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CHAPTER I
INTRODUCTION

In recent years increasing attentlon has been given to the study
of the field Qp of p-adic numbers., The simplest way of describing
this field is that it is the completion of the field Q of rational numbers
using the p-adic valuation l ’p in place of the usual absolute value
for establishing convergence criteria, Previous theses of an exposi-
tory nature have covered in considerable detail the development of the
p-adic number field and many of its properties. Valuations have been
discussed at length, It has been observed that a valuation on a field
induces a metric on the field. In particular, the p-adic valuation
induces the p-adic metric dp’ a non-archimedean metric. It has
been shown that the metric space (Qp, dp) is totally-disconnected.
The space is not compact but the subset 0p of p-adic integers is
compact,

The field Qp may be considered as a linear (or vector) space
over itself, The valuation on Qp as a field is a norm on Qp as a
linear space over itself, We then have a normed linear space aver a
non-archimedean valued field, in this case a non-archimedean normed
space. This leads to the consideration of arbitrary normed linear
spaces E over non-archimedean valued fields K and hence to non-~

archimedean normed linear spaces.



Normed linear spaces over the real or complex number fields
have played an important role in many areas of mathematics, The
question arises as to the implications on the linear space E when the
field K has a non-archimedean valuation, Of partic}ular interest is
the situatioq in which the norm on E is also non-archimedean.

This study begins in Chapter II with a discussion of the proper-
ties of the norm. Several examples of non~archimedean normed linear
spaces are given., The relation between the valuation on K and the
norm on E is studied.

The emphasis in Chapter III is on properties of a topological
nature. The metric induced by a norm is discussed, as well as some
of the properties of spheres when the metric is non-~archimedean,
Compactness and connectedness are studied., The most basic consider-
ation in this context is the fact that any non-archimedean metric space
is 0-dimensional, Finally, the concepts of completeness and spherical
completeness are introduced and compared. These concepts are
important in analysis concerning non-archimedean normed linear
spaces.

In Chapter IV interest is centered on whether or not the non-
archimedean property of the metric is the determining factor for the
properties discussed in Chapter III. It is demonstrated that it is
possible to define on a set S metrics of various types, for example
archimedean, non~archimedean, and locally non-archimedean metrics,
which are equivalent under certain conditions. The theorems in this
chapter show that to insure the fundamental topological properties
exhibited in Chapter III it is sufficient but not necessary that the metric

be non-archimedean.



The topic of convexity is frequently studijed in connection with
linear spaces. The last chapter is a brief introduction to the concept
of convexity in a linear space over a non-archimedean valued field.

Of special interest is the fact that the definition is of necessity indepen-
dent of order.

Many articles written in the area of non-archimedean normed
linear spaces eventually lead into the study of locally convex spaces
and the results in this paper are of interest in this connection, How-
ever, the discussion of locally convex spaces is beyond the scope of
this study.

Most of the literature in the area of non-archimedean normed
linear spaces has appeared since 1946. At the present time there is
no convenient single source for this'material as the numerous articles
appear in a variety of journals. Of these articles a high percentage are
in European journals and have not been translated into English. One of
the major contributors has been A. F. Monna who has produced a
steady stream of articles from 1946 to the present, In addition to
being somewhat inaccessible, many of these articles are written at a
level of difficulty and require such an extensive background that many
of the interesting properties of non-archimedean normed linear spaces
are lost to the reader. A French-language book by Monna was pub-
lished in 1970, see [10]. However, this book is a summary of the
results of his articles and not a definitive study of the area.‘

This paper is aimed at a level which requires an understanding
of the basic properties of the p-adic numbers and of elementary

topology. Thus anyone, who has had an elementary topology course



and a number theory course or seminar in which the p-adic numbers
have been discussed, should be able to read it with understanding.
Before proceeding with the study of non-archimedean normed
linear spaces, background material concerning valuations, the p-adic
number field, and pertinent topology will be briefly reviewed. In
addition, some notationwill be introduced, Readers familiar with this
background material can proceed directly to Chapter II. However,
Chapter I will serve as a convenient source for those definitions and

theorems essential to the remaining chapters.
Algebra

The basic algebraic system with which we will be concerned is

the linear space.

Definition 1, 1.” A nonempty set E is said to be a linear space (or
vector space) over a field K if E is an abelian group under an opera-
tion which we denote by +, and if for every «a ¢ K, xe E there is an

element, written ax in E subject to

B

(1) ax+y) = ax+ ay,

(2) (a+P)x = ax +px,
(3) a(px) = (af)x ,
(4) Ix=x,
for all o,pe K and x,y ¢ E (where the 1 represents the unit

element of K under multiplication).

It will be assumed that the reader is familiar with other basic

algebraic systems such as groups, rings, and fields. A limited use



will be made of modules and submodules.

Definition 1.2, Let R be a ring; a nonempty set M 1is said to be an

R-module (or, a module over R) if M is an abelian group under an
operation + such that for every re R and me M there exists an

element rm in M subject to:
(1) r(a+b) =ra + rb,
(2) r(sa) = (rs)a, and
(3) (r+s)a =ra + sa,

for all a,beM and r,se R,

Definition 1.3, An additive subgroup A of the R-module M is called

a submodule (or an R-submodule) of M if whenever re R and

agA, then rac A,

Order

Definition 1.4. A set S is partially ordered by a binary relation <

on S if

(1) a <a for ae S, (Reflexive)

(2) a <b and a # b implies b i a, (Anti-symmetric)

(3) a<b and b < c implies a < c. (Transitive)

The relation (_ is a commeon partial order relation. We say
that a collection of subsets of a space E is partially ordered by set
inclusion. Note that under a partial ordering not every pair of

elements of S are related. For example, if E = {1,2,3} then

neither A = {1,2} or B ={2,3} is a subset of the other,



Definition 1.5. A set S is linearly ordered by the relation < on S

if
(1) S is partially ordered by <,

(2) a,be S implies that either a < b or b < a,

Thus a linearly ordered set is a set S which is partially
ordered by a relation < relatively to which each pair of elements of
S are related. For example, if S1 D) S2 ... 1is a monotonic
decreasing sequence of subsets, then the collection {Sn} of sets is

linearly ordered by set inclusion.

Definition 1.6, A linearly ordered set such that every non-void sub-

set has a least element is well ordered.

The set of positive integers with the natural ordering is well

ordered.
Topology

Included in this section are those topological concepts which are
especially appropriate to this study. For further references see [5],

[7], or [20].

Definition 1.7. A topological space is a pair (X, r) consisting of a

set X and a collection T of subsets of X, called open sets,

satisfying the following axioms:
(i) The union of open sets is an open set.
(ii) The finite intersection of open sets is an open set.

(iii) The set X and the empty set §§ are open sets,



The collection T 1is called a toEologX for X.

When it is clear which topology X has, we sometimes refer to
the space X. If the topology on X is induced by the metric d, we

will write (X,d).

Definition 1.8, A family B of sets is a base for a topology if and only

if B is a subfamily of T and for each point x of the space and each
open set U containing x, there is a member V of B .such that

xe V_ U,

Two topologies which can be assigned to any set are the trivial

topology and the discrete topology.

Definition 1.9. Let E be any set.

(1) The trivial topology on the set E is the topology whose

only elements are E and .

(2) The discrete topology on the set E 1is the topolegy

containing every subset of E; that is, every subset of

E is open with respect to the discrete topology.

In this study we will be primarily interested in metric spaces,

Definition 1. 10, A metric ona set E is a function d from Ex E

into R such that
(i) d(x,y) > 0 and d(x,y) = 0 if and only if x =1y,
(i) d(x,y) = d(y,x), and

(iil) d(x,z) < d(x,y) + d(y,z) for each x,y,ze¢ E,



The set S with metric d is a metric space and is denoted (E,d).

If the metric d also satisfies the strong inequality
(iv) d(x,z) < max{d(x,y),d(y,z)} foreach x,y,z¢ E,

then d is called a non-archimedean metric and the space (E,d) is

called a non-archimedean metric space,

For our purposes a neighborhood ef a point p of a topological

space E will mean any open set containing the point p. A point p is
a limit point of a set A if every neighborhood of p contains at least
one point of A distinct from p. The closure of a set A is the set
together with its limit points and is denoted A, The closure of a set
is a closed set. It is sometimes defined to be the intersection of all
closed sets containing A.

The interior of a set A, denoted lck) , isthe largest open set
contained in A or equivalently the union of all open sets contained in
A, It might be noted that the interior of A is the complement of the

closure of the complement of A,

Definition 1,11, The boundary of A, denoted bdry A, isthe set of

all points which are in the closure of A but not in the interior of A.

If we denote the complement of A by E ~A, then we have

bdry A = AN (E<A).

A situation which will be of special interest to us is the one in
which the set A is both open and closed. In this case the boundary of

A is empty.



-Theorem 1.1, The set A has an empty boundary if and only if A is

both open and closed.

Proof: Suppose A 1is both open and closed. Since A is open,

E ~A isclosed sothat E~ A = E~ A, Since A isclosed A=A,

Thus bdryA = AMEZA = AN(E~A) = §. Conversely, if
bdry A = ¢, thatis AN E~A = @, since E~ A (C E< A we
have AN (E~-A) = ¢, Thus A contains all its limit points and so
A is closed. Similarly, A A implies AN EZA = § so that
the set E ~ A contains all its limit points, Thus E ~ A 1is closed

which implies A 1is open.

The set A is dense in E if A = E, thatis, every point of E
is a point or a limit point of A, A space E is separable if it has a
countable dense subset. Thus the rationals are dense in the reals, A
subset A of E is said to be nowhere dense in E if no nonempty open
set of E is contained in A. In other words, the interior of the
closure of a nowhere dense set is empty.

Since we will be dealing almost exclusively with metric spaces,
the separation properties are not of much interest. This results from
the fact that every metric space is completely normal and hence
normal, regular and Hausdorff.

A subset A of a space E is compact if every open cover

contains a finite subcover. A subset of E is countably compact if

every infinite subset of A has at least one limit point in A. Every
compact subset A of E is countably compact., However, in a metric

space we have the stronger theorem.
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Theorem 1.2. In a metric space E, compactness and countable com-

pactness are equivalent,

Other important compactness properties are contained in the

following theorem.

Theorem 1.3. (1) Every closed subset of a compact set is compact.

(2) Every compact subset of a Hausdorff space is

closed.

A subset A of a space E is connected if it is not the union of
two disjoint non-empty sets each of which is open in A, An equivalent
statement is that A is connected if and only if no proper subset of A

is both open and closed in A. A subset is non-degenerate if it contains

at least two distinct points., A space E is totally disconnected if its

only connected subsets are points, that is, if no non-degenerate subset

is connected.
Valuations

In this section the definition of a valuation will be given and some

of the properties of interest to this study will be listed.

Definition 1.12. A valuation on a field K is a function | | from K

into the reals such that
(i) |a| >0 and |a| =0 ifandonlyif a =0,
(i) |ep| = || [p| forall a,peK,
(iii) |a+B| < |a| + |B] forall a,BeK.

If ’ I satisfies the additional property
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(iv) |e+B| < max{|a]|, |B|} forall «,BeK,

then [ | is said to be a non-archimedean valuation.

The valuation | | induces a metric d on K by defining

d(X,Y) = 'X-Y' .

Notation: Since we will be using the term non-archimedean numerous
times, we will abbreviate it to n,a. For grammatical purposes n.a.

should be read non-archimedean.

In this paper the notation | | will be used for an arbitrary
valuation on the field K, whether the valuation is archimedean or non-
archimedean. However, in a few cases the usual absolute value, which
is a valuation, is used. Whenever the symbol | | is used for the
absolute value, this will be pointed out. The other special valuation is
the p-adic valuation, denoted | lp’ where p is a prime integer,

We will have more to say about this valuation in the section on the
p-adic number fields.

Properties of valuations are given in this theorem.

Theorem 1.4. If | | is a valuation on K, then

(1) |1] =1

(2) [-a|=|a|

(3) |at| = la|™

(4) If | | is n.a. then |a| > |B] implies |a+p]| = |a].
Theorem 1.5. A valuation | | on the rational numbers is non-

archimedean if and only if |n] <1 for every n in Z, the set of

integers.
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In the following discussion the term rational integers will be
used for the set Z of integers to distinguish them from the ring 6 of

integers given in the following definition.

Definition 1._13. Let K be a field with n.a, valuation l f, Denote

by 6 the set 6 = {x¢ K' | | <1} . The set & is called the valuation
ring or the ring of integers of the field K with respect to the valuation
[ l . As the name indicates 6 is a ring. The set 6 contains the ring

Z of rational integers as a subset.

- Definition 1.14. The trivial valuation is that valuation defined by

la] =1, if a#0,
lal=0, if =0,
Definition 1,15, The non-trivial valuations | 'a and [ lb on a

field K are equivalent if for each o ¢ K, loz la <1 if and only if

|a|b<l.

The following definitions concern convergence with respect to a

valuation | | on a field K.

Definition 1.16. Let | | be a valuation on a field K.

(1) A sequence {ozn} of K converges, with respect to the valuation
| |, tothe point « if for each ¢ > 0 there exists an N such

that ’an-a'<e whenever n > N, We write liman:oz.

(2) A sequence {xn} is Cauchy if for each € > 0 there exists an

N such that lozn -a < e¢ whenever m,n > N,

]
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(3) A valued field K is complete , with respect to the valuation I l .

if every Cauchy sequence of K converges to a point of K,

(4) The sequence {an} is a null sequence, with respect to the
valuation ' [ , provided that for each € > 0 there exists an N

such that lan’ <€ whenever n > N,

(5) The set A of elements of a field K with valuation | |, is
bounded with respect to [ ’ , if the set of norm values laf ’ R

o e A is bounded above,

The following theorem gives necessary and sufficient conditions

for two valuations to be equivalent.

Theorem 1.6. Two non-trivial valuations | la and | lb are

equivalent if and only if they determine the same convergence criteria,
That is, if for each sequence {ozn} there exists a point « such that

1im‘an—a’a= 0 if apd only if 1imlan-a|b= 0.

Theorem 1,7. Ostrowski's Theorem. The only non-trivial valuations

on the field Q of rational numbers are those equivalent to | ’p’ the

p-adic valuation for some prime p, or to ’ [ , the absolute value.

As with the absolute value we have the following theorem which

holds for any valuation.

Theorem 1.8. Let K be a field with valuation | |, If lim a = a,

then lim|an[ = ]a'.
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The p-Adic Number Fields

The simplest non-trivial example of a non-archimedean valued
field is the p-adic number field Qp. It is assumed that the reader
has had some experience with Qp. However, there are certain
properties which are basic to the discussgion in ‘the remaining chapters.
This section contains a brief review of these properties and the neces~
sary definitions. For a development of the p-adic number field and
other background material of this kind see [l], [2] or [3]

The set of p-adic integers Op is the set Op ={ace Qp' loz ,p < 1}.
Referring to our general discussion of valuations the set 0_ is the
ring of integers of the field Qp with respect to the valuation I lp’
Thus Op contains the set of rational integers as a subset,

The following theorem contains statements concerning the repre-
sentation of p-adic numbers. The term unit is used as in algebra,
The element x is a unit in a ring R if it has an inverse; that is, if

there exists an element ye R such that xy=yx=1.

Theorem 1.9. (1) Every non-zero p-adic number « has a unique

series representation

m+n
H

@
a = p Zap:Zanp
n=0

where 0 <a <p-1 and ao# 0.

(2) If m >0, then ae0

n

(3) A p-adic integer a = a_p isawunitin 0_ if and only if
p g n p

aO#O.
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(4) Every p-adic number a ¢ Qp has a unique representation in

the form o = pn8 where @& is a unit in Op’ and neg Z.

With this brief background we can now define the p-adic valuation

for future reference,

Definition 1. 17. The p-adic valuation | lp is the valuation on Q
defined as follows, Let «a = pn8 where € is a unit in Op, Then

1
la[ngg-, @ # 0, and [o]p-:o.

