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CHAPTER I 

INTRODUCTION 

Control theory is a relatively new area of engineering technology, 

but has played an increasingly prominent role in the advancement of 

modern civilization. Although little organized theory existed prior to 

1940, the rapid growth of control theory since that time has lead to 

widespread applications of automatic control systems. Today, automatic 

control systems are employed in space vehicle and missile guidance, 

weapon :fire-control systems, aircraft-piloting systems, as well as in 

nwnereus applications of domestic and industrial import. 

The early developments in control theory are characterized by the 

use of frequency domain methods (1, 2, 3). Such methods detemine the 

stability of closed-loop systems on the basis of the open-loop response 

to steady-state sin11Soidal inputs. These early methods, such as the 

Bode plot, Nyqllist plot, and Nichols chart, are chiefly graphical 

techniqu.es which rely on the use of frequency domain plots. Al.though 

basically trial-and-error techni\ues, the frequency response methods 

were ued. 11:ntil the late 1940's to design feedback c.ontrol systems on 

the basis of satisfying design specifications such as bandwidth, gain 

and phase margin, peak resonance, and cutoff rate. 

The introduction of tme .not locus technique by Evans (4) in 1948 

irnpJ:"OYed an the frequency response methods by providing inform.ation on. 

the transient response of systems as well as the frequency response. 

1 



The :f'.requeney response techniques and the root locus methods com.prise 

what is commonly classified as classical control theory. 

The cla.ssieal approach leads to feedback control systems which are 

stable and satisfy a set of perfo:cmanee require111ents. In genera1, the 

resultant controls are not optimal in any sense, but simply represent 

one of many control systems that work. 

The principal disadvantage of the classical approach is its inap

plicability to mllltiple-input multiple-output systems. With few 

exceptions, it is applicable only to linear time-invariant systems 

which are µso single-input single-output. Si-nee lll.odern engineering 

systems are often quite complex, and are often time-varying and non

linear, as well as multiple-input multiple-output, the classical 

approach does not apply to such systems. 

Modern control theor,y, based on the concept of state, was develop-
.. 

ed a.bout 1960 to cope with the weaknesses encountered in the classical 

2 

approach (5~ 6). Aided by the advent of the electronic cc,mputer and 

spurred on by the coming of the space age, a new approach to control 

theery was der!:vsd., The objective of modern control theory is to design 

the control for which the Gveral.l syste111. beha'\l'ior is optimal in some 

prescribed sense. 

To measure the relative "goodness" of control systems, a perfom• 

a.nee measure is prescribed. The objective of the perfomance measure 

is to incorporate in a single number a. quantitative measure of the 

perfomanee of the system. Modern contnl theor,y is concerned with 

the determination of the control signal vector ,Y(t) for which a given 

perfo:cmanee measure is minimized or ma.ximized. The perfo:m.ance measure 

often assumes the fo:rm 



(1,1) 

where t, is a funet:tonal. rela.t1ensh.ip, ,l(t) :ts the state vecter and ,i(t) 

is the ec,ntrol Teeter. A eon:t.rel vector which ainill:1.zes er .11a.x1.Jn:tzes 

e111.at:te11 (1,1) is an eptimal control relative to the given performance 

The med.en. approach to control theory :ts superior to the classic.al 

approaea in. aany as,ects, Besides being applicable te nonlinear tilRe

va.rying alll. t:1.ple-inpllt mu.l tiple-cn1,tp11t systems, aodern control theory is 

based on a t:1.me-d.emain a1proach rather than the complex freq11.ency domain 

approach. Modern control theory ean be carried cn1t for a class of in-

pttts instead ef a specific inp1:1t function, and :1. t allows the inc.lus:1.on 

of :tni tial eond.1 tions :tn the control systan. design, 

Despite tb.e aclvutages of modern ce,ntrol theory, it :ts not without 

its short.ceaings relatiTe to the classical approach, Para.mout among 

t.he disadvantages of the aoder:a a:ppreaeh is th.at a feedback control is 

pc,sis:1.'ble only :1.n special case1!s. Fer .linear systems w1 th qu.d.rat:1.c 

perfonance measures, the opt:tmal control :1.m the well km.own linear reg

ulator (7), However, if the system :ts nonlinear er the perfema.nce 

aeas11re is nen\1iladra.t:tc, an aJULl.ytie molut:ten for tke control is 

noDlally impomsible. 

Reeent resttl.ts by Mulholland and Rhoten (8, 9, 10) have sh.own that 

the 11se of inner-prod11ct perfomuce measures lead. to opt:tmal feed.back 

eentrc,l laws for a wide class of prc:iblem1s. Th.is dissertation reports 

en research ud.ertaken te cu.ra.cterize a.Jld extend the ue of imier-

product perfomance.mea.sures for asymptotic control syste11ts. 



History of· Inner-Product Control 

The inner-product f'ormula.tici,n of optimal control.pre'bl.811ls origi

natri. in 1968 f'rea tlle nrk of Mulholland ( 11 ) in the eons1dera.t1en of 

11.Jlit. eye.lea in nonlinear feedback control systems. An epti.11.al non

linear feedback control scheme is considered w1 th a 11m1 t set configu-

ration as the control ebjeetive. If the lilllit set is the surface of a 
. --,,.__ 

hyperspllere of radius a., the contrel policy depends upon the distance 

of the state from the limit set. If the nol'ffl of the state vector 4(t) 

is denoted. \y-
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(1.2) 

where lT denotes tlle transpose of the state vector, then the control 

eijeetive is accomplished if 

Tlte mrm of the state vector is an inner-product which provii.es a 

•ea.mu.re of new elese the system is to the control objective, The 

iuer-preclu.ct fom111.aticinl of CC!>ntro.l 11t1li2'.es this nol'ffl of the state 

veetar as the l>asis for the fe:m'lll.atio:m. ef an optimal system cc,ntrol, 

The ec,ntrol systm eonsid.ered is a modification of' the direct con

trol pre'hl• of Lur'e, A eompari.11011 of the Lur'e formulation and. the 

inner-:pred.1tet f'om11latie:n is given by M1lllnollud. a.:nd. Rhote• (12), The 

syata is 111•11tra.tei in Fipre 1, and. is described by the equa.t1onsa 

.i•!!+fil 

f • f(P > 

P· 1T l 

(1.3) 

(1,4) 



where A is then x n matrix describing the plant, ]2 is then x m input 

matrix and ( is a scalar feedback oontro.l signal, 

<,> 

p 

Figure 1. An Inner-Pr0duct Control Structure 
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The system is a closed loop form~a.tion in which the function f ( p ) 
is arbitrary and is selected to drive the system to the limit set in an 

optim.al manner. The prlm.ary consideration in the design of f( p ) is to 

drive the state vector to the limit set commensurate with a reasonable 

expenditure of control energy. Failure of the system to reach the .limit 

set is measured by a non-negative function of the state distance from 

the 11.Jlli t set. An indireot measure of the control input energy at any 

instant of time is provided 'by a non•negative function of d p/dt, A 

rather general fom for the perfomance measure is therefore given by 

(1,5) 
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where h( p) is a. positive real•ve.lued function of p with h(a2) • o. 

