FIELD PERFORMANCE EVALUATION OF NOVOPHALT MODIFIED ASPHALT CONCRETE

Gary Williams, P.I:

Research Project Manager

CONSTRICTION RI:PORT

Under the Supervision of C. Dwight Ilixon, 1P.I:
Research and I development
Division lingineer
Research and Development Division Oklahoma Department of Transportation
200 N.I: 21 st Siret
Oklahoma City, Ohlahoma 71105

Oklahoma Department of Transportation Materials and Research Division

To David Cline, Division Engineer,
From Lawrence J. Senkowski, Assistant Division Engineer fos
Subject Project IM-35-3(223)130 Project Area (I-35, between 23rd and 63rd Streets, Oklahoma City).

The attached report summarizes the present condition of the above project area.
A brief comparison regarding the field performance of the sections with experimental Novophalt Modified binder, "Polymer Modified" AC binder, and unmodified AC-20 binder is included.

If you have any questions or require further information, please call Gary Williams in our office (405-521-2671).

Attachment

cc: Pete Byers
\checkmark Jack Telford
Gary Williams

IM-35-3(223)130 Project Area

(I-35, Between 23rd and 63rd Streets, Oklahoma City)

Gary Williams
ODOT MATERIALS AND RESEARCH

January 23, 1998

INTRODUCTION

In 1992, a research project was set up to evaluate the field performance of Novophalt Modified Asphalt Cement (NMAC). The IM-35-3(223)130 project area (I-35 between Northeast 23rd and 63 rd, in Oklahoma City) made up the location where the evaluation was to be done.

Asphalt concrete laydown operations for the project were completed in October, 1992. Project IM-35-3(223) 130 consisted of removing $41 / 2$ inches of existing pavement by cold milling, then replacing it with 3 inches of Type " A " AC and a $11 / 2$ in thick surface course. The surface course contained sections of Type "B" AC with "Polymer modified" (PMAC 1-B) binder, Novophalt Modified binder (NMAC), and unmodified AC-20 binder. Section with the various binders are located as shown in Figure 1. The project was 3.229 miles long. The contract amount was $\$ 1,688,040$.
The Construction Report is attached. The report describes the laydown operation and gives general information on NMAC.

After five years have passed, the are clear differences in the performances of the three surfaces on the project, as described below.

Figure 1. Location of Experimental Surface Sections on Project IM-35-3(223)130

SOUTHBOUND EXPRESSWAY

The three sections in this expressway are described in location order beginning at the north end of the project and moving south (in the direction of traffic).

"POLYMER MODIFIED" AC

The surface of this section consists of Type " B " AC with a modified asphalt binder where the modifier is an SBS block co-polymer, this product was originally distributed by ELF Corporation, under the name, "Styrelf". By the time this project was done, Koch Materials had purchased the rights to it. This is a "Type I" modified binder under the present classification system. At the time work on this project was in progress it was known as "Polymer Modified binder" on all contract documents. The "Polymer Modified" Section of the Southbound Expressway begins at the north end of the project (Station $410+49$) and extends to Station $332+78$.

Of the three sections in the Southbound Expressway, this one is in the best condition. Longitudinal fatigue cracks are located in the wheel paths (in one wheel path or the other) over approximately onehalf of this section. In some of the worst cracked spots, (less than 10 percent of total area) transverse cracks have formed also. Where cracks intersect, pieces of the surface have come out, leaving holes approximately 1 foot in diameter. So far, maintenance forces have been able to keep these spots patched. Rut depths in this section ranged from 0.1 to 0.5 inches. Figure 1 shows typical conditions in this section.

Figure 2. Typical conditions, "Polymer Modified" AC Section.

NOVOPHALT MODIFIED AC

In this section, located from Station $332+78$ to $276+10$, cracking was more widespread and severe than the previous section. In over half of the outside lane fatigue cracking has progressed to the point where there are several longitudinal cracks in each wheel path of the outside lane. There is also transverse cracking in much of this section. A network of cracks has developed in a three to four foot wide strip along one or both wheel paths of the outside lane (Figure 3). There are numerous spots where cracks intersect and pieces of asphalt have spalled out of the surface. Maintenance forces have attempted to keep up with patching these spots, but their number is increasing. This section will soon require either an overlay or a large scale patching operation. Patching would have to cover at least half of the outside lane. The inside lane is in slightly better condition, but it also shows considerable cracking. Rut depths in this section are 0.1-0.5 inch.

Figure 3. Cracking in outside lane, Novophalt Modified Asphalt Cement Binder section.

UNMODIFIED AC (CONTROL) SECTION

Conditions in this section are better than the "Novophalt" Section, but slightly worse than the "Polymer Modified" AC Section. Approximately 20 percent of the outside lane has longitudinal cracking in one or both wheel paths. In approximately 10 percent of the outside lane a network of cracks similar to that described in the "Novophalt" Section has developed. Rut depths ranged from $0.1-0.5$ inch.

Figure 4. Typical Cracking in Unmodified AC Binder Section.

DISCUSSION

SOUTHBOUND EXPRESSWAY

The areas where the worst cracking has occurred will need corrective action soon. This applies mainly to the "Novophalt" Section where a large percentage (approximately 50 percent) of the outside lane will soon have to be patched or overlaid. There are areas in all three sections where corrective action (patching) will be required, but the areas are smaller, and the locations are generally isolated.

NORTHBOUND EXPRESSWAY

Performance of the entire Northbound Expressway, which was surfaced with "Polymer Modified" AC, has been better than that of the Southbound. The Northbound expressway did not contain any experimental or control sections. There are a few (approximately 5) isolated areas which will need patching, due to the occurrence of longitudinal and transverse cracks, but they make up a small percentage of the total expressway area (one or two percent).

