness to serve in this capacity.

Thanks are also due to Mr. Darre11 Haston for his drafting services, and to Mrs. E. T. Apple and Mrs. P. F. Lambert for typing the manuscript.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Approach and Scope of This Study 4
II. GENERAL MATHEMATICAL FORMULATION AND PREVIOUS WORK 6
The Problem 6
Green's Function Solution 8
Fourier Transform Solution 11
Previous Fourier Transform Solutions 14
III. ANISOTROPIC GREEN'S FUNCTION SOLUTION 18
Simplified Frequency Spectrum Problem 18
Scale Anisotropy 21
Power Spectrum Equation 22
IV. FORMULATION OF THE ONE-DIMENSIONAL WAVE NUMBER EQUATION 25
The Non-Dimensional Equation 25
Mean-Shear Expression 27
Turbulence Intensity 28
Turbulence Correlation 31
V. THE MONTE CARLO NUMERICAL INTEGRATION 35
The Monte Carlo Method 35
Variance Reduction of the Problem 39
Program Operation 45
VI. DISCUSSION OF RESULTS 50
Wave Number Spectra 50
Anisotropy 53
Frequency Spectra 56
Statement of Conclusions 58
BIBLIOGRAPHY 60
APPENDIX A - GREEN'S FUNCTION SOLUTION OF EQUATION (2-6) 62
APPENDIX B - INTEGRATION OF EQUATION (2-9) 66
Chapter Page
APPENDIX C - THE MIRROR-FLOW MODEL 73
APPENDIX D - INTEGRATION OF EQUATION (2-19) 75
APPENDIX E - SIMPLIFICATION OF EQUATION (3-2) 77
APPENDIX F - DEVELOPMENT OF $\mathrm{R}_{2 a}\left(\mathrm{r}_{\mathrm{i}}, T\right)$ 80
APPENDIX G - FOURIER TRANSFORMATION OF EQUATION (3-8) 82
APPENDIX H - INTEGRATION OF EQUATION (3-14) 85
APPENDIX I - DETERMINATION OF $\mathrm{C}_{2}\left(\hat{\mathrm{y}}_{2}\right)$ 93
APPENDIX J - PROBABILITY DISTRIBUTION FUNCTION $p_{3} i\left(\hat{k}_{3}, \hat{y}_{2}, \hat{\mathrm{y}}_{2}^{\prime}\right)$ AND ITS INVERSION EQUATIONS 95
APPENDIX K - COMPUTER PROGRAM LISTING 99
APPENDIX L - COMPUTER PROGRAM CHRONOLOGY AND PSEUDONYM DEFINITIONS 112

LIST OF FIGURES

Figure Page

1. Wind Tunnel Measurements of Boundary Layer Pressure Fluctuations 125
2. Frequency Spectra 126
3. Measured Velocity Correlation Components R_{11}, R_{22}, and R_{33} 127
4. The Effect of Scale Anisotropy on Hodgson's Predicted Green's Function Frequency Spectrum 128
5. Velocity Intensity, $\sqrt{u_{2}^{2} / U_{T}}$ 129
6. Velocity Intensity, $\sqrt{u_{2}^{2} / U_{T}}$ 130
7. Measured Velocity Correlation Components 131
8. The Variation of the Inverse of the Integral Scale $C_{1}\left(y_{2} / \delta\right)$ 132
9. The Variation of the Scale Anisotropy Factor With Streamwise Wave Number, $\alpha\left(\widetilde{k}_{1}\right)$ 133
10. Comparison of Measured and Theoretical Values of Velocity Correlation Components of R_{11} and R_{22} 134
11. Comparison of Measured and Theoretical Values of Velocity Correlation Components of R_{22} 135
12. Shear Gradient, Velocity Intensity Variation Across the Boundary Layer 136
13. Convective Velocity $U_{c}\left(\widetilde{\mathrm{k}}_{1}\right) / \mathrm{U}_{\infty}$ 137
14. Computed Wave Number Spectrum, $\alpha=1$ 138
15. Computed Wave Number Spectra, $\alpha=1$ through 4 139
16. Computed Wave Number Spectrum, $\alpha=\alpha\left(\widetilde{k}_{1}\right)$ 140
17. Comparison of Computed and Measured Frequency Spectra 141
18. Computed Relative Regional Contributions to the Wave Number Spectra as a Function of Wave Number 142
19. The Inner-Inner Region Integral Contribution to the Wave Number Spectrum as a Function of Wave Number, $\alpha=1$. . 143
20. The Monte Carlo Integration Program Statistical

$$
\text { Error, } \alpha=1 \text {. } 144
$$

NOMENCLATURE

Symbo1	Description
A, a	constants, see context
b	constant, see context
C	a constant in the importance sampling of \hat{r}, computed from $\mathrm{C}_{7}\left(\hat{\mathrm{y}}_{2}\right)$
C_{f}	skin friction coefficient, $\tau_{w} / \frac{1}{2} p U_{\infty}^{2}$
c_{i}	a constant in the importance sampling of $\hat{\mathrm{y}}_{2}$ where $\mathrm{i}=\mathrm{IN}, \mathrm{MD}$, or OT
C_{1}	the non-dimensional inverse of the integral scale, $\delta * / L$
d	pressure transducer diameter
$\mathrm{f}(\mathrm{r})$	longitudinal velocity correlation coefficient in isotropic turbulence
G, G_{o}, G_{i}	Green's functions
g	mean-shear, intensity product
g_{o}	mean value of g
i	$\sqrt{-1}$
K	Von Karman constant in mean-shear an
K_{i}	Bessel function
k	two-dimensional wave number in k_{1}, k_{3} plane
\hat{k}	k \%
k_{i}	one-dimensional wave number, $\mathbf{i}=1,3$
\hat{k}_{i}	$\mathrm{k}_{\mathrm{i}}{ }^{\text {\% }}$ \%
\widetilde{k}_{i}	$k_{i}{ }^{\delta}$

Symbo1	Description
L	integral scale of the turbulence
P	pressure
$\overline{\mathbf{P}}$	time average of P
p	probability distribution function or fluctuating pressure as a function of x_{i} and t, see context
$\underset{\mathrm{p}}{ }$	fluctuating pressure as a function of $\mathrm{x}_{2}, \mathrm{k}_{1}, \mathrm{k}_{3}$ and t
q	dynamic pressure, $\frac{1}{2} \rho \mathrm{U}_{\infty}^{2}$
$\mathrm{R}_{\mathbf{2 2}}$	experimental or isotropic velocity correlation coefficient, see context
$\hat{R}^{\text {a }}$	anisotropic velocity correlation coefficient, $\alpha=$ constant
$\widetilde{R}_{\text {2a }}$	anisotropic velocity correlation coefficient, $\mathrm{d}=\alpha\left(\hat{\mathrm{k}}_{\mathrm{l}}\right)$
${\stackrel{+}{R_{22}}}^{(}$	anisotropic velocity correlation coefficient with time delay, $\alpha=$ constant
$\mathrm{K}_{\mathrm{R}} \mathbf{2 2}$	isotropic velocity correlation coefficient with time delay
R_{pp}	two point pressure correlation coefficient
r_{i}	separation distance between sources points
$\check{r}_{i}, \hat{r}_{i}, \tilde{r}_{i}$	non-dimensional separation distance between source points, see context for non-dimensionalizing scheme
s, s^{\prime}	distance between source and field points
S	area
t	time
T	non-homogeneous term in pressure equation
T	non-dimensional non-homogeneous term in pressure equation
u	dependent variable in \hat{k}_{3} inversion equation; quasirandom number in numerical integration

Symbol	Description
v	dependent variable in $\hat{\mathrm{y}}_{2}$ inversion equation; quasirandom number in numerical integration
ω	dependent variable in \hat{y}_{z} inversion equation; quasirandom number in numerical integration
x	dependent variable in \hat{r} inversion equation; quasirandom number in numerical integration
$\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}^{\prime}$	field points, i.e. points at which measurement or calculation is being made
y_{i}, y_{i}^{\prime}	source points, i.e. points in flow field contributing to calculation or measurement
$\hat{y}_{3}, \hat{y}^{\prime}$	non-dimensional normal direction coordinate of source point
\tilde{y}_{2}	$\mathrm{Y}_{2} \delta \mathrm{U}_{\mathrm{T}} / \sim$
z	dependent variable in $\hat{\mathrm{r}}^{2}$ inversion equation; quasirandom number in numerical integration
α	anisotropy factor
β	constant in mean-shear equation
δ	Dirac delta function or boundary layer thickness, see context
$\delta *$	boundary layer displacement thickness
ζ	dummy integration variable or coordinate transformation variable, see context
θ	angle in polar coordinates
v	kinematic viscosity, $\mathrm{ft}^{2} / \mathrm{sec}$
ξ_{i}	separation distance between field points, i.e. points at which pressure is being measured
π	3.1417
Π	constant in equation for mean-shear or non-dimensional spectrum, see context
Π_{1}	one-dimensional wave number spectrum
$\underline{\square}$	two-dimensional wave number spectrum

Symbol
$\hat{\Pi}, \tilde{\Pi}$
ρ
δ
τ
ω
$\omega *$
$\tilde{\omega}$

Description
non-dimensional spectrum, see context
density
standard deviation
time delay
frequency, radians
non-dimensional frequency, $\omega \delta * / \mathrm{U}_{\infty}$
non-dimensional frequency, $\omega^{\delta} / U_{\infty}$

CHAPTER I

INTRODUCTION

One of the inherent characteristics of a turbulent boundary layer is the presence of pressure fluctuations which extend to the surface on which the boundary layer has developed. These pressure fluctuations travel in the streamwise direction at a velocity of the order of the local mean velocity of the flow and are coherent for distances of the order of the boundary layer thickness. Sometimes they are called 'near field' noise. This 'near field' noise induces surface vibration. The flow induced vibrations can cause acoustical disturbances internal to the surface, i.e. the cabin of an aircraft, and/or structural failure. Thus, a knowledge of the pressure fluctuations at the surface is important for design purposes. In addition, the investigation of these disturbances is, as Wills (1970) stated, "important in its own right for the information it can yield on the structure of turbulence in the boundary layer."

The principle method used in studying the fluctuating components of turbulent flow is statistical in nature. Either the autocorrelation or its equivalent, the power spectral density is used. The most common experimental measurement is the single point measurement made with one pressure transducer. The signal can be processed electronically to introduce a time delay. When multiplied with the original signal, the autocorrelation results. The Fourier
transform of the autocorrelation is the frequency power spectrum. A more recent method is based on the Fourier transform of experimental filtered spatial correlations (Wi11s, 1970).

Bies (1966) reviewed the results of wind tunnel and in-flight measurements. His composite plot of the wind tunnel data is shown in Figure 1. He concluded that there is a wide range of variation among the results of the various wind tunnel investigations even though most investigators presented self-consistent data. In one of the investigations, however, a great number of measurements were made over an extended region of the test section. These results were not se1f-consistent, but were within the scatter of the data of the other investigations. Flight measurements were in general agreement with wind tunnel measurements but with less scatter. When the measurements were taken in flow situations where the free stream was not uniform, the low frequency portion of the spectrum was higher. Then the spectrum approached the uniform free stream spectrum at higher frequencies.

In addition to perturbed outer flow fields, acoustical disturbances are known to contribute to the measured low frequency portion of the spectrum. Hodgson (1962) reported on a sequence of experiments designed to isolate the influence of acoustical and flow disturbances from the flow. His final experimental configuration was a microphone mounted on the upper surface of the wing of a glider. Additional glider experiments have recently been done by Panton, Lowery and Reischman (1971). The pressure transducers were installed on the fuselage of an SGS2-32 sailplane. Both of these investigations showed that the boundary layer itself contributes
very little to the low frequency portion of the spectrum. Wills (1970) removed the acoustical contribution to the low frequencies from his wind tunnel measurements by calculating the contribution from correlation measurements. His findings led him to speculate that the entire contribution to the Fourier transform of the longitudinal space-time covariance below 100 Hz is acoustical. He summarized the situation when he stated that the low frequency portion of the spectrum is quite dependent on "the conditions of the experiment and not necessarily on the boundary layer itself."

At high frequencies the finite size of the transducer is a prob1em. It causes the measured spectrum to be underestimated. Corrections have been proposed with limited success. Perhaps the best indication of the qualitative behavior of the spectrum at high frequencies is the data taken by Hodgson in 1967 and reported by Wills (1970). Just beyond the frequency at which the spectrum peaks, the decay rate is approximately $\hat{\omega}^{-.8}$. As at frequency just a bit higher than $\hat{\omega}=10.0$, the decay rate increases dramatically. These are the frequencies which typify the scale of the disturbances in the viscous sublayer.

Kraichnan (1956b) laid the foundation for the mathematical computation of the wall-pressure fluctuations. He used the Fourier transform method of solving the differential equation and assumed a 'mirrow flow' model of the turbulence field. He computed a family of relative wave number spectra which varied with a oneparameter model of the mean-shear gradient. Hodgson (1962) followed this procedure using an average mean-shear and computed the frequency spectrum which is shown in Figure 2. Lilley and Hodgson (1960) and

Hodgson (1962) solved the differential equation using a Green's function. Hodgson, after making a number of simplifying assumptions, computed the frequency spectrum which also is shown in Figure 2.

The level of the predicted spectra in Figure 2 must be set in some arbitrary manner because of the assumptions in each method. In both cases the isotropic form of the velocity correlation coefficient R_{22} has been used. An anisotropy model was introduced by Kraichnan (1956a), but he predicted the mean-square pressure and not the frequency spectrum. An obvious deficiency in the predicted spectra is the rapid decay at high frequencies which Hodgson (1962) attributed to a deficiency in the assumed form of R_{z}.

Because of the assumptions in each of these predictive methods, the level of the spectrum must be set in some arbitrary manner. In both cases the turbulence has been assumed isotropic. The predicted spectra decay too rapidly at high frequencies. Kraichnan (1956a) also used an anisotropy model for which he determined the meansquare pressure.

Approach and Scope of This Study

Two contributions to the calculations of pressure spectra are made in this work. First, the analysis of Hodgson is reworked to include an isotropy of the integral turbulence scales. The closed form nature of the solution is preserved and the results are presented as a one-parameter (anisotropy factor) family of curves.

The second contribution is a more complete and accurate calculation of the wave number spectra. The wave number equation for the wall-pressure fluctuations is solved with a Monte Carlo numerical
integration scheme. This allows the integrand to be modeled with empirical data. The mean-shear gradient, the turbulence intensity, and certain anisotropic characteristics of the flow are allowed to vary across the boundary layer. With this technique a one-parameter family of wave number spectra is computed, Figure 15. Kraichnan's scale anisotropy model is used and the magnitude of the parameter, α, is allowed to be a function of the streamwise wave number $\widetilde{\mathrm{k}}_{1}$. Using $\alpha\left(\widetilde{k}_{1}\right)$, a wave number spectrum is constructed, Figure 16 . Then Taylor's hypothesis is applied to the result to predict the frequency power spectrum, Figure 17.

CHAPTER II

GENETRAL MATHEMATICAL FORMULATION AND PREVIOUS WORK

In this chapter the problem is posed and general methods for mathematical solution discussed. The two different methods of solution are a Green's function solution by Lilley and Hodgson (1960) and Hodgson (1962) and a Fourier transform solution proposed by Kraichnan (1956b). The general formulations reviewed here are background for the work presented in later chapters.

The Problem

The problem concerns the pressure fluctuations produced by a turbulent boundary layer on the surface of an infinite flat plate. The flow is assumed incompressible and without a pressure gradient. The governing equations are the continuity equation,

$$
\begin{equation*}
\frac{\partial U_{j}}{\partial x_{j}}=0 \tag{2-1}
\end{equation*}
$$

and the momentum equation,

$$
\begin{equation*}
\frac{\partial U_{j}}{\partial t}+\frac{\partial}{\partial x_{k}}\left(U_{j} U_{k}\right)=-\frac{1}{\varphi} \frac{\partial P}{\partial x_{j}}+2 \frac{\partial^{2} U_{j}}{\partial x_{k} \partial x_{k}} \tag{2-2}
\end{equation*}
$$

An equation for the pressure is derived by taking the divergence of equation (2-2) and using equation (2-1).

$$
\begin{equation*}
\frac{\partial^{2} P}{\partial x_{j} \partial x_{j}}\left(x_{i}, t\right)=-\varphi \frac{\partial^{2}}{\partial x_{j} \partial x_{k}} U_{j}\left(x_{i}, t\right) U_{k}\left(x_{i}, t\right) \tag{2-3}
\end{equation*}
$$

If the right hand side is known, this is a linear non-homogeneous equation called 'Poisson's equation'. Next, the mean flow is considered paralle1 and two-dimensional while the fluctuating components are unrestricted.

$$
\begin{align*}
& U_{1}\left(x_{i}, t\right)=\bar{U}_{1}\left(x_{2}\right)+u_{1}\left(x_{i}, t\right) \\
& U U_{2}\left(x_{i}, t\right)=u_{2}\left(x_{i}, t\right) \tag{2-4}\\
& U U_{3}\left(x_{i}, t\right)=u_{3}\left(x_{i}, t\right) \\
& P\left(x_{i}, t\right)=\bar{P}\left(x_{i}, t\right)+p\left(x_{i}, t\right)
\end{align*}
$$

The subscript ' 1 ' stands for the streamwise direction, '2' stands for the direction normal to the plate, and '3' stands for the spanwise direction. Substituting equations (2-4) into equation (2-3) and subtracting the time-average of equation (2-3) yields an equation for the fluctuating pressure.

$$
\begin{equation*}
\frac{\partial^{2} \rho}{\partial x_{j} \partial x_{j}}=-2 \rho \frac{d \overline{T_{2}}}{d x_{2}} \frac{\partial u_{2}}{\partial x_{1}}-\rho \frac{\partial^{2}}{\partial x_{j} x_{k}}\left(u_{j} u_{k}-\overline{u_{j} u_{k}}\right) \tag{2-5}
\end{equation*}
$$

The first term on the right hand side of equation (2-5) is called the linear source term or the 'mean-shear:turbulence' term (M-T term). The second is called the 'turbulence:turbulence' term (T-T term) and is actually the sum of a number of terms. Both Kraichnan (1956b) and Hodgson (1962) estimated the relative magnitude of these terms. For uniform shear in a homogeneous turbulence
field, Kraichnan calculated that $\overline{\mathrm{p}}_{\mathrm{T}-\mathrm{T}}^{2} / \overline{\mathrm{p}}_{\mathrm{M}-\mathrm{T}}^{2} \approx 1.5 \%$. Hodgson computed the power spectral density contribution of the T-T term using Kraichnan's 'mirror-flow' turbulence model and the assumption that the turbulence intensity has Gaussian distribution. He found that $\overline{\mathrm{p}}_{\mathrm{T}-\mathrm{T}}^{2} / \overline{\mathrm{p}}_{\mathrm{M}-\mathrm{T}}^{2} \approx 4.0 \%$ and that the contribution of the $\mathrm{T}-\mathrm{T}$ term to the power spectral density was neg1igible over the important frequency range. For these reasons and for mathematical simplicity, the $T-T$ term is neglected leaving

$$
\begin{equation*}
\frac{\partial^{2} \rho\left(x_{i}, t\right)}{\partial x_{j} \partial x_{j}}=-2 \rho \frac{d \overline{U_{1}}}{d x_{2}}\left(x_{2}\right) \frac{\partial u_{2}}{\partial x_{1}}\left(x_{i}, t\right)=-T\left(x_{i}, t\right) \tag{2-6}
\end{equation*}
$$

This is the basic equation to be solved. It's worth noting that the solution of equation (2-6) represents the contribution of the $\mathrm{M}-\mathrm{T}$ term to the fluctuation pressure, and because the problem is linear the $T-T$ contribution could, in principle, be added later.

The boundary conditions are that the derivative of the pressure fluctuations in the normal direction vanish at the plate and that the fluctuations die out far from the plate. The first boundary condition is approximate. It has been substantiated by order of magnitude arguments due to Townsend (1956).

Green's Function Solution

Equation (2-6) can be solved by using the appropriate Green's function considering the boundary conditions. This solution is given in detail in Appendix A. The resulting equation for the fluctuating pressure at a point on the plate is

$$
\begin{equation*}
P\left(x_{1}, 0, x_{3}, t\right)=\frac{p}{\pi} \int_{V}\left[\frac{d U_{1}\left(y_{2}\right) \partial u_{2}\left(y_{i}, t\right)}{\partial y_{2}} / s\left(x_{i}, y_{i}\right)\right] d V\left(y_{i}\right) \tag{2-7}
\end{equation*}
$$

where $d V\left(y_{i}\right)$ is a volume element at y_{i} and $s\left(x_{i}, y_{i}\right)$ is the distance from x_{i} to y_{i}. The integration extends over all space above the plate.

The pressure covariance between two points on the plate, x_{i} and x_{i}^{\prime} with $x_{2}=x_{2}^{\prime}=0$, is

$$
\begin{equation*}
R_{p p}\left(x_{i}, x_{i}^{\prime}, \tau\right)=\overline{p\left(x_{1}, 0, x_{3}, t\right) p\left(x_{1}^{\prime}, 0, x_{3}^{\prime}, t+\tau\right)} \tag{2-8}
\end{equation*}
$$

Then,

where

$$
\begin{gather*}
R_{22}\left(y_{i}, y_{i}^{\prime}, \tau\right)=\frac{\overline{u_{2}\left(y_{i}, t\right) u_{2}\left(y_{i}^{\prime}, t+r\right)}}{\left\langle u_{2}\left(y_{2}\right)\right\rangle\left\langle u_{2}\left(y_{2}^{\prime}\right)\right\rangle}, \tag{2-10}\\
\left\langle u_{2}\left(y_{2}\right)\right\rangle=\left[\overline{u_{2}^{2}\left(y_{2}\right)}\right]^{1 / 2}
\end{gather*}
$$

Equation (2-9) is simplified by noting that R_{22} and its derivatives vanish at infinity in the y_{2} direction and by assuming that the flow is homogeneous in planes parallel to the plate. The last assumption is justified as follows. Both $R_{p p}$ and R_{22} are
known to approach zero in a distance of the order of a few boundary 1ayer thicknesses. Over this distance the boundary 1ayer growth is very small, especially when the pressure gradient is zero. This assumption, however, will be least applicable to the large-scale disturbances in the flow. The homogeneity assumption allows $R_{p p}$ to be a function of $\xi_{i}=\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{i}}^{\prime}$ in lieu of $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{x}_{\mathbf{i}}^{\prime}$.

The mathematical details of the simplification of equation (2-9) are in Appendix B. The result is the two-point pressure correlation,

The autocorrelation is obtained from equation (2-11) by differentiating with respect to ξ_{1} and letting $\xi_{1}=\xi_{3}=0$. The frequency power spectrum is the Fourier transform of the autocorrelation.

$$
\begin{equation*}
T(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} R_{p p}(0,0,0, \tau) \exp (-i \omega \tau) d \tau \tag{2-11a}
\end{equation*}
$$

Equation (2-11) is the key in Hodgson's formulation. Because of its importance, consider the terms in the integrand. There are four: the mean-shear distribution, $\mathrm{d}_{1} / \mathrm{dy} \mathrm{V}_{2}$, the turbulence intensity distribution, $\left\langle u_{\imath}\right\rangle$, the velocity correlation coefficient, R_{22}, and a weighting term which depends on the geometry of the positions on the plate and in the flow. Of the four terms, the
correlation coefficient, $\mathbf{R}_{\mathbf{2}} \mathbf{~ i s ~ t h e ~ m o s t ~ d i f f i c u l t ~ t o ~ d e t e r m i n e ~}$ because of the paucity of experimental information of turbulent flows. The mean-shear distribution and the turbulence intensity distribution are known empirically except for the viscous sublayer region.

Hodgson (1962) continued to solve for the frequency power spectrum from equation (2-11). He used isotropic turbulence and average values of mean-shear and intensity. The details of this work are a special case of an anisotropic model which will be given in Chapter III.

Fourier Transform Solution

Another method of solving equation (2-6) uses the Fourier transform. By doubly transforming the equation with respect to two space variables, an ordinary differential equation evolves for which the solution is known. A more rigorous approach follows the same methodology but uses the Fourier-Stieltjes integrals (Lilley, 1960 or Hodgson, 1962).

The double Fourier transform of equation (2-6) with respect to x_{1} and x_{3} is

$$
\begin{equation*}
\frac{d^{2} \tilde{\tilde{}}}{d x_{2}^{2}}\left(x_{2}, k_{1}, k_{3}, t\right)-k^{2} \tilde{p}\left(x_{2}, k_{1}, k_{3}, t\right)=-\tilde{T}\left(x_{2}, k_{1}, k_{3}, t\right) \tag{2-12}
\end{equation*}
$$

where

$$
\begin{equation*}
k^{2}=k_{1}^{2}+k_{3}^{2}, j \tag{2-13}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{P}\left(x_{2}, k_{1}, k_{3}, t\right)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p\left(x_{1}, x_{2}, x_{3}, t\right) \exp \left[-i\left(k_{1} x_{1}+k_{3} x_{3}\right)\right] d x_{1} d x_{3} \tag{2-14}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{T}\left(x_{2}, k_{1}, k_{3}, t\right)=\frac{1}{4 \pi \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} T\left(x_{1}, x_{2}, x_{3}, t\right) \exp \left[-i\left(k_{1} x_{1}+k_{3} x_{3}\right]\right] d x_{1} d x_{3} \tag{2-15}
\end{equation*}
$$

Equation (2-12) is a linear inhomogeneous ordinary differential equation with constant coefficients. Its general solution is
$\widetilde{p}\left(x_{2}, k, k_{3}, t\right)=A \exp \left(k x_{2}\right)+B \exp \left(-k x_{2}\right)+\frac{1}{2} k_{-\infty}^{-2} \int_{-\infty}^{\infty} \exp \left(-k \mid y_{2}-x_{2}\right) \widetilde{T}\left(y_{2}, k_{1}, k_{3}, t\right) d y_{2}$
After applying the boundary conditions,

$$
\begin{align*}
\tilde{F}\left(x_{2}, k_{1}, k_{3}, t\right) & =\frac{1}{2} k^{-1} \int_{0}^{\infty} \exp \left(-k\left|y_{2}-x_{2}\right|\right) \tilde{T}\left(y_{2}, k_{1}, k_{3}, t\right) d y_{2}+\cdots \\
& \cdots \frac{1}{2} \bar{k}^{-1} \exp \left(-k x_{2}\right) \int_{0}^{\infty} \exp \left(-k y_{2}\right) \tilde{T}\left(y_{2}, k_{1}, k_{3}, t\right) d y_{2} \tag{2-17}
\end{align*}
$$

On the plate $x_{z}=0$, so the surface-pressure transform is

$$
\begin{equation*}
\widetilde{p}\left(0, k_{1}, k_{3}, t\right)=k^{-1} \int_{0}^{\infty} \exp \left(-k y_{2}\right) \widetilde{T}\left(y_{2}, k_{1}, k_{3}, t\right) d y_{2} \tag{2-18}
\end{equation*}
$$

The two-dimensional wave number spectrum function is found by multiplying equation (2-18) by its complex conjugate and taking the time average with zero time delay.

$$
\pi_{2}^{\prime}\left(0, k_{1}, k_{3}\right)=\overline{\tilde{p}\left(0, k_{1}, k_{3}, t\right) \tilde{p}\left(0, k_{1}, k_{3}, t\right)}
$$

$\mathbf{\Phi}_{\mathbf{2 2}}$ is the two-dimensional wave number spectrum function of $u_{\mathbf{2}}$ velocity.