Metivation for this perfo:cmanee measure is drawn from the simplest prob-

1• ef the caletl.l.us ef variations in which h( p ) is related to the po

tential energy and (ap/a.t)2 is related to the ki:netie energy of a mass. 

The :f"oraulatien ef an inner-product performance mea.s11re leads to 

globally optilllal eentrol laws if A is skew synuaetrie and! is positive 

clef'iJlite. The centrctl laws are explicitly realiza.lnle by the single 

n.ttnlinear tra.ud.ttcer f ( p ) as a closed fem :f'unctien of th.e systea error 

signal. 

The system defined in e1uation (1.:,) is equivalent to the linear 

systa11 

in whieA tae central veetGr y is given by 

(1.6) 

The use of eq1ilatien (1.3) is therefore equivalent to a linear system 

with. a fixed eenfigura.t1e:n control stn.etue. The inner-product control 

of fixed configuration linear systems has received extensive attention 

frem Rhoten u.d Mlllhelland (S, 13, 14) for eases in which the eo:m.trol 

objective is the erigin of the state spa.ee and !is nonsiDgUJ.a.r, Non

linear ant bilinear appliea.ti.o:ns have alee bee:n considered. by Mulholland 

and Rbeten ( 9) and Sri&r and Rhoten ( 14) respeet:1 vely, Stochastic 

extensions of the problem .have bee:n provided by Sias, et al, (1.5)• 

Tl\e principal lilliting :f'ea.tue of these papers is the inability to 

obtain opt:tmal bemi.ded controls for problems in which the cCi>ntrol input 

matrix! is singular. A major emphasis of this dissertation is the 
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extension of the inner-product approach to general system.a in which the 

eontrcl inp11t matrix is singular or nonsi:ngular. 

Problem Formulation 

The problem considered is the asymptotic inner-product control of 

dynamic systems. The state eq,ua.tions describing the systems are assumed 

to be of the form 

!(t) .,. .E(!(t),t) + !(t) !l,(t) 

where !(t) is then x 1 state vector and Q(t) is the 11 x 1 control 

vector. The control portion of the system is separable and appears 

linea.rly in the system equations. Z(!( t), t) is an n x 1 functional 

vector describing the unforced system, and! is an n x m matrix describ

ing the distribution of the control vector to the system. 

This formulation encompasses linear and nonlinear plants for which 

the control is linea.rly separable. Since feedback control is sought, it 

is desired to dete:tmine the control vector as an instantaneous function 

of the state vector components, i.e., 

!! .. !!(!(t)). 

The eontrel input matrix! is singular or nonsingular. The control 

structure includes the fixed configuration controller of equation (1.6) 

but does not limit the control to this fo:cm. 

It is assmed that the control objective is accomplished by driv

ing certain linear combinations of components of the state vector to 

zero, while limiting the control energy necessary te accomplish this. 

A genera1 system error signal is therefore defined by 
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(1.8) 

where .Q is a symmetric matrix which is positive definite or positive 

sem.idefini te. This definition of the system error was suggested by 

Sims, et al. (1.5) as a generalization of the inner-product definition of 

equation (1.2). The inner-product of equation (1.8) is a measure of 

distance in a subspace of the state space, and is invariant for some 

changes in the state vector,if .Q is semidefinite, 

The inner-product formulation of optimal control is based upon the 

use of the inner-product error signal in the performance measure. Since 

p is a measure ef the system. error0 the time derivative of p provides 

an indirect measure of the control input energy, Using a non-negative 

function of dp/dt in the performance measure penalizes the power input 

by penalizing any rapid changes in the distance of the state from the 

origin. A rather general form for the performance measure is therefore 

given by equation (1,.5) 

where h( p) is a positive real-valued function of p with h( O) = 0, 

While the form of the inner-product performance index differs some-

what from more conventional performance indices, it does penalize system 

error directly through h(p) and control cost by weighting rapid changes 

in the error signal, The selection of a performance measure of this 

fom. allows an elegant and direct solution to the problem. in which the 

resultant control laws are globally optimal feedback controls, 



Scope of Study 

The prineipal,objeetives of this study area 

, (a.) to define the underlying structure of systems for which the 

inne:r-produet approach is suitable; and 

9 

(b) to formulate these requirements in the form. of an acceptable 

theory and procedure for deteraining the optimal inne:r-product 

control when applicable. 

The solution procedure follows a somewhat different course than is 

customary. The trajectory minimizing the inne:r-product performance 

measure is first determined disregarding the system equations. The 

minimizing trajectory is developed in Chapter II, and provides the fun

damental inne:r-product law. The trajectory is a. differential equation 

involving the inner-product error signal and its time derivative, and 

prescribes in norm the trajectory the system must follow in order to 

minimize the perfarmance measure. 

While the inne:r-praduct approach to optimal control is applicable 

to most systems, those systems which yield a feedback control are of the 

utmost interest because of the implementation advantages offered. 

Chapter III and Chapter IV consider the necessary and sufficient condi• 

tions under which the inner-product approach yields optimal feedback 

controls. The control systems considered in Chapter III are true closed 

loop feedback control systems. 

The inne:r-produet approach also yields optimal feedback controls 

which are not true closed loop systems. Although the terms "feedbackH 

and Hclosed loop" are often used interchangeably in modern control 11 t• 

erature, the systems considered in Chapter IV are feedback controls 



which possess open loop characteristics. The control systems are 

closed loop from the feedback nature of the controls, and open loop 

from the behavior characteristics of the controls. The extension 

10 

of the inner-product approach to these open loop type of feedback 

systems greatly broadens the class of systems to which the inner-product 

approach is applicable. A summary of the dissertation is given in 

Chapter V together with some conclusions and suggestions for further 

study. 

Appendix A considers the solution of a vector equation required in 

the develo}XD.ent of Chapter II. The detailed nature of the solution 

development is not suitable for inclusion in the main text of the 

dissertation and is included a.s an appendix in order to preserve the 

train of thDiag~t in Chapter II. The solution and its development 

represent a significant step in the general development. 

Two equivalent forms of the solution are indicated in Appendix A, 

The two forms are quite different in structure, but are shown to be 

equivalent. The main body of the thesis utilizes the simpler of the 

two forms in the development of the inner-product theory. A summary of 

equivalent results for the alternate form is given in Appendix B. 