The p-adic valuation is non-archimedean, that is

fa+[3)p < max{[alp, lﬁ[p} for all «a,Be Qp. It has some interesting

convergence properties which are contained in the following theorem,

Theorem 1,10: The following are properties of sequences of p-adic

numbers:

(1) A sequencge {ozn} of p-adic numbers is Cauchy if and only if for

each € > 0 there exists an N such that [oz - an[ < e when-

n+l

ever n > N,
(2) Every Cauchy sequence of p-adic numbers is bounded,

(3) From any bounded sequence of p-adic numbers, it is possible to

select a .convergent subsequence,

(4) A sequence {an} of p-adic numbers converges to a p-adic

number o« if and only if {ozn} is Cauchy,

(5) The field (Qp,f [p) is complete.

(6) The field Q of rational numbers is dense in Q
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(7) Let {an} be a non-null Cauchy sequence of p-adic numbers.
Then the sequence {’an' } of real numbers is eventually
p

constant,

In his thesis, Snook [19] proved several properties of the p-adic
metric space (Qp, dp) where dp is the metric induced on Qp by
the p-adic valuation. That is, dp(x, y) = [x-y[p. The fact that dp
is a n.a, metric follows from the corresponding properties of the

valuation | lp" For example,

1

dp(x,z) Ix~z[p = |x-y + y—z'p < max{,x-ylp, ]Y“‘le}

max {d(x, y), d(y, z)}.

The following theorem gives some of the topological properties

of the space (Q ,d ).
P (P p)

Theorem 1.11. Let (Qp,dp) be the space of p=~adic numbers with the

p-adic metric dp. Then
(1) The set 0p is a compact subset of (Qp’ dp) .

. (2) The set 0p of p-adic integers is a closed and bounded
subset of (Q ,d ),
p P

(3) Any closed and bounded subset of (Qp, dp) is compact.

(4) The space (Qp, dp) is totally disconnected.

In general we denote by G = {|«] loz e K, a # 0} the set of
non-zero values. In the p-adic case this set is a ¢yclic group

generated by L . Thatis G= U {—1—} .
P n
neZ p



CHAPTER II
EXAMPLES AND PROPERTIES OF NORMS

When most students first encounter a linear space over a field,
the scalar field is the rational, real, or complex number field, The
valuation on the field is the absolute value, an archimedean valuation.
However, one can consider linear spaces over n,a. valued fields, for
example, over Qp . When a norm - is introduced on the linear space,
the space is referred to as a normed linear space., If the norm also
satisfies the non-archimedean property, the space is called a non-
archimedean normed space.

In this chapter, E is a normed linear space over a field with
non-archimedean valuation. The first section contains the basic prop-
erties of the norm and the set of values of the norm, Some examples
of n.a. normed linear spaces are given. In addition, the relation

between the value on K and the norm on E is studied.

Definition 2. 1, A normed linear space E over a field K is a linear

space E for which there is a mapping, || [[: E~R, called a norm

such that:

(i) ||x]| > 0 forall xeE and x| = 0 if and only if

x =20,

(ii) “ax” = Ioz[ ”x” forall x¢ E and « g K where [ f

is the valuation on K, and

17
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(iii) ”x+yH;_<_ x| + ||yl forall x,yeE.
If in addition the normed linear space E satisfies property

(iv) [x+y] < max{[x], ||y]|} forall x,ye E, then E

is called a non-archimedean normed linear space.

It is the case in which the valuation on K is non-archimedean
with which we are concerned. Some propérties of the norm will now be
observed.

First, it should be noted that property (iv) implies property (iii)
of a normed space. That is, if |[[x+y[ < max{|x]|,|y]}, then
Hx+y” < ”x“ + ”y” . In addition, a norm has some properties

analogous to those of a valuation.

Theorem 2.1. If || || is a norm on the space E, then
(1) [f-x]l = =]
) vet || [ ben.a 1t [y <[x], then [x+yll = [x].
Proof: (1) |[[-x[[ = [[(-Dx[| = [-1] [[x]| = <] .

(2) By property (iv) [[x+y[ < max{[x|,[yll}=]=].
But |[x[| = [[x+y-y] < max{[[x+yl, [y} = [[x+y]. Therefore

Pyl = f=l

The following is an example of a n.a. normed linear space which

will be used later.

- Example 2.1, Let E = K" = {x]x = (xl, v ,xn) ) X € K} . Consider
"E as a linear space over K, a field with n.a, valuation ’ | . Define

x| = max |[x.|. The norm | | is a non-archimedean norm.
1<i<n 1!
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Proof: Let x=(x1,...,xn) and y=(y1,...,yn.), X, Ve K",
1) x| > 0, since ]xi' > 0 by definition of | |, which implies
that >0, = i ‘ if =
a lr?zls.}é ’x, ”x”__ ”x” 0 if and onlyif x=0,
since ”x” = rna><< 'xil = 0 if and only if lxil =0,
i=1,2,...,n which is true if and only if x,=0, i=1,2,...,n,
or x=0.

(i) [|ex]| = || |x]. Let aeK, xe K", then ax:(axl,..,,axn).

Thus |ex| = max |ex| = |a| max |x| = |a| |x].
I<i<n 1 l<ign ?

(i) fxtyll < max(fx[l, [yl). Webave [x+yl = max [x+y].
But lxi+ yi[ imax{[xi[, lin} for each i = 1—2 -,—,,,n, since
| | isa n.,a. valuation, Therefore

“x-Fy”i max [max {|x.|, |y.|}] = max{ max |x.|, max |y.|}
1<i<n t t 1<i<n ' 1<i<n t

= max { [[x[|, [ly[} .

Thus K is a non-archimedean normed linear space,

Examples of normed linear spaces which are archimedean

(not n.a.) inglude the following:

(1) E=XK=0Q, with the usual absolute value on Q as the valuation

and as the norm,

(2) E = Cla,b], the set of all real valued continuous functions on the

closed interval [a,b]. Let K = R, with the usual absolute value

and the norm defined by Hx” = max lx(t)l .
te [a,b]

(3) E= c®, the complex Euclidean n-space. Let K = C with the
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‘usual absolute value. The norm for x = (ozl, v e C, s

1/2
given by Hx” = (lallz-l-...-l- [anlz) /2.

As another example of a n.a. normed linear space we have the

following.

Example 2.2. Let E = Qp and K = Q with the p-adiec valuation as

the valuation on Q and its extension to Qp ‘as the norm on E. Thus
x| = |x| for xeE=Q_ and |a|=]|a|_ for aeK=Q. Since
P P P

“ax“ = ,axlp: |a| ’xlp: lal ”x” we have property (ii) of a n.a.

p
normed linear space. The remaining properties (i) and (iv) are
immediate consequences of the corresponding properties for ’ l

Thus E = Qp as a linear space over ‘'K =(Q 1is a n.a, normed: linear

space.

Consider the case E = Q5 and K = Q and in addition let the
absolute value be the valuation on Q and the 5-adic value be the norm
on Q5. Let a=2¢Q and x=3aQ5. Then
lax| = 2-3]f = |6[l = [6]5=1. However |af [[x]| = |2][3[5=2-1=2..
Thus | ax]|| # |a]| ||x]] so | ||, as defined, is not a norm on Q5
as a linear space over Q with the absolute value.

The preceding discussion indicates that an archimedean valuation
on K and a n.a. norm on E may not be compatible, This leads one
to ask what conditions on K are necessary and/or sufficient for a
norm, ” |, on E tobe n.a. Itturns out that the condition that K

be n.a, is necessary but not sufficient,

Theorem 2.2. If E is n.a. then K is n.a,
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Proof: Suppose there exist o, e K such that

|a+pB| > max{|a|,|B|}. Let x#0 bein E, Then

lax+px| = [[(a+p)x| = [a+p] [|x]| > max{[a], |8]}x]
= max {[e| x|, 8] lI=[}
= max { || ax||, || px][} .
Thus || || is not n.a. which implies E is not n,a. This is a contra-

diction, so if E is n.a. K is n.a.

While K being n.a. is a necessary condition for E to be n.a.,
the following example shows it is not a sufficient condition, In particu-
lar, an archimedean normed linear space E over a n,a. valued field

K will be constructed,

Example 2.3. Let K be a n.a, field. Let E be the linear space of

22}
), xieK, such that Z lxi’ < o, with
i=1

all sequences x = (x,,x

12 Xp e

]xil . Then it is not true that
1

M8

the norm “x” =
i

Ix+y]l < max{|lx], [[y[} forall x,yeE,

[« ¢]
as will be shown, First, | | isa norm since = [xiiﬂz 0 and
@ i=1
= |x| =0 ifand onlyif x,=0 for i=1,2,... sothat x=0.
i=1
And

laxll = = lax,| = le] = |x;| = al x|
i=1 i=1

Finally,



22

I+l = Z =+ vl < = (5] +]y;]) = ’lexelﬁz ly;|

i=1 i=1

=+ llyll

Now let x.=(1,0,0,..,) and y =(0,1,0,0,...). Then
[x] = {lyll =1 and [x+y| = 2. Thus |x+y[ > max{[x], [y]}.

Thus E is archimedean even though K is n.a.

Suppose K is a n.a. valued field. It has been shown that E
need not be n.a, Is it possible in this case for the inequality
||x+y” > rnax{”x”, “y”} to hold for all non-zero x and y in E?
The answer is negative as the following argument shows, Recall the
theorem that a valuation | | is n,a. if and only if In] <1 for every

integer n., Let x be a non-zero element of E., Then

Ix+xll = ll2xil = [2] <] < llx]| = max{lx], [x]}. Thus
| x+x | < max { x|, |x|l} . Thus it is never possible to have
lx+y| > max{|/x]||, |yl|} for all non-zero elements.

To summarize, two situations may occur:

A, lx+y]| < max{||x||, lyl|} forall x,ye E, in which case E is

n,a.

B, There exist x,y# 0 in E such that |x+y]| > max{]|x], [[v]?}.
In this case E 1is said to be archimedean. However, as observed
in the preceding paragraph, this inequality cannot hold for all non«-

zero elements of E.

Norm Values

Let E be a n.a. normed: linear space over a n.a. valued field

K and define the sets G:{[a”aeK,a#O} and
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H= {|x] "x e E, x # 0}. Inthe examples of normed linear spaces
considered so far, it has been the case that H( G, in fact H = G.
However, in general H 1is not a subset of G. The following example

illustrates this situation.

Example 2.4. Let K = Qp’ p # 2, then the value group G 1is gen-
erated by % Thus G = {——1;1— [ ne Z}. Consider the set of sequences
x = {ai} where a, e Qp and lima, =0, These sequences form a
‘linear space E over Qp. Let {Ci} be an increasing sequence of
positive nurmbers such that liirn Ci =C>0. Then lim lail C,1 = 0
since -lim a, = = 0 and the Ci are bounded above by C, Define
Hx” rna.x [a l ;. This maximum exists since ~liirn lail Ci = 0

where {]ai] Ci} is a bounded sequence of real numbers,
p

As defined above, H ” is a n.a. norm on E as the following

argument shows. Clearly ]ail cizo so that
p

”x“ = rnax ]a l C > 0. Further, ”x“ = 0 if and only if ]ail =0
p - P

which is equivalent to a; = 0, i=1,2,... or x=0. For ac Qp"

axz{aai}. Thus Ha.x][:rn?.x]aailpci=]a[ m?x[ai,pcizfa[p”xl.

Finally, let x = {ai} and y = {bi}" Then

x+y|

max [ai+ bi'pci < max [max { Iq.ilp, !bllp}Cl]

=m§.x[max{}ai] Ci,fbif Ci}]
. P P

= max [max ]ai[ Ci, max ]bil Ci]
1 P 1 P

= max {[|x[[, [y [7.

It can now be shown that the set H = {|[|x| tx e E, x # 0} is not

the same as the set G = {—-la |ne Z2}. In fact
P
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H-= {-—ln— Ci, negZ, ie Z+} . To see this fix n and k and define

— — - —_— n —
x—{ai} where ai—O for 14k, and ak—.p . Then ]a_.i[pCi—O,

k n
: p
“x“ = max ]a..l[pC.1 = —1-5Ck. Therefore for any fixed increasing
i

: 1
i#k and [aklpckz lpn]pc =—C,. Thus

sequence {Ci} of positive numbers with :lim Ci = C >0, for which at
i

least one Ck is not an integral power of p, we have
) R
H={|x]} = {=c.} ¢ G ={=} for neZ, ke zt
p p
In the preceding example,. the set G of non-zero values la' I ,
a ¢ K, had no limit point but 0. Such a valuation is said to be

discrete, The following definitions identify properties of the sets G

and H where G={[a,]asK,a#O} and H::{HXH.XEE,X-#O}.

Definition 2,2. The valuation on K 1is said to be discrete if the set

G has no limit point but 0., If the valuation on K 1is discrete we say

that X is discrete,
Similarly, discreteness is defined for E,

Definition 2.3. The norm on E 1is said to be discrete if the set H

has no limit point but 0. If the norm on E 1is discrete, we say that

E 1is discrete.

The p-adic valuation | {p on the field Qp is a familiar
discrete valuation. The absolute value on R is a valuation which-is
not discrete, . A valuation which is not discrete is sometimes said to be
aense. If Qp is considered as a linear space over itself with both the
valuation and the norm being the p-adic valuation ] [pp then the norm
.is a discrete norm. A norm which is not discrete will appear in

Example 2.5,



25

A natural question one might ask is whether or not there is any
relation between K being discrete and - E being discrete, The
following theorem and example show that K being discrete is a neces-

sary condition but not a sufficient condition for E to be discrete,

Theorem 2.3. If E is discrete, then K 1is discrete,

Proof: Let E be discrete. Suppose K is not discrete. Then
the set of values G has a limit L > 0. Thus for any n there exists
a point « e K such that l ]ozn] - Ll < ;11-, (Note that the outer
symbol ' ‘ represents the ordinary absolute value on the reals).

Thus the sequence {]ozn]} has the'limit L., Pick xe¢ E such that

x| = a>0. Consider the sequence {”anx”} , a xeE. We have
timfl ] = tim Ja | fx] =[x tim oy | =a-1>0. Thos

{ H anx”}, a Xe E 1is a sequence of norm values with limit point
al > 0. This is a contradiction since E is discrete by hypothesis.

Therefore if E is discrete, K 1is discrete.

The following example shows that the converse of the preceding
theorem does not hold. A linear space E over a field K will be given

in which K 1is discrete but E is not discrete.

Example 2.5, Let E = ,SQ be the set of all power series
“1 @
X = alt + a2t + ... where CETICPYRR is a set of ratienal

numbers well-ordered in the natural erder, that is, a strictly increas-
ing well-ordered set of rational numbers, and the a, are contained

-in some given field I'. Define addition and multiplication in the usual

way, For example, if
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1 5 £} 35 15
x =t 2383 268 + %¢2 ... and vy = 2t* +3¢t° - %¢ 8t et + ...
then
13 1
x+y=t2+2t4-%t8+9t2+...
and
5 13 29 10 1
x-y=2t4:+3t6~6t12-9t3 +6t3‘+... ,

The set SQ with addition and multiplication thus defined is a field.

-
Define for xe¢ E, Hx” = e 1, x # 0 and HOH: 0. Here

[ | is actually a n.a. valuation on field E. Clearly |[x||> 0 and

x| = 0 ifand only if x =0, Let

© o, 0 B,

x= T a,x and y:Zb.xl.
i=1 * i=1 '
@1*P

Then the first term of xy is alblx so that

~(a;+B;) - -B

1" 1 1
[x-yll = e =e “.e o= x|yl .

Finally, the first term of x+y would be determined by min (al, Bl)

so that

-min (a,B;) - -B
lx+y] < e PPV maxfe Le !} = max{|x], Iv]} .

Thus || || is a n.a. valuation on s® .
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Consider the subset K = SZ of SQ consisting of all series
© n,
= ait ' where {ni} is an ordered subset of Z, the set of integers,

i=1
The set SZ is a subfield of S .

