

FIELD PERFORMANCE EVALUATION OF NOVOPHALT MODIFIED ASPHALT CONCRETE

Gary Williams, P.E. Research Project Manager

CONSTRUCTION REPORT

Under the Supervision of C. Dwight Hixon, P.E. Research and Development Division Engineer Research and Development Division Oklahoma Department of Transportation 200 N.E. 21st Street Oklahoma City, Oklahoma 73105

June, 1993

Oklahoma Department of Transportation Materials and Research Division

Date March 3, 1998

 To David Cline, Division Engineer,
 From Lawrence J. Senkowski, Assistant Division Engineer
 Subject Project IM-35-3(223)130 Project Area (I-35, between 23rd and 63rd Streets, Oklahoma City).

The attached report summarizes the present condition of the above project area.

A brief comparison regarding the field performance of the sections with experimental Novophalt Modified binder, "Polymer Modified" AC binder, and unmodified AC-20 binder is included.

If you have any questions or require further information, please call Gary Williams in our office (405-521-2671).

Attachment

cc:

Pete Byers ✓Jack Telford Gary Williams

IM-35-3(223)130 Project Area

(I-35, Between 23rd and 63rd Streets, Oklahoma City)

Gary Williams

ODOT MATERIALS AND RESEARCH

January 23, 1998

INTRODUCTION.

In 1992, a research project was set up to evaluate the field performance of Novophalt Modified Asphalt Cement (NMAC). The IM-35-3(223)130 project area (I-35 between Northeast 23rd and 63rd, in Oklahoma City) made up the location where the evaluation was to be done.

Asphalt concrete laydown operations for the project were completed in October, 1992. Project IM-35-3(223)130 consisted of removing 4 ½ inches of existing pavement by cold milling, then replacing it with 3 inches of Type "A" AC and a 1 ½ in thick surface course. The surface course contained sections of Type "B" AC with "Polymer modified" (PMAC 1-B) binder, Novophalt Modified binder (NMAC), and unmodified AC-20 binder. Section with the various binders are located as shown in Figure 1. The project was 3.229 miles long. The contract amount was \$1,688,040.

The Construction Report is attached. The report describes the laydown operation and gives general information on NMAC.

After five years have passed, the are clear differences in the performances of the three surfaces on the project, as described below.

SOUTHBOUND EXPRESSWAY

The three sections in this expressway are described in location order beginning at the north end of the project and moving south (in the direction of traffic).

"POLYMER MODIFIED" AC

The surface of this section consists of Type "B"AC with a modified asphalt binder where the modifier is an SBS block co-polymer, this product was originally distributed by ELF Corporation, under the name, "Styrelf". By the time this project was done, Koch Materials had purchased the rights to it. This is a "Type I" modified binder under the present classification system. At the time work on this project was in progress it was known as "Polymer Modified binder" on all contract documents. The "Polymer Modified" Section of the Southbound Expressway begins at the north end of the project (Station 410 + 49) and extends to Station 332 + 78.

Of the three sections in the Southbound Expressway, this one is in the best condition. Longitudinal fatigue cracks are located in the wheel paths (in one wheel path or the other) over approximately one-half of this section. In some of the worst cracked spots, (less than 10 percent of total area) transverse cracks have formed also. Where cracks intersect, pieces of the surface have come out, leaving holes approximately 1 foot in diameter. So far, maintenance forces have been able to keep these spots patched. Rut depths in this section ranged from 0.1 to 0.5 inches. Figure 1 shows typical conditions in this section.

Figure 2. Typical conditions, "Polymer Modified" AC Section.

NOVOPHALT MODIFIED AC

In this section, located from Station 332 + 78 to 276 + 10, cracking was more widespread and severe than the previous section. In over half of the outside lane fatigue cracking has progressed to the point where there are several longitudinal cracks in each wheel path of the outside lane. There is also transverse cracking in much of this section. A network of cracks has developed in a three to four foot wide strip along one or both wheel paths of the outside lane (Figure 3). There are numerous spots where cracks intersect and pieces of asphalt have spalled out of the surface. Maintenance forces have attempted to keep up with patching these spots, but their number is increasing. This section will soon require either an overlay or a large scale patching operation. Patching would have to cover at least half of the outside lane. The inside lane is in slightly better condition, but it also shows considerable cracking. Rut depths in this section are 0.1 - 0.5 inch.

Figure 3. Cracking in outside lane, Novophalt Modified Asphalt Cement Binder section.

UNMODIFIED AC (CONTROL) SECTION

Conditions in this section are better than the "Novophalt" Section, but slightly worse than the "Polymer Modified" AC Section. Approximately 20 percent of the outside lane has longitudinal cracking in one or both wheel paths. In approximately 10 percent of the outside lane a network of cracks similar to that described in the "Novophalt" Section has developed. Rut depths ranged from 0.1 - 0.5 inch.

Figure 4. Typical Cracking in Unmodified AC Binder Section.

DISCUSSION

SOUTHBOUND EXPRESSWAY

The areas where the worst cracking has occurred will need corrective action soon. This applies mainly to the "Novophalt" Section where a large percentage (approximately 50 percent) of the outside lane will soon have to be patched or overlaid. There are areas in all three sections where corrective action (patching) will be required, but the areas are smaller, and the locations are generally isolated.

NORTHBOUND EXPRESSWAY

Performance of the entire Northbound Expressway, which was surfaced with "Polymer Modified" AC, has been better than that of the Southbound. The Northbound expressway did not contain any experimental or control sections. There are a few (approximately 5) isolated areas which will need patching, due to the occurrence of longitudinal and transverse cracks, but they make up a small percentage of the total expressway area (one or two percent).

Before Project IM-35-3(223)130, rutting and shoving were the major problems here. At that time, there was essentially no cracking in the project area. While IM-35-3(223)130 greatly improved the situation with regard to rutting, the cracking that has appeared since completion creates a situation

that is as serious as the rutting and shoving that occurred here before IM-35-3(223)130. The major difference is that the worst cracking (now) is in the Novophalt section, (station 276 + 10 - 332 + 78, Southbound Expressway), where the worst of the severe rutting (before IM-35-3(223)130) was located at the north end of the project (stations 355 + to 410 + 49). Five years after completion, all sections of this project require at least some patching. 1996 ADT for this area is 58,200, with 6.8 percent trucks. Another type of pavement may give better long-term performance.

Based on the performance of the Novophalt section, I recommend that ODOT not accept this product for use on Department projects.

TECHNICAL REPORT STANDARD TITLE PAGE

		<u>, and a state of the state of </u>			
1.	report no. FHWA/OK 93(04)	2. GOVERNMENT AC	CESSION NO. 3. REC	IPIENT'S CATALOG	NO .
4.	TITLE AND SUBTITLE		5. REP	ORT DATE	
	Field Performance Evaluat	ion of	Ma	iy, 1993	
	NOVOPHALT Modified	Asphalt Concret	e 6. PER	FORMING ORGANIZAT	TION CODE
7.	AUTHOR(S)		neerieense van de transferieerie 8. PER	FORMING ORGANIZAT	TON REPORT
	Gary G. Williams				
			10. WOR	K UNIT NO.	
9.	PERFORMING ORGANIZATION ADD	RESS			
	Oklahoma Department of	Transportation	11. COM	TRACT OR GRANT NO).
	Research and Developmen	t Division			
	200 NE 21st Street, Room	2A2	13. TYP	E OF REPORT AND F	PERIOD COVERED
	Oklahoma City, Oklahoma	1 73105	Co	nstruction Repo	rt.
2.	SPONSORING AGENCY NAME AND	ADDRESS	$\mathbf{\tilde{o}}$	tober, 1992.	
			16 000		λΩE
	Federal Highway Administ	tration	14. SPC	MOUNTING AGENCY LL	JUC
	200 NW 5th Street, Room	454			
	Oklahoma City, Oklahoma	1/3102			
5.	SUPPLEMENTARY NOTES				
-					
6.	ABSTRACT				
	The Oklahoma Depa	rtment of Trans	portation (ODOT) has	completed an e	xperimental
	section of NOVOPHALT	modified asphalt	concrete on 1-35 in nor	theast Oklahoma	a City. The
	experimental section was c	lone as part of Pr	oject IM-35-3(223)130.		
	The 1M-35-3(223)130	area had an AD	T of 46,800. Before co	onstruction, the	project area
	was heavily rutted. Shov	ing had occurred	adjacent to some of t	he ruts, which a	dded to the
	effect of the ruts on motor	ists.			
	Other Agencies have	reported that N	IOVOPHALT modified	l asphalt concre	te has been
	successful in resisting rutti	ng and shoving.	NOVOPHALT is produ	iced by blending	polyolefins,
	mainly polyethylene, into	paving grade asph	nalt cement.		
	Briefly, IM-35-3(223)	130 consisted of t	he following: Cold mill	ing was done to	remove two
	existing pavement layers v	which were consid	lered to be unstable. A	fter cold milling,	the project
	area was overlayed with 3	inches of Type "A	A" asphalt concrete, the	n surfaced with	1 1/2 inches
	of Type "B". The experim	ental section of N	NOVOPHALT modified	l asphalt concret	e was in the
	Type "B" surface layer.			an the second	
	Novophalt America.	the NOVOPHAI	T distributor, provide	d a mobile blend	ding unit to
	supply NOVOPHALT to	o the contractor	's hot mix plant.	The blending un	nit supplies
	NOVOPHALT to the plan	nt in ready to use	condition.		
	Rut measurements.	Mays Ridemeter	tests, and Falling weig	ht Deflectomete	r tests were
	done before construction	and after complet	tion. All areas showed	improvement.	Similar data
	will be collected during the	e remainder of the	e evaluation period.	and Alexandria (Marine) Alexandria (Marine) Alexandria (Marine)	
7	KEY WORDS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18. DISTRIBUTION STATE	MENT	
. .	Asnhalt additives Ritumin	200	No restrictions	n an	
	navements NOVOPHAL	rous r			
	pavements, incovortial				
9.	SECURITY CLASSIF. (OF THIS RE	PORT) 20.SECURITY	CLASSIF. (OF THIS PAGE)	21.NO. OF PAGES	22.PRICE
	Unclassified	Unclassi	ified	32	

APF	PROXIMATE CC	NVERSIONS	S TO SI UNITS	;	APP	PROXIMATE CON	VERSIONS	FROM SI UN	IITS
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find S	Symbo
		LENGTH				1	ENGTH		
in	inches	25.4	millimetres	mm	mm	millimetres	0.039	inches	in
R	leet	0.305	metres	m	m	metres	3.28	feet	ñ
yd	yards	0.914	metres	m	m	metres	1.09	yards	Y
mi	miles	1.61	kilometres	km	km	kilometres	0.621	miles	n
		AREA					AREA		
int	square inches	645.2	millimetres squared	mm²	mm²	milimetres souared	0.0016	souare inches	ir
₩	square feet	0.093	metres squared	m²	m²	metres squared	10.764	square feet	ft
yo	square yards	0.836	metres squared	m²	ha	hectares	2.47	acres	
8C	80798	0.405	hectares	ha	km²	kilometres squared	0.386	square miles	n
mr	square miles	2.28	KROMERTES SQUATED	Km					
		OLUME					OLUME		
floz	fluid ounces	29.57	millitres	mL	mL	militres	0.034	fluid ounces	ñ
Gal	gallons	3.785	itres	L		ITT 05	25 215	galions	9
R ³	cubic feet	0.028	metres cubed	m'	1 m ³	metres cubed	1 308	CUDIC 1991	n
ydP	cubic yards	0.765	metres cubed	ന്		medes cudeo	1.300	cubic yaros	y
NOTE: Vo	umes greater than 1000	L shall be shown in	n m².				MASS		
					9	grams	0.035	ounces	0
		MASS			kg	kilograms	2.205	pounds	R
		<u>may</u>			Mg	megagrams	1.102	short tons (2000	ib) T
oz	ounces	28.35	grams	9	H				
b	pounds	0.454	kilograms	Kg		TEMOE	DATIOC /-	14004	
1	short tons (2000 lb)	0.907	megagrams	mg		IEMPE	NATURE (e		
					°C	Celcius	1.8C + 32	Fahrenheit	٥
	TEMPE	RATURE (ex	act)			te inperature		temperature	
۰F	Fahrenheit	5(F-32)/9	Celcius	°C		°F 32 - 40 0 1.40	96.6 90 120	212	
	temperature		temperature				80 120	160 200	

Managaran Nelsi

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Oklahoma Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. While contractor names are used in this report, it is not intended as an endorsement of any machine, contractor, or product.