Before Project IM-35-3(223)130, rutting and shoving were the major problems here. At that time, there was essentially no cracking in the project area. While IM-35-3(223)130 greatly improved the situation with regard to rutting, the cracking that has appeared since completion creates a situation
that is as serious as the rutting and shoving that occurred here before IM-35-3(223)130. The major difference is that the worst cracking (now) is in the Novophalt section, (station $276+10-332+78$, Southbound Expressway), where the worst of the severe rutting (before IM-35-3(223)130) was located at the north end of the project (stations $355+$ to $410+49$). Five years after completion, all sections of this project require at least some patching. 1996 ADT for this area is 58,200 , with 6.8 percent trucks. Another type of pavement may give better long-term performance.

Based on the performance of the Novophalt section, I recommend that ODOT not accept this product for use on Department projects.

TECIINICAL REPORT SIANDARD TITLE PAGE

| 1. REPORT NO. | | |
| :--- | :--- | :--- | :--- |
| FHW | 2. GOVERNMENT ACCESSION NO. | 3. RECIPIENT'S CATALOG NO. |
| 4. TITLE AND SUBTITLE | | |
| Field Performance Evaluation of | | |
| NOVOPHALT Modified Asphalt Concrete | | |

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Oklahoma Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. While contractor names are used in this report, it is not intended as an endorsement of any machine, contractor, or product.

Table of Contents

INTROIDUCTION I
Project Data 2
Original Construction and Overlays 2
Roadway Condition 3
Construction 4
Hot Mix Plant Operations 4
NMAC Laydown Operations 7
Test Sections 10
Data Collection 11
Before Construction 11
After Construction. 12
Analysis 1.3
Cost 14
Monitoring and Reporting 15
References 16
Appendix "A", ODO'I Special Irovisions for NOVOPIIAI, 17
Appendix "B", Measurements and Test Results. 18
Appendix "C", Mix Design Sheets. 19)
Appendix " 1 ", Soil and I'avement Survey. 20

List of Illustrations

Higure 1. Location, Project IM-35-3(223)| 30 1
Figure 2. Existing Pavement Layers, Prior to IM-35-3(223)1 30 2
Figure 3. Ruts before construction, IM-35-3(223)130 Project Area. 3
Figure 4. Mobile Blending Unit. 5
Figure 5. Connection of Mobile Blending Unit to Hot Mix Plant. 5
Figure 6. Polyethylene Pellets. 6
Figure 7. Central Processing Unit. 6
Figure 8. Continuous Density Gauge Mounted on Roller. 8
Figure 9. Screen for Continuous Density Gauge. 8
Figure 10. Pavement Layers, After Completion of IM-35-3(223)1 30. 9
Figure 11. Polymer Modified, NOVOPIIAILT Modified, and Ummodified Surface Locations. 10
Figure 12. Ruts Before Construction, Project IM-35-3(22.3)1 30 Area. 12
Figure 13. Costs of Type "B" Mixes. 14

List of Tables

Table 1. Costs, Type "B" Mixes, IM-35-3(223)130 14

INTRODUCTION

Rutting and shoving often occur on asphalt concrete roadways located in areas of high traffic. Other State Highway Agencies have reported that NOVOPHALT Modified Asphalt Concrete, hereafter called NMAC, shows increased resistance to both rutting and shoving (1). NMAC has also been reported to increase durability and resilience, resulting in reduced maintenance and longer pavement life (2). These improvements lower pavement costs, on a life cycle basis.

A separate problem is the accumulation of large quantities of used plastic as more cities begin recycling programs (3). A large proportion of the aceumulated plastic is polyethylene.

NMAC is produced by blending polyolelins, primarily polyethylene, into paving grade asphalt cement. The polyethylene may be either virgin or recycled material. NOVOPHALT is produced by Novophalt America Incorporated, Sterling, Virginia.

Figure 1, Location, Project IM-35-3(223)130.

Project Data

Original Construction and Overlays

1-35, in the Project Area, was originally constructed in 1958. The original pavement was made up of 2 inches of Type " B ", athd 3 inches of Type " A " Asphatt Concrete on a 7 inch stabilized aggregate base course.

In 1974, the IM-35-3(223)| 30 area was overlaid wilh a $3 / 4$ inch thich plant mix seal coat and $11 / 2$ inches of Type "(" asphatt concrete.

The next overlay was done in 1984, when this area was overlaid with $1 / 2$ inches of Type "C" AC with a $3 / 4$ inch ()pen Craded liriction Course surface. The Type "C" AC contamed 38 percent rechamed asphat pavement. Prior to the 1984 overlay, the existing roadway was cold-milled, and Petromat was placed on the milled surface.

The existing pavement layers prior to IM-35-3(223)130 are shown in ligure 2.

Figure 2. Fxisting I'avement I.ayers, Prior to IM-35-3(22.3)130

Roadway Condition

Prior to $1 \mathrm{M}-35-3(223) 130$, this area had deep ruts. The entire project a area was rutted, with the Southbound Expressway more deeply rutted than the Northbound. Rut depths were greatest (all grealer than 1.0 inch) toward the north end of the project, in the Southbound IExpressway. Rut depths decreased from north to south. At the south end of the project, rut depths averaged (approximately) $1 / 2$ inch. Shoving had occurred beside many of the ruts, making their overall. effect worse than that due to rutting only. Some of the deepest ruts had developed corrugations in the bottom of the rut. Conditions described above are illustrated in ligure 3.

Figure 3. Ruts before construction, IM-35-3(223)130 Project Area.

Construction

Hot Mix Plant Operations

Novophalt modified asphalt cement is a binder system containing 4 to 6 percent, by weight, polyolefin additives, and paving grade asphalt cement. The polyolefins are typically polyethylene, which may be either virgin or recycled material. The modified asphalt cement is prepared by manufacturer's representatives, using a customized, high shear mill. NOVOPHALT Modified Binder is typically 3 to 4 times more viscous than the unmodified base asphalt cement.