Equation (2-11) and Hodgson's equation (2-19) are quite similar in that essentially the same assumptions have been made in their derivations. Equation (2-11) has the advantage of giving two-point correlation information. Equation (2-19) has the advantage of producing power spectrum information as a function of the size of the disturbances, i.e. wave number.

The onerdimensional wave number power spectrum is obtained from π_{2} by integrating the k_{3} dependence.

$$
\begin{equation*}
\pi_{1}^{\prime}\left(k_{1}\right)=\int_{-\infty}^{\infty} \pi \pi_{2}^{\prime}\left(0, k_{1}, k_{3}\right) d k_{3} \tag{2-20}
\end{equation*}
$$

Then the frequency power spectrum may be obtained by substituting for k_{1}

$$
\begin{equation*}
\omega=k_{1} U_{c} \tag{2-21}
\end{equation*}
$$

Equation (2-21) is Taylor's hypothesis which means that all of the time dependence in the flow arises by convection of a relatively slow changing spatial pattern. It is possible in this formulation to let U_{c} be a function of wave number.

Equations (2-19) and (2-20) are the key equations in the Fourier transform formulation. Essentially the same physical information is needed to solve these equations as is required in the Green's function approach. In this regard, note that ${ }_{22}$ is the two-dimensional Fourier transform of R_{22}.

Previous Fourier Transform Solutions

Kraichnan (1956b) represented the turbulence field by a 'mirrorflow' model. The details concerning this model are found in Appendix C. Essentially, this model represents the turbulence field by mirroring two homogeneous fields in the wall. If $\overline{\bar{\Phi}}$ az is the two-dimensional wave number spectrum function of a homogeneous flow field, then

$$
\bar{S}_{22}\left(y_{2}, y_{2}^{\prime} k_{1}^{\prime}, k_{3}, k_{3}\right)=\overline{\bar{Y}}_{22}\left(y_{2}-y_{2}^{\prime}, k_{1}, k_{3}\right)-\overline{\bar{O}}_{2_{2} 2}\left(y_{2}+y_{2}^{\prime}, k_{1}, k_{3}\right)(2-22)
$$

The negative features of this model are that u_{1} and u_{3} do not vanish at the plate and that the intensity of the turbulence is finite at infinity. Kraichnan contends that the model is viable in that the viscous sublayer makes little contribution to the surface-pressure field and that the finite intensity at infinity is not unreasonable considering experimental results. It can also be argued that the indefinite extent of the intensity should not seriously affect the answer as the mean-shear term goes to zero in the far field.

Kraichnan (1956b) computed a family of relative wave number power spectra for various mean-shear profiles. He called * $k^{2}=k_{1}^{2}+k_{3}^{2}$ the relative wave number and so the convective assumption $\omega=k_{1} U_{c}$ cannot directly be applied. Later Hodgson
(1962) calculated a frequency spectrum with the mirror flow model, He used equations $(2-19)$ and $(2-20)$ to predict the frequency power spectrum. Following Kraichnan, he modeled the mean-shear gradient by

$$
\begin{equation*}
\frac{d U_{1}\left(y_{2}\right)}{d y_{2}}=\frac{d \overline{U_{2}}(0)}{d y_{2}} \exp \left(-\beta y_{2}\right) \tag{2-23}
\end{equation*}
$$

This, along with equation (2-22), is substituted into equation (2-19).

The interim mathematical steps between equations (2-21) and (2-24) are reviewed in Appendix $D . \Phi_{22}\left(\mathrm{y}_{2}, \mathrm{k}_{1}, \mathrm{k}_{3}\right)$ must be an even function of y_{2}. Next let

$$
\begin{equation*}
\frac{d U_{1}(0)}{d y_{2}}=3.7 \tau \tau_{\sim} / \delta^{*} \quad, \quad \beta=0.31 / \delta^{*} \tag{2-25}
\end{equation*}
$$

and assume that the turbulence field is isotropic. This assumption will be considered in more detail in Chapter III. It allows $\Phi_{22}\left(y_{2}, k_{1}, k_{3}\right)$ to be represented analytically with the following relationships:

$$
\begin{equation*}
\delta_{22}\left(y_{2}, k_{1}, k_{3}\right)=\int_{-\infty}^{\infty} J_{122}^{*}\left(k_{1}, k_{2}, k_{3}\right) \exp \left(i y_{2} k_{2}\right) d k_{2}, \tag{2-26}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{22}^{*}\left(k_{i}\right)=\rho^{2} E(\varphi) / 4 \pi \tag{2-27}
\end{equation*}
$$

where $\rho^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}$
and $E(\varphi)=\frac{1}{\pi} \int_{0}^{\infty} \bar{u}_{2}^{2} f(r) \varphi^{2} r^{2}[\sin (\varphi r) / \varphi r-\cos (\varphi r)] d r$
where $f(r)=\exp (-r / L)$.
In principle, substituting equations (2-25), and (2-27) into equation (2-24) determines the two-dimensional wave number power spectrum, $\pi_{a}\left(0, k_{1}, k_{3}\right)$. Then the frequency spectrum is computed with the aid of equations (2-20) and (2-21). Hodgson used L $=1.58 \%$ and $\mathrm{U}_{\mathrm{c}}\left(\mathrm{k}_{1}\right)=.8 \mathrm{U}_{\infty}$ for this computation.

Hodgson is very vague about the details of this calculation and at what stage numerical estimates were made. His result, the frequency power spectrum, is shown in Figure 2. This figure has been reproduced from Hodgson (1962). It is important to note that the dependent variable has been normalized with τ_{w}^{2} and that Hodgson fixed the level of the theoretical curves by using his experimental value of $\sqrt{\overline{\mathrm{p}}^{2} / \mathrm{q}^{2}}$ as $2.2 \mathrm{C}_{\mathrm{f}}$.

Lilley and Hodgson (1960) a1so compared their simplified isotropic calculation of the relative wave number spectrum with Kraichnan's 'mirror flow' model simplified in the same manner. They concluded that no substantial differences existed. A1so, in the same paper they made an estimate for the 'big-eddie' contribution.

This used a scale anisotropy model similar to Townsend and Grant. Their estimating expression lead them to conclude that the 'big eddie' contributions would be sensitive to the different integral scales.

ANISOTROPIC GREEN'S FUNCTION SOLUTION

The method of Hodgson (1962) and Lilley and Hodgson (1960) for determining the power spectrum is modified to include anisotropy. The anisotropy model assumes the integral scale of the turbulence is largest in the streamwise direction. A family of frequency spectra is derived showing the effect of various degrees of anisotropy.

Simplified Frequency Spectrum Problem

The method of obtaining the frequency spectrum from the correlation equation, $(2-11)$, is to perform the ξ_{2} differentiation and then $1 e t \xi_{1}$ and ξ_{3} go to zero. The resulting autocorrelation can be Fourier transformed giving the frequency spectrum. Hodgson simplified the integrand to the point that analytic integration was possible. The simplifications neglect variations of quantities across the boundary layer. His hope was that the computed spectrum would be qualitatively correct.

The first step is to remove the y_{2} dependence from all the terms in the integrand except the weighting function. Therefore, 1et

$$
\begin{equation*}
g\left(y_{2}\right)=\frac{d \overline{\bar{u}_{1}}\left(y_{2}\right)}{d y_{2}}\left\langle u_{2}\left(y_{2}\right)\right\rangle \tag{3-1}
\end{equation*}
$$

and take go as a mean value. Then remove the y_{2} dependence from R_{22} which means that the flow is assumed homogeneous in the normal direction. The correlation equation, (2-11), reduces to

By rearranging the limits in equation (3-2), it can be integrated. with respect to y_{2}. Then it is necessary to take an average value of the integrand with respect to r_{2} prior to differentiating with respect to ξ_{1}. Taking ξ_{1} and ξ_{3} as zero gives the autocorrelation of the pressure fluctuations at a point on the plate. The details are found in Appendix E.

$$
\begin{equation*}
R_{p p}(\tau)=\frac{\varphi^{2} g_{0}^{2}}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty}\left(\frac{r_{2}^{2}+r_{3}^{2}}{r^{3}}\right) \stackrel{R}{22}\left(r_{i}, \tau\right) d r_{3} d r_{2} d r_{2} \tag{3-3}
\end{equation*}
$$

R_{22} must be even in r_{2}.
In order to obtain an analytical expression for R_{22}, assume that the turbulence is isotropic. An isotropic field is one in which the turbulence is invariant with respect to coordinate system rotations and reflections. This assumption is considered good on a 'local' basis for the fine-scale turbulence structure and a first approximation to the large-scale turbulence structure (Hinze, 1959). The form of the isotropic velocity correlation coefficient with zero time delay is

$$
\begin{equation*}
R_{22}^{v}\left(r_{i}, 0\right)=f(r)+\left(\frac{r_{1}^{2}+r_{3}^{2}}{2 r}\right) \frac{d f(r)}{d r} \tag{3-4}
\end{equation*}
$$

where $r^{2}=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}$.
Equation (3-4) must be modified to include a time delay and also an explicit relationship for $f(r)$. Hodgson assumed that

$$
\begin{equation*}
f(r)=\exp \left(-r^{2} / L^{2}\right) \tag{3-5}
\end{equation*}
$$

where L is defined as $\int_{0}^{\infty} f(r) d r$, the integral scale of the turbulence. The time delay is introduced by Taylor's hypothesis. The velocity correlation in a moving reference frame is separated into the product of a spatially dependent term and a time dependent term. By assuming the flow is 'frozen', i.e. Taylor's hypothesis, the correlation is transformed into a fixed reference frame (see Appendix F).

$$
\begin{equation*}
\stackrel{R}{R}_{22}\left(r_{i}, \tau\right)=\exp \left[-\left(r_{2}^{2}+r_{3}^{2}\right) / L^{2}\right] \exp \left[-\left(r_{1}-U_{c} \tau\right)^{2} / L^{2}\right]\left[1-r_{3}^{2} / L^{2}-\left(r_{1}-U_{c} \tau\right)^{2} / L^{2}\right] \tag{3-6}
\end{equation*}
$$

The convective velocity U_{c} is assumed a constant.
Equation (3-6) is substituted into equation (3-3) and then nondimensionalized according to

$$
\begin{equation*}
r_{i}=r_{i} / L, \quad \gamma=\Psi=\pi / L \tag{3-7}
\end{equation*}
$$

Noting that the integrand is even in r_{3}, the autocorrelation is

$$
\begin{equation*}
R_{P \rho}(\lambda)=\frac{2 \rho^{2} g_{0}^{2} L^{2}}{n^{3}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty}\left[\frac{r_{2}^{2}+r_{3}^{2}}{r^{2}}\right]\left[1-r_{3}^{2}-\left(r_{1}-\not\right)^{2}\right] \exp \left[-r_{2}^{2}-r_{3}^{2}-\left(r_{1}-r^{2}\right)^{2}\right] d r_{3}^{r} d r_{2}^{r} d r \tag{3-8}
\end{equation*}
$$

The Fourier transform of equation (3-8) is the frequency power spectrum

$$
\begin{equation*}
T^{\prime}(\dot{\omega})=\frac{1}{2 \pi} \frac{L}{U_{c}} \int_{-\infty}^{\infty} R_{p p}(\tau) \exp (-i \omega \tilde{\omega}) d \tilde{\pi} \tag{3-9}
\end{equation*}
$$

where $: \Sigma=\omega \mathrm{L} / \mathrm{U}_{\mathrm{c}}$. Performing the substitution and expanding as in Appendix E yields

$$
\begin{equation*}
\left.\cdots 2 \ddot{r}_{1} \ddot{r}_{\sinh }\left(2 \ddot{r_{1}} \ddot{\tau}\right)\right] \exp \left(-r^{r_{2}}\right) d \ddot{r}_{3} d r_{2}^{r} d \underset{r_{1}}{r} \tag{3-10}
\end{equation*}
$$

Equation (3-10) is for isotropic turbulence and was integrated by Hodgson (1962). It is a special case of the anisotropic case which will be introduced next.

Scale Anisotropy

The 'eddy' model of turbulent flow envisages regions in the boundary layer of various scales within which the properties such as velocity and pressure are correlated. The larger the scale of the 'eddy', the greater the region of correlation. The larger eddies are the size of the boundary layer and are greatly influenced
by both the wall and the free stream. Experimental evidence shows that the large-scale structure is more anisotropic in nature than the sma11-scale structure. It is generally accepted that this largescale structure is the major contributor to the lower frequencies in the spectrum. Thus, the anticipated change with an anisotropic model would be to improve the prediction at the lower frequencies,

Kraichnan (1956a) proposed a simple scale anisotropy model of the velocity correlations. This is motivated by the difference in the integrals scales as seen in Figure 3. This data, taken from Grant (1958), shows the integral scale to be larger in the streamwise direction than in the other directions. The analytical form of the isotropic velocity correlation component is

$$
\begin{equation*}
R_{i i}\left(r_{i}\right)=f\left(r_{i}\right) ; i=1,2 \text {, or } 3 \text {; no sum on } i \tag{3-11}
\end{equation*}
$$

If the turbulence were isotropic, all of the data points of Figure 3 would collapse and lie along a single curve.

The elongation of the integral scale in the streamwise direction was modeled by letting R_{22} have the isotropic form in stretched coordinates, r_{i}^{\prime} 。

$$
\begin{align*}
r_{1}^{\prime} & =r_{1} / \alpha \\
r_{2}^{\prime} & =r_{2} \tag{3-12}\\
r_{3}^{\prime} & =r_{3}
\end{align*}
$$

In equations (3-12) $\alpha \geq 1$.0. Kraichnan demonstrated that the new correlation coefficient $R_{j k}^{\prime}\left(r_{i}^{\prime}\right)$ satisfies the continuity equation.

Power Spectrum Equation.

The effect of the anisotropy model on the power spectrum is
elevated by substituting equation (3-12) into (3-6).

$$
\begin{equation*}
\stackrel{\rightharpoonup}{R}_{22}\left(\dot{r}_{i}, r_{r} ; \alpha\right)=\exp \left[-\left(\dot{r}_{2}^{2}+\check{r}_{3}^{2}\right) / L^{2}\right] \exp \left[-\left(\dot{r}_{1}-U_{c} \tilde{\tau}^{2}\right)^{2} / \alpha^{2} L^{2}\right]\left[2-\dot{r}_{3}^{2} / L^{2}-\left(r_{1}-U_{0} V_{1}\right)^{2} / \alpha^{2} L^{2}\right] \tag{3-13}
\end{equation*}
$$

When equation (3-13) is processed through equations (3-7), (3-8), and (3-9), the equivalent of equation (3-10) is the frequency power spectrum equation,

$$
\begin{aligned}
& \stackrel{v}{r}^{\prime}(\stackrel{\rightharpoonup}{\omega} ; \alpha)=\frac{2 \rho_{\infty}^{2} g_{0}^{2} L^{3}}{\pi^{2} U_{c}} \int_{0}^{\infty} \int_{0}^{\infty} \int\left[\frac{\tilde{r}_{2}^{2}+\dot{r}_{3}^{2}}{\dot{r}^{3}}\right] \exp \left(-\dot{r}_{1}^{2} / \alpha^{2}\right) \exp \left[-\left(\dot{r}_{2}^{2}+r_{3}^{2}\right)\right] d r_{3} d r_{2} d r_{1} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \left.\ldots\left(2 \check{r} r_{1} r / \alpha\right) \sinh \left(2 \tilde{r} \tilde{r} / \alpha^{2}\right)\right\} d r
\end{aligned}
$$

Integration of this equation follows the procedure outlined by Lilley and Hodgson (1960). The details of this work are found in Appendix H. The final result is a closed form solution.

$$
\begin{align*}
& \left.\ldots \exp \left(-\omega^{2} / 4\right)\left[\frac{w^{2}}{4}\left(2 / \alpha^{2}-1\right)+1-2 / \alpha^{4}\right]\right\} \tag{3-15}
\end{align*}
$$

where E_{1} is the exponential integral,
It is common to plot the spectrum as a function of ω^{*}, defined as

$$
\begin{equation*}
\omega^{*}=\omega \delta^{*} / U_{\infty} \tag{3-16}
\end{equation*}
$$

The following constants are defined:

$$
\begin{align*}
& \mathrm{C}_{1}=\delta * / \mathrm{L} \tag{3-17}\\
& \mathrm{C}_{2}=\mathrm{U}_{\mathrm{c}} / \mathrm{U}_{\infty} \tag{3-18}\\
& \mathrm{C}_{3}=(\delta * / \mathrm{L})\left(\mathrm{U}_{\mathrm{c}} / \mathrm{U}_{\infty}\right) \tag{3-19}
\end{align*}
$$

A1so the independent variable is normalized so that

$$
\begin{equation*}
\hat{\pi}=\frac{\frac{v}{T^{\prime}}}{\rho^{2} L^{3} g_{0}^{2} / 4^{\pi^{1 / 2}} U_{c}} \tag{3-20}
\end{equation*}
$$

The final equation is

$$
\begin{gather*}
A_{T}\left(\omega^{*} ; \alpha\right)=\alpha\left\{\left(\frac{\omega^{*}}{2 C_{3}}\right)^{2}\left[\left(\frac{\omega^{*}}{2 C_{3}}\right)^{2}-\frac{1}{2}\left(\frac{\omega^{*}}{C_{3} \alpha}\right)^{2}+\frac{1}{\alpha^{4}}\right] E_{1}\left[\left(\frac{\omega^{*}}{2 C_{3}}\right)^{2}\right]+\cdots \cdot\right. \\
\ldots \exp \left[-\left(\frac{\omega^{*}}{2 C_{3}}\right)^{2}\right]\left[\left(\frac{\omega^{*}}{2 C_{3}}\right)^{2}\left(2 / \alpha^{2}-1\right)+1-1 / \alpha^{2}\right] \tag{3-21}
\end{gather*}
$$

Figure 4 is a plot of equation (3-21) for various values of alpha. The value of C_{3} as defined in equation (3-19) and used to compute these curves is 1.0. Except for the difference in normalizing and the value of C_{3}, the $\alpha=1$ curve of Figure 4 and Hodgson's (or Lilley and Hodgson (1960)) Green's function solution of Figure 2 are equivalent.

The curves are very sensitive to small changes in alpha with the larger values of alpha increasing the spectrum at the lower frequencies. Now the zero frequency value $\hat{\pi}(0 ; \alpha)$ is the mean-square value of the fluctuating pressure p^{\prime}, which is, of course, 0. Equation (3-21) gives $\hat{\pi}(0 ; \alpha)=1-1 / \alpha^{2}$. The reason for this anomaly is not known.

FORMULATION OF THE ONE-DIMENSIONAL WAVE NUMBER PROBLEM

In this chapter the one-dimensional wave number equation to be numerically integrated is developed. The calculation incorporates realistic variations across the boundary layer of the mean-shear, turbulence scale, and turbulence intensity. The anisotropic turbulence model of Chapter III is also retained.

When deciding which of the two methods, the Fourier transform method or the Green's function method, to integrate numerically, the inherent singularity in the Green's function solution makes it the least likely candidate. Essentially the same assumptions have been made in the developments of each method. However, there is one difference which proves to be important. The Fourier transform method is expressed in the wave number domain. This allows the anisotropy factor and the convective velocity to be considered as functions of the wave number and assumed after the integration is completed.

The Non-Dimensional Equation

It is desired to non-dimensionalize the problem so that the answer is as independent of Reynolds number as possible. Starting point for the procedure is $\pi_{1}\left(k_{1}\right)$, the one-dimensional wave number spectrum of the wall-pressure fluctuations.

$$
\begin{equation*}
\pi_{1}^{\prime}\left(k_{1}\right)=4 \rho_{-\infty}^{2} \iint_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{k_{1}^{2}}{k^{2}} \exp \left[-k\left(y_{2}+y_{2}^{\prime}\right]\right] \frac{d \bar{\tau}_{1}}{d y_{2}} \frac{d \overline{U_{2}}}{d y_{2}^{\prime}} O_{22} d y_{2}^{\prime} d y_{2} d k_{3} \tag{4-1}
\end{equation*}
$$

This is the integration over k_{3} of the two-dimensional spectrum given in equation (2-19).

In equation (4-1), Φ_{22} is the Fourier transform of the velocity correlation function.

$$
\begin{equation*}
\oint_{22}\left(y_{2}, y_{2}^{\prime}, k_{1}, k_{3}\right)=\frac{u_{2}\left(y_{2}\right) u_{2}\left(y_{2}^{\prime}\right)}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{22}\left(y_{2}, y_{2}^{\prime}, r_{1}, r_{3}\right) \exp \left(-i k_{1} r_{1}\right) \exp \left(-i k_{3} r_{3}\right) d r_{3} d r_{1} \tag{4-2}
\end{equation*}
$$

where $u_{2}=\sqrt{\bar{u}_{2}^{2}\left(y_{2}\right)}$ and $u_{a}^{\prime}=\sqrt{\bar{u}_{2}^{2}\left(y_{a}^{\prime}\right)}$. It will include the effect of anisotropic structure. Philosophically, it is important to note that it is Φ_{22} and not R_{22} which is assumed. An expression for R_{22} will be integrated and the result motivates an assumption for Φ_{22}. This procedure is masked because, for computational purposes, equation (4-2) is substituted into equation (4-1), The correlation coefficient R_{22} is an even function of r_{1} and r_{3}. Substituting equation (4-2) into equation (4-1) and noting that the result is even in k_{1} yields

$$
\begin{gather*}
\pi_{m^{\prime}}\left(k_{1}\right)=\frac{8 \rho^{2}}{\pi^{2}} \iint_{0}^{\infty} \iint_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{k_{1}^{2}}{R^{2}} \exp \left[-k\left(y_{2}+y_{2}^{\prime}\right) \frac{d \bar{T}_{2}}{d y_{2}} \frac{d \bar{T}_{1}}{d y_{2}^{2}} u_{2} u_{2}^{\prime} R_{22} \cdots \cdot\right. \\
 \tag{4-3}\\
\cdots \cos \left(k_{1} r_{1}\right) \cos \left(k_{3} r_{3}\right) d \frac{d}{3} d r_{3} d y_{2}^{\prime} d y_{2} d k_{3}
\end{gather*}
$$

Empirical forms of the mean-shear and the intensity are fairly independent of Reynolds number when the length scale is $\delta *$, the displacement thickness, and the velocity scale is $\mathrm{U}_{\underset{\sim}{*} \text {, the eric- }-10}$ ton velocity, This aspect is discussed more fully later on. On the other hand, the customary form used for experimental frequency spectra requires the non-dimensional dependent variable, $\frac{T_{1}}{A}=7 T_{1} / \sigma^{2} \delta^{*}$. In non-dimensional variables the problem reduces to

$$
\begin{equation*}
\hat{\pi}_{1}^{1}\left(\hat{k}_{1}\right)=\frac{32}{\pi^{2}}\left(\frac{U T_{1}}{U T_{\infty}}\right)^{4} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\hat{k}_{1}^{\infty}}{\hat{k}^{2}} \exp \left[-\hat{k}\left(\hat{y}_{2}+\hat{y}_{2}^{\prime}\right)\right] \frac{d U^{*}}{d \hat{y}_{2}} \frac{d \tau^{x}}{d \hat{y}_{2}^{\prime}} \hat{U}_{2} \hat{d}_{2}^{\prime} R_{22} \ldots \tag{4-4}
\end{equation*}
$$

where

$$
\left(U_{\Gamma} / U_{\infty}\right)^{4}=\left(c_{f} / 2\right)^{2}
$$

The Reynolds number dependence of the wave number spectrum will be discussed in Chapter VI.

Mean-Shear Expression

Bull (1969) studied expressions for the mean-shear in a zero pressure gradient boundary layer. He divided the boundary layer into three regions and concluded that the following equations best represent the experimental information.

Inner region: Limits, $0 \leq \mathrm{y}_{\mathrm{a}}<32.2 \vee / \mathrm{KH}_{\mathrm{T}}$
$\frac{d V^{*}}{d \hat{y}_{2}}=\frac{U_{1} \delta^{*}}{\sum}\left[1+\left(\tilde{y}_{2} / a\right)+\frac{1}{2}\left(\tilde{y}_{2} / a\right)^{2}+\frac{1}{b}\left(\tilde{y}_{2} / a\right)^{6}\right] \exp \left(-\tilde{y}_{2} / a\right)$
where $\tilde{y}_{2}=\hat{y}_{2} \delta^{* U} T_{T} N$

$$
\begin{align*}
& \text { Middle region: Limits, } \frac{32.2 \nu}{\delta * U} \leq \hat{y}_{2}<\alpha_{c} \delta / \delta * \\
& \frac{d U^{*}}{d \hat{y}_{2}}=\frac{\delta^{*}}{K \delta}\left[\frac{\delta}{\delta^{*} \hat{y}_{2}}+\frac{\pi^{\pi}}{a_{c}} \sin \left(\frac{\pi \delta^{*} \hat{y}_{2}}{a_{c} \delta^{\delta}}\right)\right] \tag{4-6}
\end{align*}
$$

where $\bar{K}=.41, \pi=.60$, and $\alpha_{c}=.837$
Outer region: Limits, $\alpha_{c} \delta / \delta *<\hat{y}_{2}<\delta / \delta *$

$$
\begin{equation*}
\frac{d U^{*}}{d \hat{y}_{2}}=\frac{\delta^{*}}{\delta a_{c} t}\left[\left(1-\hat{y}_{2} \delta^{*} / \delta\right) /\left(1-a_{c} \delta / \delta^{*}\right)\right]^{m-1} \tag{4-7}
\end{equation*}
$$

where $\mathrm{m}=1.67$
The inner region consists of the viscous sublayer and the buffer layer. The extent and the profile in this region depend upon Reynolds number. For the majority of calculations a Reynolds number of $\mathrm{U}_{\infty} \delta * / \nu=6000$ was assumed. The middle region is the customary 'log law' plus the 'law of the wake'. The constant K is universal while π, and α_{c} depend on pressure gradient. The shape factor, $\delta / 8 *$, also depends somewhat on the Reynolds number. Bull proposed: the outer region equation to compensate for the failure of the 'law of the wake' at the edge of the boundary layer. These equations are valid for a wide range of Reynolds numbers.

Turbulence Intensity

Klebanoff (1954) measured the intensity, $\hat{\mathrm{u}}_{2}\left(\hat{\mathrm{y}}_{2}\right)$ in the boundary layer. He extrapolated the data further toward the wall using the pipe flow results of Laufer (1954). In the region of overlap these data agreed very well when plotted in wall layer variables. More recently, Kim et al. (1968) measured the
intensity near the wall of a low Reynolds number boundary layer. This data is also in good agreement when plotted in wall layer variab1es.