Table of Contents

INTRODUCTION	1
Project Data	2 2 3
Construction	4 4 7
Test Sections	10
Data Collection 1 Before Construction 1 After Construction 1	11 11 12
Analysis 1	1.3
Cost 1	14
Monitoring and Reporting	15
References	16
Appendix "A", ODOT Special Provisions for NOVOPHALT.	17
Appendix "B", Measurements and Test Results	18
Appendix "C", Mix Design Sheets.	19
Appendix "D", Soil and Pavement Survey	2()

List of Illustrations

Figure	1. Location, Project 1M-35-3(223)130.	
Figure	2. Existing Pavement Layers, Prior to IM-35-3(223)130	2
Figure	3. Ruts before construction, IM-35-3(223)130 Project Area.	3
Figure	4. Mobile Blending Unit.	5
Figure	5. Connection of Mobile Blending Unit to Hot Mix Plant.	5
Figure	6. Polyethylene Pellets (5
Figure	7. Central Processing Unit	5
Figure	8. Continuous Density Gauge Mounted on Roller.	3
Figure	9. Screen for Continuous Density Gauge.	3
Figure	10. Pavement Layers, After Completion of 1M-35-3(223)130	J
Figure	11. Polymer Modified, NOVOPHALT Modified, and Unmodified	
	Surface Locations 10)
Figure	12. Ruts Before Construction, Project IM-35-3(223)130 Area 12)
Figure	13. Costs of Type "B" Mixes 14	1

List of Tables

Table 1. Costs, Type "B" Mixes, 1M-35-3(223)130 14

INTRODUCTION

Rutting and shoving often occur on asphalt concrete roadways located in areas of high traffic. Other State Highway Agencies have reported that NOVOPHALT Modified Asphalt Concrete, hereafter called NMAC, shows increased resistance to both rutting and shoving (1). NMAC has also been reported to increase durability and resilience, resulting in reduced maintenance and longer pavement life (2). These improvements lower pavement costs, on a life cycle basis.

A separate problem is the accumulation of large quantities of used plastic as more cities begin recycling programs (3). A large proportion of the accumulated plastic is polyethylene.

NMAC is produced by blending polyolefins, primarily polyethylene, into paving grade asphalt cement. The polyethylene may be either virgin or recycled material. NOVOPHALT is produced by Novophalt America Incorporated, Sterling, Virginia.

Figure 1. Location, Project IM-35-3(223)130.

Project Data

Original Construction and Overlays

I-35, in the Project Area, was originally constructed in 1958. The original pavement was made up of 2 inches of Type "B", and 3 inches of Type "A" Asphalt Concrete on a 7 inch stabilized aggregate base course.

In 1974, the 1M-35-3(223)130 area was overlaid with a 3/4 inch thick plant mix seal coat and 1 1/2 inches of Type "C" asphalt concrete.

The next overlay was done in 1984, when this area was overlaid with 1 1/2 inches of Type "C" AC with a 3/4 inch Open Graded Friction Course surface. The Type "C" AC contained 38 percent reclaimed asphalt pavement. Prior to the 1984 overlay, the existing roadway was cold-milled, and Petromat was placed on the milled surface.

The existing pavement layers prior to IM-35-3(223)130 are shown in Figure 2.

Figure 2. Existing Pavement Layers, Prior to IM-35-3(223)130

Roadway Condition

Prior to IM-35-3(223)130, this area had deep ruts. The entire project a area was rutted, with the Southbound Expressway more deeply rutted than the Northbound. Rut depths were greatest (all greater than 1.0 inch) toward the north end of the project, in the Southbound Expressway. Rut depths decreased from north to south. At the south end of the project, rut depths averaged (approximately) 1/2 inch. Shoving had occurred beside many of the ruts, making their overall effect worse than that due to rutting only. Some of the deepest ruts had developed corrugations in the bottom of the rut. Conditions described above are illustrated in Figure 3.

Figure 3. Ruts before construction, IM-35-3(223)130 Project Area.

Construction

Hot Mix Plant Operations

Novophalt modified asphalt cement is a binder system containing 4 to 6 percent, by weight, polyolefin additives, and paving grade asphalt cement. The polyolefins are typically polyethylene, which may be either virgin or recycled material. The modified asphalt cement is prepared by manufacturer's representatives, using a customized, high shear mill. NOVOPHALT Modified Binder is typically 3 to 4 times more viscous than the unmodified base asphalt cement.

NOVOPHALT modified asphalt cement must be stored with agitation to prevent stratification. It was not necessary to store the modified binder on this project. NOVOPHALT can be piped and transferred through plant piping lines in the same manner as unmodified AC. NOVOPHALT will not damage or clog lines or pumps that come in contact with the product, provided that the temperature is kept at least 50 degrees F above the melting point of the additive, which is (typically) 250 degrees F (121 degrees C).

On this project, the manufacturer provided a mobile blending unit (with operator) to supply NOVOPHALT to the contractor's hot mix plant. The blending unit (Figure 4) is self contained, and carries its own generator, heating system, and power train.

The blending unit was set up and connected to the hot mix plant in slightly less than four hours. The manufacturer's employees did the set up and connection. The blending unit is equipped with agitated mixing and storage tanks to insure uniformity of the product until it goes into the binder feeding line of the plant.

NOVOPHALT modified asphalt cement was added to the aggregate in the pug mill of the plant at a temperature of 330 degrees F (166 degrees C).

On this project, the manufacturer's blending unit was connected to the plant as shown in Figure 5. One hose from the blending unit connected to the plant asphalt intake line. The other connected to a return line. Both lines had shutoff valves at the connector.

The blending unit combines the polyolefin additive and asphalt cement (AC-20 on this project). Briefly, the combination process consists of adding polyethylene pellets (Figure 6) to asphalt cement in a high-shear, customized mill. The pellets may be produced from recycled or virgin polyethylene. Pellets used on this project consisted of recycled material. Where recycled polyethylene is used, its chemical makeup is verified prior to converting it to pellet form.

Figure 4. Mobile Blending Unit.

Figure 5. Connection of Mobile Blending Unit to Hot Mix Plant.

Figure 6. Polyethylene Pellets.

Figure 7. Central Processing Unit.

NMAC Laydown Operations

Before laydown operations began, the project area was cold milled to remove the layers shown in figure 2. Average depth of the milling was 5 inches. Depths at specific locations varied widely, between 3 and 6 1/2 inches, due to the extreme amount of rutting and shoving. The Type "A" and "B" layers below the cold milling were considered to be stable, and were left intact. The milling subcontractor was able to adjust milling depth so that material removed was that above these layers.

Following cold milling, a 3 inch lift of unmodified Type "A" AC was laid over the entire project. A 1 1/2 inch thick, Type "B" AC surface course was laid over the Type "A" mat.

From station 276 + 10 to 332 + 78, the surface course was NMAC, Type "B" mix. NMAC is laid, more or less, in the same manner as unmodified AC. Specific operations, and slight differences, whether required for NMAC handling, or due to the contractor's preference, are described below.

NOVOPHALT modified AC requires temperatures of over 280 degrees F. (138 degrees C.) during laydown and compaction. The contractor's employees constantly monitored mix temperature using a non-contact thermometer. This instrument reads surface temperature only. The minimum temperature monitored was 290 degrees F. (143 degrees C.)

The contractor's initial breakdown roller had a Troxler Continuous Density Gauge mounted on it (Figure 8). The screen of the density gauge (Figure 10) was mounted where the operator could monitor compaction, and adjust his pattern if necessary. The Gauge was set up so that it gave one reading for approximately every ten feet the roller travelled. Also, the Density Gauge had a light which came on automatically, if compaction varied more than one percent from the contractor's 95 percent target.

The contractor began laying NOVOPHALT on October 7, 1992. On that date, the ambient temperature dropped to 51 degrees F. (11 degrees C.). There were thunderstorms in the area (not on the project area), with wind gusts up to 55 mph (89 kmph). These conditions caused a more rapid cooling of the AC surface than had been the case up to then. Small surface cracks began showing up in one area of the NMAC. The contractor corrected this by moving up the breakdown roller, closer to the laydown machine. This left less time for the surface to cool. No surface cracking was observed once this change was made.

The contractor's Project Manager, and most of the laydown crew personnel working on this project had laid NOVOPHALT modified AC on a previous project for The Oklahoma Turnpike Authority. Because of this, all personnel were aware of the temperature requirements and the need to complete compaction before the mat could cool below 280 degrees F. (138 degrees C.)

7

Figure 8. Continuous Density Gauge Mounted on Roller.

Figure 9. Screen for Continuous Density Gauge.

Figure 10. Pavement Layers, After Completion of IM-35-3(223)130.

Test Sections

It was originally intended that all of the surface course on this project would be (Styrelf) Polymer Modified Type "B" AC. Conditions before construction included severe rutting and shoving. It was decided to include an experimental section of NMAC to evaluate its ability to resist these conditions. A section of unmodified Type "B" was included for use as a control section. Both the experimental NMAC section and the control section were located in the southbound expressway The remainder of the project was surfaced with Polymer Modified Type "B" mix.

Surface of the Southbound Expressway was as follows:

 Station 410 + 49 to 332 + 78
 (Styrelf) Polymer Modified Type "B" AC

 Station 332 + 78 to 276 + 10
 NMAC, Type "B" AC

 Station 276 + 10 to 240 + 00
 Unmodified Type "B" AC

Figure 11. Polymer Modified, NOVOPHALT Modified, and Unmodified Surface Locations.

Data Collection

Before Construction

Rut depth measurements, FWD Tests, and Condition Ratings were done in the Southbound Expressway from Station 396 + 60 to 240 + 00 (South end of Project). The area between 396 + 60 and 410 + 49 (North End of Project) contains the I-44/I-35 Interchange and it is very difficult to control traffic adequately to safely test this area.

The average rut depth was 0.8 inch in the outside wheel path, outside traffic lane. All ruts measured were deeper than 0.4 inch, with the deepest ruts located toward the north end of the project. Rut depths before construction are illustrated in Figure 12, with stations at the limits of the test sections marked.

The project area was tested with a Mays Ridemeter prior to construction. In the outside (west) lane, southbound expressway, the Mays Ridemeter rating was 3.7. The lowest rated section was a 2.6. In the inside (east) lane, the Mays Ridemeter rating was 4.2, with the lowest rated section receiving a 3.6.

Falling Weight Deflectometer (FWD) testing was done over the entire project length in the outside traffic lane, southbound expressway. Test data was analyzed separately for the sections surfaced with polymer modified, NOVOPHALT modified, and unmodified Type "B" AC. Results are summarized in Appendix "B", with the mean modulus of elasticity calculated for each section, corrected to 77 degrees F (25 degrees C). Moduli generally range from 325 to 550 ksi. Results of tests before construction were in that range, with the exception of one section surfaced with unmodified Type "B", where the mean was (roughly) 284 ksi. FWD testing was done when parts of the project area were closed, prior to cold milling. The section with unmodified Type "B" surface was done on two different days, so there are two different "before construction" moduli calculated for that section.

Figure 12. Ruts Before Construction, Project IM-35-3(223)130 Area.

After Construction.

After project completion, rut measurements were made, Mays Ridemeter and FWD Tests were done, and a condition rating was done.

Rut measurements were essentially zero. The Mays Ridemeter rating for the Project Area was 4.4, with the lowest rated section rated at 3.8. FWD Tests showed an increase in the average modulus for each of the three sections. However, there was a considerable amount of variation between individual tests. This was the case both before and after construction. The condition rating increased to 99.7 percent.

Results of all tests and measurements are tabulated in Appendix "B".

