
LINEAR SPACES OVER NON .ARCH~MEDEAN 

VALUED FIELDS 

By 

DAVID BROOKS LEHMANN 
h 

Bachelor of Science in Education 
University of Kansas 

Lawrence, Kansas 
1957 

Master of Arts 
University of Kansas 

Lawrence, Kansas 
1959 

Sul:;>mitted to the Faculty of the Graduate College 
of the Oklahoma State UniversLty 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF EDUCATION 
July, 1972 



1t , 
~Vo..coJ 

/q 7::J. 0 
1.., 'i)-~ 3.L 

(~ f.;JJ ' ..:l_ 



LINEAR SPACES OVER NON -ARCHIMEDEAN 

VALUED FIELDS 

Th~sis Approved: 

OKLAHOMA 
STATE UNIVE!tSITY 

Ll8RARY 

AUG l O 1973 



ACKNOWLEDGMENTS 

To my thesii:; adviser, Dr, Jeanne Agnew, my thanks for the 

suggestion of the thesi13 topic and for her assistanc;t;1 during the prep­

aration of this thesis. Her encouragement and helpful suggestions 

were g:t"eatly appreciated. 

I also thank Dr. John Jewett for serving as my eommittee chair­

man. For his encouragement and advice throughout my program of 

study, I thank Dr, John Jobe, I am also grateful to Dr, Robert 

Alciatore and Dr. Vernon Troxel for serving as committee members, 

Finally, to my wife, Karen, and my daughter, Janell, goes my 

loving gratitude, Without their encouragement, understanding, and 

sacrific:;:es my program of stu,dy and this thesis wou.ld not have been 

completed. 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION . 

Algebra , , . 
Order . 
Topology 

. ' 
. . 

. . . . . 

. . . 
. ' . . 

. . 
Valuations . , , . ' " . ' ' . . . 
The p-Adic Number Fields . ' . 

II. EXAMPLES AND PROPERTIES OF NORMS 

Norm Values . . . , . . . 

III. TOPOLOGICAL PROPERTIES OF 
NON-'ARCHIMEDEAN NORMED 
LINEAR SPACES • . . , . . . 

. . " . . 

The Metric Induced by a Norm , 
Properties of Spheres , . 

. . 

. ' 
Discrete Topology , , . , • • . . . 
Dimension O • • 
Connectedness , •. . . 
Compactness , , ... , . ,, ' . . 
Completeness . , , T , 

Spherical Completeness " ... , . . ' ' 

IV. EQUIVALENT METRICS ' • • ' r 

Locally Non-Arcl+imedean, Metrics , , 
Existence of Equiva,lent Metries . . . , . 
Metrics on a Field , . , , , 

V. CONVEXITY ' ' . . " . ' 

Properties of Convex Sets • , , 
A Geometric Model for o2 and o'z2 . . ,· 

. . 
Convex Hull , , , . . 
O'l:tasi-convexity 
Conclusion 

A SELECT ED BIBLIOGRAPHY 

. . 

iv 

. . " . ~ . . ' . . . 

. . . . . 

Page 

1 

4 
5 
6 

10 
14 

17 

22 

29 

29 
31 
34 
37 
38 
39 
41 
43 

53 

58 
61 
74 

77 

78 
84 
87 
90 
96 

97 



CHAPTER I 

INTRODUCTION 

In recent years increai,ing attention has been given to the study 

of the field Q of p-adic:: numbers. The simplest way of describing 
p 

this field is that it is the completion of the field Q of rational numbers 

using the p-adic valuation / / p in place of the usual absolute value 

for establishing convergence criteria, PreviouE;i theses of an exposi~ 

tory nature have covered in considerable detail the development of the 

p-adic number field and many of its properties. Valuations have been 

discussed at length, It has been observed that a valuation on a field 

induces a metric on the field. In particular, the p-adic valuation 

induces the p.adic metric d , a non-archimedean met:ric. 
p 

It has 

been shown that the metric space (Q , d ) is totally~disconnec;ted. p p 

The space is not compact but the subset O of p·adiG integers is. 
p 

compact. 

The field Qp may be considered as a linear (or vector) space 

over itself. The valuation on Q as a field is a norm on Q as a 
p p 

linear space over itself. We then have a normed linear space over a 

no1;1-arc;:himedean valued field, in this case a non-archimedean normed 

space. This leads to the consideration of arbitrary normed linear 

spaces E over non-archimedean valued fields K and henc;e to non~ 

archimedean normed linear spaces. 

I 



Normed linear spaces over the real or complex number fields 

have played an important role in many areas of mathematics, The 

question arises as to the implications on the linear spac:e E when the 

field K has a non-archimedean valuation. Of parti<;; 1ulc!-r interest is 

the situation in which the norm on E is also non-archimedean. 

2 

This study begins in Chapter U with a discussion of the proper .. 

ties of the norm. Several examples of non-.archimeclean normed li11ear 

spaces are given. The relation between the valuation on K and the 

norm on E is studied. 

The emphasis in Chapter III is on properties of a topological 

nature. The me1;ric induced by a norm is discussed~ as well as some 

of the properties of spheres when the metric is non-archimedean. 

Compactness and connectedness are studied. The most basic consider­

ation in this context is the fact that any non-archimedean metric space 

is 0-dimensional, Finally, the concepts of completeness and spherical 

completeness are introduced and compared. These concepts are 

important in analysis concerning non-archimedean normed linec1.r 

spaces. 

In Chapter IV interest is centered on whether or not the non~ 

archimedean property of the metr.ic is the determining factor for the 

properhies discussed in Chapter III. It: is demonstrated that it is 

possible to define on a set S metrics of various types, for example 

archimedean, non-archimedean, and locally non-archimedean metrics, 

which are equivalent under certain conditions. The hheorems in this 

chapter show that to insure the fundamental topological properties 

exhibited in Chapter III it is sufficient but not nec;essary that the metric 

be non-archimedean. 



The topic of convexity is frequently $tudied in connection with 

linear spaces. The last chapter is a brief introduction to the concept 

of convexity in a linear space over a non~archimedean valued field. 

3 

Of special interest is the fact that the deflnition is of nec:essity indepen­

dent of order. 

Many articles written in the area of non-arc;:himedean normed 

linear spaces eventually lead into the study of locally c;:onvex spaces 

and the results in this paper are of interest in this connection. How­

ever, the discussion of locally convex spaces is beyond the scope of 

this study. 

Most of the literature in the area of non-archimedean normed 

linear spaces has appeared since 1946. At the present time there is 

no convenient single source for this' material as the numerous arti<::le 13 

appear in a variety of journals. Of these articles a high percentage are 

in European journals and have not been translated into English. One of 

the major contributors has been A. F. Manna who has produced a 

steady stream of articles from 1946 to the pre1;3ent, In addition to 

being somewhat inaccessible, many of theirn articles are written at a 

level of difficulty and require such an extensive background that many 

of the interesting properties of non-archimedean normed linear spa,ces 

are lost to the reader. A French-language book by Manna was pub­

lished in 1970, see [IO]. However, this book is a summary of the 

results of his articles and not a definitive study of the area. 

This paper is aimed at a level which requires an understanding 

of the basic properties of the p~adic numbers and of elementary 

topology. Thus anyone, who has had an elementary topology course 



and a number theory course or seminar in whic;h the ppadic numbers 

have been discussed, should be able to :t;'ead it with understanding. 
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Before proceeding with the study of non-archimedean normed 

linear spaces, background material concerning valuations, the p-adic 

number field, and pertinent topology will be briefly reviewed. In 

addition, some notation will be introduced, Readers familiar with this 

background material can proceed directly to Chapter II. However, 

Chapter I will serve as a convenient source for those definitions and 

theorems essential to the remaining chapters. 

Algebra 

The basic algebraic system with which we will be concerned is 

the linear space. 

Definition 1, l. A nonempty set E is said to be a linear space (or 

vector space) over a field K if E is an abelian group under an opera­

tion which we denote by +, and if for every a e: K, x e; E there is an 

element, written ax in E subject to 

(1) a(x+y) =ax+ ay, 

( 2) ( Q:' + (3 )x = ax + [3x , 

(3) a((3x) = (a[3)x, 

(4) lx = x , 

for all a, (3 e: K and x, ye: E (where the 1 represents the unit 

element of K under multiplication). 

It will be assumed that the reader is familiar with other basic 

algebraic systems such as groups, rings, and fields. A limited use 



will be macle of modules and submodules. 

Definition 1. 2. Let R be a ring; a nonempty set M is said to be an 

R-module (or, a module over R) if M is an abelian group under an 

operation + such that for every r e: R and me: M there exists an 

element rm in M subject to: 

(1) r(a+b):::: ra + rb 

(2) r(sa) = (rs)a, and 

(3) (r+s)a=ra+sa 

forall a,be:M and r,se:R. 
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Definition 1. 3, An additive subgroup A of the R-module M is called 

a submodule (or an R-submodule) of M if whenever re: R ancl 

a e: A, then ra e: A. 

Order 

Definition 1. 4. A set s is :eartially ordered by a binary relation < 

on s if 

( 1 ) a < a for a£ S, (Reflexive) 

(2) a < b and a 'f b imp Lies b i a ' (Anti-symmetric) 

(3) a < b and b < c implies a < c. (Transitive) 

The relation C is a common partial order relation. We say 

that a collection of subsets of a space E is partially ordered by set 

inclusion. Note that under a partial ordering not every pair of 

elements of S are related. For example, if E = { l, 2, 3} then 

neither A = { 1, 2} or B = { 2, 3} is a subset of the other. 



Definition 1. 5. A set S 1s linearly ordered by the relation < on S 

if 

( 1) S is partially ordered by .::_ , 

(2) a,b e S implies that either a< b or b < a. 

Thus a linearly ordered set is a set S which is partially 

ordered by a relation .::_ relatively to which each pair of elements of 

S are related. For example, if s 1 :) s2 :) •. , is a monotonic 

decreasing sequence of subsets, then the collection 

linearly ordered by set inclusion. 

{ S } of sets is 
n 

Definition 1. 6. A linearly ordered set such that every non-void sub-

set has a least element is well ordered. 

The set of positive integers with the natural ordering is weH 

ordered. 

Topology 

Included in this section are those topological concepts which are 

especially appropriate to this study. For further references see [5], 

[7], or [20). 

Definition 1. 7. A topological space is a pair (X, T) consisting of a 

set X and a collection T of subsets of X, called open sets, 

satisfying the following axioms: 

(i) The union of open sets is an open set, 

(ii) The finite intersection of open sets is an open set. 

(iii) The set X and the empty set (/J are open sets, 

6 



The collection T is called a topology for X. 

When it is clear which topology X has, we sometimes refer to 

the space X. If the topology on X is induced by the metdc d, we 

will write (X, d). 

7 

Definition 1. 8. A family ~ of sets is a base for a topology if and only 

if ~ is a subfamily of T and for each point x of the space and each 

open set U containing x, there is a member V of ~· such that 

xeVC U, 

Two topologies which can be assigned to any set are the trivial 

topology and the discrete topology. 

Definition 1. 9. Let E be any set. 

(1) The trivial topology on the set E is the topology whose 

only elements are E and 0. 

(2) The discrete topology on the set E is the topology 

containing every subset of E; that is, every subset of 

E is open with respect to the discrete topology. 

In this study we will be primarily interested in metric spaces. 

Definition 1. 10, A metric on a set E is a function d from EX E 

into R such that 

(i) d,(x, y) > 0 and d(x, y) = 0 if and only if x = y, 

(ii) d(x, y) = d(y, x), and 

(iii) d(x, z) < d(x, y) + d(y, z) for eac;h x, y, z e E. 
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The set S with metric d is a metric space and is denoted (E, d). 

If the metric d also satisfies the strong inequality 

(iv) d(x, z) < max {d(x, y), d(y, z)} for each x, y, z e E, 

then d is called a non-archimedean metric and the space {E, d) is 

called a non-archimedean metric space, 

For our purposes a neighborhood of a point p of a topological 

space E will mean any open set containing the point p. A point p is 

a limit point of a set A if every neighborhood of p contains at least 

one point of A distinct from p. The closure of a set A is the set 

together with its limit points and is denoted A, The closure of a set 

is a closed set. It is sometimes defined to be the intersection of all 

clq.sed sets containing A. 

0 
The interior of a set A, denoted A , is the largest open set 

contained in A or equivalently the union of all open sets contained in 

A. It might be noted that the interior of A is the complement of the 

closure of the complement of A. 

Definition 1. 11. The boundary of A, denoted bdry A, is the set of 

all points which are in the closure of A but not in tl;ie interior of A. 

If we denote the complement of A by E ,.,._,A, then we have 

bdry A = A n ( E ~ A.) • 

A situation which will be of special interest to ui, is the one in 

which the set A is both open and closed. In this case the boundary of 

A is empty. 



· Theorem 1. 1. The set A has an empty boundary if and only if A is 

both open and closed. 

Proof: Suppose A is both open and closed. Since A is open, 

9 

E ,..,_, A is closed so that E ,.._, A = E ,......, A. Since A is closed A = A. 

Thus bdry A = A f) E,..., A = An (E ,.._, A) = 0 . Conversely, if 

bdry A = 0, that is An E,..., A = 0, since E......, A C E,..., A we 

have A n (E ,.._, A) = 0, Thus A contains ail its limit points and so 

A i$ closed. Similarly, AC A implies An E,..., A :;: 0 so that 

the set E ,.._, A contains all its limit points. Thus E ,.._, A is closed 

which implies A is open, 

The set A is dense in E if A = E, that is, every point of E 

is a point or a limit point of A. A space E is separable if it has a 

countable dense subset. Thus the rationals are dense in the reals, A 

subset A of E is said to be nowhere dense in E if no nonempty open 

set of E is contained in A. In other words, the interior of the 

closure of a nowhere dense set is empty. 

Since we will be dealiq.g almost exclusively with metric spaces, 

the sepal;"ation properties are not of much interest, This results from 

the fact that every metric space is completely normal and hence 

normal, regular and Hausdorff. 

A subset A of a space E is compact if every open cover 

contains a finite subcover. A subset of E is countably compac;t if 

every infinite subset of A has at least one limit point in A. Every 

compact subset A of E is countably compact. However, in a metric 

space we have the stronger theorem. 
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Theorem 1. 2. In a metric space E, compactness and countable com~ 

pactness are equivalent. 

Other important compactness properties are contained in the 

following theorem. 

Theorem 1. 3. (1) Every c;:losed subset of a c0mpact set is compact. 

(2) Every compact subset of a Hausdorff space is 

closed, 

A subset A o{ a space E is connected if it is not the union of 

two disjoint non-empty sets each of which is open in A~ An equivalent 

statement is that A is connected if and only if no proper subset of A 

is both open al'.ld closed in A. A subset is non~degenerate if it contains 

at least two distinct points. A space E is totally disconnected if its 

only connected subsets are points, that is, if no non~degenerate subset 

is connected. 

Valuations 

In this section the definition of a valuation will be given and some 

of the properties of interest to this study will be listed. 

Definition 1. 12. A valuation on a field K is a function I I from· K 

into the reals such that 

(i) I a I > 0 and / a I = 0 if and only if a = 0, 

(ii) I al3 / = I a / I 13 / for au Q!, 13 e K, 

(iii) /a+ 13 / < I a I + I 13 I for all a, 13 e K , 

If satisfies the additional property 
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(iv) / a + 13 / < max { / a / , / 13 / } for all a, 13 g K , 

then is said to be a nor:i.-archimedean valuation. 

The valuation induces a metric d on K by defining 

d(x, y) = /x -y/, 

Notation: Sinc;e we will be using the term non-a:rchimedean numerous 

times, we will abbreviate it to n, a. For grammatical purposes n. a. 

shoulcl be :read non-archimedean, 

In this paper the notation will be used for an arbitrary 

valuation on the fielcl K, whether the valuation is archimedean or non-

archimedean .. However, in a few cases the usual absolute value, which 

is a valuation, is used. Whenever the symbol is used for the 

absolute value, this will be pointed out. The other special valuation is 

the p.:.adic vah.iation, denoted / , where p is a prime integer, 
p 

We will have more to say about this valuation in the section on the 

p-adic number fields. 

Properties of valuations are given in this theorem. 

Theorem l, 4. If / / is a valuation on K, then 

(1) /1/=1 

(2) / - a / = / a / 

(3) / a - l / = / a / - l 

(4) If / / is n. a. then /a/ > / 13 I implies /a+ 13 / = I a I, 

Theorem 1. 5, A valuation / / on the rational numbers is non­

archimedean if and only if / n / :::_ 1 for every n in Z , the set of 

integers. 
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In the following discussion the term rational integers will be 

used for the set Z of integers to distinguish them from the ring (9 of 

integers given in the following definition. 

Definition 1. 13. Let K be a field with n. a, valuation / , Denote 

by (9 the set (9 = {x e KI /a/ .::_ l}. The set (9 is ca,.lled the valuation 

ring or the ring of integers of the field· K with respect to the valuation 

I • As the name indicates (9 is a ring. The set (9 contains the ring 

Z of rational integers as a subset. 

Definition L 14. The trivial valuation is that valuation defined by 

I a I = 1 • if a f: 0 , 

I a I = o, if a = 0, 

Definition 1. 15, The non-trivial valuations I I and lb on a a 
field K are equivalent if for each a e K, I a I < 1 if c\.nd only if a 

The following definitions concern convergence with respect to a 

valuation I I on a field K. 

Definition 1. 16. Let be a valuation on a field K. 

( 1) A $equence { a } 
n 

of K converges, with respect to the valuation 

I / , to the point a if for each e > 0 the re exists an N such 

that la -al <e n 

(2) A sequence {x} 
n 

whenever n > N, We write lim a = a. 
n 

is Cauchy if for each e > 0 there exists an 

N such that / a - a / < e whenever m, n > N. 
n m 
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(3) A valued field K is complete, with re spec;:t to the valuation j j , 

if every Cauchy sequence of K converges to a point of K, 

(4) The sequenc:e { a } 
n 

is a null sequence, with respect to the 

valuation j j , provided that for each e > 0 there exists an N 

such that j a j < e whenever n > N. 
n 

(5) The set A of elements of a field K with valuation is 

bounded with respect to j j , if the set of norm values j a j , 

a e A is bounded above. 