However, for $y^{*}<8$ (viscous sublayer) there are no measurements. The data were extrapolated to the wall as follows. The continuity equation, when evaluated at the wall, shows that $\hat{\mathrm{u}}_{2}$ increases at least as \hat{y}_{2}^{2}. Thus, it is assumed that \hat{u}_{2} is parabolic out to $y^{*}=8$ where $y^{*}=y_{2} U_{T} / \mathcal{N}$. This defines the outer boundary of the viscous sublayer. From that point the experimental data are used. The equations fit the data with an error of less than 5\%.
$\hat{u}_{2}=27\left(\hat{\mathrm{y}}_{2}^{2} / \mathrm{A}\right)$,
$\hat{\mathrm{u}}_{2}=27\left(.3 \hat{\mathrm{y}} \frac{\frac{1}{2}}{2}-1.63 \hat{y}_{2}^{2}\right), \quad \frac{8 \nu}{\mathrm{U}_{\tau} \delta \%} \leq \hat{\mathrm{y}}_{2}<\frac{.017 \delta}{-\delta \%}$
$\hat{u}_{2}=27\left[.0395-\left(\hat{\mathrm{y}}_{2}-1\right)^{2} / 1.24\right], \quad \frac{.017 \delta}{\delta *} \leq \hat{\mathrm{y}}_{2}<\frac{.1 \delta}{\delta *}$
$\hat{\mathrm{u}}_{2}=27\left[.0394-\left(\hat{\mathrm{y}}_{2}-.14\right)^{2} / 21.5\right], \quad \frac{.1 \delta}{\delta *} \leq \hat{\mathrm{y}}_{2}<\frac{.575 \delta}{\delta \%}$
$\hat{\mathrm{u}}_{2}=27\left(.0638-.057 \hat{\mathrm{y}}_{2}\right), \quad \frac{.575 \delta}{\delta *} \leq \hat{\mathrm{y}}_{2}<\frac{.98}{\delta *}$
$\hat{u}_{2}=27\left[.0068+\left(\hat{y}_{2}-1\right)^{2} / 1.25\right], \quad \frac{.9 \delta}{\delta *} \leq \hat{y}_{2} \leq \frac{\delta}{\delta *}$

In equation (4-8), A is determined by solving equations (4-8) and (4-9) at $y^{*}=8$.

$$
\begin{gathered}
A=\hat{y}_{2}^{2} /\left.\left(.3 \hat{y}_{2}^{1 / 2}-16.3 \hat{y}_{2}^{2}\right)\right|_{\hat{y}_{2}}=\frac{8 \nu}{U_{r}^{*}} \\
A=.0306
\end{gathered}
$$

The equations above depend upon Reynolds number in the innermost layers, i.e. equations (4-8) and (4-9). Calculations were first run with a low Reynolds number. When a check was run at a larger Reynolds number a surprisingly large effect was observed. This effect was thought to result from the fact that the equations above are actually valid only for the large Reynolds number $\mathrm{Re}_{\delta *}=$ 9.9:10 ${ }^{3}$. They must be modified in the region $0<y^{*}<32$ for any other Reynolds number. Calculations were rerun at the proper $\operatorname{Re}_{8 *}=9.9: 10^{3}$. At this time the innermost equation was modified to the form $a \hat{y}^{2}+b \hat{y}^{3}$. The addition of the cubic term allows the slope of the data to be matched at $y *=8$. This modification was included because the inner layers contributed much more to the spectrum (at high wave numbers) than anticipated. The values of a and b were $4.17: 10^{3}$ and $-7: 9: 10^{5}$ respective $1 y$.

The value of the boundary layer thickness, δ, in Klebanoff's (1954) data had to be changed to be consistent with the form of the mean-shear, particularly equation (4-6). Klebanoff's mean velocity profile was matched to the 'law of the wall and wake'. A value of $\delta=2.76$ inches was computed to replace the value $\delta=3$ inches reported by Klebanoff. Figures 5 and 6 are plots of the scaled intensity equations. Figure 12 shows the variation of the product of the velocity intensity and mean-shear across the boundary layer.

This variation proves to be important in devising a technique for numerically integrating the spectrum equation.

Turbulence Correlation

The turbulence correlation information enters the problem through $\Phi_{22}\left(\hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{k}_{1}, \hat{\mathrm{k}}_{3}\right)$. This is the Fourier transform on $\hat{\mathrm{r}}_{1}$ and \hat{r}_{3} of the two point correlation, $\mathrm{R}_{22}\left(\hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{2}^{\prime}, \hat{\mathrm{r}}_{1}, \hat{\mathrm{r}}_{3}\right.$), with zero time delay, equation (4-2), As previously emphasized, it is Φ_{22} and not R_{22} which is assumed. The theoretical procedure is to Fourier transform the scale anisotropic model of R_{22} given in Chapter II. The anisotropy factor α is taken as constant in this integration. This would be the exact value of $\mathbf{\Phi}_{22}$ if all of the disturbances in the flow had the same anisotropy factor. Next alpha is allowed to be a function of wave number. Thus, it no longer can be claimed that the original R_{22} is proper for the flow field. For the numerical calculation, the procedure is to substitute equation (4-2) into equation (4-1) and use an analytic expression for R_{22}. The isotropic form of R_{22} is given in equation (3-4). It involves the longitudinal correlation function, $f(r)$. For the calculations it is assumed that $f(r)=\exp (-r / L)$, in lieu of $f(r)=\exp \left(-r^{2} / L^{2}\right)$. Hodgson (1962) showed that the former representation more adequately represents the experimental data, particularly at the higher frequencies. Substituting the apropos non-dimensional variables into equation (3-4), R_{22} is

$$
\begin{equation*}
R_{22}\left(\hat{r}_{k}\right)=\left[1-\frac{C_{1}}{2}\left(\frac{\hat{r}_{1}^{2}+\hat{r}_{3}^{2}}{f}\right)\right] \exp \left(-C_{1} \hat{r}\right) \tag{4-15}
\end{equation*}
$$

where $\mathrm{C}_{1}=\delta \% / \mathrm{L}$ and $\hat{\mathrm{r}}^{2}=\hat{r}_{1}^{2}+\hat{r}_{2}^{2}+\hat{r}_{3}^{2}$.
Grant's (1958) velocity correlation data motivate two modifications to equation (4-15). The first is the dependence of the integral scale across the boundary layer, as seen in Figure 7. The second is the increase in the streamwise direction of the integral scale as modeled previously by α, Figure 3. A third modification would be in the orientation of the turbulence vorticity vector. Townsend found a preferred orientation of 45° for large scale boundary layer disturbances. Kraichnan found that scale anisotropy had the greater influence on the mean-square pressure.

The R_{22} dependence on \hat{y}_{2} can be modeled by making C_{1} in equation (4-15) dependent on $\hat{\mathrm{y}}_{2}$. The value of C_{1} is found at various values of $\mathrm{y}_{2} / 8$ by a least squares fit to the data in Figure 7. Then a least squares fit of these values to an exponential is used to determine $C_{1}\left(\hat{y}_{2}\right)$. The details are found in Appendix I, and the result is plotted in Figure 8. As before, the streamwise stretching in the integral scale is accounted for by changing the definition of \hat{r} to

$$
\begin{equation*}
\hat{r}^{2}=\hat{r}_{1}^{2} / a^{2}+\hat{r}_{2}^{2}+\hat{r}_{3}^{2} \tag{4-16}
\end{equation*}
$$

With these two modifications and by noting that $\hat{\mathrm{r}}_{2}=\hat{\mathrm{y}}_{2}^{\prime}-\hat{\mathrm{y}}_{2}$, the expression for $\hat{\mathrm{R}}_{22}$ is
$\hat{R}_{22}\left(\hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{r}_{1}, \hat{r}_{3} ; \alpha\right)=\left\{1-\left[\frac{C_{1}\left(\hat{y}_{2}\right)}{2}\right]\left[\frac{\hat{r}_{1}^{2}+\hat{r}_{3}^{2}}{\hat{r}}\right] \exp \left[-C_{1}\left(\hat{y}_{2}\right) \hat{r}\right]\right.$
where $\hat{\mathrm{r}}^{2}=\hat{\mathrm{r}}^{2} / \alpha^{2}+\left(\hat{\mathrm{y}}_{2}^{\prime}-\hat{\mathrm{y}}_{2}\right)^{2}+\hat{\mathrm{r}}_{3}^{2}$.

Since the small-scale structure of the turbulence is more isotropic in character than the large-scale structure, it is reasonable to let alpha be a function of \hat{k}_{1}, the streamwise wave number. This functional relationship need not be chosen until it is desired to convert the wave number spectra into a frequency spectrum. This will be done in Chapter VI.

Final Problem Statement

The equation to be solved is obtained by substituting equation (4-17) into equation (4 -4).

$$
\begin{align*}
& \stackrel{N}{T}^{\prime}\left(\hat{k}_{1}\right)=\frac{8}{\pi^{2}} C_{f}^{2} \int_{0}^{\infty} \int_{0}^{\delta / \delta_{0}^{*}} \int_{0}^{\delta / \delta^{*}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\hat{k}_{1}^{2}}{\hat{k}^{2}} \exp \left[-\hat{k}\left(\hat{y}_{2}+y_{2}^{\prime}\right)\right] \cdots \\
& \cdots \frac{d U^{*}}{d \hat{y}_{2}} \frac{d U^{*}}{d \hat{y}_{2}} U_{2} U_{2}^{\prime}\left[1-\left(\frac{C_{2}}{2}\right)\left(\frac{\hat{r}_{1}^{2}+\hat{r}_{3}^{2}}{\hat{r}}\right)\right] \exp \left(-C_{1} \hat{r}\right) \cdots \tag{4-18}
\end{align*}
$$

$$
\cdots \cos \left(\hat{k}_{1} \hat{r}_{1}\right) \cos \left(\hat{k}_{3} \hat{r}_{3}\right) d \hat{r}_{3} d \hat{r}_{1} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3}
$$

The finite limits on \hat{y}_{2} and \hat{y}_{z}^{\prime} are due to the mean-shear going to zero at the outer edge of the boundary layer. It will be convenient at a later stage to have transformed \hat{r}_{1} and \hat{r}_{3} to polar coordinates. Then equation (4-18) becomes

$$
\hat{\Pi}^{H}\left(\hat{k}_{1}\right)=\frac{8 \alpha}{\pi^{2}} C_{f}^{2} \int_{0}^{\infty} \int_{0}^{s / \delta^{*}} \int_{0}^{s / s_{\infty}^{*}} \int_{0}^{\infty} \int_{0}^{2 \pi} \frac{\hat{k}_{1}^{2}}{\hat{k}^{2}} \exp \left[-\hat{k}\left(\hat{y}_{2}+\hat{y}_{2}^{\prime}\right)\right] \cdots
$$

$$
\begin{aligned}
& \cdots \frac{d U^{*}}{d \hat{y}_{2}} \frac{d t^{*}}{d \hat{y}_{2}^{\prime}} \hat{U}_{2} \hat{U}_{2}^{\prime}\left\{\hat{r}-\left(\frac{C_{1}}{2}\right)\left(\frac{\hat{r}^{3}}{\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}}\right)\right\} \cdots \\
& \ldots \exp \left\{-C_{1}\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}\right\} \cos \left(\alpha \hat{k}_{1} \hat{r}^{\cos \theta)} \cos \left(\hat{k}_{3} \hat{r} \sin \theta\right) d \theta d \hat{r}^{\prime} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3}\right. \\
& \text { where } \hat{r}^{2}=\hat{\rho}_{1}^{2}+\hat{r}_{3}^{2}, \theta=\sin ^{-1}\left(\hat{r}_{3} / \hat{r}\right) \text {, and } \hat{\rho}_{1}=\hat{r}_{1} / \alpha \text {. Equation } \\
& \text { (4-19) is the final statement of the problem. The method used to } \\
& \text { integrate it is the subject of the next chapter. }
\end{aligned}
$$

THE MONTE CARLO NUMERICAL INTEGRATION

This chapter will describe how the wave number spectrum equation, equation (4-19), was prepared for computer programming and evaluation by a Monte Carlo technique.

Numerical evaluation of one-dimensional integrals is a well perfected art. When these schemes are generalized to multidimensional problems, the number of points required increases exponentially. If M points are required on each variable, then M^{5} points are required for a five-dimensional integral. Take M as a modest 50 points, then M^{5} is $1,562,500,000$. The Monte Carlo technique is based on principles which are independent of the space dimension. The number of points required to apply the method increases with the variance of the function. For this reason the Monte Carlo technique was chosen and 5000 iterations or 25,000 non-zero producing points gave acceptable results.

The Monte Car1o Method

Integration by a sampling technique for a Monte Carlo method is an unbiased, iterative, numerical method based on the 'Strong Law of Large Numbers' (Davis and Rabinowitz, 1967). To illustrate this consider a one-dimensional example. Let the integral be

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \tag{5-1}
\end{equation*}
$$

From the 'Mean-Value Theorem', an estimator for I would be

$$
\begin{equation*}
I \simeq \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)=(b-a) \cdot \text { Mean-value of } f(x) \tag{5-2}
\end{equation*}
$$

The values of x_{i} are chosen from a set of random numbers which are uniformly distributed on the interval (a, b). The 'Strong Law of Large Numbers' says that

$$
\begin{equation*}
\text { Probability }\left[\frac{\lim _{N \rightarrow \infty}}{} \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)=I /(b-a)\right]=1 \tag{5-3}
\end{equation*}
$$

Thus, as the number of samples, N, becomes infinite, the technique converges to an exact, i.e. unbiased, answer.

Instead of selecting random numbers from a stored list, it is more convenient to calculate a sequence of numbers which passes the statistical tests for randomness. Such a sequence is called pseudorandom. It is even more desirable to use a sequence of numbers which is quasirandom. A quasirandom sequence is non-random. It passes only those statistical tests for randomness necessary for the application. The quasirandom sequences used in this work are Halton sequences obtained from the Fortran subroutine CORPUT written by Professor J. P. Chandler of Oklahoma State University. The quasirandom sequence has two distinct advantages. Firstly, the numbers are generated serially in the same sequence each time the subroutine
is used. This is usefu1 in comparing the answers from separate computer runs. Secondly, the statistical error from a fixed sample size is less than that resulting from the use of a random or pseudor andom sequence.

If $f(x)$ in equation (5-2) were a constant, only one sample would be required to find its mean-value. If $f(x)$ has large variations, it may take many samples to compute its mean-value. It turns out that the rms or variance measures the difficulty of computing an integral by the Monte Car1o technique. The successful application of Monte Carlo integration employs various tricks known as variance reduction techniques. They reduce the statistical error for a fixed sample size or more important, reduces the sample size for an acceptable statistical error.

Importance sampling is a variance reduction technique where more samples are taken from the 'important' region of the interval. This is accomplished by changing the independent variable in such a way that the new integrand is flatter. As an example, consider the previous problem and introduce a function $p(x)$,

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} \frac{f(x)}{p(x)} p(x) d x \tag{5-4}
\end{equation*}
$$

with the conditions that

$$
\begin{equation*}
p(x)>0 \tag{5-5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} p(x) d x=1 \tag{5-6}
\end{equation*}
$$

From a statistical viewpoint the function, $\mathrm{p}(\mathrm{x})$, is called the probability density function.

Let a new variable, $u(x)$, be defined by the inversion equation,

$$
\begin{equation*}
u(x)=\int_{0}^{u} d u=\int_{a}^{x} p(\varphi) d \varphi \tag{5-7}
\end{equation*}
$$

Another important condition is that $p(x)$ possess a closed form integral so that equation (5-7) can be evaluated, otherwise there is another numerical integration. Since $p(x)>0$ is the Jacobian, $u(x)$ will be single valued and may be inverted either explicitly or numerically to obtain

$$
\begin{equation*}
x=x(u) \tag{5-8}
\end{equation*}
$$

Substituting the change of variable into equation (5-4) gives the new problem

$$
\begin{equation*}
I=\int_{0}^{1} \frac{f[x(u)]}{p[x(u)]} d u \simeq \frac{1}{N} \sum_{i=1}^{N} \frac{f\left[x_{i}\left(u_{i}\right)\right]}{p\left[x_{i}\left(u_{i}\right)\right]} \tag{5-9}
\end{equation*}
$$

The new integrand has less variance on the new interval (0,1) than $f(x)$ had on the interval ($a, b)$. In the limit, as the variance approaches zero, the new integrand would approach a constant value on the interval (0,1). If this were true, then the integral I would be known after sampling one value of u_{i}. This result is trivial as the value of I would be known 'a priori' to within a constant and there would be no need to use the Monte Carlo technique. However, the moral of the preceeding story is that $\mathrm{p}(\mathrm{x})$ should mimic $f(x)$ on the interval (a, b). This causes each point on the new
interval $(0,1)$ to be relatively as important as any other point. In a multidimensional integrand $p\left(x_{1}, . . . x_{n}\right)$ is chosen to mimic the dominant behavior of the independent variables in $f\left(x_{1}, \ldots, x_{n}\right)$. Often $p\left(x_{1}, . . . x_{n}\right)$ is chosen to be a product of functions, $p=p_{1}\left(x_{1}\right) \cdot$. $p_{n}\left(x_{n}\right)$, for simplicity. This implies that the variance reduction on X_{1} is independent of the variance reduction on the other variables. In truly complicated problems this would not be expected.

Variance Reduction of the Problem

In order to apply the importance sampling technique to the current problem, the probability density functions must be chosen and the inversion equations deduced. Taking the variables one at a time, the integrand is inspected to find the dominant role of that variable. Then the probability density function can be chosen to mimic that behavior.

Consider first the θ variable in equation (4-19). It appears in a complex oscillatory manner in the argument of both sine and cosine functions. Its behavior is very difficult to mimic. Fortunately, it is unnecessary since the variance is relatively sma11 and the computation worked we11 without any reduction.

The variable \hat{r} appears in the expression

$$
\begin{equation*}
\left\{\hat{r}-\frac{\hat{r}^{3}}{\left[r^{2}+\left(\hat{y}_{2}^{\prime}-y_{2}\right)^{2}\right]^{1 / 2}}\right\} \exp \left\{-C_{1}\left[\hat{r}_{1}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{\prime \prime}\right\} \tag{5-10}
\end{equation*}
$$

This term goes to zero at the origin and as \hat{r} approaches infinity it tends toward

$$
\begin{equation*}
\left(\hat{r}-\frac{C_{1}}{2} \hat{r}^{2}\right) \exp \left(-C_{1} \hat{r}\right) \tag{5-11}
\end{equation*}
$$

This would be a likely candidate for the probability density function except that it is not always greater than zero. This problem was circumvented by separating equation (4-19) into two integrals at the minus sign between the $\hat{\mathrm{r}}$ and $\hat{\mathrm{r}}^{2}$ dependencies. Then the wave number spectrum is

$$
\begin{equation*}
\stackrel{\hat{T}}{T}\left(\hat{k}_{1}\right)=\frac{8 \alpha}{\pi^{2}} C_{F}^{2}\left(I_{1}-I_{2}\right) \tag{5-12}
\end{equation*}
$$

$$
\begin{equation*}
I_{1}=\iint_{0}^{\infty} \int_{0}^{\delta / \delta^{x}} \int_{0}^{\int_{s} / \int_{0}^{*}} \int_{0}^{\infty} \hat{r} f\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{r}, \theta\right) d \theta d \hat{r} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3} \tag{5-13}
\end{equation*}
$$

where

$$
\begin{align*}
& f\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{r}, \theta\right)=\frac{\hat{k}_{1}}{\hat{k}^{2}} \exp \left[-\hat{k}\left(\hat{y}_{2}+\hat{y}_{2}^{\prime}\right)\right] \frac{d U^{*}}{d \hat{y}_{2}} \frac{d U^{*}}{d \hat{y}_{2}^{\prime}} \hat{u}_{2} \hat{u}_{2}^{\prime} \cdots \tag{5-15}\\
& \cdots \exp \left\{-c_{2}\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}\right\} \cos \left(\alpha \hat{k}_{1} \hat{r}_{1} \cos \theta\right) \cos \left(\hat{k}_{3} \hat{r} \sin \theta\right)
\end{align*}
$$

The dominant \hat{r} dependence in I_{1} is

$$
\begin{equation*}
r \exp (-c r) \tag{5-16}
\end{equation*}
$$

where C is used in lieu of $C_{1}=C_{1}\left(\hat{y}_{2}\right)$ and C must be constant. Let p_{1}, the probability density function for \hat{r} in I_{1}, be proportional to term (5-16). Applying condition (5-6) where a is zero and b is infinite,

$$
\begin{equation*}
P_{1}(r)=C \hat{r} \exp (-C \hat{r}) \tag{5-17}
\end{equation*}
$$

From equation (5-7) the inversion equation is

$$
\begin{equation*}
x=(C \hat{r}+1) \exp (-C \hat{r}) \tag{5-18}
\end{equation*}
$$

In this instance equation (5-18) must be inverted numerically to obtain

$$
\begin{equation*}
\hat{r}=\hat{r}(x) \tag{5-19}
\end{equation*}
$$

The Fortran subroutine XMEAX developed by Professors J. P. Chand1er performs the inversion.

Following steps similar to those used to determine the \hat{r} dependence in I_{1}, the probability density function for \hat{r} in I_{2} is

$$
\begin{equation*}
p_{2}(\hat{r})=\frac{C^{3}}{2} \hat{r}^{2} \exp (-C \hat{r}) \tag{5-20}
\end{equation*}
$$

and the inversion equation is

$$
\begin{equation*}
z=\left(\frac{C^{2} \hat{r}^{2}}{2}+C \hat{r}+1\right) \exp (-C \hat{r}) \tag{5-21}
\end{equation*}
$$

Equation (5-21) also is inverted numerically by subroutine XMEAX.
Having selected the probability density functions and the resulting inversion equations for \hat{r} in I_{1} and I_{2}, the same must be done
for $\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{2}^{\prime}$ variab1es. These variables c an not be isolated as was \hat{r}. They play a dominant and symmetric role in the expression

$$
\begin{equation*}
\frac{\hat{k}_{1}^{2}}{\hat{k}^{2}} \exp \left[-\hat{k}\left(\hat{y}_{2}+\hat{y}_{2}^{\prime}\right)\right] \frac{d U^{*}}{d \hat{y}_{2}}\left(\hat{y}_{2}\right) \frac{d V^{*}}{d \hat{y}_{2}^{\prime}}\left(\hat{y}_{2}^{\prime}\right) \hat{u}_{2}\left(\hat{y}_{2}\right) \hat{u}_{2}\left(\hat{y}_{2}^{\prime}\right) \tag{5-22}
\end{equation*}
$$

However, \hat{k}_{3} also enters the first exponential and the multiplier $\hat{\mathrm{k}}_{1}^{2} / \hat{\mathrm{k}}^{2}$.

A closer examination of the term $\hat{\mathrm{u}}_{2} d \mathrm{~d} * / d \hat{y}_{2}$ reveals that it changes considerably over the range $0 \leq \hat{\mathrm{y}} 2 \leq \delta / \delta \%$ (see Figure 12). The \hat{y}_{2} variables were importance sampled in different ways on each of three regions. This technique is known as stratified sampling (Hammersley and Handscomb, 1967). The computational regions are divided as follows:

1. Inner: $0 \leq \hat{\mathrm{y}}_{2} \leq .025$; denoted by IN.
2. Midd1e: $.025 \delta / 8 *<\hat{y}_{2}<.28 / 8 \%$; denoted by MD.
3. Outer: $.2 \delta / \delta * \leq \hat{y}_{2} \leq \delta / \delta *$; denoted by OT.

Because of the symmetry in $\hat{\mathrm{y}}_{2}$ and $\hat{\mathrm{y}}_{2}^{\prime}$, the stratified sampling separates both I_{1} and I_{2} in equation (5-12) into nine integrals each. Symbolically I_{1} and I_{2} are composed of

$$
\begin{equation*}
\left.\ldots \int_{0} \int_{2} \int_{0}^{\infty} \int_{0}^{\infty} \tilde{0}^{\pi}+\iint_{0}^{\pi} \int_{n} \int_{0}^{\infty} \int_{0}^{2 \pi}+\int_{0}^{\pi} \int_{0 \pi}^{\infty} \int_{0}^{\infty}(\cdots \cdot) d \theta d \hat{r} d \hat{y}_{2}^{\prime} d \hat{y}_{2}\right] d \hat{k}_{3} \tag{5-23}
\end{equation*}
$$

In a five-dimensional format, a typical integral in I_{1} which includes the probability distribution function is expressed as

$$
\begin{equation*}
\left.I_{1 i}=\int_{0}^{d} \int_{a}^{b} \int_{e}^{b} \int_{0}^{f_{\infty}} \int_{0}^{\pi} \frac{f_{1}\left(k_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{r}_{,} \theta\right)}{P_{i}\left(\hat{k}_{3}, \hat{y}_{2}, y_{2}^{\prime}, \hat{r}_{,} \theta\right) p_{1}(r)} P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}\right) \hat{y}_{2}^{\prime}\right) p_{1}(\hat{r}) d \theta d \hat{F} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3} \tag{5-24}
\end{equation*}
$$

Likewise a typical integral in I_{2} is
$I_{2 i}=\int_{0}^{d} \int_{0}^{b} \int_{e}^{f} \int_{0}^{\infty} \int_{0}^{\infty \pi} \frac{f_{2}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}, \hat{r}_{,} \theta\right)}{P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right) p_{2}(\hat{r})} P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right) p_{2}(\hat{r}) d \theta d \hat{r} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3}$

In equations (5-24) and (5-25) the upper 1imit d on $\hat{\mathrm{k}}_{3}$ is finite but large enough not to change the value of the integral. The 1imits a, b and e, f on \hat{y}_{2} and \hat{y}_{2}^{\prime} are permuted to correspond to the regions $I N, M D$, and $O T$.

The probability density function $\mathrm{P}_{3_{i}}$ must satisfy conditions analogous to equations (5-5) and (5-6).

$$
\begin{equation*}
\int_{0}^{d} \int_{a}^{b} \int_{e}^{f} P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right) d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3}=1 \tag{5-26}
\end{equation*}
$$

$$
\begin{equation*}
P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right)>0 \tag{5-27}
\end{equation*}
$$

The apropos probability density function which satisfies these conditions is

$$
p_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right)=\left\{\frac{\hat{k}_{2}}{\hat{k}^{2} \tan ^{-2}\left(\frac{g}{k_{2}}\right)}\right\} \cdots \cdot
$$

In equation (5-28) the constants C_{i} are determined by the region that is being sampled. In the inner region $C_{i}=C_{I}=14.0$, in the middle region $C_{i}=C_{M}=1.6$, and $C_{i}=C_{M}=0.3$. The constants were selected to allow $\mathrm{p}_{3} i^{\text {to mimic the behavior of the product }}$ $\hat{u}_{2} d U * / d \hat{y}_{2}$ in each of the regions. The inversion equations $u\left(\hat{k}, \hat{y}_{2}, \hat{\mathrm{y}}_{2}^{\prime}\right), \mathrm{v}\left(\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{2}^{\prime}\right)$ and $\mathrm{w}\left(\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{2}^{\prime}\right)$ must be compatible with the Jacobian of the three-dimensional transformation. Two of the inversion equations c an be selected arbitrarily. The third is computed from the first two and the selected probability density function (the Jacobian of the transformation). The mathematical details of this work and some additional comments on the selection of P_{i} are found in Appendix K. The inversion equations for $\hat{k}_{3}, \hat{\mathrm{y}}_{2}$, and $\hat{\mathrm{y}}_{2}^{\prime}$ are

$$
\begin{equation*}
u=\tan ^{-2}\left(\hat{k}_{3} / \hat{k}_{2}\right) / \tan ^{-1}\left(d / \hat{k}_{2}\right) \tag{5-29}
\end{equation*}
$$

$$
\begin{align*}
& v=\left\{1-\exp \left[-\left(\hat{k}+C_{i}\right) \hat{y}_{2}\right]\right\} /\left\{\exp \left[-\left(\hat{k}+C_{i}\right) a\right]-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]\right\} \tag{5-30}\\
& w=\left\{1-\exp \left[-\left(\hat{k}+C_{i}\right) \hat{y}_{2}^{\prime}\right]\right\} /\left\{\exp \left[-\left(\hat{k}+C_{i}\right) \operatorname{e}\right]-\exp \left[-\left(\hat{k}+C_{i}\right) f\right]\right\} \tag{5-31}
\end{align*}
$$

They can be inverted explicitly to obtain

$$
\begin{gather*}
\hat{k}_{3}=\hat{k}_{1} \tan \left[u \tan ^{-1}\left(d / \hat{k}_{1}\right)\right] \tag{5-32}\\
\hat{y}_{2}=-\ln \left[1-v\left\{\exp \left[-\left(\hat{k}+C_{i}\right) a\right]-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]\right\}\right] /\left(\hat{k}+C_{i}\right) \tag{5-33}\\
\hat{y}_{2}^{\prime}=-\ln \left[1-w\left\{\exp \left[-\left(\hat{k}+C_{i}\right) e\right]-\exp \left[-\left(\hat{k}+C_{i}\right) f\right]\right\}\right] /\left(\hat{k}+C_{i}\right) \tag{5-34}
\end{gather*}
$$

A11 of the elements of the problem are now defined such that it is ready to be programmed for the computer.