Analysis

Severe rutting has been a chronic problem in the project area for several years. In 1988, an investigation of the cause of the rutting was requested by ODOT Division IV. The investigation was done by the ODOT Materials Division, and included pavement and soil surveys. Visual inspection of cores taken during this survey indicated instability in the Type "C" pavement layer, laid in 1984. The pavement layers considered to unstable were removed by cold milling during this project. A report on the 1988 investigation is included in Appendix "D".

Results of tests by the Research and Development Division were summarized in the previous section. In the Southbound Expressway, where the test sections were located, rut depths were greatest in the area surfaced with Polymer Modified AC. The average rut depth in this area was 1.1 inches. The NMAC surfaced section had ruts with less depth (average depth was 0.7 inch). In the unmodified Type "B" section, depths averaged 0.4 inch.

Mays Ridemeter Test Results did not differ significantly for any of the three sections, either before or after construction.

Generally, greater amounts of rutting would be expected where FWD tests indicate a relatively low modulus of elasticity. There was no correlation of this type on this project. Average moduli after construction showed an increase, relative to those before determined before construction, for each of the three sections.

Cost

Contract costs of the three different surfaces are given in Table 1 and illustrated in Figure 11. The relatively high price of NOVOPHALT modified AC reflects the cost of moving their mobile blending unit to Oklahoma for a relatively small job. On a larger project, or a situation where NOVOPHALT was used on more than one project, the costs would be competitive with other modified AC mixes.

Table 1.	Costs, Type	"B"	Mixes,
	IM-35-3(223)	130	

Asphalt Concrete	e Contract Price, (\$)
Unmodified	25.00
Polymer	29.00
NOVOPHALT	200.00

CONTRACT PRICES

PRICE (\$/TON)

Figure 13. Costs of Type "B" Mixes.

Monitoring and Reporting

For the remainder of the three year evaluation period, FWD testing and condition ratings will be done annually. Rut depth measurements and Mays Ridemeter tests will be done twice a year. Any significant change in test results or measurements will be reported in an annual interim report.

At the end of the three year evaluation period, a Final Report will be written detailing performance of the NOVOPHALT section, relative to that of the unmodified Type "B" control section and the polymer modified comparison section. The Final Report will be written within six (6) months of the end of the evaluation period.

If substantial failure of the NOVOPHALT section should occur before the scheduled end of the evaluation, the ODOT Design Divisions will be notified at the time the failure is noted. In case of failure, the Final Report will be written within three (3) months of the date failure is observed.

References

- 1. "Performance Assessment of Binder-Rich Polyethylene-Modified Asphalt Concrete Mixtures (NOVOPHALT)", Dallas N. Little, The Texas Transportation Institute, Texas A. and M. University, 1991
- 2. "Comparative Life-Cycle Cost Analysis of NOVOPHALT and Conventional Asphalt Concrete Overlays in the Dallas, Texas Area". Dallas N. Little, The Texas Transportation Instsitute, Texas A. and M. University, May, 1990
- "Brainpower to Make Recycling Work".Plastics News, September 17, 1990

Appendix "A", ODOT Special Provisions for NOVOPHALT.

Appendix "A", ODOT Special Provisions for NOVOPHALT.

OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS

FOR

EXPERIMENTAL MODIFIED ASPHALT CONCRETE (NOVOPHALT)* PROJECT NO. IR-35-3(223)130, OKLAHOMA COUNTY

These Special Provisions revise, amend, and where in conflict, supersede applicable Sections of Standards for Highway Construction, Edition of 1988, and the Supplement thereto, Edition of 1991.

411.01. DESCRIPTION. (Add the following.) The work shall consist of the addition of the polymer modifier, recycled polyethylene, to paving grade asphalt using the NOVOPHALT* process. The NOVOPHALT* modified asphalt shall be used in a bituminous paving mixture according to these Special Provisions. This Special Provision provides for the experimental use of NOVOPHALT*.

A technical representative of NOVOPHALT AMERICA, INC., shall be present at the pre-bid conference and during construction. The representative shall also provide information and technical advice to the Contractor and Engineer.

*NOVOPHALT, a trade name for NOVOPHALT Modified Asphalt Product, produced by NOVOPHALT AMERICA, INC., 107 Carpenter Drive, Suite 200, Sterling, VA, 22170.

Amend Section 708 to the following:

708.03.(a). ASPHALT MATERIALS. (Add the following.) NOVOPHALT MATERIAL. The NOVOPHALT Modified Asphalt shall meet the following requirements:

Test	AASHTO Test Method	Requirement
Penetration (77 F,100g, 5s)	т-49	30 Min 130 Max
Penetration (39.2, 200g,60s)	T-49	20 Min
Viscosity, 275F, cSt	T-201	150 Min 2000 Max
Softening Point, R & B, F		135 Min
Flash Point, F	T-48	425 Min
RTFOT Residue Loss, %	T-240	1.0 Max
Penetration (39.2, 200g, 60s)	T-49	10 Min

A1

**

Solubility in Trichloroethylene, %

** Solubility in trichloroethylene (TCE) will be 99% minus the percentage additive. Most polyolefins are not soluble in TCE.

(b) Binder. The NOVOPHALT* modified asphalt cement shall contain 5 - 6% recycled polyethylene additive and 94 - 95% asphalt cement.

The uniform mixing of NOVOPHALT with the specified asphalt shall be performed at the asphalt plant or approved mixing and storage facilities provided for on the job site in strict accordance with the manufacturer's recommendations and instructions. The Contractor is to be responsible for assuring that the NOVOPHALT modified asphalt is properly mixed, delivered, stored and utilized according to these specifications.

708.04. COMPOSITION OF MIXTURES. (Amend as follows.) The paving mixtures shall consist of a uniform mixture of the combined aggregate and NOVOPHALT bituminous material and shall conform to the requirements shown in Table III for the type of mixture designated on the Plans or in the Proposal.

708.05. TOLERANCES. (Add the following.) The content of the NOVOPHALT additive shall be tested by the Engineer or Manufacturer with a test kit supplied by the NOVOPHALT AMERICA Corporation.

411.04. CONSTRUCTION METHODS. (Add the following.) (g). Spreading and Finishing. The NOVOPHALT asphalt mixture shall be laid with a paver meeting the requirements of Subsection 411.03(g) at a minimum temperature of 290 degrees F and only upon an approved surface, which shall be dry.

(i). Compaction. (Amend the third paragraph by adding the following.) Initial breakdown compaction shall be done at a minimum temperature of 290 degrees F. Rolling shall be continuous until the paving mixture reaches a temperature approved by the Resident Engineer for proper compaction. Pneumatic rollers shall not be used for compaction of the asphalt mixture unless it has sufficiently cooled to prevent tire pickup of the surface.

411.06. BASIS OF PAYMENT. (Add the following.) Accepted quantities of NOVOPHALT Modified Asphalt Concrete, measured as provided above, will be paid for at the contract unit price for:

TYPE B AGGREGATE NOVOPHALT ASPHALT TON TON

which shall be full compensation for furnishing all materials, equipment, labor and incidentals to complete the work as specified.

A2

Appendix "B", Measurements and Test Results.

Appendix "B", Measurements and Test Results.

RUT MEASUREMENT	S, PROJECT IM-35-3(223)130.	Measured 8-21-92 and 9-16-92.
South	bound Expressway, Outside (West) Traffic Lane
Station	Outside Wheel Path	Inside Wheel Path
	Depth (In.)	Depth (In.)
396 + 60	0.9	
391 + 32	1.0	0.9
386 + 04	ante commentation and 1.1 ante an approximiting and	1.3
380 + 76	1.3	1.5
375 + 48		0.9
370 + 20	The section of the section 1.1 is the section of	0.9
364 + 92		
359 + 64	1.2 https://doi.org/10.1011/101101011	1.1. Item in the second s
354 + 36	jelen jeda za 1.1 den jeda se pos	
349 + 08	ting provide the state of the second state of the state o	
343 + 80	1.0	1.0
338 + 52		0.9
333 + 24	0.8	0.8
327 + 96	······································	0.5
322 + 68	0.6	0.5
317 + 40	0.6	0.5
312 + 12	0.7	en en el marca el marca de 0.5 de jarres el jarres el trad
306 + 84	0.8	0.6
301 + 56		0.6
296 + 28	(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	0.9
291 + 00	0.6	0.5
285 + 72	0.6	0.5
280 + 44	0.6	0.4
275 + 16	0.5	0.2
269 + 88	0.4	0.3
264 + 60		
259 + 32	0.4	
254 + 04	0.3	0.3
248 + 76	0.3	0.3 because of the experimentation of the second terms of the product of the second terms of the product of the second terms of terms
243 + 48	0.4	0.2
240 + 20	0.4	0.5

Sou	thbound Expressway, Outside (Wes	t) Traffic Lane
Station	Outside Wheel Path	Inside Wheel Path
	Depth (In.)	Depth (In.)
396 + 60	0.0	0.0
391 + 32	0.0	0.0
386 + ()4	0.0	0.0
380 + 76	0.0	0.0
375 + 48	···· 0.0	0.0
370 + 20	0.0	0.0
364 + 92	0.1	0.0
359 + 64	0.0	0.0
354 + 36	0.0	0.0
349 + 08	0.1	0.0
343 + 80	0.0	0.0
338 + 52	0.1	0.0
333 + 24	0.0	0.0
327 + 96	0.0	0.0
322 + 68	0.0	0.0
317 + 40	0.0	0.0
312 + 12	0.0	0.0
306 + 84	0.1	0.0
301 + 56	0.0	0.0
296 + 28	0.0	0.0
291 + 00	0.0	0.0
285 + 72	0.0	0.0
280 + 44	0.0	0.0
275 + 16	0.0	0.0
269 + 88	0.0	0.0
264 + 60	0.0	0.0
259 + 32	0.0	0.0
254 + 04	0.0	0.0
248 + 76	0.0	0.0
243 + 48	0.0	0.0
240 + 20	0.0	0.0

FWD DATA NOVOPHALT I - 35

Analysis Variable : EAC77 ----- RUN=after SURFACE=NOVOPHALT ------Mean Std Dev Minimum Maximum N 7 465.5551561 98.0281619 296.5166746 588.6375494 ----- RUN=after SURFACE=STYRELF -----Mean Std Dev Minimum Maximum N 8 520.6525099 125.7297402 324.4899457 692.1386527 ----- RUN=after SURFACE=UNMOD ------N Mean Std Dev Minimum Maximum 4 313.5004464 103.6557948 212.1972428 443.5761574 ----- RUN=befor SURFACE=NOVOPHALT ------N Mean Std Dev Minimum Maximum 7 392.4260762 181.3483505 160.1808788 639.5281356 _ _ _ _ _ ----- RUN=befor SURFACE=STYRELF ------Mean Std Dev Minimum Maximum N ____ -----_____ 9 443.2202260 138.9327159 203.2145477 735.1585110 ----- RUN=befor SURFACE=UNMOD -----Mean Std Dev Minimum Maximum N 5 284.0222150 145.2167403 157.7901194 529.5532038

B4

Date:

8-10-92 S.B. Expressway Location: Sta. 396+60-240+100 CONDITION RATING

FOR

Project Number: IM-35-3 (223) 130

Control Section: 35-55-15

Length:

2.8 Ml.

FLEXIBLE PAVEMENTS

Surveyed By: <u>G. Williams</u>

BEFORE CONSTRUCTION.