CHAPTER II 

The Problem. Defined 

The problem. to be considered is the asymptotic contro.l of a 

dynaaic system described by a set of n differential equations, 

• 
!(t) • Z(!(t),t) + !(t) y(t) 

where !( t) is the n x 1 state vector and y( t) is the m x 1 contro.l 

(2, 1) 

vector, The control portion of the system is assumed to be separable, 

and to appear linearly in the state equations, .[(!( t), t) is an n x 1 

functional vector describing the unforced systan, and !(t) is an n x m 

matrix describing the distribution of the control vector to the systea, 

'l'he asymptotic control of the system is to be accomplished by the 

specification of a control vector y( t) which minimizes the perfomance 

measure 

J • s00 [h( p) + (dp/dt)2] dt 
to 

where p is the system. error signal and is defined. by the scalar 

p{t) • !T(t) ,Q(t) !(t), 

The matrix ,g( t) is a synun.etric matrix which is positive definite or 
T positive semid~finite, and !'s (t) denotes the transpose of the state 

(2,2) 

(2,J) 

vector !(t), The scalar function h( p) in the perfomanee measure is 

11 



restrteted to· teal-valued: positive definite f'unctio·ns of\ the error 

signal. 
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The system error signal is a quadratic form, and the rank of the 

fom is that of the matrix .Q(t). Let r be the rank of .Q(t). A qua.drat• 

ie form in n variables and of rank r is equivalent to a quadratic fom 

in r variables. That is, there exists a nonsingular transfo:cmation I. 

such that 

.I(t) = .I(t) !(t) (2.4) 

and the system error signal is given by 

(2 • .5) 

or 

p(t) = .I;(t) lr(t) (2.6) 

where 

.Ir(t) • !r .I(t) (2.7) 

and 

(2.8) 

!r is an r x n matrix, ! is an r x r identity matrix and .Q. is an r x 

(n-r) zero subnatrix (16 ). 

The transformation I can also be applied to the state equations to 

obtain a transformed set of state equations 

.i(t) ... -,E•_(I(t),t) + !'(t) .!:!(t) (2.9) 

where 

E'(.I(t),t) = I.(t) I.-1(t) .I(t) + I.(t) !(~1(t) .I(t), t) 

and 
!'(t) .- i(t) !(t)., 
. .. . 



Since the state equations of (2.9) are identical in structure to 

those of equation (2.1) it can be assumed that the state equations are 

given by (2.1) and the syste11 error signal is defined by 

1'.3 

p(t) .. 1;(t) lr(t) (2.10) 

where 

l:r,.(t) .. lr !(t). (2.11) 

Since the transfo:rmation I is nonsingular, no generality is lost by this 

simplified form, 

The time derivative of the system error signal in the perfo:rmance 

measure is given by 

(2,12) 

which depends implicitly upcn the control .Y• 

Control Problem Solution 

A conventional formulation of many asymptotic optimal control 

problems is the fallowing, Determine the control vector Q(t) which 'Will 

minilllize the performance measure 

I ""soo L(!(t), Q(t)) dt 
. to 

where the state !(t) and control Q(t) are related through the vector 

differential equation 

• 
!(t) = .E(!(t), Q(t), t). 

The definition of the system error signal and its derivative can 
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be used to convert the original problem to the above formulation. 

Standard dynamic optimization techniques applicable to the above problem 

are therefore also applicable to the original problem. These techniques 

all depend to some extent upon classical variational calculus methods, 

and rely therefore upon satisfying a set of necessary conditions to 

obtain the optimm control. For linear systems with performance meas

ures which are quadratic in the state and control, it is well known that 

the standard techniques lead to a linear feedback control. A feedback 

control system is desirable from an engineering point of view because of 

the general nature of the solution and the ease of implementation, rela

tive to open loop solutions. It would be desirable if a closed loop 

solution could be obtained in all cases. 

Unfo~ma.tely, if the system is nonlinear or the performance meas

ure is nonquadratic, the use of standard optimization techniques leads 

to a set of simultaneous first order differential equations which lack a 

complete set of boundary conditions. An analytical solution of such 

two-point bound.arrvalue problems is possible only in special cases. 

Consequently, numerical trial-and-error techniques usually must be used 

to solve the problem, which thereupon lead to numerical open loop con

trol solutions rather than the desired closed loop control laws, 

The fom of the performance measure in equation (2.2) allows the 

solution of the problem to follow a somewhat different course than is 

customaryo This procedure leads to a closed loop control .law in many 

problems, The conventional approach is to select the control such that 

the performance measure is minimized when evaluated along the solution 

trajectory of the system. The alternate approach herein considered is 

to select the control such that the system trajectory follows a minimal·-



1.5 

trajectory of the performance measure, Although the two prc:>cedures 

appear almost identical in statement, the latter approach leads to a new 

design technique for optimal control, 

Following the procedure outlined above, the system equations are 

ignored for the present and the performance measure is minimized inde-

pendent of the system equations, The performance measure of equation 

(2.2) is in the form of the simplest problem of the calculus of varia• 

tionsa Determine the function y(t) which will minimize the integral 

500 H( y(t), y(t), t) dt 
to 

where the function His a known continuous function, If the extremUlll of 

the integral is assumed to occur alo:ng a curve y(t) which is twice dif-

ferentia.ble, then a necessary condition for minimization of the integral 

is that y( t) must satisfy the Euler-Lagrange equations 

(2,13) 

This basic result of the calculus of variations, together with the asso

ciated boundary conditions, must be solved to obtain the optimal tra

jectory y(t) of the performance measure, 

For the perfoma.nce measure of equation (2,2) the Euler-Lagranage 

equation and associated boundary conditions are given by 

lim dp/dt ... o. 
t~oo 

(2,14) 

(2,15) 

(2.16) 
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Multiplying equation (2,14) by dp/dt and integrating onee gives 

(dp/dt)2 .. h(p) (2,17) 

where the initial CCl)ndi tion still applies and the constant of integra

tion has been found to be zero from the final. condition of (2,16), 

Equation (2,17) is eqUivalent to 

d p/dt .. --Vh( p) (2,18) 

where the negative sign of the square root is selected in order to min

imize the performance measure for the d~ired objective of 

lim p(t) .. o. 
t +C!IO 

(2,19) 

Equation (2, 18) is the :&).nd.amental inner-product .law of the per

formance measure since it describes in nom the trajectory which mini

mizes the perfomanee measure of equation (2, 2). Since the system error 

and its derivative depend implicitly upon the state !(t) and the control 

.Y( t), the fundamental inner-prodcut law of equation ( 2, 18) is implicitly 

a scalar equation invel.Yii,g the components of the state vector and the 

eontrcl vector, Selecting the control vector so that the fundamental 

inner-prcd•ct law is satisfied will therefore minimize the perform.a.nee 

measure and accomplish the desired objective, 

Utilizing the definitions of the error signal. and its derivative, 

from (2.10) and (2,12), the fundamental inner-product law reduces to 

2 ~Ct) ii.Ct) .. -\/hCPT (2,20) 

or equivalently 

2 ~(t) &t-(t) • 2 q>( p) ~(t) !r(t) (2,21) 
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where 

(2.22) 

Equation (2.21) is equivalent to the vector equation 

Ki AT 1l .. Kz AT A (2.23) 

where K1 = 2, K2 = 2 <p(p ), A • !x,(t) and l! = ir.,(t). 

The solution of this vector equation is considered in Appendix A. 