Program Operation

The computer program executes the following steps in sequence for a multidimensional integral each iteration:

1. Select M quasirandom numbers on the interval (0,1). M is the number of variables in the problem. If the variable is not being importance sampled, the random variable M is the value of the variable used in the integrand. In this program, θ is not being importance sampled.
2. Compute the value of the variables which are being importance sampled using the explicit inversion equations or numerical
inversion schemes. In this problem, one of the quasirandom numbers is used to compute two values of \hat{r} from equations (5-18) and (5-21). Two of the other numbers are used to compute three values of the variables \hat{y}_{2} and $\hat{\mathrm{y}}_{2}^{\prime}$ from equations (5-33) and (5-34). A value is needed for each of the regions $I N, M D$, and $O T$. The final number is used to compute the value of \hat{k}_{3} using equation (5-32).
3. The variables are then substituted into the original integrands, equations (5-13) and (5-14), and the probability distribution functions, equations (5-17), (5-20), and (5-28), to compute their values.
4. The value of the integrands are divided by the product of the probability distribution functions to produce the integrands of equations (5-24) and (5-25). This is analogous to equation (5-9) for one-dimension. This quotient is the contribution to the iteration to the integral.
5. As in equation (5-9) the value of the iteration is added to the sum of the previous iterations. When the desired number of samples is reached, the accumulated sum is divided by the total number of samples or iterations.

Appendix K is a listing of the integration program and Appendix L is a detailed discussion of the program chronology. Included is a list of the definitions of the program pseudonyms.

It is important that the contribution of each iteration be nonzero. If no contribution is made to the integral on a particular iteration and the iteration is counted as a sample, an erroneous answer results. In the program for this problem, 5000 non-zero producing samples were desired. It took approximately 5500
iterations to reach the stated goal. Dividing the smaller number by the larger yields an efficiency of 90%. But note that the integral value is determined by dividing the accumulated sum of contributions to the integrand by 5000, not 5500. Efficiency is an important feature of the Monte Carlo technique. It indicates that the proper importance sampling technique is employed.

The Monte Carlo technique is unbiased, thus a finite number of samples will not guarantee an exact answer. It is desirable to estimate how close the computed answer is to the exact answer. The measure of this closeness is called the statistical error and is measured in terms of the statistical quantities variation and standard deviation.

The standard deviation for 5000 terations using quasirandom numbers is

$$
\begin{equation*}
\sigma_{5000}=\frac{K}{J-1} \sqrt{V A R_{100}} \tag{5-35}
\end{equation*}
$$

where K is unknown. Had random or pseudorandom numbers been used, the standard deviation would be

$$
\begin{equation*}
\sigma_{5000}=\sqrt{V A R_{100} /(J-1)} \tag{5-36}
\end{equation*}
$$

$V A R_{100}$, the variation for 100 samples, and J are obtained by dividing the 5000 iteration blocks into fifty, one-hundred iteration blocks. Then J is 50. The variance of these small blocks can be computed by

$$
\begin{equation*}
V A R_{100}=\sum_{i=1}^{50}\left(\hat{I}_{100, i}-\hat{I}_{5000}\right)^{2} \tag{5-37}
\end{equation*}
$$

In equation (5-37), \hat{I}_{100}, \dot{q} is the value of the integral calculated independently for each small block, and $\hat{\mathrm{I}}_{5000}$ is the value of the integral after 5000 iterations. The standard deviation, σ_{100}, is defined by

$$
\begin{equation*}
\sigma_{100}=\sqrt{V A R_{100}} \tag{5-38}
\end{equation*}
$$

In order to estimate the order of magnitude of K in equation (5-35), σ_{5000} was computed using the procedure used to compute σ_{100}.

$$
\begin{equation*}
\sigma_{5000}=\sqrt{V A R_{5000}} \tag{5-39}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{VAR}_{5000}=\sum_{i=1}^{5}\left(\underline{I}_{5000, i}-\hat{I}_{25,000}\right)^{2} \tag{5-40}
\end{equation*}
$$

The results are the three data points shown in Figure 20. In this case J was limited to 5 because it took 16 minutes of IBM 360/65 computer time to compute five, 5000 iteration blocks. The value of K turned out to be about 1. This is considered an order of magnitude estimate in that only five blocks were computed. Had this number been increased, K would have been a bit larger. The error is about 1% and is plotted in Figure 20 as computed by equation (5-35) with $K=1$.

Figures 18 and 19 are plots of the regional contributions of the boundary layer to the wave number spectra. The division of the boundary layer into three regions in \hat{y}_{z} and $\hat{y} \hat{y}^{2}$ causes the total integral to be the sum of nine integrals. The contributions of three of these integrals were used to obtain the data for Figures 18 and 19. Figure 18 is a plot of the relative contribution
of each of these integrals relative to the contribution of the sum of the three. Figure 19 is a plot of the ratio of the contribution of the integral representing the inner region to the total value of the spectrum at that wave number. The three integrals are

$$
\begin{align*}
& I_{N} I_{N}^{\infty} \int_{0}^{\infty} \int_{N=1} \int_{0}^{\infty} \int_{0}^{2 \pi}(\ldots \ldots .) d \theta d \hat{r} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d f_{3} \tag{5-41}
\end{align*}
$$

$$
\begin{align*}
& I_{o t} \iint_{0 \omega 0}^{\infty} \int_{0} \int_{0}^{\infty} \int_{0}^{a r}(\ldots \ldots .) d \theta d \hat{r} d \hat{y}_{2}^{\prime} d \hat{y}_{2} d \hat{k}_{3} \tag{5-43}
\end{align*}
$$

The symbolic integrand in these equations is the integrand in equation (4-19). In the figures, I_{IN} is referred to as the INNER-INNER integral and likewise with $I_{M D}$ and $I_{0 T}$. Figure 19 gives a better picture of the contribution of the inner region of the boundary layer, $y_{2} / \delta \leq .025$, to the spectrum. The data in Figure 18 tends to overestimate the contribution of the inner region at moderate to high wave numbers in the region of the peak of the wave number spectrum. It also tends to overestimate the contribution of the inner region to the low wave numbers. The results will be discussed in more detail in the next chapter.

DISCUSSION OF RESULTS

The final chapter contains discussions of the wave number spectra, anisotropy, and the frequency spectra. Following these discussions, the conclusions are summarized.

Wave Number Spectra

The principle results of thi study are the wave number spectra given in Figures 14 and 15. A family of curves for a value of the anisotropy parameter from 1 to 4 is presented. The advantage of presenting the data as a function of wave number is that the spectra can be computed without introducing the convective velocity assumption or a particular anisotropy factor assumption. These assumptions are determined as a function of wave number and are added subsequently in order to predict the frequency spectrum.

The spectrum behaves about like $\tilde{\mathrm{k}}_{1}^{-2}$ in the 1 ow wave number region with alpha simply shifting the level of the curves. The wave number at which the spectrum peaks decreases with increasing alpha. The opposite is true of the peak magnitude. It increases with increasing alpha. Just beyond the peak, the constant slope region decays at a rate equal to about ${\underset{\mathrm{k}}{1}}_{-.75}$ for $\alpha=1$. This compares with Bradshaw's (1967) prediction of \widetilde{k}_{1}^{-1}. This initial constant slope region spans the values of $\tilde{\mathrm{k}}_{\cdot 1}$ from 5.5 to 34.5 .

At that point the spectrum transitions to another constant slope region with slope equal to -1.1 . This region terminates at $\widetilde{k}_{1} \cong 140$. From that point the spectrum decays at a much faster rate approaching $\tilde{k}_{1}^{-5 \cdot 0}$. Wills (1970) predicted that the k_{l}^{-1} region is bounded by $\omega \delta * / U_{\infty}=0.6$ and $\omega \nu / U_{T}^{2}=0.5$. He proposed these limits on the basis of the 'eddy' scales being comparable with the spatial limits of the wall similarity region. In these computations, the lower limit is $\tilde{\mathrm{k}}_{1}=5.5$ and the upper limit is $\tilde{\mathrm{k}}_{1}=85.5$.

Recall that the computation of the spectrum was broken into nine regional contributions. Three of these integrals, inner-inner, middle-middle, and outer-outer are purely single region contributions while the remainder are cross contributions. Figure 18 plots the relative contributions of the single region integrals as a function of wave number. To get a more complete story Figure 19 should be considered where the contribution of innerinner integral as a percentage of the total integration is displayed. Physically the inner region is the viscous layer plus the buffer region out to $y^{*}=40$. for the Reynolds number of these computations. The middle region is the log region and the outer region is the last 80% of the boundary layer.

The middle and outer regions are responsible for the spectrum at low wave numbers up to and slightly over the peak. The inner contribution begins to pick up in the $\widetilde{k}_{\mathrm{l}}^{-76}$ section and is 50% at $\tilde{\mathrm{k}}_{1}=27.6\left(\hat{\mathrm{k}}_{1}=4\right)$. At $\widetilde{\mathrm{k}}_{1}=138\left(\hat{\mathrm{k}}_{1}=20\right)$ and beyond the inner region is solely responsible for the spectrum.

The spectra are strictly applicable to only one Reynolds number, $\operatorname{Re}_{8} *=9.9 \cdot 10^{3}$. This is dictated by Klebanoff's intensity
data. The mean-shear equations compensate for changes in Reynolds number but the intensity equations do not.

$$
\begin{equation*}
\tilde{T}^{\prime}=\pi_{1}^{1} / \delta q^{2} C_{f}^{2}=\left(\delta^{*} / \delta\right) \Pi_{T}\left(\delta_{1}^{\alpha N} k_{1}^{N} / \delta\right) / c_{f}^{2} \tag{6-1}
\end{equation*}
$$

and the independent variable is

$$
\begin{equation*}
\tilde{k}_{1}=k_{1} \delta=\hat{k}_{1} \delta / \delta^{*} \tag{6-2}
\end{equation*}
$$

Since the program computes $\hat{\pi}\left(\hat{k}_{1}\right)$ and $\hat{\pi}\left(\hat{k}_{1}\right) / C{ }_{f}^{2}$, the independent and dependent variables must be scaled as shown in equation (6-1). It is anticipated that this selection of variables will remove most of the Reynolds number sensitivity from the spectrum, especially at low wave numbers.

It can be justified in the following manner. Assume that aquaLion (4-3) is non-dimensionalized with length scale δ instead of $6 *$, and that the intensity and mean-shear are the most sensitive terms in the integrand to Reynolds number. In the middle and outer regions these terms will be essentially free of Reynolds number dependence, when normalized with U_{τ} and δ. From Figure 18 , it can be seen that the inner-inner region relative contribution is less than 3% below $\hat{k}_{1}=.25$. Since the region beyond the buffer layer contrabute the greatest portion of the spectrum at low wave numbers, the integrand and thus $\left.\tilde{\pi} \tilde{(k}_{1}\right)$ as defined in equation (6-1) will be relatively Reynolds number independent. This is not the case at high wave numbers. $\tilde{\pi}\left(\tilde{k}_{1}\right)$ will depend on Reynolds number but it is not anticipated that the dependence at high wave numbers is strong. In order to test this hypothesis by computation, the modification of the intensity equations; mentioned earlier,
is necessary.

Anisotropy

Two kinds of anisotropy are accounted for in the calculations. The first is actually a local isotropy which changes through the boundary layer by allowing the integral scale to be a function of $\hat{y} z$. It is incorporated in the wave number spectrum calculation. The second kind of anisotropy is the seale anisotropy where α measures the elongation of the integral scale in the flow direction compared to the other directions. Alpha as a function of wave number c an be assumed after the spectrum is calculated (but before the frequency spectrum is obtained).

The variation of the integral scale $\left(C_{1}(\hat{y} z)=\delta * / L(\hat{y} z)\right)$ across the boundary layer has a profound effect on the magnitude of the wave number spectrum. Prior to the inclusion of $C_{1}\left(\hat{y}_{2}\right)$, the program was run with constant C_{1}. The value used was that proposed by Hodgson (1962), $C_{1}=2 / 3$. Selected points of the spectrum had values one to two orders of magnitude too high. The $C_{I}(\hat{y} z)$ curve is one of the weakest points in the analysis since there is not much experimental data to determine this curve.

Scale anisotropy dramatically changes the spectrum at low frequencies when it was used in Hodgson's simplified solution (Figure 4). As previously mentioned, this result is deemed qualitatively correct, but of questionable quantitative value. The qualitative effect of alpha on the wave number spectra is similar to its effect on the frequency spectra. It is generally agreed that low wave number disturbances have a high alpha and should
tend to isotropy at the higher wave numbers. Considering the experimental data from several angles, Figure 9 has been produced as a best guess for $\alpha\left(\widetilde{k}_{1}\right)$. The wave number spectrum in Figure 16 was constructed using this functional form of $\alpha\left(\tilde{k}_{1}\right)$.

When alpha is allowed to be a function of \hat{k}_{1} it is incorrect to consider the correlation R_{2} used in the calculation procedure' as the actual assumption. $R_{22}\left(\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}, \hat{y}_{2}\right)$ and $\Phi_{22}\left(\hat{k}_{1}, \hat{r}_{2}\right.$, $\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}$) are a Fourier transform pair and R_{22} should not be a function of \hat{k}_{1}. The numerical analysis used the following calculation procedure to determine $\mathbf{\Phi}_{22}$.

$$
\begin{align*}
& \oint_{22}\left(\hat{k}_{1}, \hat{r}_{2}, \hat{k}_{3}, \hat{y}_{2}\right)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{22}\left(\hat{r}_{2}, \hat{r}_{2}, \hat{r}_{3}, \hat{y}_{2}, \alpha\left(\hat{k}_{3}\right)\right) \ldots \cdot \tag{6-3}\\
& \cdots \exp \left[-i\left(\hat{k}_{1} \hat{r}_{1}+\hat{k}_{3} \hat{r}_{3}\right)\right] d \hat{r}_{1} d \hat{r}_{3}
\end{align*}
$$

The scale anisotropy form of R_{22} was integrated and then an assumption for $\alpha\left(\hat{k}_{1}\right)$ introduced. The correct R_{22} could be found by the inverse transform

$$
\begin{gather*}
\tilde{R}_{22}\left(\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}, y_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \oint_{22}\left(\hat{k}_{1}, \hat{r}_{2}, \hat{k}_{3}, y_{2}\right) \ldots \tag{6-4}\\
\ldots \exp \left[i\left(\hat{k}_{1} \hat{r}_{1}+\hat{k}_{3} \hat{r}_{3}\right)\right] d \hat{k}_{1} d \hat{k}_{3}
\end{gather*}
$$

One might say that the \hat{k}_{1} dependence of Φ_{22} has been defined by a procedure. The procedure can be checked against experimental.
data for $\widetilde{\mathrm{R}}_{32}\left(\hat{\mathrm{r}}_{1}, 0,0, \hat{\mathrm{y}}_{2}\right)$ and $\widetilde{\mathrm{R}}_{11}\left(\hat{\mathrm{r}}_{1}, 0,0, \hat{\mathrm{y}}_{2}\right)$.
Consider the inner integral in equation (6-3) and define the one-dimensional transform

$$
\begin{gather*}
P_{22}\left(\hat{k}_{1}, \hat{r}_{2}, \hat{r}_{3}, \hat{y}_{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} R_{22}\left(\hat{r}_{2}, \hat{r}_{2}, \hat{r}_{3}, \hat{y}_{2}, \alpha\left(\hat{k}_{1}\right)\right) \cdots \tag{6-5}\\
\cdots \exp \left(-i \hat{k}_{1} \hat{r}_{1}\right) d \hat{r}_{1}
\end{gather*}
$$

This can be computed for $\hat{r}_{2}=\hat{r}_{3}=0$ with the scale anisotropy model, equation (4-17), for R_{22}.

$$
\begin{equation*}
Q_{22}\left(\hat{k}_{1}, 0,0, \hat{y}_{2}\right)=\frac{c_{1}^{3} a+3 c_{1} a^{3} \hat{k}_{1}^{2}}{2 \pi\left(c_{1}^{2}+\alpha^{2} \hat{k}_{1}^{2}\right)^{2}} \tag{6-6}
\end{equation*}
$$

with $\alpha=\alpha\left(\hat{k}_{1}\right)$ given in Figure 9. The correct $\widetilde{R}_{\mathbf{2 z}}$ was found by numerically performing the Fourier transform

$$
\begin{equation*}
\widetilde{R}_{22}\left(\hat{r}_{1}, 0,0, \hat{y}_{2}\right)=\int_{-\infty}^{\infty} \mathcal{R}_{22}\left(\hat{k}_{1}, 0,0, \hat{y}_{2}\right) \exp \left(i \hat{k}_{1} r_{1}\right) d \hat{k}_{1} \tag{6-7}
\end{equation*}
$$

The results are compared to the experimental data of Grant (1958) in Figure 10.

Comparison with Grant's $\widetilde{R}_{11}\left(r_{1} / \delta_{0}, 0, d\right)$ data was also made. R_{11} is defined by an equation similar to (6-5), the analogue of equation (6-6) is produced, and $\widetilde{\mathrm{R}}_{11}$ calculated numerically by the Fourier transform. Figure 11 gives the results. Results for constant alphas of 1 and 2 are shown for reference.

The model assumed for $\alpha\left(\hat{k}_{1}\right)$ succeeds rather well in bringing
$\tilde{\mathrm{R}}_{11}\left(\mathrm{r}_{1} / \delta_{0}, 0,0\right)$ at $\mathrm{y}_{2} / \delta=.45$ in coincidence with the data. This is more apparent when it is remembered that for isotropy, i.e. $\alpha_{0}=1$,

$$
\begin{equation*}
\tilde{R}_{11}\left(\hat{r}_{1} / \varepsilon_{0}, 0,0\right)=\hat{R}_{22}\left(0, r_{1} / \delta_{0}, 0\right) \tag{6-8}
\end{equation*}
$$

The model does not do as well in matching $\widetilde{\mathrm{R}}_{22}\left(r_{1} / \delta, 0,0\right)$ to the data. It does have the proper qualitative behavior and does match well for small values of r_{1} / δ_{0}.

Frequency Spectra

The predicted frequency spectrum in Figure 17 was constructed from the wave number spectrum of Figure 16 using Taylor's hypothesis. In this instance Taylor's hypothesis means that the spatial correlation pattern with zero time delay, $\quad \pi\left(k_{1}\right)$, is convected past a fixed point producing a frequency spectrum. The frequency is given by $\omega=U_{c}\left(k_{1}\right) \cdot k_{1}$. The convective velocity data of Wills (1970), Figure 13 was used. Wills' data was extrapolated at the high and low wave number portions of the curve. Wi11s, himself, questions the downward trend at low wave numbers since it is based on limited data. Bradshaw (1967) observed a similar behavior and attributed -it to boundary layer growth. The growth of the boundary layer was not a factor in Wills' data.

Landah1 (1967) computed the convective velocity from a waveguide model of turbulence. His results were slightly Reynolds number dependent but this would have negligible effect. However, it would be well to note that Wills' data was obtained at
$R e_{\delta *}=13.5 \cdot 10^{3}$. The trend of Landah1's data showed a genera1 decrease in convective velocity with Reynolds number.

Favre, et al. (1958) found that Taylor's hypothesis is a good approximation from $\mathrm{y}_{2} / \delta=.06$ to $\mathrm{y}_{2}=\delta$. From Figure 19 it c an be seen that at $\hat{k}_{1}=4.0$ or $\tilde{k}_{1}=27.6$ and above, 50% or more of the contribution to the spectrum originates well below this region ($\mathrm{y}_{2} / \delta<.025$). If Favre's findings are assumed accurate, the practice of using Taylor's hypothesis at high frequencies or wave numbers is questionable.

Three types of experimental data are shown for comparative purposes. Hodgson's (1962) and Panton's et al. (1971) glider data are best for comparison at low frequencies. Serafini's (1963) data is shown for comparison at high frequencies. Hodgson's wind tunnel data is shown for qualitative comparison at high frequencies. Note that in Figure 17 Hodgson's data is plotted on a different scale from the other data both in the ordinate and abscissa. His boundary layer data was not available to allow the simple conversion to the coordinate system of the other data. Since Hodgson has not as yet published this data, permission was obtained to plot only the outline of the curve. No effort has been made to smooth the result.

The predicted spectrum is in good qualitative agreement with the measured results, but quantitatively it is high in the mid to high frequency region. Transducer size corrections and measurements are most difficult in this region. If the computed results are greater than the true power spectrum, the most probable cause is the function used for the variation of the integral scale ($1 / \mathrm{C}_{1}$) across the boundary layer. Close to the wall $C_{1}\left(y_{2} / \delta\right)$ becomes
infinite. The function modeling it does not. The data does not give a clear picture of how the curve should approach this limit. Since the region close to the wall dominates the high frequency portion of the spectrum, an increase in C_{1} near the wall will lower the prediction in that portion of the spectrum only. More data at higher Reynolds numbers is needed to formulate a better model for $C_{1}\left(y_{2} / \delta\right)$ than was used in this study. Such work may prove that C_{1} has a significant Reynolds number dependence similar to that of the mean-shear and intensity at small values of y_{2} / δ.

Statement of Conclusions

The major conclusions of this study are as follows:

1. It is feasible to numerically integrate the five dimensional integral for the ' $\mathrm{M}-\mathrm{T}$ ' contribution to the wave number spectrum. This evolves from the Fourier transform solution of the governing differential equation. The technique used is a Monte Carlo scheme using quasirandom numbers and a variance reduced integrand. The statistical error for 5000 non-zero producing iterations is about 1%, and a non-zero contribution is made to the integrand about 90 out of every 100 iterations.
2. The ' $M-T$ ' contribution to the spectrum thus computed is the major one, particularly at high frequencies. This is consistent with the findings of Kraichnan (1956b), Lilley and Hodgson (1960), and Hodgson (1962). It does not appear that the contribution at low frequencies can be other than a spectrum which approaches zero as k_{1}^{-2} even when anisotropic effects are considered.
3. The predicted frequency spectrum is in good qualitative
and quantitative agreement at low frequencies with those spectra measured in an experimental environment uncontaminated at low frequencies. It is in good qualitative agreement with the measured spectra most representative of the high frequency contribution but is quantitatively high. In general it is superior to previous computed spectra, particularly at high frequencies.
4. Anisotropic characteristics of the flow which effect the integral scale of the turbulence have a strong influence on the magnitude of the spectrum and a lesser influence on its shape.
5. The region of the boundary layer from the wall to $\mathrm{y}_{2} / 6=$.025 contributes at least 50% of the spectrum at wave numbers $\hat{k}_{1}=$ 4.0 or $\tilde{k}_{1}=27.6$ and above. This, coupled with the work of Favre et al. (1958) causes the use of Reynolds analogy at high frequencies or wave numbers to be questionable.
6. The same region of the boundary layer discussed in item number 5 accounts for about 2% or less of the spectrum at wave numbers $k_{1}=.2$ or $\tilde{k}_{1}=13.8$.
7. It is postulated that the proper variables in which to plot the wave number spectrum to free the low wave number portion from Reynolds number dependence are $\pi\left(\tilde{k}_{1}\right)=\bar{p} \tilde{p}_{\left(k_{1}\right) / \tau_{\omega}^{2}}^{2}$ and $\widetilde{k}_{1}=k_{1} \delta$." It is thought that the high wave number dependence on Reynolds number in these variables will not be strong.

Bies, D. A. "A Review of Flight and Wind Tunnel Measurements of Boundary Layer Pressure Fluctuations and Induced Structural Response." NASA CR-626, 1966.

Bradshaw, P. " 'Inactive' Motion and Pressure Fluctuations in Turbulent Boundary Layers." Journal of Fluid Mechanics, Vol. 30, 1967, 241.

Bull, M. K. "Mean Shear in a Constant Pressure Turbulent Boundary Layer." AIAA Journal, Vo1. 7, 1969, 359.

Davis, P. J. and P. Rabinowitz. Numerical Integration. Blaisdell Publishing Co., Waltham, 1967.

Favre, A. J., J. J. Gaviglio, and R. Dumas. "Further Space-Time Correlations of Velocity in a Turbulent Boundary Layer." Journal of Fluid Mechanics, Vo1. 3, 1958, 344.

Grant, H. L. "The Large Eddies of Turbulent Motion." Journal of Fluid Mechanics, Vol. 4, 1958, 149.

Hammersley, J. M. and D. C. Handscomb. Monte Carlo Methods. Methuen and Company, Ltd., London, 1967.

Hinze, J. O. Turbulence. McGraw-Hill Book Co., New York, 1959.
Hodgson, T. H. "Pressure Fluctuations in Shear Flow Turbulence." (unpublished Ph.D. Thesis, University of London, 1962).

Kim, H. T., S. J. Kline, and W. C. Reynolds. "An Experimental Study of Turbulence Production Near a Smooth Wall in a Turbulent Boundary Layer with Zero Pressure-Gradient." Thermosciences Division, Dept. of Mechanical Engineering, Stanford University, Report MD-20, 1968.

Klebanoff, P. S. "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient." NACA TN 3178, 1954.

Kraichnan, R. H. "Pressure Field Within Homogeneous Anisotropic Turbulence." Journal of the Acoustical Soci.ety of America, Vol. 28, 1956a, 64.

Kraichnan, R. H. "Pressure Fluctuations in Turbulent Flow Over a Flat Plate." Journal of Acoustical Society of America, Vol. 28, 1956b, 378.

Landah1, M. T. "A Wave-Guide Model for Turbulent Shear Flow." Journal of Fluid Mechanics, Vol. 29, 1967, 441.

Laufer, J. "The Structure of Fully Developed Pipe Flow." NACA Rept. 1174, 1954.

Lilley, G. M. and T. H. Hodgson. "On Surface Pressure Fluctuations in Turbulent Boundary Laÿers." AGARD Rept. 276, 1960.

Lilley, G. Mi "Pressure Fluctuations in an Incompressible Turbulent Boundary Layer." College of Aeronautics, Cranfield, Rept. 133, 1960.

Panton, R. L., R. L. Lowery, and M. Reischman. "A Theoretical and Flight Test Study of Pressure Fluctuations Under a Turbulent Boundary Layer." Part Two, 1971. (Final Report on NASA Grant NGR 37-002-083, to be published).

Serafini, J. S. "Wall-Pressure Fluctuations and Pressure-Velocity Correlations in Turbulent Boundary Layers." AGARD Rept. 453, 1963.

Townsend, A. A. The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge, 1956.

Wills, J. A. B. "Measurements of the Wave-Number/Phase Velocity Spectrum of Wall Pressure Beneath a Turbulent Boundary Layer." Journal of Fluid Mechanics, Vol. 45, 1970, 65.