CONDITION RATING CRACKING DISTORTION RAVELING SURFACE BASE FAILURE TOTAL SUFFACE RATA OF RATING INTERVAL 1. 100-98% = EXCEL. 1-2-3-4 1	an 1995 - Angeland States 1996 - Angeland States								L	EGE	ND	F	OR	R	AT	INC	3 0	LA	851	CS											
1. 100-988 - EXCEL. 1-2-3-4 1-2-3-4 1-2-3-4 1-2-3-4 1-2-3-4 1-2-3-4 1. 100-988 - EXCEL. SUBFACE BASE RUT 1 - LESS THAN 58 2 - 58 TO 158 1. 99-601 - SOOPER. CRACKING DISTORTION RAVELING ROUGHNESS PAILURE DEPTH 2 - 58 TO 158 5. 64-508 - FORE SUBFACE BASE RUT 1 - LESS THAN 58 2 - 58 TO 158 5. 508-LESS- FAIL USER SUBJECT USER SUBJ	CONDITION	RATING		CR	AC	KI	NG	3	DI	STC	ORT	10	N	RA	VE	LII	NG	s Ro	URI UGI	fac Ine	e SS		FA	BAS	se Jre	1		TOTAI OF RI	. SU TIN	rface area g interval	
3. 89-80% = GOOD CRACKING DISTORTION RAVELING ROUGHNESS FAILURE DEFTH 2 = 5% 10 15% 5. 64-50% = POOR S. 64-50% = POOR 6. 70% CONDITION RAVEL S. 00% CONDITION	1. 100-98% 2. 97-90%	a = EXCEL. a = SUPER.		1	-2	2-3	3-4	1	1	-2-	-3	4		1	-2	-3-	-4	1 8	-2- URI	-3- Fac	4 E		1- Ase	-2-3	3-4	RU	T	64 1 =	.3% L ES	s than 5%	
RATING INTERVAL (MI.) CONDITION PATING (%) CONDENTS (%) CONDENTS (%) CONDENTS (%) CONDENTS (%) CONDENTS 0.2 60 x 3 x 3 x 4 Patches (%) Ruts 1" 0.4 60 x 3 x 3 x 4 Patches (%) Ruts 1" 0.6 60 x 3 x 3 x 4 Patches (%) Ruts 1" 0.6 60 x 3 x 3 x 4 Patches (%) Ruts 1" 0.6 60 x 3 x 3 x 4 Patches (%) Ruts 1" 0.6 60 x 3 x 3 x 4 Patches (%) Ruts 1" 1.0 60 x 3 x 3 x 4 Patches (%) Ruts 1" 1.4 60 x 3 x 3 x 4 Patches (%) Ruts 1" 1.4 60 x 3 x 3 x	3. 89-80% 4. 79-65% 5. 64-50% 6. 50%-LES	= GOOD = AVER. = POOR S= FAIL	UDINAL	ERSE			TOR	NG .	BLEEDING H	BLEEDING	DRI	ATING	ATION Z	RA	MEDIATE	LII	DNG DI	RO	ROUGH		CE ROUGH	PTE 31		FAILURE	r 0.2 INCH H	r 0.4 INCH	r GREATER	2 = 3 = 4 =	5% 15% 30%	DR MORE	
1.2 60 x 3 3 4 $Patches$ $Ruts$ 1° 0.4 60 x 3 3 4 $Patches$ $Ruts$ 1° 0.6 60 x 3 3 4 $Patches$ $Ruts$ 1° 0.6 60 x 3 3 4 $Patches$ $Ruts$ 1° 0.6 60 x 3 3 4 $Patches$ $Ruts$ 1° 1.0 60 x 3 3 4 $Patches$ $Ruts$ 1° 1.2 60 x 3 3 4 $Patches$ $Ruts$ 1° 1.4 60 x 3 2 4 $Patches$ $Ruts$ 1° 1.4 60 x 3 2 4 $Patches$ $Ruts$ 1° 1.4 60 x 1 2 4 $Patches$ $Ruts$	RATING INTERVAL (MI.)	CONDITION RATING (%)	TIDNO	'RANSV	MODIN	3LOCK	NLLIGA	CRACKI	AINOR	AAJOR	SHOVIN	CORRUC	IOTSIC	MINOR	INTERV	MAJOR	RAVELJ	SMOOTH	MOD.	ROUGH	SURFA	MODER	SEVER	BASE	0.1 0	0.3 0	0.5 0	PAT(FT ²	CH	COMMENTS	
0.2 00 1	0.2	60					2					2		-							3					- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4	No Patc	hes	Ruts 1"	
0.4 60 x 3 3 4 Patches Ruts 1" 0.8 60 x 3 3 4 Patches Ruts 1" 1.0 60 x 3 3 4 Patches Ruts 1" 1.0 60 x 3 3 4 Patches Ruts 1" 1.2 60 x 3 3 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 3 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches = ½" 2.6 70 x 1 2 4 Patches = ½" 2.8 70 x </td <td>0.2</td> <td>00</td> <td>┢</td> <td>╋</td> <td>T</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>No Patc</td> <td>hes</td> <td>Ruts 1"</td>	0.2	00	┢	╋	T						T	2									2						4	No Patc	hes	Ruts 1"	
0.6 60 x 3 3 4 Patches Ruts 1" 0.8 60 x 3 3 4 Patches Ruts 1" 1.0 60 x 3 3 4 Patches Ruts 1" 1.2 60 x 3 3 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 1 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches $-\frac{1}{2}$ " 2 2.4 70 x 1 2 4 Patches $-\frac{1}{2}$ " 2	0.4	60	╉	+	+	┢		\square	<u></u>	+		2																No	hod	Dute 1"	
0.8 60 x 3 3 4 4 4 4 1 1.0 60 1.2 60 x 3 3 4 4 4 2 4 2 4 2 1 1.4 60 1.4 3 3 4 2 4 </td <td>0.6</td> <td>60</td> <td>+</td> <td>╀</td> <td>╞</td> <td></td> <td>╞</td> <td></td> <td></td> <td></td> <td>┼</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>No</td> <td>hod</td> <td>Rucs 1"</td>	0.6	60	+	╀	╞		╞				┼	3										+					4	No	hod	Rucs 1"	
1.0 60 x 3 3 4 Patches Ruts 1" 1.2 60 x 3 3 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 1 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 x 1 2 4 Patches Ruts 1" 2.2 70 x 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " <td>0.8</td> <td>60</td> <td>+</td> <td>╞</td> <td>╞</td> <td></td> <td>╞</td> <td></td> <td>X</td> <td>+</td> <td>╀</td> <td>3</td> <td></td> <td>Η</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>3</td> <td>+</td> <td></td> <td></td> <td>┢</td> <td>-</td> <td>4</td> <td>NO</td> <td>nes</td> <td>NUCS I</td>	0.8	60	+	╞	╞		╞		X	+	╀	3		Η			-			-	3	+			┢	-	4	NO	nes	NUCS I	
1.2 60 x 3 3 4 Patches Ruts 1" 1.4 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 1 2 4 Patches Ruts 1" 1.6 60 x 1 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches E 1" 2.4 70 x 1 2 4 Patches = $\frac{1}{2}$ " No 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " No x 1 2 4 Patches = $\frac{1}{2}$ " No </td <td>1.0</td> <td>60</td> <td>-</td> <td>\downarrow</td> <td>Ļ</td> <td></td> <td>-</td> <td><u> </u></td> <td>X</td> <td>\downarrow</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>┞</td> <td>╞</td> <td>-</td> <td></td> <td>3</td> <td>-</td> <td></td> <td>┝</td> <td> </td> <td>┝</td> <td>4</td> <td>Patc No</td> <td>hes</td> <td><u>Ruts 1"</u></td>	1.0	60	-	\downarrow	Ļ		-	<u> </u>	X	\downarrow		3				<u> </u>	┞	╞	-		3	-		┝		┝	4	Patc No	hes	<u>Ruts 1"</u>	
1.4 60 x 3 2 4 Patches Ruts 1" 1.6 60 x 1 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 4 Patches Ruts 1" 2.2 70 1 2 4 Patches Ruts 1" 2.2 70 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 85 85 85 85 85 85	1.2	60		Ļ					x			3					ļ		<u> </u>	ļ	3		<u> </u>	ļ			4	Patc	hes	Ruts 1"	
1.6 60 2 4 Patches Ruts 1" 1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.6 70 x 1 2 4 Patches $= \frac{1}{2}$ " 2.8 70 x 1 2 4 Patches $= \frac{1}{2}$ " 85 64.2 9 85 85 85 85	1.4	60							х			3									2						4	Patc	hes	Ruts 1"	
1.8 70 x 1 2 4 Patches Ruts 1" 2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Euter 1" 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 85 85 85 85 85	1 6	60		T	T	Τ			Π												2						4	No Patc	hes	Ruts 1"	
1.8 70 1 1 2 2 2 4 No 2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.8 70 x 1 2 4 Patches = $\frac{1}{2}$ " 85 85 85 85 85 85	1 0	70	T		\dagger	t	ſ	T			T	1					Ī				2						4	No Patc	hes	Ruts 1"	
2.0 70 1 2 2 4 Patches Ruts 1" 2.2 70 3 2 4 No Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.4 70 x 1 2 4 Patches Ruts 1" 2.6 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.6 70 x 2 4 No Ruts 2.8 70 x 2 4 Patches = $\frac{1}{2}$ " 8 70 x 2 4 Patches = $\frac{1}{2}$ " 8 70 x 2 4 Patches = $\frac{1}{2}$ " 8 70 x 2 4 Patches = $\frac{1}{2}$ " 85 85 85 85 85	1.0		╈	╉	╉	+	+			+	+			┢	-		┢	+		1		1			\uparrow	T		No		- 11	
2.2 70 3 2 4 Patches Putc 1" 2.4 70 x 1 2 4 Patches $= \frac{1}{2}$ " 2.6 70 x 1 2 4 Patches $= \frac{1}{2}$ " 2.6 70 x 1 2 4 No Ruts 2.8 70 x 2 4 No Ruts 2.8 70 x 2 4 Patches $= \frac{1}{2}$ " 8 70 x 2 4 Patches $= \frac{1}{2}$ " 8 70 x 1 2 4 Patches $= \frac{1}{2}$ " 8 70 x 1<	2.0	70	╉	1	╇	╞	╞	╞	┝┼	+	╋	2	┝	-		+	┢	+	\vdash		12	$\frac{1}{1}$		-	+	┢──	4	Patc No	nes	Ruts I	
2.4 70 x 1 2 4 Patches = $\frac{1}{2}$ " 2.6 70 x 2 4 No Ruts 2.8 70 x 2 4 No Ruts 2.8 70 x 2 4 No Ruts 3.8 70 x 2 4 No Ruts 3.8 70 x 3 3 3 3 3 4 3.8 70 x 3 3 3 3 4 3 3 4 3.8 70 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 3 3 4 3 3 4 3 3 3 3 3 4 3 4 3 4 3 3 3 4 3 3 4 3 3 3 3 4 3 3 4 3 3 3	2.2	70	_	1	-	\downarrow	╞	-	$\left \right $	+		3			-	Ļ		-	-	<u> </u>	2	-			╞	-	4	Rate	hes	Ruts 1"	
2.670x24No PatchesRuts = $\frac{1}{2}$ "2.870x24No PatchesRuts = $\frac{1}{2}$ "B5	2.4	70					L		x			1	L	Ļ			L				2	-	\downarrow		_		4	Patc	hes	$=\frac{1}{2}$ "	
2.8 70 x 2 4 No Ruts B5 B5	2.6	70							x												2						4	NO Patc	hes	$\frac{1}{2}$	
B5	2.8	70	T	T	Τ				x												2						4	No Patc	hes	Ruts = ½"	
				T	1	\uparrow	T	1		Ť		T			T										T					B5	
		61 2	+	\dagger		+			╞┤							\uparrow					T										

10-12-92 Date: S.B. EXPRESSWAY Location: STA. 396+60-240+00 CONDITION RATING

Project Number: IM-35-3(223)13

Control Section:35-55-15

FOR

Length: <u>1.8 Miles</u>

FLEXIBLE PAVEMENTS

Surveyed By: G. Williams

AFTER COMPLETION.