The following theorem gives necessary and sufficient conditions 

for two valuations to be equivalent. 

Theorem 1. 6, Two non-trivial valuations I c1,nd 
a jb are 

equivalent if and only if they determine the same conve rgenc;e criteria. 

That is, if for each sequence { ~ } 
n 

there exists a point a such that 

lim j an - a j a = 0 if and only if lim j an - a j b = 0 • 

Theorem 1, 7. Ostrowski' s Theorem. The only non-trivialvaluations 

on the field Q of rational numbers are those equivalent to I , the 
p 

p-adic valuation for some pdme p, or to j j , the absolute v~lue. 

As with the absolute value we have the following theorem which 

holds for any valuation. 

Theorem 1. 8. Let K be a field with valuation 

then lim j a j = I a I , 
n 

I . If lim a = a, 
n 



The p-Adic Number Fields 

The simplest non-trivial example of a non-archimedean vaiued 

field is the p-adic number field Q. 
p 

It is assumed that the reader 

has had some experience with Q . However 1 there are certain 
p 

14 

properties which are basic to the discussion in the remaining chapters. 

This section contains a brief review of these properties and the neces..,. 

sary definitions. For a development of the p-adic number field and 

other background material of this kind see [1], [2] or [3], 

The set of p-adic integers O is the set O = {a e Q 11 a I . < 1} . 
p p p p--

Referring to our general discussion of valuations the set 0 
p 

ring of integers of the field Q with respect to the valuation 
p 

Thus O contains the set of rational integers as a subset, 
p 

is the 

The following theorem contains statements concerning the repre-

sentation of p-adic numbers. The term unit is used as in algebra. 

The element :x; is a unit in a ring R if it has an inverse; that is, if 

there exists an element ye; R such that xy = yx = 1 • 

Theorem l. 9. (1) Every non-zero p-adic number a has a unique 

series representation 

m 
a = p 

co 
n 

~ a p = 
n=O n 

co 
m+n 

~ a p 
n=O n 

where O < a < p - l and a 0 -/: 0, n-

(2) If m ~ 0 , then 

(3) A p~adic integer 

a e: 0 . 
p 

co 
a = ~ a pn is a unit in O if and only if 

n=O n P 



(4) Every p-adic number a e Qp has a unique rep:resentation in 

the form a= pne where e is a unit in 0 , and n e Z, 
p 
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With this brief background we can now define the p-adic valuation 

for future reference. 

Definition 1. 17. The p-adic valuation I I is the valuation on Qp 
p 

defined as follows, Let 

1 I a I = - , a # 0 , and 
p pn 

n 
a= p e where e is a unit in 

Io I = o. p 

The p-adic valuation is non-archimedean, that is 

0 • 
p 

Then 

a, f3 e Q • It has some interesting 
p 

convergence properties which are contained in the following theorem. 

Theorem 1, 10; The following are properties of sequences of p-adic 

numbers: 

( 1) A sequenc;e { a } 
n 

of p-adic numbers is Cauchy if and only if for 

each E > 0 there exists an N such that I an+l ~ an I < E when-

ever n :::_ N, 

(2) Every Cauchy sequence of p-adic numbers is bounded, 

(3) From any bounded sequence of p-adic numbers, it is possible to 

select a convergent st1bsequence, 

(4) A sequence { a } 
n 

of p-adic numbers cconverges to a p-adic 

number a if and only if { (l' } 
n 

is Cauchy, 

(5) The field (Q I I ) is complete. p' p 

(6) The field Q of rational numbers is dense in Q. 
p 



(7) Let { a } 
n 

be a non-null Cauchy sequence of p-adic numbers. 

Then the sequence {Ian Ip} of real numbers is eventually 

constant, 

16 

In his thesis, Snook [19] proved several properties of the p .. adic 

where d is the metric induced on Q by 
p p 

the p-adic valuation. That is, d (x, y) = Ix - YI . The fac;t that d p p p 

is a n. a, metric follows from the corresponding properties of the 

valuation I Ip, For example, 

d (x,z) = lx-zl = lx-y+y-zl < max{lx-yl, ly~zl} p p p~ p p 

= max{d(x,y),d(y,z)}. 

The following theorem gives some of the topological properties 

of the space (Q • d ) . 
p p 

Theorem 1. 11. Let (Qp' dp) be the space of p ... adic numbers with the 

Then p-adic metric d . 
p 

(1) The set 

(2) The set 

s.ubset of 

0 
p 

is a compact subset of (Q .• d ) • 
p p 

0 
p 

of p-adic integers is a closed and, bounded 

(Q • d ) ' p p 

(3) Any closed and bounded subset of (Qp, dp) is compact. 

(4) The space (Q ·~ d ) is totally disconnected. 
p p 

In general we denote by G = { I a I I a e: K, a -:f. O} the set of 

non-zero values. In the p-adic case this Sl;lt is a c;yclic group 

1 
gene rated by -

p 
That is G= U 

neZ 



CHAPTER II 

EXAMPLES AND PROPERTIES OF NORMS 

When most students first encounter a linear space over ·a field, 

the scalar field is the rational, real, or complex number field. The 

valuation on the field is the absolute value, an archimedean valuation. 

However, one can consider linear spaces over n. a. valued fields, for 

example, over Q. 
p 

When a norm is introduced on the linear space, 

the space is referred to as a normed linear space, If the norm also 

satisfies the non-archimedean property, the space is called a non-

archimedean normed space. 

In this chapter, E is a normed linear space over a field with 

non-archimedean valuation. The first section contains the basic prop-

e rtie s of the norm and the set of values of the norrp, Some examples 

of n. a. normed linear spaces are given. In addition, the relation 

between the value on K and the norm on E is studied, 

Definition 2. 1. A normed linear space E over ~ field ~ is a linear 

space E for which there is a mapping, JI II: E- R, called a norm 

such that: 

(i) l!x// ~ 0 for all x e E and I/xii = 0 if and only if 

x = 0, 

(ii) II ax I/ = /a/ llx II for all x c E and a e; K where / / 

is the valuation on K, and 

17 
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(iii) II x + y II < II x II + II y II for an x, y e E. 

If in addition the n0rmed linear space E satis.fies property 

(iv) II x + y II < max { II x II , II y II } for all x, y e E , then E 

is called a_ non .. archimedean normed- Hnear space . 
. . - . . . '. ,, 

It is the case in which the valuation on . K is non-archimedean 

with which·we are cencerned. Some properties of the norm will now be 

observed. 

First, it should be noted that property (iv) implies property (iii) 

of a normed space, That is, if II x + y II -~ max { II x II, II y II} , then 

llx+yll < llxll + IIYII, In addition, a norm.bas some properties 

analogous to those of a valuation. 

Theorem 2. l, If II II is a norm on the spac;:e E, then 

( 1 ) 11 -x 11 = 11 x 11 • 

(2) Let II II be n.a. If IIYII < llxll, then· llx+yll = llxll, 

Proof: ( 1) 11-x II = II (-1 )x II = I - I I II x II = II x II . 

. (2) By property (iv) llx+yll ~ max{ llxll, IIYII}:.: llxll, 

But llxll = llx+y-yll ~ max{ llx+yll, IIYII} = llx+yll, Therefore 

II x + Y 11 = 11 x 11 • 

The following is an example of a n. a. normed· linear space·which 

will be used· later. 

Example 2. l. Let E = Kn = {x Ix = (x 1,,,., xn), xi e K}. Considel" 

· E as a linear space over K, a field with n. a, valuati<,>n I I • Define 

llx II = max Ix. I . The norm II II is a non-archimedean norm. 
l<i<n 1 



Proof: Let x= (x 1, ... ,xn) and y= (y 1, ••• ,yn), x,yeKn. 

(i) llx II > 0 , since JxiJ ::::_ 0 by definition of J J , which implies 

that 

since 

max Ix.I 
l<i<n 1 

= II x II ~ 0 • II x II = 0 if and only if x = 0 , 

] x] = m?-x Ix. I = 0 
l<1<n 1. 

if and on,l y if 
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i = 1, 2, ... , n which is true if and only if x. = 0, i = 1,2,.,.,n, . 1 

or x = 0. 

(ii) II ax II = I a I II x II . n 
Let a e K , x e: K , then 

Thus II ax II = max J ax.J = I a J max lx.J :::: J a I llx II • 
l<i<n 1 l<i::_n l. 

(iii) II x + y II ~ max ( II x II ' II y II ) • We have llx+yll = max Jx.+y.J. 
l<i<n ·i ·. 1 - ,-

But Jx.+y.J < max{Jx.J, Jy.J} for each i= 1,2, .. ,,n, since 
:I, 1 - 1 1 

I J is a n, a. valuation, Therefore 

llx+yll < max [max{Jx.J, Jy.J}] ::;max{ max Jx.J, max iy.J} 
-l~i<n 1 1 l<i<n l l<i<n 1 

= max { II x II , II y II } • 

Thus K is a non-archimedean normed linear space, 

Examples of normed linear spaces whi~h are archimedean 

(not n. a. ) inGlude the following: 

( 1) E = K = Q, with the usual absolute value on Q as the valuation 

and as the norm, 

(2) E = C[a, b], the set of all real valued continuous functions on the 

closed interval [a, b]. Let K = R, with the usual absolute value 

and the norm defined by II x II = max I x ( t) I • 
te[a,b] 

(3) E = Cn, the complex Euclidean n-space. Let K = C with the 



20 

usual absolute value. The norm for x = ( a I' ... , an) e n C , is 

2 2 1 /2 . 
given by llxl/ = (Ja 1 J + ... + lanJ ) 

As another example of a n. a. normed linear space we have the 

following. 

Example 2, 2. Let E = Q and K = Q with the p-adic valuation as 
p 

the valuation on Q and its extension to Qp as the norm on E. Thus 

II x II = J x J for x e E = Q and J a J = J a J for a e K = Q, Since 
p p p 

II axil= Jax JP= J a JP JxJP = J a I I/xii we have property (ii) of an.a. 

normed linear space, The remaining properties (i) and (iv) are 

immediate consequences of the corresponding properties for I I . p 

Thus E = Q as a linear space over K = Q is a n. a, normed linear 
p 

space. 

Consider the case E-Q - 5 and K = Q and in addition let the 

absolute value be the valuation on Q and the 5-adic value be the norm 

on Q 5 • Let a = 2 e: Q and x = 3 e Q 5 , Then 

JI ax II = 112 • 3 II = IJ 611 = J 6 J 5 = I. However J a I II x II = I 2 J I 31 5 = 2 • l = 2 •. 

Thus II axil 1 I a I l!xl! so II II, as defined, is not a norm on Q 5 

as a linear space over Q with the ab solute value. 

The preceding discussion indicates that an archimedean valuation 

on K and a n. a. norm on E may not be compatible, This leads one 

to ask what conditions on K are necessary and/or sufficient for a 

norm, IJ II , on E to be n. a. It turns out that the condition that K 

be n. a. is nee es sary but not sufficient. 

Theorem 2. 2. If E is n. a. then K is n. a, 
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Proof: Suppose there exist a, f3 e: K such that 

/a+ f3 / > max { / a/, / f3 /}. Let x -:/: 0 be in E. Then 

II ax+ f3x II = II ( a + f3)x II = I a + f3 / II x II > max { I a/, I f3 /} II x II 

= max { I a I II x II ' I f3 / II x II } 

= max { I/ ax I/ , I/ f3x I/ } • 

Thus I/ I/ is not n. a. which implies E is not n, a, This is a contra ... 

diction, so if E is n. a. K is n. a. 

While K being n. a. is a necessary condition for E to pe n. a., 

the following example shows it is not a sufficient condition, In particu~ 

lar, an archimedean normed linear space E over a n. a. valued field 

K will be constructed, 

Example 2. 3. Let K be a n. a, field. Let E be the linear space of 

all sequences x = (x 1, x 2 , .. ,), xi e: K, such that 
co 

the norm /Ix I/ = ~ /x. /. Then it is not true that 
i= 1 1 

co 

~ Ix. I < co , with 
. 1 i i= 

I/ x + y I/ .:::, max { I/ x I/ , I/ y // } for all x, y e: E , 

as will be shown. First, I/ I/ 
co 

co 
is a norm since ~ /x, / > 0 and 

i= 1 1 

~ / x. / = 0 U and only if x. = 0 
i= l l l 

f o r i = 1 , 2 , • . • s o that x. = 0 . 

And 

co co 

= I a I ~ /xi I 
i= 1 

= I a I /Ix II. I/ ax/I = 
i= l 
~ /ax./ 

l 

Finally, 
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CO CO CO 00 

= ~ /x.+y .. / ~ ~ (/x./+/y./) = ~ /x./+ ~ /y./ 
i= 1 l 1 i= l l 1 i= 1 l i= 1 l 

= I/xi/ + 1/yl/. 

Nowlet x=(l,0,0, .. ,) and y=(0,1,0,0, .• ,). Then 

I/ x I/ = I/ y I/ = 1 and I/ x + y I/ = 2 , Thus I/ x + y I/ > max { I/ x /1, I/ y I/}. 
Thus E is archimedean even though K is n. a. 

Suppose K is a n. a. valued field. It has been shown that E 

need not be n. a. Is it possible in this case fof the inequality 

1/x+yl/ > max{ I/xi/, 1/yll} to hold for all non-zero x and y in E? 

The answer is negative as the foll9wing argument shows, Recall the 

theorem that a valuation / / is n. a, if and only if / n / < l for every 

integer n, Let x be a non-zero element of E. Then 

I/ x + x II = I/ 2x II = / 2 / I/ x I/ ~ // x I/ = max { II x II, II x I/} • Thus 

//x+xll ~ max{ I/xi/, I/xi/}. Thus it is never possible to have 

1/x+yll > max{l/x/1, 1/yl/} for all non-zero elements. 

To summarize, two situations may occur: 

. A. llx+y/1 ~ max{ I/xi/, 1/yl/} for all x,ye: E, in which case E is 

n.a. 

B. There exist x,y# 0 in E such that 1/x+yl/ > max{/jxjJ, !IY/1}. 

In this case E is said to be archimedean. However, as observed 

in the preceding paragraph, this inequality cannot hold for all non-

zero elements of E. 

Norm Values 

Let E be a n. a. normed linear space over a n, a. valued field 

K and define the sets G = { J a/ I a e :K, a :/- O} and 



23 

H = { llx II Ix e E, x I- O}. In the examples of normed linear spaces 

considered so far, it has been the case that H CG, in fact H = G. 

However, in general H is not a subset of G. The following example 

illustrates this situation. 

Example-2. 4. Let K = Q , p I- 2, then the value group G is gen .. 
p 

erated by .!. Thus G = { t I n e Z}. Consider the set of sequences 
p p 

x = {a.} where a. e Q and U,m a. = 0, These sequenc:es form a l l p l . 

, linear space E over Q • Let {C.} be an increasing sequence of 
p l 

positive numbers such that lim c. = C > 0. Then .um la. I c. = 0 
i l 1 p l 

since · lim a. = 0 and the C. are bounded above by C, Define 
l l 

llxll = m?'x I a. I C. • This maximum exists since -l~m I a_. I C. = 0 
l l p l l. ,1 p 1 

{la.I C.} is a bounded sequence of real numbers, 
1 p l 

where 

As defined above, II II is a n. a. norm on E as the following 

argument shows. Clearly la, I C. > 0 so that 
1 p l -

llxll = mfx lailp Ci~ 0. Further, llxll = 0 if and only if la. I ·= o 
1 p 

which is equivalent to ai = 0, i = 1, 2, .• , or x = 0. For a e Qp, 

ax = { a a.} . Thus II ax II = m9-x I a a. I C. = I a I max I a. I C. = I a I II x 11 , 1 1 1p1 pi 1p1 p 

Finally, let x = {a.} and y = {b.}. Then 
1 1 

II x + y II = m9-x I a. + b. I C. < m?,X [max { I a. I , I b. I , } G. J 
1 1 l p 1- l ·l p ·1 p 1 

= m9-x [max; {Ia. I C., I b. I G.}] 
1 lpl lpl 

= max [max I a. I C. , max I b. I G.] 
i lpl i lpl 

= max { II x II • II y II } . 

It can now be shown that the set H = { II x II I x ~ E, x I- O} is not 

the same as the set G = {-1 I n e: Z} . n 
p 

In fact 
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H = {_!_ c. I n e: z, i e: z+} . 
n 1 

To see this fix n and k and define 

{ P} h .J. d n x = a. w ere a. = 0 for · i ,- k, an ak = p • 
· 1 1 

Then la. I c. = o, 
1 p 1 

i -:# k and I ak I Ck = I pn IP Ck = 1n Ck.. Thus 
p . p 

llx II = max la, I C. = - 1- Ck. Therefore for any fixed increasing i · 1 p 1 pn 

sequence {C) of positive nu.robe rs with ·l\m Ci = C > 0, for which at 

least one Ck is not an integral power of p, we have 

H = { llxll} = {~Ck} <J_ G ~F'{~} .. for ne: Z, ke z+, 
p . p 

In the preceding example,. the set G of non-.zero values I at I, 
at e K, had no limit point but O. Such a valuation is said to be 

discrete, The following definitions identify proper.ties of the sets G 

and H where G = { I at I I at E K , at i, 0} and H = { II x II I x e: E , x- # 0} . 

Definition 2, 2. The valuation on K is said to be discrete if the set 

G has no limit point but O, If the valuation on K i1;1 discrete we say 

that K is discrete. 

Similarly, discreteness is defined for E. 

Definition 2. 3. The norm 0n E is said to be discrete if the set H 

has no limit point but O. If the norm on E is discrete, we say that 

E is discrete. 