One method of solving Poisson's equation is to use Poisson's formula which evolves from Green's second identity. This Appendix reviews the material presented by Lilley and Hodgson (1960) and Hodgson (1962). The governing partial differential equation is

$$
\begin{equation*}
\frac{\partial^{2} p\left(x_{i}, t\right)}{\partial x_{j} \partial x_{j}}=-T\left(x_{i,}, t\right) \tag{A-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.T\left(x_{i}, t\right)=2 \varphi\left[\frac{d \bar{W}_{1}}{d x_{2}}\right) \frac{\partial u_{2}}{\partial x_{2}}\left(x_{i}, t\right)\right] \tag{A-2}
\end{equation*}
$$

Its attendant boundary conditions are

$$
\begin{equation*}
\left.\frac{\partial \rho}{\partial x_{2}}\right|_{x_{2}=0}=0 \tag{A-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.P\right|_{x_{2}=0}=0 \tag{A-4}
\end{equation*}
$$

Boundary condition (A-3), though not exact, has been substantiated by previous authors on the basis of some experimental measurements
by Townsend (1956).
The solution of equation (A-1) is given by Poisson's formula as

$$
\begin{align*}
P\left(x_{i}, t\right) & =\int_{V} G\left(x_{i}, y_{i}\right) T\left(y_{i}, t\right) d V\left(y_{i}\right)+\int_{S}\left[G\left(x_{i}, y_{i}\right) \frac{\partial p}{\partial n}\left(y_{i}, t\right) \cdots\right. \\
& \left.\cdots-p\left(y_{i}, t\right) \frac{\partial G}{\partial n}\left(x_{i}, y_{i}\right)\right] d S\left(y_{i}\right) \tag{A-5}
\end{align*}
$$

where the Green's function $G\left(x_{i}, y_{i}\right)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial}{\partial y_{i}} \frac{\partial}{\partial y_{i}} G\left(x_{i}, y_{i}\right)=\delta\left[s\left(x_{i}, y_{i}\right)\right] \tag{A-6}
\end{equation*}
$$

In equation (A-6), s is the length

and δ is the Dirac delta function. In equation ($\mathrm{A}-5$), V is the semi-infinite volume bounded by the surface of the $\mathrm{plate}, \mathrm{y}_{2}=0$, and S is the surface of the volume.

The conditions on G are that it must satisfy the boundary conditions and not introduce any more singularities in the region of the integration. These requirements are met by the linear combination

$$
\begin{equation*}
G=G_{0}+G_{i} \tag{A-8}
\end{equation*}
$$

In equation (A-8), G_{o} is the solution to the unbounded problem and G_{i} is the solution to the unbounded problem in an image plane
described by

$$
\begin{align*}
& y_{1}^{\prime}=y_{1} \\
& y_{2}^{\prime}=-y_{2} \tag{A-9}\\
& y_{3}^{\prime}=y_{2}
\end{align*}
$$

Since the solution to G_{o} is

$$
\begin{equation*}
G_{0}\left(x_{i}, y_{i}\right)=\frac{1}{4 \pi s\left(x_{i}, y_{i}\right)} \tag{A-10}
\end{equation*}
$$

from the symmetry in equations (A-9)

$$
\begin{equation*}
G_{i}\left(x_{i}, y_{i}\right)=\frac{1}{4 \pi-s^{\prime}\left(x_{i}^{\prime}, y_{i}^{\prime}\right)} \tag{A-11}
\end{equation*}
$$

Substituting equations (A-10) and (A-11) into equation (A-8), the function G and its normal derivative on the plate are

$$
\begin{align*}
\left.G\right|_{x_{2}} & =2 G_{0} \tag{A-12}\\
\left.\frac{\partial G}{\partial x}\right|_{x_{2}} & =0 \tag{A-13}
\end{align*}
$$

The pressure fluctuations on the plate can be computed from equation (A-5) by setting x_{2} to zero and substituting equations (A-12) and (A-13)

$$
\begin{gather*}
P\left(x_{1}, 0, x_{3}, t\right)=2 \int_{V} G_{0}\left(x_{1}, 0, x_{3}, y_{i}\right) T\left(y_{i}, t\right) d V\left(y_{i}\right)+\cdots \\
\cdots 2 \int_{S} G_{0}\left(x_{1}, 0, x_{3}, y_{i}\right) \frac{\partial_{p}}{\partial \eta}\left(y_{i}, t\right) d s\left(y_{i}\right) \tag{A-14}
\end{gather*}
$$

The surface integral in equation (A-14) vanishes because of the
boundary conditions. The final form is determined by substituting the values of $T\left(y_{i}, t\right)$ from equation ($A-2$) and G_{0} from equation ($A-10$) into equation ($A-14$).

$$
P\left(x_{1}, 0, x_{3}, t\right)=\frac{\varphi}{\hbar} \int_{V}\left[\frac{d \overline{I_{1}}}{d y_{2}}\left(y_{2}\right) \frac{\partial u_{2}}{\partial y_{2}}\left(y_{i}, t\right) / s\left(x_{i}, y_{i}\right)\right] d V\left(y_{i}\right)
$$

(A-15)

APPENDIX B

INTEGRATION OF EQUATION (2-9)

Equation (2-9) as given in Chapter II is

$$
R_{p P}\left(x_{i}, x_{i}^{\prime}, \tau\right)=\frac{\rho^{2}}{\pi^{2}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\left\langle u_{2}\left(y_{2}\right)\right\rangle\left\langle u_{2}\left(y_{2}^{\prime}\right)\right\rangle \frac{d \overline{\sigma_{x}}\left(y_{i}\right)}{d y_{2}} \frac{d U_{1}\left(y_{i}^{\prime}\right)}{d y_{i}^{\prime}}}{s\left(x_{i}, y_{i}\right) s^{\prime}\left(x_{i}, y_{i}^{\prime}\right)} \cdots
$$

$$
\begin{equation*}
\cdots \frac{\partial}{\partial y_{i}} \frac{\partial}{\partial y_{i}^{\prime}} R_{22}\left(y_{i}, y_{i}^{\prime}, r\right) d y_{i} d y_{i}^{\prime} \tag{B-1}
\end{equation*}
$$

Experimental evidence confirms that R_{22} and its derivatives vanish at infinity in the longitudinal direction. Thus equation (B-1) can be simplified by integrating by parts twice.

$$
\begin{gather*}
R_{p p}=\frac{\varphi^{2}}{\pi^{2}} \int_{-\infty}^{\infty} \frac{1}{s} \frac{\partial}{\partial y_{1}}\left(\frac{\partial}{\partial y_{i}^{\prime}} R_{22}\right) d y_{2} \int_{0}^{\infty} \int_{-\infty}^{\infty} \ldots . \tag{B-2}\\
\left.R_{p p}=\frac{\rho^{2}}{\pi^{2}}\left\{\frac{1}{s} \frac{\partial}{\partial y_{i}^{\prime}} R_{22}\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} \frac{\partial}{\partial y_{1}^{\prime}} R_{22} \frac{\partial}{\partial y_{1}}\left(\frac{1}{s}\right) d y_{2}\right\} \int_{0}^{\infty} \int_{-\infty}^{\infty} \ldots .
\end{gather*}
$$

The first term on the right hand side of equation (B-3) is zero.
A similar integration is carried out with respect to y_{1}^{\prime}, leaving

$$
\begin{equation*}
R_{p p}\left(x_{i}, x_{i}^{\prime}, r\right)=\frac{\varphi^{2}}{\pi^{2}} \iint_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\langle\langle _ { 2 } (y _ { \nu }) \rangle \left\langle\left\langle_{2}\left(y_{2}^{\prime}\right)\right\rangle \frac{d \overline{V_{1}}\left(y_{2}\right)}{d y_{2}} d \overline{\tilde{U}_{1}}\left(y_{2}^{\prime}\right), \ldots\right.\right. \tag{B-4}
\end{equation*}
$$

$$
\cdots \frac{\partial}{\partial y_{1}}(1 / s) \frac{\partial}{\partial y_{2}^{\prime}}\left(1 / s^{\prime}\right) R_{22}\left(y_{i}, y_{i}^{\prime}, \tau\right) d y_{i} d y_{i}^{\prime}
$$

Using the homogeneity in x_{1} and x_{3} and

$$
\begin{align*}
r_{1} & =y_{1}^{\prime}-y_{1}, \\
r_{2} & =y_{2}^{\prime}-y_{2} \tag{B-5}\\
\text { and } \quad r_{3} & =y_{3}^{\prime}-y_{3},
\end{align*}
$$

equation (B-4) becomes

$$
\begin{align*}
& R_{p p}\left(\xi_{1}, 0, \xi_{3}, r\right)=\frac{p^{2}}{\pi^{2}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{y_{2}=-\infty}^{\infty}\left\langle u_{2}\left(y_{2}\right)\right\rangle\left\langle\psi_{2}\left(y_{2}, r_{2}\right)\right\rangle \frac{d \overline{r_{1}}}{d y_{2}}\left(y_{2}\right) \frac{d \overline{T_{1}}\left(\bar{r}_{2}, r_{2}\right) \ldots .}{d r_{2}} . \\
& \ldots \frac{\partial}{\partial y_{1}}\left(s\left(x_{i}, y_{i}\right)\right) \frac{\partial}{\partial r_{1}}\left(s^{\prime}\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right) R_{22}\left(y_{2}, r_{2}, r\right) d r_{i} d y_{i} \quad \text { (B-6) } \tag{B-6}
\end{align*}
$$

The subsequent y_{1} and y_{3} partial integrations of equation (B-6) follow Hodgson (1962). Define I_{1} as

$$
\begin{equation*}
I_{i}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial y_{s}}\left[\frac{1}{s\left(x_{i}, y_{i}\right)}\right] \frac{\partial}{\partial r_{1}}\left[\frac{1}{s\left(x_{i}, y_{i}, r_{i}\right)}\right] d y_{2} d y_{3} \tag{B-7}
\end{equation*}
$$

Hodgson's vector notation will be adopted for simplicity.

$$
\begin{align*}
& s\left(x_{i}, y_{i}\right)=|\underline{x}-\underline{y}| \tag{B-8}\\
& s\left(x_{i}^{\prime}, y_{i}, r_{i}\right)=\left|\underline{x}^{\prime}-\underline{y}-\underline{y}\right|
\end{align*}
$$

Then,

$$
\begin{equation*}
I_{1}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial y_{1}} \frac{1}{|\underline{x}-\underline{y}|} \frac{\partial}{\partial r_{1}} \frac{1}{\left|\underline{x}^{\prime}-\underline{y}-\underline{y}\right|} d y_{2} d y_{3} \tag{B-9}
\end{equation*}
$$

Since $\frac{1}{|\underline{x}-y|}$ is not a function of \underline{r} and \underline{r} is constant in the integration,

$$
\begin{align*}
& I_{1}=\frac{\partial}{\partial r_{1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\left|x^{\prime}-y-r\right|} \frac{\partial}{\partial y_{2}} \frac{1}{|\underline{x}-y|} d y_{2} d y_{3} \tag{B-10}\\
& I_{1}=\frac{\partial}{\partial r_{1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial y_{1}}\left\{\left\lvert\, \frac{1}{\mid x^{\prime}-y-r}\right. \| \frac{1}{\underline{x}-y}\right\} d y_{1} d y_{3}-\cdots \\
& \cdots \frac{\partial}{\partial r_{1}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{|\underline{x}-y|} \frac{\partial}{\partial y_{1}} \frac{1}{\mid \underline{x^{\prime}-y-r \mid}} d y_{2} d y_{3} \tag{B-11}
\end{align*}
$$

The first integral in equation ($B-11$) is zero and the differentiation, $\frac{\partial}{\partial y_{1}}$, in the second integral can be replaced by $\frac{\partial}{\partial r_{1}}$ which can be confirmed by mechanically performing the operations. Then $\frac{\partial}{\partial r_{1}}$ can be taken outside the integral.

$$
\begin{equation*}
I_{2}=-\frac{\partial^{2}}{\partial r_{1}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{|\underline{x}-y|} \frac{1}{\mid \underline{x}^{\prime}-y-\underline{y}-\underline{y}} d y_{2} d y_{3} \tag{B-12}
\end{equation*}
$$

Remembering the relationships,

$$
\begin{align*}
& \underline{y}=x^{\prime}-x \\
& r=y^{\prime}-\underline{y} \tag{B-13}
\end{align*}
$$

a change of variable will be made which is a change in origin in an infinite integral.

$$
\begin{align*}
& \underline{y}=x-y \tag{B-14}\\
& \underline{z}=r-\underline{y}
\end{align*}
$$

Use the notation $|\boldsymbol{\xi}|=\zeta$,

$$
\begin{equation*}
I_{2}=-\frac{\partial^{2}}{\partial r_{1}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\varphi} \frac{1}{|\underline{\underline{\rho}} \underline{\underline{2}}|} d \varphi_{1} d \varphi_{3} \tag{B-15}
\end{equation*}
$$

Introduce the integral identity,

$$
\begin{equation*}
\frac{1}{|a| \cdot|\underline{b}|}=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{a^{2}+b^{2} \lambda^{2}} d \lambda \tag{B-16}
\end{equation*}
$$

where $a^{2}=|\underline{\underline{\zeta}}-\underline{z}|^{2}$ and $b^{2}=\zeta^{2}$. Change the integration variable to

$$
\begin{equation*}
\underline{\varphi}^{\prime}=\underline{\varphi}-\frac{\underline{z}}{1+\lambda^{2}} \tag{B-17}
\end{equation*}
$$

and substitute equations ($B-16$) and ($B-17$) into ($B-15$) and assuming
the order of integration c an be changed,

$$
\begin{equation*}
I_{1}=-\frac{2}{n} \frac{\partial^{2}}{\partial r_{1}^{2}}\left\{\int_{0}^{\infty} \frac{d \lambda}{1+\lambda^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \varphi_{1}^{\prime} d \varphi_{3}^{\prime}}{\left.\left[\varphi^{2}+\frac{\lambda^{2} z^{2}}{\left(1+\lambda^{2}\right)^{2}}\right]^{2}\right\}}\right. \tag{B-18}
\end{equation*}
$$

Let $\frac{\partial^{2}}{\partial r_{1}^{2}}=\frac{\partial}{\partial r_{1}}\left(\frac{\partial}{\partial z_{1}}\right)$ from equation ($B-14$) and perform the differentiation with respect to z_{1} inside the integrals.

$$
\begin{equation*}
I_{1}=\frac{\partial}{\partial \xi_{1}}\left\{\frac{4 z_{1}}{\pi} \int_{0}^{\infty} \frac{\lambda^{2} d \lambda}{\left(1+\lambda^{2}\right)^{3}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \varphi_{1}^{\prime} d \varphi_{3}^{\prime}}{\left[\xi^{3}+\frac{\lambda^{2} z^{2}}{\left(1+\lambda^{2}\right)^{2}}\right]^{2}}\right\} \tag{B-19}
\end{equation*}
$$

where $\frac{\partial}{\partial \xi_{1}}$ has entered from equation (B-14). The double integration with respect to ζ_{1}^{\prime} and ζ_{3}^{\prime} can be performed by using polar coordinates.

$$
\begin{equation*}
I_{1}=\frac{\partial}{\partial \zeta_{1}}\left\{4 z_{1} \int_{0}^{\infty} \frac{\lambda^{2} d \lambda}{\left(1+\lambda^{2}\right)\left[\left(1+\lambda^{2}\right)^{2} \rho^{3}+\lambda^{2} z^{2}\right]}\right\} \tag{B-20}
\end{equation*}
$$

However, $x_{z}=x_{z}^{\prime}=\xi_{z}=0$ on the surface of the plate. Hence, $\zeta_{2}=-y_{2}$ and $z_{2}=r_{2}$ from equations (B-14) and

$$
\begin{equation*}
\varphi_{2}^{\prime}=-\left[y_{2}+r_{2} /\left(1+\lambda^{2}\right)\right] \tag{B-21}
\end{equation*}
$$

from equation (B-17). Therefore,

$$
\begin{equation*}
I_{1}=\frac{\partial}{\partial s_{1}}\left\{4 z_{1} \int_{0}^{\infty} \frac{\lambda^{2} d \lambda}{\left(1+\lambda^{2}\right)\left\{\left[\left(1+\lambda^{2}\right) y_{2}+r_{2}\right]^{2}+2^{2} \lambda^{2}\right\}}\right\} \tag{B-22}
\end{equation*}
$$

Noting that the denominator in equation (B-22) is the sixth power In λ, define I_{2} as

$$
\begin{align*}
& I_{2}=\int_{0}^{\infty} \frac{\lambda^{2} d \lambda}{\left(1+\lambda^{2}\right)\left\{\left[\left(1+\lambda^{2}\right) y_{2}+r_{2}\right]^{2}+2^{2} \lambda^{2}\right\}} \tag{B-23}\\
& I_{2}=\int_{0}^{\infty} \frac{\lambda^{2} d \lambda}{\lambda^{6}+p \lambda^{4}+q \lambda^{2}+r} \tag{B-24}
\end{align*}
$$

which when evaluated is

$$
\begin{equation*}
I_{2}=\frac{\pi}{\alpha\left(\alpha^{2}-p\right)-2 r^{1 / 2}} \tag{B-25}
\end{equation*}
$$

where α is the largest root of

$$
\begin{equation*}
\left(x^{2}-p\right)^{2}-8 x r^{1 / 2}-4 q=0 \tag{B-26}
\end{equation*}
$$

Solving for α,

$$
\begin{equation*}
\alpha=1+\sqrt{\left(z / y_{2}\right)^{2}+4 r_{2} / y_{2}+4} \tag{B-27}
\end{equation*}
$$

Now I_{2} is

$$
\begin{equation*}
I_{2}=\frac{\pi}{2\left(4 y_{2}^{2}+4 r_{2} y_{2}+2^{2}\right)^{1 / 2}\left[2 y_{2}+r_{2}+\left(4 y_{2}^{2}+4 r_{2} y_{2}+2^{2}\right)^{1 / 2}\right]} \tag{B-28}
\end{equation*}
$$

Substituting equation ($B-28$) into equation ($B-20$) and finally into equation ($B-6$,
$R_{p p}\left(y_{1}, 0, \xi_{3}, \pi\right)=\frac{2 \varphi^{2}}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-y_{2}}^{\infty} \int_{-\infty}^{\infty}\left\langle U_{2}\left(y_{2}\right)\right\rangle\left\langle u_{2}\left(y_{2}, r_{2}\right)\right\rangle \frac{d \overline{U_{1}}}{d y_{2}}\left(y_{2}\right) \frac{d \overline{U_{1}}}{d r_{2}}\left(y_{2}, r_{2}\right) .$.

(B-29)

APPENDIX C

THE MIRROR-FLOW MODEL

The motivation for the 'mirror-flow' model is the desire to obtain a functional representation for $\Phi_{22}\left(y_{2}, y_{2}^{\prime}, k_{1}, k_{3}\right)$ which will be characteristic of the turbulence velocity field and simplify the mathematics. By using this model the y^{\prime} integration in equation (2-19) can be performed. Let $y_{i} *$ be the mirror image with respect to the $y_{2}=0$ plane, i.e.

$$
\begin{equation*}
y_{1} *=y_{1}, y_{2} *=-y_{2}, y_{3} *=y_{3} \tag{C-1}
\end{equation*}
$$

Then the turbulence velocity field is described by

$$
\begin{align*}
& u_{1}\left(y_{i}, t\right)=1 / \sqrt{2}\left[\overline{\bar{u}_{1}}\left(y_{i}, t\right)+\overline{\overline{u_{1}}}\left(y_{i}^{*}, t\right)\right], \tag{C-2}\\
& u_{2}\left(y_{i}, t\right)=1 / \sqrt{2}\left[\overline{\bar{u}_{2}}\left(y_{i}, t\right)-\overline{\overline{u_{2}}}\left(y_{i}^{*}, t\right)\right] \tag{C-3}
\end{align*}
$$

and

$$
\begin{equation*}
u_{3}\left(y_{i}, t\right)=1 / \sqrt{2}\left[\left[\overline{u_{3}}\left(y_{i}, t\right)+\overline{u_{3}}\left(y_{i}^{*}, t\right)\right]\right. \tag{C-4}
\end{equation*}
$$

The velocity, $u_{i}\left(y_{i}, t\right)$, satisfies continuity if $\overline{\bar{u}}_{i}\left(y_{i}, t\right)$ does and the boundary conditions on the plate

$$
\begin{equation*}
u_{2}=0, \frac{\partial^{2} u_{1}}{\partial y_{2}^{2}}=0 \quad \text { and } \quad \frac{\partial p}{\partial y_{2}}=0 \tag{C-5}
\end{equation*}
$$

are satisfied. However u_{1} and u_{3} do not vanish at the plate nor does the turbulence vanish at large distances from the plate in the normal direction.

Equations ($\mathrm{C}-3$) cause the velocity correlation coefficient, $R_{2 z}$, to be given by

$$
R_{22}\left(y_{2}, y_{2}^{\prime}, r_{1}, r_{3}\right)=\overline{\overline{R_{22}}}\left(y_{2}-y_{2}^{\prime}, r_{1}, r_{3}\right)-\overline{\overline{R_{22}}}\left(y_{2}+y_{2}^{\prime}, r_{1}, r_{3}\right)(c-6)
$$

The two dimensional Fourier transformation of equation (C-6) is

APPENDIX D

INTEGRATION OF EQUATION (2-19)

When equations (2-22) and (2-23) are substituted into equation

$$
\begin{align*}
& \Pi_{2}^{\prime}\left(0, k_{1}, k_{3}\right)=\frac{4 \rho^{2} k_{1}^{2}}{k^{2}}\left[\frac{d \bar{U}_{1}(0)}{d y_{2}}\right]_{0}^{2} \int_{0}^{\infty} \int_{0}^{\infty} \exp \left[-k\left(y_{2}+y_{2}^{\prime}\right)\right] \exp \left[-\beta\left(y_{2}+y_{2}^{\prime}\right)\right] \cdots \\
& \ldots\left\{\oint_{22}\left(y_{2}-y_{2}^{\prime}, k_{1}, k_{3}\right)-\oint_{22}\left(y_{2}+y_{2}^{\prime}, k_{1}, k_{3}\right)\right\} d y_{2} d y_{2}^{\prime}
\end{align*}
$$

Let I be defined as the double integral with its integrand in eqration ($\mathrm{D}-1$) and show only the functional dependence of the intergration variable in y_{2} and y_{z}^{\prime}.
$I=\int_{0}^{\infty} \int_{0}^{\infty} \exp \left[-(k+\beta)\left(y_{2}+y_{2}^{\prime}\right)\right]\left\{\sum_{22}\left(y_{2}-y_{2}^{\prime}\right)-\bar{F}_{22}\left(y_{2}+y_{2}^{\prime}\right)\right\} d y_{2} d y_{2}^{\prime}$

Changing the integration variable in equation (D-2), it becomes

$$
\begin{align*}
I= & \left.\int_{0}^{\infty} \exp \left[-2(k+\beta) y_{2}\right] d y_{2} \iint_{-\infty}^{y_{2}} \exp [(k+\beta)]\right] \delta(\xi) d \xi-\ldots \\
& \ldots \int_{0}^{\infty} d y_{2} \int_{y_{2}}^{\infty} \exp [-(k+\beta) \xi] \delta(\xi) d \xi \tag{D-3}
\end{align*}
$$

After integrating equation ($D-3$) by parts,

$$
\begin{equation*}
I=\frac{1}{k+\beta} \int_{-\infty}^{0} \exp \left[(k+\beta) y_{2}\right] \delta\left(y_{2}\right) d y_{2}-\int_{0}^{\infty} y_{2} \exp \left[-(k+\beta) y_{2}\right] \Phi\left(y_{2}\right) d y_{2} \tag{D-4}
\end{equation*}
$$

Change the integration variable in the first of the two integrals in equation (D-4) so that

$$
\begin{equation*}
I=\frac{1}{k+\beta} \int_{0}^{\infty} \exp \left[-(k+\beta) y_{2}\right] \Phi\left(-y_{2}\right) d y_{2}-\int_{0}^{\infty} y_{2} \exp \left[-(k+\beta) y_{2}\right] \Phi^{I}\left(y_{2}\right) d y_{2} \tag{D-5}
\end{equation*}
$$

Then if $\Phi\left(-y_{2}\right)=\Phi\left(y_{z}\right)$, ice. if Φ is an even function of y_{z},

$$
\begin{equation*}
I=\int_{0}^{\infty}\left[\frac{1}{k+\beta}-y_{2}\right] \exp \left[-(k+\beta) y_{2}\right] \delta\left(y_{2}\right) d y_{2} \tag{D-6}
\end{equation*}
$$

With equation (D-6), equation (D-1) becomes

$$
\Pi_{2}^{1}\left(0, k_{1}, k_{3}\right)=\frac{4 \rho^{2} k_{1}^{2}}{k^{2}}\left[\frac{d \overline{T_{1}}(0)}{d y_{2}}\right]_{0}^{2} \int_{0}^{\infty}\left[\frac{1}{k+\beta}-y_{2}\right] \exp \left[-(k+\beta) y_{2}\right] \delta_{22}\left(y_{2}, k_{1}, k_{3}\right) d y_{2}
$$

APPENDIX E

SIMPLIFIEATION OF EQUATION (3-2)

From Chapter III, equation (3-2) is

$$
\begin{gather*}
R_{p p}\left(\xi_{1}, 0, \xi_{3}, \tau\right)=\frac{2 p^{2} g_{0}^{2}}{\pi} \frac{\partial}{\partial y_{1}} \iint_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-y_{2}}^{\infty}\left\{\frac{R_{22}\left(r_{i}, \tau\right)}{\left[\left(2 y_{2}+r_{2}\right)^{2}+\left(\xi_{1}-r_{1}\right)^{2}+\left(\xi_{3}-r_{3}\right)^{2}\right]^{1 / 2}}\right\} \ldots \\
\ldots .\left\{\frac{d r_{2} d r_{2} d r_{2} d y_{2}}{2 y_{2}+r_{2}+\left[\left(2 y_{2}+r_{2}\right)^{2}+\left(\xi_{1}-r_{1}\right)+\left(\xi_{3}-r_{3}\right]^{2 / 2}\right.}\right\} \tag{E-1}
\end{gather*}
$$

Equation (E-1) can be integrated with respect to y_{2} by changing the limits and sequence of integration on the y_{2} and r_{2} integrals. The area of the y_{2} and r_{2} integrations, $\int_{0}^{\infty} d y_{2} \int_{-y_{2}}^{\infty} d r_{2}$, is shown below.