CONDITION	RATING	6	R	CR	CIN	G	DI	ST	ORI	.101	N	RA	VEI	LIN	٩G	s Ro	URF UGF	'ACI	E SS		FA	BAS	SE JRE	1		TOTAL SU OF RATIN	RFACE AREA G INTERVAL
			1-	-2-	-3-	4	1	-2	-3-	-4		1	-2-	-3-	-4	1	-2-	-3-	4		1-	-2-:	3-4			99	.78
1. 100-988 2. 97-908 3. 89-808	S = EXCEL. S = SUPER. S = GOOD		CRI	ACI	CIN	G DISTORTION		N	RAVELING :		SURFACE ROUGHNESS			BASE FAILURE			RUT DEPTH		T	1 = LESS THAN 5% 2 = 5% TO 15% 3 = 15% TO 30%							
4. 79-65% 5. 64-50% 6. 50%-LES	s = AVER. s = POOR 3S= FAIL	DINAL	RSE		au	D	SLEEDING	BLEEDING	<u>ANTOTATIO</u>	ATING	LON		SDIATE		NG		OUGH		E ROUGH	TE		AILURE	0.2 INCH	0.4 INCH	GREATER	4 = 30%	OR MORE
RATING INTERVAL (MI.)	CONDITION RATING (%)	LONGITI	TRANSVI	RANDOM	AT T TCAT	CRACKIN	MINOR I	INTER.	SHOVIN(CORRUGI	DISTOR	MINOR	INTERM	MAJOR	RAVELI	SMOOTH	MOD. R	ROUGH	SURFAC	MODERA	SEVERE	BASE F	0.1 or	0.3 or	0.5 or	PATCH FT ²	COMMENTS
0.2	100																						-				and a second
0.4	100													 													
0.6	98								_						ļ								1		<u> </u>		
0.8	100																							-			
1.0	98																						1	-			
1.2	100							_										ļ	ļ		 		1	ļ			
1.4	100																	<u> </u>		-			-				
1.6	100																	-		Ļ	-		-	 	Ļ		
1.8	100																	ļ	-	-					-		
2.0	100														Ļ					<u> </u>				_	1		
2.2	100											ļ			ļ	Ļ				_							
2.4	100					_											-			+					+		
2.6	100						_						ļ						ļ					-	+		
2.8	100										-			 						_				-	\downarrow		
														Ļ				Ļ						-	+		
	99.7																										ВО

Appendix "C", Mix Design Sheets.

Appendix "C", Mix Design Sheets.

A.D. No. 009	-022-092	ASPH	. CONC. TYPE B	INS.	Design No	3012-0APA-	92217
Project No.	IM-35-3(223)13	0 1267	<u>0(04)</u> Hwy.	<u> </u>	Avg. Daily T	raffic	5000+
Contractor:	Haskell Lemon	Const.	<u>Co.</u> Prod	lucer: <u>Hask</u>	ell Lemon Co	nst. Co. @	OKC
	ATERTAL			SOURCE			% USED
na filiana ang ang ang ang ang ang ang ang ang				0 01			40
5/8" Chips	and a substant of the substant of		Western Rock	@ Davis, Ok	.ia.		23
Screenings		an far an	Dolese Co. @	Richards Sp	our, Okra.		24
Stone Sand	and the second secon		Dolese @ Davi	S, UKIA.	and a star in the second star in t		13
Sand	and the second secon		G.M.I. Meridi	an PIL			
		-		01-10			The second s
Asphalt Cem	ent (PMAC-1B)		Elf @ Muskoge	e, UKIA.			The second s
Laboratory No Percent Passi	ng Chips	92218 Scrns	92219 S. Sand	92220 Sand	Combined Aggregate	Job Formula	JMF Tolerance
10100110					100	100	-0-
3/4"	100				100	98	± 7
I/2"	96				88	88	± 7
3/8"	71	100	100		64	64	± 7
No. 4	18	87	100	100	49	49	± 4
No. 10	12	49	81	88	25	25	± 4
No. 40	10	19	21	33	12	12	± 4
No. 80	7	13	0	24	5.7	5.7	± 2
No. 200	5.4	9.7	4.4	4.7		4.9	±0.4
% Asphalt Cen Mix temperatu	nent (PMAC-1B) 1re @ discharge	from mi	xer, °F			305	±20
Tests on Aspl	nalt Cement:	Found	Required	Tests on A	ggregates:	Found	Required
Penetration	@ 25° C 60° C	88 5898	75–100 2500+	Sand Equiv L.A. Abras	alent sion % Wear	68 16.6	40 Min. 40 Max.

VISCOSILY @ 00 C	Durability (DC) 82 40 Mln.
Viscosity @ 135° C 1131 -2000	Incoluble Residue (Cal) 61.5 30 Min.
Residue from RTFO	Exactured Faces $100 75 \text{ w/2}$
Viscosity @ 60° C	
Ductility @ 25° C 50 Min.	Urroom Weight 1235
Specific Gravity @ 25° C 1.0154	UAGCIII MCTRUC

Tests on Compressed Mixtures:

Percent Spec. Grav. Max. Theo. Dens. % of	Dens. % Req'd. V.M.A. V.M.A. Hveem Hvee
Asphalt Specimen Spec.Grav. Max. Theo.	of Max. Theo. (%) (Min.%) Stab. Stab.(
4.5 2.346 2.506 93.6 5.0 2.364 2.487 95.1 5.5 2.384 2.468 96.6	16.8 15 60 40 94-96 16.6 59 16.3 59

Retained Strength _____ 81.1 ___ 75% Minimum Required

Recommended <u>4.9</u> % Asphalt Cement (PMAC-1B) Compacted Wt. <u>109.6</u> lbs./sq.yd./1" thickness Max. Theo. Spec. Grav. @ <u>4.9</u> % Asphalt Cement is <u>2.491</u> (<u>155.4</u> Pcf).

MEETS SPECIFICATION REQUIREMENTS

1

-

C1

0 Kq-25-9 EP

A.D. No009-0	25-092	ASPH.	CONC. TYPE B I	NS.	Design No	3012-0APA	-92218
Project NoIM-	35-3(223)1	30 12679	(04) Hwy.	<u>I-35</u>	Avg. Daily I	raffic	5000+
Contractor: <u>Ha</u>	<u>skell Lemc</u>	on Const.	Produc	cer: <u>Hask</u>	ell Lemon @	Okla. City	, Okla.
MATEF	RIAL			SOURCE		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% USED
E/9" Chine		We	stern Rock @ I	avis, Okl	a .		40
Sareenings	and the second secon	Do	lese Co. @ Ric	chards Spu	r, Okla.		
Stone Sand	Stone Sand			Okla.	and a state of the		
Sand	Stone Sand Sand Asphalt Cement (AC-20)		.M.I. @ Meridia	an Pit			
UCHIN							
Asphalt Cement	(AC-20)	Ke	err McGee @ Wy	nnewood, ()kla.		
Laboratory No. Percent Passing	92217 Chips	92218 Scrns	92219 S. Sand	92220 Sand	Combined Aggregate	Job Formula	JMF Toleranc e
					100	100	-0-
3/4"	100				98	98	± 7
1/2"	96	100			88	88	± 7
3/8"	71	100	100		64	64	± 7
No. 4	18	0/	81	100	49	49	± 4
No. 10	12	49	21	88	25	25	± 4
No. 40	10	19	21 Q	33	12	12	± 4
No. 80	1	13	6	2.4	5.7	5.7	± 2
No. 200	5.4	9•1	** • 4	••••••••••••••••••••••••••••••••••••••		4.8	±0.4
% Asphalt Cement Mix temperature	(AC-20) @ discharg	e from mixe	r, °F			305	±20

Tests on Asphalt Cement:			Tests on Aggregates.	Found	Required
	Found	Required		round	Required
Penetration @ 25° C Viscosity @ 60° C Viscosity @ 135° C Residue from RTFO Viscosity @ 60° C Ductility @ 25° C	74 1942 429 4462 110+ 1.0129	60-100 2000±400 300 Min. 8000 Max. 50 Min.	Sand Equivalent L.A. Abrasion % Wear Durability (DC) Insoluble Residue (Cal) Fractured Faces BISG Hveem Weight	68 16.6 82 61.5 100 2.692 1235	40 Min. 40 Max. 40 Min. 30 Min. 75 w/2
Specific Gravity @ 25° C	1.0129		Hveem Weight	1235	

Tests on Compressed Mixtures:

Percent Spec. Grav. Max. Theo. Dens. % or Asphalt Specimen Spec.Grav. Max. Theo	f Dens. % Req'd. V.M.A. V.M.A. Hveem Hvee . of Max. Theo. (%) (Min.%) Stab. Stab.
4.5 2.354 2.505 94.0	16.5 15 52 40
5.0 2.373 2.486 95.5 5.5 2.390 2.467 96.9	16.1 51

Retained Strength <u>81.8</u> 75% Minimum Required

Recommended <u>4.8</u> % Asphalt Cement (AC-20) Compacted Wt. <u>109.7</u> lbs./sq.yds./1" thickness Max. Theo. Spec. Grav. @ <u>4.8</u> % Asphalt Cement is <u>2.494</u> (<u>155.6</u> pcf).

MEETS SPECIFICATION REQUIREMENTS

C2

10-1-6 OK El

7

			Producer: Hask	ell Lemon Con	st. Co. @	OKC. Okla.
	ell Lemon Const	••••••••••••••••••••••••••••••		CII Demon OUL		
MATERIA	AL		SOURCE			t USED
5/8 ¹¹ Chine		Western Rod	ck @ Davis, Okl	la.		
Screenings		Dolese Co.	@ Richard Spun	, Okla.		23
Stone Sand		Dolese @ Da	avis, Okla			13
Sand		G.M.I. Mer:	idian Pit			
Acobalt Cement (N	ovophalt)	Novophalt	and Kerr McGee			
ASphart Cement (In	<u> </u>			anna an tha tha an tha Caracteria Martin Caracteria	7-1	TMF
aboratory No. Percent Passing	92217 922 Chips Scr	18 9221 ns S.S	9 92220 and Sand	Combined Aggregate	Formula	Tolerance
tara anti- aria anti-aria anti-aria anti-aria anti- aria anti-aria anti-aria anti-aria anti-aria anti- aria anti-aria anti-aria anti-aria anti-aria anti-aria anti-	100			100	100	-0-
/4"	100			98	98	± 7
/2"	90 71 100			88	88	± 7
/8.	18 87	100		64	64	± 7
10.4 1-10	12 49	81	100	49	49	± 4
10. 10 10. 40	10 19	21	88	25	25	± 4
10.40	7 13	8	33	12	12	± 4
10.00	5.4 9.7	4.2	2.4	5.7	5.7	± 2
Asphalt Cement (Novophalt)				4.8	±0.4
lix temperature @	discharge from	mixer, °F			305	±20
			Tests on A	ggregates:		
lests on Asphart C	Four	nd <u>Required</u>	Administration of the second s		Found	Required
	a 25° C 1 03	23	Sand Equiv	alent	68	40 Min.
Specific Gravity @	4 25 6 1.02		L.A. Abras	ion % Wear	16.6	40 Max.
			Durability	7 (DC)	82	40 Min.
			Insoluble	Residue (cal)	61.5	30 Min.
			Fractured	Faces	100	75 w/2
			BISG		2.692	
			Hveem Weig	ght	1235	
	<u>T</u>	ests on Compro	essed Mixtures			
- <i>.</i>	Max Theo	Dens % of	Dens. % Reg'd	. V.M.A. V.	M.A. Hve	em Hveer
Asphalt Specime	av. Max. meo. en <u>Spec.Grav</u> .	Max. Theo.	of Max. Theo.	<u>(%) (Mi</u>	<u>n.%</u>) <u>Sta</u>	<u>b.</u> <u>Stab.(1</u>
4.5 2.351	2.508	93.7		16.6	15 6	3 40
5.0 2.378	2.489	95.5	94-96	16.1	6	1
5.5 2.390	2.470	96.7		16.1	6	U

Compacted Wt. <u>109.8</u> lbs./sq.yd./1" thickness Max. Theo. Spec. Grav. @ <u>4.8</u> % Asphalt Cement is <u>2.496</u> (<u>155.8</u> pcf).

MEETS SPECIFICATION REQUIREMENTS

. . .

ų

**

0K 9-25-Et

C3

Appendix "D", Soil and Pavement Survey.

Appendix "D", Soil and Pavement Survey.