Now consider SQ as a linear space over the subfield SZ . Let
the valuation on SZ be the valuation induced on SZ by the valuation
“ ” on SQ. Then for ace SZ and x¢ SQ we have
lax] = |[a] |x]| since a and x are both in SQ. The other prop-
erties of a n.a. norm were verified when it was shown that | | was
a valuation on SQ. Thus || | isa n.a. norm en SQ as a linear
space over S

The following arguments demonstrate that SZ is discrete but
that SQ is not discrete. The sets G and H in this case are

G = {e—n}n and H = {e-a}asQ . To show that SZ is discrete

g7

. 1 1
let L >0, There exists an N such that eN+1 <L < -;-—N- . If
1 . 1 ' 1 .
L = :NTI , then there exists an a > e»N+2 and b < :m with
Le(a,b). Thus (a,b)/ G ={L} and L is nota limit point of G.
1 . 1 1
If L # _;N—-I-—l_ , there exists an a > -;—N— and b < eN+1 such that

Le(a,b) and (a,b)/ VG ={L}., Thus L is nota limit point of G,
so G has no limit point but 0 and SZ is discrete,

However SQ is not discrete; in fact, it will be shown that H
is dense in the non-negative reals and hence certainly has limit points
other than 0. Let L >0 and Le¢ (a,b), 2a>0. Then loga < loghb
and there exists a real number « such that loga < ~a < logb. Thus
a<e “<b sothat e %¢ (a,b) and L 1is a limit point of H.

Similarly for e >0 there is an a such that 0 < e"¥<e¢ s0 0 isa

limit point of H and H is dense in the non-negative reals.
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We have then an example of a n,a, linear space E = SQ over
a field K = SZ where K 1is discrete but E 1is not discrete, Thus,
as indicated before, K being discrete is a necessary condition but not

a sufficient condition for E to be discrete,



CHAPTER 1III

TOPOLOGICAL PROPERTIES OF NON-
ARCHIMEDEAN NORMED LINEAR

SPACES

In Chapter II properties of a linear space were discussed which
are independent of a topology on E. The discreteness of E and K,
as define‘d in Chapter II, are independent of any topology on E or K.
However, T.:'\""5gvi\4;.en any normed linear space E over a field K with norm,
| I, there is always an associated metric. This metric then induces
a topology on E. This chapter is concerned with properties of E
which result from this topology.

After aé.fining the metric on E, properties of spheres‘when:_the
metric is non-archimedean are examined. Conditions under which the
topologies on E and K are discrete are explored. This is followed
by a discussion of connectedness and compactness, \‘ It is noted that a
key to the topological properties is the fa;t that every n.a. metric
space is O~dimensional. The chapter ends with a discussion of com-
pleteness and spherical completeness and the basic difference between

them.,
The Metric Induced by a Norm

Given a normed linear space E over K with norm, | [, the

norm induces a metric on E as follows. Define forall x,ye E, ‘

2.9
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d(x,vy) = ”x - y” . That d is a metric is shown in the next theorem.

Theorem 3.1, The function d: E x E-+~R 1is a metric on E.

Proof: (i) d{x,y) > 0 since ”x-y” > 0, Further, d(x,y) =0
if and only if x =y since ”x~y” =0 ifand onlyif x-y =0

which is true if and only if x = vy,
(ii) d(x,y) = d(y,x) since ”x-y” = ”-(y-x)” = ”y-x” .

(iii) d(x,z) < d(x,y) + d(y,z) since
[x-z] = [[x-y + y-z| < llx-y] + [y-2] .

Furthermore, if the norm is n.a.,

(iv) d(x,2z) < max{d(x,y),d(y,z)} since

I -zl = [x-y) + (y-2) ]| < max{[x-y[, [ly-=2]} .

Thus d is a metric on E and if || || is n.a. then d satisfies the

strong inequality.

If the metric d satisfies the strong triangle inequality,
(1) d(x,2z) < max{d(x,y),d(y,z)}, for every x,y,ze E, in addition
to the usual properties of a metric, then d is called a non-archimedean
metric, If a metric is not n.a,, then it is called archimedean. Thus,
if the strong triangle inequality (1) fails to hold for even one triple of
points, the metric is archimedean,

One indirect consequence of Theorem 2.1 (2) is that every
triangle in a n.a. metric space is at least isoseeles, To see this
suppose that d(y,x) < d(x,z). Then ”y-x” < ”x—z” but then by

Theorem 2.1 (2) fly-z] = [ly-x + x-z] = max{{ly-x[,[x-=[l}=[x - =].
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Thus d(y, z) = ”y—z” = ”x«z” = d(x,z), Thus at least two sides of

any triangle must be equal in length,
Properties of Spheres

As usual the following definitions are made for any metric d,

Definition 3.1, Let S(xo, r)={xeE| d(xo,x) <r}., The set S(xo, r)

is called an open sphere with center x, and radius r > 0.

0

Definition 3,2. Let S[xo, r] = {xe E ld(xo,x) < r} ., The set S[xo, r]

is called a closed sphere with center x. and radius r > 0.

0

If there is any question as to what metric is being used, then the
notation Sd(xo, r) will be adopted when the metric is d.

It is known that the collection of all open spheres, as defined
above, is a base for a topology on E and this topology is said to be
induced by the metric d, That is, the open sets are those which are
unions of open spheres. Thus U ( E 1is open, with respect to the
topology induced by d, if and only if for any xe¢ U there exists a
positive number € such that the open sphere S(x,¢) (C U, As one
would hope, the open spheres are open sets and the closed spheres are
closed sets. However, if d is a n.a. metric, the spheres have some

unusual properties.

Theorem 3.2. Every open sphere in a n,a. metric space (E;d) isa

closed set,

Proof: Let y be a limit point of the open sphere S(x,r), Since

E is a metric space there exists a sequence {Xn} » K € S(x, r), such
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, Also there exists an N such that —Nl- <r, so that

1
d(xN,y) < < r. It follows that, d(y,x) < max {d{(y, xN),d(xN,x)} <r

B

that d(xn, y) <

so vye S{x,r). Therefore, S(x,r) is closed, since it contains all its

limit points.

Theorem 3.3. Every closed sphere in a n,a, metric space (E,d) is

an open set in E.

Proof: Let ye S[x,r]. To show that S(y, r) C Slx,r], let
z ¢ S(y,r), then d(y,z)<r. Thus, d(x,z) < max{d(x,y),d(y, z)} i r,

50 Z¢ S[x, r]. Since S{y, r) C S [x, r], S [x, r] is an open set,

In addition to the results contained in the preceding two
theorems, there are some even more surprising properties of spheres
in a n,a. metric space which are given in the following theorems. The
theorems are stated for closed spheres but are also valid for open

spheres.

Theorem 3.4. In a n,a. metric space E, if the intersection of two

closed spheres is non-empty, then one sphere contains the other.

Proof: Given two spheres S [x, r] and S[y, p], we may assume
r < p. If the intersection is non-empty it will be shown that
S [x, r] C Sly, p] . Since the intersection is assumed to be non~empty
there exists a point w contained in both spheres. Thus for z¢ S[x, r]
d(y, z) < max{d(y, w),d(w,2)} < max{d(y, w), max[d(w, x),d(x,z)]} .
But we S[y, p] implies d(w,y)<p, we S[x,r] implies d(x,w) < r,
and ze S[x, r] implies d(x,z) < r, Therefore, d(y,z) < p so
ze Sly,pl. Thusif S[x,r] M Sly,pl # ¢ and r < p, then
Slx, r] C sly, pl.
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Theorem 3.5. Ina n.,a. metric space any point of a closed sphere

may be taken as its center.

Proof: Given S[xo, r) , let vye S [x ] and consider the sphere

o F
Sly,r]. Since ye S[xo, r] M Sly, r], by the previous theorem one
sphere is a subset of the other. But from the proof of the previous
theorem, since the radii are equal, each sphere is a subset of the

other. This implies that S[xo,r] = S[y,r] where y was any point

in S[xo, r]. Thus any point of a sphere may be taken as its center.

If one contemplates the preceding theorems it is not surprising
that many results for a n.a, metric space will be different from what
we have come to expect from the study of the reals with the usual
metric., This section concludes with a converse of Theorem 3.4,
Theorem 3.4 and its converse give a characterization of n.a. metric

spaces.

Theorem 3.6. Let E be a metric space. Suppose that any two spheres

in E are either disjoint or one is a subset of the other, Then E is a

n.a. metric space.

Proof: It must be shown that for any a,b,ce E,
d(ayc) < max {d(a, b), d(b, c)}. Suppose this is not true, then there
exist three points a, b, and c¢ such that d(a,c) > mé.x{d(ag b),d(b,c)}.
Let d(a,b) = & and suppose that d(c,b) = &' < 6. There are two
cases, (1) 86'< &6, Consider S[a,&] and S[b, &']. Clearly
be S[b, §'1 and since d(a,b) = 6, be S|[a, 6], Thus b is contained
in both spheres so by hypothesis one sphere is a subset of the other.

Since d(c,a) > max{d(a,b),d(b,c)} =&, we have c# S[a,&]. And
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since one of the spheres is a subset of the other it must be that
Sla, 6] is a proper subset of S[b, 6'] since ce S[b, 6], However,

since d(a,b) = 6>6", ag¢ S[b, §']. This is a contradiction,

(2) 6=206'. Since d(c,b) = &' =6, be-S[c,é], and since
d(a,b) = &, be S[a,6]. Thus the two spheres intersect and so by
hypothesis one must be a subset of the other. Since
d(c,a) > & = max{d(a,b),d(b,c)}, then c¢ Sla, 8] and a¢ Slc,8].
Thus each sphere must be a proper subset of the other, a contradiction,

Since both cases lead to contradictions, E must be a n.a. metric

space.
Discrete Topology

One possible topology which any set may be assigned is the
discrete topology, that is the topology in which every subset is an open
set. It could be that the topology induced by a valuation or norm:is the
discrete topology. It turns out that this can happen only when the
valuation on K 1is the trivial valuation. Recall that the trivial valuation
defines |x| =1 for x # 0.

A word of caution is appropriate here. The term discrete has
been used here in relation to the topology on K. Earlier a valuation
on K was called discrete if the set G of values had no limit point but
0. There is no connection between these two concepts so one must be
careful to distinguish between them.

In keeping with our earlier terminology, the statement K is
discrete means that the valuation on K is discrete. If we are
referring to the topology on K we will always say that K has the

discrete topology. Thus there should be no reason for confusion,
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Theorem 3.7. In order that K have a discrete topology, it is neces-

sary and sufficient that the valuation on K be trivial,

Proof: Assume that the valuation, ' l , on K is the trivial
. . 1 1
valuation. Let X, € K. Consider S(xo, -2-) = {xeK [ d(xo,x) < 2—} .
1
If d(xo,x) = |x0~x| <E’ then lxo—xl = 0 so that X = Xg. Thus

S(XO, %) = {xo} 50 {xo} is open. Since x, was an arbitrary point

0
in K, the topology on 'K induced by d is the discrete topology,
Conversely, assume that K has the discrete topology. Then

{0} is open. Thus there exists an r, > 0 such that S(O,ro) C {o0}.

0
Since le K, fll = 1. Suppose there isa y e K such that

ly|] =6 =0 and y # 1. This assumption implies that there is an
element zeK suchthat 0 < |z| < 1. In particular, if 0<&6<1,
let z=y, If 8>1, then ymls K and ]y-ll = [y]_I <1 so that
zZ = y'1 will suffice. In any case there isa 2z # 1 such that

0 < ]z] <1, Butthen z"¢K for any n and [znl = |z[n»0 as
n—-eo, Thus the sequence {zn} converges to 0, This is a contra-
diction since there exists an ry >0 with S(0, rO) C {0}. There-

fore lxl =1 for any x # 0. and l l is the trivial valuation,

In considering a linear space E over a field K, the valuation
on K induces a topology on K and the norm on E induces a topology
on E. One might suspect that there is some relationship between
these two topologies. The following theorem and example show that K
héving the discrete topology is a necessary condition but not a sufficient

condition for E to have the discrete topology.

Theorem 3.8. If E has the discrete topology, then K has the discrete

topology.
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Proof: Assume E has the discrete topology. Then {0} is an
open set in E so there exists a number Ty >0 such that

S(0, ro) C {0}. Thusif x#0 wehave |[x| > r,>0. If K does

0
not have the discrete topology there exists an o € K such that {«}

is not open in ‘K. Thus for any n >0, S, ;llv-) contains a point

ﬁn.aé a with 0< ]ﬁn- oz[ < % Let x be a non-zero element of E,
Then H(ﬁn.- oz)x” = ’ﬁn- oz’ ”x” -0 as n—w .so there exists an N
such that H (BN - a)x“ < r, and (BN -a)x # 0. This is a contradiction
since it was shown earlier that the norm of any non=-zero element of E

must be at least r Therefore, if E has the discrete topology then

O .
K has the discrete topology.

Corollary 3.9. If E has the discrete topology, then the valuation on

K is the trivial valuation.

Proof: This fellows immediately from Theorems 3.8 and 3,7.

The converse of Theorem 3,8 is not true as the following example
shows, In this example K is a field with the discrete topology. How-
ever, it will be shown that E, considered as a linear space over K,

does not have the discrete topology.

Example 3.1. Let K be a field with a trivial valuation, By Theorem

3.7, K has the discrete topology. Let E be the linear space over K

n n
consisting of the set of all power series x = alt 1 + azt 2 & S
where TR PYRRS is an ordered subset of Z, the set of integers.
-n
Define |[x|| = e 1, x#0, and [[0] = 0. E isa n.a. normed

space over K as in Example 2.5.
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Also, as in Example 2.5, 0 is the only limit point of the set of
norm values ”x“, xe E sothat E is discrete, However, E does
not have the discrete topology since {0} is not an open set in E.
This follows since for any ¢ > 0, there exists an integer n such that
e ™ < e, Thus no sphere S(0,¢) C {0} so {0} 1is notan open set,
The space E is then a linear space over a field K, whére K has the
discrete topology but E does not have the discrete topology. Thus K

having the discrete topology is not a gufficient condition for the topology

on E to be discrete.
Dimension 0

It has been observed that the collection of open spheres in a
metric space is a base for the topology. In.the case of a n.a. mefric,
Theorem 3.2 tells us that each open sphere is also a closed set, Thus
in a n.a. metric space there is always a base consisting of sets which
are both open and closed. Recall that by Theorem 1.1, a set has
empty boundary if and only if it is both open and closed, Thus any n.a.
metric space has a base consisting of sets with empty boundaries. The

following definition identifies the property.

Definition 3.3. A topological space E has dimension 0 at a point x

if x has arbitrarily small neighborhoods with empty boundaries. That
is, given any neighborhood V of x there is a neighborhood U of x
with empty boundary such that xe U (C V., The space E is called

O-dimensional if it has dimension 0 at each point of E,

Since any n,a. metric space has a base consisting of sets with

empty boundaries it is clear that the definition of 0-dimensional is
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satisfied. Thus we have:

Theorem 3.10. Every n.a. metric space is 0-dimensional, In

particular (Qp,dp) is 0-dimensional.
Connectedness

Another immediate result of the existence of proper subsets
which are both open and closed is that no n,a. metric space is con-
nected. Thus in the case of the p-adic numbers Qp’ with the topology
induced by the p-adic metric dp, (Qp, dp) is not connected. In this
case a much stronger result holds. In Snook [19], p. 78, it was
proven that (Qp, dp) is totally disconnected; that is, the onlyconnected
sets are singleton sets.

One might ask if this is always the case in 0-dimensional spaces.
However, any set E with the trivial topology, that is with the only
open sets being the empty set and the set E, serves as an example of
a space which is 0-dimensional butnot totally disconnected. The space
is 0-dimensional since the only neighborhood of any point xe E is the
set E which is both open and closed. E is actually connected, since
there is certainly no proper subset of E which is both open and
closed. Thus E cannot be totally disconnected,

A more restrictive question and one of more interest to this study
might be, is every n.a. metric ‘sp'ace totally disconnected? The
affirmative answer ‘to this question results from the following theorem

and the fact that every n.a. metric space is 0-dimensional.

Theorem 3.11. Every 0O-dimensional metric space is totally discon-

nected.
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Proof: Let E be a 0-dimensional metric space. Then the
topology for E has a base f consisting of sets which are both open
and closed in E. Let H be any non-degenerate subset of E and
suppose H 1is connected. Since H is non-degenerate, there exist
distinct points x and y in H. But since E is a metric space,
there exists an open set U suchthat xe U and y £ U. Without loss
of generality, Ue . But Ue B implies U is both open and closed
in E and hence E ~ U is openin -E. Butthen xeH () U and
yeH () (E~U) and both are open sets in H., Clearly their inter-
section is empty. Thus H is the union of disjoint nonempty sets each
of which is open in H. Therefore H is not connected, Since H was
an arbitrary non-degenerate subset of E, we have that E is totally

disconnected.