The p-adic valuation I I on the field Q is a fc;tmUiar p p 
discrete valuation. The absolute value on R is a valuation which is 

not discrete, A valuation which is not discrete is sometimes said to be 

dense. If Q is considered as a linear space 0ver itself with both the 
p 

valuation and the norm being the p-adic valuation Ip, th,;m the norm 

-is a discrete norm. A norm which is not discrete ·will appear in 

Example·2, 5. 
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A natural question one might ask is whether or not there is any 

relation between K being discrete and E being discrete, The 

following theorem and example show that K being discrete is a neces-

sary condition but not a sufficient condition for E to be discrete, 

Theorem 2. 3, If E is discrete, then K is discrete. 

Proof: Let E be discrete, Suppose K is not discrete. Then 

the set of values G has a limit L > 0. Thus for any n there exists 

a point a e: K 
n 

such that (Note that the outer 

symbol I I represents the ordinary absolute value on the reals). 

Thus the sequence {Ian I} has the· limit L. Pick x e: E such that 

llxll=a>O, Consider the sequence a .x e E. 
n 

lim II a x II = lim I a I II x II = II x II lim I a I = a · L > 0. Thus 
n-m n n-oo n n-oo n 

We }lave 

{ II a x II}, a x e: E is a sequence 0f norm values with limit point 
n n 

a L > 0. This 1.s a contradiction since ]!: is discrete by hypothesis. 

Therefore if E is discrete, K is discrete. 

The following example shows that the converse of the preceding 

theorem does not hold. A linear space E over a field K will be given 

in which K is discrete but E is not discrete. 

Example 2. 5, LE;t E = SQ be the set of all power series --------- .. 
(l'l 0!2 

x=a 1t +a2t + ... where a 1,a2 , ... isasetofratienal 

numbers well-ordered in the natural order, that is, a strictly inc:reas-

ing well-ordered set of rational numbers, and the are contained 

. in so:r;ne given field r, Define addition and mu.ltiplicati0n in the usual 

way. For example, if 
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1 5 5 3 5 15 

x = /!: - 3t3 + 2t2 + ~t2 + 8 ' •• and y = 2t4 + 3tr - ~ t8 + 1t2 + 

then 

1 3 15 

x+y tr,+ 2t4 _ 1 s 2 = 8 t + 9t + ... 

and 

5 13 29 10 .. 11 

x·y = 2t4 + 3t6 - 6t12 - 9t3 + 6t3 + ... , 

The set SQ wit4 addition and multiplication thus defined, is a field. 

-a 
Define for x e E, !Ix II = e 1 , x -I O and II O II = 0. ;Here 

II II is actually a n. a. valuation on field E. Clearly II x II ~ 0 and 

llx II = 0 U and on.ly if x = 0, Let 

c:o a. 
l x = ~ a.x and 

. 1 l 1= 

(Xl 13 i 
y= ~ b.:x 

. 1 l 1= 

Then the first term of xy so that 

Finally, the first term of x+y would be determined by min(a 1, 13 1) 

so that 

llx+yll 
-.min(al'l3l) -a 1 -131 

< e :::.: max { e , e } = max { II x II , II y II } • 

Thus II II is a n. a. valuation on SQ • 
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Consider the subset K = S Z of SQ consisting of all series 
oo n. 

1 I: a,t 
i:;: 1 . i 

where {n.} is an ordered subset of Z, the set of integers, 
1 

The set S Z is a subfield of SQ . 

Now consider SQ as a linear space over the :mbfield S z. Let 

the valuation on S Z be the valuation induced on S Z by the valuation 

II II on z 
Then for a e S and x e SQ we have 

llaxll = llall llxll since a and x are both in SQ. The other prop"' 

ertie s of a n. a. norm were verified when it was shown tqat II II was 

a valuation 0n SQ. Thus II II is a n. a. norm on SQ as a linear 

space over sz 
,. . 

The following arguments demonstrate that S Z is discrete but 

that SQ is not discrete. The sets G and H in this case are 

G = {e-n} Z. and H = {e- 0} Q. To show that SZ is discrete 
ne ae 

let L > 0. There exists an N such that 

1 
L = Ntl 

e 
Le(a,b). 

1 
, then there exists an a > N+Z 

e 
Thus (a, b) n G = {L} and L 

1 
If L f. . N+ 1. , there exists an a 1 

>N 
e e 

1 
Ntl 

e 
and 

l 
<L<~. If 

1 e 
b < ·Ntl with 

e 
is not a limit point of G • 

l 
and b < N+l such that 

e 
Le(a,b) and (a, b) n G = {L}. Thus L is not a limlt point of G, 

so G has no limit point but O and S Z is discrete, 

However SQ is ·not discrete; in fact,. it will be shown that H 

is dense in the non-negative reals and hence certainly ha$ limit points 

other than O. Let L > 0 and Le (a, b), a > 0. Then log a < log b 

and there exists a real number a such that log a < -a < log b. Thus 

-a -a 
a < e < b so that e e (a, b) and L is a limit point of H. 

Similarly for e > 0 there is an O! such that 
-a 

O < e < e so O . is a 

limH point 0£ H and H is dense in the non-negativ'e reals. 



We have then an example of a n. a. linear spi,.ce E = SQ 

a field K = S Z where K is discrete but E is not discrete, 

over 

Thus, 
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as indicated before, K being discrete is a nec:essary condition but not 

a sufficient condition for E to be discrete. 



CH.APT ER III 

TOPOLOGICAL PROPERTIES OF NON­

ARCHIMEDEAN NORMED LINEAR 

SPACES 

In Chapter II properties of a linear space were dtsc-ussed which 

are independent o(a topology on E. The discreteness of E and K, 

as define.cl in Chapter II, are independent of any topology on E or K. 

However, giv,.en any normed linear space E over a field K with norm, 

II II , there is always an associated metrtc. This metric then induces 

a topology on E. This chapter is concerned with properties of E 

whtch result from this topology. 

After defining the metric on E, properties of spheres when_the 

metric is non-archimedean are examined. Conditions under which the 

topologies on E and K are discrete ;;1.re explored. This is followed 

by a discussion of connec;tedness and c0mpactness, It is noted that a 

key to the topological properties is the fact that every n. a, metric 

space is O .. dimensional. The chapter ends with a discussion of c;om ... 

pletene s s and spherical completeness and the basic difference between 

them. 

The Metric Induced by a Norm 

Given a normed linear space E over K with norm, II /I , the 

norm induces a metric on E as follows. Define for a,11 x, ye E, 

?.Q 
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d(x, y) = II x - y II • That d is a metric is shown in the next theorem, 

Theorem 3. 1. The function d : E x E- R ii;; a metric on E. 

Proof: (i) d{x, y) ~ 0 since II x - y II ~ 0, Further, d(x, y) == 0 

if and only if x = y since II x - y II = 0 if and only if x - y = 0 

which is true if and only if x = y. 

(ii) d(x, y) = d(y, x) since II x .. y II = II -(y - x) II = II y - x II . 

(iii) d(x, z) .:::_ d(x, y) + d(y, z) since 

l!x-zll = /lx-y+y-zll < llx .. yll + Jly-zll. 

Furthermore, if the norm is n, a. , 

(iv) d(x, z) ~ max{d(x, y), d(y, z)} since 

llx-zll = ll{x-y) + (y-z)II .:::_ max{ /lx-yll, Jly-zll}. 

Thus d is a metric on E and if II II is n, a. then d satisfies the 

strong inequality. 

If the metric d satisfies the strong triangle ineq11ality1 

(1) d(x, z) < max{d(x, y), d(y, z)}, for every x, y, z e E I in addition 

to the usual properties of a metric, then d is called a non-archimedean 

metric 1 If a metric is not n. a., then it is called archimedean. Thus, 

if the strong triangle inequality ( l) fails to hold for even one triple of 

points, the meti,ic is archimedean, 

One indirect consequence of Theorem 2. l (2) is that every 

triangle in a n. a, metric space is at least isosceles, To see this 

suppose that d(y,x) < d(x,z). Then IIY-xll < llx-zll bu,t then by 

Theorem2,l (2) IIY-zll = lly-x+x-zll = max{lly-xll,llx-zll}=l!x~zll. 
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Thus d(y, z) = II y - z II = llx ~ z II = d(x, 21), Thus at least two sides of 

any triangle must be equal in length, 

Properties of Spheres 

As usual the following definitions. ;1re made for any metric d, 

Definition 3. 1. Let S(x0 , r) = {x e EI d(x0 , x) < r}. The set S(x0 , r) 

is called an open sphere with center x 0 and radius r > 0. 

Pefinition 3, 2. Let S[x0 , r] = {x e E I d(x0 , x) ~ r} , The set S[x0 , r] 

is called a closed sphere with center x 0 and radius r > 0. 

If there is any question as to what metric is being µsed, then the 

notation Sd(x0 , r) will be adopted when the metric is d. 

It is known that the collection of all open spheres, as defined 

above, is a base for a topology on E and this topology is said to be 

induced by the metric d, That is, the open sets are those which are 

unions of open spheres. Thus UC E is open, with respect to the 

topology induced by d, if and only U for any x e U there ex\ats a 

positive number e such that the open sphere S(x, e) C U, l\.s one 

would hope, the open spheres are open sets and the closed spheres are 

closed sets. However, if d is a n. a. metric, the sphe:res have some 

unusual properties. 

Theorem 3. 2. Every open sphere in a n, a. metric space (E, d) is a 

do$ed set, 

Proof: Let y be a limit point of the open sphere S(x, r), Since 

E is a metric space there exists a sequence {x } , x e S(x, r), suc;h 
n n 
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1 
that d(x , y) < 

n n 
l 

Also there exists an N such that N < r so that 

1 
d(xN' y) < N < r, It follows that, d(y, x) :::_ max {d(y, xN)' d(xN' x)} < r 

so ye: S(x, r). Therefore, S(x, r) is closed, since it contains all its 

limit points, 

Theorem 3. 3. Every closed sphere in a n, a, metric spac;e (E, d) is 

an open set in E. 

Proof: Let ye: S [x, r]. To show that S(y, r) C S [x, r-], let 

z e: S(y, r), then d(y, z) < r. Thus, d(x, z) .::_ max { d(x, y), d(y, z)} < r, 
-, 

so z e: S[x, r]. Since S(y, r) C S[x, r], S[x, r] is an open set 1 

In addition to the results contained in the preceding two 

theorems, there are some even more surprising properties of spheres 

in a n, a. metric space which are given in the following theorems. The 

theorems are stated for closed spheres but are also valid for open 

spheres. 

Theorem 3. 4. In a n, a. metric space E, if the intersection of two 

closed spheres is non-empty, then one sphere contains the other. 

Proof: Given two spheres S [x, r] and S [y, p], we may assume 

r < p. If the inter section is non .. empty it will be i;;hown that 

S [x, r] C S [y, p]. Since the intersection is assumed to be non-empty 

there exists a point w contained in both spheres. Thus for z € S [x, r] 

d(y,z) .::_ max{d(y,w),d(w,z)} .::_ max{d(y,w), max[d(w,xLd(x,z)]}. 

But we: S [y, p] implies d(w, y) < p, we S [x, r] implies d(x, w) < r, 

and z e: S[x, r] implies d(x, z) < r, Therefore, d(y, z) .::_ p so 

z e: S [y, p], Thus if S [x, r] n S [y, p] i 0 and r .:s_ p, then 

S [x, r] C S [y, p]. 
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Theorem 3. 5. In a n, a. metric space any point of a closed sphere 

may be taken as its center. 

Proof: diven S [x0 , r], let ye: S [x0 , r] and consider the sphere 

S [y, r]. Since y i:: S [x0 , r] n S [y, r], by the previous theorem one 

sphere is a subset of the other, But from the proof of the previous 

theorem, since the radii are equal, each sphere is a subset of the 

other. This implies that S[x0 , r] = S[y, r] where y was any point 

in S [x 0 , r]. Thus any point of a sphere may be taken as its center. 

If one contemplates the preceding theorems it is not surprising 

that mc;1.ny results for a n. a. metric space will be differeµt from what 

we have come to expect from the study of the reals with the usual 

metric. This section concludes with a converse of Theorem 3, 4. 

Theorem 3. 4 and its converse give a characterization of n. a, metric 

spaces. 

Theorem 3. 6. Let E be a metric space. Suppose that any two spheres 

in E are either disjoint or one is a supset of the other. Then E is a 

n. a. metric space. 

Proof: It must be shown that for any a, b, c e: E, 

d(a', c) .:5_ max { d(a, b), d(b, c)}. Suppose this is not true, then there 

exist three points a, b, and c such that d(a, c) > max { d(a, b), d(b, c)} . 

Let d(a, b) :::e 6 and suppose that d(c, b) = 61 < 5. There are two 

cases, (1) 6 1 < 6. Consider S[a, 6] and S[b, 6 1]. Clearly 

b e: S [b, 6 1 ] and since d(a, b) = 6, b e: S [a, 6], Thus b is contained 

in both spheres so by hypothesis one sphere is a subset of the other. 

Since d(c, a) > max { d(a, b), d(b, c)} = 6, we haye ct S [a, 6]. And 
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since one of the spheres is a subset of the other it must be that 

S [a, 6] is a proper subset of S [b, 6 1 ] since c e S [b, 61], However, 

since d(a, b) = 6 > 6 1 , a ¢ S [b, 6 1 ]. This is a contradiction. 

(2) 6 = 6 1 • Since d(c, b) = 6 1 = 6, be S [c, 6], and since 

d(a, b) = 6, be S [a, 6]. Thus the two spheres intersect and so by 

hypothesis one must be a subset of the other. Since 

d(c, a) > 6 = max { d(a, b), d(b, c)}, then c ¢ S [a, 6] and a ff. S [c, 6]. 

Thus each sphere must be a proper subset of the other, a contradiction, 

Since both cases lead to contradictions, E must be a n. a. metric 

space. 

Discrete Topology 

One possible topology which any set may be as signed is the 

discrete topology, that is the topology in which every subset is an open 

set. It could be that the topology induced by a valuation or norm is the 

discrete topology. It turns out that this can happen only when the 

valuation on K is the trivial valuation. Recall that the trivial valuation 

defines Ix I = 1 for x ::/: 0. 

A word of caution is appropriate here. The term discrete has 

been used here in relation to the topology on . K. Earlier a valuation 

on K was called discrete if the set G of values had no limit point but 

0. There is no connection between these two concepts so one must be 

careful to distinguish between them. 

In keeping with our earlier terminology, the statement K is 

discrete means that the valuation on K is discrete. If we are 

referring to the topology on K we will always say that K has the 

discrete topology. Thus there shottld be no reason for confusion. 
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Theorem 3. 7. In order that K have a discrete topology, it is neces-

sary and sufficient that the valuation on K be trivial. 

Proof: Assume that the valuation, I I , on K is the trivial 

valuation. Let x 0 eK. Consider S(x0 ,,}) = {xeKld(x0 ,x) < }}. 

If d(xo,x) = lxo - xi< i°, then lxo - xi = 0 so that x =XO, Thus 

S(x0 , ~) = { x 0} so { x 0} is open. Since x 0 was an arbitral;'y point 

in K, the topology on K induced by d is the discrete topology, 

Conversely, assume that K has the discrete topology. Then 

{ O} is open. Thus there exists an r O > 0 such that S(O, r 0 ) C { O} . 

Since 1 e: K, I 1 I = 1. Suppose there is a ye K such that 

/ y I = 6 = 0 and y -f. 1. This assumption implies that there is an 

element z e K such that O < I z I < 1. In particular, if O < 6 < 1, 

let z = y. If 6 > 1, then y-l i;; K and I y - l I = I y I"" 1 < 1 so that 

-1 ~ z = y will suffice. In any case there is a z t- 1 suc;h that 

h h {Zn} n- co. T us t e sequence converges to O. This is a contra-

diction since there exists an r 0 > 0 with S(O, r 0 ) C {O}. There,,. 

fore Ix I = 1 for any x -f. 0. and I I is the trivial valuation, 

In considering a linear space E over a field K, the valuation 

on K induces a topology on K and the norm on E induces a topology 

on E. One might suspect that there is some relationship between 

these two topologies. The following theorem and example show that K 

having the discrete topology is a necessary condition but not a sufficient 

condition for E to have the discrete topology. 

Theorem 3. 8. If E has the discrete topology, then K has the discrete 

topology. 



36 

Proof: Assume E has the discrete topology. Then { O} is an 

open set in E so there exists a number r O > 0 such that 

S(O, r 0 ) C { O} • Thus if x '/:: 0 we have I/ x I/ > r O > 0. If K does 

not have the discrete topology there exists an a i:: K such that {a} 

is not open in K. Thus for any n > 0, 
1 

S( a. -) 
n 

contains a point 

[3 I- a with O < / [3 - a/ < .!.. • Let x be a non-zero element of E. 
n n n 

Then I/ ([3n.- a)xl/ = / [3n - a/ I/xi/- 0 as n-co so there exists an N 

suchthat l/([3N-a)xl/ < r 0 and ([3N-a)x/.O. Thisisacoritradiction 

sinc;e it was shown earlier that the norm of any non~zero element of E 

must be at least Therefore, if E has the discrete topology then 

K has the discrete topology. 

Corollary 3. 9. If E has the discrete topology, then the valuation on 

K is the trivial valuation. 

Proof: This follows immediately from Theorems 3. 8 and 3, 7. 

The converse of Theorem 3, 8 is not true as the following example 

shows. In this example K is a field with the discrete topology. How-

ever, it will be shown that E, considered as a linear space over K, 

does not have the discrete topology. 

Example 3. 1. Let K be a field with a trivial valuation, By Theorem 

3. 7, K has the discrete topology. Let E be the linear space over K 

n2 
consisting of the set of all power series + a 2 t + •.. , 

where 

Define 

n 1, n 2 ,... is an ordered subset of Z, the set of integers. 
-nl 

1/x I/ = e , x '/:: 0, and // 0 I/ = 0. E is a n. a, normed 

space over K as in Example 2. 5. 
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Also, as in Example 2. 5, 0 is the only limit point of the set of 

norm values /Ix I/, x E E so that E is discrete. However, E does 

not have the discrete topology since {O} is not an open set in E. 

This follows since for any E > 0, there exists an integer n such that 

-n 
e < E, Thus no sphere S(O, E) C {O} so {O} is not an open set, 

The space E is then a linear space over a field K, where K has the 

discrete topology but E does not have the discrete topology. Thus K 

having the discrete topology is not a 1rnfficient condition for the topology 

on E to be discrete. 