NOVOPHALT modified asphalt cement must be stored with agitation to prevent stratification. It was not necessary to store the modified binder on this project. NOVOPHALT can be piped and transferred through plant piping lines in the same manner as unmodified AC. NOVOPHALT will not damage or clog lines or pumps that come in contact with the product, provided that the temperature is kept at least 50 degrees F above the melting point of the additive, which is (typically) 250 degrees F (121 degrees C).

On this project, the manufacturer provided a mobile blending unit (with operator) to supply NOVOPHALT to the contractor's hot mix plant. The blending unit (Figure 4) is self contained, and carries its own generator, heating system, and power train.

The blending unit was set up and connected to the hot mix plant in slightly less than four hours. The manufacturer's employees did the set up and connection. The blending unit is equipped with agitated mixing and storage tanks to insure uniformity of the product until it goes into the binder feeding line of the plant.

NOVOPHALT modified asphalt cement was added to the aggregate in the pug mill of the plant at a temperature of 330 degrees F (166 degrees C).

On this project, the manufacturer's blending unit was connected to the plant as shown in Figure 5. One hose from the blending unit connected to the plant asphalt intake line. The other connected to a return line. Both lines had shutoff valves at the connector.

The blending unit combines the polyolefin additive and asphalt cement (AC-20 on this project). Briefly, the combination process consists of adding polyethylene pellets (Figure 6) to asphalt cement in a high-shear, customized mill. The pellets may be produced from recycled or virgin polyethylene. Pellets used on this project consisted of recycled material. Where recycled polyethylene is used, its chemical makeup is verified prior to converting it to pellet form.

Figure 4. Mobile Blending Unit.

Figure 5. Connection of Mobile Blending Unit to llot Mix IPlant.

Figure 6. Polyethylene Pellets.

Figure 7. Central Processing Unit.

NMAC Laydown Operations

Before laydown operations began, the project area was cold milled to remove the layers shown in figure 2. Average depth of the milling was 5 inches. Depths at specific locations varied widely, between 3 and $61 / 2$ inches, due to the extreme amount of rutting and shoving. The Type " A " and " B " layers below the cold milling were considered to be stable, and were left intact. The milling subcontractor was able to adjust milling depth so that material removed was that above these layers.

Following cold milling, a 3 inch lift of unmodified Type " A " AC was laid over the entire project. A $11 / 2$ inch thick, Type " B " AC surface course was laid over the Type " $A^{\prime \prime}$ mat.

From station $276+10$ to $332+78$, the surface course was NMAC, Type "B" mix. NMAC is laid, more or less, in the same manner as unmodified AC. Specific operations, and slight differences, whether required for NMAC handling, or due to the contractor's preference, are described below.

NOVOPHALT modified AC requires temperatures of over 280 degrees F. (138 degrees C.) during laydown and compaction. The contractor's employees constantly monitored mix temperature using a non-contact thermometer. This instrument reads surface temperature only. The minimum temperature monitored was 290 degrees F . (143 degrees C.)

The contractor's initial breakdown roller had a Troxler Continuous Density Gauge mounted on it (Figure 8). The screen of the density gauge (Figure 10) was mounted where the operator could monitor compaction, and adjust his pattern if necessary. The Gauge was set up so that it gave one reading for approximately every ten feet the roller travelled. Also, the Density Gauge had a light which came on automatically, if compaction varied more than one percent from the contractor's 95 percent target.

The contractor began laying NOVOPHALT on October 7, 1992. On that date, the ambient temperature dropped to 51 degrees F . (11 degrees C .). There were thunderstorms in the area (not on the project area), with wind gusts up to 55 mph (89 kmph). These conditions caused a more rapid cooling of the AC surface than had been the case up to then. Small surface cracks began showing up in one area of the NMAC. The contractor corrected this by moving up the break down roller, closer to the laydown machine. This left less time for the surface to cool. No surface cracking was observed once this change was made.

The contractor's Project Manager, and most of the laydown crew personnel working on this project had laid NOVOPHALT modified AC on a previous project for The Oklahoma Turnpike Authority. Because of this, all personnel were aware of the temperature requirements and the need to complete compaction before the mat could cool below 280 degrees F . (138 degrees C.)

Higure 8. Contmoous Density Gauge Mounted on Roller.

Figure 9. Screen for Contimous Density Gauge.

Figure 10. Pavement Layers, After Completion of IM-35-3(223)130.

Test Sections

It was originally intended that all of the surface course on this project would be (Styrelf) Polymer Modified Type "B" AC. Conditions before construction included severe rutting and shoving. It was decided to include an experimental section of NMAC to evaluate its ability to resist these conditions. A section of unmodified Type " B " was included for use as a control section. Both the experimental NMAC section and the control section were located in the southbound expressway The remainder of the project was surfaced with Polymer Modified Type " B " mix.

Surface of the Southbound IExpressway was as follows:

```
Station 410 + 49 to 332 + 78 (Styrelf) Polymer Modified T'ype "B" A('
Station 332 + 78 to 276 + 10 NMAC, Type "B" AC
Station 276 + 10 to 240+00 Unmodified Type "B" AC
```


Figure 11. Polymer Modified, NOVOPlIALT Modified, and Unmodified Surface Locations.

Data Collection

Before Construction

Rut depth measurements, FWD Tests, and Condition Ratings were done in the Southbound Expressway from Station $396+60$ to $240+00$ (South end of Project). The area between $396+60$ and $410+49$ (North End of Project) contains the I-44/I-35 Interchange and it is very difficult to control traffic adequately to safely test this area.

The average rut depth was 0.8 inch in the outside wheel path, outside traffic lane. All ruts measured were deeper than 0.4 inch, with the deepest ruts located toward the north end of the project. Rut depths before construction are illustrated in Figure 12, with stations at the limits of the test sections marked.

The project area was tested with a Mays Ridemeter prior to construction. In the outside (west) lane, southbound expressway, the Mays Ridemeter rating was 3.7. The lowest rated section was a 2.6 . In the inside (east) lane, the Mays Ridemeter rating was 4.2 , with the lowest rated section receiving a 3.6.