Since every n.a. metric space is 0-dimensional by Theorem

3,10, we have the following theorem.

Theorem 3.12. Every n.a. metric space is totally disconnected.

Compactness

Compactness in (Qp, dp) was discussed by Snook [19]. It was
shown that the set Op is a compact subset of (Qp, dp) but that the
space (Qp, dp) is not compact since it is not bounded. Recall that in
a metric space every compact subset is closed and bounded. It was
shown that, as in the reals, every closed and bounded subset of
(Qp, dp) is compact. It follows that the spheres, being closed and

bounded, are compact. But every point in Qp is contained in a
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sphere. Hence (Qp,dp) has the property that every point of Qp has

a compact neighborhood. This property is called local compactness.

Definition 3.4. A subset of a space E is locally compact if every

point of E is contained in a compact neighborhood.

The above argument proves the following theorem.

Theorem 3,13. The space (Qp,dp) is locally compact.

Thus Qp is a n.a. metric space which is locally compact, One
might ask if every n.a. metric space is locally compact. However,
the space S®, which we have previously encountered, furnishes an

example of a n,a. metric space which is not locally compact.

Example 3,2, As in Example 2.8, let S be the subset of SQ con-

sisting of all formal series x = alt + aZt + ... where ETLPYRRE
is a finite sequence or a simple sequence of rational numbers tending
to infinity. Recall that since s” is a subset of SQ the sequence of
exponents is strictly increasing.

The norm on S© is defined by <l = e‘.a’:l , if a, 40,
o] = 0. Let d be the induced metric on S*, To show that
(Sm, d) 1is not locally compact we will show that 0 is not contained in
any compact neighborhood. To do this consider the sphere S[0, e],
€ >0, Then there exists an @ ¢ Q suchthat o« > -loge, thatis,

-a < loge or equivalently e ¢ < ¢. Consider the set

A={xeS”|x=at¥,acR, a#0}. Then xe¢ A implies that

Hx—O“ = ”x” e @ < € sothat xc¢ S[0,¢]. Thus A is an infinite

subset of S[O,e]. let x,yeA, x#y. Then x = bt and y=cta
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where b # c. Therefore ”x-y” = ”bta- cta“ = ”(b-c)ta” = e ¥
since b-c # 0. Clearly A has no limit point since any two distinct
points are a distance e @ apart where ¢ is fixed. Thus A 1is an
infinite subset of S[0, ¢] which has no limit point. It follows that
none of the spheres sJo, e] is compact, since in a metric space
compactnes.s and countable compactness are equivalent.

But this implies no neighborhood of 0 is compact since suppose
U were a compact neighborhood of 0. There existsan ¢ >0 such
that 0¢ S[O, ¢] (C U. But then S[Oy ¢] is a closed subset of the
compact set U and hence is compact. This contradiction implies that
no neighborhood of 0 is compact and hence S is not locally compact,

We have then that (Sm,d) is an example of a n.,a. metric space
in which not all closed and bounded sets are compact, not all spheres

are compact, and which is net locally compact,
Completeness

Two examples of complete valued fields which have been
encountered are the set of real numbers with the absolute value and the
set of p-adic numbers with the p-~adic valuation. The concept of com-
pleteness extends to normed linear spaces. In the following definition
some terms which have previously been applied only to valued fields

will be extended to normeéd linear spaces.

[

Definition 3.5. Let E be a normed linear space with norm ” ” .

. . . . N
(a) A sequence {xn} in E is Cauchy if and only if for any € >0

there exists an integer N such that m,n > N implies that

%, - x| < «.
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(b) A sequence {xn} in E converges to x in E if and only if for
any € >0 there exists an N such that n > N implies that

”xn—x” < e,

(c) A normed linear space E is complete if and only if every Cauchy

sequence in E converges to an element of E.

(d}) A complete normed linear space is called a Banach space.

Several theorems carry over as well and they will be stated

without proof,

Theorem 3.14. Let E be a n.a, normed linear space.

(a) A sequence {xn} in E is Cauchy if and only if for each € > 0

there exists an N such that Hxn_'_1 - an <. ¢ whenever n > N.

(b) If {xn} is a non-null Cauchy sequence in a n.a. normed linear

space then the sequence {”Xn I} is eventually constant.

Example 3.3. The space K" of Example 2:. 1, where K isa

complete valued field, is a complete normed linear space., To see that

n . _ (m) _ (m) (m)
K" 1is complete, let {xm} = {(x1 Xy e X } be a Cauchy
. n _ : -
sequence in K . Recall that [x]| = | (xl, v xn) | = lr??gn Ixi[
where , ] is the n.a, valuation on K. Then for each ¢ > 0 there
exists an M such that [x -x_ || = max ]x.(m+1) - Xa(m) | < ¢
m+l m 1<i<n ' 1 i

whenever m > M. Hence for each i, 1 <1i.<n,

x(m+1) - xi(m)[ < ¢ whenever m > M, so that the sequence

I

{xi(m)} is Cauchy, with respect to the valuation I |, for
i=1,2,...,n, Since K is complete, there exists an Qi such that
lim xi(m) = Qi . Thus for any e >0 there exists an Ni such that
m->eo
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m > N, implies that |x, -%. | <e. Let N= max N, and
1 1 1 151511 1
2= %®.,%,...,R). Then Re¢K and
1’72 n
A
”x - x“ = max |x,(m) u/>2| < e for m > N, Thus the Cauchy
I1<i<n ! 1 -

AN n .
sequence {xm} converges to xe¢ K~ so K" is complete.

The following classical theorem of Cantor gives a characteriza-

tion of metric spaces which are complete.

Theorem 3.15. Among the metric spaces the complete spaces are

characterized by the following property; every sequence of non-void
closed sets A1 D AZ D ... of which the diameters tend to 0, has a

non-empty intersection.
Spherical Completenss

The notion of spherically complete spaces was introduced by
Ingleton [9], for the study of the Hahn-Banach theorem in n.a. normed
spaces. He showed that a n.a. valued field has the Hahn-Banach
property if and only if it is spherically complete. Monna [13] has
since generalized the concept to locally convex spaces. Recall the K
is said to have the Hahn-Banach property if, for any n.a. space F
over K, every linear functional defined on a subspace of F possesses
an extension of the same norm defined on the whole space F . This
study will not be concerned with the Hahn-Banach property. However,
because of the importance of spherical completeness in relation to the
Hahn-Banach property and other areas of n.a. analysis, spherical

completeness will be discussed and compared to completeness,

Definition 3.6. A n.a. normed linear space E over a n.a. valued

field K is called spherically complete if every family of closed
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spheres which is linearly ordered by set inclusion has a non-empty

intersection,

Recall that if two spheres intersect in a n,a. normed linear

space, then one is a subset of the other. Thus any family {§ of

spheres such that any two intersect is linearly ordered by set inclusion.

For practical purposes, in proofs of spherical completeness it is
sufficient to show that any decreasing sequence S1 D S2 ... of
closed spheres has a non-empty intersection. This results from the
fact that from any family § of closed spheres that is linearly ordered
by set inclusion ene may extract a decreasing sequence S1 D S2 ...
such that each sphere in the original family {§ contains one of thfie
spheres sn . Thus any point in common with each of the Si )
i=1,2,..., will be a common point of the spheres in {.

An important relationship between completeness and spherical

completeness is given by the following theorem.

1

Theorem 3, 16. Each spherically complete space E is complete with

respect to the topology induced on E by the norm on E,

Proof: Note that spherical completeness is by definition a
property of n,a. normed linear spaces."‘tThus E is n.a, by hypoth-
esis. The proof follows from the characterization of complete metric
spaces given by Theorem 3, 15. Let A1 D) AZ D ... be a sequence
of non-void closed subsets of E whose diameters tend to 0. Let dn
be the diameter of the sét An' For each n=1,2,... pick X € An"
then An C S[xn, dn] and {dn} 0. We then have

An+1C AnC s[xn’dn]’ Since An+1C s[xn+1’dn+1]’

S
S
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S[xn+1,dn+1] M sx_, dn] # §. But without loss of generality
dpt1 4, so S[Xn+1’dn+1] C S[xn’dn]' Thus
S[xl’dl] 3 S[XZ’dZ] ... . But E is spherically complete so

there exists

© :

Suppose xoé M An' Then there exists an N such that X, ¢ AN and
n=1

since AnC AN for n > N, xOéAn for n > N, Since AN is

closed and Xg € E ~ .AN,

But {dﬁ}—*O implies there exists an N, such that d, <e, Let
0

there exists a sphere S(xog e)C E NAN .

N. = max (N ). Then S(XO’dN ) C E~ AN , that is

1 0’ ! 1
S(XO’le) M .ANl = (§. However le £ AN1 so d(xonyl) >dN1.

But X € S[le,le] implies that d(xo,le) _<~Jle , This contra-

@
diction implies that X, € M An and hence that E is complete.
n=1

Thus spherical completeness implies completeness., . The con-
verse is not true in general as will be demonstrated in Example 3.4.
However, by means of additional restrictions on E, sufficient condi-
tions can be stated for a complete space to be spherically complete,

For example, consider the following theorem. :

Theorem 3.17. If E is a complete n.a. normed linear space whose

norm is discrete, then E is spherically complete,

Proof: It suffices to show that the intersection of any sequence
of closed spheres S1 D, SZ ) ... is non-empty. Two cases must be

considered.
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(a) Suppose that the diameters of the spheres tend to 0. Then by
Theorem 3. 15, since E is complete, the intersection is non-

empty.

(b) Suppose that the diameters do not tend to 0, In this case the
diameters converge to a positive aumber and hence are constant
from some point on since E 1is discrete, Thus the intersection

is nen-empty.

Corollary 3,18, Each complete field with a discrete n,a, valuation is

spherically complete, In particular, the p-adic field Qp ‘with the
p-adic valuation l lp is spherically complete.

It has previously been shown that if K is complete then K" .is
complete. A similar result holds for ‘K" with respect to spherical

completeness.

Theorem 3.19. The space K™ is spherically complete if K is

spherically complete.

Proof: Recall that the norm on ‘K" ‘was ”x” = max lxq l .
1<i<n *
It suffices to consider a sequence of closed spheres in

Kg, S1 D S2 ) ... and show that their intersection is non-empty.
= r4(1) ; -
Let Si = [a ’di]' Then if x = (xl,xz,a..gxn)s Si’

”x—a(i)H = max |x, - aj(i)l < d;. Let Pp: K"~ E, be the projec-
1<j<n =
tion from Ko into the KB coordinate space Ek;
- - ol(k)
Px)=(0,...,%,0,...,0). Let P,(S;)= Si . Then

k
that is,

' lx(k) - ak(i)l < di} = stk [a (i),du].
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Thus Sl(k) D) SZ(k) T ... is a sequence of closed spheres in Ek’
But Ek' is isomorphic to K by the isomorphism ¢ defined by
e(0,.,. » Xy 0,...,0) = X . Since K 1is spherically complete, E is
spherically complete and .;% Si(k) is non-empty for each
k=1,2,...,n. Choose :klg fi s for k=1,2,....n. Then
a = (al, ey an) is a point of lkn, contained in each of the spheres
Sl’ SZ’ ... sothat the intersection is non-empty. Therefore K" is

spherically complete.

From the study of metric spaces it is known that any closed sub~
set of a complete metric space is complete. The situation with regard
to spherical completeness is not the same, In fact the following
example provides a spherically complete space containing a closed sub-

set which is not spherically complete,

Example 3,4, Let E be the space of Example 2,5, That is, E = SQ

a a
is the set of formal power series x = all' by a t 24 ... Wwhere

LD PYREY is a strictly increasing well-ordered set of rational

numbers and the a, are contained in some field I", As before,

-
define ||x|| = e 1, x#0, [|0]] = 0. It was observed that 58 is

a field and | || is a n.a. valuation on the field, Let K = s® be
© a,

the subfield of SQ consisting of power series Z a,t ! where
i=1

@y Qpyeen is a finite sequence or a simple sequence tending to «,

o«
By simple we mean the set Ul {ai} has no limit point but «,

i=1 Q

Since S” is a subfield of S R SQ may be considered as a

Q

linear space over S®. The valuation ” ” on field S becomes a
norm on the n.a. linear space SQ over S° since for ae S" and

X e SQ, lax] = |[a]l |x]| . It will be shown that the space SQ is
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Q

spherically complete but that S is a closed subspace of S that is
not spherically complete,
o . Q
S is a Closed Subspace of S
1 2 | co
Let Xg = c,t =+ C2t + ... be alimit point of S, Suppose
X, ¢ S®. Then it must be the case that the set T Torees 1s not a

simple sequence and hence has a finite limit point. Since the set
rl, PYERY is well-ordered in the natural (increasing) order, it must
have a smallest limit point L.,

Since X, is a limit point of s® in SQ and SQ is a metric

space, there exists a sequence XI’XZ’ ... Where X € s® , such that
”x - X ” <e™, Let N>L and
0 n
© a,
i, N
XN = f ai,Nt

Then ”xo - Xy | < e™N < e_L. However, since L is the smallest

limit point of the set TR SRR which is well-ordered so that the

ro,'s are increasing, this requires that the sequence TyoTopees

B

have L as its limit point. Thus ri;_<_L so that e

> e"'L for

i = ]-, 2; L] .
Furthei‘more, suppose that @ N = for i=1,2,..,. and
ai,N: ci for i=1,2,... . Then the sequence al,N’ aZyNg..e

would have L as a limit point. This is a contradictien since this

sequence is a simple sequence whose only limit point is ® . Thus
there exists an M such that VN # '™ °F M N # S In either
r

case we would have ”xo - Xy ” > el= M > e"L > e“'N . But earlier we

N

had that ”xo - XN” < e™' ., This contradiction implies that Xq € s”
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and since x was an arbitrary limit point of S, it follows that S is a

Q

closed subspace of S,

SQ is Spherically Complete

It suffices to consider a sequence S1 D) S2 D ... of clesed

spheres in SQ and show that their intersection is nen-empty, Let

be a fixed point in Sn for n=1,2,... . Let r be the radius of
Sn and denote by 1i(n) the ordinal of the set of all 1 such:that

_ S . C s in) . . < ‘ '
expl ai,n] r Thus i > i(n) implies exp [ algn] ST Let

x .8 ; then x e S S0
1 n

n+l ntl’ n+! | < Tnt Thus

',Xn+1" xnl

~ 1 2
xn+1—xn~b1t +b2t +
> i . i =
where @y ai(n) . This can only happen if ai’ 0+l ai, N and
3 ntl T 'ai,n for i< i(n). Further, if % (n), ntl exists, then
- < i .
exp [ ai(n),n+1] <. Since Sn+1 C Sn' T ST, SO that

i(ln+1) > i(n). A common point of the spheres Sn can now be con-

structed. Let

a. i a. 2
X. = Zaltl’ + = a.Ztl’.+..
i<i(l) “ i(1)<i<i(2) ™
a.
+ = a, t 2%+ ...
i,n

i(n-1)<i<i(n)

By construction, x, agrees with x. for 1i<i(l) so that X € S1 .
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But X, € S2 C S1 implies that x, agrees with xy and hence X

agrees with x for

for i<i(l). Again, by construction, x >

0

i(1) <i<i(2) and hence for i< i(2) so X € S2 . This process may
[se]

be continued so that for any n, Xy € Sn and hence Xg € M Sn' Thus
n=1

SQ' is spherically complete,.