If A, K1 and Kz are assumed given, then the solution vector }loan be 

represented in the form 

(2.24) 

where §. is any r x r skew symmetric matrix. The solution to equation 

(2o21) ean therefore be represented in the form 

iz_(t) .. cp( p) !r(t) + §. !z.(t) (2.2.5) 

where§. is any r x r skew sj'lllDletric matrix. Appendices A and B consider 

the solution for the equivalent representation 

where§. is any r x r skew symmetric aatrix, !1 is any r x r definite 

matrix and 

(2.27) 

Substitution of the state equations into equation (2,2.5) gives the 

fundamental inner-product m in tems o~ the control and state, 

.lx,(!(t),t) + !z.(t) ](t) = cp(p) !r(t) + .§ !r(t) (2,28) 
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where Jh:(t) • Ir ~(t) (2.29) 

and 

!z.(!(t),t) • Ir .E(!(t),t). (2.30) 

The solution of the set of r algebraic equations of (2.28) for the 

control vector Q(t) has therefore replaced the normal two-point boundary 

value problem. The solution of this set of equations essentially pre

scribes the sollltion for the state equations (2.1) which in norm track 

the optimal trajectory of the performance measure. Further implications 

and applications of this result are presented in Chapter III and Chapter 

IV. The following example illustrates the development and use of the 

fundamental inner-product law of equation (2.28). 

An Introductory Example 

Consider the linear system 

X1 0 1 1 " Xt 1 0 

d/dt x2 • 0 -1 2 x2 .... 0 0 [~. (2.31) 

X) 1 0 1 XJ 0 1 

The control o~jective is to drive the components of the state 

vector to the origin commensurate with a. reasonable expenditure of eon-

trol energy. A reasonable system error signal is therefore given by 

which is in the form prescribed by equation (2.10). 

The performance measure to be minimized is 

(2,JJ) 
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From equation (2.18), the minimizing trajectory of the performance 

measure is given by 

dp/dt ... -2 p(t), (2.34) 

utilizing the definition of the system error signal, the minimizing 

trajectory reduces to the single algebraic equation 

This eq•ation is analogous to equation (2,21) in the development, and 

can be expressed in the foz,n of equation (2,2'.3), 

where K1 • 1, ~ c: -1, AT ... (x1 X2 x'.3) and IT"" <i1 x2 X:3)• The 

solution of this equation, from (2,25), can be expressed in the form. 

0 

d/dt + - a12 o °'2'.3 (2,'.36) 

- 0..1'.3 - a..2'.3 O 

where a.12, a.13 , and ~'.3 are the arbitrary components of the skew 

symmetric matrix.§ in equation (2,25). They may be constants, functions 

of the state vector or general time-varying functions, The only re-

strictien is that the a. coefficients must be bounded, 

Decomposing the vector equation into its three component equations 

and substituting the state equations of (2,'.31) gives 

x2 + x'.3 + u1 ... • X1 + a12 x2 + a.1'.3 x'.3 (2,'.37) 

- x 2 + 2 x3 ""•x2· (t12 X1 + 0,2'.3 X'.3 (2.38) 

X1 + x:3 + U2 ""• Xj • Cl1'.3 x1 - a2) X2 • (2,'.39) 
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Equation (2,J?) and (2.39) can be solved directly for the controls 

u1 and u2, and equation (2, J8) can be satisfied. by selectirig a.12 "" 0 

and a..23 .. 2. The resultant controls are then given by 

U1 a - Xi • X2 + ( 0.1J • 1) X3 

u2 • - ( a13 + 1) X1 - 2 X2 - 2 X:3• 

These controls prescribe the general ala.es of one parameter con

trols for which the state equations of (2.31) track in no:rm the optimal 

trajectory of the perfomance measure of equ.tion ( 2. 33). The eontro.ls 

represent a. class of solutions because the coefficient «13 is arbi

trary, Different choices for the coefficient will obviously result in 

different system trajectories, The different choices are in reality 

~ desoribirig various optimal trajectories on the optimal manifold of 

equation (2,'.34), All such trajectories satisfy in norm the minimizirig 

trajectory of the perfomance measure of equation (2. 34 ), 

Inner-Product Controllable Systems 

For the example just considered, the inner-product approach result

ed in control laws which were closed fo:rm ~gh.l.y flexible solutions, 

However desirable results of this nature may be, the app.licability of 

the inner-product procedure is nci,t withcut limitations. The sueceedirig 

chapters consider those systems which are suitable to the inner-product 

approa.eh. 

Definition 2.1 

A system is inner-prqduct.controlla.blt if and only if it satisfies 

the fundamental inner-product law 
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associated with the perfoma.nce measure 

Theorem. 2• 1 

A eystem described by a set of n differential equations of the form. 

.i(t) l!I .E(,l(t),t) + !(t) y(t) 

is inner-product contrq,llaRle if the r algebraic equations equivalent to 

the fundamental inner-product law are satisfied 

.ErC!Ct),t) + !rCt) .Y(t) .. q>CP) !rCt) + i !rCt) 

where i is an r x r skew sylll.llletrlc · 11.~trix, <p ( p ) is defined in ( 2. 22), 

and Ar• !r and Zr(!( t.), t) are defined in (2.11.), (2. 29) and (2. :30 ). 

Theorem 2.1 is a direct co?!lBequence ll>f the equivalence of the alge

braic equations of (2.28) and the funda.m.ental inner-product .law of 

equation (2.18 ). Either Def'ini tion 2.1 or Theore111 2. t may be used to 

consider the inner-product controllability of a system, 

The d.eteminatio:t:i of the inner-product controllability of a system 

is a function of the perfomanee measure specified since both the funda

mental inner-product law and the algebraic equations contain functions 

of h( p), the error penalty function. A system may therefore be inner

product controllable for one perfoma.nee measure while being not inner-

product controllable for another perfomanee meastll'e. 

While th.e inner-product approach is aimed at obtaining closed fom 

feedback control laws, the resultant controls may not be true closed 
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loop control la.we. In some problems the closed form control is essen-

tially a feedback control modeling a.n open loop control solution. These 

controls result from the utilization of unspecified initial conditions 

of the state variables. In order to distinguish the two types of con

trol solution, the following definitions are presented. 

Definition 2.2 

A system is p-eontrollable if and only if it is inne:r:-product 

controllable for all -! ( t 0 ) • 

Definition 2.3 

A system is O-controllable if and only if it is inne:r:-product 

controllable for some Z,(t0 ) but not all Z,(t0 ). 

For p-controllable systems the control solution consists of the 

control vector and the skew symmetric matrix for which the fundame.ntal 

inner-product control or the equivalent algebraic equations are satis• 

fied. For S-controllable systems the contro.1 solution consists of the 

control vector, the skew symmetric matrix, and any necessary initial 

condition constraints of the state vector components. In general some 

of the state vector initial conditions are given and the remainder are 

.arbitrary. The control solution for a ¢-controllable system would 

then specify only the arbitrary initial conditions or constraints on 

the arbitrary initial conditions, together with the associated control 

.vector and skew symmetric matrix. 

Chapter III com.aiders p-controlla.ble systems, while Chapter IV 

considers 8-controllable systems. 