Falling Weight Deflectometer (FWD) testing was done over the entire project length in the outside traffic lane, southbound expressway. Test data was analyzed separately for the sections surfaced with polymer modified, NOVOPHALT modified, and unmodified Type "B" AC. Results are summarized in Appendix " B^{\prime}, with the mean modulus of elasticity calculated for each section, corrected to 77 degrees F (25 degrees C). Moduli generally range from 325 to 550 ksi . Results of tests before construction were in that range, with the exception of one section surfaced with unmodified Type " B^{\prime}, where the mean was (roughly) 284 ksi . FWD testing was done when parts of the project area were closed, prior to cold milling. The section with unmodified Type " B " surlace was done on two different days, so there are two different "before construction" moduli calculated for that section.

RUT DEPTHS
 155-3(283)130
 LET (RE, EXPR.
 Lert purbide lane
 LET (OUTEDE WP.

DEPTH (NCHES)

Figure 12. Ruts Before Construction, Project IM-35-3(223)130 Area.

After Construction.

After project completion, rut measurements were made, Mays Ridemeter and FWD Tests were done, and a condition rating was done.

Rut measurements were essentially zero. The Mays Ridemeter rating for the Project Area was 4.4, with the lowest rated section rated at 3.8. FWD Tests showed an increase in the average modulus for each of the three sections. However, there was a considerable amount of variation between individual tests. This was the case both before and after construction. The condition rating increased to 99.7 percent.

Results of all tests and measurements are tabulated in Appendix "B".

Analysis

Severe rutting has been a chronic problem in the project area for several years. In 1988, an investigation of the cause of the rutting was requested by ODOT Division IV. The investigation was done by the ODOT Materials Division, and included pavement and soil surveys. Visual inspection of cores taken during this survey indicated instability in the Type "C" pavement layer, laid in 1984. The pavement layers considered to unstable were removed by cold milling during this project. A report on the 1988 investigation is included in Appendix " D ".

Results of tests by the Research and Development Division were summarized in the previous section. In the Southbound Expressway, where the test sections were located, rut depths were greatest in the area surfaced with Polymer Modified AC. The average rut depth in this area was 1.1 inches. The NMAC surfaced section had ruts with less depth (average depth was 0.7 inch). In the unmodified Type " B " section, depths averaged 0.4 inch.

Mays Ridemeter Test Results did not differ significantly for any of the three sections, either before or after construction.

Generally, greater amounts of rutting would be expected where FWD tests indicate a relatively low modulus of elasticity. There was no correlation of this type on this project. Average moduli after construction showed an increase, relative to those before determined before construction, for each of the three sections.

Cost

Contract costs of the three different surfaces are given in Table I and illustrated in Figure 11. The relatively high price of NOVOPIIALT modified AC reflects the cost of moving their mobile blending unit to Oklahoma for a relatively small job. On a larger project, or a situation where NOVOPIIAITT was used on more than one project, the costs would be competitive with other modified A(' mixes.

Table 1. Costs, Type "B" Mixes, IM-35-3(223)130

Asphalt Concrete	Contract Price, $(\$)$
Unmodified	25.00
Polymer	29.00
NOVOPIIALT	200.00

CONTRACT PRICES

PRICE ($\$ / T O N$)
Figure 13. Costs of Type " 1 " Mixes.

Monitoring and Reporting

For the remainder of the three year evaluation period, l'WD testing and condition ratings will be done annually. Rut depth measurements and Mays Ridemeter tests will be done twice a year. Any significant change in test results or measurements will be reported in an annaal interim report.

At the end of the three year evaluation period, a Fimal Report will be wrilten detailing performance of the NOVOPIIAL'T section, relative to that of the unmodified Type " B " control section and the polymer modilied comparison section. The Final Report will be written within six (6) montho of the end of the evaluation period.

If substantial failure of the NOVOPHALT section should oceur before the scheduled end of the evaluation, the ODOT Design Divisions will be notified at the time the failure is noted. In case of failure, the Final Report will be written within three (3) months of the date failure is observed.

References

1. "Performance Assessment of Binder-Rich Polyethylene-Modified Asphalt Concrete Mixtures (NOVOPlIAIT)", Dallas N. Little, The Texas Transportation Institute, Texas A. and M. University, 1991
2. "Comparative Life-Cycle Cost Analysis of NOVOPIIAIT" and Conventional Asphalt Concrete Overlays in the Dallas, Texas Area". Dallas N. Little, The Texas Transportation Instsitute, Texas A. and M. University, May, 1990
3. "Brainpower to Make Recycling Work".Plastics News, September 17, 1990

Appendix "A", ODOT Special Provisions for NOVOPHALT.

$$
\begin{array}{r}
411-3(a-b) 91 S \\
1-10-92
\end{array}
$$

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS
 FOR
 EXPERIMENTAL MODIFIED ASPHALT CONCRETE (NOVOPHALT)* PROJECT NO. IR-35-3(223)130, OKLAHOMA COUNTY

These Special Provisions revise, amend, and where in conflict, supersede applicable Sections of Standards for Highway Construction, Edition of 1988, and the Supplement thereto, Edition of 1991.
411.01. DESCRIPTION. (Add the following.) The work shall consist of the addition of the polymer modifier, recycled polyethylene, to paving grade asphalt using the NOVOPHALT* process. The NOVOPHALT* modified asphalt shall be used in a bituminous paving mixture according to these Special Provisions. This Special provision provides for the experimental use of NOVOPHALT*.

A technical representative of NOVOPHALT AMERICA, INC., shall be present at the pre-bid conference and during construction. The representative shall also provide information and technical advice to the Contractor and Engineer.
*NOVOPHALT, a trade name for NOVOPHALT Modified Asphalt Product, produced by NOVOPHALT AMERICA, INC., 107 Carpenter Drive, Suite 200, Sterling, VA, 22170.