Report No. 64-5280-93651

OKLAHOMA DEPARTMENT OF TRANSPORTATION

DATE: October 8, 1991 RECEIVED

Bruce Taylor, Urban Design Engineer TO:

OCT 2 1991

Materials Division FROM:

URBAN DESIGN

BENKELMAN BEAM TEST DATA SUBJECT: PROJECT NO. 1-35, 06343(05) OKLAHOMA COUNTY, I 35 from N.E. 10th Street north to N.E. 63rd Street

> Attached are Benkelman Beam deflection ratings, design values and rut depth measurements. Deflections in excess of a beam rating of 22 are critical for a 15,000 1b. wheel load design.

It should be noted that the enclosed data is for the outside lanes only. Adjustments will have to be made for the additional lanes.

This concludes our investigation, unless otherwise notified.

J. D. Telford, P. E. Materials Engineer

By:

Jemes B. Nevelo, J.

James B. Nevels, Jr., P. E. Soils and Foundations Engineer

JBN/rk

Attachment

Materials File C: T. Borg, Pavement Design Engineer Chris Senkowski, Project Engineer Soils and Foundations Branch Bookkeeping

AC OVERLAY PROGRAM

DATE 10-07-91

Å.

**

÷., '

į.

DIVISION 4 COUNTY Oklahoma

TEST DATE 10-7-91

PROJECT NUMBER 1-35, NE 10 to NE 63

DESCRIPTION

).:

Northbound Lane, Outside Wheelpath

*****		**********	LOAD	INCHES	OF A.C	EQUIV	ALENT R	EQUIRED
RUT	HILAGE	BEAM	SUPPORTING		WHEE	LOAD	DESIGN	
DEPTH	EXTENTS	DEFLECTION	ABILITY	11000.	12000.	13000.	14000.	15000.
*	0.04	0.017	19915.	0.0	0.0	0.0	0.0	0.0
î î	0.13	0.003	教育教育教育	0.0	0.0	0.0	0.0	0.0
î	0.23	0.013	使装装的装饰	0.0	0.0	0.0	0.0	0.0
- î	0.51	0.015	美美美美美 美	0.0	0.0	0.0	0.0	0.0
î -	0.61	0.013	经建筑规则	0.0	0.0	0.0	0.0	0.0
i	0.70	0.005	新闻新闻	0.0	0.0	0.0	0.0	0.0
2	0.89	0.011	能装换被装置	0.0	0.0	0.0	0.0	0.0
ī	0.99	0.015	與後後後後後後	0.0	0.0	0.0	0.0	0.0
2	1.08	0.007	预预预算规则	0.0	0.0	0.0	0.0	0.0
2	1.36	0.009	建建筑建筑	0.0	0.0	0.0	0.0	0.0
6	1.55	0.007	教授教授规划	0.0	0.0	0.0	0.0	0.0
ĭ	1.84	0.003	英美英英英英	0.0	0.0	0.0	0.0	0.0
ī	1.93	0.003	英英英英英英	0.0	0.0	0.0	0.0	0.0
Ā	2.03	0.015	关系派派法法法	0.0	0.0	0.0	0.0	0.0
i	2.12	0.003	美美美美美美	0.0	0.0	0.0	0.0	0.0
ĩ	2.22	0.005	美美美美美美	0.0	0.0	0.0	0.0	0.0
5	2.31	0.007	装装装装装装	0.0	0.0	0.0	0.0	0.0
1	2.69	0.009	美美美美美	0.0.	0.0	0.0	0.0	0.0
1	2.78	0.005	新新新新新	0.0	0.0	0.0	0.0	0.0
*	2 92	0.005	美美美美美美	0.0	0.0	0.0	0.0	0.0
1	2 67	0.013	被装装装装	0.0	0.0	0.0	0.0	0.0
÷.	2 10	0.005		0.0	0.0	0.0	0.0	0.0
Ţ	2.10	0.011	***	0.0	0.0	0.0	0.0	0.0
2	3.10	200.0	建建建建设	0.0	0.0	0.0	0.0	0.0
Ş	3.49	A AA7		0.0	0.0	0.0	0.0	0.0
2	3.34	0.007 0 005	新兴新新兴的	0.0	0.0	0.0	0.0	0.0
2	3.00	0.005		0.0	0.0	0.0	0.0	0.0

NHANNA - WHEEL LOAD GREATER THAN 20000 LB.

AC OVERLAY PROGRAM

- J.

DATE 10-07-91

).

TEST DATE 10-7-91 COUNTY Oklahoma DIVISION 4

)÷.

PROJECT NUMBER I-35, NE 10 to NE 63

<u>Э</u>н.

):

DESCRIPTION Southbound Lane, Outside Wheelpath

	*****	****	******			ENITVA	I FNT RI	OUIRED
			LOAD	INCHES	UF A.C			
RUT	MILAGE	BEAM	SUPPORTING		WHEE	L LOAD D	ESIGN	
DEPTH	EXTENTS	DEFLECTION	ABILITY	11000.	12000.	13000.	14000.	15000.
**********	**********	n n29	10576.	0.5	1.6	2.7	3.8	4.9
11	3.00	0 019	17456.	0.0	0.0	0.0	0.0	0.0
9	3.57	6 011	被開展發展的	0.0	0.0	0.0	0.0	0.0
15	3.94	0 015	推动性致发展	0.0	0.0	0.0	0.0	0.0
17	3.90	A 011	美国财新新新	0.0	0.0	0.0	0.0	0.0
20	5.24	0.015	新闻英英英	0.0	0.0	0.0	0.0	0.0
22	3.21	0.005	类异类的关系	0.0	0.0	0.0	0.0	0.0
12	3.03	V.V44	17456	0.0	0.0	0.0	0.0	0.0
12	2.95	0.017	FRR99	0.0	0.0	0.0	0.0	0.0
9	2.84	0.00/	NNNNN	A 0	0.0	0.0	0.0	0.0
7	2.74	0.011		0.0	0.0	0.0	0.0	0.0
9	2.65	0.015	2 A 2 3 /	A 5	1 6	2.7	3.8	4.9
11	2.55	0.029	105/0.	V.J		0.0	0.0	0.0
- R	2.46	0.019	17456.	0.0	0.0	0.0	0.0	0.0
ž	2.37	0.009	预装装装装	0.0	0.0	0.0	0.0	0.0
<u></u>	2.72	0.017	19915.	0.0	0.0	0.0	0.0	6.0
9 7	2 18	0.017	19915.	0.0	0.0	0.0	0.0	A A
	2 68	0.019	17456.	0.0	0.0	0.0	0.0	0.0
1/	1 00	0.021	15504.	0.0	0.0	0.0	0.0	V.V
13	1 0 0	0.021	15504.	0.0	0.0	0.0	0.0	0.0
11	1 80	0.021	15504.	0.0	0.0	0.0	0.0	1 2
	1 71	0.023	13919.	0.0	0.0	0.0	0.1	A 6
12	1 61	0.015	则其则使强迫	0.0	0.0	0.0	0.0	0.0
11	2.04	0.021	15504.	0.0	0.0	0.0	0.0	0.0
2	1 22	0.005	新新新新新新	0,0	0.0	0.0	0.0	0.0
2	1,33	0.019	17456.	0.0	0.0	0.0	0.0	0.0
3	1.29	6 621	15504.	0.0	0.0	0.0	0.0	0.0
4	1.19	0.023	13919.	0.0	0.0	0.0	0.1	1.2
3	1.05	0.023	19915	0.0	0.0	0.0	0.0	0.0
8	0.96	0.017	网络英英英英	0.0	0.0	0.0	0.0	0.0
1	0.86	0.007						

NNNNNN - WHEEL LOAD GREATER THAN 20000 LB.

D3

******		****	LOAD	INCHES	OF A.C.	EQUIV	ALENT R	EQUIRED
RUT	MILAGE	BEAM	SUPPORTING		WHEEL	LOAD	DESIGN	
DEPTH	EXTENTS	DEFLECTION	ABILITY	11000.	12000.	13000.	14000.	15000
2 4 5 4 2 4 5 5	0.77 0.67 0.58 0.49 0.39 0.30 0.20 0.11	0.003 0.009 0.005 0.007 0.005 0.005 0.005 0.019 0.025	жжжжж жжжжж жжжжж жжжжж жжжжж жжжжж и жжж 17456. 12610.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7

. .) .

NUMBER - WHEEL LOAD GREATER THAN 20000 LB.

÷.

Э.

 \pm) :

Э÷.

0. T. FOHM 7 Rev. 30-76

Oklahoma Dept. of Transportation

To David Golden, Division Engineer From J. D. Telford, Materials Engineer Subject I-35 From N.E. 40th to N.E. 63rd

> This section of I-35 was constructed in 1958, overlaid in 1974, and overlaid again in 1984. The original pavement section consisted of 2 inches of asphalt concrete type B and 3 inches of asphalt concrete type A on 7 inches of stabilized aggregate base course. The 1972 overlay consisted of 3/4 inches of plant mix seal coat and 1-1/2 inches of asphalt concrete type C. The 1984 overlay consisted of 3/4 inches of open-grade friction surface course and 1-1/2 inches of asphalt concrete type C. The existing roadway was milled and petromat was placed on the milled surface as part of the 1984 project.

Date

November 2, 1988

Asphalt cores and soils samples were obtained from this section of I-35. Attached find a soils survey and a pavement survey. The soils survey lists the various subgrade soils encountered. The pavement survey lists the various asphalt mixtures encountered.

Rutting of the asphalt pavement was noted throughout the section. The rutting measured varied from 1/4 inch to 1-3/4 inches in the outside lane and from 1/8 inch to 5/8 inch in the inside lane. A visual inspection of the asphalt cores revealed that the rutting is occurring primarily in the asphalt mixture above the petromat(see pavement survey summary for asphalt cores 2A, 2B, and 2C; 3A, 3B, and 3C; and 11A, 11B, and 11C). A review of the project records for the 1984 overlay revealed

D5

that the asphalt concrete type C contained 38% reclaimed asphalt pavement and used AC-3.5 for the asphalt cement. Problems with rutting have occurred on other roadways using high percentages of reclaimed materials and soft grades of asphalt cement.

It is recommended that any rehabilitation of roadway include removal of the asphalt mixture above the petromat.

If you have any questions regarding this matter, please do not hesitate to contact me.

J. D. Telford, P. E. Materials Engineer

By:

Raynelde H. Tony

Reynolds H. Toney, P. E. Bituminous Branch Manager Engineer

cc: Director Monty Murphy Jack Blaess Pete Byers Richard Hankins Bob Stringer W. T. Merrill DH Finm WI.A7

CALCU	LATIO ED BY	NS	 			
PROOF	READ	8Y	 (11	X	

).

urveved By: Davis - Seiter and Party

63-5010-10787 63-5190-10787

Location

111 marine average

C.S. No.

Project No. 1-35-3(1)129 Inactive

40th north to NE 63rd.

Oklahoma County - I-35 from NE

Page _

Date Aug. 23-26, 1988

).