The same area of integration is represented by the sum

$$
\begin{equation*}
\int_{0}^{\infty} d r_{2} \int_{0}^{\infty} d y_{2}+\int_{-\infty}^{0} d r_{2} \int_{\sqrt{2}}^{\infty} d y_{2} \tag{E-2}
\end{equation*}
$$

First perform the y_{2} integrations indicated in (E-2). The integrand from equation (E-1) is

$$
\begin{equation*}
\frac{1}{\left(4 y_{2}^{2}+4 r_{2} y_{2}+A^{2}\right)^{1 / 2}\left[2 y_{2}+r_{2}+\left(4 y_{2}^{2}+4 r_{2} y_{2}+A^{2}\right)^{1 / 2}\right]} \tag{E-3}
\end{equation*}
$$

where $A^{2}=\left(\xi_{1}-r_{1}\right)^{2}+r_{2}^{2}+\left(\xi_{3}-r_{3}\right)^{2}$. Multiply numerator

$$
\begin{equation*}
\frac{1}{r_{2}^{2}-A^{2}}\left[\frac{2 y_{2}-r_{2}}{\left(4 y_{2}^{2}+4 r_{2} y_{2}+A^{2}\right)^{1 / 2}}-1\right] \tag{E-4}
\end{equation*}
$$

Let the two ya integrals in (E-2) be split so that

$$
\begin{equation*}
I_{1}=\frac{1}{r_{-}^{2} A^{2}}\left[\int_{0}^{\infty} \frac{2 y_{2}+r_{2}}{\left(4 y_{2}^{2}+4 r_{2} y_{2}+A^{2}\right)^{1 / 2}}-\int_{0}^{\infty} d y_{2}\right] \tag{E-5}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{1}{r^{2}-A^{2}}\left[\int_{-r_{2}}^{\infty} \frac{2 y_{2}+r_{2}}{\left(4 y_{2}^{2}+4 r_{2} y_{2}+A^{2}\right)^{1 / 2}}-\int_{-r_{2}}^{\infty} d y_{2}\right] \tag{E-6}
\end{equation*}
$$

Subsequent to the integration of equation (E-5) and (E-6),

$$
\begin{equation*}
I_{1}=-\frac{1}{2} \frac{A}{r_{2}^{2}-A^{2}} \tag{E-7}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{1}{2}\left(\frac{2 r_{2}-A}{r_{2}^{2}-A^{2}}\right) \tag{E-8}
\end{equation*}
$$

Substitute equations (E-7) and (E-8) into equation (E-2).

$$
\begin{align*}
I= & -\frac{A}{2} \int_{0}^{\infty} \frac{\dot{R}_{22}\left(r_{i}, t\right)}{r_{2}^{2}-A^{2}} d r_{2}+\cdots \\
& \cdots \frac{1}{2} \int_{-\infty}^{0} \frac{r_{22}\left(r_{i}, \tau\right)\left(2 r_{2}-A\right)}{r_{2}^{2}-A^{2}} d r_{2} \tag{E-9}
\end{align*}
$$

By changing the limits of integration on the second integral in equation ($\mathrm{E}-9$),

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{\mathscr{R}_{22}\left(r_{i}, \tau\right)}{A-r_{2}} d r \tag{E-10}
\end{equation*}
$$

with the condition that R_{22} is an even function of r_{2}. Substituting equation (E-10) into (E-1),

If it is assumed that equation (E-11) can be approximated by averaging in r_{2},

$$
\begin{equation*}
R_{p p}\left(\xi_{1}, 0, \xi_{3}, \tau\right)=\frac{p^{2} g_{0}^{2}}{\pi} \frac{\partial}{\partial \xi_{1}} \iint_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\left(\xi_{1}-r_{1}\right) \dot{R}_{22}\left(r_{i}, \tau\right)}{\left[\left(\xi_{1}-r_{1}\right)^{2}+r_{2}^{2}+\left(\xi_{3}-r_{3}\right)^{2}\right]^{1 / 2}} \tag{E-12}
\end{equation*}
$$

Differentiate the integrand with respect to ξ_{1} and let ξ_{1} and ξ_{3} go to zero.

APPENDIX F

$$
\text { DEVELOPMENT OF } \mathbf{R}_{22}\left(r_{i}, \tau\right)
$$

The spatially dependent isotropic velocity correlation, $\mathrm{R}_{\text {22 }}\left(\mathrm{r}_{\mathrm{i}}\right)$, is given in equation $(3-4)$ as

$$
\begin{equation*}
\stackrel{V}{R}_{22}\left(r_{i}, 0\right)=f(r)+\left(\frac{r_{1}^{2}+r_{3}^{2}}{2 r}\right) \frac{d f(r)}{d r} \tag{F-1}
\end{equation*}
$$

With this relationship, consider a field of turbulence which is homogeneous in paralle1 planes as seen from a reference frame moving with a constant mean velocity U_{c} in a direction parallel to the planes of homogeneity. The two point correlation coefficient that is measured in this moving frame is ${\underset{\mathrm{R}}{\mathrm{R}}}_{\mathrm{jk}}\left(\mathrm{r}_{\mathrm{i}}^{\prime}, \tau\right)$ where $r_{i}^{\prime}=\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)$ is the separation vector between the two points in the moving coordinate frame. Assume that the spatially dependent portion of $\mathrm{R}_{j k}^{\prime}\left(\mathrm{r}_{\mathrm{i}}^{\prime}, \tau\right)$ can be separated from the time dependent portion in the following manner.

$$
\begin{equation*}
R_{j k}^{\prime}\left(r_{i}, \tau\right)=P_{j k}^{*}\left(r_{i}^{\prime}\right) R_{j k}^{\prime}(\tau) \tag{F-2}
\end{equation*}
$$

In a stationary reference frame the turbulence appears to be convected past at a speed U_{c} in the r_{1} direction. The correlation coefficient in this frame is

$$
\begin{equation*}
R_{j k}^{V}\left(r_{i}, \tau\right)=R_{j k}^{*}\left(r_{i}-r_{c} \tau, r_{2}, r_{3}\right) R_{j k}^{\prime}(\tau) \tag{F-3}
\end{equation*}
$$

where $\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, \tau\right)=\left(r_{1}-U_{c} \tau, r_{2}, r_{3}, \tau\right)$. Since the spatial structure of the turbulence is the same in either reference frame, the functional form of the spatial variation does not change from equation ($\mathrm{F}-2$) to equation ($\mathrm{F}-3$), however the independent variables are modified by the mean velocity in the r_{1} direction.

In equation ($\mathrm{F}-3$) time enters explicitly in two ways, the convective time effect and the 'true' time effect. Taylor's hypothesis says that the flow essentially is frozen, i.e. the convective time effect is much greater than the 'true' time effect. Favre's space-time correlation experiments showed this to be a valid approximation in all but that 6% of the boundary layer next to the plate. With this assumption,

$$
\begin{equation*}
R_{j k}\left(r_{i}, \tau\right)=R_{j k}^{*}\left(r_{1}-\tau \tau_{c} \tau, r_{2}, r_{3}\right) \tag{F-4}
\end{equation*}
$$

Since equation (F-1) is the correlation coefficient in the moving frame, if we let $f\left(r^{*}\right)=\exp \left(-r^{2} / L^{2}\right)$

$$
\begin{equation*}
\stackrel{R}{R}_{22}\left(r_{i}, \tau\right)=\left[1-r_{3}^{2} / L^{2}-\left(r_{2}-\tau_{c} r\right)^{2} / L^{2}\right] \exp \left[-\left(r_{1}-\tau_{c} r\right)^{2} / L^{2}\right] \exp \left[-\left(r_{3}^{2}+r_{2}^{2}\right) / L^{2}\right] \tag{F-5}
\end{equation*}
$$

APPENDIX G

FOURIER TRANSFORMATION OF EQUATION (3-8)

Represent the $\stackrel{V}{\tau}$ and \ddot{r}_{1} integrals obtained from substituting equation (3-8) into equation (3-9) by

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} \exp (-i \dot{w} \dot{r}) d \pi \int_{-\infty}^{\infty} \varphi\left(r_{2}-\underset{r}{r}\right)^{2} d r_{1} \tag{G-1}
\end{equation*}
$$

Express equation (G-1) as a sum

$$
\begin{align*}
& I=\int_{0}^{\infty} \exp (-i \dot{\omega} r) d r \int_{0}^{\infty} \varphi\left(r_{1}-\ddot{r}\right)^{2} d r_{1}+\cdots \\
& \cdots \int_{0}^{\infty} \exp (-i \stackrel{v}{\omega} \ddot{\tau}) d r \int_{-\infty}^{0} \varphi\left(r_{1}-r^{r}\right)^{2} d r r_{s}+\cdots . \tag{G-2}\\
& \cdots \int_{-\infty}^{0} \exp (-\dot{\omega} v) d r \int_{0}^{\infty} \varphi\left(r_{1}-r^{v}\right)^{2} d r+\cdots \\
& \cdots \int_{-\infty}^{0} \exp (-i w \underset{\sim}{r}) \int_{-\infty}^{0} \phi\left(r_{1}-r\right)^{2} d r_{1}
\end{align*}
$$

Define I in equation (G-2) as

$$
\begin{equation*}
I=I_{1}=I_{2}=I_{3}=I_{4} \tag{G-3}
\end{equation*}
$$

respectively,

$$
\begin{equation*}
I_{2}=\int_{0}^{\infty} \exp (-i w \dot{\psi}) d \underline{r} \int_{-\infty}^{0} \varphi\left(r_{1}-\tau\right)^{2} d r_{t}^{r} \tag{G-4}
\end{equation*}
$$

By rearranging limits and with appropriate changes in the integration variable,

$$
\begin{equation*}
I_{2}=\int_{0}^{\infty} \exp (-i \dot{\omega} \dot{\psi}) d \int_{0}^{\infty} \phi\left(r_{1}+\underset{\sim}{v}\right)^{2} d r_{1}^{v} \tag{G-5}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
I_{3}=\int_{0}^{\infty} \exp \left(i \omega \omega^{r}\right) d \int_{0}^{\infty} \phi\left(r_{1}+\psi^{r}\right)^{2} d r_{1}^{r} \tag{G-6}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{4}=\int_{0}^{\infty} \exp (i \omega v) r \sigma_{\sigma}^{w} \phi\left(r_{1}-r^{r}\right)^{2} d r_{2}^{r} \tag{G-7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
I=2 \int_{0}^{\infty} \cos (\dot{\omega} \dot{r}) d \dot{r}\left[\int_{0}^{\infty} \varphi\left(r_{1}+r_{r}^{2}\right)^{2} r_{1}^{r}+\int_{0}^{\infty} \varphi\left(r_{1}-r^{r}\right)^{2} d \dot{r} r_{1}\right] \tag{G-8}
\end{equation*}
$$

The Fourier transformation of equation (3-8) is then

$$
\begin{aligned}
& T T^{v}(w)=\frac{2 f^{2} g_{0}^{2} L^{3}}{\pi r^{2}} \int_{0}^{\infty} \cos \left(w v^{r}\right)\left\{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[1-r_{3}^{2}-\left(r_{1}-r^{r}\right)^{2}\right] \ldots\right. \\
& \exp \left[-r_{2}^{r_{2}}-r_{3}^{2}-\left(r_{1}^{r}-\not r\right)^{2}\right] d r_{3}^{r} d r_{2} d r_{2}^{r}+\int_{0}^{\infty} \int_{0}^{\infty \infty}\left[1-r_{3}^{2}-\left(r_{1}+r_{1}\right)^{2}\right] \ldots \\
& \left.\exp \left[-r_{2}^{2}-r_{3}-\left(r_{1}+\frac{r}{r}\right)^{2}\right] d r_{3} d r_{2} d r_{1}\right\}
\end{aligned}
$$

Expanding the exponents and using the hyperbolic identity,
equation (G-9) becomes

$$
\begin{align*}
& T^{\prime}(w)=\frac{2 \varphi^{2} g_{0}^{2} L^{3}}{\pi^{2} \sigma_{c}} \int_{0}^{\infty} \exp \left(-\pi^{2}\right) \cos \left(w_{w} x\right) d r \ldots . \\
& \cdots \cdot \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\frac{r_{2}^{2}+r_{3}^{2}}{r_{3}}\right]\left[\left(1-r_{3}^{2}-\dot{r}_{1}^{2}-\dot{r}^{2}\right) \cosh \left(2 \dot{r}_{1} \ddot{r}\right)+\cdots \cdot\right. \tag{G-11}\\
& \left.\cdots 2 r_{1} r^{r} \sinh \left(2 r_{1} r\right)\right] \exp \left(-r^{2}\right) d r_{3} d r_{2} d r_{1}
\end{align*}
$$

APPENDIX H

INTEGRATION OF EQUATION (3-14)

Equation (3-14) is

$$
\begin{aligned}
& \Pi_{1}\left(w_{j} \alpha\right)=\frac{2 \varphi^{2} g_{0}^{2} L^{3}}{\pi^{2} \sigma_{c}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left[\frac{r_{2}^{2}+r_{3}^{2}}{r^{3}}\right] \exp \left(-r_{1}^{2} / \alpha^{2}\right) \exp \left[-\left(r_{2}^{2}+r_{3}^{2}\right)\right] \cdots \\
& \cdots d r_{3} d r_{2} d r_{i} \int_{0}^{\infty} \exp \left(-\pi^{2} / \alpha^{2}\right) \cos \left(w^{r} r^{r}\right)\left\{\left[1-r_{3}^{2}-r_{1}^{2} / \alpha^{2}-r^{2} / \alpha^{2}\right] \ldots\right. \\
& \left.\cdots \cosh \left(2 r_{1} x / \alpha^{2}\right)+\left(2 r_{1} r / \alpha^{2}\right) \sinh \left(2 r_{1} r^{r} / \alpha^{2}\right)\right\} d \sigma
\end{aligned}
$$

First, perform the time integral, I_{1}.

$$
I_{1}=\left(1-r_{3}^{2}-r_{1}^{2} / \alpha^{2}\right) I_{1,1}-\left(1 / \alpha^{2}\right) I_{1,2}+\left(2 r_{1} / \alpha^{2}\right) I_{1,3} \quad \text { (H-2) }
$$

where

$$
\begin{align*}
& I_{1,1}=\int_{0}^{\infty} \cos (\dot{w}) \exp \left(-\pi^{\psi} / \alpha^{2}\right) \cosh \left(2 \dot{r}_{1} \dot{\tau} \mid \alpha^{2}\right) d \dot{\pi}, \tag{H-3}\\
& I_{1,2}=\int_{0}^{\infty} \cos \left(\psi^{*} t\right) \exp \left(-\psi_{2} / \alpha^{2}\right) r^{r^{2}} \cosh \left(2 r_{1}^{r} / \alpha^{2}\right) d r^{r} \tag{H-4}
\end{align*}
$$

and

$$
\begin{equation*}
I_{1,3}=\int_{0}^{\infty} \cos (\psi x) \exp \left(-\psi_{i} / \alpha^{2}\right) \not \approx \sinh \left(2 r_{1} x_{i} / \alpha^{2}\right) d r \tag{H-5}
\end{equation*}
$$

The procedure for evaluating equations ($\mathrm{H}-3$), ($\mathrm{H}-4$), and ($\mathrm{H}-5$) is the same. Equation (H-3) will be integrated to demonstrate the procedure. Because the integrand is even in $\underset{T}{\underset{T}{V}}$,

$$
\begin{equation*}
I_{1,1}=\frac{1}{2} \int_{-\infty}^{\infty} \cos \left(\dot{w}^{v} \dot{x}\right) \exp \left(-\dot{x}_{2} / \alpha^{2}\right) \cosh \left(2 \dot{r}, \tilde{x} / \alpha^{2}\right) d \dot{x} \tag{H-6}
\end{equation*}
$$

Use the identity,
and substitute it in equation (H-6).

$$
\begin{align*}
& I_{1,1}=\frac{1}{4} \int_{-\infty}^{\infty} \cos \left(\omega^{r} \tilde{r}^{\infty}\right) \exp \left[-\left(r^{2}-2 r_{1} r^{r}\right) / \alpha^{2}\right] d r_{1}+\cdots \cdot \\
& \cdots \frac{1}{4} \int_{-\infty}^{\infty} \cos \left(w^{w} \tau\right) \exp \left[-\left(\tilde{r}^{2}+2 r_{i} r^{r}\right) / \alpha^{2}\right] d \pi \tag{H-8}
\end{align*}
$$

Define the first integral in equation (H-8) as I_{A} and the second as I_{B}. To evaluate I_{A}, complete the square in the exponent.

$$
\begin{equation*}
I_{A}=\frac{1}{4} \exp \left({r_{1}^{2}}_{1} \alpha^{2}\right) \int_{-\infty}^{\infty} \cos \left(w^{r}\right) \exp \left[-\left(\psi^{r}-r_{1}\right)^{2} / \alpha^{2}\right] d \gamma^{r} \tag{H-9}
\end{equation*}
$$

Let $\lambda=\underset{\tau}{V}-{\underset{r}{1}}^{V}$ in equation (H-9).

$$
I_{A}=\frac{1}{4} \exp \left(\dot{r}_{2}^{2} / \alpha^{2}\right) \int_{-\infty}^{\infty} \cos \left[\dot{\omega}\left(\lambda+\dot{r}_{1}\right)\right] \exp \left(-\lambda^{2} / \alpha^{2}\right) d \lambda
$$

Expand the double angle cosine in terms of a single angle identity.

$$
\begin{align*}
& I_{A}=\frac{1}{4} \exp \left(\dot{r}_{1}^{2} / \alpha^{2}\right) \cos \left(\dot{\omega}_{1}^{r}\right) \int_{-\infty}^{\infty} \cos (\dot{\omega} \lambda) \exp \left(-\lambda^{2} / \alpha^{2}\right) d \lambda-\ldots . \tag{H-11}\\
& \ldots \frac{1}{4} \exp \left(\dot{r}_{1}^{2} / \alpha^{2}\right) \sin \left(\dot{\omega}^{\dot{\omega}} \dot{r}_{1}\right) \int_{-\infty}^{\infty} \sin (\dot{\omega} \lambda) \exp \left(-\lambda^{2} / \alpha^{2}\right) d \lambda
\end{align*}
$$

The second integral in equation (H-11) vanishes as the integrand is odd in λ. Now equation ($\mathrm{H}-11$) can be integrated,

$$
\begin{equation*}
I_{A}=\frac{1}{4} \exp \left(\dot{r}_{1} / \alpha^{2}\right) \cos \left(\dot{W}_{1}\right)\left[\alpha \pi \exp \left(-\alpha^{2} \dot{\omega}_{2} / 4\right)\right] \tag{H-12}
\end{equation*}
$$

If I_{B} is integrated, the result is identical to equation I_{A}. Thus,

$$
\begin{equation*}
I_{1,1}=(\alpha \sqrt{\pi} / 2) \cos \left(\omega^{V} r_{1}\right) \exp \left(\dot{r}_{1}^{2} / \alpha^{2}\right) \exp \left(-\alpha^{2} \omega^{2} / 4\right) \tag{H-13}
\end{equation*}
$$

Using the same integration procedure,
$I_{12} \frac{\sqrt{\pi}}{2} \exp \left(\dot{r}_{1}^{2} / \alpha^{2}\right) \exp \left(-\alpha^{2} \dot{\omega}^{2} / 4\right)\left\{\cos \left(\tilde{\omega}^{v} \dot{r}_{1}\right)\left[\frac{1}{2 \alpha}-\frac{\alpha \dot{w}^{2}}{4}+\alpha \dot{r}_{1}^{2}\right]-\left(\frac{v_{r} r_{1}}{2}\right) \sin \left(\omega \dot{w}_{1}\right)\right\}$
and
$I_{1}{ }^{2}=\frac{\sqrt{\pi}}{2} \exp \left(\dot{r}_{1}^{2} / \alpha^{2}\right) \exp \left(-\alpha^{2} \dot{\omega}^{2} / 4\right)\left[\alpha r_{1} \cos \left(\dot{\omega}^{r_{1}}\right)-\left(\omega_{\omega} / \beta \alpha\right) \sin \left(\tilde{\omega}^{r_{1}} r_{1}\right)\right]$
Now substitute equations ($\mathrm{H}-13$), ($\mathrm{H}-14$), and ($\mathrm{H}-15$) into equation ($\mathrm{H}-2$).

$$
I_{\overline{1}}\left(\frac{\alpha \sqrt{\pi}}{2}\right) \exp \left({r_{1}^{2}}_{2}^{2}\right) \exp \left(-\alpha^{2} \dot{\omega}^{2} / 4\right) \cos \left(\dot{\omega}_{\dot{w}} \dot{r}_{1}\right)\left[1-\frac{1}{2 \alpha^{4}}+\frac{\tilde{\omega}^{2}}{4 \alpha^{2}}-r_{3}^{2}\right]_{(H-16)}
$$

$$
\begin{align*}
& \Pi^{r}(\dot{\omega}, \alpha)=\frac{\alpha \rho^{2} L_{0}^{3} \dot{q}_{0}^{2}}{\pi^{3 / 2} \tau_{c}} \exp \left(-\alpha^{2} \dot{\omega}^{2} / 4\right) \int_{0}^{\infty} \int_{0}^{\infty}\left(r_{2}^{2}+\dot{r}_{3}^{2}\right) \exp \left(\dot{r}_{2}^{2}+\dot{r}_{3}^{2}\right) \cdots \tag{H-17}\\
& \cdots\left[1-\frac{1}{2 x^{4}}+\frac{\dot{w}^{2}}{4 \alpha^{2}}-r_{3} 2\right] d \dot{r_{2}} d r_{2} \int_{0}^{\infty} \frac{\cos \left(\tilde{w}^{r_{1}}\right)}{r^{3}} d r_{1}
\end{align*}
$$

where $\underline{Y}^{3}=\left(\dot{r}_{1}^{2}+\dot{r}_{2}^{2}+\stackrel{r}{r}_{3}^{2}\right)^{\frac{n}{2}}$
Define I_{2} as

$$
\begin{equation*}
I_{2}=\int_{0}^{\infty} \frac{\cos \left(w v_{1}\right)}{r^{3}} d r_{1} \tag{H-18}
\end{equation*}
$$

From the integral identity,

$$
\begin{gather*}
\int_{0}^{\infty} \frac{\cos x d x}{\left(x^{2}+\varphi^{2}\right)^{3 / 2}}=\frac{k_{1}(\varphi)}{\varphi} \tag{H-19}\\
I_{2}=\omega K_{1}\left(\dot{\omega} \sqrt{\Gamma_{2}^{2}+r_{3}^{2}}\right) / \sqrt{\Gamma_{2}^{2}+k_{3}^{2}} \tag{H-20}
\end{gather*}
$$

where K_{1} is a modified Bessel function, Put equation (H-20) back into equation (H-17).

$$
\begin{align*}
& \bar{T}(\dot{\omega} ; \alpha)=\frac{\alpha \varphi^{2} g_{0}^{2} L^{3}}{\pi \sigma_{c}^{2}}\left[\omega _ { 0 } \operatorname { e x p } (- \alpha ^ { 2 } \dot { \omega } ^ { 2 } / 4) \int _ { 0 } ^ { \infty } \int _ { (H - 2 1) } ^ { r _ { 2 } ^ { 2 } + r _ { 3 } ^ { 2 } } \operatorname { e x p } \left(r_{2}^{\left.r_{2}^{2}+r_{3}^{2}\right) \cdots . . .}\right.\right. \tag{H-21}
\end{align*}
$$

The symmetry in r_{2} and r_{3} suggests the use of cylindrical coordinates. Thus, let

$$
\begin{equation*}
\varphi^{2}=v_{2}^{2}+r_{3}^{2} \tag{H-22a}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \varphi=r_{3} / \rho \tag{H-22b}
\end{equation*}
$$

Now define I_{3} as

$$
\begin{aligned}
I_{3} & =\omega \exp \left(-\alpha^{2} \omega^{2} / 4\right) \int_{0}^{\pi / 2} d \varphi \int_{0}^{\infty} \varphi^{2} \exp \left(\varphi^{2}\right) K_{1}\left(\omega^{\omega} \varphi\right) \cdots \\
& \cdots\left(1-\frac{1}{2 \alpha^{4}}+\frac{\omega^{2}}{4 \alpha^{2}}-\varphi^{2} \cos \varphi\right) d \varphi
\end{aligned}
$$

Divide equation ($\mathrm{H}-23$) into two integrals and perform the φ antegration.

$$
\begin{aligned}
I_{3} & =(\pi / 2) \omega \exp \left(-\alpha^{2} \omega^{2} / 4\right)\left(1-1 / 2 \alpha^{4}+\omega^{2} / 4 \alpha^{2}\right) \cdots \\
& \cdots \int_{0}^{\infty} \varphi^{2} K_{1}\left(\omega^{W} \varphi\right) \exp \left(-\varphi^{2}\right) d \varphi-(\pi / 4) \omega e x p\left(-\alpha^{2} \omega^{2} / 4\right) \cdots \\
& \cdots \int_{0}^{\infty} \rho^{4} K_{1}\left(W^{W} \varphi\right) \exp \left(-\varphi^{2}\right) d \rho \\
\text { Let } \zeta^{2} & =\lambda .
\end{aligned}
$$

$$
\begin{aligned}
& I_{3}=\left(\frac{\pi}{4}\right) \omega^{\prime} \exp \left(-\alpha^{2} \dot{\omega}^{2} / 4\right)\left(2-\frac{1}{\alpha^{4}}+\frac{\omega^{2}}{2 \alpha^{2}}\right) \int_{0}^{\infty} \sqrt{\lambda} K_{1}\left(\omega_{1} \lambda^{1 / 2}\right) \exp (-\lambda) d \lambda-\cdots \\
& \cdots\left(\frac{\pi}{4}\right) \omega \bar{\omega} \exp \left(-\alpha^{2} \omega^{2} / 4\right) \int_{0}^{\infty} \lambda^{3 / 2} K_{1}\left(\omega^{W} \lambda^{1 / 2}\right) \exp (-\lambda) d \lambda
\end{aligned}
$$

Define I_{A} and I_{B} from equation (H-25) as

$$
\begin{equation*}
I_{A}=\int_{0}^{\infty} \exp (-\lambda) \lambda^{1 / 2} K_{1}\left(\breve{w}^{1 / 2}\right) d \lambda \tag{H-26}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{B}=\int_{0}^{\infty} \exp (-\lambda) \lambda^{3 / 2} K_{1}\left(w \lambda^{1 / 2}\right) d \lambda \tag{H-27}
\end{equation*}
$$

The following identities and relationships will be useful in inter grating equations ($\mathrm{H}-26$) and ($\mathrm{H}-27$).

$$
\int_{0}^{\infty} \exp (-t) t^{-a / 2} K_{a}\left[2(z t)^{1 / 2}\right] d t=\frac{\Gamma(a, z) \Gamma(1-a)}{2 z^{a / 2} \exp (-z)}
$$

where the real part of a is less than 1 and Γ fa, $z f$ is the incomplete Gamma function.

$$
\begin{equation*}
K_{-a}(z)=K_{a}(z) \tag{H-29}
\end{equation*}
$$

where $i=\sqrt{-1}$.
Integrate equation I_{A} by letting $a=-1, z=\stackrel{\vee}{\omega} / 4$, and $t=\lambda$ in equation ($\mathrm{H}-28$) and using equation ($\mathrm{H}-29$).

$$
\begin{equation*}
I_{A}=\left(\omega^{\omega} / 4\right) \exp \left(\omega^{2} / 4\right) \Gamma\left(-1, \omega^{2} / 4\right) \tag{H-31}
\end{equation*}
$$

$\left(-1, \breve{\omega}^{2} / 4\right)$ can be evaluated from

$$
\begin{equation*}
\Gamma(-n, z)=\left[(-1)^{n} / n!\right]\left[E_{2}(z)-\exp (-z) \sum_{j=0}^{n-1} \frac{(-2)^{j} j /}{z^{j+1}}\right] \tag{H-32}
\end{equation*}
$$

where $E_{1}(x f)=\int_{1}^{\infty}[\exp (-x \lambda) / \lambda] d \lambda$.

$$
\begin{equation*}
I_{A}=(\tilde{w} / 4) \exp \left(\dot{w}^{2} / 4\right)\left[-E_{1}\left(\tilde{w}^{2} / 4\right)+\left(4 / \tilde{w}^{2}\right) \exp \left(-w^{2} / 4\right)\right] \tag{H-33}
\end{equation*}
$$

To integrate I_{B}, first express $\left.K_{1} \in z\right)$ in terms of $K_{2}(z)$ and $K_{3}(z)$ using equation ($\mathrm{H}-30$).

$$
\begin{equation*}
K_{1}\left(\dot{w} \lambda^{1 / 2}\right)=K_{3}\left(\dot{w} \lambda^{1 / 2}\right)-\left(4 / \tilde{w} \lambda^{1 / 2}\right) K_{2}\left(\dot{w} \lambda^{1 / 2}\right) \tag{H-34}
\end{equation*}
$$

Then,

$$
\begin{equation*}
I_{B}=\int_{0}^{\infty} \exp (-\lambda) \lambda^{3 / 2} K_{3}\left(\dot{W} \lambda^{1 / 2}\right) d \lambda-(4 / \dot{W}) \int_{0}^{\infty} \exp (-\lambda) \lambda K_{2}\left(\dot{W} \lambda^{1 / 2}\right) d \lambda \tag{H-35}
\end{equation*}
$$

Each of the integrals in equation (H-35) can be integrated in a manner similar to I_{A}.

$$
\begin{equation*}
I_{B}=-\left(\dot{w}^{2} / 4\right) \exp \left(\dot{w}^{2} / 4\right)\left\{\left(2+\dot{w}^{2} / 4\right) E_{-1}\left(\dot{w}^{2} / 4\right)-\left[\left(\dot{w}^{2}+4\right) / \dot{\omega}^{2}\right] \exp \left(-\omega^{2} / 4\right)\right\} \tag{H-36}
\end{equation*}
$$

Combining equations ($\mathrm{H}-24$), ($\mathrm{H}-33$), and ($\mathrm{H}-35$) and substituting them into equation ($\mathrm{H}-21$), the final result is

$$
\begin{gathered}
\pi^{\prime}\left(w_{j} \alpha\right)=\frac{\alpha \varphi^{2} L^{3} g_{0}^{2}}{4 \pi^{1 / 2} \tilde{U}_{c}}\left\{\frac{w^{2}}{4}\left[\frac{w^{2}}{4}-\frac{w^{2}}{2 \alpha^{2}}+\frac{1}{\alpha^{4}}\right] E_{1}\left(w^{2} / 4\right)+\cdots\right. \\
\left.\cdots \exp \left(-\omega^{2} / 4\right)\left[\left(\omega^{2} / 4\right)\left(2 / \alpha^{2}-1\right)+1-1 / \alpha^{4}\right]\right\}
\end{gathered}
$$

APPENDIX I

DETERMINATION OF $\mathbf{C}_{1}\left(\hat{\mathrm{y}}_{2}\right)$

The integral scale, $\mathrm{C}_{1}=\delta * / \mathrm{L}$ in equation (4-15), is a strong function of \hat{y}_{z}. This is shown in Grant's (1958) data, Figure 7. This figure is a plot of the velocity correlation components at various values of $y_{2} / \delta_{0} . \delta_{0}$ is defined as the value of y_{2} where $\bar{U}_{2}=U_{\infty}-U_{T}$ and is equal to $.69 \delta$. For this data $\operatorname{Re}_{\delta *}=3 \cdot 10^{3}$ and $\delta * / \delta=.158$.