Amend Section 708 to the following:
708.03.(a). ASPHALT MATERIALS. (Add the following.) NOVOPHALT MATERIAL. The NOVOPHALT Modified Asphalt shall meet the following requirements:

Test	AASHTO Test Method	Requirement
Penetration ($77 \mathrm{~F}, 100 \mathrm{~g}$, 5s)	T-49	$\begin{array}{r} 30 \mathrm{Min} \\ 130 \mathrm{Max} \end{array}$
Penetration ($39.2,200 \mathrm{~g}, 60 \mathrm{~s}$)	T-49	20 Min
Viscosity, $275 \mathrm{~F}, \mathrm{cSt}$	$\mathrm{T}-201$	$\begin{array}{r} 150 \mathrm{Min} \\ 2000 \mathrm{Max} \end{array}$
Softening Point, $R \& B, F$	----	135 Min
Flash Point, F	T-48	425 Min
RTFOT Residue Loss, \%	T-240	1.0 Max
Penetration (39.2, 200g, 60s)	T-49	10 Min

** Solubility in trichloroethylene (TCE) will be 99% minus the percentage additive. Most polyolefins are not soluble in TCE.
(b) Binder. The NOVOPHALT* modified asphalt cement shall contain 5-6\% recycled polyethylene additive and $94-95 \%$ asphalt cement.

The uniform mixing of NOVOPHALT with the specified asphalt shall be performed at the asphalt plant or approved mixing and storage facilities provided for on the job site in strict accordance with the manufacturer's recommendations and instructions. The Contractor is to be responsible for assuring that the NOVOPHALT modified asphalt is properly mixed, delivered, stored and utilized according to these specifications.
708.04. COMPOSITION OF MIXTURES. (Amend as follows.) The paving mixtures shall consist of a uniform mixture of the combined aggregate and NOVOPHALT bituminous material and shall conform to the requirements shown in Table III for the type of mixture designated on the Plans or in the Proposal.
708.05. TOLERANCES. (Add the following.) The content of the NOVOPHALT additive shall be tested by the Engineer or Manufacturer with a test kit supplied by the NOVOPHALT AMERICA Corporation.
411.04. CONSTRUCTION METHODS. (Add the following.) (g). Spreading and Finishing. The NOVOPHALT asphalt mixture shall be laid with a paver meeting the requirements of Subsection 411.03(g) at a minimum temperature of 290 degrees F and only upon an approved surface, which shall be dry.
(i). Compaction. (Amend the third paragraph by adding the following.) Initial breakdown compaction shall be done at a minimum temperature of 290 degrees F. Rolling shall be continuous until the paving mixture reaches a temperature approved by the Resident Engineer for proper compaction. Pneumatic rollers shall not be used for compaction of the asphalt mixture unless it has sufficiently cooled to prevent tire pickup of the surface.
411.06. BASIS OF PAYMENT. (Add the following.) Accepted quantities of NOVOPHALT Modified Asphalt Concrete, measured as provided above, will be paid for at the contract unit price for:

```
TYPE B AGGREGATE TON
NOVOPHALT ASPHALT
TON
```

which shall be full compensation for furnishing all materials, equipment, labor and incidentals to complete the work as specified.

Appendix "B", Measurements and Test Results.

RUT MEASUREMENTS, PROJECT IM-35-3(223)130. Measured 8-21-92 and 9-16-92.		
Southbound Expressway, Outside (West) Traffic Lane		
Station	Outside Wheel Path	Inside Wheel Path
	Depth (In.)	Depth (In.)
$396+60$	0.9	0.8
$391+32$	1.0	0.9
$386+04$	1.1	1.3
$380+76$	1.3	1.5
$375+48$	1.1	0.9
$370+20$	1.1	0.9
$364+92$	1.3	1.0
$359+64$	1.2	1.1
$354+36$	1.1	1.0
$349+08$	1.1	1.0
$343+80$	1.0	1.0
$338+52$	1.0	0.9
$333+24$	0.8	0.8
$327+96$	0.6	0.5
$322+68$	0.6	0.5
$317+40$	0.6	0.5
$312+12$	0.7	0.5
$306+84$	0.8	0.6
$301+56$	1.0	0.6
$296+28$	0.7	0.9
$291+00$	0.6	0.5
$285+72$	0.6	0.5
$280+44$	0.6	0.4
$275+16$	0.5	0.2
$269+88$	0.4	0.3
$264+60$	0.4	0.3
$259+32$	0.4	0.3
$254+04$	0.3	0.3
$248+76$	0.3	0.3
243 ; 48	0.4	0.2
$240+20$	0.4	0.5

RUT MEA	TS, PROJECT IM-35	Measured 2-09-93
Southbound Expressway, Outside (West) Traffic Lane		
Station	Outside Wheel Path	Inside Wheel Path
	Depih (In.)	Depth (In.)
$396+60$	0.0	0.0
$391+32$	0.0	0.0
$386+04$	0.0	0.0
$380+76$	0.0	0.0
$375+48$	0.0	0.0
$370+20$	0.0	0.0
$364+92$	0.1	0.0
$359+64$	0.0	0.0
$354+36$	0.0	0.0
$349+08$	0.1	0.0
$343+80$	0.0	0.0
$338+52$	0.1	0.0
$333+24$	0.0	0.0
$327+96$	0.0	0.0
$322+68 \cdots$	0.0	0.0
$317+40$	0.0	0.0
$312+12$	0.0	0.0
$306+84$	0.1	0.0
$301+56$	0.0	0.0
$296+28$	0.0	0.0
$291+00$	0.0	0.0
$285+72$	0.0	0.0
$280+44$	0.0	0.0
$275+16$	0.0	0.1
$269+88$	0.0	0.0
264160	0.0	0.0
	0.0	0.0
$259+32$	0.0	0.0
$254+04$	0.0	0.0
$248+76$	0.0	0.0
$243+48$	0.0	0.0
$240+20$	0.0	0.0