CHAPTER III 

CLOSED LOOP INNER-PRODUCT FEEDBACK CONTROL 

Introduction 

Implicit in the inner-product approach is the heretofore tacit as

sum.ption that the absolute minimum of the perfo:cmance measure can be 

attained by the state equations. The fundamental inner-product law ex

presses the minimizing trajectory of the performance measure while 

ignoring the interaction implied by the state equations, and therefore 

represents the absolute or unconstrained minimum of the perfo:cmance 

measure. When the system equations relating the state and contro.l var

iables are considered, ~hey introduce constraints into the procedure 

which may nullify the use of the fundamental inner-product law .. 

The assumption that a solution is possible for a problem can some

times be a dangerous one, as is illustrated by Perron's Paradox (17), 

A statement of Perron's paradox is the followings Let N be the largest 

positive integer, Then for N r 1, N2 > N which is contrary to the def

inition of N as the largest integer, Therefore, N • 1. 

The implication of this seemingly trivial paradox is that in 

seeking a solution to a problem, it can not always be assumed that a so

lution does indeed exist. It does not imply the nonexistence of a solu

tion, but cautions against the assU111ption that a solution must exist, 

Chapters III and IV will characterize those systems for which the 

assumption of a solution is valid for inner-product control problems, 

21 



Assuming the applicabili:t;y of the fundaaental inner-product law, 

the o~gtnil~1aeym.ptott:c-:cam:bml ;.problem can be restated in the follor 

ing form. For a dynamic system. described by n differential equations, 

• .iCt) • .EC!Ct),t) + !Ct) .YCt) C3.1) 

determine a control vector .Y( t) a.nd a skew sy!!Ulletrio matrix §. for which 

the r algebraic equations equivalent to the fundamental inner-product 

law are satisfied.a 

.ErC!Ct),t) + !rCt) .YCt) • cpC p) Ii-Ct) ""i !rCt) C3.2) 

where 

!rCt) • 1.r !Ct), C:3.:3) 

!..t-Ct) • 1r !(t), (3.4) 

lrC!Ct),t) • 1.r !C!Ct),t), C3·.5) 

1r. ~: ~· C;.6) 

</> (p). -'Jh(p512p, C3.7) 
a.nd 

pCt) • !;Ct) !rCt). C3.8) 

Chapter III considers the possibility of satisfying equation C3.2) 

for all 4Ct0 ), while Chapter IV considers. the possibilityr:of\·sa..t:ls;f'yi;M 

equation C3.2) for restricted regions of the state space. 

Incomplete Control Solutions 

A closed loop control solution for a. given dynaaic system and 

inner-product performance neasure is defined by the specification of a. 

control vector.Yanda. skew symmetric matrix§. which satisfy the 
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fundamental inner-product law or the equivalent algebraic equations. A 

control solution may, however, .leave several control components unspeci-

fied, either in the§. matrix or in the contrc,l vector, Such solutions 

are incomplete control solutions and must be completed on the basis of 

factors other than the direct optimization of the perform~nce measure. 

The example concluding Chapter II illustrates an incomplete control 

. solution in which a component of the§. matrix remained arbitrary. The 

control solution for the example is given by 

u1 • - x1 - x2 + ( 0.13 - 1) x3 

~ ""· '."' ( 0.1'.3 + 1) X1 • 2 x2 • 2 X'.3 

0 0 0.13 

! • 0 0 2 

- a. -2 13 , 0 

with the o. 13 component of the§. matrix arbitrary. 

Unspecified components of the J matrix are not a disadvantage, but 

may present an advantage by introduc:1:ng.f1exibility into the control 

solution, The arbitrary a. 13 cemponent of the .§ matrix provides the 

ablli ty to select a "best a. eptima.1 cont.rol, based on such factors as 

implementation simplification. For the above example a possible co:n

sideratien m~ght be to select a.13 in order to minimize the hardware 

necessary to implement the contrc,l solution, If the hardware is limited 

to multipliers and two-input sUDU11.ers, Figure 2 illustrates a minimal 

implementation for a.13 = 1, This implElllenta.tion is equivalent to the 

imple11entation in Figure '.3 in tems of minimizing the performance mea-

sure, but is superior in tems of illlplementation simplicity, 



x., 

X2 

u,. 

X3 Ua 
F.tgure 2. An Optimal Control Structure 

for o.13 • 1 

x, u, 

X2 

X3 U2 

Figure '.3· An Optimal Control Structure 
for a.13 ... -1 

All choices of o..13 constitute optimal solutions, for the choices 

all specify an optilllal trajectory on the optimal manifold prescribed by 

the fundamental inner-product law 

dp/dt ... --i./h(p). 

For the example concluding Chapter II, h( p) !IS 4 p2, so the 

solution to the differential equation given by equation (3.9) is 
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(j.10) 

~ter specifying the system error at an initial time t 0 , the above equa

tion prescribes precisely the value of the system error for all time 

after t 0 • Since the system error is defined as p • x12 + x22 + x32, 

the system error also prescribes the sphere in the three dimensional 

state space, upon which the system state must lie at any time t > t 0 • 

Different choices of a.13 will cause the system to follow different tra

jectories in state space, but at any time after t 0 all such trajectories 

will lie on the appropriate sphere, which characterizes the optimal 

manifold in the state space. 

If components of the control vector are unspecified, the control 

solution is incomplete and the arbitrary controls must be selected on 

the basis of such factors as subsystem stability. The specification of 

a secondary error signal and performance measure may be utilized to com

plete the control vector. An illustration of an incomplete control 

solution with an unspecified control component is provided by the fol

lowing example. 

Example '3.1 

Consider the following linear system, 

·x 1 -1 2 0 

d/dt x2 ID 1 0 1 

x, 0 1. -1 

with"asystein error signal of 

+ 

0 

1 

0 

0 

0 

1 

[~] (J,11) 

(3.12) 



The perfo:r:mance measure to be minillized is given by 

co 
J • s (4p2 + (dp/dt)2) dt, 

to . 

and is minimized by the fundamental inner-product law, 

dp/dt .., - 2 p • 

28 

(3.13) 

Substitution of the error sig?lc!,l definition reduces the minimizing tra-

jeetory to 

The algebraic equations equivalent to the above are 

dx1/dt • - x1 + Q X2 

dx2/dt • - X2 - 0. x1 

where a denotes the nonzero entry of the.§ matrix. 

Removing deri va.ti ves by use of the state equations_ yields 

- x1 + 2 x2 • - Xi + Q X2 

Xt + Xj + U1 "" • x2 - Q X1 • 

The first equation is satisfied if the nonzero entry of the§. matrix is 

selected to be 2. The second equation is satisfied if u1 is selected in 

feedback fom to satisfy the equation. The control solution is there-

fore incomplete for it fails to specify the control component u2• 

(J.14) 

:u·. !_ ' . 

0 • 
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The utilization of a secondary error signal therefore completes the 

control solution by specifying the arbitrary control vector component. 

A eoaplete control solution for Example '.3·1 is given by 

Q • [::]. [ 
-'.3 -1 

-~ 
X1 

0 -1 x2 

§· L :]. x3 

-2 

In general, a secondary error signal can be defined as the inner

product of those states whose derivati'\les are controlled by the missing 

controls. In the above example, the unspecified control u2 drives the 

derivative of x3, hence the secondary error signal of x32 was selected. 