Dimension O 

It has been observed that the collection of open spheres in a 

metric space is a base for the topology. In the case of a n. a. metric, 

Theorem 3. 2 tells us that each open sphere is also a closed set, Thus 

in a n. a. metric space there is always a base consisting of sets which 

are both open and closed. Recall that by Theorem 1. 1 , a set has 

empty boundary if and only if it is both open and closed. Thus any n. a. 

metric space has a base consisting of sets with empty boundaries. The 

following definition identifies the property. 

Definition 3. 3. A topological space E has dimen.sion _Q_ at a point x 

if x has arbitrarily small neighborhoods with empty boundaries. Th;3.t 

is, given any neighborhood V of x there is a neighborhood U of x 

with empty boundary such that x E U C V, The space E is called 

0-dimensional if it has dimension O at each point of E. 

Since any n, a. metric space has a base consisting of sets with 

empty boundaries it is clear that the definition of 0-dimensional is 
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satisfied. Thus we have: 

Theorem 3. 10. Every n, a. metric space is 0-dimensional. In 

is 0-dimensional. 

Connectedness 

Another tmmediate result of the existence of proper subsets 

which are both open and closed is that no n, a. metric space is con-

nected. Thus in the case of the p-adic numbers Q , with the topology 
p 

induced by the p-adic metric d (Q d ) is not connected. In this . p' p' p 

case a much stronger result holds. In Snook [19], p. 78, it was 

proven that (Q 'd ) p p 
is totally disconnected; that is, the only connected 

sets are singleton sets, 

One might ask if this is always the case in 0-dimensional spaces. 

However, any set E with the trivial topology, that is with the only 

open sets being the empty set and the set E, serves as an example of 

a space which is 0-dimensional but not totally disconnected. The space 

is 0-dimensional since the only neighborhood of any point x ei E is the 

set E which is both open and closed. E is actually connected, since 

there is certainly no proper subset of E which is both open and 

closed. Thus E cannot be totally disconnected. 

A more restrictive question and one of more interest to this study 

might be, is every n. a. metric space totally disconnected? The 

affirmative answer to this question results from the following theorem 

and the fact that every n. a, metric space is 0-dimensional. 

Theorem 3. 11. Every 0-dimensional metric spac:e is totally disc on-

nected. 
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Proof: Let E be a 0-dimensional metric space, Then the 

topology for E has a base 13 consisting of sets which are both open 

and closed in E. Let H be any non-degenerate subset of E and 

suppose H is connected. Since H is non-degenerate, there C;lxist 

distinct points x and y in H. But since E is a metric space, 

there exists an open set U such that x e U ancl y f. U. Without loss 

of generality, U e 13. But U e 13 implies U is both open and closed 

in E and hence E ,.._, U is open in E. But then x e: H (') U and 

y e H (') (E ,..., U) and both are open sets in H. Clearly their inter-

section is empty. Thus H is the union of disjoint nonempty sets each 

of which is open in H. Therefore H is not connected, Since H was 

an arbitrary non-degenerate subset of E, we have that E is totally 

disconnected. 

Since every n. a. metric space is 0-dimensional by Theorem 

3. 10, we have the following theorem. 

Theorem 3. 12. Every n. a. metric space is totally disconnected. 

Compactness 

Compactness in (Qp' dp) was discussed by Snook [19]. It was 

shown that the set 0 
p 

is a compact subset of (Q 'd ) p p but that the 

space (Q , d ) is not compact since it is not bounded. Recall that in 
p p 

a metric space every compact subset is closed and bounded! It was 

shown that, as in the reals, every closed and bounded subset of 

(Qp' dp) is compact. It follows that the spheres, being closed and 

bounded, are compact. But every point in Op is contained in a 
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sphere. Hence (Q , d ) has the property that every point of Qp has 
p p 

a compact neighborhooq. This property is called local compactness. 

Definition 3, 4. A subset of a space E is locally compact if every 

point of E is contained in a compac;t neighborhood. 

The above argument proves the following theorem. 

Theorem 3. 13. The space (Q. , d ) is locally compact, 
p p 

Thus Q is a n. a. metric space which is locally compact, One p 

might ask if every n. a. metric space is locally compact. However, 

the space S00 , which we have previously encountered, furnishes an 

example of a n, a. metric space which is not locally compact. 

Example 3, 2. As in E:~rnmple 2. 8, let S00 be the subset of 

al a2 
sisting of all formal series x = a 1 t + a 2 t .+ . . . where 

is a finite sequence or a simple sequence of ratLonal numbers tending 

to infinity. Recall that since SaJ is a subset of SQ the sequence of 

exponents is strictly increasing. 

The norm on is defined by llxll if a 1 #- 0, 

II O II = 0. Let d be the induced metric on SaJ • To show that 

(S00 , d) is not locally compact we will show that O is not contained in 

any compact neighborhood. To do this consider the sphere S [O, e], 

E > 0. Then there exists an a t Q such that a ~ -log E, that is, 

- a < log E or equivalently 
.. a 

e < E , Consider the se.t 

A = {x e S00 Ix = ata, a e: R, a # O}. Then x e A implies that 

llx-011 = flxll = e-a< e sothat xeS[O,e]. Thus A isaninfinite 

subset of S [o, e]. Let x, y t A, x # y. Then x = bta a 
and y = ct 



where b 'f c. Therefore ... Q! 
e 
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since b - c 'f O. Clearly A has no limit point since any two d.istinct 

points are a distance - Q! e apart where a is fixed. Thus A is an 

infinite subset of S [o, e] which has no limit point. It follows that 

!}One of the spheres S [0, e] is compact, since in a metric space 

compactness and countable compactness are equivalent, 

But this implies no neighborhood of O is compact sinQe suppose 

U were a compact neighborhood of O. There existi, an e > 0 such 

that O e S [O, e] C U. But then S[O, e] is a closed subset of the 

compact set U and hence is compact. This contradiction implies that 

no neighborhood of O is compact and hence S is not locally compact, 

We have then that (Seo, d) is an example of a n. a. metric space 

in which not all closed and bounded sets are compact, not all spheres 

are compact, and which is not locally compact. 

Completeness 

Two examples of complete valued fields which have been 

encountered are the set of real numbers with the absolute value ancl the 

set of p-adic; numbers with the p-adic valuation. The concept of c0m-

pleteness extends to normed linear spaces. In the following definition 

some terms which have previously been applied only to valued fields 

will be extended to normed linear spaces. 

Definition 3. 5. Let E be a normed linear space with norm II II . 

(a) A sequence {x} 
n 

in E is Cauchy if and only if for any E > 0 

the re exists an integer N such that m, n > N implies that 

!Ix "x II < e, n m 



(b) A sequence {xn} in E converges to x in E :i,.f and only if f0r 

any e > 0 there exists an N such that n > N implies that 

llxn - x II < e ' 

(c) A normed linear space E is complete :j.f and only if every Cauchy 

sequence in E converges to an element of E. 

(d) A complete normed linear space is called a Ban<;1.ch space, 

Several theorems carry over as well and they will be stated 

without proof, 

Theorem 3. 14. Let E be a n. a, normed linear space. 

(a) A sequence {x } in E is Cauchy if and only if for each e > 0 
n 

there exists an N such that llxn+l "xn II < e whenever n > N. 

(b) If {x } is a non-null Cauchy sequence in a n. a, normed linear n 

space then the sequence { II x II} is eventually constant. 
n . 

Example 3, 3. The space Kn of Example 2. 1, where K is a 

complete valued field, is a complete normed linear space, To see that 

Kn is complete, let {x } = 
m 

{ (m) (m) (m)} 
(xl ,Xz ' ... ,xn be a Cauchy 

II x II = II (x l' •.• ; x ) II :::, max Ix. I 
n l<i<n l 

. Kn. sequence in Recall that 

where I I is the n. a, valuation on K. Then for each e > 0 there 

exists an M such that llxm+l -xmll = 

whenever m > M. Hence for each i, 

max I x.(m+ 1) - x.(m) I 
l<i<n 1 · 1 
- --
l ~ i~n. 

I x.(m+l) - x.(m) I < e whenever m > M, so that the sequence 
l l 

{x.(m)} is Cauchy, with ·respect to the valuation I , for 
l 

< E 

i = 1,2, ... ,n. /\ 
Since K is complete, there exists an x, such that 

. l 

lim x.(m) = 
m-ai i 

/\ 
x .• 

l 
Thus for any e > 0 there exists an N. 

l 
such that 
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h lx.(m) - l\x . • / < E • m > N. implies t at Let N = max N. and 
1 1 1 l<i<n 1 

/\ /\ /\ A A 
x = (x 1,x2 , •.• ,xn). Then xe K and 

//x -~// = max /x.(m)_~.j < E for 
m l<i<n 1 l 

m > N. Thus the Cauchy 

{ } A Kn sequence x converges to xi:: 
m 

so is complete. 

The following classical theorem of Cantor gives a characteriza-

tion of metric spaces which are c;omplete. 

Theorem 3. 15. Among the metric spaces the complete spaces are 

characterized by the following property; every sequence of non ... void 

of which the diameters tend to O, has a 

non-empty intersecnion. 

Spherical Completenss 

The notion of spherically complete spaces was introduced by 

Ingleton [9], for the study of the Hahn-Banach theorem in n. a, normed 

spaces. He showed that a n. a. valued field has the Hahn-Banach 

property if and only if it is spherically complete. Monna [13] has 

since generalized the concept to locally convex spaces. Recall the K 

is said to have the Hahn-Banach property if, for any n. a. space F 

over K, every linear functional defined on a subspace of F possesses 

an extension of the same norm defined on the whole space F. This 

study will not be concerned with the Hahn-Banach property. However, 

because of the importance of spherical completeness in relation to the 

Hahn..,Banach property and other areas of n. a. analysis, spherical 

completeness will be discussed and compared to completeness, 

Definition 3. 6. A n. a. normed linear space E over a n. a. valued 

field K is called spherically complete if every family of closed 
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spheres which is linearly ordered by set inclusion has a non-empty 

ititersection. 

Recall that if two spheres intersect in a n. a. normed linear 

space, then one is a subset of the other. Thus any family O of 

spheres such that any two intersect is linearly ~:>rdered by set inclusion. 

For practical purposes, in proofs of spherical completeness it is 

sufficient to show that any decreasing sequence s1 :) s2 :) • . . of 

closed spheres has a non-empty intersection. This results from the· 

fact that from any family l) of closed spheres that is linearly orde1'ed 

by set inclusion one may extract a decreasing sequence S1 ) s2 ) .•• 

such that each sphere in the original family u contains one of thf~ 

spheres s . 
n 

Thus any point in common with each of the Si, 

i = 1, 2,. ~, will be a common point of the spheres in u . 
An important relationship between completeness and spherical 

completen·ess is given by the following theorem. 

Theorem 3. 16. Each spherically .complete space E is complete with 

respect to the topology induced on E by the norm on E. 

Pro0f: Note that spherical completeness is by definition a 

property of n. a. normed linear spaces.·· Thus · E is n. a, by hypoth ... 

esis. The proof follows from the char·acterization of complete metric 

spaces given by Theorem 3, 15. Let · A 1 ) A 2 :) .. , be a sequence 

of non-void closed subsets of E whose diameters tend to O. 

be the diameter of the set A . n For each n = l, 2,, .• 

then A C S [x , d ] and { dn} - 0, We then have n n n 

An+l C An C S [xn' dn], Since An+l C S [xn+l' dntl], 

pick 

Let d 
n 

x e: A ·s n n 



S[xn + l' dn+ l] n S[xn, dn] 'f 0 . But without loss of generality 

dn+l .:::. dn so S [xn+l' dn+l] C S [xn' dn]. Thus 

S [x 1, d 1 J ) S [x2 , d 2 ] ) But E is spherically complete so 

there exists 

co 

XO e n s [x ' d ] • 
n=l n n 

(X) 

45 

Suppose x 0 i n An. Then there exists an N such that x 0 i AN and 
n=l 

since An C AN for n :::_ N, x 0 i An for n > N, Since AN is 

closed and x0 i:: E "'AN, there exists a sphere S(x0 , E) C E "'AN. 

But {dn} .-o implies there exists an N 0 such that dN
0 

< Ei, 

N l = max (N 0 , N). Then S(x0, dN ) C E"' AN , that is 
1 1 

S(x0 , dN ) n AN = 0. However xN e: AN so 
1 1 l 1 

But x 0 e: S [xN , dN ] implies that d(x0 , xN ) 
1 1 co 1 

diction implies that x 0 e: n An and hence that E is complete. 
n=l 

Let 

Thus spherical completeness implies completeness. The con-

verse is not true in general as will be demonstrated in Example 3. 4. 

However, by means of additional restrictions on E, suffic:ient condi-

tions can be stated for a complete space to be spherica,lly c0mplete. 

For example, consider the following theorem. 

Theorem 3. 17. If E is a complete n. a. normed linear i;;pace whose 

norm is discrete, then E is spherically complete. 

Proof: It suffices t0 sh0w that the intersection of any sequence 

of closed spheres s 1 :) s2 0 . . . is non-empty. Two ca$es must be 

considered. 
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(a) Suppose that the diameters of the spheres tend to O. Then by 

Theorem 3. 15, since E is complete, the intersection is non~ 

empty. 

(b) Suppose that the diameters do not tend to 6, In this case the 

diameters converge to a positive l.'lumber and hence are constant 

from some point on since E is discrete, Thus the intersecticm 

is non-empty. 

Corollary 3. 18. Each complete field with a discrete n. a, valuation is 

spherically complete. In particular, the p""adic fieLcl. Qp with the 

p-adic valuation I Ip is spherically complete, 

It has previously been shown that if K is complete then Kn is 

complete. A similar result holds for · Kn with respect to spherical 

completeness. 

Theorem 3. 19, The space Kn is spherically complete if K is 

spherically complete. 

n Proof: Recall that the norm on · K ·was llxll = 
It suffices to consider a sequence of closed spheres in 

max Ix. I. 
l<i<n l. 

Kn' sl .:) s2 =:) ••. and show that their. intersection is non-empty, 

Let S. = 
1 

l/x-a(i)/1 

(") 
[a 1 , di] . Then if x = (x 1, x 2 , • , • , xn) e: 81 , 

= max /x. - a.(i) I < d.. Let Pk: Kn-Ek 
l <j < n J J 1 

be the proj ec.,. 

- - th 
tion from Kn into the k coordinate space Ek; that is, 

(k) 
Pk(x) = (O, ..• ,xk' 0, ... , O). Pk(S.) = S. , Then 

l l. 
Let 



Thus s/k) =:) s 2(k) ::> , , . is a sequence of closed spheres in Ek. 

But Ek is isomorphic to K by the isomorphism cp defined by 

<p(O,.,., xk' 0, ... , 0) = xk. Since K is spherically complete, E is 
co 

spherically complete and Jl S.(k) is non-empty for each 
i= 1 1 co 

k = 1, 2, ... , n. Choose ak e: Jl S.(k) for k = 1, 2,, •. , n. Then 
i= l l 
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a = ( a 1, ••. , an) is a point of Kn, contained in each of the spheres 

S 1, s 2 ,... so that the intersection is non ... empty. Therefore Kn is 

spherically complete. 

From the study of metric spaces it is known that any closed sub .. 

set of a complete metric space is complete. The situc1,tion with regard 

to spherical completeness is not the same, In fact the following 

example provides a spherically complete space containing a closed sub-

set which is not spherically complete, 

Example 3, 4. Let E be the space of Example 2. 5. That is, E = SQ 

al a2 
is the set of formal power series x = a 1t + a 2 t t.,. where 

a 1, a 2,... is a strictly increasing well-ordered set of rational 

numbers and the a. are contained in some field r . As before, 
1 

-al Q 
define llx II = e x -:f. 0, II O II = 0. It was observed that S is 

a field and II II is a n,a. valuation on the field. Let K = S00 

SQ 
co a. 

the subfield of consisting of power series z:: a. t 1 where 
i= 1 1 

al,a2'''' is a finite sequence or a simple sequence tending to 
co 

By simple we mean the set U {a.} has no limit point but co. 
. I i 

be 

co • 

1= Q Q 
Since S00 is a subfield of S , S may be considered as a 

1. Seo • 1near space over The valuation II II onfield SQ bec:omesa 

norm on the n. a. linear space over since for and 

x e SQ, II ax II = II a II II x II . It will be shown that the space SQ is 
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spherically complete but that S00 is a closed subspace of SQ that is 

not spherically complete. 

Sro is a Closed Subspace of SQ 

r 1 r2 
Let x 0 = c 1 t + c 2 t + . . . be a limit point of Seo , Suppose 

Then it must be the case that the set r 1, r 2 , , , , is not a 

simple sequence and hence has a finite limit point. Since the set 

r 1, r 2 ,... is well-ordered in the natural (increasing) order, it must 

have a smallest limit point L. 

Since is a limit point of Seo in SQ and SQ is a metric 

space, the re exists a sequence X l' X2' • • • where Seo • x e , 
n 

such that 

II x 0 - xn II < e -n . Let N > L and 

00 CL N 
~ a. N t i, 

i= 1 11 

Then l/x0 - xN II < e -N < e -L However, since L is the smc;1.llest 

limit point of the set r 1, r 2 , .•. , which is well-ordered so that the 

rf3 1 s are increasing, this requires that the seq\lence r 1, r 2 , ••• 
"'r. 

h L "t 1· "t · t Thus r. < L so that e 1 > e -L for ave as 1 s im1 po1n . 1 _ 

i=l,2, .•• 

Furthermore, suppose that a. N = r. 
l, 1 

for i=l,2, ... and 

a. N = c. 
l, l 

for i=l,2, .... Then the sequence a 1 N' a z N' • · , 
I ' 

wcmld have L as a limit point, This is a contradiction sinc;e this 

sequence is a simple sequence whose only limit point is oo , Thus 

there exists an M such that aM, N -/: rM or aM, N i: c;M. In either 

-rM L N 
cc1,se we would have II x 0 - xN /I :::_ e · > e"' > e"' But earlier we 

had that 
00 

This contradiction implies that x 0 e: S 
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and since x was an arbitrary limit point of S, it follows that S is a 

closed subspace of SQ. 