FWD DATA NOVOPHALT I-35

RUN

Analysis Variable : EAC77

RUN=after SURFACE=NOVOPHALT

N	Mean
7	465.5551561

RUN=after SURFACE=STYRELF

| N | Mean | Std Dev | Minimum | |
| :---: | :---: | :---: | :---: | :---: | ---: |
| 8 | 520.6525099 | 125.7297402 | 324.4899457 | 692.1386527 |

RUN=after SURFACE=UNMOD

N	Mean	Std Dev	Minimum	Maximum
4	313.5004464	103.6557948	212.1972428	443.5761574

RUN=befor $S U R F A C E=N O V O P H A L T$

N	Mean	Std Dev	Minimum	Maximum
7	392.4260762	181.3483505	160.1808788	639.5281356

RUN=befor SURFACE=STYRELE

RUN=befor SURFACE=UNMOD

N	Mean
-1	284.0222150

8-10-92
S.B. Expressway

Locations
Sta. 396+60-240+100
Length: 2.8 Ml .
BEFORE CONSTRUCTION.

Project Number: IM-35-3(223)1130
Control section: 35-55-15
Surveyed By: G. Williams

LEGEND FOR RATING CLASSES

Locations STA. $396+60-240+00$
Lengths 1.8 Miles

CONDITION RATING
FOR
FLEXIBLE PAVEMENTS

Project Number: $1 M-35-3(223) 13$
Control section35-55-15
Surveyed By: G. Williams

AFTER COMPLETION.
LEGEND FOR RATING CLASSES

Appendix "C", Mix Design Sheets.

AID. NO.
\qquad Hwy. I-35 Avg. Daily Traffic \qquad Contractor: Haskell Lemon Constr. Co \qquad Producer: Haskell Lemon Const. Co. @ OKC

MATERIAL

Tests on Compressed Mixtures:

Retained Strength $\quad 81.1 \quad \% 75 \%$ Minimum Required

Recommended $\quad 4.9$ \% Asphalt Cement (PMAC-1B) Compacted Wt. $\frac{109.6}{}$ lbs./sq.yd./1" thickness Max. Theo. Spec. Grave. @ \qquad 4.9 \% Asphalt Cement is \qquad (155.4 Pf).
A.D. NO. $\quad 009-025-092$ ASP. CONC. TYPE B INS.

Design No.
3012-OAPA-92218

Project No. \qquad Hwy. \qquad $I-35$ Avg. Daily Traffic \qquad $5000+$

Contractor:

```
                        Haske11 Lemon Const.
```

\qquad Producer: Haskell Lemon @ Okla. City, Okla.

MATERIAL
SOURCE
\% USED

$\frac{5 / 8^{\prime \prime} \text { Chips }}{\text { Screenings }}$
Stone Sand
Sand
Asphalt Cement $(\mathrm{AC}-20)$

Western Rock @ Davis, Okla.

Doles Co. @ Richards Spur, Okla.
Dolese @ Davis, Okla.
G.M.I. @ Meridian Pit
Kerr McGee @ Wynnewood, Okla.

$\frac{40}{\frac{23}{24}}$

Tests on Asphalt Cement:
Tests on Aggregates:

Found	Required
68	40 Min.
16.6	40 Max.
82	40 Min.
61.5	30 Min.
100	$75 \mathrm{w} / 2$
2.692	
1235	

Tests on Compressed Mixtures:

Retained Strength $\quad 81.8 \quad \% 75 \%$ Minimum Required
Recommended 4.8 Asphalt Cement (AC-20)
Compacted Wt. $\frac{109.7}{1 b s . / s q . y d s . / 1^{\prime \prime} \text { thickness }}$
Max. The. Spec. Grave. @ $\quad 4.8$ \% Asphalt Cement is 2.494_ (_155.6_pcf).

MEETS SPECIFICATION REQUIREMENTS
\qquad
\qquad
Contractor: Haskell Lemon Const. \qquad Producer: Haske11 Lemon Const. Co. @ OKC, Okla.

MATERIAL

5/8' Chips
Screenings
Stone Sand
Sand
Asphalt Cement (Novophalt)

Tests on Asphalt Cement:

Tests on Aggregates:		
	Found	Required
Sand Equivalent	68	40 Min.
L.A. Abrasion \% Wear	16.6	40 Max.
Durability (DC)	82	40 Min.
Insoluble Residue (cal)	61.5	30 Min.
Fractured Faces	100	$75 \mathrm{w} / 2$
BISG	2.692	
Hveem Weight	1235	

Tests on Compressed Mixtures:

Retained Strength $83.8 \quad \% 75 \%$ Minimum Required

Recommended \qquad 4.8 \% Asphalt Cement (Novophalt)
Compacted Wt. 109.8 lbs./sq.yd./1" thickness
Max. Theo. Spec. Grav. @ \qquad 4.8 \% Asphalt Cement is \qquad 2.496 (155.8 pcf).

Appendix "D", Soil and Pavement Survey.

OFRIAITOMA DIPRIRTMIENT
OF TRAISIORTRTIOI
DATE: October 8, 1991

Bruce Taylor, Urban Design Engineer
FROM:

> Materials Division

SUBJECT: BENKELMAN BEAM TEST DATA
PROJECT NO. I-35, 06343(05)
OKLAHOMA COUNTY, I 35 from N.E. Doth street
north to N.E. 63 rd street

Attached are Benkelman Beam deflection ratings, design values and rut depth measurements. Deflections in excess of a beam rating of 22 are critical for a 15,000 lb. wheel load design.
It should be noted that the enclosed data is for the outside lanes only. Adjustments will have to be made for the additional lanes.
This concludes our investigation, unless otherwise notified.
J. D. Telford, P. E.