Séo is not Spherically Complete

© a. ,
Let x = Xt ' where a, =— for i= 1,2,...,n but
nooy i i+l
;=1 for i>n. Then x € s% since the sequence a, Uosee. 18
a simple sequence which tends to . Let r = exp [-%j—:—zl- . Define

5,= Sbepryl = Gee 8™ | o < =3, We will show () s, C 5,

[ae]
and (ii) M S = ¢
n=1 "
(i) Let xeS ;. Then ”x—xn“ 5max{l|x~xn+lll,llxn+l~an}.
But ||x xn+1” ST <r, and
n+l .i @© . n - ©
e, -x =] = ¢+ = ozt on
° " i=1 i=n+2  i=1 i=n+1
ntl
+2 +1 +1
= " T s exp BT =

Thus ”x-xn” <r, so xeS . Therefore S C S, -

0
ii) Suppose there existsan xe¢ () S , then xe¢ S[x_,r ] so
pP ,n n’ n
n:'

Hx-—xn H <ry for n=1,2,... . THus x agrees with X, for
© . ; \

1 <i<n;thatis, if x= = bt ', then b, =1 and . = ——

- - j=1 } i i itl
for i=1,2,...,n. Since this is true for every n=1,2,,..,

® .
then x = = ti*l | But the sequence {fﬁ}m X has the limit 1.
=] 1=
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@®

Thus x# S° . This is a contradiction since xe M Srl implies
®© n=1

that xe S°. Therefore M Srl = ¢ and S® 1is not spherically

n=1
complete.

We have then an example of a spherically complete space SQ ,
containing a closed subspace S®  which is not spherically complete.
Of course since spherical completeness implies completeness SQ is
complete. Thus s® s complete since any closed subspace of a
complete space is complete.

The example can be taken one step further and consider the sub-

field SZ of 8%, consisting of all formal series of the form

n n

X = alt L + azt’2 + ... where the sequence DysDyyso s is a simple

sequence of integers increasing to o and where AL YRR belong to
-n

. Define [x]| =ce RT: a; # 0. We can then consider S* asa

linear space over SZ . The norm on SZ is discrete since the set
{e—n}neZ of norm values has no limit point but 0,

The space SZ is complete. This results from the fact that
S Z is a closed subspace of the complete space S® and hence is
complete. The set SZ is a closed subset of S” as follows. Let

x, be a limit point of SZ . Since S® is a metric space there exists

0
a sequence X;,X,,... of elements in s% such that ”xo - X [<e™,
o @y a,
Suppose xoé S%., Let Xy = at Ttayt T H.L, and
a a
- 1,n 2,n
xn— al,nt +a2’nt + .
Since X € S® ~ SZ it must be that there exists Qe such that Qe
is not an integer. But then the term aKtK would necessarily appear
. . -K
in the difference X - X Thus ”xo - X ” > e . But we had
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on - X ” < e-K . This contradiction implies that Xq & SZ and hence
SZ is closed since it contains all its limit points.
It has been shown that SZ is a complete normed linear space

whose norm is discrete. By Theorem 2. 16, SZ is spherically

complete,
To summarize, SQ‘ is a spherically complete space containing
a closed subspace S”  which is not spherically complete, And the

space S” which is not spherically complete contains a closed sub-

space SZ which is spherically complete,



CHAPTER IV
EQUIVALENT METRICS

Given a set E one can define various metrics on the set,
Suppose that two metrics d and d' are defined on the set E. With
each of the metrics is associated a collection of spheres. Each
collection of spheres B = {Sd(x, T) 'x e E, r>0} and
B!'= {Sd,(x, r) ]xg E, r>0} is a base for a topology on E, From a
topological standpoint it is of interest to see if the topologies induced
on E by d and d' are the same. In particular, is a set which is
open in (E,d) also open in (E,d') and conversely. If this is the
case, d and d' are called equivalent or topologically equivalent

metrics,

Defini_tion 4,1, ILet E be a set. Let d and d' be two metrics on E,

The metrics d and d' are called topologically equivalent metrics for

E if they determine the same topology on E.

In this paper, the term equivalent metric will be used, To prove
that two metrics d and d' are equivalent it is sufficient to show that
given any point xe¢ E and any sphere Sd(x, r) there exists an
r' > 0 such that Sd,(x, r'y C Sd(x, r) and for any x¢ E and sphere
Sd,(x, r) there exists an r' >0 such that Sd(x, r'y C Sd,(x, r). If
this is true, since each of the two sets of spheres is a base for the

respective topologies, any set open in one topological space will

R2



54

necessarily be open in the other. Thus the open sets are the same
which means the topologigs on E are the same.

In the preceding chapter it was noted that a norm on a linear
space E induces a metric d on E. To illustrate the concept of
equivalent metrics the first three examples of this chapter involve
metrics induced on the same linear space by three different norms,
Although the metrics are of different types, non~archimedean and
archimedean, they are shown to be equivalent, The linear space
involved is the space sz where sz denotes the set of all ordered

pairs of p-adic numbers.

Example 4. 1. Define [x|, = max{]|x,| ,|x,]| } for
1 1 p 2 p

X = (Xl’XZ)

given in Example 2.1 where K = Qp and n =2, Recall that if K is

£ sz . This example is a special case of the space K"

a n.a. valued field then K" with the norm ”x”l = max |x,| isa
1<i<n 1
n.a. normed linear space. Since Qp is a n,a, valued field it follows

that sz is a n.a. normed linear space., Thus the induced metric

dl on Q; is a n.a. metric.

In searching for an example of an archimedean metric on sz a

first step is to analyze the situation for R2 ., The standard metric on
R2 , considered as a linear space over R, is induced by the norm
x| = /x12+ XZZ for x = (XI’XZ) € R2 . Thus | || is indeed a
mapping from R2 into R, which it must be to be a nerm on R2 .
However if the same definition were used in Q 2 , that is,
x|l = x 2+ x2 for x = (x,,X% )EQZ problems would be

1 2 172 ) '
encountered immediately since this mapping is not defined for all

X € sz and when it is defined its values are not necessarily in R.
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In R2 it is known that \/x12+ XZZ = \/lxllz + ,lez so this

suggests that one might try the mapping |[[x| = /lel 2 + ]le 2
: ' p
which is certainly well-defined and is a mapping of sz into ' R.

However, it is easily shown that in R2 the metric induced by the

norm | x| = [xll + [xZI is equivalent to that induced by the norm
”x” = /’xl'Z + [xz’z . The simpler mapping ”x” = lxlfp + llep
2

has been chosen as an example of an archimedean norm on Qp .

Example 4. 2. Define HXHZ = lxllp + ]xz'p, X = (xlyxz) € sz . First,

I ”2 is a norm on sz as follows. Clearly Hx“2_>_0 and

Hx”2 = 0 if and only if x =0, Let ac¢ Qp and x = (x,,%,) ¢ Q?Z .
Then
ax |, = || (ax,,ax,) = |ax +lax,| = el (|x,] + [x,])
Faxlly = lltex), ax,) ], 1l 2 o] (] 1 Il

ol Il -

Finally, let x = (xl,xz) and y = (yl,yz), Then

Iyl = g+ vyt vl = fxp by |+ It gl

< (bl + Iyl (b=l + V1)

SN CAREY PR
= ”x”z t ”Y”Z .
Next it is shown that the norm || ”2 is archimedean. To see

this'let x = (1,0) and y = (0,1), Then

Ixtylly = ey tyl o g typl = Il + 1l =2
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But

max(”x”z, ”Y”z) = max(]llp~+ lolp, lolp+ lllp) = max(l,1) = 1.

Therefore, |x+ y”z > max(”x“z, ”YHZ)‘ Thus || ”2 is
archimedean and the metric dz(x, y) = ”x - Y”Z is archimedean,

Before moving on to the next example let us make one other
observation which will be of interest later in the chapter. Consider
the sphere S, (0,¢) = {xeQ 2 ld, (x,0) < ¢} where e is an

42 p 2

arbitrary positive number. The metric d2 of Example 4.2 is not
n.a. in any such sphere, that is, for any € > 0. This can be seen as
follows, For any € > 0 there exists an N such that --1N <e, Let

x=(p,0) and y=(0,p). Then d,(x,0) = [x-0f = {FXH
o

n

p W

1 . _ 1 ‘
p+[0|p— : < ¢ and similarly dz(y,O) = < €. Thus
0,x,ye S, (0,¢) and yet

)

N

Ix-yll = ", s = |p

dz(x, y)

2 1
= —pN > -I;N = ma.x{dz(x,O),dz(O,y)} .

Thus d is not n.a. on S, (0,¢) for any € >0,
A d2

Example 4.3. Define ”x”3 = min { lel + ]le ,1}. This is a norm
P p
which has the same properties as the one in Example 4.2 if the sum

lx + ,x is at most 1, Thus the norm ” H3 is archimedean

l'p "2'p
so the induced metric d3 is also archimedean, Let x, y, and z

be three points of sz such that the distance, with respect to d2 .

between two pairs of points is >1. Then the distance, with respect

to d3 , between the two pairs of points is 1. Therefore, the triangle
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determined by the three points is isosceles and the base is the shortest
side. Thus the strong inequality is satisfied for these three points.

This metric is then n.a, '"in a large sense'.

Although the metrics in Example 4.1 to 4,3 are of different
types, they will now be shown to be equivalent. To do this it will be
shown that the metrics d1 and d3 are each equivalent to d2 . First
consider d and d,. Let S [y,r] be given where y = (y,,V,).

1 2 dy 1°72
Let x = (XI’XZ) € Sdz[y, r]. Then
”x"Y”Z = “(Xl - Yl’xz" YZ)HZ = lxl - yl'p + lxz - Yzlp ST
But then
I -yl = max{[x -y | %=y, [ } <lxp-y [ +lx,-y,] <
1 1 1'p 2 2'p 1 'p 2 2'p

80 X¢g Sd [y, r]. Thus Sd [y, r] C Sd [y, r] so any dl—open set is
1

1 2
dz—open. Now let Sdz[y, r] be:given. Let x = (xl,xz) £ Sdl[y,-;v]q
Then ”X*YHI = max{lxl - Y1[p° ,xz - Yzlp} < %" 50 lxl - Yllpf_%:
and ]xz- yzlp _<_%. But then

’lx"Yll:lX"Y’+’x-yl <L+ .
2= el F vl S2 g

- . r “ ®
SO X ¢ Sdz[y, r]. Thus Sdl[y’i] C Sdz[y, r] so any dz—open set is

dl-open. Hence dl and d, are equivalent.

2

Now it will be shown that d3 and d2 are equivalent, Let

S. [y, r] be given where y ={(y,,y,). Let xe S [y,r]. Then
d_3 1772 d2
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”x"y”3 = min{[xl" yllp+ ,xz" YZIPJ 1}

iixl—yllp+lx2"y2|p S.r

so that x ¢ Sd [y,r]. Thus Sd ly, r] C Sd [y,r] so any d3—open set

3 2 3
is dz-open. Now let Sd [y, r] be given. Let r'<min{l,r}. Let
2
xeS [y,r']. Then
d3
I -ylly = min{]x «y, | +[x;~y,] ,1}
b P i

1

|y -y |+ 0y -y,
17Vl vl

I=-yll, -

But x¢ Sd3[y,r’] implies that Hx-y”3 < r'<r. Thus

“x-y“2 <r so xeg Sdz[y, r]. Hence Sd3[y, '] C SdZ[y, r] so every

d_z—open set is d3 -open. It follows that d2 and d3 are equivalent,
It has been shown that <:11 and d3 are each equivalent to d2 .

Since equivalence of metrics is an equivalence relation this implies

d. 1is also equivalent to d

1 3°

Locally Non-Archimedean Metrics

In Example 4,2 (and 4.3) there exists at least one point which
had no neighborhood in which the metric was n.a. However, it is
possible for a metric d to be archimedean and yet have the property

that every point has a neighborhood in which d is nonrarchimedean.

Definition 4.2, The metric d is called locally non-archimedean on

the space E, if for each point a ¢ E there exists a neighborhood U

of a such that for any x,y,ze U, d(x,y) < max{d(x,z),d(z,y)}.
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The following example gives a construction of an archimedean

metric which is locally n.a.

Example 4.4, Let E = O3 , the set of 3-adic integers, with the n.a.

metric dS(X’ y) = |x -y[3 . Consider the three disjoint spheres of
L 1
37 '3
where w= Z a.,3', Then a

iz 0

if ag=0, weY if and only if a

a0=2. Thus XU YU Z =

X, Y, and Z are each open and closed, For example,

radius X =s[o, =1, Y=S[1,§1’—] and z:s[z,j,l;]. Let weO,,
[2¢]

=0,1, or 2 and we¢ X if and only

0:1, and we Z if and only if

O3 and they are disjoint. . Furthermore,

19 _
s[1,3—] = S(1,1).

Now define a new metric d by

2) = liz(x(lpxz)) for X1, X,
3 (%1, %, 2

d(xl,x e X

and similarly for Y and Z. Also define:

d(x,y) =1, xeX,; yeY,

d(y, z) 1, yeY, zeZ, and

i

d(x, z)

It

2, xeX, ze 2,

One can show that d is a metric. However, if xe X, ye Y,
and ze Z, we have 2 =d(x,z) > max{d(x,y),d(y,z)} =1 sothat d
is archimedean. Even though d is not n.a, it is still lecally n.a. as
the following argument shows.

Let X3 X5, Xg € X. (An analogous proof holds for Y and Z),
Then,



Ayl xy)  dsley%)
1+d3(x1,x3) 1+d3(x3, x

max{d(xl,x3),d(x3,,x2)} = max ]
: 2

d3(x1,x3) d3(x3,x2)

> max

N - v

1 +max [d3(x1,x3), d3(x3, xz)] 1+ max [d3(x3,x2), d3(x1,x3)]

1 +m§x{d3(x1,x3), d3(x3,x2)}

1
1

1+

max{d3(x1,x3), d3(x3,x2)}
Since d3(x1,x2).5 max{d3(x1,x3),d3(x3,x2)},

1 S 1
X,,X.)

3( 1’72

T+d |
1+ max {d,(x),x5),d; (x5, %)}

and so

max{d(xl,x3), d(x3,x2)} >

|V

I}
Q.
i
IS

Thus for x,,x,,%;¢ X we have d(x,,x,) < max {d(xl,x3),d(x3,x2)} .
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Any point pe E must be in one of the sets X, Y, or Z, say
X, and there exists a neighborhood U of p suchthat pe U ( X,
since X 1is open. Since d is then n.a. on U, it follows that d is
locally n.a. Thﬁs d is an example of an archimedean metric which

is locally n.a.

The question arises, if d is archimedean (n.a.) on two subsets
is d archimedean (n.a.) on their intersection? In this example, if
d is n.a, in a neighborhood U of a point p, say pe X, then
U (C X. Two such neighborhoods intersect only if both are contained
in the same subset X, Y, or Z on which d is n.a. Given neighbor-
hoods U and V of p and q respectively on which d is n.a., if
they intersect, then one is a subset of the other. Of course d will
also be n,a. on the intersection or union since either is a subset of
X (or Y or 7).

On the other hand, for xe¢ X = Sd[O,-L] and zeg Z = Sd[Z,—l-],

N I S a 1
Sd(X,lz')—XUY and Sd(z,lz)—ZUY, where Y—Sd[l,3] 50
that d is archimedean on both spheres. But
Sd(x, l;—) M Sd(z, 1%) = Y on which d is n.a. Thus d may be n.a.

on the intersection of two spheres on which d is archimedean.
Existence of Equivalent Metrics

The non-archimedean metric dl and the archimedean metric

d2 of Examples 4.1 and 4,2 were shown to be equivalent. In these
examples the metrics were induced on the linear space sz by norms

on sz . For the remainder of Chapter IV the metric d, unless

otherwise specified, will be an arbitrary metric defined on the set
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under consideration. In the following paragraphs several interesting
theorems concerning the equivalence of various types of metrics will

be proven. A rather startling result is found in the following theorem.

Theorem 4.1, For each space E of at least three points with a n.a,

metric there exists an equivalent archimedean metric for E,

Proof: A metric on a space E with less than three points is
necessarily n.a. and hence cannot be archimedean., Therefore, let
E be a space consisting of at least three points and let d be a n.a.
metric on E. Let x, y, and z be distinct points of E. Let
r < min{d(x,y),d(y,z),d(x,2z)}. Then X = S[x,r] and Y = S[y, r]
are disjoint open and closed subsets which do not contain z, Thus
Z =E~ (XU Y) is a neighborhood of z which is both open and closed

and E=XU YU Z, Moreover, X, Y, and Z are disjoint.