SQ is Spherically Complete 

It suffices to consider a sequence s1 :) s2 :) . • • of closed 

spheres in SQ and show that their intersection is non-empty. Let 

be a fixed point in 

x 
n 

s 
n 

a a 
=a tl,n+a t2•n+ 

l,n 2,n 

for n = 1, 2., . . . • Let 

.. ' 

r 
n 

be the radius of 

S and denote by i(n) the ordinal of the set of all i such that 
n 

exp[-a. ] > r • 
1, n n 

xn+l e Sn+ 1 , then 

where 

Thus i > i(n) 

so 

implies exp [ - a . ] < r , 
· 1, n - · n 

.a a 

r • n 
Thus 

b t l + b t 2 + ..,.. l 2 ..... 

This can only happen if 

Let 

and 

ai, n+l = ai, n for i < i(n). Further, if ai(n), n+l exists, then 

exp [-ai(n), n+l] ~ rn. Since Sn+l ( Sn, rn+l ~ rn, so that 

i(n + 1) > i(n). A common point of the spheres S can now be con-
n 

structed. Let 

a. 1 a. 2 
~ a. It 1, + ~ a. zt 1, . + , .. 

i<i(l) 1'. i(l)~i<i(2) 1 ' 

+ ~ 

i(n-l)<i<i(n) 

a. 
t 1, n. + a. 

1, n • ' 9 • 

By construction, x 0 agrees with x 1 for i < i(l) so that x 0 e s1 . 



But Xz e: s2 C sl implies that Xz agrees with .xl and henc;e XO 

for i < i(l), Again, by construction, x 0 agrees with x 4 for 
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i(l) :::, i < i(2) and hence for i < i(2) so x 0 e: s 2 . This process may 

be continued so that for any n, x 0 e Sn and hence 

SQ is spherically complete. 

S00 is not Spherically Complete 

Let x 
n 

oo a. 
= ~ t l 

i= 1 
where for i = 

Thus 

1,2, ... ,n but 

ai = i for i > n, Then xn e S00 since the sequence a 1, a 2 ,.,, is 

[ n+l] a simple sequence which tends to oo. Let rn = exp - n+Z , Define 

Sn= S[xn' rn] = {x e: S00 I llx -xnll:::, rn}. We will show (i) Sn+l C Sn 
00 

and (ii) n s = ~ . 
n=l n 

But llx -xn+l II :'.:. rn+l < r and 
n 

n+l 
i i 

7+i"" 
CX) 

. ti 
n 

titl 
00 

ti II llxn+l - xn II = II ~ t1 + ~ ~ ~ 

i= 1 i=n+2 i= 1 i=n+l 

n+l 

= II -tn+2 - tn+ l /I = [ n+l] 
exp -ill = rn 

00 

(ii) Suppose there exists an x e: n S. , then x e S [x , r ] so 
n=l n n n 

II x - x II < r for n = l, 2, , . . . Tlius x agrees with 
n -- n 

x 
n 

for 
CX) 13. 

1 < i < n ; that is, if x = ~ bit 1 , then bi = l 
i= l 

i 
and 131 = TIT 

for i=l,2, •.. ,n. 
00 i 

Since this is true for every n = I, Z,, •. , 

then x = ~ ti+ l . 
i=l 

But the sequence has the limit 1 . 



(X) 

that x £ S • 

complete. 

This is a contradiction since 
co 

Therefore ll S = ~ and S00 

n=l n 

co 
XE I) S implies 

n=l n 
is not spherically 

We have then an example of a spherically complete space 
Q 

s' • 
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containing a closed subspace S00 which is not spherically complete, 

Of course since spherical completeness implies completeness SQ is 

complete. Thus S00 is complete since any closed subspace of a 

complete space is complete. 

The example can be taken one step further and consider the sub-

field S Z 

nl 
x = a 1t 

con sis ting of all formal series of the form 

where the sequence n 1, n 21 , , • is a simple 

sequence of integers increasing to co and where a 1, a 2 , •. , belong to 
-n 

r, Define llxll = e 1 if a 1 I O, We can then eonsider S00 as a 

linear space over S Z , The norm on S Z is discrete since the set 

{ e -n} neZ of norm values has no limit point but O, 

The space S Z is complete. This results from the fact that 

z 
S is a closed subspac;e of the complete space S00 and hence is 

complete. The set S Z is a closed subset of S00 as follows. Let 

be a limit point of S Z , Since is a metric space there exists 

x n 

a a 
= a t l,n+a t 2,n+ 

l,n 2,n . . . ~ 

Since x 0 ~ S00 ...., S Z it must be that there exists such that 

is not an integer. But then the term aKtl;< would necessarily appear 

in the difference x 0 - xK, Thus llx0 - xK II ~ e -K. But we had 
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-K 
e This contradiction implies that and henGe 

S Z is closed since it contains all its limit points. 

It has been shown that S Z is a complete normed linear space 

whose norm is discrete. 

complete. 

z 
By Theorem 2. 16, S is sphE:lrically 

To summarize, SQ is a i;;pherically complete spac;e containing 

a closed subspace S00 which is not spherically complete, And the 

space S00 which is not spherically complete contl:!-ins a closed sub-

space s 2 which is spherically c;omplete, 



CHAPTER IV 

EQUIVALENT METRICS 

Given a set E one can define various metrics on the set, 

Suppose that two metrics d and d' are defined on the set E. With 

each of the metrics is associated a collection of spheres. Each 

collection of spheres B = {Sd(x, r) Ix e: E, r > O} and 

B' = {Sd 1(x, r) Ix e E, r > O} is a base for a topology on E, From a 

topological standpoint it is of interest to see if the topologiE)s ind,uced 

on E by d and d I are the same. In particular, is a set wh:i,ch is 

open in (E, d) also open in (E, d') and conversely. If this is the 

case, d and d I are called equivalent or topologically equivalent 

metrics. 

Definition 4, 1. Let E be a set. Let d and d' be two metrics on. E, 

The metrics d and d' are called tqpologically equivalent metrics for 

E if they determine the same topology on E. 

In this paper, the term equivalent metric will be used, To prove 

that two metrics d and d' are equivalent it is sufficient to show that 

given any point x e E and any sphere Sd(x, r) there exists an 

r' > 0 such that Sd 1(x, r') C Sd(x, r) and for any x e; E and sphere 

Sd 1 (x, r) there exists an r' > 0 such that Sd(x, r') C Sd 1 (x, r). If 

this is true, since each of the two sets of spheres is a base for the 

respective topologies, any set open in one topological space will 



54 

necessarily be open in the other, Thus the open sets are the same 

which means the topologkts on E are the same, 

In the preceding chapter it was noted that a norm on a. linear 

space E induces a metric d on ~. To illustrate the concept of 

equivalent metrics the first three examples of this chapter involve 

metrics induced on the same linear space by three different: norms, 

Although the metrics are of different types, non-archimedean and 

archimedean, they are shown to be equivalent, The linear space 

involved is the space Qp2 where 

pairs of p-adic numbers, 

Q 2 denotes the set of all ordered 
p 

Example 4. l, Define II x 11 1 = max { / x 1 / , / x 2 / } 
p p 

for 

2 
X = (x l' x 2 ) £ Q p , This example is a special case of the space 

given in Example 2. 1 where K = Q and ' . p n = Z. Recall that if K is 

a n. a, valued field then Kn with the norm llxll 1 = l~i~n /xi/ i13 a 

n. a. normed Unear space. Since Q is a n. a. valued field it fol10ws 
p 

that Q 2 is a n. a. normed linear space, 
p 

Thus the induced metric 

on Q 2 is a n. a, metric. 
p 

ln searching for an example of an c;t;rchimedean metric on Q2 
p 

first step is to analyze the situation for R 2 • The standard metric on 

R 2 , considered as a linear space over R, is induced by the norm 

llx II = jx12 + x 22 for x = (x 1, x 2 ) e R 2 , Thus II II. is indeed a 

mapping from R 2 into R, which it must be to be a n0rm on R 2 • 

However if the same definition were.used in o 2 , that is, 
p 

for problems would be 

encountered immediately since this mapping ·is not defined for alL 

x e Q 2 and when it is defined its values are not necessarily in R. 
p 

a 



In R 2 it is known that jx1
2 + x 2

2 = /lx 1 I 2 + lx2 I 2 so this 

suggests that one might try the mapping llxll = /lx 1 1 2 + lx2 1 2 
. . p p 

which is certainly well-defined and is a mapping of Q 2 into R. 
p 

However, it is easily shown that in R 2 the metdc induced by the 

is equivalent to that induced by the norm 
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norm llxll = lx 1 I + lx2 I 
II x II = /Ix 1 I 2 + I x2 I 2 • The simpler mapping llx II = /x 1 / + lx2 I p p 

has been chosen as an example of an archimedean norm on Q 2 . 
p 

Example 4. 2. Define llxll 2 = /x 1 / + /x2 I , x = (x 1,x2 ) e: Q 2 , First, 
p p p 

II 11 2 isanormon a/ asfollows. Clearly llxll 2 ,::.0 and 

llxll 2 = 0 if and only if x = 0. Let a e: Qp and x = (x 1,x2 ) e: Qp2 , 

Then 

Finally, let x = (x 1,x2 ) apd y = (y 1, y 2 ), Then 

Next it is shown that the norm II I/ 2 is archimedean. To see 

this let x = (1, O) and y = (0, 1), Then 

II x + Y II 2 = Ix 1 + Y 11 P + I x2 + Y 2 1 P = / 1 IP + I 1 IP = 2 • 
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But 

max ( /I x /I 2 , IJ y /I 2 ) = max ( / 1 / + / 0 / 1 / 0 / + / 1 / ) = max ( 1, 1 ) = 1 . p p p p 

Thyrefore, IJx+ylJ 2 > max(IJxlJ 2 , IJylJ 2 ). Thus IJ /1 2 is 

archimedean and the metric d 2 (x, y) = IJ x - y I/ 2 is a:rrchimedean. 

Before moving on to the next example let us make one other 

observation which will be of interest later in the chapter. Consider 

the sphere Sd (O, e) = {x e Q 2 / d 2 (x, 0) < e} where e is an 
2 p . 

arbitrary positive number, The metric d 2 of Exarn:p!e 4. 2 is not 

n. a. in any such sphere, that is, for any e > 0. This can be seen as 

follows. For any e > 0 there exists an N such that 

N N 
x = (p , 0) and y = (0, p ) • Then d 2 (x,O) = IJx-OIJ = 
= /pN / + / 0 / = 

p p 
1 

- < E N 
1 

and similarly d 2 {y, O) = N 

O,x,ye Sd (O,e) 
2 

p 
and yet 

= 2 >-.1-= 
1'f N 
p p 

is not n. a. on Sd (0, e) for any e > 0, 
2 

p 

1 N < E. Let 

irx/1 
< e. Thus 

Example4.3. Define IJxlJ 3 =min{/x 1 / t/x2 / ,1}. Thisisanorm 
p p 

which hae the same properties as the one in Example 4. 2 if the sum 

/ x 1 / t /x2 / is at most 1 . Thus the norm /I IJ 3 is archimedean 
p p 

so the induced metric d 3 is also archimedean, Let x, y, and z 

be three points of o/ such that the distance, with respect to d 2 , 

between two pairs of points is ~l. Then the dLstance, with respect 

to d 3 , between the two pairs of points is I. Therefore, the triangle 
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determined by the three points is isosceles and the base is the shortest 

side. Thus the strong inequality is satisfied for the$e three points. 

This metric is then n. c;t. 11 in a large sense 11 • 

Although the metrics in Example 4. I to 4. 3 are of different 

typeE;i, they will now be shown to be equivalent. To do this it will be 

shown that the metrics a1 and a3 are each equivalent to a2 • First 

consider d 1 and dz. Let Sd [y, r] be given where y = (y 1~ y2 ). 
I 

Let x = (x 1, x 2 ) € Sd [y, r]. Then 
z 

Ix 1 ~ y 1 I + I x2 - y z I .::, r ' 
p p 

But then 

11 x .,. y 111 = max { I x 1 - y 1 I ' I x z - y z I } ~ I x 1 - y 1 I + I x z - y 2 I < r 
p p p p 

so x € Sd [y, r]. Thus Sd [y, r] C Sd [y, r] so any d l -open set is 
1 Z l 

a2 -open. Now let Sd [y,r] be_given. Let x= (x 1,xz)eSd [y,f], 
Z l 

Then /lx-y/1 1 = max{/x 1 -y1 1, jx2 -Yzl} ~ I so /x 1 -y1 j ~f 
p p . p 

and jx2 - Yz I ~ f But then 
p 

= r 

so x e Sdz [y, r]. Thus Sdl [y, ~] C Sqz [y, r] so any a2 -open set is 

d 1 -open. Hence d 1 and dz are equivalent. 

Now it will be shown that a3 and dz are equivalent, Let 

Sd [y, r] be given where y = (y 1, Yz). 
3 

Let x ~ sd [y, r L 
2 

Then 
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min { Ix 1 - y 1 / + / x 2 - y 2 1 , 1} 
p p 

< Ix 1 - y 1 I + I Xz ~ y 2 I < r 
p p 

so that x e: S d [ y, r ] . 
3 

Thus Sd [y, r] C Sd [y, r] so any d 3 -open set 
2 3 

is d 2 -open. Now let Sd [y,r] be given. Let r' <min{l,r}, Let 
2 

x e: S d [ y, r ' ] . Then 
3 

= min { I x 1 - y 1 / + / x 2 "" y 2 / , l } 
p p 

= Ix I - YI I + I x2 - Y 2 I 
p p 

= //x - y 1/ 2 , 

But xe: Sd [y,r'] implies that l/x-y/1 3 < r' < r. 
3 

Thus 

l/x-yl/ 2 < r so xe: Sd [y,r]. Hence 
4 

sd [y, :i;- 1 ] c sd [y, r] so every 
3 2 

d 2 -open set is d 3 ~open. It follows that d 2 and d 3 are equivalent, 

It has been shown that d 1 and d 3 are each equivalent to d 2 . 

Since equiv~lence of metrics is an equivalence relation this implies 

d 1 is also equivalent to d 3 . 

Locally Non-Archimedean Metrics 

In E.x,ample 4. 2 (and 4. 3) there exists at least one point which 

had no neighborhood in which the metric was n. a. However, it is 

possible for a metric d to be archimedean and yet have the property 

that every point has a neighborhood in which d is non,-archimedean, 

.. 't, "' 

Definition 4. 2. The metric d is called locally non-archimedean ~~' 

the space E, if for each point a c E there exists a neighborhood U 

of a such that for any x, y, z e U, d(x, y) .:::_ max { d(x, z), d(z, y)}. 
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The following example gives a construct!on of an archimedean 

metric which is locally n. a, 

E~ample 4. 4. Let E = o 3 , the set of 3-adic integers, with the n. a. 

metric d 3 (x, y) = Ix - y / 3 . Consider the three disjoint spheres of 

1 l l 1 
radius 3' X=S[o, 3 ], Y=S[l, 3 ] and Z = S [2, 3 ]. Let we o3 , 

(X) 

i 
where w= ~ a.3 • Then ao = 0, 1, or 2 and we:X if and only 

i=O 
l 

if a = 0, we: Y 0 
if and oniy if a = 1, and 

0 
weZ if and only if 

a 0 = 2. Thus XU YU Z = o3 and they are disjoint. Furthermore, 

X, Y, and Z are each open and closed, For example, 

S[1,iJ = S(l, 1). 

Now define a new metric d by 

d3(xl,x2) 

1 + d 3 (x 1 , x 2 ) 
for 

and similarly for Y and Z , Also define: 

d(x, y) = 1 , XE X, y € Y, 

d ( y, z) = 1 , y E Y , z i:: Z , and 

d (x, z) = 2 , x e: X , z e Z , 

One can show that d is a metric. However, if x e: X, y E: Y, 

and z e: Z, we have 2 = d{x,z) > max{d(x,y),d(y,z)} = l so that d 

is archimedean. Even though d is not n. a, it is still locally n. a. as 

the following argument shows. 

Let x 1, x 2 , x 3 .; X. (An analogous proof holds for Y and Z ) , 

Then, 
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max { d 3 (x 1, x 3 ), d 3 (x3 , x 2 )} 
= 

1 + max { d 3 (x 1, x 3 ), d 3 (x3 , x 2 )} 

1 
= I 

1 + ----------~ 
max{d3 (x 1,x3 ), d 3 (x3 ,x2 )} 

and so 

1 
max{d(x 1,x3 ),d(xyx2 )} > 1 

I + ----~---~--
max { d 3 (x 1, x 3 ), d 3 (x3 , x 2 )} 

d3 (xl' x2) 

I + d 3 (x 1, x 2 ) 
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Any point p e: E must be in one of the sets X, Y, or Z , say 

X, and there exists a neighborhood U of p such that p e U ( X, 

since X is open. Since d is then n. a. on U, it follows that d is 

locally n. a. Thus d is an example of an archimedean metric which 

is locally n. a. 

The question arises, if d is archimedean (n. a.) on two subsets 

is d archimedean (n. a.) on their intersection? In this example, if 

d . is n. a, in a neighborhood U of a point p, say p e X, then 

U C X. Two such neighborhoods intersect only if both are contained 

in the same subset X, Y, or Z on which d is n. a. Given neighbor-

hoods U and V of p and q respectively on which d is n. a., if 

they intersect, then one is a subset of the other. Of c;ourse d will 

also be n. a. on the intersection or union since either is a subset of 

X (or Y or Z). 

On the other hand, for x: £ X = Si 0, }J 

that d is archimedean on l;>oth spheres. But 

and z e; Z 

where Y = 

= si2,;J. 
si1,}J so 

1 1 
Sd(x, l z) (] Sd(z, 1 2 ) = Y on which d is n. a. Thus d may be n. a. 

on the intersection of two spheres on which d is archimedean. 