Materials Engineer
By:
 Revel, O.
James B. Nevels, Jr., P. E. Soils and Foundations Engineer

JBN/rk
Attachment
C: Materials File
T. Borg, Pavement Design Engineer Chris Senkowski, Project Engineer Soils and Foundations Branch Bookkeeping

DIVISION 4 COUNTY OKlahoma TEST DATE 10-7-91

PROJECT NUMEER I-35, NE 10 to NE 63

DESCRIPTION
Northbound Lane, Outside Hheolpath

RUT	MILAGE	BEAM	LOAD	INCHES OF A.C. EQUIVALENT REQUIRED				
			SUPPORTING	WHEEL LOAD DESIGN				
DEPTH	EXTENTS	DEFLECTION	ABILITY	11000.	000	000	000	000.
1	0.04	0.017	19915.	0.0	0.0	0.0	0.0	0.0
1	0.13	0.003		0.0	0.0	0.0	0.0	0.0
1	0.23	0.013		0.0	0.0	0.0	0.0	0.0
1	0.51	0.015		0.0	0.0	0.0	0.0	0.0
1	0.61	0.013		0.0	0.0	0.0	0.0	0.0
1	0.70	0.005	ツ**	0.0	0.0	0.0	0.0	0.0
2	0.89	0.011		0.0	0.0	0.0	0.0	0.0
1	0.99	0.015		0.0	0.0	0.0	0.0	0.0
2	1.08	0.007		0.0	0.0	0.0	0.0	0.0
2	1.36	0.009		0.0	0.0	0.0	0.0	0.0
6	1.55	0.003		0.0	0.0	0.0	0.0	0.0
1	1.93	0.003		0.0	0.0	0.0	0.0	0.0
4	2.03	0.015		0.0	0.0	0.0	0.0	0.0
1	2.12	0.003		0.0	0.0	0.0	0.0	0.0
1	2.22	0.005		0.0	0.0	0.0	0.0	0.0
2	2.31	0.007		0.0	0.0	0.0	0.0	0.0
1	2.69	0.009		0.0	0.0	0.0	0.0	0.0
1	2.78	0.005		0.0	0.0	0.0	0.0	0.0
3	2.92	0.005		0.0	0.0	0.0	0.0	0.0
1	2.97	0.013		0.0	0.0	0.0	0.0	
$\frac{1}{2}$	3.10	0.005		0.0	0.0	0.0	0.0	0.0
3	3.45	0.005		0.0	0.0	0.0	0.0	0.0
2	3.54	0.007		0.0	0.0	0.0	0.0	0.0
2	3.66	0.005		0.0	0.0	0.0	0.0	0.0
2	3.73	0.005		0.0	0.0	0.0	0.0	0.0

Wmen - HHEEL LOAD GREATER THAN 20000 LB.

RUT	HILAGE	BEAM	LOAD	INCHES 0	Of A.C	EQUIVALENT REQUIRED		
			SUPPORTING		HHEEL	LOAD	DESIGN	
DEPTH	EXTENTS	DEFLECTION	ABILITY	11000.	12000.	13000.	14000	15000.
2	0.77	0.003	***	0.0	0.0	0.0	0.0	0.0
4	0.67	0.009		0.0	0.0	0.0	0.0	0.0
5	0.58	0.005		0.0	0.0	0.0	0.0	0.0
2	0.49	0.007		0.0	0.0	0.0	0.0	0.0
4	0.30	0.005		0.0	0.0	0.0	0.0	0.0
5	0.20	0.019	17456.	0.0	0.0	0.0	1.5	2.7
5	0.11	0.025	12610.	0.0	0.0	0.4	1.5	2.7

WMOn - WHEEL LOAD CREATER THAN 20000 LD.

0klahoma Dept. of Transportation

Oate
November 2, 1988

David Goldan, Division Engineer
J. D. Telford, Materials Engineer
I-35 From N.E. 40th to N.E. 63rd

This section of $I-35$ was constructed in 1958 , overlaid in 1974 , and overlaid again in 1984. The original pavement secrion consisted of 2 inches of asphalt concrete rype B and 3 inches of asphalt concrete rype A on 7 inches of scabilized aggregare base course. The 1972 overlay consisted of $3 / 4$ inches of plant mix seal coat and $1-1 / 2$ inches of asphale concrere cype C. The 1984 overlay consisted of $3 / 4$ inches of open-grade friction surface course and $1-1 / 2$ inches of asphalt concrere type C. The existing roadway was milled and pecromar was placed on che milled surface as part of the 1984 project.

Asphalt cores and soils samples were obtained from this section of $I-35$. Actached find a soils survey and a pavement survey. The soils survey lises the various subgrade soils encouncered. The pavement survey lists the various asphalt mixtures encouncered.

Rutring of the asphalt pavement was noted throughout the section. The rutcing measured varied from $1 / 4$ inch to $1-3 / 4$ inches in the ourside lane and from $1 / 8$ inch to $5 / 8$ inch in the inside lana. A visual inspection of the asphalt cores revealed that the rurting is occuriing primarily in the asphalt mixtura above the petromac (see pavement survey summery for asphale cores $2 A, 2 B$, and $2 C ; 3 A, 3 B$, and $3 C$; and $11 A, 11 B$, and 11C). A raview of the project records for the 1984 overlay revealed

```
that the asphalt concrete rype C concained 38% reclaimed asphalr
pavemenc and used AC-3.5 for the asphalt cement. Problems with rurcing
have occurred on orher roadways using high percencages of reclaimed
materials and soft grades of asphalt cement.
It is recommended that any rehabilitation of roadway include removal of
the asphalt mixture above the perromat.
If you have any questions regarding this macter, please do not hesirare
to concace me.
J. D. Telford, P. E.
Marerials Engineer
By:
```



```
Reynolds H. Coney, P. E.
Bituminous Branch Manager Engineer
cc: Director
Money Murphy
Jack Blats
Pete Byers
Richard Hankies
Bob Stringer
W. T. Merrill
```

CHFCKEDAY
PROXOF READ AY \qquad
urveved By: Davis - Selter and larty

Dare Aug. 23-26, 1988
Date Reported $\quad 9-8-88$

63-5190-10787

C No
Projert No 1-35-3(1)129 Inactive 40th north to NE 63rd.