If u1 and u2 had been unspecified in the above example, a. secondary 

error signal of x2 2 + x3 2 would be defined since u1 and u2 appear in the 

state equations of x2 al!ld x3• The utilization of a secondary error 

signal as described results in a secondary problem. which is classed as 

a directly p-controllable s.ystem, The so.lution of direct.ly p
controllable systems is presented in the following section. 

Ineoaplete control solutions present no major drawback to inner-

product optillla.l control probl,ems. The unspecified components may be 

determined on the basis of secondary considerations. In the above, sub-

system stability and implementation simplification were used to illus

trate possible approaches. Other factors could be utiliEed to complete 

the control solution, and res'l1lt in valid optimal control systens since 

the fund.a.mental inner-product law rem.a.ins satisfied. The only :restric

tion is that solutions must me tractable and feasible. 

An amplification and extension of the incomplete control concept 
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includes those control solutions which utilize only the control vector 

or only the§. matrix to satisfy the funda.lllental inner-product law. If a 

control solution uses only the control vector the system is termed a. di

r~etly p-contro.llable systent. If a contro.l solution uses only the.§ 

matrix the system i;s called an a-controllable system, The following 

two sections will consider directly p-contro.llable systems and a

controllable systems. 

Directly p-eontro.llable Systems 

When the rank of the control distribution matrix ! is of rank n, 

__ the system. is te:rmed sY.,rectly controllable (18). The controls of such a 

system. can affect all components of the time derivative of the state 

vector directly, hence the naae directly controllable systems. The 

ability to directly control the state vector derivative reduces the 

control of the system to the control of n first order differential 

equations. In order to extend the directly controllable concept, define 

the system. error signal as a. quadratic fo:rm J:>f rank r as in equation 

(:3.8), 

2 2 2 P""x1·+x2 +.,.+Xi-• 

Definition 3.1 
If the controls of the system can affect independently and directly 

the time derivative of the states x1' x2, • , • , Xi-• then the system is 

te:med. directly p•controllable, 

The ability to control directly the first r state vector deri va

ti ves results in control soltttions which use only control vector eompo-

nents to satisfy the fundamental inner-product .law, 
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Since directly controllable systems control independently and 

directly all state vector derivatives, they are included in the class of 

systems which a.re directly p-controlla.ble. 

Without loss of generality, the state equations of a directly 

controllable system can be assumed te be of the fo:rm I 

. . 

!(t) - .E(!(t),t) + !(t) (3.17) 

where !(t) • j!(t) .Y(t). If the 1! matrix is m x n and of rank n, then 

n • m or m > n. Either ease is represented by the control vector !(t). 

If the 1! matrix is n x n and of rank n, then it is nonsingular. 

Once a solution for !(t) is obtained, a solution for the control J!(t) 

can be determined uniquely by 

(3.18) 

If the 1! matrix is m x n and m > n, the control portion of the 

system is a.nalogo'tlS to a consistent system of n equations with m wi-

knowns. Such a system can be solTed for n unknowns in terms of the 

remaining m-n unknowns. The control vector can therefore be decomposed 

into two parts and equated to the control vector !(t), 

(3.19) 

where 1!1. is n x n and nonsingular and 1!2 is (m - n) x n. Once a solu

tion for !(t) is abtained for the system in equation (3.17), a solution 

for !l1 (t). can be dete:rmined in terms of the solution !(t) and the re

maining terms of the control. 

(3.20) 
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The specification of a. .Y2 vector defines the remaining control vector 

.Y1 and therefore defines the totaJ. control vector y(t). Very few eo~ 

trol problems involve a 1]! matrix for which m > n; however, if such is 

the case, the state equations of such a system. a.re represented by the 

directly controllable system. of equation (3.17) if! is of rank n. 

Theorea :,.1 

All directly eontrellable systems are p-controllable. 

Proofa For directly controllable systems, the algebraic equations 

of (3.2) a.re given by-

l:r.- !(t) .. cp( p) &t,(t) + i Zr(t) - Zr(!(t),t). (3.21) 

If the control vector components v1, v2, •••, vr are defined in feedback 

fo:r.,n as specified by the above equatiens, then the r algebraic equations 

equ1Ya.lent to the fundamental inner-product law are satisfied for aJ.l 

!(t).. If the equations are satisfied for all !(t) they are satisfied 

for all !( t 0 ) and the system is p-c~mtrellable from Definition 2. 2. 

Equation (3.21) defines the first r components of the n-dim.ensiona.l 

e~ntrol vector y(t), and leaves n • r control vector components and the 

i matrix cemponents mispecified. The techniques of the previous section 

can be employed te complete the control solution. The following example 

by Leeper and Mulholland (19) illustrates the e0ntrol solution far a. 

directly controllable system. 

Example :,.2 

Consider the problem. of·. a. oody spimd.ng in free space, in which the 

control objective is to stop the tum.'bling of the body and stabilize 



the '.a.t-titudtFo:f· th• syste111.: i The a-tate:~equ.atlona Gf,"'l;he,:·eys:t&m.·a.re , 

given-by 

dx1/dt "'" /11 x2 X'.3 + V1 

dx2/dt "" {32 X1 Xj + v2 

a.x3/dt = {33 x1 x2 + v3 

where x1, x2 and x3 are the components of the angular momentum. vector 

and v 1, v 2 and v j are the control torques. The {3 coefficients are 

constants defined by 

/31 ... (I2 - I3)/I2 I3 

/32 • (I3 - I1 )/I1 I3 

{33 .. (I1 - I2)/I1 I2 

where I 1 , I 2 and I:3 are the moments of inertia about the principal 

a.xis. 

If the angular momentll!D. vector is zero then the angular velooiites 

are zero and the body is not tumbling. The objective can therefore be 

stated simply as driving the angular momentum vector to zero, and a 

natural and reasonable error signal is given by 

Using the general perfomanee measure of equation (2.2), 

the minilllizing trajectory from the fund.a.mental inner-product law is 

given by 
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where 

The algebraic equations equiva.1-ent to the fundamental inner-product 

law a.re 

• 

.All optimal controllers satisfying the algebraic equations a.re 

defined t:miquely by the three parameters 

Specification of the parameters will define the control structure for 

the above algebraic equations. 

Mulholland and Rhoten (9) have solved this problem using the above 

formulation under the assumption of a fixe~ control configuration. Al

though the resultant control is a c.losed form controller minimizing the 

performance measure, the solution is a member of the general class Qf 

solutions obtained by utilizing the skew symmetric matrix• 

The fixed configuration controller used by Mulholland and Rhoten 

is given by 

1 .,. 1, 2, :,. 