Existence of Eqµivalent Metrics 

The non-archimedean metric d 1 and the archimedean metric 

d 2 of Examples 4. 1 and 4, 2 were shown to be equivalent. In these 

examples the metrics we re induced on the linear space Q2 
p 

by norms 

on Q 2. 
p 

For the remainder of Chapter IV the metric d, unless 

otherwise specified, will be an arbitrary metrie defined on the set 
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under consideration. In the following paragraphs several interesting 

theorems concerning the equivalence of various types of metric; s will 

be proven. A rather startling result is found in the following theorem. 

Theorem 4. 1. For each space E of c1,t least three points with a n. a. 

metric there exists an equivalent archimedean metric for E. 

Proof: A metric on a space E with less than three points is 

necessarily n. a. and hence cannot be archimedean. Therefore, let 

E be a space consisting of at least three points and let d be a n. a. 

metric on E. Let x, y, and z be distinct points of E. Let 

r < min{d(x,y),d(y,z),d(x,z)}. Then X = S[x,r] and Y = S[y,r] 

are disjoint open and closed subsets which do not contain z, Thus 

Z = E ,._, (XU Y) is a neighborhood of z which is both open and cloi:;ed 

and E =XU YU Z. Moreover, X, Y, and Z are disjoint. 

A new metric d' is then introduced on E by a method illus-

trated in Example 4. 4. Define 

d(x 1, x 2 ) 

l + d(X l' x 2 ) 

Similarly, define d' on y and z respectively. Also define 

d'(x,y) = l for x e X, yi: Y, 

d)(y, z) = 1 for Ye Y' z e z and 

d I (X, Z) = 2 for XI!! X, z €; z. 

Just as in the proof in Example 4. 4, the metric d' can be 

shown to be i:l.rchi,medean but loeally n. a. Moreover, d' and d are 
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equivalent as the following argument shows. Let x e E, and without 

loss of generality assume x e: X. Since X is open, there exists a 

neighborhood U of x contained in 
d(x 1,x2 ) 

X. Thus, for any points x 1 and 

X2 in U, d'(xl,X2) = l+d(xl,x2) and this metric is known to be 

equivalent to d. The equivalence results from the fact that 

Sd[x, r] = Sd.[x, 1 : r]. Thus, given any n. a. metric on a set E, 

there exists an equivalent archimedean metric for E. 

Before proceeding with the discussion of other equivalences, it 

would be well to ponder for a moment the signi[tcance of this theorem 

with respect to the discussion in Chapter III of fundamental topological 

properties of n. a. normed linear spaces .. This theorem tells us that 

given any n. a. normed linear space E, with the metric d induced by 

the norm, an equivalent archimedean metric d I exists on E. This 

means that the topologies on the spaces (E, d) and (E, d') are the 

same. Thus the fundamentcl,l topological properties, depending only on 

the open sets, must be the same. It then becomes apparent that the 

archimedean metric space (E, d 1 ) is an example of cl. topological 

space which shares the same fundamental topological properties as the 

n. a. normed linear space (E, d). Thus the condition that the space be 

a n. a, normed linear space or n. a. metric space is sufficient to 

insure the fundamental topological properties exhibited in Chapter III 

but it is not a necessary condition. f;Iowever, it should be noted that 

since the two spaces have the same open sets they also have the same 

closed sets and hence each has a base consisting of sets that are both 

open and closed; that is, each space is a O ,.dimensional metric space. 

This points up again the fact that basic to the fundamenta,1 topological 
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properties of a n, a. normed linear space E is the O -dimensionality 

of E, along with the fact that E is a metric space. 

The following theorem gives another equivalence between two 

different types of metrics. In order to prove this theorem, the 

following lemma is needed. 

Lemma 4. 2. If d is n. a. on S(a, r) and r 1 < r, then S [a, r 1 J is 

both an open and a closed set, 

Proof: Let YE S[a,r 1] and r 2 <min{r 1,r-r 1}. It will be 

shown that S(y,r2 ) C S[a,r 1]. Let xeS(y,r2 ) then 

d(a,x) _:::d(a,y)+d(y,x) < r 1 + r 2 • Since r 2 <min{rpr-r 1} we 

have r 2 < r-r 1 so d(a,x) < r 1 + r 2 < r 1 + r-r 1 == r. Thus 

x e S(a, r). Therefore x, y and a are all contained in S(a, r) on 

which d is n. a. The strong inequality then applies and 

d(a,x) < max{d(a, y),d(y,x)} _::: max{r 1, r 2 } = r 1 since 

r 2 <min{r 1,r-r 1}. Since d(a,x)_:::r 1 , XES[a,r 1]. Wehavethen 

S(y, r 2 ) C S [a, r 1], where y is an arbitrary point of S [a, r 1], so 

S [a, r 1] is an open set. Since any dosed sphere is a closed set the 

proof is complete. 

Theorem 4. 3. Let d be a locally n. a. metric on the separable space 

E. Then there exists an equivalent n, a. metric: d I on E. 

Proof: Let E > 0. Let D = {x1}~=l be a countable dense sub­

set of E. With each x. E D, associate the following collection of 
l 

spheres: A.:: {S[x., r] Ir< 2E , r is rational, d is n,a, on S[x., r] 
l l - l. 

and S [x., r] is both open and closed}, for i = I, 2,... Since d. is 
l 

locally n. a. there exists an r such that d is n. a. on S(x.,r), 
l 
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Moreover, Lemma 4. 2 shows that for t 1 < r, S [xi' r 1] is both open 

and closed. Thus the collection A. is non-empty for each 
l 

n=l,2, •.• Since the set of rational numbers is countable, each 
(lJ 

A. is countable. 
l 

Let A = U A. . The set A is countable being the 
i= l l 

union of a countable collection of countable sets and hence we can 

rename its elements V 1 , V 2 , • • • • Since each V is one of the 

spheres S [x., r] 
l 

in A., each set v 
n 

n 

is both open and closed, the 

diameter of each is < e and d is n. a. on each V Now define 

the sequence U 1, U 2 , . , . as follows. 

= v 
n 

n 

n-1 
u v. 
i= l l 

Then C = {Ui}~=l is a collection of disjoint open and closed sets. 

Since each U C V , each U is also of diameter not more than e 
n n n 

and d . is n. a. on each U . 
n 

The family C is a cover of E as the following argument shows. 

Let x 1:: E and select < E 
r -

- 2 
such that r is rational and d is n. a. 

on S [x, r]. Since D is dense in E, there existi:i an x 1 e S [x, ~]. 

Thus so that x I': S [x 1, i] C S [x, r]. The Latter contain-

ment holds since if y i:: S [x 1, ~], then 

d(x, y) ::_ d(x, x 1) + d(x 1, y) 5, 

d is n, a. on S[x 1, i] and 

f + f = r , so that y E S [x, r] . Thus 

S[x 1,fJ = Vj for some j = 1,2, .... 

We have then x e Vj for some j which implies x.; Uk for some 

k < j . Thus C is a cover of E. 

Now define a new metric d' by: 



d 1 (x, y) = d(x, y) if x and y are contained in the same 

d'(x, y) = e, if x and y are contained in different 

The following discussion proves that d I is n, a. 

U.'s 
1 

U.; 
1 
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For any three points x, y and z in E there are three possi-

bilities, 

(a) All three points are contained in the same u .. 
l 

In this case, 

since d = d' on U. and d is n. a. the strong inequality holds. 
1 

(b) Two points, say x and y, are in U, and 
1 

zeU,, i:#j. 
J 

d'(x, z) = d'(y, z} = e and d'(x, y) = d(x, y) < e. Hence the 

Thus 

maximum of any pair of distances is e and the third distance is 

certainly < e . 

(c) No two points are contained in the same U. . In this case 
1 

d'(x, y) = d'(y, z) = d'(x, z) = e and the desired result follows. 

Thus d I is a n. a. metric on E. 

That metrics d and d I are equivalent can be demonstrated as 

follows, Let x e: E and S}x, r] be given, As a result of Lemma 

4. 2, since d is locally n. a. it may be assumed S} x, r] is d-open. 

We have x e U. for some i and hence x e: U. n Sd[ x, r] whiGh is 
1 l · 

d-open. 'X'hus there exists a sphere S}x, r 1 ] C Ui n Sd[x, rJ. But 

then d = d 1 on this sphere so that SdJx, r 1 ] C Sd[x, r], On the other 

hand given xe:E and sphere Sd 1[x,rJ, let r 1 <max{r,e}, To 

show that Sd[x,r 1 ] C Sd 1[x,r], let ye: Sd[x,r 1 ]. Then 

d(x, y) < r 1 < e so that x and y are in the same U. • Thus 
1 

s}x, r 1] c ui and since d' = d 

S}x,r 1 ] = Sd 1 [x,r 1] C SdJx,r]. 

on U. and 
1 

r' < r, we have that 
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Thus it has been shown that d' is a n, a, metric equivalent to 

the locally n. a. metric d. 

As was pointed out in Chapter III, every n, a. metric space is 

0-dimensional. Using Lemma 4. 2 it can now be shown· that every 

locally n. a. metric space is 0-dimensional. Although this theorem is 

really a corollary to the proof of the previous theorem, the short 

argument is repeated here. 

Theorem 4. 4. Every locally n. a. metric space E is O ... dimensional. 

Proof: Let a e: E and r > 0. The sphere S(a, r) is then an 

arbitrary open sphere in E. Since E is locally n. a. there exists an 

r 1 < r such that d is n. a. on S(a, r 1). Then for r 2 < r 1 , by 

Lemma 4.2, S[a,r2 ] is an open and closed set. But r 2 < r 1 < r 

implies that S[a, r 2 ] C S(a, r). Since S(a, r) was an arbitrary base 

element, E is 0-dimensional. 

A locally n. a. metric satisfies the strong inequality ( 1), if the 

triangles are "sufficiently small". Example 4. ;3 demonstrated a 

metric which is n. a. "in a large sense'\ that is, which satisfies the 

strong inequality if the points are sufficiently far c;1.part. In the 

following example the metric is shown to have the property that it is 

not n. a. in any neighborhood of any point and yet is n. a. "in a large 

sense". 

Example 4. 5. Consider the Euclidean space R 2 with the usual 

2 2 1/2 
metric d(x,y) == {(x 1 -y1) + (x2 -y2 )} where x= (x 1,x2 ) and 

y = (y 1, y 2 ). Define a new metric d' as follows: 
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d'(x, y) = d(x, y), if d(x, y) < 1 ; 

d I (X, y) : l, if d(x, y) > 1 • 

That d' is a metric can be verified as follows. The properties 

d'(x,y) :::_0, d'(x,y) = 0 ifandcmlyif x=y, and d'(x,y)=d'(y,x) 

follow immediately from the definition of d' and the corre span.ding 

properties of d. To prove the triangle inequality there are four cases. 

(i) If d(x, y), d(y, z), and d(x, z) ~ l, then d 1 (x, y) = d(x, y), 

d'(y,z) = d(y,z), and d'(x,z) = d(x,z) so the f:riangleinequallty 

holds. 

(ii) If d(x, y) > 1, d(x, z) < l, and d(y, z) < 1, then 

1 < d(x, y) ~ d(x, z) + d(y, z) so 

d'(x, y) = 1 < d(x, z) + d(y, z) = d'(x, z) + d 1{y, z), Clearly 

d'(x, z) ,S_ 1 = d'(x, y) ,S_ d'(x, y) t d'(x, z) and similarly for 

(iii) If d(x, y) > l, d(y, z) > 1, and d(x, z) ,S_ 1, then 

d'(x, y) = 1 = d'(y, z) and d'(x, z) = d(x, z) .;5. 1. This case is 

clear, 

(iv) If d(x, y) > 1, d(y, z) > l, and d(x, z) > 1, then 

d'(x, y) = d 1(y, z) = d'(x, z) = 1. 

Thus the triangle inequality holds in any case and d I is a metric. 

2 l 
Let x e R . , then Sd (x, 2 ) is a neighborhoqd of x in which d 

and d' are identical. Thus d and d I are equivalent. But the metric 

d · is not n. a. in any neighborhood of any point. This follows since 

given any open set containing x there exists c1. 1'1phere Sd(x, r) con­

taining x and this sphere contains a right triangle fol;' which, in · R 2 , 



the hypotenuse is longer than either leg. Thus d is not n. a, in any 

neighborhood of any point and since d and d' are identical in 

1 
Sd(x, 2 ) forany x, then d' alsohasthisproperty, 

However, suppose three points x, y, and z determine a 
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triangle in which two of the sides have lengths > 1 with respect to d. 

Then these sides have length 1 with respect to d' and it is clear that· 

d'(x, y) ~ max {d'(x, z), d'(y, z}} = 1. Thus any triangle that is 

"sufficiently large" satisfies the 13trong inequality so that d' , like the 

metric in Example 4. 3 , is n. a, "in a large sense 11 , 

In the proof of Theorem 4, 1 and in Example 4. 4 the 

archimedean metric d 1 , which is equivalent to the given n. a. metric 

d, is locally n. a, This suggests the following question: if d is n. a. 

met:dc on a space E, does there exist an equivalent archimedean 

metric that is not locally n. a.? This question is answered affirm-

atively if E is a separable space as the following example and 

theorem show. 

The Cantor ternary set C furnishes an example of a separable 1 

0-dimensional space which is familiar to mo st graduate students in 

mathematics. Of special interest here is the fact that one can define 

on C equivalent metrics, one n. a. and the other archimedean. 

Moreover, the archimedean metric has the property that no point has -.-
a neighborhood in which the metric is n. a, This fact then leads to the 

proof of the next theorem. Before stating this theorem, let us consider 

the Cantor set in some detail and verify the properties which it 

possesses. 
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Example 4. 6. The Cantor ternary set. Recall that the Cantor ternary 

set is defined to be the subset C of the interval [O, l] c0nsisting of 

all numbers x whose ternary expansion contains no 1 1 s, That is, 
ai a. 

l x £ C implies x = . ~ i = • a 1 a 2 • • • where 
l= l ·3 

a. = 0 or 2 ,. With the 
], 

ordinary metric, d(x, y) = /x-yj, that is the abs0l'µte value, the set 

C with the relative topology is separable and 0-dimensional. 

(C, d) is separable. To prove that (C, d) 
n c. 

is separable it will be 

shown that the set D = { ~ ~ I C. = 0 or 
. i= l 31 1 

an. integer} is 

dense in C. To see this let x e: C. Then 
a:, a. 

l 
X· = ~ --,.. , a. = 0 or 2. 

i:;::l 3l l 

Considering C as a subspace of [O, l], let (a, b) be any open 

interval containing x. Then there exists an integer k such that 

(x - 1, x + -k) C (a, b). Let y = ~ a~ , then ye: D and 
3 3 a i= l · 31 

' CX) i l ( l 
Ix - YI = . ~ 1 < 1c so that y e: x - ~ , x + 

1=k+l 3 3 3 3 ~) C (a, b). 

x is a limit point of D and D is dense in C. 

Thus 

(C, d) is 0-dimensional. Let x e: C. It is known that C is nawhere 

dense in R, that is, between any two distinct points of C there is an 

open subinterval of [O, l] - C. Let U be any open set of (C, d) 

containing x, It will be shown that there is a subset of U containing 

x which is both open and closed. Since U is open, there exists an 

r 1 such that S(x, r 1) C U. Moreover, in the reals there exists a 

subinterval (x + a, x + b) of (x, x + r 1) c0ntaining no p0ints of C , 

since C is nowhere dense in R. Consider (x-a, x-b) which is 

contained in (x-r 1,x), Since C is nowhere dense in R, there is a 

subinterval (x-d, x-c) of (x-b, x-a) containing no points of C. It 

follows that (x+c, x+d) C (x+a, x+b) and neither (x+c, x+d) n0r 

(x-d, x-c) contains any point of C. Pick e such that c < e < d. 



Then x+e e: (x+c, x+d} and x .. e e: (x-d, x-c} so that neither x+e 

nor x .. e is contained in C • 

x-b 
( 

x-d x-c 

x ... a ,i::+a 
( 

x 

x+E x+b 
'. ( ] ) ) 
x+c x:+d 

Now consider S(x, e}. The preceding argument shows that 
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S(x, E} C U and the boundary of S(x, e}, with respect to C, is empty 

since S [x, e] = S(x, e} in C, Thus C is 0-dimensional since for 

any point x £ C and, for any neighborhood U of x, V = S(x, E} is a 

neighborhood of x, with empty boundary, such that V C U. 

There is no point of (C, d} having a neighborhood U in which d · is 
co a. 

n. a, Let x :;:: I: ~ be an arbitrary fixed point of C, It will first 
.....,.._ i=l 3 1 -

be shown that the collection {Un} :=l where 
n a, m e. 

U = { I: --.; + I: ---;.. I e. = 0, 2} is a neighborhood base at x. To 
n ·-1 31 ·- +l 31 1 1- 1-n 1 

do this it will be shown that for each n = l, 2,,,,, U = Sd(x, -} , The 
· n n 3 

set of all such spheres is clearly a neighborhood base at x. To prove 
1 n a. a:, E. 

U = Sd(x, -}, let ye: U , then y = I:~+ I: --.; , Ei = 0,2. 
n · 3n n i=l 31 i::::n+l 31. . 

Thus 

m a. { n a. m :: } I i=~+l 

a. CX) '1 
Ix -YI I: __:; - I: -4 + I: 1 z: = = _.,.. - -T 

i=l 3 1 i=l 31 i=n+l 31 i=n+l 31 

a:, a. -E, a:, I a. •E, I a:, 
2 1 I: 1 l < I: 1 l. < I: < = 

3i si 
--r -

i=n+l - i=n+l - i=n+l 31 3n 

Note that a. , e. = O, 2 implies I a. - e. I = 0 or 2, We have shown 
l l 1 1 



that U 
n 

l C S (x, - ) . Now let 
n 3n 

I 
YE: Sd(x, -). 

3n 

00 b. 
l Then y = l: 

i== l 3 i 
bi;::0,2. Suppose y t U . 

n 
Then a. f. b. 

l l 
for some i, 1 :::. i :::. n. 