\qquad
\qquad

PROOF READ BY \qquad STATE OF OKLAHOMA
DEPARTMENT OF TRANSPORTATION
C.S. No

Pruject Na.

locabion

\qquad STATE OF OK LAHOMA
DEPARTMENT OF TRANSPORTATION
C.S. No.

Projeci Nu.
Date
Date Reported

Manerials Divesion
location

\qquad
PH(XOF READ BY \qquad STATE OF OKLAHOMA
DI:PARTMENT OF TRANSPORTATION \quad C.S. No.

SOILS SURVEY

Identification	1 A	2 A	28	2 C	3 A
Starion	333+00	$353+00$	$353+00$	353+00	373+00
Expressway	N.B.	N.B.	N. B.	N. B.	N.B.
Lane	O.L.	O.L.	O.L.	O.L.	O.L.
Core Location	B.W.P.	B.W.P.	I. W.P.	O.W.P.	B.W.P.
Rut Depth (in.)		3/8	---		$1 / 2$
Core Thickness (in.)	9-1/4	9	8-1/4	8-1/2	9-1/2

Layer Analysis, Top Lift to Botrom Lift, Mix Type and Thickness (in.)

O.G.F.S.C.	1	-3/4	1/2	1/2	$3 / 4$
A.C. Type C	2-1/4	2	1-1/2	2	2-1/2
Petromar	-----		-----		
A.C. Type C	1	1	1-1/4	1	1
A.C. Type D	1/2	1	1	1	3/4
A.C. Type B	1-1/2	1-3/4	1-1/2	1-3/4	1-1/2
A.C. Type A	3 ,	2-1/2	2-1/2	2-1/4	3 ,

Layer Analysis, Top Lift to Bortom Lift, Mix Type and Thickness (in.)

Identification	11 A	11 B	11 C	12 A	13 A
Station	$373+00$	$373+00$	$373+00$	$353+00$	$333+00$
Expressway	S.B.	S.B.	S.B.	S.B.	S.B.
Lane	0. L.	O.L.	0.1.	O.L.	O.L.
Core Location	B.W.P.	I.W.P.	0. W.P.	B.W.P.	B.W.P.
Rut Depth (in.)	$1-1 / 8$	-0	--0	$1-3 / 4$	$1-1 / 8$
Core Thickness (in.)	$10-1 / 2$	$10-1 / 2$	$10-1 / 8$	$9-3 / 4$	$10-3 / 4$

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

O.G.F.S.C.	नil4 3/4	$6 / 21 / 2$	$71 / 2$	${ }_{0}^{1 / 2} 1 / 2$	$73 / 43 / 4$
A.C. Type C	13-1/4	2	2-1/2	3-1/4	3-1/2
Petromar		----.		----	
A.C. Type C	1	1-3/4	2	1/2	1
A.C. Type D	1/2	3/4	5/8	1/2	1
A.C. Type B	$1-3 / 4$	1-1/2	1-1/2	2	1-1/2

			14 A
Identification	14 A	15 A	16 A
Station	$383+00$	$363+00$	$343+00$
Expressway	S.B.	S.B.	S.B
Lane	I.L.	I.L.	I.L
Core Location	B.W.P.	B.W.P.	B.W.P
Rut Depth (in.)	$1 / 2$	$1 / 8$	$1 / 8$
Core Thickness (in.)	$9-1 / 4$	9	$8-1 / 4$

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

O.G.F.S.C.	$7 / 45 / 8$	3	$3 / 4$
A.C. Type C	$2-1 / 2$	$2-1 / 2$	$2 / 41 / 2$
Petromat	$-2-0-1 / 2$		
A.C. Type C	$2-1 / 2$	-2	$--2-1 / 4$
A.C. Type D	$1 / 2$	$3 / 4$	$2-1 / 2$
A.C. Type B	$1-3 / 4$	2	2
A.C. Type A	3	3	3

Identification	8 A	10 A
Station	$404+00$	$393+00$
Expressway	N.B.	S.B.
Lane	I.L.	O.L.
Core Location	B.W.P.	B.W.P.
Rut Depth (in.)	$1 / 4$	$1 / 2$
Core Thickness (in.)	8	$9-3 / 4$

Layer Analysis, Top Lift to Botrom Lift, Mix Type and Thickness (in.)

O.G.F.S.C.	$5 / 1 / 2-1 / 2$	$103 / 4$
A.C. Type C	$-3 / 4$	
Perromar	2	$1-1 / 2$
A.C. Type B	$2-1 / 2$	4
A.C. Type A		

Identification	9 A
Station	$404+00$
Expressway	S.B.
Lane	$0 . \mathrm{L}$.
Core Locarion	B.W.P.
Rut Depth (in.)	$1 / 4$
Core Thickness (in.)	$14-3 / 4$

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

O.G.F.S.C.	11/2
A.C. Type C	$2-1 / 2$
Petromat	$--\cdots-$
A.C. Type A	$3-1 / 2$
B.B.F.A.T.	$8-1 / 4$

```
Identification 4A
Starion 393+00
Expressway N.B.
Lane
    O.L.
Core Locarion B.W.P.
Rut Depch (in.) 3/8
Core Thickness (in.) 13-3/4
Layer Analysis, Top Lift to Bortom Lift, Mix Type and Thickness (in.)
O.G.F.S.C.
A.C. Type C
Perromat
A.C. Type C
Petromat
A.C. Type A
B.B.F.A.T.
544 1/2
    1-3/4
    -----
2
8-1/2
```

Legend:
N.B. = Northbound
S.B. = Souchbound
O.L. = Outside Lane
I.L. = Inside Lane
B.W.P. = Between Wheel Paths
I.W.P. $=$ In Right wheel Pach
O.W.P. = Outside Right Wheel Pach