The scale anisotropy model of these components are from (4-17)

$$
\begin{equation*}
\hat{R}_{22}\left(\hat{r}_{1}, 0,0 ; \alpha\right)=\left(1-\frac{C_{1}}{2} \frac{\hat{r}_{1}}{\alpha}\right) \exp \left(-C_{1} \hat{r}_{1} / \alpha\right) \tag{I-1}
\end{equation*}
$$

$$
\begin{equation*}
\hat{R}_{22}\left(0, \hat{r}_{2}, 0\right)=\exp \left(-C_{1}, \hat{r}_{2}\right) \tag{I-2}
\end{equation*}
$$

$$
\begin{equation*}
\hat{R}_{22}\left(0,0, \hat{r}_{3}\right)=\left(1-\frac{C_{2}}{2} \hat{r}_{3}\right) \exp \left(-C_{2} \hat{r}_{3}\right) \tag{I-3}
\end{equation*}
$$

The values of C_{1} ($\hat{\mathrm{y}}_{2}$) can be computed by fitting any equation ($\mathrm{I}-1$) through (I-3) to Grant's data. This was done using the method of least squares and a minimization routine to optimize the value of C_{1}. The values are plotted in Figure 8.

When equation (I-1) was used an iteration scheme was necessary.

First $\alpha=1$ was used and C_{1} determined, This C_{1} was employed to find $\alpha(\hat{r})$ to improve the fit. $\alpha(r)$ varied from. 9 to 2.1 . Finally the new C_{1} was found. There was not much difference between the last C_{1} and the first so the iteration was stopped. The equation chosen to fit the variation of C_{1} was

$$
\begin{equation*}
C_{1}\left(y_{2} / \delta\right)=1+\frac{A}{\left(1+B y_{2} / \delta\right)^{c}} \tag{I-4}
\end{equation*}
$$

The constants A, B, and C were computed by the method of least squares using the multidimensional, numerical, minimization Fortran subroutine STEPIT developed by Professor J. P. Chandler. The final result in terms of the non-dimensional variables of the problem is

$$
\begin{equation*}
C_{1}\left(\hat{y}_{2}\right)=1+.111 /\left(.748 \cdot 10^{-7}+\hat{y}_{2} \delta^{*} / \delta\right)^{.937} \tag{I-5}
\end{equation*}
$$

This curve is plotted in Figure 8 with the independent variable $y=16$.

APPENDIX J

PROBABILITY DISTRIBUTION FUNCTION $p_{3_{i}}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right)$
AND ITS INVERSION EQUATIONS
The method used to obtain $\mathrm{p}_{3_{i}}\left(\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}, \hat{\mathrm{y}}_{2}^{\prime}\right)$ was 'stumbled upon' after attempting to importance sample each of the three variables separately, ie.

$$
\begin{equation*}
p_{5 i}\left(\hat{k}_{2}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right)=p_{4}\left(\hat{k}_{3}\right) p_{s_{i}}\left(\hat{y}_{2}\right) p_{6 i}\left(\hat{y}_{2}\right) \tag{J-1}
\end{equation*}
$$

In this case,

$$
\begin{align*}
& P_{4}\left(\hat{k}_{3}\right) \propto 1 / \hat{K}^{2} \tag{J-2}\\
& P_{5 i}\left(\hat{y}_{2}\right) \propto \exp \left[-\left(\hat{k}_{1}+C_{1}\right) \hat{y}_{2}\right] \tag{J-3}\\
& P_{6 i}\left(\hat{y}_{2}^{\prime}\right) \propto \exp \left[-\left(\hat{k}_{1}+C_{i}\right) \hat{y}_{2}^{\prime}\right] \tag{J-4}
\end{align*}
$$

These function were derived after looking at the function format of (5-22). Later it was realized that the three one-dimensional probability density functions of equation (J-1) can be combined into one three-dimensional probability density function. From equation (5-24) or (5-25),

$$
\begin{equation*}
P_{3 i}\left(\hat{k}_{3}, \hat{y}_{2}, \hat{y}_{2}^{\prime}\right) d \hat{k}_{3} d \hat{y}_{2} d \hat{y}_{2}^{\prime}=d 11 d_{2} d w \tag{J-5}
\end{equation*}
$$

Since (5-22) is symmetric in the variables \hat{y}_{2} and $\hat{y}_{2}^{\prime}, p_{3_{i}}^{\prime}\left(\hat{\mathrm{k}}_{3}, \hat{\mathrm{y}}_{2}\right)$ will be used in the derivation in lieu of $p_{3_{1}}$. Thus,

$$
\begin{equation*}
P_{3 i}^{\prime}\left(\hat{k}_{3}, \hat{y}_{2}\right) d \hat{k}_{3} d \hat{y}_{2}=d u d v \tag{J-6}
\end{equation*}
$$

Motivated by equations (J-2) and $J-1$), let

This form satisfies the necessary conditions for the probability density function

$$
\begin{equation*}
\int_{0}^{d} \int_{a}^{b} P_{3 i}^{\prime}\left(\hat{k}_{3}, \hat{y}_{2}\right) d \hat{k}_{3} d \hat{y}_{2}=1 \tag{J-8}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{3 i}^{\prime}\left(\hat{k}_{3}, \hat{y}_{2}\right)>0 \tag{J-9}
\end{equation*}
$$

Equations (J-8) and (J-9) are not sufficient to get the inversion equations for u and v. One of the inversion equations c an be selected arbitrarily in conjunction with the form of equation (J-7). The other is computed from the choice of the first, equaLion (J-6), noting that it is Jacobian of the two-dimensional transformation. Compute the equation for u by assuming $u=u\left(\hat{k}_{3}\right)$ and

$$
\begin{equation*}
d u=\left[\hat{k}_{1} / \tan ^{-1}\left(d / \hat{k}_{1}\right)\right] d \hat{k}_{3} \tag{J-10}
\end{equation*}
$$

Then

$$
\begin{equation*}
u\left(\hat{k}_{3}\right)=\tan ^{-1}\left(\hat{k}_{3} / \hat{k}_{1}\right) / \tan ^{-1}\left(d / \hat{k}_{1}\right) \tag{J-11}
\end{equation*}
$$

is one of the inversion equations from which

$$
\begin{equation*}
\hat{k}_{3}=\hat{k}_{1} \tan \left[\left(1 \tan ^{-i}\left(d / \hat{k}_{1}\right)\right]\right. \tag{J-12}
\end{equation*}
$$

To obtain the other inversion equation, $v=v\left(\hat{k}_{3}, \hat{y}_{2}\right)$, use
the Jacobian of the two-dimensional transformation which is equal to $p_{3_{i}}^{\prime}\left(\hat{y}_{2}, \hat{k}_{3}\right)$ in equation (J-6).

$$
\begin{equation*}
p_{36}^{\prime}\left(\hat{k}_{3}, \hat{y}_{2}\right)=\frac{\partial v}{\partial \hat{y}_{2}} \frac{\partial u}{\partial k_{3}}-\frac{\partial u}{\partial \hat{y}_{2}} \frac{\partial v}{\partial \hat{k}_{3}} \tag{J-13}
\end{equation*}
$$

From equation ($\mathrm{J}_{\mathrm{m}}-11$),

$$
\begin{equation*}
\partial u / \partial \hat{k}_{3}=\left[\frac{\hat{k}_{1}}{\tan ^{-2}\left(d / k_{1}\right)}\right]\left[1 / \hat{k}^{2}\right] \tag{J-14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial v}{\partial \hat{k}_{3}}=0 \tag{J-15}
\end{equation*}
$$

Substituting equations (J-14) and (J-15) into equation (J-13),

$$
\begin{equation*}
P_{3 i}^{\prime}\left(\hat{k}_{3}, \hat{y}_{2}\right)=\left[\hat{k_{1}} / \tan ^{-1}\left(d / \hat{k}_{1}\right)\right]\left[1 / \hat{k}^{2}\right] \frac{\partial v}{\partial \hat{y}_{2}} \tag{J-16}
\end{equation*}
$$

After substituting equation (J-7) into equation (J-16) and in$v=g\left(\hat{k}_{3}\right)+\int_{\hat{k}_{3} \text { const. }}^{\hat{y}_{2}} \frac{\left(\hat{k}+C_{i}\right) \exp \left[-\left(\hat{k}+C_{i}\right) \varphi\right] d \varphi}{\exp \left[-\left(\hat{k}+C_{i}\right) \operatorname{at}\right]-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]}$

Let $g\left(\hat{\mathbb{k}}_{3}\right)=0$, then

$$
\begin{equation*}
v=\frac{1-\exp \left[-\left(\hat{k}+C_{i}\right) \hat{y}_{2}\right]}{\exp \left[-\left(\hat{k}+C_{i}\right) a\right]-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]} \tag{J-18}
\end{equation*}
$$

When inverted,

$$
\begin{equation*}
\hat{y}_{2}=-\ln \left[1-v-\left\{\exp \left[-\left(\hat{k}+C_{i}\right) a\right]-\exp \left[-\left(\hat{k}+c_{i}\right) b\right]\right\}\right] /\left(\hat{k}+C_{i}\right) \tag{J-19}
\end{equation*}
$$

Because of the symmetry in \hat{y}_{2} and \hat{y}_{3}^{\prime},

$$
\begin{gathered}
\left.P_{3 i}\left(\hat{k}_{3}, \hat{z}_{2}, y_{2}^{\prime}\right)=\left\{\frac{\hat{k}_{1}}{k^{2} a_{n}^{-2}\left(d k_{k}\right)}\right)\right\}\left\{\frac{\left(\hat{k}+C_{i}\right)^{2}}{\left(\operatorname{sexp}\left[-\left(-\hat{k}+C_{i}\right) a\right]-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]\right\}}\right\} \cdots \\
\ldots \cdot\left\{\frac{\exp \left[-\left(\hat{k}+C_{i}\right)\left(\hat{y}_{2}+\hat{y}_{2}^{\prime}\right)\right.}{\left\{\exp \left[-\left(\hat{k}+C_{i}\right) e\right]-\exp \left[-\left(\hat{k}+C_{i}\right) f\right]\right\}}\right\}
\end{gathered}
$$

$$
\begin{equation*}
w=\frac{1-\exp \left[-\left(\hat{k}+c_{i}\right) \hat{y}_{2}^{\prime}\right]}{\exp \left[\left(\hat{k}+C_{i}\right) e\right]-\exp \left[-\left(\hat{k}+C_{1}\right) f\right]} \tag{J-21}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{y}_{2}^{\prime}=-\ln \left[1-w\left\{\exp \left[-\left(\hat{k}+c_{i}\right) e\right]-\exp \left[-\left(\hat{k}+C_{i}\right) f\right]\right\}\right] /\left(\hat{k}+c_{i}\right) \tag{J-22}
\end{equation*}
$$

APPENDIX K

COMPUTER PROGRAM LISTING

MCAR 1610
MCAR 1620 MCAR 1620 MCAR1630 MCARO640 MCAR0650 MCAR 1660 MCAR 1670 MCAR1680 MCAR 1690 MCAR 1700 MCAR 1710 MCAR1720 MCAR1730 MCAR 1740 MCAR1750 MCAR1 760 MCAR 1770 MCAR1 780 MCAR 1790 MCAR 1800 MCAR1810 MCAR1820 MCAR1 830 MCAR1 840 MCAR1 850 MCAR1860 MCAR1 870 MCARI880 MCAR 1890 MCAR1900 MCAR1910 MCAR 1920 MCAR1930 MCAR 1940 MCAR 1950 MCAR1960 MCAR 1970 MCAR1980 MCAR 1990 MCAR2000 MCAR2010 MCAR2020 MCAR2030 MCAR2040 MCAR2050 MCAR2060 MCAR2070 MCAR 2080 MCAR2090 MCAR2 100 MCAR2110 MCAR2 120 MCAR2130
CARD
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270

0381.
0382
0384
0 3 8 5
0386
03B7
0 3 8 8
0389
0390
0 3 9 1
0392
0393
0394
0 3 9 5
0396
0397
0398
0399
0 4 0 1
0402
0402
0 4 0 3
0 4 0 4
0 4 0 5
0 4 0 6
0 4 0 7
0 4 0 8
0 4 0 9
0 4 1 0
0 4 1 1
0412
0412
0413
0414
0415
0 4 1 6
0416
0418
419
0 4 1 9
0420
0421
0 4 2 2
0422
0423
0424
0 4 2 5
0426
0426
0427
0428
0429
0 4 3 0
0430
0431
0432

```
```

```
C BEFORE CALLING XMEAX, SET UU EQUAL TO A PSEUDO-RANDOM OR
```

```
C BEFORE CALLING XMEAX, SET UU EQUAL TO A PSEUDO-RANDOM OR
0380 C QUASI-RANDOM NUMBER UNIFORMLY DISTRIBUTED ON (0,1).
0380 C QUASI-RANDOM NUMBER UNIFORMLY DISTRIBUTED ON (0,1).
0381 C XX RETURNS THE RANDOM NUMBER AND PDF RETURNS THE PROPERLY NORMALILEO
0381 C XX RETURNS THE RANDOM NUMBER AND PDF RETURNS THE PROPERLY NORMALILEO
```

C VALUE OF THE PROBABILITY DENSITY FUNCTION.

```
C VALUE OF THE PROBABILITY DENSITY FUNCTION.
J. P. CHANDLER, COMPUTER SCIENCE DEPT.. OKLAHOMA STATE UNIVERSITY
J. P. CHANDLER, COMPUTER SCIENCE DEPT.. OKLAHOMA STATE UNIVERSITY
        FA(X,EX)=EX*(A*X-1. ) +U
        FA(X,EX)=EX*(A*X-1. ) +U
        FB(X,EX)=-EX*(ASQ*X*X/2.-A*X+1.)+U
        FB(X,EX)=-EX*(ASQ*X*X/2.-A*X+1.)+U
        KW=1
        KW=1
        KW=6
        KW=6
        RAT=2.
        RAT=2.
        RELEP=.0001
        RELEP=.0001
        ACK=1.5
        ACK=1.5
        NPR=1
        NPR=1
        NPR=0
        NPR=0
        BIG=90.
        BIG=90.
        M=MM
        M=MM
        A=AA
        A=AA
        U=UU
        U=UU
        ASO=A*A
        ASO=A*A
        FAC=ACK
        FAC=ACK
        X=-1.
        X=-1.
        NIT=0
        NIT=0
        IF(A)4,5,5
        IF(A)4,5,5
    4 IF(U)1,1,2
    4 IF(U)1,1,2
    1 X=-RIG/A
    1 X=-RIG/A
        GOTO 5
        GOTO 5
        2 IFIU-1,16,7,7
        2 IFIU-1,16,7,7
        XI=0.
        XI=0.
        GO TO 5
        GO TO 5
        6 IF(U-.5)80,80,81
        6 IF(U-.5)80,80,81
    80 X=ALOG(U)/A
    80 X=ALOG(U)/A
        EX=U
        EX=U
        GO TO }8
        GO TO }8
        81. X=-SQRT(1.-U)/A
        81. X=-SQRT(1.-U)/A
        EX=EXP(A*X)
        EX=EXP(A*X)
    82 IF(EX)I,1,10
    82 IF(EX)I,1,10
    10 IF(M-1)11,11,12
    10 IF(M-1)11,11,12
    11 F=FA(X,EXI
    11 F=FA(X,EXI
        G0 TO 35
        G0 TO 35
        12F=FB(X,EX)
        12F=FB(X,EX)
    35 [F(NPR)71,71,72
    35 [F(NPR)71,71,72
    72 WRITEIKW,21IXA,FAA,XB,FBB,X,F
    72 WRITEIKW,21IXA,FAA,XB,FBB,X,F
    21 FORMAT(6E12.4)
    21 FORMAT(6E12.4)
    71 IF(F)30,5,31
    71 IF(F)30,5,31
C
C
    30 XA=X
    30 XA=X
        FAA=F
        FAA=F
        X=XA*FAC
        X=XA*FAC
        FAC=FAC #ACK
        FAC=FAC #ACK
        EX=EXP(A*X)
        EX=EXP(A*X)
        IF(EX) 36, 36,37
```

 IF(EX) 36, 36,37
    ```
```

CARD
0433
0434
0435
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0452
0452
0453
0454 C
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0 4 6 6
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486

```
```

 37 IF(M-1)32,32,33
    ```
    37 IF(M-1)32,32,33
        32 F=FA(X,EX)
        32 F=FA(X,EX)
        GO TO 34
        GO TO 34
    33 F=FB(X,EX)
    33 F=FB(X,EX)
    34 IF(F)35,5,36
    34 IF(F)35,5,36
    36 XB=X
    36 XB=X
        FBB=F
        FBB=F
        GO TO 3B
        GO TO 3B
C BRACKET X FROM BELOW.
C BRACKET X FROM BELOW.
    31 XB=X
    31 XB=X
        FBB=F
        FBB=F
        X=XB/FAC
        X=XB/FAC
        FAC=FAC#ACK
        FAC=FAC#ACK
        EX=EXP(A#X)
        EX=EXP(A#X)
        IF(M-1)40,40,41
        IF(M-1)40,40,41
        40 F=FA(X,EX)
        40 F=FA(X,EX)
        GO TO 42
        GO TO 42
    41F=FB{X,EX)
    41F=FB{X,EX)
    42 IF(F143,5,35
    42 IF(F143,5,35
    43 XA=X
    43 XA=X
        FAA=F
        FAA=F
C
C
    38 DENOM=FBB-FAA
    38 DENOM=FBB-FAA
        IF(DENOMI5,5,47
        IF(DENOMI5,5,47
    47 X=XA-FAA*(XB-XA)//DENOM
    47 X=XA-FAA*(XB-XA)//DENOM
        EX=EXP{A*X}
        EX=EXP{A*X}
        IF(X.-XA)5,5,4B
        IF(X.-XA)5,5,4B
    48 (F(X-XB)49,5,5
    48 (F(X-XB)49,5,5
    49 IF(M-1)50,50,51
    49 IF(M-1)50,50,51
    50 F=FA(X,EX)
    50 F=FA(X,EX)
    GO TO }5
    GO TO }5
    F=FB(X,EX)
    F=FB(X,EX)
    52 NIT=NIT+1
    52 NIT=NIT+1
        IF(NPR)73,73,74
        IF(NPR)73,73,74
    74 WRITE (KH,55)NIT, XA,FAA,XB,FBB,X,EX,F
    74 WRITE (KH,55)NIT, XA,FAA,XB,FBB,X,EX,F
    55 FORMAT(1XI3,7E12.4)
    55 FORMAT(1XI3,7E12.4)
    73 lF(F)53,5,54
    73 lF(F)53,5,54
    53 XA=X
    53 XA=X
        FAA=F
        FAA=F
        IF(FBB-RAT*(-FAA)) 57,57,61
        IF(FBB-RAT*(-FAA)) 57,57,61
    61 FBB#.5*FBB
    61 FBB#.5*FBB
        GO TO 57
        GO TO 57
    54 XB=X
    54 XB=X
        FBB=F
        FBB=F
        IF(-FAA-RAT*FBB/57,57,62
        IF(-FAA-RAT*FBB/57,57,62
    62 FAA=. 5*FAA
    62 FAA=. 5*FAA
    57 IF|(XB-XA)-RELEP#XB15,5,38
    57 IF|(XB-XA)-RELEP#XB15,5,38
C
C
    5 XX=X
    5 XX=X
        IF(M-1)44,44,45
        IF(M-1)44,44,45
    44 DFDX=ASQ*X*EX
    44 DFDX=ASQ*X*EX
    GO TO 46
    GO TO 46
    45 DFDX=-ASQ*A*X*X*EX/2.
```

 45 DFDX=-ASQ*A*X*X*EX/2.
    ```
```

CARD
0487
0489
0489
0491
0492
0493
0494
0495
0496
0497
0498
0 4 9 9
0 5 0 0
0501
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540

```
```

 46 PDF=DFDX
    ```
    46 PDF=DFDX
    IF(NPR)75,75,76
    IF(NPR)75,75,76
    76 WRITE(KW,56)NIT, XA,FAA,XB,FBB,X,EX,F,DFDX
    76 WRITE(KW,56)NIT, XA,FAA,XB,FBB,X,EX,F,DFDX
    56 FORMAT (1XI3,日E12.4)
    56 FORMAT (1XI3,日E12.4)
    75 RETURN
    75 RETURN
    END
    END
C
C
    SUBROUTINE SUBX2(FX2,X2,ARG2,XF2)
    SUBROUTINE SUBX2(FX2,X2,ARG2,XF2)
    COMMON BRKI,BARK,ALPHA
    COMMON BRKI,BARK,ALPHA
    FX2=EXP(-(BARK*X2))*SG(ARG2)*VI(ARG2)*XF2
    FX2=EXP(-(BARK*X2))*SG(ARG2)*VI(ARG2)*XF2
    RETURN
    RETURN
    END
    END
C
C
C
C
    SUBROUTINE SUBX3(FX3,X3,ARG3,XF3)
    SUBROUTINE SUBX3(FX3,X3,ARG3,XF3)
    COMMON BRK1,BARK,ALPHA
    COMMON BRK1,BARK,ALPHA
    FX3=EXP{-(BARK*X3))*SG(ARG3)*VI(ARG3)*XF3
    FX3=EXP{-(BARK*X3))*SG(ARG3)*VI(ARG3)*XF3
    RETURN
    RETURN
    END
    END
C
C
C
C
    SUBROUTINE SUBUS\X1,X2,X3,X4,X5,X6,C1,XF5,XF6,FX5,FX6
    SUBROUTINE SUBUS\X1,X2,X3,X4,X5,X6,C1,XF5,XF6,FX5,FX6
    COMMON BRK1,BARK,ALPHA
    COMMON BRK1,BARK,ALPHA
    YZ=(X3-X2) ** 2
    YZ=(X3-X2) ** 2
    XP5=SORT(X5**2+YZ)
    XP5=SORT(X5**2+YZ)
    XP6=SORT(X6** 2+YZ.)
    XP6=SORT(X6** 2+YZ.)
    F1X5=X5*EXP(-C * XP5):
    F1X5=X5*EXP(-C * XP5):
    F1\times6=(C1/2.)*(X6**3/XP6)*EXP(-C1*XP6)
    F1\times6=(C1/2.)*(X6**3/XP6)*EXP(-C1*XP6)
    A=BRK1*ALPHA*COS(X4)
    A=BRK1*ALPHA*COS(X4)
    B=XI#SIN(X4)
    B=XI#SIN(X4)
    F2\times5=COS (A* X5)
    F2\times5=COS (A* X5)
    F2\times6=COS(A* X6)
    F2\times6=COS(A* X6)
    F3\times5=COS(B*X5)
    F3\times5=COS(B*X5)
    F3\times6=COS(B*X6)
    F3\times6=COS(B*X6)
    FX5=F1\times5*F2\times5*F 3 <5/XF5
    FX5=F1\times5*F2\times5*F 3 <5/XF5
    FX6=F1X6*F2X6*F3X6/XF6
    FX6=F1X6*F2X6*F3X6/XF6
    RETURN
    RETURN
    END
    END
C
C
    FUNCTION VIIYBARZI
    FUNCTION VIIYBARZI
    COMMON/BLCMP/ TRENO, SLOLM, SVK1, SVK3, SVK4, SVK5, SVK6, SVK7,
    COMMON/BLCMP/ TRENO, SLOLM, SVK1, SVK3, SVK4, SVK5, SVK6, SVK7,
    *SVK8,BI,DELRA,ALIM,AK,BK
    *SVK8,BI,DELRA,ALIM,AK,BK
    RATID=27.
    RATID=27.
    YBAR2=3.*YBAR2/2.76
    YBAR2=3.*YBAR2/2.76
    IF{YBAR2.GT.1.IGO TO 5
    IF{YBAR2.GT.1.IGO TO 5
    IFIYBAR2.GT. -9IGO TO LO
    IFIYBAR2.GT. -9IGO TO LO
    IF(YBAR2.GT..575)GO TO 20
    IF(YBAR2.GT..575)GO TO 20
    IFIYBAR2.GT..1IGO TO }3
    IFIYBAR2.GT..1IGO TO }3
    IF(YBAR2.GT..017)GO TO 40
    IF(YBAR2.GT..017)GO TO 40
    IFIYBAR2.GT.ALIMIGO TO 50
    IFIYBAR2.GT.ALIMIGO TO 50
    VI=RATIO*(AK*YBAR 2**2*BK*YBAR2**3)
    VI=RATIO*(AK*YBAR 2**2*BK*YBAR2**3)
    RETURN
```