A new metric d' is then introduced on E by a method illus-

trated in Example 4.4, Define

d(xlyxz)

1+d(x1,x

) for x,,x.,¢ X.
2

d'(xy,x;) = 17 %2

Similarly, define d' on Y and:Z respectively. Also define

d'(x,y) =1 for xeX, ye Y,
d(y,z) =1 for ye¥Y, ze Z and
d'(x,z) = 2 for xe X, z¢ 2.

Just as in the proof in Example 4.4, the metric d' can be

shown to be archimedean but locally n.a. Moreover, d' and d are
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equivalent as the following argument shows. Let xe¢ E, and without
loss of generality assume xe¢ X, Since X is open, there exists a

neighborhood U of x contained in X. Thus, for any points Xy and
d(xl,xz)
S TTdxEL %) and this metric is known to be
1’72
equivalent to d. The equivalence results from the fact that

X, in U, d'(xl,xz)

Sd[x, r] = Sd,[x, T%-r—] Thus, given any n.a. metric on a set E,
there exists an equivalent archimedean metric for E,

Before proceeding with the discussion of other equivalences, it'
would be well to ponder for a moment the significance of this theorem
with respect to the discussion in Chapter III of fundamental topological
properties of n.a. normed linear spaces. . This theorem tells us that
given any n.a. normed linear space E, with the metric d induced by
the norm, an equivalent archimedean metric d' exists on E., This
means that the topologies on the spaces (E,d) and (E,d') are the
same. Thus the fundamental topological properties, depending only on
the open sets, must be the same. It then becomes apparent that the
archimedean metric space (E;d') is an example of a topological
space which shares the same fundamental topological properties as the
n.a. normed linear space (E,;d). Thus the condition that the space be
a n.a. normed linear space or n.a. metric space is sufficient to
insure the fundamental topological properties exhibited in Chapter III
but it is not a necessary condition. However, it should be noted that
since the two spaces have the same open sets they also have the same
closed sets and hence each has a base consisting of sets that are both
open and closed; that is, each space is a 0-dimensional metric space.

This points up again the fact that basic to the fundamental topological
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properties of a n,a. normed linear space E is the O-dimensionality
of E, along with the fact that E is a metric space.

The following theorem gives another equivalence between two
different types of metrics, In order to prove this theorem, the

following lemma is needed.

Lemma 4.2. If d is n.a. on S(a,r) and r1<r, then S[a,rl] is

both an open and a closed set,

Proof: Let ye S[a,rl] and r2<min{r1,r-r1}. It will be

shown that S(y, r,) C S[a,rl]. Let xe S(y,r,) then
d(a,x) < d(a,y) +d(y,x) < r1+ T, Since r, <min{rl,r_r1j}" we
have r2 < r-ry so d(a,x) < r1+ r, < r1.+ r-ry) =T, Thus

xe S{a,r). Therefore x, y and a are all contained in S(a,r) on
which d is n.a. The strong inequality then applies and

d(a,x) < max {d(a, y),d(y,x)} < max{rl, rz} = r. since

1

r <min{rl,r—r1}. Since d(a,x) <y, xe Sla, r

2 ]. We have then

S(y, rz) C Sla, rl], where y is an arbitrary point of S]a, rl]” 50

1

Sla,r,] is an open set. Since any closed sphere is a closed set the

1

proof is complete.

Theorem 4.3. Let d be a locally n.a. metric on the separable space

E. Then there exists an equivalent n,a. metriec d' on E.

Proof: Let ¢ >0, Let D= {xi};ozl be a countable dense sub-
set of E., With each x; € D, associate the following collection of

spheres: . Ai = {S[xi, r | ] r < , r is ratienal, d is n.a. on S[xi, r]

nym

and S[xi, r] 1is both open and closed}, for i=1,2,... . Since d . is

locally n.a. there exists an r such that d is n.a, on S(xi,r),
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Moreover, Lemma 4.2 shows that for 1‘1 <r, S[xi, rl] is both open
and closed. Thus the collection Ai is non-empty for each
n=1,2,... . Since the set of rational numbers is countable, each

A,1 is countable, Let A = .C_jl Ai' The set A is countable being the
union of a countable collectilo; of countable sets and hence we can
rename its elements Vl’ VZ’ ... < Since each Vrl is one of the
spheres S[xi, r] in A, each set Vrl is both open and closed, the

diameter of each is <e¢ and d is n.a. oneach V . Now define
- n

the sequence Ul’ UZ’ ... as follows.

Then C = {Ui}?zl is a collection of disjoint open and closed sets,
Since each Url C Vn’ each Url is also of diameter not more than €
and d  is n.a. on each Un.

The family C 1is a cover of E as the following argument shows.
Let x¢ E and select r < £  such that r is rational and d  is n.a.

2

on S[x,r]. Since D is dense in E, there exists an x ES[X,%].

1
Thus d(x,xl) < % so that x ¢ S[xl,%—] C S[x,r]. The latter contain-
ment holds since if y e S[xl,%], then
d(x,y) £ dlx,x;) +dlx;,y) < %4'%: = r, sothat ye S[x,r]. Thus
. T ri _ .
d is n,a., on S[xl,-z-] and S[XI’Z = Vj for some j=1,2,...

We have then x ¢ Vj for some j which implies x ¢ Uk for some

k <j. Thus C is a cover of E,

Now define a new metric d' by:
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d'(x,y)

d(x,y) if x and y are contained in the same U.l;

I

d'(x,v) €, if x and y are contained in different Ui's .

The following discussion proves that d' is n,a.

For any three points x, vy and z in E there are three possi-
bilities.
(a) All three points are contained in the same Ui' In this case,

since d =d' on Ui and d is n.a. the strong inequality holds.

(b) Two points, say x and vy, are in Ui and ze UJ,, i#j. Thus
d'(x,z) = d'(y,z) = ¢ and d'(x,y) = d(x,y) < ¢. Hence the

maximum of any pair of distances is € and the third distance is

certainly < e,

(c¢) No two points are contained in the same Ui' In this case
d'(x,y) = d'(y,z) = d'(x,2z) = € and the desired result follows.

Thus d' is a n.a. metric on E,.

That metrics d and d' are equivalent can be demonstrated as

follows, Let xe¢ E and S,.|x, r] be given. As a result of Lemma

gl
4,2, since d is locally n.a. it may be assumed Sd[xpr] is d-open,

We have x¢ Ui for some i and hence x ¢ Ui M Sd[x, r] which is

d-open., Thus there exists a sphere Sd[x, r'] C Ui m Sd[x, r]. But

then d =d' on this sphere so that Sd,[x, r'] C Sd[x, r]. On the other
hand given xe¢ E and sphere Sd,[x, r], let r'<max{r,e}. To
show that Sd[x, r'] C Sd,[x, r], let ye Sd-[x, r']. Then

d(x,y) < r'<e sothat x and y are in the same Ui' Thus
Sd[x,r’] C Ui and since d'=d on Ui and r'<r, we have that

Sd[x,r‘] = Sd,[x,r'] C Sd,[x,r].
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Thus it has been shown that d' is a n,a, metric equivalent to
the locally n.a., metric d.

As was pointed out in Chapter III, every n,a. metric space is
0-dimensional. Using Lemma 4.2 it can now be shown that every
locally n.a. metric space is 0-dimensional, Although this theorem is
really a corollary to the proof of the previous theorem, the short

argument is repeated here,

Theorem 4.4. Every locally n.a, metric space E is 0-dimensienal.

Proof: Let age E and r > 0. The sphere S(a,r) is then an
arbitrary open sphere in E. Since E is locally n,a. there exists an
ry <r such that d is n.a. on S(a,r

Lemma 4.2, S|a, r

1). Then for r, <ry, by

2] is an open and closed set. But r,<r; <r
implies that Sla, rz] C S(a,r), Since S(a,r) was an arbitrary base

element, E is 0-dimensional.

A locally n,a. metric satisfies the strong inequality (1), if the
triangles are 'sufficiently small’'. Example 4.3 demonstrated a
metric which is n.a., "in a large sense', that is, which satisfies the
strong inequality if the points are sufficiently far apart. In the
following example the metric is shown to have the property that it is
not n.a. in any neighborhood of any point and yet is n.a. '"in a large

sense'l,

Example 4. 5. Consider the Euclidean space RZ with the usual

1/2
metric d(x,y) = {(x1 - y1)2+ (x2 - yZ)Z} where x = (xl,xz) and

y = (Yl’ yz) . Define a new metric d' as follows:
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d'(x, y)

d(x, y), if d(x,y) <1;

d'(x,y) = 1, if d(x,y) > 1.

That d' is a metric can be verified as follows. The properties
d'(x,y) > 0, d'(x,y) = 0 ifand only if x=y, and d'(x,y)=d'(y,x)
follow immediately from the definition of d' and the corresponding

properties of d. To prove the triangle inequality there are four cases.

(i) I d(x,y), d(y,z), and d(x,2) < 1, then d'(x,y) = d(x,y),
d'(y,z) = d(y,z), and d'(x,z) = d(x,z) so the triangle inequality

holds.

(ii) If d(x,y)>1, d(x,z) <1, and d(y,z) <1, then
1 <d(x,y) < d(x,z) +d(y,z) so
d'(x,y) = 1 <d(x,2z) +d(y,2) = d'(x,z) +d'(y,z). Clearly
d'(x,z) <1 =d' (x,y) <d'(x,y) +d'(x,z) and similarly for

d'(y, z).

(iii) If d(x,y)>1, d(y,z)>1, and d(x,z) <1, then
d'(x,y)=1=d'y,z) and d'(x,z) = d(x, z) <1, This case is

clear.

(iv) ¥ d(x,y)>1, d(y,z)>1, and d(x,z)> 1, then

di(x,y) =d"(y,z) =d'(x,z) = 1.

Thus the triangle inequality holds in any case and d' is a metric.

Let xc¢ Rz;, then Sd(x,%) is a neighborhood of x in which .d
and d' are identical., Thus d and d' are equivalent. But the metric
d is not n.a. in any neighborhood of any point., This follows since

given any open set containing x there exists a sphere S.(x,r) con-

4

taining x and this sphere contains a right triangle for which,. in R2 .
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the hypotenuse is longer than either leg. Thus d is not n.a. in any
neighborhood of any point and since d and d' are identical in
Sd(x,-Z];-) for any x, then d' also has this property.

However, suppose three points x, y, and z determine a
triangle in which two of the sides have lengths >1 with respectto d.
Then these sides have length 1 with respect to d' and it is clear that"
d'(x,y) < max{d'(x,z),d'(y,z)} = 1. Thus any triangle that is
"sufficiently large' satisfies the strong inequality so that d', like the

metric in Example 4.3, is n.a. '"in a large sense'',

In the proof of Theorem 4,1 and in Example 4.4 the
archimedean metric d', which is equivalent to the given n.a. metric
d, is locally n.a, This suggests the following question: if d is n.a.
metric on a space E, does there exist an equivalent archimedean
metric that is not lecally n.a.? This question is answered affirm-
atively if E 1is a separable space as the following example and
theorem show.

The Cantor ternary set C furnishes an example of a separable,
0-dimensional space which is familiar to most graduate students in
mathematics. Of special interest here is the fact that one can define
on C equivalent metrics, one n.a. and the other archimedean.
Moreover, the archimedean metric has the property that no point has
a neighborhood in which the metric is n.a. This fact then leads to the
proof of the next theorem. Before stating this theorem, let us consider
the Cantor set in some detail and verify the properties which it

possesses.
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Example 4. 6. The Cantor ternary set. Recall that the Cantor ternary

set is defined to be the subset C of the interval [0, 1] consisting of

all numbers x whose ternary expansion contains no 1's, That is,

@ a.

xe C implies x= = -—1 =.aya,e.. where a, = 0 or 2, With the
i=1-3

ordinary metric, d(x,y) = Ix ~Y, , that is the absolute value, the set

C with the relative topology is separable and 0-dimensional.

(C,d) is separable, To prove that (C,d) 1is separable it will be

n C.
shown that the set D ={ X -——%-IC.:O or 2, n>1

, i=1 3 ' % a,
dense in C. To see thislet xe¢ C. Then x= Z ——}-, a.,=0 or 2.

an. integer} is

Considering C as a subspace of [0,1], let (a,b

interval containing x. Then there exists an integer k such that

1 1 k a,
( ’T’X+T)C(a’b)' Let y = -——;, then ye D and
3 © 3a i=1-3
[x-y| = = —%< —lk so that ye< —-—{-(—,x-f— —%)C(a,b). Thus
i=k+1 3 3 3 3

x is a limit peint of D and D is dense in C,

(C,d) is O-dimensional. Let xg¢ C. Itis known that C is nowhere
dense in R, that is, between any two distinct points of C there is an
open subinterval of [O, 1]~ C. Let U be any open set of (C,d)
containing x., It will be shown that there is a subset of U containing
x which is both open and closed. Since U is open, there exists an

r, such that S(x,r

1 ) C U. Moreover, in the reals there exists a

1

subinterval (x+a,x+b) of (x,x+r1)

since C is nowhere dense in R. Consider (x-a, x-b) whichis

containing no points of C,

contained in (x-rl,x) . Since C is nowhere dense in R, there is a
subinterval (x-d, x-¢) of (x-b, x-a) containing no peints of C. It
follows that (x+c, x+d) ( (x+a, x+b) and neither (x+c, x+d) nor

(x-d, x-c) contains any point of C. Pick e suchthat c <e <d.
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Then x+tee (xtc, x+d) and x-~-¢ ¢ (x-d, x~-c) so that neither x+ ¢

nor x-~-é€¢ 1is contained in C.

[ \ \ | L L
T ~—7 7 T — Y
X-~C X x+c x+d

Now consider S(x,¢). The preceding argument shows that
S(x,€) C U and the boundary of S(x,¢), with respectto C, is empty
since S[x,e] = S(x,e¢) in C, Thus C 1is 0-dimensional since for
any point xe C and, for any neighborhood U of x, V = S(x,¢) isa

neighborhood of x, with empty boundary, suchthat V (C U.

There is no point of (C,d) having a neighborhood U in which d is

[e¢] a,

n.a. Let x= £ — be anarbitrary fixed point of C, It will first
i=1 3

be shown that the collection {Un} :_1 where

n a, @ €,

U ={Z — + =z - e. =0,2} isa neighborhood base at x. To
n . i, il

i=13 i=nt+1 3

do this it will be shown that for each n=1,2,.., ’Un = Sd(x,-——) . The

n
3
set of all such spheres is clearly a neighborhood base at x. To prove
1 noa; ® €
U =8,(x,—), let yeU , then y= X —+ Z —=, ¢ =0,2.
no dTgn n i=1 3% i=n+1 3}
Thus
© a, n a, © €. @ a, ® o
I e O I I - -
i=1 3 i=1 3 i=n+l1 3 ‘ izn+1 3 i=n+l 3
= ; ai-ei < ; -—-—-——-—!ai’eil < ; 2 < -—lv-
. i - .. i - . St n’
izn+l 3 izn+l 3 izn+1 3 3

" .Note that a;, € = 0,2 implies fa.l— ei[ = 0 or 2, We have shown
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b
1 1 oY
that UnCSn(x,;r-l—). Now let ye Sd(x, ;—n-). Then y~i?1 -;—i—g
bi=0,2. Suppose yz‘,Un. Then ai# bi for some i,1 <i < n.
Let k be-the smallest such index. Then ak=bk= +2 so that
e 2 D Y 2 .
k __k_Z_E or —— = -} i_—n.Butsmce
3 3 3 3 3 3
-Zﬁai-biﬁz, i=k+1,k+2,..., we have
© © a, - b, ® .
"FESTE<E cHc o Sxtcz SHeogcog
3 3 i=k+1 3 i=k+1 3 i=k+1 3 3 3
Therefore
a, - b @ a,~b
I O
3 i=k+1 3 3 3 3
or
a, -b ® a,-b
3 i=k+1 3 3 3 3
But then
a, -b © a,-b .
k k i 1
’X-y” = —_T+ b2 1i >——n-
3 izk+1 3 3

which is a contradiction since it was assumed vy e Sd(x, —-:-la-):, There-

fore, a;, = bi’ i=1,2,... so ve Un" This implies
Sd(x, ;—ln—) C U, so Un = Sd(x, ;lff)‘ The collection {Un};f:1 is then

a neighborhood base at x.
Suppose there exists a neighborhood U of xg C such that d is

n.a, on U. Then there is an N such that d is n.a. on UN C u.
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N a; N a, 2 N ai 2
Let y= 2 —, z= 2 — + and w= Z — + Then
=1 3l (=1 3l 3N+1 i=1 31 3N+2
y, z, and w are in UN 50,
2 -
o ly-z| < max{|y-wl|, [z -w][}
= max { —2 2_ 2 4. _Z
3N+2 3N+1 3N+2 3N+2;

This contradiction implies that d is not n.a. in U. Hence there is

no point x ¢ C having a neighborhood U in which d is n.a.