Date Reported 9-8-88

Materials Division

SOILS SURVEY

STATE OF OKLAHOMA

DEPARTMENT OF TRANSPORTATION

IDI	IDENTIFICATION		Pavement and Subgrade Soil Survey				3 PHYSICAL & MECHANICAL ANALYSIS						
Laboratory	Field Number	Soil					Liquid	Plasticity	Percent Passing				Nat.
i.O. Number		Group	Station Cl-Rt-Lt	Station, Location and Description of Sample	Depth	, Inches	Limit	Index	No. 10	No. 40	No. 200	051	Mois
				North Bound									
			0			0 0 1/0							
			333+00 Rt	ASPHALT	DANEI	0 2/0 15	10		*60	41	17 7	0	5
	A	A - 1 - b(0)	Underlay (2)	SILTY CLAYEY SAND WITH G	KAVEL	9 3/0-13	17	12	+05	91	56 0	g	1 10
	В	A-6(3)		SANDY LEAN CLAY		12-17	20	12	40%	80	20.7	6	12
	C	$\Lambda - 2 - 6(0)$		CLAYEY SAND		11-24	23	7	+07	05	51 4	ç	12
	D	A-4(1)		SANDY SILTY CLAY		24-28	25	10	+00	50	20	11	14
	Е	A-6(9)		SANDY LEAN CLAY		28-30	34	10	100	90	72 0	11	14.
	F	A-6(8)		LEAN CLAY with SAND		30-36	31	13	100	90	13.9	12	14.
			343+00 (1) _{Lt}	ASPHALT		0-11							
	٨	A-2-4(0)	Inderlay (2)	CLAYEY SAND with GRAVEL		11-31	24	10	*51	41	19.5	1	8.
	B	A-6(9)		SANDY LEAN CLAY		31-37	33	18	*96	92	66.4	12	14.
		A = 6(12)		LEAN CLAY with SAND		37-47	37	17	*97	95	78.4	14	11.
			353+00 (1)Rt.	ASPHALT		0-9 1/2							
		A = 1 = b(0)	Underlay	SILTY SAND with GRAVEL	9	1/2 - 17 1/2	17	3	*78	49	20.2	0	4.
	B	A - 6(7)		SANDY LEAN CLAY	17	1/2 - 21 1/2	29	15	*96	91	68.0	11	10.
	c	A-6(9)		LEAN CLAY with SAND	21	1/2-33 1/2	29	14	*95	90	82.5	11	12.
			363+00 (1) Lt.	ASPIIALT		0-11							
	A	A - 1 - a(0)	Underlay (2)	GRAVEL with SILT and SAN	ID	11-31	NP	NP	*36	25	10.4	0	3
	В	A-2-4(0	1	SILTY SAND		31-36	NP	NP	*80	78	31.5	0	7
			(1)-			0 0 7 10							
			373+00 RE.	ASPIALT		0-9 //8			400	1.0	17 2	0	
	Λ	A-1-b(0	Underlay (2)	SILTY SAND WITH GRAVEL		9 //8-10	NP	NI.	00	4)	11.2		
	B	A-4(0)		SANDY · SILT		10-44	NP NP	I NP	×99	98	51.2	U	9
			383+00 ⁽¹⁾ Lt.	ASPHALT		0-11 3/4							

1)7

DH Form WH-87

)-

CALCULATIONS CHECKED BY

PROOF READ BY _

)

STATE OF OKLAHOMA

C.S. No.

DEPARTMENT OF TRANSPORTATION

Project No.

Location

Date Reported

Date

Materials Division SOILS SURVEY

IDI	ENTIFICAT	KON				3	PHYS	ICAL & MEC	HANICAL	ANALYSIS	Denkolmiteretidenseisis	elefeningainentis
aborstory	Fiehl	Soil				1.iquid	Plasticity	P	ercent Passie	8		Nat
(). Nuesher	Number	Спыр	Station Cl-Rt-Lt	Station, Location and Description of Sample Dept	h, Inches	1.imit	Indes	No. 10	No. 40	Nu. 200	051	Mol:
		A = 1 = b(0)	linderlav (2)	SILTY SAND with GRAVEL	11 3/4-20	NP	NP	*50	35	13 7	٥	
	R	A = 2 = 4(0)	1) 11	STLTY SAND	20-32	NP	NP	*85	87	29 6	0	6
	Ċ	A-4(0)		SANDY SILTY CLAY	32-36	17	4	100	96	58.1	4	10.
			$_{393+00}$ (1) _{Rt}	ASPHALT	0-14							•
		A - 1 - b(0)	Underlay (2)	SILTY CLAYEY SAND with GRAVEL	14-15	20	5	*62	40	18 6	0	113
	В	A-6(5)	11	SANDY LEAN CLAY	15-21	29	15	*89	83	53.5	8	16
	l c	A-7-6(27	. •	FAT CLAY	21-25	50	30	*99	96	86.8	22	18
	D	A - 4(2)	11	SANDY LEAN CLAY	25-33	23	9	*98	94	59.4	7	
	E	A - 4(2)	11	SILTY CLAY with SAND	33-38	21	5	*97	94	77 5	6	16
	F	A-2-4(0)		SILTY SAND	38-43	17	2	*99	97	38.9	0	9.
			404+10 (1)	Αςρμαι τ	0-7 1/2							
		A-1-b(0)	Underlay (2)	STLTY SAND with CRAVEL	7 1/2-16	NP	NP	*/.7	22	12 /	" 0	1
	B	A-2-4(0)	1) 11	SILTY SAND	16-32	21	1	100	× 99	28.9	0	9.
				South Bound								
			(1).									
			404+10 RE.	ASPHALT	0-15							
	A	A - 2 - 4(0)	Underlay (2)	SILTY SAND	15-27	NP	NP	*97	96	26.8	0	11.
	В	A - 2 - 4(0)			27-33	NP	NP	100	99	31.4	0	8.
	С	A-4(0)			33-38	NP	NP	100	100	38.4	0	8.
	D	A-4(0)		SANDY SILTY CLAY	38-43	19	4	*99	98	67.5	5	11.
			393+00 ⁽¹⁾ Rt.	ASPHALT	0-9 3/4							
	A	A-1-b(0)	Underlay (2)	SILTY SAND with GRAVEL	9 3/4-18	NP	NP	*57	45	14.5	0	3.
	B	A-2-4(0)		SILTY SAND	18-24	NP	NP	*96	94	29.0	0	9.
	С	A-4(0)			24-30	NP	NP	*99	96	39.0	0	9.
	D	A-2-4(0)			30-34	· NP	NP	*95	93	25.2	0	5.
	1											

: 2 Page

Dil Form WH-87

)

CALCULATIONS CHECKED BY ____

Page

3

PROOF READ BY __

)

)

<u>)</u>.

STATE OF OKLAHOMA DEPARTMENT OF TRANSPORTATION

C.S. No.

Project No. Location

Date Reported

Date

Materials Division SOILS SURVEY

IDI	INTIFICAT	10N				2	PHYSI	CAL & MEC	HANICAL	ANALYSIS	****		
Laboratory .O. Number N	Field Number	Fiehl	Field Soil				Liquid	Plassicity	P	rcent Passin	R	*****	Nat
		Group	Station Cl-Rt-Lt	Station, Location and Description of Sample	Depth, Inches	Limit	Index	No. 10	No. 40	Nu. 200	051		
	E	A-4(0)		SILTY SAND	34-37	20	1	*95	92	46.5	2	9	
	F	A-6(12)		SANDY LEAN CLAY	37-42	37	21	*93	89	68.5	14	15	
			383+00 (1) _{Lt}	ASPHALT	0-10 3/4								
		A - 2 - 4(0)	Underlay (2)	SILTY SAND with GRAVEL	10 3/4-20	NP	NP	*68	56	17.4	0	5	
	R	h = 2 - 4(0)	11	68 ⁴ 88 88 88	20-25	NP	NP	*77	75	22.6	0	7	
	l c	A - 2 - 4(0)	11	SILTY SAND	25-31	NP	NP	*84	80	31.3	0	. 5	
		A-4(0)	44	11	31-35	NP	NP	*91	90	40.0	0	10	
	F	A - 2 - 4(0)	11		35-40	NP	NP	*90	89	25.2	0	8	
	F	A-4(3)		SANDY LEAN CLAY	40-46	25	9	*99	98	58.8	6	15	
			373+00 (1) _{Rt} .	ASPHALT	0-11								
	A	A - 1 - b(0)	Underlay (2)	SILTY SAND with GRAVEL	11-19	NP	NP	*51	41	13.0	0	3	
	B	A - 4(0)	12	SANDY SILT	19-30	19	2	*97	95	50.3	- 2	8	
	Ċ	A - 2 - 4(0)	••	SILTY SAND	30-36	NP	NP	*96	× 93	30.4	0	9	
	D	A-4(0)		0 7	36-43	NP	Np	*99	98	40.0	0	6	
			363+00 (1) Lt.	ASPHALT	0-11								
		A - 1 - b(0)	Underlay (2)	SILTY SAND with GRAVEL	11-20	17	3	*56	42	16.9	0	3	
	R	A - 4(1)		SANDY LEAN CLAY	20-26	21	8	*97	95	54.0	5	12	
	C	A-6(14)		LEAN CLAY with SAND	26-39	34	20	*97	91	79.5	15	12	
			353+00 (1) _{Rt}	ASPHALT	0-10								
	A	A-2-4(0)	Underlay (2)	SILTY CLAYEY SAND with GRA	VEL 10-17	18	4	*56	38	15.6	• 0	4	
	B	A-6(4)		SANDY LEAN CLAY	17-25	25	12	*85	81	59.1	8	10	
		A-4(0)	1. 11	SANDY SILTY CLAY	25-31	20	5	*98	95	57.5	4	9	
	D	A-4(0)		SILTY SAND	31-41	NP	NP	*99	95	39.7	0	8	
60													

Dil Furm WH-87

CALCULATIONS CHECKED BY

• 4 • Page

PROOF READ BY _

).

.

STATE OF OKLAHOMA

DEPARTMENT OF TRANSPORTATION

C.S. No.

Project No. Location

Date

Date Reported

Materials Division CON C CHIDVEV

ు	O	11	ھ	30	K	v	r.	X
							-	

IDE	NTIFICAT	IUN					PHYSI	CAL & MEC	HANICAL	ANALYSIS		
Laboratory F	Field	Soil	Soil		: Liquid	Plasticity	Percent Passing				Nat.	
i.O. Number	Number	Group	Station Cl-Rt-Lt	Station, Location and Description of Sample	Depth, Inches	Limit	Index	No. 10	No. 40	No. 200	OSI	Mois
			2(2)00 (1)	ACDUALT	0-11							
			343 ± 00 LC.	AJENALI CLAVEY CAND	11-19	22	8	*61	37	16.3	0	6.
	٨	A-2-4(0)	Underlay (2)	LEAN CLAY AL CAND	19-26	41	24	*96	91	74.8	18	19
	B	A-/-0(10) 		26-36	44	27	*92	88	84.8	18	17
		A-7-6(20	2 • • • •	LEAN CLAY	36-42	42	20	*97	94	91.3	16	• 16.
		n-/-0(2)										
			333+00 ⁽¹⁾ Rt.	ASPHALT	0-10 1/2							
		A = 2 = 4(0)	Underlay (2)	CLAYEY SAND with GRAVEL	10 1/2-18	23	9	*60	46	21.3	0	4.
	R	A-6(16)	11	LEAN CLAY with SAND	18-21	37	23	*99	97	81.2	16	14.
		A = 6(10)	1	SANDY LEAN CLAY	21-26	32	16	100	98	56.5	10	13.
		h = h(3)	41	11	26-31	24	9	*99	98	69.3	7	13.
	E	A = 4(0)	•	SILTY SAND	31-45	22	2	*98	97	41.3	1	13.
			NOTES: *Ma (1) Rt. Lt. (2) Doe	eximum size passing the two indicates outside lane indicates inside lane is not meet current specif	o inch sieve ications for aggre	ate b	ase (70	3.01).				
			Transmitted <u>9-8</u>	<u>-88</u>	<u>J. D.</u> Materi	elfor ls En	d, P.E. Lineer					

010

PAVEMENT SURVEY SUMMARY

.....

-,

. . .