Clearly this control is a special so.lution of the algebraic equations 



With /J1 = -.25, f32 = .75, f33 = -.50 and x1(t0 )-x2(~0 )~x,(t0 )=5, 

and a perfomance measure of 

J = s: [ 4 p4 + (dp/dt)2J dt, 
0 . 

the optimal controls are given by 

Vi • - p Xi + 0.12 X2 + 0,,3 X) 

V 2 .,. - p X2 - Q.12 Xi + Q.2J X) 

v'.3 • -P X3 - 0.13 x1 - ~'.3 x2 • 

A set of t~jectori·es for x1 (t) is given in Figure 4, where ea.ch 

trajectory represents the response o:f' x1(t) to a particular control. 

The three parameters identified. with each trajectory are °'12, a 13, 

and a 23 wh1Qh define the control structure. The state trajectories of 

x2 and x3 are simUar in fom, 

The example 11lustra.tes the eontro.l structure flexibility introduc

ed by the skew symmetric matrix for directly controllable systems, The 

generality is not w1 thout 11.mi ts, If the fundamental inner-product law 

is selved for this example, the minimizing trajectory of the system in 

no:cm is 

p(t) • 75 I (15o(t - t 0 ) + 1). 

For all time the soltttion trajectory of xi' x2, and x3 satisfy this 

equation, and are bounded by the fixed values of ;t ~· The skew 

symmetric matrix in reality introduces damped oso11lations which may 

yield illlproved system trajectories, 
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Theorem. '3.2 

All directly tp-eontrollable systems are p-controlla.ble, 

Proofs The algebraic equations of' (3,2) a.re 

~(t) y(t) + .fr{!(t),t) IC <p(p) !z.(t) + J .&r(t). ('.3,22) 

A system. is directly p-controlla.ble if the controls of' the system 

can affect ax1/dt, ax2/dt, ... ,d.xr/dt directly and independently, The 

1!r matrix is therefore an r x m matrix of rank r, 

If m "' r, then !r is nonsingular and the control is given by 

If m >r, the control signal !r y can be decoig,posed into two pa.rte, 

!r .Y(t) a; !r1 Y1 (t) + !r2 Jl2(t) 

where !r1 is an r x r nonsingular 11t.a.trix, and &t,-2 is an r x (m. • r) 

matrix, The control solution form >r is given by 

.l!i Ctl ~ ,! E <pc Pl 1 + i) .o,rCtl - Er<!Ctl,tl - .!!r2 .!!:!Ctl] • c,,211i 

Since the control vector .Y is composed of the components of y1 and 

y2, the above control solution is an incomplete control solution, The 

skew symmetric matrix j and the control vector Jk must be determined on 

the basis of seoonda:r:'y considerations as presented in the previous 

section, Once y2 and j a.re defined, the control vector y1 will be 

defined, Since the funda.lllental inner-product law is satisfied for a.ll 

!(t), the system is p-eontrollable, 
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Corollary 3.1 

If' the rank ! > rank 1r ! "" r, then the system is p-eontro1la.ble. 

Proof I If rank ! 2ral!lk 1z. ! "" r then the system is directly 

p-eontrollable and frem Theorem '.3, 2 is then p-eontro1lable, 

a-eontrollabl' Systems 

While some control solutions utilize only the control vector in the 

control solution, the control solution may also only specify components 

of the skew symmetric matrix !• The elements of the ! matrix are 

denoted by the n(n-1 )/2 elements Cl..tj where i = 1, 2, , , • , n - 1 and 

j = 1+1, 1+2, •••, n. 

Definition J.2 
A system. is called a.n a.-controllable sYStem is it is p

controllable and utilizes only the.§ matrix in th.e control solution, 

Lemma 3.1 

If a system is a-controllable then k: ! • .Q., 

Proof, If a system. is a-controllable then the algebraic equations 

Of ('.3,2) are satisfied for a given skew symmetric matrix, This control 

solution is valid for a.11 bounded control vectors, so assume .Y "'.Q.• The 

.§ matrix of the control} solution satisfies 

cp( p) 1z. +§.Zr - lr(l(t),t) .... .Q., 

Assme lr ! ,f .2..• At least one of the aJ.gebraie equations of ('.3,2) 

contains· a eontro.l vector component. Suppose the kth component of 

k ! .Y is a nonzero component, and denote it by u1• The kth algebraic 
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equation is given by 

since the kth row of the remainder of the equation is zero from (3,25), 

This contradicts the assumption that u1 is nonzero, so the a.ssmp

tion that a system can be o..-eontrolla.ble with !r r .2 is false and 

the theorem is· proven, 

Theorem j,3 

A system. is Q-eontrollable if and only if 

i) ~ ... .Q. a.nd 

11) .Er,(!(t),t) • [ cf>(p) l + 1] lz,(t) 

for some r x r skew symmetric matrix I• 

Proof, Substitution of equations (3,26) and ('.3,27) into the alge

braic equations of ('.3,2) verifies the sufficiency of the conditions. 

Equation (3,26) is a necessary condition from Lem.ma. 3,1, so the theorem 

is proven if equation (3,27) is show to be a necessary condition for 

satisfying the algebraic equations of (3,2), Substitution of (3,26) 

into (3,2) reduces the equations w the fom of equation (3,27), proving 

the theorem, 

Example J,J 
Consider the nonlinear system 

Xi x2 x3 -x1 0 0 

x2 • Xz • xi ~ 0 0 

[~l d/dt "" + 
X3 x12 + x2 1 0 

~ x1 ~ 1 1 



~ th a system error signa1 of 

and a performance measure of 

J = r c4 p 2 + (dp/dt)2 J dt. 
to 
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It is readily verfied that the conditions of Theorem 3•3 are satisfied 

for the above fo:cmul.ation. For the error signa1 specified, 

0 0 :J 1 0 

and 

which verifies equation (3.26). 

For the performance measure specified, h( p ) ... 4 p 2, so 

<p( p) ... - 1. 

The algebraic equations of (3. 27) are given by 

x2 ~ - x1 = - x1 + 0.12 x2 

- Xz • X1 X3 .., - CL 12 Xi - X2 

and are satisfied if a.12 = x3• The above fo:cmul.ation is therefore an 
I 

a.-controllable system in which the control vector components are 

selected from secondary considerations. 

In the general system fo:rmul.ation of equation (3.1), the. condition 
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of equation (3, 26) requires the r algebraic equations of ( 3· 2) to con-

ta.in no control te:r:ms, If a control app~a.rs in an equation the control 

is then specified by the equation and the system is no longer an a.

controllable system, The condition of equation (3,27) specifies the 

form which the plant structure must possess in order to be an a.-

controllable system, 

In order to better visualize the implications of Theorem 3,3, the 

theorem can be applied to linear systems, An n-dimensiona.l linear 

system given by 

• X -= A X + B U - ,..... .. ... --
can be represented in the partitioned form 

(3,29) 

where Ai.- •.Ir!, k • lr ! and the remaining matrices and vectors a.re 

appropriately di.lllensioned subma.trices and. subveetors of A, j and!• 

Lets• (n - r), !r is r x 1, !sis s x 1, 4:r:r is r x r, Ars is r x s, 

~r is s x r, Ass is s x s, Ar i"B r x m, and ,!s is s x m, 

Theorem. 3,4 

A linear system in the fo:r:m of equation ( 3• 29) is a. •controllable 

if and enly if 

i) k .. .Q. ' 

11) Are • .Q., 

and ·111) Arr DI cp( p) l + .§ 

for some r x r skew symmetric matrix.§.. 