There is a n.a, metric d' which is equivalent to d . Define the new
’ ‘o  a, © b,
metric d' on C as follows. Let x= = — and y= Z —  be
. i i
i=1 .3 i=1 3

points of C. Then define

d'(x,y) =0 if x=y, and

d'(x,y) = %, if x#y and n is the first index for which a, # bi'

Clearly dYx,y) > 0, d'x,y) =0 if and only if x =y, and

d'(x,y) =d'(y,x). To prove that the strong inequality is satisfied, let
o C, )
z = X ——% and x and y as above. Let d'(x,y) = EL , d'{(y,z) = —n—l—
i=1 3 1 2
and d'(x,z) = L . Suppose L > max{-vL, -1-} , then n, < n and
n, ny n, ' ng 1 2
1 1
. v — e - T e
n, < fg . Also anl # bnl since d¥(x,y) = . . But d'{y, z) 5
1
< i i = ' = = <
and ny n, implies bnl cnl, And d'(x, z) o, and n, g
implies a_ = ¢ sothat a = b ., This contradiction implies
ny n; ny n1

that d'(x,y) < max{d'(y,z), d'{x,2)} so d' is a n.a. metric,

As before define



4

® a,
Then, if x= Z —-1— , U_ 1is a neighborhood of x. In fact,
, =13 " noa o ¢,
U = S,,(x,=). This latter follows since y= £ —+ X —+ if
n d n ] i . 1
1 i=1 3 i=n+l 3
and only if d'(x,y) < -=. Thus for any x¢ E,

n

Sd(x, —-L) = S ,(x,-l—) so that the metrics d and d' are equivalent,
30 d n
The following theorem summarizes the preceding discussion,

Theorem 4.5. There exist equivalent metrics d and d' on the Cantor

ternary set C such that d' is n.a, and d is an archimedean metric

for which no point of C has a neighborhood in which d is n.a.

This theorem is a special case of the more general theorem

which is stated without proof,

Theorem 4.6. On any separable, 0O-dimensional space, equivalent

metrics d and d' can be defined such that d' is n,a. and d is an”
archimedean metric for which no point has a neighborhood in which d

is n.a.

It should be noted that even though a metric is not locally n.a.
there may still be neighborheoods in which the metric is n.a. At most
one can say that there is at least one point which has no neighborhood
in which the metric is n.a. In the proof of Theorem 4,5 we actually
saw an archimedean metric d for which no point had a neighborhood

in which d was n.a. and yet d was equivalent to a n.a. metric 4°',
Metrics on a Field

It has been demonstrated that a n.a. metric may be equivalent
to an archimedean metric, In fact, by Theorem 4.1, given any space

E with a n.a. metric, there exists an equivalent archimedean metric.
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Suppose that the space is a field E = K with a topology induced by a
valuation. Recall that if ,x] , xe¢ K, denotes a valuation on K, the
relation d(x,vy) = [x -yl defines a metric on K that is n.a, if and
only if the valuatien is n,a. While it is possible for two metrics on
K, one archimedean and one n.a., to be equivalent, the following
theorem shows that if they are equivalent they cannot both be induced

by valuations on: K.

Theorem 4.7. Let K be a metric field with d' and d'" equivalent

metrics on K. Suppose that d' is n.a. and d' is archimedean,

Then d' and d'" are not both induced by valuations on K.

Proof: Every field K contains a subfield Q isomorphic to the
field of rational numbers. The metrics d' and d' induce metrics on
Q. If a metric is induced by a valuation on K, then it induces a
valuation on Q. Suppose d' is induced by n.a. valuation on K. Then
Q has an induced n.a. valuation. However, it is knoewn that every
non-~trivial n.a. valuation en Q is equivalent to one of the p-adic
valuations., See Palmer [17, P. 46]. Ostrowski's theorem states that

the only non-trivial valuations on Q are those equivalent to a p-adic

valuation | lp or the ordinary absolute value | |. Thus the
valuation induced on Q by d' is equivalent to l lp and the valuation
induced on Q by d'"' is equivalent to i I, However, the valuations

’ Ip and | | are not equivalent. Thue d' and d" cannot both have

been induced by a valuation on K,
As an illustration of the previous theorem, the p-adic valuation,
| ,p’ on the field Qp of p-adic numbers induces a n.a. metric d

on the set Qp. It has been observed that this space (Qp,dp) is
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separable and 0O-dimensional and thus by Theorem 4,6 an equivalent
archimedean metric d' can be defined on Qp. Since dp was
induced by the n.a. valuation | [p, it is impossible for d' to have

been induced by a valuation on Qp



CHAPTER V
CONVEXITY

rI;he discussion of linear spaces often leads to the topic of con-
vexity. In the preceding chapters some of the properties of linear
spaces over n.,a. valued fields have been.discussed, At this time
convexity in a non-archimedean setting will be investigated,

Most of the published work on convexity in the n.a. case has
been done by Monna, Convexity is a starting point for the study of
locally convex spaces over K. This study will not be pursued but
convexity in the n.a, case is of sufficient interest to warrant some
attention on its own merit.

In this chapter convexity in E will be defined and several
resulting properties of convex sets will be observed. A characterizaw
tion of convex sets in a n.a. valued field K, considered as a linear
space over itself, will be given. This chapter is intended only to
introduce the concept of convexity in the n.a. setting, examine a few
of its properties, and remark briefly on some of the problems involved
with convexity in linear spaces over n.a. valued fields., For further
discussion on convexity the articles by Monna are the best current
source. See [11] and [13].

Convexity is usually defined for linear spaces over R, the field
of real numbers. In this situation a set A is said to be convex if for

any x,yeA and a >0, b >0 in R, such that a+b =1, the
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point ax + by ¢ A. A similar definition cannot be used for a linear
space E over a n.a. valued field K since the field K 1is not ordered,
so that statements suchas a > 0 are meaningless, Thus our defini-
tion of convexity must be independent of order on K.

Throughout this chapter, & will denote the ring of integers of
K; thatis, 6 = {Ae K l ])\l <1}. Inthe case K = Qp, then 6= Op
The proof that 6 is an integral domain appears in Palmer's thesis
[17, p. 39]. The definition of convexity used is the fellowing., It should
be noted that this definition does not require E to have a topoclogy and,

in keeping with earlier remarks, it is independent of any order on K.

Definition 5.1, A subset of E is called convex if Ax +py +vz e A

for every x,y,zeA and A,p,ve® for which X +p+v = 1.

Sometimes this notion is called K-convex to emphasize that the
convexity is with respect to K. However we will write simply convex,
referring to a linear space E over a n.,a. valued field K, First,
there are several basic theorems which result from the given definition

of convexity.

Properties of Convex Sets

Theorem 5.1. The intersection of a family of convex sets is convex,

Proof: Let Aoz’ e/ be convexand A=) Aoz' Let
agl\
x,y,2e A and A,p,ve® with AN+pu+v =1. Since x,y,z8 A,
then x,y,nga for each o g¢A. Thus )\x+p.y+vzeAa for each

a e/ since A is convex. Hence Ax+py +vzeA and A is convex.
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The following theorem states that any translation of a convex set

is convex,

Theorem 5,2. If A ( E isconvex, wegE, and ne XK, then w+A

and mnA are convex.

Proof: Let x,y,zew+A and A,p,ve® with A+p+tv =1.

z. g A,

Then x=w+x0, y=w+y0 and z =w+taz where X5 Yo Zg

OP
Since A 1is convex, then Ax g+ Hygt vage A. Thus

AX + py + vz = )\(w+x0) + }.L(w+y0) + v(w+zo)

i

Atptv)w + )\x0+ }_Lyo-f- vz

w + (Ax tuyyt vz Jew + A

0 0

and therefore w+A 1is convex,

The proof that mA 1is convex is similar.

The convex subsets of E containing 0 have an interesting
algebraic structure as the following theorem shows. Here E is con-
sidered as an & -module ; that is, a moedule over &, the ring of

integers of K.

Theorem 5.3, Let A (C E and 0e¢A. Then A is convex if and

only if A is an @ -submodule of E,

Proof: Suppose A is convex. Let x,ye¢ A, then since 0:c¢ A,
X-y=lex+(-1)y+1.0¢g A, Thus A is an additive subgroup of the
6 -module E. Let A,ue® and xecA. Then

Ax =Ax + 0+ (1 -N-p)0e A sothat A is an §-submodule,
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Conversely, if A is a submoedule of the ©-module E,
x,y,z¢A, and A,p,ve 6 with N+p+v = 1, then

Ax + py +vze A sothat A is convex,

Corollary 5.4, If Qp is considered as a linear space over itself then

0 is convex.
p
Proof: The set ¢ = Op is clearly an Op=-—submodule°

Theorem 5.3 gives a characterization of the convex subsets of
E. Thatis, a subset is convex if and only if it is an @ -submodule or

a translation of an @ -submodule of E.

Theorem 5.5. Let A be any subset of E containing 0, Then A is

convex if and only if A satisfies the following condition (C), (C) If
x and y are contained in set S and A and p are elements of 6

then A\x + py is contained in set S,

Proof: If A is convex and contains 0, then
AX +py +(1-X-p)*0 = Ax+py so Ax +puy isin A and A satisfies
condition (C). Conversely, assume A satisfies condition (C). Then
for any x, y and z in A and A, p and v in ¢, Ax +py isan
element of A, say w, sothat Ax+ py +vz = w+ vz which is an

element of A, Thus A is convex.

Another characterization of convex sets in E results from the
preceding theorem. A subset A of E is convex if and only if A
satisfies condition (C) or A is a translation of a set satisfying condi-

tion (C).
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Definition 5,2, A subset A of E is symmetric if A = -A,

Theorem 5.6, If A is a convex subset of E containing 0, then A

is symmetric,

Proof: If xe¢ A, then -x = (~1)x+0-xe¢ A by Theorem 5.5.

Thus A = <A, so A is symmetric.

Definition 5.3, Let V and W be two subsets of E, Then V absorbé

W_ if there exists an a >0 such that W (C \V for every Ae K,
IN] > a. A subset A of E is called absorbing if it absorhs every

point of E.

Theorem 5.7. If a field K 1is considered as a linear space over itself,

then @& 1is an absorbing set.

Proof: Let y be a non-zero element of K, Let a = ly! . Let
A be any element of K such that |\[> a. Thus [)\]zly[> 0.
Since K is a field, there exists an element z e K suchthat y = \z.

Now |y| = [xz| = [\] |z] so that ’zlz—b—r—l— But || > |y]| so

N
sz.§ 1. Thus z is an element of §. We have shown that for any
y ¢ K, there exists an a >0 such that for any A\ with !7\]3_ a,
{yv} € »¢. Thus ¢ absorbs {y} and since y was an arbitrary

element of K, ®& absorbs every point of K. Thatis, @ is an

absorbing set.

In particular, if Qp is considered as a linear space over itself

then Op is an absorbing set.

Theorem 5.8, Each absorbing set contains 0,
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Proof: If A is an absorbing set then in particular it absorbs 0,
Thus there exists a number a >0 such that 0eg NA for any ‘X[-za .
If a<1, then 0¢ \NA for any ])\l = 1 and in particular for X =1,

Thus Oel-A=A. If a>1, let |\j|>a sothat OeXjA. Let

A, ¢ K such that [)\ll<l)\0|. Let =X\ XO—I. Then OEXOA

1 1

implies that w-:-0¢ - )\OA, that is, O e A A since }.L)\O =X Since

this is true for any xl such that ])\1.] < [)\O] , it is true for )\1 =]

and hence 0g 1-A =A., The case a = )\O = 1 1is trivial, Thus any

absorbing set contains O.

The definition of convexity leads to a very simple characteriza-
tion of convex sets in a n.a, valued field K, With this in mind, the
case where E = K, considered as a linear space over itself, will now

be studied,

Theorem 5.9. Let A be a non-degenerate convex subset of K, Then

A=K or A is a sphere; that is, A =K, A:{xsK' ]x-—xolkf_ rO}

or A:{xaK{'x—x0[<rO} for some x;e X and r,>0. In

particular, the conclusion is valid for K = Q

Proof: Consider first the case where 0¢ A. By Theorem 5.3,
A is an @-~submodule. Thus for any Ae @ and xeA, AxecA, In

particular, 1e¢ ® sothat ¢-A = A, Let ry = sup |x|. If the set
xeA

{ lx[ lx e A} has no upper bound we will say Iy = @, First suppose

that ry = . In this case A =K. To see thislet ye K. Since @

is an absorbing set by Theorem 5.7, there exists an a >0 such that

‘[)\[_>_a implies ye A@. Since Ty =@, the set {[x]’xaA} is not

bounded above and hence there exists an x¢ A such that ’x! > a.
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Thus yex®, where x¢ A sothat ye A=A, Thus A =K since
y was an arbitrary element of K,

If r0

that there exists an X € A such that ]xof 0"

claim is that A = S[O,ro] = {xl ]x] < ro} . Clearly A (C S[O,ro]

is finite, there are two possibilities. One possibility is

= r In this case the

by the definition of r_.. Moreover , for any vye S[O,ro], since K

0
is a field, there exists an element z e K such that y = X2 . Thus
ly[ = fxol ]zl or equivalently ]z{ = 'Y’ But ]x [ = and
,xol 0 0

[yl < Ty since yeS[O,r], so that ]z{<1. Therefore, z is an

element of . Since y = xoz with xO e A and ze @, it follows

that ye A-6 = A. It has been shown that if ye S[O,ro],, then ye A

so that S[O,ro]CA, Hence A =S[0,r.].

0
The other possibility is that there is no X e A such that
[xol= - In this case A = S(0, ro) . The proof is similar to the proof

for the other case.

It has been shown that if 0 is contained in the non-degenerate
convex set A, then A=K or A is a sphere. The case 0¢ A can
be handled by a translation. If 0¢ A, let % A . Consider the set

A' = -x0+ A, By Theorem 5.2, A' is convex and since X, ¢ A, we

have 0¢e¢ A'. Then, by the first part of the proof, there are three
possibilities, If A'=K, then A=K, If A'= {xf x| < ry}, then

A:x0+A'=xO+{x’ |x] _<_r0}. But

x0+{x’ |x| < ro} = {x‘ Ix—xof < ro} = S[xo,ro]. Thus

A =s] ]. Finally, if A'={x|[|x]| < r}, then

X0 T

A {x[ }x-xol < ro} = S(xq,ry). Inanycase, if A is a non-

1

degenerate convex subset of K, then A=K or A is a sphere.



84

The following theorem completes the ¢haracterization of convex

sets in K,

Theorem 5,10. Every sphere in- K is a convex set.

Proof: Let S[xo,r ] bea sphere in K, Then

0

S[xo,r ] = {x¢ Kl IX‘XO, < ro} . Consider the sphere

0
S[O,ro]z {ng“xlf_rO}. Let x,y,zeS[Oer] and A,u,vz6,

with N+ p +v = 1. Then

[Ax +py +vz| < max {\] |x], [u] [y], Iv] 2]}

IA

max { |x[, |y ], [2[}

<r

Thus Ax + py +vze S[o,r.] and slo, ro] is convex, Thus

0
S[xo, ro] = XO + S[O, ro] is convex by Theorem 5.2 . Similarly the
sphere S(xo, ro) is convex,

As a result of the preceding two theorems K, considered as a
normed linear space over itself, is convex and moreover is locally
convex singe the (convex) spheres are a base for K, In this case,
the only non-degenerate convex sets are the spheres which are both
open and closed and hence have no boundary. This fact has important

implications which will be discussed further in the conclusion,

A Geometric Model for 02 and 0212

In this section a geometric representation is given for O2 and

022, using the n.a. norm of Example 4.1 for 022. A similar
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interpretation can be done for Op and Op2 where p is any prime,
In Chapter I, it was noted that any element «a ¢ Op , has a unique
representation in the form 2, + ap + a.zp2 + ... where

0

{A

a; < p-1. Thus, in 02 , any element can be represented in series

form where a; = 0 or 1. Itis also known that any real number r,

0 < r<1 canbe represented, using base 3, in the form
0 %1 %2

r= ——+— +—3 + ... which can be written r = .,a.a;a, ... . If
3 32 33 0712

one identifies the 2-adic integer «a = a0+ ap + azp2 + ... with the

real number in base 3, then a one~-to-one correspon-~

.aoalaz o« e

dence is established between the set 02 and the set

H={rel0,1)|r=.2a,a,a,..., base 3, and ai=0 or 1}.