Let k be -the smallest such index, Then ak - bk = :r:2 so that 

ak - bk 2 > 2 ak - bk 2 2 
But since 

3k 
= 

3k 
or 

3k 
= - 3k < --. 

3n - 3n 

-2 < a. - b. < 2 • i = k + 1, k+2, ... , we have - l 

Therefore 

or 

But then 

l -

00 

< l<l: 2 < 
- 3k i=k+l --;-r 

a) 

l: 
i=k+l 

a. - b. 
l. l 

3i 

a) 

2 <-1- l < l:--.,... k< 
- i=k+ l 3 1 3 - 3 n 

ak - bk a) a. - b. 2 l l 
+ l: 

1 l > 
3k 

- :;: 

i=k+l 3i 3n 3n 3n 

ak - bk co a. - b. 2 l l 
+ l: 1 l 

< + 
3k 3i 

-- = --
i=k+l 3n 3n 3n 

ak - bk 00 a. - b. 1 
/x -y/ + l: l l > = 

3k 3i i=k+l 3n 
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which is a contradiction since it was assumed There.., 

= l, 2,.,. so y t Un·· This implies fore, a. = b., i 
l l 

l 
so Un:;: Sd(x, 3n). The collection {Un} :=l is then Sd(x, _l) c u 

3n n 

a neighborhood base at x. 

Suppose there exists a neighborhood U of x::: C such that d is 

n. a. on U. Then there is an N such that d is n. a. on UN C U. 
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N ai N ai 2 
Let y = ~ -. , z = ~ - + --

i= l 3 1 i=l 3i 3N+l 

N a. 2 
and w = ~ ~ + N +Z 

i= 1 3 1 3 
Then 

y, z, and w are in UN so, 

3 ~ + l = / Y - z / :::_ max { / y - w / , / z - w / } 

2 2 2 
= max { 3N+2' 3N+l - 3N+2} = 

This contradiction implies that d is not n. a. in U. Hence there is 

no point x e: C having a neighborhood U in which d is n. a. 

There is a n, a, metric d I Which is equivalent to d • 
co a. 

Define the new 
OJ b. 

metric d' on C as follows, Let x = ~ ~ and 
i= l 3 1 

l 
y = ~ . be 

i=:l 3 1 

points of C. Then define 

d'(x,y)=O if x = y, and 

1 
d'(x, y) = n, if x-# y and n 1s the first index for which a. /; b .• 

l l 

Clearly d 1,(x, y) :::_ 0, d '(x, y) ::: 0 if and only if x = y, and 

d 1 (x, y) = d 1 (y, x) . 
oo C. 

To prove that the strong inequality is satisfied, let 

1 z = ~ -. and x and y as above. Let d '(x, y) = l 1 
- , d'(y, z) = 

i= 1 3 1 

and d'(x, z) ::: ;;-
1 l 1 

nl n2 

3 
> max { ~ , _,.,,..} , then n 1 < n 2 

nl nz n3 
Suppose 

n 1 < n 3 . Also a 
nl 

'f b 
nl 

since 
1 

dr,(x, y) = -- • But 
nl 

I 

1 
d'(y, z) = ~ 

2 
And d 1 (x z) ::: .......,_ and n < n 

' n l 3 3 
n 1 < n 2 implies b ::; c 

nl nl 
and 

This contradiction implies implies a = c so that a - b 
nl nl nl nl 

that d''(x, y) :::_ max{d'(y, z), d'(x, z)} so d' is a n.c1-. metric. 

As before define 

{ n 
a. co e. 

u = ~ 
1 

+ ~ 
l 

n i= 1 3i i=n+l 3i 

and 



co a. 

Then, if x = ~ ~ , U is a neighborhood of x. 
. · l. n 

l 1= 1 3 
U = Sd' (x, -) • This latter follows since n · n 

n a, 
y=~--4-

i= 1 3 1 

any x !!: E, 
1 

and only if d' (x, y) < 
n 

Thus for 

In fact, 
co E. 

+ ~ 
l if """"'7" 

i=n+l 31 

1 1 
Sd(x, -) = Sd 1(x, ~) 

3n . n so that the metrics d and d' are equivalent, 

The following theorem summarizes the preceding discussion. 
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Theorem 4. 5. The re exist equivalent metrics d and d' on the Cantor 

ternary set C such that d' is n. a. and d is an archimedean metric 

for which no point of C has a neighborhood in which d is n, a. 

This theorem is a special case of the more general theorem 

which is stated without proof, 

Theorem 4, 6, On any separable, O~dimensional space, equivalent 

metrics d and d' can be defined such that d' is n. a, and d is an:-· 

archimedean metric for which no point has a neighborhood in which d 

is n. a. 

· It sh01,1ld be noted that even though a metric is not locally n. a. 

there may still be neighborhoods in which the metric is n. a. At most 

one can say that there is at least one point which has no neighborhood 

in which the metric is n. a. In the proof of Theorem 4. 5 we actually 

saw an archimedean metric d for which !;2. point had a neighborhood 

in which d was n. a. and yet d was equivalent to a n, a, metric d' , 

Metrics on a Field 

It has been demonstrated that a n. a. metriq may be equivalent 

to an archimedean metric. In fact, by Theorem 4. l I given any space 

E with a n. a. metric, there exists an equivalent archimedean metric. 
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Suppose that the space is a field E = K with a topology induced by a 

valuation. Recall that if /x / , xi:: K, denotes a valuation on K, the· 

relation d(x, y) = /x -y / defines a metric on K that is n. a. if and 

only if the valuation is n. a. While it is possible for two metrics on 

K, one archimedean and one n. a. , to be equivalent, the following 

theorem shows that if they are equivalent they cannot both be induced 

by valuations on K • 

Theorem 4. 7. Let K be a metric field with d I and d '' equivalent 

metrics on K. Suppose that d' is n. a. and d" is archimedean. 

Then d' and d" are not both induc;:ed by valuations on K. 

Proof: Every field K contains a subfield Q isomorphic to the 

field of rational numbers. The metrics d' and d" induce metrics on 

Q. If a metric is induced by a valuation on K, then it induces a 

valuation on Q. Suppose d' is induced by n. a. valuation on K. Then 

Q has an induced n. a. valuation. However, it is known that every 

non-trivial n. a. valuation on Q is equivalent to one of the p-adic 

valuations. See Palmer [17, p. 46]. Ostrowski' s theorem states that 

the only non-trivial valuations on Q are those equivalent to a p-adic 

valuation / p or the ordinary absolute value / / . Thus the 

valuation induced on Q by d' is equivalent to I I and the valuation 
p 

induced on Q by d II is equivalent to / , However, the valuations 

I and 
p 

are not equivalent. Thue d' and d II cannot both have 

been induced by a valuation on K, 

As an illustration of the previous theorem, the p-adic valuation, 

I on the field Q of p~adic numbers induces a n. a. metric d 
p' p p 

on the set It has been observed that this space is 



separable and 0-dimensional and thus by Theorem 4, 6 an equivalent 

archimedean metric d I can be defined on Q . ·p Since d was 
p 
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induced by the n. a. valuation I Ip, it is impossible for d' to have 

been induced by a valuation on Q. 
p 



CHAPTER V 

CONVEXITY 

The discussion of linear spaces often. leads to the topic of ~on~ 

vexity. In the preceding chapters some of the properties of linear 

spaces over n. a. valued fields have been discussed. At this time 

convexity in a non-archimedean setting will be investigated. 

Most of the published work on convexity in the n. a. case has 

been done by Monna. Convexity is a starting point for the study of 

locally convex spaces over K. This study will not be pursued but 

convexity in the n. a, case is of sufficient interest to warrant some 

attention on its own merit. 

In this chapter convexity in. E will be defined and several 

resulting properties of convex sets will be observed. A characteriza­

tion of convex sets in a n. a. valued field K, considered as a linear 

space over itself, will be given. This chapter is intended only to 

introduce the concept of convexity in the n. a. setting, examine a few 

of its properties, and remark briefly on some of the problems involved 

with convexity in linear spaces over n. a. valued fields. For further 

discussion on convexity the articles by Monna are the best current 

source. See (11] and [13]. 

Convexity is usually defined for Unear spaces over R, the field 

of real numbers. In this situation a set A is said to be convex if for 

any x, ye A and a > 0, b > 0 in R, such that a +·b :;: 1, the 
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point ax + by e A. A similar definition cannot be used for a linear 

space E over a n. a. valued field K since the field K is not ordered, 

so that statements such as a > 0 are meaningless. Thus our defini-

tion of convexity must be independent of order on K, 

Throughout this chapter, (9 

K ; that is, (9 = { A e: K I I X. j :S. 1}. 

will denote the ring of integers of 

In the case K = Q , then (9 = 0 • p p 

The proof that (9 is an integral domain appears in Palmer's thesl.s 

[17, p. 39]. The definition of convexity used is the following. It should 

be noted that this definition does not require E to have a topology a.nd, 

in keeping with earlier remarks, it is independent of any order on K. 

Definition 5. 1. A subset of E is called convex if AX+ µy + vz € A 

for every x , y , z e: A and A , µ , v e: (9 for which A + µ + v = l . 

Sometimes this notion is called K~convex to emphasize that the 

convexity is with respect to K. However we will write simply convex, 

referring to a linear space E over a n. a. valued field K. First, 

there are several basic theorems which result from the given definition 

of convexity. 

Properties of Convex Sets 

Theorem 5. 1. The intersection of a family of convex sets is convex. 

Proof: Let 

x, y, z e: A and 

A,ae.A 
a 

be convex and A = n A Let 

with A+µ+v = 1. 
a r. .A 
Since 

a 

x,y,zi::A, 

then x, y, z ~ A for each a c A. Thus AX t µy t vz e A for each 
a a 

a e A since A is convex. Hence AX t µy + vz e A and A is convex. 
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The following theorem states that any translation of a convex set 

is convex. 

Theorem5,2, If ACE is convex, wi:;E, and rp:K, then w+A 

and 11 A are convex. 

Proof: Let x , y , z e: w + A and X., µ , v e (9 with A + µ + v = 1 • 

Then x::; w+x0 , y = w+y0 and z = w+z 0 , where x 0 ,y0 ,z 0 c A, 

Since A is convex, then X.x 0 + µy O + vz 0 e: A. Thus 

AX + µ y + v z = X. ( w + x O) + µ ( w + y O ) + v ( w + z O) 

= (X.+µ+v)w + X.xo+ µyo+ vzo 

= w t ( AX O + µ. y O + v z O) e: w + A 

and therefore w + A is convex. 

The proof that 11 A is convex is similar. 

The convex subsets of E containing O have an interesting 

algebraic structure as the following theorem shows. Here E is con­

sidered as an (9 -module; that is, a module over (9, the ring of 

integers of K. 

Thec:>rem 5. 3, Let A C E and O e: A. Then A is convex if and 

only if A is an (9 -submodule of E, 

Proof: Suppose A is convex. Let x, ye: A, then since O €'. A, 

x - y = l , x + (-1 )y + 1 · 0 c A. Thus A is an additive subgroup of the 

(9 -module E. Let X., µ. i:: (9 and x c A. Then 

X.x = X.x + µ.O + (1 - X. -µ.)O i:: A so that A is an ©~submodule, 
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Conversely, if A is a submodule of the (9-module E, 

x , y , z @; A , and A , µ , v i;; (9 with A + µ + v = 1 , then 

AX + µy + vz E A so that A is convex. 

Corollary 5. 4. If Q is considered as a linear space over itself then 
p 

O is COnVE;lX. 
p 

Proof: The set (9 = 0 is dearly an O -submodule, 
p p 

Theorem 5. 3 gives a characterization of the convex subsets of 

E. That is, a subset is convex if and only if it is an (9 -submodule or 

a translation of an (9 -submodule of E. 

Theorem 5. 5. Let A be any subset of E containing O, Then A is 

convex if and only if A satisfies the following condition (C), (C) If 

x and y are contained in set S and A and µ are elements of (9 

then AX + µy is contained in set S. 

Proof: If A is convex and contains O, then 

AX + µy + ( 1 - A - µ) • 0 = AX + µy so X,x + µy is in A and A satisfies 

condition (C). Conversely, assume A satisfies condition (C), Then 

for any x, y and z in A and X., µ and v in (9 , AX + µy is an 

element 0£ A,, say w, so that X.x + µy + vz = w + vz which is an 

element of A. Thus A is convex. 

Another characterization of convex sets in E results from the 

preceding theorem, A subset A of E is convex if and only if A 

satisfies condition (C) or A is a translation of a set satisfying condi-

tion (C). 
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Definition 5. 2. A subset A of E is symmetric if A = .. A. 

Theorem 5, 6. If A is a convex subset of E containing O, then A 

is symmetric. 

Proof: If xe:A, then -x::;: (-l)x+O,xiA byTheorem5.5. 

Thus A = -A, so A is symmetdc. 

Definition 5. 3, Let V and W be two subsets of E. Then V absorbs 

W if there exists an a > 0 suc;h that W ( A. V for every ~ e K, 

Ix.I> a. A subset A of E is called absorbins if it absorbs every 
I 

point of E, 

Theorem 5. 7. If a field K is considered as a linear space over itself, 

then (9 is an absorbing set. 

Proof: Let y be a non-zero element of K. Let a = I y I . Let 

X. be any element of K such that IX. I·> a. Thus Ix. I ~ I y I > 0. 

Since K is a field, there exists an element z e: K such that y = X.z. 

Now IYI = lx.zl = Jx.J Jzl so that Jzl = ::: • But Ix.I> !YI so 

I z I < 1. Thus z is an element of (9 • We have shown that for any 

ye: K, there exists an a > 0 such that for any X. with J X. I·> a, 

{y} C A.(9, Thus (9 absorbs {y} and sinc;e y was an arbitrary 

element of K, (9 absorbs every point of K. That is, © is an 

absorbing set. 

In particular, if Q is Gonsidered ai;; a linear space over itself 
p 

then O is an absorbing set. 
p 

Theorem 5, 8. Each absorbing set contains O. 
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Proof: If A is an absorbing set then in particular it absorbs O, 

Thus there exists a number a> 0 such that O e AA for any IX. I> a, 

If a < 1, then O e 'X.A for any IX. I :::; l and in particular for '>,.. = l, 
Thus O e 1 · A :::: A. If a ~ 1, let I 'X. 0 I > a so that O c 'X. 0A, Let 

'X. 1 e K such that Then O e: 'X. 0A 

implies that µ · 0 i;; µ, 'X. 0A, that is, 0 e 'X. 1A since µ'X. 0 = 'X. 1 • Since 

this is true for any 'X. 1 such that '>.. :::: l 
l 

and hence O e: 1 • A = A. The case a ;:: 'X. 0 = 1 is trivial. Thus any 

absorbing set contains O. 

The defin~tion of convexity leads to a very simple characteriza-

tion of convex sets in a n. a, valued field K, With this in mind, the 

case where E = K, considered as a linear space over itself, will now 

be studied, 

Theorem 5. 9. Let A be a non-degenerate convex subset of K. Then 

A= K or A is a sphere; that is, A= K, A= {x e KI Ix .. x 0 I ~ r 0} 

or A::;: {x EK I Ix -x0 I < r 0} for some x 0 EK and r 0 > 0. In 

particular, the conclusion is valid for K = Q . 
p 

Proof: Consider Hrst the case v,rhere O e: A. By Theorem 5, 3, 

A is an (9 ... submodule. Thus for any '>.. t (9 and x e A, X.x e A, In 

pa;rti~ular, le:(9 so that (9·A::;:A, Let r 0 =sup lxl, Iftheset 
I XEA 

{ lxl Ix e A} has no upper bound we wil\ say r 0 = m. First suppose 

that r 0 = oo. In this case A= K. To see this let ye: K. Since © 

is an absorbing set by Theorem 5, 7, there exists an a > 0 such that 

l'X.I > a implies ye X.(9. Since r 0 = oo, the set { !xi Ix e A} is not 

bounded above and hence there exists an x € A such that !xi > a. 
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Thus ye x(9, where x e A so that ye (9 • A = A. Thus A = K since 

y was an arbitrary element of K. 

If is finite, there are two possibilities. One possibility is 

that the re exists an x 0 e A such that I x 0 I :::; r O . In this case the 

claim is that A= S[O, r 0 ] = {x I JxJ ~ r 0}. Clearly AC S[O, r 0 ] 

by the definition of r O. Moreover , for any ye S [0, r 0 ], since K 

is a field, there exists an element z e K such that y = x 0z. Thus 

JyJ = Jx 0 J Jzl or equivalently Jzl = hl But Jx0 J::.: r 0 and I XO I . 
JyJ < r 0 , since yeS[O,r], so that Jzl .:::_l. Therefore, z isan 

element of (9 , Since y = x z 
0 

with x 0 e A and z e (9 , it follows 

that ye: A, CS= A. It has been shown that if y c S[O, r 0 ], then ye A 

sothat S[O,r 0]CA, Hence A=S[O,r0 ]. 

The other possibility is that there is no x 0 E A such that 

Ix I= . 0 In this case A= S(0,~ 0 ). The proof is similar to the pro0f 

for the other case. 

It has been shown that if O is contained in the non-deget1.erate 

convex set A, then A = K or A is a sphere. The case O I. A can 

be handled by a translation. If O t A, let x 0 e A. Consider the set 

A' = -x0 +A. By Theorem 5, 2, A' is convex and since x 0 e A. we 

have O e A', Then, by the first part of the proof, there are three 

possibilities. If A'=K, then A=K. If A'={xl!xl~r0}, then 

A=x0 +A'=x0 +{xiJxJ~r0}. But 

x 0 + {x I !xi~ r 0} = {x I !x-x0 1 ~ r 0} = S[x0,r 0]. Thus 

A= S[xo, roJ. Finally, if A'= {x I l.:x:I < ro}' then 

A= {x I ix -x0 I < r 0} = S(x0 , r 0 ). In any case, if A is a non­

degenerate convex subset of K, then A= K or A is a sphere. 
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The following theorem completes the characterization of convex 

sets in · K. 

Theorem 5, 10. Every sphere in· K is a convex set. 