Identification	14	2A	28	20	3A
Station	333+00	353+00	353+00	353+00	373+00
Expressway	N.B.	N.B.	N.B.	N.B.	N.B.
Lane	0.L.	0.L.	0.L.	0.L.	0.L.
Core Location	B.W.P.	B.W.P.	I.Ŵ.P.	0.W.P.	B.W.P.
Rut Depth (in.)		3/8			1/2
Core Thickness (in.)	9-1/4	9	8-1/4	8-1/2	9-1/2
	/				
Layer Analysis, Top Lif	t to Bott	om Lift, Mi	ix Type and	Thickness	(in.)
OGESC		314	- 1/2	1/2	112 314
A. C. Type C	1	2	1-1/2	· +/ =	2-1/2
A.C. Type C	2-1/4		1-1/2	4	2-1/2
Petromat A.C. Turne C			1-1//	,	1
A.C. Type C	1	rene a kan a kan a sa s	1-1/4	•	1 211
A.C. Type D	1/2	1	1	1	3/4
A.C. Type B	1-1/2	1-3/4	1-1/2	1-3/4	1-1/2
A.C. Type A	3	2-1/2	2-1/2	2-1/4	3
Identification	38	3C	5 A	68	7A
Station	373+00	373+00	343+00	363+00	383+00
FYNTESSWAV	NB	N.B.	N.B.	N.B.	N.B.
Lape	N.D.	O T	T T.	T T.	Τ.Τ.
		0 W P	R W D	R U P	RWP
Core Location	1	0	5/8	1/2	5/8
Rut Depth (In.)	0-3//	9-1/7	11-1/6	10-3/4	10-1/2
Core Inickness (in.)	0-3/4	0-1/2	11-1/4	10-3/4	10-1/2
Layer Analysis, Top Lif	t to Bott	om Lift, Mi	Lx Type and	Thickness	(in.)
Layer Analysis, Top Lif	t to Bott	om Lift, Mi $^{1/2}$ 1/2	Ex Type and $\chi^{1/4} 1/2$	Thickness	(in.) 7 ^{1/4} 3/4
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C	t to Bott	om Lift, Mi ; 1/2 1-1/2	Ex Type and 8 ¹⁴¹ /2 2-1/2	Thickness	(in.) $\sqrt[7]{4}/4$ 2-3/4
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Perromat	t to Bott	om Lift, Mi)\21/2 1-1/2	ix Type and گ ^{/۱۹} 1/2 2-1/2	Thickness	(in.) χ^{4} 3/4 2-3/4
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat	t to Bott	om Lift, Mi) ^{1/2} 1/2 1-1/2 1-1/4	ix Type and % ^۱ ۹1/2 2-1/2 2	Thickness	(in.) $\chi^{1/4} 3/4$ 2-3/4 2-1/2
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C	t to Bott 	om Lift, Mi ⁽¹² 1/2 1-1/2 1-1/4 3/4	ix Type and % ^{\\\\} 1/2 2-1/2 2 1	Thickness	(in.) $\pi^{1/4} 3/4$ 2-3/4 2-1/2 1/2
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D	t to Bott 1 3/4 1/2	om Lift, Mi ^{1/2} 1/2 1-1/2 1-1/4 3/4 1-1/2	ix Type and % ^{\\\\} 1/2 2-1/2 2 1 2-1/4	Thickness	(in.) $\sqrt[n]{4} 3/4$ 2-3/4 2-1/2 1/2 2
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B	t to Bott 1 3/4 1-1/2	om Lift, M: , 1/2 1-1/2 1-1/4 3/4 1-1/2	ix Type and % ^{\\4} 1/2 2-1/2 2 1 2-1/4	Thickness	(in.) $7^{1/4}3/4$ 2-3/4 2-1/2 1/2 2 3
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A	t to Bott 1 3/4 1-1/2 3	om Lift, M: (1/2 1-1/2 1-1/4 3/4 1-1/2 3	ix Type and % ^{\\\\} 1/2 2-1/2 2 1 2-1/4 3	Thickness	(in.) $7^{1/4} 3/4$ 2-3/4 2-1/2 1/2 2 3
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A	t to Bott 	om Lift, Ma 1-1/2 1-1/2 1-1/4 3/4 1-1/2 3	ix Type and 6 ^{3/41/2} 2-1/2 2 1 2-1/4 3	Thickness	(in.) $\chi^{ q }_{3/4}$ 2-3/4 2-1/2 1/2 2 3
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification	t to Bott 	om Lift, Ma , 1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B	ix Type and 6 2-1/2 2 1 2-1/4 3 11C	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 	(in.) $\chi^{ q }_{3/4}$ 2-3/4 2-1/2 1/2 2 3 13A
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station	t to Bott 	om Lift, Ma 1-1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00	ix Type and 0 2-1/2 2 1 2-1/4 3 11C 373+00	Thickness -14 1/2 2 2-1/4 1 2 3 12A 353+00	(in.) $\chi^{ q}_{3/4}$ 2-3/4 2-1/2 1/2 2 3 13A 333+00
Layer Analysis, Top Lif O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway	t to Bott 	om Lift, Mi 1-1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B.	11C 373+00 S.B.	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 12A 353+00 S.B.	(in.) $\chi^{ q}_{3/4}$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B.
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane	t to Bott 1 3/4 1-3/4 1 3/4 1-1/2 3 1 3/3 S.B. O.L.	om Lift, M: ()/2 1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L.	ix Type and () ^{1141/2} 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. O.L.	1 Thickness - 1/4 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 3 3 	(in.) $7^{1/4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L.
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location	t to Bott 1 3/4 1-3/4 1 3/4 1-1/2 3 1 3/3 S.B. O.L. B.W.P.	om Lift, M: ()/2 1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P.	ix Type and () ¹¹⁴ 1/2 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. O.L. O.W.P.	1 Thickness - 1/4 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 .B.W.P.	(in.) $7^{1/4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P.
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.)	t to Bott 	om Lift, M: (1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P.	ix Type and () ¹¹⁴ 1/2 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. O.L. O.W.P.	1 Thickness - 1/4 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 B.W.P. 1-3/4	(in.) $7^{1/4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.)	t to Bott 	om Lift, M: , 1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2	ix Type and () () () () () () () () () ()	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 2-1/4 1 2 	(in.) $\sqrt[n]{4} 3/4$ 2-3/4 2-1/2 1/2 2 3 2-3/4 2-3/4 2-3/4
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Lis	t to Bott 	om Lift, M: (1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2 com Lift, M:	ix Type and 8 ^{1141/2} 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. 0.L. 0.W.P. 10-1/8 ix Type and	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\sqrt[n]{4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.)
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Life	t to Bott 	om Lift, M: (1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2 com Lift, M: (2/21/2)	ix Type and 8 ¹¹⁴ 1/2 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. 0.L. 0.W.P. 10-1/8 ix Type and 7 1/2	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $7^{1/4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.) $7^{3/4} 3/4$
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Life O.G.F.S.C. A.C. Type C	t to Bott 	om Lift, M: (1/2 1-1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2 com Lift, M: ()/21/2 2	ix Type and 8 ¹¹⁴ 1/2 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. 0.L. 0.W.P. 10-1/8 ix Type and 7 1/2 2-1/2	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\sqrt[n]{4} 3/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.) $\sqrt[n]{4} 3/4$ 3-1/2
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Li: O.G.F.S.C. A.C. Type C	t to Bott 	om Lift, M: (1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2 com Lift, M: (N21/2 2	ix Type and 8 ¹¹⁴ 1/2 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. 0.L. 0.W.P. 10-1/8 ix Type and 7 1/2 2-1/2	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $7^{ 4}_{3/4}_{2-3/4}_{2-3/4}_{2-1/2}_{1/2}_{2}_{3}_{3-3-00}_{3-8}_{5-8}_{0.L.}_{5-8}_{0.L.}_{5-8}_{0.L.}_{5-8}_{1-1/8}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{10-3/4}_{3-1/2}_{1-1/8}_{10-3/4}_{1$
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Lis O.G.F.S.C. A.C. Type C Petromat	t to Bott 	om Lift, M: (1/2 1/2 1-1/2 1-1/4 3/4 1-1/2 3 11B 373+00 S.B. O.L. I.W.P. 10-1/2 com Lift, M: (N21/2 2 1-3/4	ix Type and $8^{1/4}1/2$ 2-1/2 2 1 2-1/4 3 11C 373+00 S.B. O.L. O.W.P. 10-1/8 ix Type and 7 1/2 2-1/2 2-1/2 	1 Thickness - 1/4 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\chi^{ q}_{3/4}$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.) $\eta^{3} _{q}_{3/4}$ 3-1/2 1
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A Identification Station Expressway Lane Core Location Rut Depth (in.) Core Thickness (in.) Layer Analysis, Top Lis O.G.F.S.C. A.C. Type C Petromat A.C. Type C	t to Bott 	om Lift, Mi	ix Type and $2^{1/2}_{2-1/2}_{2-1/2}_{2-1/4}_{3}_{3}_{3}_{3-1}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3$	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\chi^{ 4}_{3/4}_{2-3/4}_{2-3/4}_{2-1/2}_{1/2}_{2}_{3}_{33+00}_{S.B.}_{0.L.}_{B.W.P.}_{1-1/8}_{10-3/4}_{10-3/4}_{(in.)}$ $\eta^{3}_{ 4}_{3/4}_{3-1/2}_{2}_{1}_{1}_{1}_{1}$
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A 	t to Bott 	om Lift, Mi	ix Type and $3^{1/4}1/2$ 2-1/2 2-1/2 2-1/4 3^{11C} 373+00 S.B. O.L. O.W.P. 10-1/8 ix Type and 7 1/2 2-1/2 2 5/8	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\chi^{ q}_{3/4}$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.) $\eta^{3}_{ q}_{3/4}$ 3-1/2 1 1 1
Layer Analysis, Top Life O.G.F.S.C. A.C. Type C Petromat A.C. Type C A.C. Type D A.C. Type B A.C. Type A 	t to Bott 	om Lift, Mi	ix Type and $2^{1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/4}_{3}_{3}_{3}_{3}_{4}_{5}_{5}_{5}_{6}_{5}_{6}_{6}_{7}_{1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{2-1/2}_{5/8}_{1-1/2}_{3}_{5/8}_{1-1/2}_{5}_{5/8}_{5}_{1-1/2}_{5}_{5/8}_{5}_{1-1/2}_{5}_{5/8}_{5}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{5}_{6}_{6}_{5}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6}_{6$	1 Thickness - 1/4 1/2 2 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 2-1/4 1 2 3 	(in.) $\sqrt[n]{4}/4}/4$ 2-3/4 2-1/2 1/2 2 3 13A 333+00 S.B. O.L. B.W.P. 1-1/8 10-3/4 (in.) $\sqrt[n]{4}/4$ 3-1/2 1 1 1-1/2

DII

PAVEMENT SURVEY SUMMARY

14A	15A	16A
383+00	363+00	343+00
S.B.	S.B.	S.B
I.L.	I.L.	I.L
B.W.P.	B.W.P.	B.W.P
1/2	1/8	1/8
9-1/4	9	8-1/4
	14A 383+00 S.B. I.L. B.W.P. 1/2 9-1/4	14A 15A 383+00 363+00 S.B. S.B. I.L. I.L. B.W.P. B.W.P. 1/2 1/8 9-1/4 9

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

0.G.F.S.C.	. 73/4 5/8 3 3/4 73/4 1/2
A.C. Type	C 2-1/2 2-1/2 2-1/2
Petromat	
A.C. Type	C 2-1/2 2 2-1/4
A.C. Type	D 1/2 3/4 1/2
A.C. Type	B 1-3/4 2 2
A.C. Type	A 3 3 3

Identification	8A	10A
Station	404+00	393+00
Expressway	N.B.	S.B.
Lane	I.L.	0.L.
Core Location	B.W.P.	B.W.P.
Rut Depth (in.)	1/4	1/2
Core Thickness (in.)	8	9-3/4

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

0.G.F.S.C.	$(Y_{0} 1)$ (0 3/4
A.C. Type	C 5 42-1/2 3-3/4
Petromat	
A:C. Type	B 2 1-1/2
A.C. Type	A 2-1/2 4

Identification	9A
Station	404+00
Expressway	S.B.
Lane	0.L.
Core Location	B.W.P.
Rut Depth (in.)	1/4
Core Thickness (in.)	14-3/4

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

0.G.F.S.C. 71	1/2
A.C. Type C	2-1/2
Petromat	****
A.C. Type A	3-1/2
B.B.F.A.T.	8-1/4

PAVEMENT SURVEY SUMMARY

. 8

P

Identification4AStation393+00ExpresswayN.B.Lane0.L.Core LocationB.W.P.Rut Depth (in.)3/8Core Thickness (in.)13-3/4

Layer Analysis, Top Lift to Bottom Lift, Mix Type and Thickness (in.)

0.G.F.S.C.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
A.C. Type	C 1-3/4	
Petromat		
A.C. Type	C	
Petromat		
A.C. Type	A 2	
B.B.F.A.T.	8-1/2	

Legend:

N.B. = Northbound S.B. = Southbound O.L. = Outside Lane I.L. = Inside Lane B.W.P. = Between Wheel Paths I.W.P. = In Right Wheel Path O.W.P. = Outside Right Wheel Path