 RETURN
    ```




\section*{APPENDIX L}

\section*{THE INTEGRATION PROGRAM CHRONOLOGY}

This Appendix contains a discussion of the logic sequence of the integration program, the interface between the analytical development and the numerical computation, and a listing of the computer pseudonyms and their defingtions. The discussion follows the sequence of the program listing found in Appendix \(K\). On the right hand side of the program listing, headings are found which describe what the ensuing program block is accomplishing. These same headings are used in this Appendix in order to correlate the discussion with the program listing.
* PROGRAM MULTIPLIERS AND CONSTANTS *
\begin{tabular}{ll} 
Pseudonym & \multicolumn{1}{c}{ Definition } \\
K & \begin{tabular}{l} 
Number of iterations between computa- \\
tions of the answer.
\end{tabular} \\
ALPHA & \begin{tabular}{l} 
Total number of iterations
\end{tabular} \\
& Scale anisotropy parameter \\
BRK1 & The wave number, \(\hat{\mathrm{k}}_{1}\) \\
BK1SQ & \(\hat{\mathrm{k}}_{1}^{2}\)
\end{tabular}
* C1 FOR VARIANCE REDUCTION *
\begin{tabular}{|c|c|}
\hline Pseudonym & Definition \\
\hline C1IN & The value of the exponent, \(C\), for the inner region used in the variance reduction of the \(\hat{r}\) dependent terms. It is computed from the equation for \(C_{1}\left(\hat{y}_{z}\right)\) at \(\hat{\mathrm{y}}_{\boldsymbol{z}}=.025 \delta / \delta \%\). \\
\hline C1MD & The same as C1IN except it is for the middle region. It is computed at \(\hat{y}_{z}=.2 \delta / \delta \%\). \\
\hline C10T & The same as C1IN except it is for the outer region. It is computed at \(\hat{y} z=\delta / \delta \%\). \\
\hline \multicolumn{2}{|l|}{C1MD, and C10T are the three values for \(C\) used in equation} \\
\hline The val & lowest value of \(\mathrm{C}_{1}\) for that region. \\
\hline \multicolumn{2}{|l|}{nsures that the transformed function has the proper behavior} \\
\hline ets 1 arge. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pseudonym & \begin{tabular}{l}
LAYER PARAMETERS * \\
Definition
\end{tabular} \\
\hline VRAT & Velocity ratio. \\
\hline UTAU & \(U_{T}\), friction velocity, from BLOCK DATA. \\
\hline UINFN & \(\mathrm{U}_{\infty}\), free stream velocity, from BLOCK DATA. \\
\hline DELRA & \(\delta * / \delta\), boundary layer thickness ratio from BLOCK DATA. \\
\hline DEL & §, boundary layer thickness, from BLOCK DATA. \\
\hline DELST & \(\delta *\), displacement thickness, from BLOCK DATA. \\
\hline TRENO & A turbulence Reynolds number, \(\mathrm{U}_{\mathrm{T}} \delta / \mathrm{N}\). \\
\hline SLOLM & The \(\mathrm{y}_{\mathrm{a}} / \delta\) lower limit on the mean-shear. \\
\hline SVK1 & Shear velocity constant 非1, the reciprocal of the Von Karman Constant. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pseudonym & Definition \\
\hline VKC & Von Karman Constant． \\
\hline SVK 2 & Shear velocity constant 非2，the denom－ inator of the multiplier of equation （4－6）． \\
\hline SVK3 & Shear velocity constant 非3，the multi－ plier of the sine term in equation （4－6）． \\
\hline TURPI & Turbulence pi，\(\pi\) ，from BLOCK DATA． \\
\hline SVK4 & Shear velocity constant 非4，part of the argument sine term in equation （4－6）． \\
\hline SVK5 & Shear velocity constant 非5，the re－ ciprocal of SVK2． \\
\hline SVK6 & Shear velocity constant 非，used in equation（4－7）． \\
\hline ALFAC & \[
\alpha_{c} \text { in equation }(4-7)
\] \\
\hline SVK 7 & Shear velocity constant 非7，the exponent in equation（4－7）． \\
\hline EM & The parameter，\(m\) ，in the exponent of equation（4－7）． \\
\hline SVK8 & Shear velocity constant \＃8，the term \(\mathrm{y}_{2} / \mathrm{a}\) in equation（4－5）． \\
\hline A & The parameter，a，in equation（4－5） from BLOCK DATA． \\
\hline BI & The reciprocal of the parameter，\(b\) ， in equation（4－5）from BLOCK DATA． \\
\hline
\end{tabular}

\section*{* SUB LAYER PARAMETERS *}
\begin{tabular}{ll} 
Pseudonym & \multicolumn{1}{l}{ Definition } \\
YSTR & \begin{tabular}{l} 
Y-STAR, the value of \(y_{2} *\) at the outer \\
boundary of the viscous sublayer.
\end{tabular} \\
AK, BK & \begin{tabular}{l} 
The value of \(\hat{y} z\) at the outer boundary \\
of the viscous sublayer.
\end{tabular} \\
\begin{tabular}{l} 
Constants in viscous sublayer intensity \\
equation.
\end{tabular}
\end{tabular}

These values are used in the subroutine VI(YBAR2) which computes the velocity intensity.
* K3 UPPER LIMIT *

Pseudonym
ULIMK

ARGX1
* INTEGRAL MULTIPLIER *

Pseudonym
CFSQ
FACT1

VOLX 1

VOLX4 equation (4-19). sample or iteration.

\section*{Definition}

Upper limit of the wave number, \(\hat{k}_{3}\). It is the value, \(d\), in equation (5-23).

Argument for the transformed value of \(\hat{k}_{3}\) designated as X 1 . It is in the denominator of equation (J-8).

Definition
\(C_{f}^{2}, C_{f}\) is the friction factor,
Factor 非1, the integral multip1ier in

Volume X 1 , this is the value of \(\hat{k}^{2} / \hat{k}^{2}\) in the integrand of equation ( \(4-19\) ). Since the importance sampling of this factor is exact, the contribution of this term is known after one

Volume X4, which is the multiplier contributed by the variable \(\theta\). Part of \(8 \pi\) factor in equation (4-19).

This block initializes the program counters for each run. SUM, SUMT, SUMIN, SUMMD, and SUMOT will be defined under the heading, COMPUTE OUTPUT.

\section*{Pseudonym}

I

KOUNT

J

Definition
The total number of iterations. The total number of non-zero iterations.

Increments one every time KOUNT sequences \(K\) iterations.
* K1 LOOP *

The program sequences to this point every time \(J\) increments. The SUM15, SUM16, etc. terms will be defined under the heading, SUM INTEGRAND. They are initialized when J increments.
* ITERATION STARTING POINT *

Pseudonym
M

Definition
Parameter in the argument of the subroutine CORPUT. It specifies the starting point in the sequence of quasirandom numbers.

This is the point at which all iterations start or loop to whether they contribute or not to the integrand. Should a number other than zero be desired for \(M\), substitute for the statement \(M=0\) the statement \(M=I+\) NUMBER where NUMBER is desired starting integer number.
* VARIABLE FOR KTIL3 *

Pseudonym
U1

Definition
The quasirandom value of the transformed variable, \(u\), for \(\hat{k}_{3}\). (Equation J-11).
\begin{tabular}{|c|c|}
\hline Pseudonym & Definition \\
\hline X1A & Program variable. \\
\hline X1 & The transformed variable for \(\hat{k}_{3}\). (Equation J-12). \\
\hline BRKSQ & The term, \(\hat{\mathrm{k}}^{2}\), where \(\hat{\mathrm{k}}^{2}=\hat{\mathrm{k}}_{1}^{2}+\hat{\mathrm{k}}_{3}^{2}\). \\
\hline BARK & \(\hat{k}\). \\
\hline
\end{tabular}

This block computes the transformed variable for \(\hat{k}_{3}\) and some of the terms in which it appears.
```

* VARIABLE FOR YTIL2 *

```

\section*{Pseudonym}

U2
The quasirandom value of the transformed variable, v for \(\hat{\mathrm{y}}_{2}\). (Equation J-17).
* INNER REGION *

Pseudonym
CIN

EXPIN

VOLIN

X2AI

X2I

XF2I

ARG2I

Definition
The term \(C_{i}+\hat{k}\) where \(C_{i}=C_{I}\). The \(\operatorname{term} \exp \left[-\left(\hat{k}+C_{i}\right) a\right]\) \(-\exp \left[-\left(\hat{k}+C_{i}\right) b\right]\) where \(C_{i}=C_{I}, a=0\), and \(b=.025 \delta / \delta *\), see equation \((J-19)\).

EXPIN/CIN
The argument of ' \(1 n^{\prime}\) in equation (J-18) for the inner region.
\(\hat{y}\) a for the inner region as in equation (J-18).

The \(\hat{y}_{a}\) contribution to the probability density function, equation (J-19), for the inner region. (Includes part of \(k_{3}\) term through BARK).

The term \(\hat{y} \delta^{*} / 8\) for the inner region. This term is used to evaluate the shear gradient and the velocity intensity.


CMD

EXPMD

VOLIN
X2AM
XF2M
ARG2M
\(C_{i}+\hat{k}\) where \(C_{i}=C_{M D}\).
Analogous to EXPIN except \(a=.0258 / 8 *\) and \(\mathrm{b}=.2 \delta / 8\) *.

EXPMD/CMD.
Middle region analog of X2AI.
Middle region analog of XF2I.
Middle region analog of ARG2I.
* OUTER REGION *

This region is analogous to the other two regions.
* VARIABLE FOR YTIL2 \({ }^{\prime}\) *

This block is analogous to the previous, VARIABLE FOR YTIL2, block because of the symmetry in \(\hat{y}_{2}\) and \(\hat{y}_{2}^{\prime}\).
* VARIABLE FOR THETA *

Pseudonym
Definition
U4 The quasirandom value used to select theta for each iteration.

X4
Theta.
* C1 FOR FUNCTION COMPUTATION *

C1I
C1M
C1T
\(C_{1}\) for the inner region.
\(\mathrm{C}_{1}\) for the middle region.
\(C_{1}\) for the outer region.
* VARIABLE FOR R TERMS *
\begin{tabular}{|c|c|}
\hline Pseudonym & Definition \\
\hline U5 & The quasirandom value of the transformed value for the ' \(\hat{r}\) ' terms. \\
\hline & * VARIABLE FOR R * \\
\hline Pseudonym & Definition \\
\hline XMEAX & \(X^{M} \exp (A X)\), the subroutine to compute the \(p . d . f\), and the value of \(\hat{r}\). \\
\hline X5 & The value of \(\hat{r}\), equation ( \(5-19\) ). \\
\hline XF5 & The value of the p.d.f., equation (5-17 \\
\hline
\end{tabular}

The remainder of this b1ock computed the values of the above for the inner, middle and outer regions.
* VARIABLE FOR RSQ *

This block is analogous to the one above except that the apropos equations are (5-20) and (5-21).
* terms of the total integral *

Having computed the p.d.f. values and the transformed variables or, as in the case of \(\theta\), the value of the variable itself, the following block is used to compute the contribution of an iteration to the integrand.
* X2 TERMS *

Pseudonym

\section*{Definition}

SUBX2 The subroutine used to compute the contribution to the integrand of the term \(\exp \left(-\hat{k} \hat{y}_{2}\right) \frac{d U *}{d \hat{y}_{2}}\left(\hat{y}_{2}\right) \hat{u}_{2}\left(\hat{y}_{2}\right)\).
FX2I, FX2M, FX2T
The value computed in SUBX2 for the inner, midd1e, and outer regions.
* X3 TERMS *

Pseudonym
SUBX3
FX3 I, FX2M, FX3T,

Definition
Analogous to SUBX2 for \(\hat{y}_{2}^{\prime}\).
The value computed in SUBX3 for the inner, middle, and outer regions. Note that each term is checked in this block to see if it is zero.
* X4, X5, and X6 TERMS *

Pseudonym
SUBU5

FX5

FX6

\section*{Definition}

The subroutine that computes the contribution to the integrand of the term,
\(\left\{\hat{r}-\frac{C_{1} \hat{r}^{3}}{2\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}}\right\} \exp \left\{c_{1}\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}\right\} \cdots\) . . . \(\cos \left(\alpha \hat{k}_{1} \hat{r} \cos \theta\right) \cos \left(\hat{k}_{3} \hat{r} \sin \theta\right)\).

The contribution to the integrand of the term,
\[
\hat{r} \exp \left\{-c_{2}\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{1 / 2}\right\} \cdots
\]
. . . \(\cos \left(\alpha \hat{k}_{1} \hat{r} \cos \theta\right) \cos \left(\hat{k}_{3} \hat{r} \sin \theta\right)\).
The contribution to the integrand of the term,
\(\left\{\frac{C_{1} \hat{r}^{3}}{2\left[\hat{r}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)^{2}\right]^{\prime / 2}}\right\} \exp \left\{-C_{2}\left[\hat{\underline{r}}^{2}+\left(\hat{y}_{2}^{\prime}-\hat{y}_{2}\right)\right]^{1 / 2}\right\}^{1 / .}\)
. . . \(\cos \left(\alpha \hat{\mathrm{k}}_{1} \hat{r} \cos \theta\right) \cos \left(\hat{\mathrm{k}}_{3} \hat{r} \sin \theta\right)\).
The integrand is separated into \(I_{1}\) and \(I_{2}\) as per equation (5-12). The number, 5, in a term is associated with the integral, \(I_{1}\), and the number, 6, is associated with the integral, \(I_{2}\). Each of these integrals is separated into the sum of nine integrals, equation (5-23), The contribution to each of these eighteen integrals of either FX5 or FX6 is computed in this block. Thus, F1X5, F2X5,

F3X5, etc. contribute to \(\mathrm{I}_{1}\). F1X6, F2X6, F3X6, etc. to \(\mathrm{I}_{2}\). Each of the terms is checked for the value zero before continuing the iteration, KOUNT is incremented if none of the preceeding terms is zero.
* COMPUTE INTEGRAND *

This block is best explained by two equations.
\(I_{1}=F 15+F 25+F 35+F 45+F 55+F 65+F 75+F 85+F 95\).
\(\mathrm{I}_{2}=\mathrm{F} 16+\mathrm{F} 26+\mathrm{F} 36+\mathrm{F} 46+\mathrm{F} 56+\mathrm{F} 66+\mathrm{F} 76+\mathrm{F} 86+\mathrm{F} 96\).
* SUM INTEGRAND *

The SUM terms correspond to the terms in equations (L-1) and ( \(\mathrm{L}-2\) ).
* COMPUTE OUTPUT *

The SAV15, etc. terms are the average values of the eighteen integrands for K iterations.
\begin{tabular}{cl} 
Pseudonym \\
\hline SAV5 & \(I_{1}\) \\
SAV6 & \(I_{2}\) \\
VAL1 & \begin{tabular}{l}
\(\hat{\pi}\left(\hat{k}_{1}\right)\), equation (4-19) , for K iter- \\
ations.
\end{tabular} \\
SUMIN & \begin{tabular}{l} 
A measure of the contribution to \(\hat{\pi}\left(\hat{k}_{1}\right)\) \\
by the inner region.
\end{tabular} \\
SUMMD & \begin{tabular}{l} 
Analogous to SUMIN for the middle \\
region.
\end{tabular} \\
SUMOT & \begin{tabular}{l} 
Analogous to SUMMD for the outer \\
region,
\end{tabular}
\end{tabular}

Pseudonym
SUMT

TERM(J)

VAL2
VAL3
AVIN, AVMD, AVOT

SUM

RATIN, RATMD, RATOT Contribution ratios.

\section*{iterations.}
```

* ERROR CONTRIBUTION *

```

Definition
The sum of the values computed for VALl every \(K\) iteration.

This term stores VAL1 for error computation purposes.

The value of \(\hat{\pi}\left(\hat{k}_{1}\right)\) every \(K * J\) iterations. \(\hat{\pi}\left(\hat{k}_{1}\right) / C_{f}^{2}\).

The average values of the inside, middle, and outer region contributions. Each of these is the sum of two of the eighteen integrals in \(\hat{\pi}\left(\hat{k}_{1}\right)\).

The SUM of the inside, middle, and outer region contributions.

Pseudonym
SUMSQ

VAR
SIG

SIG1
Pan
*

\section*{Definition}

A term in the statistical variation equation (5-37).

The variation, equation (5-37).
A first estimate of the standard deviation, equation (5-36).

A second estimate of the standard deviation, equation (5-35).
```

This is the end of the main program.

```

The boundary layer data is entered here as defined in the main program.

SUBROUTINE XMEAX

The use of this subroutine has been explained in the main program. In addition it contains its own comment cards.

SUBX2, SUBX3, AND SUBU5
These subroutines have been explained in the main program. FUNCTION SG(YBAR2)

This is the subroutine which computes the shear gradient as per equations (4-5) through (4-7).

\section*{FUNCTION VI (YBAR2)}

In this subroutine the velocity intensity as per equations (4-9) through (4-18) and the viscous sublayer model \(\hat{y y}_{2}^{2}+\hat{y y}_{2}^{3}\). RATIO is \(U_{\infty} / U_{T}\) from Klebanoff's data.

\section*{SUBROUTINE CORPUT}

This subroutine contains its own comment cards.

PROGRAM OUTPUT
After \(K\) iterations the value of \(\hat{\pi}\left(\hat{k}_{1}\right)\) for the total number of iterations to that point and the contribution of each of the eighteen integrals for those \(K\) iterations is pointed out. Upon completion of \(N\) non-zero iterations the values of \(\hat{k}_{1}\) and \(\alpha\) head the output followed by:
\begin{tabular}{ll} 
Title & \multicolumn{1}{c}{ Definition } \\
INTEGRAL VALUE & \(\hat{\pi}\left(\hat{k}_{1}\right) / \mathrm{C}_{\mathrm{f}}^{2}\) \\
ERROR 1 & First estimate of \(\sigma\). \\
ERROR 2 & Second estimate of \(\sigma\), \\
SPECTRUM VALUE & \(\hat{\pi}\left(\hat{k}_{1}\right)\). \\
INSIDE MAGNITUDE & Equation (5-41) \\
MIDDLE MAGNITUDE & Equation (5-42) \\
OUTER MAGNITUDE & \\
INSIDE RELATIVE CONTRIBUTION & \\
MIDDLE RELATIVE CONTRIBUTION & \\
OUTSIDE RELATIVE CONTRIBUTION &
\end{tabular}


Figure 1. Wind Tunne1 Measurement of Boundary Layer Pressure Fluctuations, Bies (1966). —_ Line of Greatest Data Cluster. - ———Defines Area Which Contains Experimental Data.


Figure 2. Frequency Spectra. ——Hodgson's (1962)
Measured Spectrum on a Glider Wing. - - - -
Predicted Green's Function Spectrum, Hodgson's (1962) Simplified Solution. - ———Predicted Fourier Transform Spectrum With 'Mirrow-Flow' Mode1, Hodgson (1962), \(\Pi=\overrightarrow{\mathrm{p}}^{2}(\omega) \mathrm{U}_{\infty} / \delta * \mathrm{q}^{2}\).


Figure 3. Measured Velocity Correlation Components \(\mathrm{R}_{1}\),
\(\mathrm{R}_{22}, \mathrm{R}_{33}\), Grant (1958). \(\circ \mathrm{R}_{11}\left(\mathrm{r}_{1} / \delta_{0}, 0,0\right)\);
\(\times \mathrm{R}_{22}\left(0, \mathrm{r}_{22} / \delta_{0}, 0\right) ;+\mathrm{R}_{33}\left(0,0, r_{3} / \delta_{0}\right)\). \(\delta_{0}\)
is value of \(y_{2}\) where \(\bar{U}_{1}=U_{\infty}-U_{T} . \delta_{0} / \delta=.69\).


Figure 4. The Effect of Scale Anisotropy on Hodgson's Predicted Green's Function Frequency Spectrum. \(\alpha=1.0,1.05\), \(1.1,1.25,1.5\).


Figure 5. Yelocity Intensity, \(\sqrt{\bar{u}_{2}^{2}} / U_{T} .0 \leq y_{z} / \delta \leq .01\). Model of Klebanoff's (1954) Data Scaled-With \(\delta\) Determined From 'Law of Wall and Wake'. The Viscous Sublayer Model From \(\mathrm{y}^{*}=8\) to the Wall is \(a\left(y_{2} / \delta\right)^{2}+b\left(y_{2} / \delta\right)^{3}\), Reg \(*=\) \(9,9,10^{3} .----y^{*}=8\).


Figure 6. Velocity Intensity, \(\sqrt{\bar{\pi}_{2}^{2}} / \mathrm{U}_{\mathrm{J}}, \quad 0 \leq \mathrm{y}_{2} / \delta \leq 1.0\). Model of Klebanoff's (1954) Data Scaled With \(\delta\) Determined From 'Law of Wall and Wake'.


Figure 7. Measured Velocity Correlation Components, Grant \((1958) . \quad y_{2} / \delta_{0}=.66\),
\(---y_{2} / \delta_{0}=.25,-y_{2} / \delta_{0}=\)
\(.13, \quad \cdot-\mathrm{y}_{2} / \delta_{0}=.056 . \delta_{0} / \delta_{2}=.69\).


Figure 8. The Variation of the Inverse of the Integral Scale \(C_{1}\left(y_{2} / \delta\right)\) Across the Boundary Layer. \(X\) Values of \(C_{1}\) Determined by Curve Fit to Grant's (1958) Data. Curve Fit to Values of \(C_{1}, C_{1}=1+.111 /\left(.748 \cdot 10^{-7}+\right.\) \(\left.\mathrm{y}_{2} /\right)^{.937}\).


Figure 9. The Variation of the Scale Anisotropy Factor With Streamwise Wave Number, \(\alpha \widetilde{\left(k_{1}\right)}\). \(\hat{k}_{1}=\) \(\tilde{k}_{1} \delta * / \delta\) Where \(\delta * / \delta=.145\) 。


Figure 10. Comparison of Measured and Theoretical Values of Velocity Correlation of \(\mathrm{R}_{11}\) and \(\mathrm{R}_{22}\). \(\circ \mathrm{R}_{11}\left(\mathrm{r}_{1} / \delta_{0}, 0,0\right)\) and \(\times \mathrm{R}_{\mathrm{e} 2}\left(0, \mathrm{r}_{2} / \delta_{0}, 0\right)\), Grant (1958). \(\widetilde{R}_{1_{1}}\left(r_{1} / \delta_{0}, 0,0\right) ; \cdots-\cdots\)
\(\hat{\mathrm{R}}_{2 z}\left(0, \mathrm{r}_{2} / \delta_{0}, 0\right)\). \(Y_{2} / \delta=.45\) for Computed and Measured Data,


Figure 11. Comparison of Measured and Theoretical Values of Velocity Correlation Components of \(\mathrm{R}_{22}\).
\(0 \mathrm{R}_{\mathrm{z} 2}\left(\mathrm{r}_{1} / \delta_{0}, 0,0\right)\), Grant (1958).
\(\longrightarrow \hat{\mathrm{R}}_{e 2}\left(\mathrm{r}_{1} / \delta_{0}, 0,0 ; \alpha\right), \alpha=1.0\).

\(\cdots-\mathrm{R}_{\mathrm{e} 2}\left(\mathrm{r}_{1} / \delta_{0}, 0,0\right)\), Variable \(\alpha\).
\(y_{2} / \delta=.45\) for Computed and Measured Data.


Figure 12. Shear Gradient, Velocity Intensity Variation Across the Boundary Layer. \(\mathrm{y}_{2}=\mathrm{y}_{2} / 8=\) \(\hat{\mathrm{y}}_{2} \delta * / \delta\) Where \(\delta * / \delta=.145\).


Figure 13. Convective Velocity, \(U_{c}\left(\widetilde{k}_{1}\right) / U_{\infty}\).
Wills' (1970) Data. --- Extrapolation of Wills' Data, \(\operatorname{Re}_{8} *=13.5 \cdot 10^{3}\).


Figure 14. Computed Wave Number Spectrum. \(\alpha=1.0\).


Figure 15. Computed Wave Number Spectra. \(\alpha=1.0,1.5\), 2.0, 3.0, 4.0.


Figure 16. Computed Wave Number Spectrum. \(\left.\alpha=\alpha \widetilde{k_{1}}\right)\).


Figure 17. Comparison of Computed and Measured Frequency Spectra. On the \(\Pi \tilde{( } \tilde{\omega})\) vs. \(\tilde{\omega}\) Scale: Theory \(\operatorname{Re\delta }=9.9 \cdot 10^{3}\); o Res \(*=\) \(4.2 \cdot 10^{3}, \mathrm{~d} / \delta^{*}=3.18, \oplus \operatorname{Re\delta } *=6.6 \cdot 10^{3}, \mathrm{~d} / \delta^{*}=2.06\), Panton, et al. (1971); \(X \operatorname{Re}_{\delta} *=8 \cdot 10^{3}, d / \delta *=2.93\), Hodgson (1962) ; * Res \(*=13.5 \cdot 10^{3}, \mathrm{~d} / \delta *=1,33\), \(\Delta \operatorname{Re}_{\phi}{ }^{\prime}=81.5 \cdot 10^{3}, \mathrm{~d} / \delta *=.22\), Serafini (1963). On the \(\Pi\) ( \(\hat{\omega}) / C_{f}{ }^{2}\) vs. \(\hat{\omega}\) Scale: - - \(\operatorname{Re}_{8}=\) \(1.8 \cdot 10^{3}, \mathrm{~d} / 8 *=.147\), Outline of Hodgson's Wind Tunnel Data (Private Communication). Note: \(\Pi(\widetilde{\omega})\) Sca1e, \(\Pi=\left[U_{\infty} / U_{c}\left(\mathfrak{k}_{1}\right)\right] \widetilde{\Pi}\left(U_{\infty} \omega_{d} / U_{c}\left(\tilde{k}_{1}\right)\right)\);
\(\Pi(\omega *) / \mathrm{C}_{\mathrm{f}}{ }^{2}\) Scale, \(\Pi=\frac{\mathrm{c}_{2}}{\mathrm{p}}(\omega) \mathrm{U}_{\infty} / \delta * \mathrm{q}^{2}\).


Figure 18. Computed Relative Regional Contributions to the Wave Spectra as a Function of Wave Number. \(\alpha=1.0, \alpha=2.0\). Inner-inner Integral Region: \(0 \leq y 2 / 8 \leq .025\). Middle-middle Integral Region: \(.025<\mathrm{y}_{2} / 8<.20\). Outer-outer Integral Region: \(.20 \leq \mathrm{y}_{2} / \delta \leq 1.0\). \(\widetilde{k}_{1}=\hat{k}_{1} \delta / \delta *\) Where \(\delta / \delta *=\) 6.9 .


Figure 19. The Inner-inner Region Integral Contribution to the Wave Number Spectrum as a Function of Wave Number. \(\alpha=1.0\). \(\widetilde{\mathrm{k}}_{1}=\hat{k}_{1} \delta / \delta \%\) Where \(\delta / \delta *=6.9\).


Figure 20. The Monte Car1o Integration Program Statistical Error. \(\alpha=1.0\). Predicted Standard Deviation for 5000 Iterations. o Computed Standard Deviation for 5000 Iterations.

\section*{VITA}

John H. Linebarger
Candidate for the Degree of
Doctor of Philosophy

Thesis: COMPUTATION OF THE SPECTRA OF TURBULENT BOUNDARY LAYER; SURFACE-PRESSURE FLUCTUATIONS

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in C1arion, Iowa, March 9, 1932, the son of Mr. and Mrs. Warren W. Linebarger.

Education: Graduated from Storm Lake High School, Storm Lake, Iowa in May, 1950; attended Buena Vista College in 1950 and 1951; received the Bachelor of Science degree from the United States Naval Academy in June, 1955, with a major in Engineering; received the Master of Science degree from the Massachusetts Institute of Technology in June, 1961, with a major in Aeronautics and Astronautics; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1972....

Professional Experience: Jet Fighter Pilot, U. S. Air Force, 1957-59; Project Officer, High Altitude Vehic1e Test Section, Eglin AFB, Florida, 1961; Project Officer, Skybolt Missile System, Eglin AFB, Florida, 1962; Project Officer, Gemini Project Office, NASA Manned. Spacecraft Center, Houston, Texas, 1963-65; Assistant Professor of Engineering, LeTourneau College, Longview, Texas, 1965-67.```