Proof: Let S [x0 , r 0 ] be a sphere in K. Then 

S [x0 , r 0 J = {x E: KI /x -x0 / < r 0}. Consider the sphere 

S[O,roJ = {xe;KI /xi:'.:. ro}. Let x,y,zES[O,ro] and A,µ,u::: (9, 

with \. + µ + v = 1 . Then 

/ AX + µ Y + v z / < max { / A / / x / , / µ / / Y / , / v / / z / } 

< max { Ix I ' I y I • I z I } 

Thus AX + µy + vz E S [O, r 0 J and S [O, r 0 J is convex. Thus 

S[x0, r 0 ] = x 0 + S[O, r 0 J is convex by Theorem 5. 2. Similarly the 

sphere S(x0 , r O) is convex. 

As a result of the preceding two theorems KP considered as a 

normed linear space over itself, is convex and moreover is locally 

convex sinc;e the (convex) spheres are a base for K. In this case, 

the only non~degenerate convex sets are the spheres which are both 

open and closed and hence have no boundary. This fact has important 

implications which will be discussed further in the conclusion'. 

A Geometric Model for o 2 and o/ 

In this section a geometric representation is given for o2 and 

2 o2 , using the n, a. norm of Example 4. 1 for 
2 o2 • A similar 



interpretation can be done for O and 
p 

O 2 where p is any prime. 
p 

In Chapter I, it was noted that any element a e.: Op, has a unique 

2 
representation in the form a 0 + a 1 p + a 2p + where 
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0 < a. < p-1, Thus, in o2 , any element can be represented in series 
- l -

form where a. = 0 or 1. It is also known that any real number r, 
l 

0 < r < 1 can be represented, using base 3, in the form 
ao a 1 a2 

r= 3 + 32 + 33 + which can be written r=,a0 a 1 a 2 If 

2 
one identifies the 2-adic integer a= a 0 + a 1p + a 2p + .. , with the 

real number in base 3, then a one-to-one correspon-

dence is established between the set o2 and the set 

H ={re.: [O, 1) / r = .a0 a 1 a 2 .•• , base 3, and a.= 0 
l 

or l}. 

By this identification, one obtains a geometric interpretation of the set 

o2 , In the graph below, the shaded portion represents some of the 

points which do not correspond to points of o2 since a = 2 for at 
i 

least one i = 0, 1,2, ..• As an example of the correspondence, the 

point 5 = I+ 0, 2 + 1 • 2 2 in o2 is represented by the number , 101. 

For a more detailed discussion of this geometric interpretation of o2 

see Agnew [I]. 

-· II I~&• tmf~l.lr4JJI •n1nz HII .. 
0 • 01 . 02 . l . 11 . 12 ,2 ,21 .22 I 

Of special interest to this study is the fact that spheres in o2 

are represented as subintervals of [O. 1) (') H. For example, there 

1 
are four spheres of radius 4 in o2 ; the spheres [ l ] '[. l ] s 0,4' s 1,4' 

S[2,;r], and S[3,:r], These spheres are subsets of the subintervals 
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[0,.01), [.l,.11), [,01,.02) and [.11 1 .12) respectively, as 

indicated below. 

s[o,}J s[2,iJ 
I I I•• 

1 l s [ 1, 4 ] S [3, 4 ] 
nJ I b rnr&11 11 ; 

0 .01 ,02 .1 ,11 .1~ ~z 

The geometric model for o2 lends itself to a natural interpre~ 

tation of o} as indicated in the following graph, The shaded areas 

represent some of the points not in 

16 spheres of radius i- in 

.12 

·02 

, 0 I 

0 2 
2 

,02 

2 
02. 

• l 

The graph also indicates the 

, 11 , 12 ,2 

If A and B are convex subsets of o2 , then Ax B is a convex 

subset of 
2 

02 • This follows since for 
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z=(z 1,z2 ) in AxB and A,µ, and v in o2 , with A+µ+v = 1, 

The first anq second components are in A and B respe<;:tively since 

A and B are convex. Thus AX + µy + vz is in A x B and A x B 

is convex. 

In o 2 the only convex sets are points and spheres, It follows 

that the collection of c;:onvex subsets of 022 includes the cartesian 

product of the spheres and points in o2 , However, it includes other 

sets as well, For example, consider the set A defined as follows. 

Let x=(l,l) and y=(O,O). Then 

>-.x + (1 - A)y = A(l, 1) + (1 -A)(O, O) = (>-., >-.). Define A={(>-., A) I>-- e o2}. 

Then for a :;:: (a 0 , a 0 ), b = (b 0, b 0 ) and c = (c 0 , c 0 ) it is clear that 

AX+ µy + vz = (>--ao + µbo + VICO. }..ao + µbo + vco) £ A. Thus A is 

convex. It is also clear that A is not the cartesian product of any two 

subsets of o 2 • The set A defined above, relative to the points 

x = (1, 1) and y = (0, 0), is actually the smallest convex set containing 

x and y. This is verified in the next section. 

Convex Hull 

Definition 5. 4. Let S C E, The convex hull of S is the intersection 

of the convex subsets containing S : it is denoted c 0 (S). 

Since, by Theorem 5. l, the intersection of any family of convex 

sets is convex, it follows that the convex hull of any subset S of E is 

a convex set. Consider now the special caf!e in which S = {x, y} • 
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Theorem 5. 11, The convex hull of the set {x, y}, x, y £ E is the set 

c 0 ({x,y}) ={AX+ (1-X.)y I Ix.I~ l}. 

Proof: Let z e c 0 ({x, y}). Then z is contained in every convex 

set containing x and y. With X. .= 1 and X. = 0 one sees that x and 

y respectively are contained in the set on the right, Thus we must show 

it is convex. Let z 1,z2 ,z2 e {X.x+(l-X.)yj IX.I< 1} and X.,µ,ve~, 

X. + µ + v = 1. Then z. = X..x + (l - X..)y, for i = 1, 2, 3 . Hence 
1 1 1 

= A •x + ( 1 - A') y 

where A1 = AAl + µA 2 + vA3 , Furthermore, 

Thus {Ax + ( 1 - A)y 11 A I ~ l} is a convex set containing x and y so 

that C 0 ({x,y}) C {AX+ (l ... A)y I IAI < l}, 

Now let z e {Ax+ (1-A)y I IAI < l}. Let C be any convex set 

containing x and y , then z = AX + ( 1 - A)y for some A , I A I < 1 • 

Since x and y are in C and C is convex we have that 

z = AX+ (1 - A)y = AX+ 1 • y - X.y e C, Thus z is in every convex set 

containing x and y so that {Ax+ (1 - A)y 11 A I < l} C C 0 ({x, y}), 

The conclusion then follows. 
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Following are three examples of the convex hull of two points in 

x::; ( 1, 1) , y::; (0, 0) , c 0 ({x, y}) ;::: { P\, \.) I \. e o2} . 

x= (3, 3) , y::; ( 1, 1) , c 0 ({x,y}) = {(2\. + 1, 2A. + 1) Ix. e o2}. 

x = (1, 1), y:::: (-1, -1), C 0 ({x, y}) :;:: {(2\. - 1, 2X. - 1)/A.€ 02}. 

,2 .2 
/ / 

/ / 
/ / 

/ .11 /r-3, 3) 
. ll. ... 

/ 
(-1,-1) 

/ 
... (1,1) .1 (1 ,1) .1 (1,1) 

/ 

/ 
/ 

.1 .2 0 .1 .11 .2 0 .1 .11 ... 2 
( i) (ii) ( iii) 

One generally expects the convex hull of two points to be the line 

segment joining the two points. In these examples, the convex hull is 

a "segment" but not all the points are "between" the two points x and 

y. . In the final example, with graph following, the graph of the convex 

hull does not even resemble a segment. Let x = (1, 0) and y = (0, 1). 

Then the convex hull is given by c 0 ({x, y}) = { (\., 1 - \.) I \. e o2}. A 

few of the points contained in the convex hull are indicated on the graph. 

It can be argued that since the sum of the coordinates must be 1 , the 

points must all lie in the four spheres indicated. 
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' 2 

. 12 ..... 

' (21 - l 
.(6' - 5) 

\3,~2) . 11 

.(4 ,- 3) 

. 1 
·(-4, 5 

. 02 -
(3, -2) 
~.(5,-() 

- ""(·"1,2) . 01 

(5' - l) •• (-3 4) 
l I I 

0 , O 1 . 02 ' 1 . 11 , 12 . 2 

Quasi-convexity 

Manna has introduced the term quasi-convex related to Theorem 

5. 11 . 

Definition 5. 5, A subset A of E is called quasi-c;onvex H for any 

x and y ~ S I AX + ( 1 - A)y e: S for every A e; K suc;h that /A/ .::, 1 . 

As a result of Theorem 5. 11 it follows that a quasi-convex set 

A contains the convex hull of eac::h pair of points in A. 

Convexity and quasi-convexity are not equivaLent, However, if 

one notes that AX+ (1 - A)y == AX+ 1 · y - AY then whenever S is 

convex, we have AX+ (1 - A)y is a member of S. This proves the 

following theorem. 

Theorem 5. 12. Every convex set is quasi-convex, 
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The converse of this theorem is not true as the following example 

shows, that is, a set i$ defined which is quasi-convex, but not <;onvex. 

However, in most cases, the two concepts are equivalent. Theorem 

5. 13 gives one general case in which they are equivalent. 

Example 5. 1. Let E ::: a 2
2 ; that is, the set of ordered pairs (x 1, x 2 ) 

such that x 1 and x 2 are elements of a 2 • Let x::: (l, 0) and 

y:::(0,1). Define the set S by S={(af3,(l-a)µ)/a,[3,µe0 2}. The 

set S will be $hown to be quasi-convex but not convex, The set S is 

the union of three spheres indicated in the following graph, 

.... 

0 . 1 • 2 

Let and be elements of S. To prove that S is quasi-

convex, it must be shown that \.z 1 + ( l - \.)z 2 is an element of S for 

any A in o2 • Since and z 2 are elements of S » they can be 

represented as and z ::: 
2 

where the elements a 1 , r, 1 , µ 11 a 2 , r,2 1 and µ2 are in 02 . 
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Therefore, 

where a = 3 

To show that (a 3, [33 ) is an element of S, it ~ust be demonstrated 

that (a 3 , [33 ) ;::: (a[3, (1 -a)µ) for some a, [3,' and µ in o2 , In this 

example, the symbol / / is used for the 2-adic valuation. 

To begin with, the following argument shows that the statements 

/ a 3 / = 1 and / [33 / = l c;annot both be true, Suppose that / a 3 / ;::: l , 

that is, /Aa 1 [31 + (1-A)a 2 [32 / = 1. By then.a, property, 

/Aa 1 [3 1 + (l .,A)a 2 [32 / ~ max{ /Aa 1 [3 1 /, /(l-.A)a 2 [32 /}, so that either 

/Aa 1 [3 1 / = l or /(l-A)a 2 [32 / = 1. lf /Aa 1 [3 1 /::: 1, then /A/= 1 

and / a 1 / = 1. In o2 this implies that / l -A/ < l and / 1 ""a 1 / < 1. 

By the n,.a. property, /133 / ~ max{/A(l -a 1)µ 1 /,/(l -\.){l .,a 2 )µ 2 /}. 

But /1 ... A/<l impliesthat /(l-A)(l-0' 2 )µ2 /<l and /l.-a 1 /<l 

implies that /A(l -a 1)µ 1 / <I. Thus / 133 / < l, Likewise, if 

/(1-A)a 2 [32 / = 1, then /1-A/ = l and /a 2 / = l so that /k/ < l 

and / 1 - a 2 / < 1 . Then, as before, / [33 / < 1 . Thus either / a 3 / < l 

or / !33 I < 1 • 

To show that there exist elements a,[3, andµ in o2 such 

that (£¥ 3 , [33 ) = (a[3, (l - a)µ), the two cases / a 3 / < I and I !3~ I < 1 
j 

must be considered. If / a 3 / < 1, then I I - a 3 / = 1. In this qase, 



let a = a 3 

a = a 3 let 

and j3 = 1. Then we must have 133 = (1 - a)µ, so with 

-1 
µ = 133 (1 - a 3 ) • It remains to show that a 1 13, and µ 

are in o2 and µ is in o2 
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are elements of o2 • Clearly a and 13 

since / 1 - a 3 / = 1. Thus, in the case / a 3 / < l, it has been shown 

that (a 3, 133 ) e S. 

If / 133 / < 1, then / 1 - 133 / = 1 . In this case, let µ = l and 

1 - a = 133 , that is, q = 1 -133 . This requires al3 = a 3 or equiv-

-I -1 
alently 13 = a 3 · a = a 3 (l - 133 ) • But then a and µ are clearly 

in o2 and 13 is in o2 since / l - 133 J == l. Thui;;, in either case, 

(a 3 , 133 ) is in S, 

It has been shown that for any z 1 and z 2 in S and X. e o2 , 

the element X.z 1 + (1 - X.)z 2 is in S. Thus S is quasi-convex. 

It is easily demonstrated that the set S is not convex. Since the 

set S is given by {(al3, (1 - q) µ)/a, 13, µ e o2}, it is clear that the 

points (1, O), (0, 1) and (0, 0) are all contained in S. However, 

the point (l,0)+(0,1)-(0,0) = (1,1) is not in S. This follows 

since for a e o2 either / a I < l or / 1~ a/ <I. Thus either 

/ a 13 / < 1 or / ( l - a)µ/ < 1 so it is impossible that both st;;ttements 

al3=l and (1-a)µ= 1 be true, Since the point (1,1) isnotin S, 

S is not convex. 

The set S has been shown to be quasi-convex but not convex. 

Thus in Q2 
2 

convexity and quasi-convexity are not equivalent, How-

ever, the following theorem states that in any n. a. valued field K, 

considered as a linear space over itself, convexity and quasi=convexity 

are equivalent. 
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Theorem 5, 13. Let K be any n. a, valued field considered as a linear 

space over itself. Theq a set A in K is convex if and only if it ii;; 

quasi-convex. 

Proof: In view of Theorem 5, 12, it is only necessary to show 

that if the set is quasi-convex it is convex. Jq fact, it is sufficient to 

show that every quasi-convex set containing O is convex, The case 

where O t A can be handled by a translation. The proof that any 

translation of a quasi-convex set is quasi-convex is analogous to the 

proof of Theorem 5. 2 for convex sets. 

Therefore, let A be any quasi~convex subset of K containing 

0. Then for any x in A and ll.. c (9 , ll..x is in A since 

ll..x = ll..x t ( 1 - ll..) · 0 . 

Moreover , if x and y are non-zero elements of the field K 

and JyJ < JxJ, then y= ax for some a in ts. Thus for ll.. andµ 

in (9, ll..x + µy = ll..x + µ(ax) = (ll.. + µa)x = l3x and 

J 13 J = J >... + µa I ~ max { I>... I, I µa I} < 1. Let x and y be in A and, 

without loss of generality, let Jyl ~Ix!. Then ll..:x: + f.LY =;; 13~ for 

some 13 € (9. By the preceding paragraph, since A is a quasi~convex 

set containing O, l3x is in A. Thus A is convex. 

In Theorem 5. 11 it was shown that the convex hull of the set 

{x,y}, x,yc E is the set C 0 ({x,y}) = {ll..x + (1-ll..)y I IA!~ l}. In 

particular, if E = K, since the convex hull is convex and contains at 

least two points, it must be a sphere by Theorem 5, 9. Thus it must 

be the smallest sphere containing x and y. Let Ix - y I = r, Then 

it is clear that S [x, r] is the smallest sphere containing x and y. 

This argument proves the following theorem, 
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Theorem 5. 14. Let x and y be in K. Then c 0 ( {x, y}), the convex 

hullo£ {x,y}, isthesphere S[x,r] where r=lx-yl. 

In the case that K = Q , one can also make the following 
p 

observations. 

Theorem 5. 15. In Q , pi- 2, every symmetric convex set contains 
p 

0 . 

Proof: Since every non-dt;)generate convex subset of Q , is a 
p 

sphere, suppose S [x0 , r] = -S [x0 , r]. Then x 0 e S [x0 , r] implies 

that -x0 E S [x0, r] SO that 

r > 

Thus O e: S [xo, r J. 

One can see from the proof that pi- 2 was necessary. In fact 

in Q 2 Gonsider 

S[l,i] = {x I ix-11 2 ~ }} = {x I lx-11 2 <I}= {xi lxl 2 = l}, 

That is S [1, ~] = {x I Ix 12 = l}. From the lefthand side of the last 

equation one sees that this set is closed and convex and from the right-

hand side, that it is symmetric but does not contain O. Thus the 

conclusion of Theorem 5. 15 is false in Q2 . 

Another way of observing the result in the preceding paragraph 

is as follows. The elements of the set A = {x e a2 I Ix/ 2 = l} are of 

the form 
co 

1 + ~ a · 2 n where 
n=l n 

a = 0 n 
or l. Thus 
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convex being of the form x 0 + A 1 where A' is convex. 

If pf:.2, A={xcQ J ixl = l} is not a sphere, asitisin 
p p 

Q 2 , since if it were a sphere it would be convex. For example in 

Q 3 , let x = 1, y = 2, z = 1 . Then x, y, z c A but 3x - y - z = 0 t A, 

even though 3 + (-1) + (-1) = l c o3 • Thus A is not convex and 

hence is not a sphere, 

Conclusion 

One area of study in convexity involves the concept of extreme 

points in convex sets, A point x of a convex set A is an extreme 

point of A if and only if x is not an interior point of any line segment 

whose end points belong to A, Theorems such as the Krein-Milman 

Theorem are concerned with the existence of extreme points in convex 

sets. But in K it was found that the only non-degenerate sets are 

spheres which are both open and close<;].. Thus every point of a sphere 

S is an interior point. It appears that a different definition of boundary 

or extreme point, or possibly a different definition of convexity, is 

needed if theorems such as the K;rein-Milman Theorem are to have 

analogues in the non-archimedean setting. 

The articles [12] and [13] by Monna contain a more detailed 

discussion of the problems involved. Convexity in,linear spaces over 

non-archimedean valued fields appears to be an area for additional 

study and re search. 
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