07172

By this identification, one obtains a geometric interpretation of the set

0 In the graph below, the shaded portion represents some of the

2 .
points which do not correspond to points of 02 since a, = 2 for at
least one 1=0,1,2,... . As an example of the correspondence, the
point 5 =14+0.2+1 -22 in 02 is represented by the number ,101.

For a more detailed discussion of this geometric interpretation of 02

see Agnew [1 ] .

{ —iy ARt o
.01 .02 1 .11

12 2 .21 .22 1

Of special interest to this study is the fact that spheres in 02

are represented as subintervals of [0, 1) MY H. For example, there

are four spheres of radius é in O the spheres S[O,l], Sl[fl,é—ia],
S[Z,i—], and S[3,%], These spheres are subsets of the subintervals

2 ;
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[0,.01), [.1,.11), [.01,.02) and [.11,.12) respectively, as

indicated below,

, ]
0 .01 .02 1 11 J12 .2

The geometric model for 02 lends itself to a natural interpre-

tation of 0 2 as indicated in the following graph, The shaded areas

2
represent some of the points not in 022 ., The graph also indicates the
16 spheres of radius 1 in 0 2

4 2"

If A and B are convex subsets of 02, then Ax B is a convex

subset of 022 . This follows since for x = (xl, XZ) , V= (yl,yz) and



Z:(ZI’ZZ) in Ax B and A,u, and v in O with N+ p+v = 1,

2 9

Aty vz = NMxy,x,) +ply,y,) iz, z,)

(At oy tvag, A+ py, +vzy)

The first and second components are in A and B respectively since
A and B are convex. Thus Mx + p';r + vz isin A xB and A x B
is convex,

In OZ the only convex sets are points and spheres, It follows
that the collection of convex subsets of 02Z includes the cartesian
product of the spheres and points in OZ . However, it includes other
sets as well, For example, consider the set A defined as follows,
Let x=(1,1) and vy = (0,0). Then
Ax + (1=-N)y = A(1,1) + (1 -X)(0,0) = (\,\). Define A = {(\, )\)[)\ 2 02} .
it is clear that

Then for a = (ao,a , b= (bo,bo) and c¢ = (co,c

O)
€A, Thus A is

o
AX + py + vz = ()\a0+ pb0+ veq s )\a0+ pb0+ vco)
convex., It is also clear that A 1is not the cartesian product of any two
subsets of OZ . The set A defined above, relative to the points

x =(1,1) and y = (0,0), is actually the smallest convex set containing

x and y. This is verified in the next section.
Convex Hull

Definition 5.4. Let S (C E. The convex hull of S is the intersection

of the convex subsets containing S : it is denoted CO(S) .

Since, by Theorem 5.1, the intersection of any family of convex
sets is convex, it follows that the convex hull of any subset S of E is

a convex set. Consider now the special case in which S = {x,y}.
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Theorem 5.11, The convex hull of the set {x,y}, x,ye E 1is the set

Collx,yh = Dix+ (1-0y | [n] < 13

Proof: lLet z¢ CO({x, y}). Then 2z is contained in every convex
set containing x and y. With A =1 and X\ =0 one sees that x and
y respectively are contained in the set onthe right, Thus we must show
it is convex. Let 211252, € {)\x+(1—)\)y|])\]_<_1} and A,p,ve 6,

AN+p+v =1, Then z, = Xix+(1-)\i)y, for i=1,2,3. Hence

3]

)\zl-l- MZ, + vz

5 3 )\[)\lx + (1 —)\l)y] +uh,x+ (1 w)\z)y] +v[a,x + (1 =-)\3)y]

2 3

t

(M + A, + whg)x + ML =A ) + p(l=h,) + u(l ~x3)]y

1 2 3

(ML

H

FuA, F o )x [N+ ) - ()\)\1+p.)\2+ v)\s)]y

1 2 3

Ax + (1 =AYy

where A'= A\, +pk,+ vi,. Furthermore,

2 3

L= Dot ang + g [ < max{n Ing L Jel Il vl a1 < 1.

Thus {Ax + (1 -)\)yl In] < 1} 1is a convex set containing x and y so
that C({x,y}) C (x+ (1-ny | [n] < 1)

Now let z ¢ {A\x + (1 -\)y ’ IN] < 1}. Let C be any convex set
containing x and y, then z =Ax + (1 ~\)y for some X\, }kf < 1.
Since x and y are in C and C is convex we have that
z=Ax+(l-N)y =Xxx+1-y-AyeC. Thus z is in every convex set
containing x and y sothat {\x + (1 -=)\)yl N <1} C CO({xy v} .

The conclusion then follows.
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Following are three examples of the convex hull of two points in

2
O2 .
(1) == (1,1), y=(0,0), Co{=,y}) = {(\,X) [re0,}.
(ii) x=(3,3), y= (1, 1), CO({XSY}) = {(2)\+ 1, 2\ + l)l)\g 02}'
(i) x=(1,1), y=(-1,-1), Co({x,y}) = {2\ =1, 2% - 1)[xe 0,}.
2 27 2r
/ / //
/ é %
/ 11 3,3) -1 ~1-1,-1
4
1y /ﬁ(l,l) 1 (1,1) 1 (1,1
7
Ve
4
0 1 2 0 1 11‘ 2 0 1 .11 2

(i) Gy (1i1)

One generally expects the convex hull of two points to be the line
segment joining the two points. In these examples, the convex hull is
a ''segment' but not all the points are ''between'' the two points x and
y. .In the final example, with graph following, the graph of the convex
hull does not even resemble a segment. Let x = (1,0) and y =(0,1),.
Then the convex hull is given by CO({x, vy = {(n1-0) e 02} . A
few of the points contained in the convex hull are indicated on the graph.
It can be argued that since the sum of the coordinates must be 1, the

points must all lie in the four spheres indicated.
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. 2
.12
[ 0(2?‘-1
| o(6,-5)
.11 "(3,=-2)
0(4,"3)
1 (-4,5
.OZL
L (3,-2)
[ '.(5:'6)
OoIr TT,2)
-314
. i | (S’J%)}.L : ]
0 01 02 .1 11,12 z

Quasi-convexity

Monna has introduced the term quasi-convex related to Theorem

Definition 5.5. A subset A of E is called quasi-convex if for any

x and yeS, M+ (1-N)yeS for every \e K such that lk[f_l.

As a result of Theorem 5. 11 it follows that a quasi-convex set
A contains the convex hull of each pair of points in A,

Convexity and quasi~convexity are not equivalent. However, if
one notes that Ax + (1 -\)y = Ax + l-y - Ay then whenever S is
convex, we have Ax + (1 -\)y is a member of S, This proves the

following theorem,

Theorem 5.12., Every convex set is quasi-convex,
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The converse of this theorem is not true as the following example
shows, that is, a set is defined which is quasi~convex, but not convex,
However, in most cases, the two concepts are equivalent, Theorem

5.13 gives one general case in which they are equivalent,

2

Example 5.1, Let E = QZ ; that is, the set of ordered pairs (xl,xz)

such that Xy

y = {0, 1). Define the set S by S={(aﬁ,(1—a)|¢)la,ﬁ,p.g OZ}. The

and x, are elements of QZ‘ Let x = (1,0) and

set S will be shown to be quasi~convex but not convex, The set S is

the union of three spheres indicated in the following graph,

Let 1z and z, be elements of S, To prove that S is quasi-

convex, it must be shown that )\zl + (1 - )\)z2 is an element of S for

any X\ in 02. Since z and z, are elements of S, they can be

represented as z, = (alﬁl, (1 - al)pl) and z, = (azﬁzg {1- az)pz)

where the elements ays ﬁl A TRECPY BZ, and b, arein 02 .
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Therefore,

)\Zl+ (1")\)2'2 = )\(alﬁly (l“al)Hl) + (1 —)\)(QZBZ’ (1 “‘az)pz)

I

()\alﬁ]_-i- (]- “’)\)azﬁzs )\(]- - al)p‘]_
+ (1")\)(1“‘12)“2)

= (3. ;)

where aq Z)HZ'

To show that (a3, 63) is an element of S, if must be demonstrated

= - ( = - . - {1 -
Na B+ (L-N)a,B, and Bg= M1-ap)pg+ (1=2)(1 -«

that (a/3,[33) = (ap, (1 ~a)p) for some a,P, and p in 02. In this

example, the symbol | | is used for the 2-adic valuation.

To begin with, the following argument shows that the statements
loz3| =1 and ’B3| = 1 cannot both be true, Suppose that la3l. =1,
that is, I)\a161+ (1 n)\)azﬁzl = 1. By the n.a. property,
l)\alﬁl+ (1 -—)\)aZBZI < max { I)\alﬁll, [(1 -)\)a262l} , so that either
lmlsll =1 or '(I—X)aZBZ’ =1, If ,)“"151' =1, then [\[| =1

and |a,[ =1. In 0, thisimpliesthat [1-A] <1 and [l-a, | <1,

By the n.a. property, [B;] < max{|[MI-a)p L[(1-N1-a,)p,]}.
But |l1-X| <1 implies that [(1->\)(1ma2)92]<1 and l1;a1l<l

implies that l)\(l—oz )pli <1, Thus 163] <1, Likewise, if

1
[(1-Ma,p,| =1, then [1-\[=1 and la,| =1 sothat [x] <1

and |1 -azl < 1. Then, as before, [53] < 1. Thus either |a3l <1

or [53[ <1,
To show that there exist elements a,f, and p in 02 such

that (as, 33) = (af, (1 -a)u), the two cases loz <1 and ;BBI <1

3 ’

must be considered. If [oz3l <1, then [1- a3f = 1. In this case,
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let @ = a, and P =1. Then we must have [33: (1-a)p, so with

a = a, let p= 63(1~a3)“ . It remains to show that «,p, and p

are elements of 02. Clearly « and P are in 02 2

=1, Thus, in the case |a3' <1, it has been shown

and p isin O

since ll— a3,

that (a3, [33)85.
If [ﬁ3l<l, then lluﬁslzl. In this case, let p =1 and

lea = 63, that is, ¢ =1 - 63 . This requires af = aq or equiv -

alently 8 = g a-l = a/3(1 »BS)—I. But then o and ju are clearly

in 02 and B isin O

(a/3,ﬁ3) isin S,

2 since ll - 63] = 1., Thus, in either case,

It has been shown that for any z, and z, in S and \e 0‘2 ,

the element 7\z1 + (1 - 7\)z2 isin S. Thus S is quasi=-convex.
It is easily demonstrated that the set S is not convex. Since the
set S is given by {(aB, (1-a)u)| a,B, pe 02} , it is clear that the
points (1,0), (0,1) and (0,0) are all contained in S. However,
the point (1,0) + (0,1) - (0,0) = (1,1) is notin S. This follows
since for a e 02 either |a| <1 or |[l-a| < 1. Thus either
|aB| <1 or [(l-a)u| <1 soitis impossible that both statements
aB=1 and (l-a)u=1 be true. Since the point (1,1) is notin §,
S 1is not convex.
The set S has been shown to be quasi-convex but not convex.
Thus in QZZ convexity and quasi-convexity are not equivalent, How-
ever, the following theorem states that in any n.a. valued field K,

considered as a linear space over itself, convexity and quasi-convexity

are equivalent.
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Theorem 5.13. Let K be any n.a, valued field congidered as a linear

space over itself, Then a set A in K 1is convex if and only if it is

quasi-convex.

Proof; In view of Theorem 5,12, it is only necessary to show
that if the set is quasi-convex it is convex. In fact, it is sufficient to
show that every quasi-convex set containing 0 is convex., The case
where O0¢ A can be handled by a translation. The proof that any
translation of a quasi~convex set is quasi-convex is analogous to the
proof of Theorem 5.2 for convex sets.

Therefore, iet A be any quasi-~convex subset of K containing
0. Then for any x in A and \Ne 6, \x is in A since
Ax = Axx+(l-X\)-0.

Moreover , if x and y are non-zero elements of the field K
and |y| < |x|, then y = ax for some « in 6. Thus for A\ and p
in 6, Xxx +py = \x+ p(ax) = (AN+pa)x = px and

Bl = [N + pa| < max{ |\, [pa|} <1. Let x and y be in A and,

without loss of generality, let fy[ < [x . Then \x + py = Bx for
some fe 6. By the preceding paragraph, since A is a quasi-convex

set containing 0, PBx isin A. Thus A is convex,

In Theorem 5. 11 it was shown that the convex hull of the set
{x,y}, x,ye E is the set CO({x,y}) = {Ax + (1 = \)y ’ A <1}, In
particular, if E = K, since the convex hull is convex and contains at
least two points, it must be a sphere by Theorem 5,9. Thus it must
be the smallest sphere containing x and y. Let Ix—y] = r, Then
it is clear that S[x,r] is the smallest sphere containing x and y.

This argument proves the following theorem,
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Theorem 5.14. Let x and y be in K. Then CO({x, y}), the convex

hull of {x,y}, is the sphere S[x,r] where r= [x-y].

In the case that K = Qp, one can also make the following

observations.

Theorem 5.15, In Qp, p# 2, every symmetric ¢convex set contains

0.

Proof: Since every non-degenerate convex subset of Qp's is a

sphere, suppose S[x ] = —S[xo,r]. Then X e'S[xo,r] implies

0’ *
that -xo € S[XO' r] so that

ro> !xo" (-x = lzxol = !2’ ,xol = ’x

)| .
P P p P p P

1.

One can see from the proof that p # 2 was necessary, In fact

Thus Oce S[xo, T

in Q‘2 consider
SIL,31 = fx | [x-1l, <33 = (el -1, <13 = (=] Ix[, = 1},

That is S[l,%] = {x f 'XIZ = 1} . From the lefthand side of the last
equation one sees that this set is closed and convex and from the right-
hand side, that it is symmetric but does not contain 0. Thus the

conclusion of Theorem 5. 15 is false in Q2 .

Another way of observing the result in the preceding paragraph
is as follows. The elements of the set A = {x¢ Q2 l lx[z =1} are of

[o0]
the form 1+ X aﬁzn where anzo or 1. Thus
n=1
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: 1 .
A=1+{er2l [x]2<l}: 1+{xaQ2llxl2 f_z-} so that A is
convex being of the form x0+ A' where A' is convex.
If p#2, A={stpHx]p=l} is not a sphere, as it is in

Q

2 since if it were a sphere it would be convex. For example in
Q3, let x=1, y=2, z=1, Then x,y,zeA but 3x-y-z=0¢£A,

even though 3+ (-1)+ (-1) = 1¢ 03 . Thus A is not convex and

hence is not a sphere,
Conclusion

One area of study in.convexity involves the concept of extreme
points in convex sets, A point x of a convex set A is an extreme
point of A if and only if x is not an interior point of any line ‘segment
whose end points belong to A, Theorems such as the Krein-Milman
Theorem are concerned with the existence of extreme points in coﬁvex
sets. But in K it was found that the only non-degenerate sets are
spheres which are both open and closed. Thus every point of a sphere
S 1is an interior point. It appears that a different definition of boundary
or extreme point, or possibly a different definition of convexity, is
needed if theorems such as the Krein-Milman Theorem are toc have
analogues in the non-archimedean setting.

The articles [12] and [i3] by Monna contain a more detailed
discussion of the problems involved. Convexity in:linear spaces over
non-archimedean valued fields appears to be an area for additional

study and research.
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