(3.30) 

(3,31) 

(3.32) 



Proof• Equation (3,30) of Theorem. 3,4 and equation (3,2~) ef 

Theorem 3,3 are eqm.valent, If' equation ('.3,27) is equival.ent to 

eq_uations (3,31) a.nd (3,32) the theorem prrof is complete, 

Substituting the state equations of the linear system. of (:3e 29) 

into equation (3,27) y;telds 

The sufficienc:r ef equations (3,31) a.nd (3,32) follows from the substi

tution of the equations into (3,33). 

A system which. is a-controllable is p-controllable, and from the 

defini tien of a p•eont:rolla'ble eyst• equation (3, 33) m,ust be Talid for 

al.l !(t0 ), If eq1aa.tion (3,33) must be val.id for all l(t0 ), it mut be 

valid for all !(t), 

The necessity of equation (),'.31) is verified fl.'Gm equation (3,33) 

if &: • .2 a.nd the components of &s are 1, The neeessi ty of equation 

(3,32) is verified from equation (:3,:33) if .le• .2 and. the components of 

&r: are 1, Therefore equation (3,27) is equival.ent to (3,31) and (3,32) 

for the linear system of ('.3, 29), and the proof is cC!>mpletecl, 

The condit:!fens of Theorem ),4 reduce the linear system C!>f (3,29) to 

· the fC!>llowing ferm a 

In addition, equ.tien (3,32) requires the diagonal. elements of' Arr to be 

equal to the f'llnction cp( p ) , and the off diagonal. elem.ants of Arr tc, be 

skew symaetrie, If the principal diagonal elements of Ar.r_. are constant 
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and equal, then · the function cp( p) must also be a constant, Since 

cp ( p) is a constant if and only if h( p) can be expressed in the fom 
\ 

h( p) .. 4 k2 p 2 

where k is a constant real number, This leads directly to the following 

corollary of Theorem. 3.4. 

Corollary 3.2 

A linear system in the form. of equation (3. 29), for which the diag-

onal elements of Arr are constant, is a-controllable if and only if 

1) ~ i:- .Q. , (3.36) 

11) Ars .. .Q. ' (3.37) 

111) h( p) = 4 k2 p 2 where k is a real. number, and (3.38) 

iv) Arr = kl+.i (3,39) 

for some r x r skew symmetric matrix .i• 

The proof of Corollary 3,2 follows directly from Theorem. 3.4 and 

the discussion preeeeding the corollary, 

The results of Corollary 3.2 are not restricted to constant 

coefficient linear systems, but only to those with constant coefficients 

in the diagonal entries of the matrix Arr• 
The extension of Theorem 3.4 to linear systems for which the diag

onal elements of Arr are time-varying is\ore difficult since the diag

onal elements must eqw cp( p ) which is not an explicit time function. 

However, if cp ( p ) can be expressed as a time function then Theorem 3• 4 

can be extended to this situation, 
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If the diagonal elements of ~ are time-varying and equal, the 

system may be a.-controllable if p( t) can be determined as a closed 

fom time function. If the fundamental inner-product law can be solved 

directly this requirement can be satisfied. 

For example, if h(p ) = p~ then the :f'Jmdamental inner-product law 

is given by 

The solution 6", this differential equation is given by 

and q> ( p ) ean then be expressed as a. time function 

c:p(t) • - 1/(t + a) 

where a is the·constant given by 

A linear system with tint.e-va.rying coefficients can then satisfy the 

conditions of Theorem 3.4 if the diagonal elements of A:.rr are equal to 

the time function q, (t ). 

eoi\,um 3,3 
A linear system in the fom. of equation (3. 29), for which the diag-

·Onal elements of Arr are time-varying is O.•controllable if and only if 

1) the fundamental inner-product law can be solved for 

11) 

p(t) as a time function, 
B ... 0 , 
-T -

111 ) Az..s = .Q, and 



iv) A:rr(t) "' ( cp(t) l. + l(t)) 
1: 

for some r x r skew sy:nuaetr:tc matrix .§(t). 
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Proofs The su:f':f'ioieney of the conditions follows directly from 

equation (:3,2) and the necessity of the conditions follows from Theorem 

3,4 and the remarks preeeditig·t.the1 :e~laary:. 0 

Ta :lllus'b-rate the eondi tions of Coro.lla.ry :3• 2 and Corollary :3. 3 

the following example is given, 

Exaaple '3.4 

Consider the general faurth order linear systen 

Xt a11 a12 ai:3 a14 xi bu b12 

d/dt 
X2 a21 a.22 a2'.3 a,24 Xz 

+ 
b21 b22 [~1 = 

x, a'.31 a:32 a3:3 a34 X:3 b:31 b:32 

X4 a41 a42 B.43 a44 X4 b41 b42 

with an err0r signal of 

p= xi 2 + x2 2 • 
·.•, 

The condition that ir = .Q. for Corollary ;,2 and Corollary 3.:3 requires 

OJ 
0 • 

(J.40) 

The condition that Ara= .Q. requires 

OJ 
0 • 

(;,41) 
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The eff diagonal ele111ents of Arr must be skew sym111etrio, which 

requires 

The diagona1 elements of Arr must equal cp( p ) , which requires 

(J.4J) 

The genera1 fourth order linear syste111 is 0-eontrollable for a system 

er:t'(!)r of 
P•x2+x2 

1 2 .·· 

if the syst~. is of the form 

x1 a.11 -a21 I 0 0 Xi 0 0 
I 

[::] Xz ~1 au I 0 0 x2 0 0 
d/dt ... _____ ..J ____ 

+ -~--
x3 a:31 a.:32 I a:33 a:34 x, b:31 b:32 

I 

X4 a41 a.42 :a4:3 a.44 ~ b4:1: b42 

where 

If a11 and a22 are constants, then the system is a. -controllable 

only if the error penaJ.ty function is of the form 

h(f). 4 k2 p2 

If a.11 and a.22 are tillle-varying, then the system is O.•controlla.ble 

only if the fundamental. inner-product law can be solved for p(t) as a 

tillle function. For exaJllple, if h( p ) • p ( t )2k w1 th k > 1, then the 
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f'undaaen¥ inner-product law can be solved for p(t), and the function ,, 
q>( p) can then be expressed in the fo:r:m 

where 

a• 1/(k-1)1/(k-i). 

The develepaent of this result follows from the results of .Rhoten and 

Mulholland ( 8). 

p-eontro1lable Systems 

If a systen ia p-co:nlroll~ble it satisfies the r algebraic equa-
,. 

tions 

~ .Y(t) - <p( p) l..t- + i 4r - l.t,.Cl(t),t) 

for all !(t). If the rank of lr is denoted by b then there exists a 

nonsingular transf'omat,on matrix I s\tCh that the above equations can 

be t~fomed and partitioned. into the fom 

[ U' ( t )1 [ T J ( 
-.!! j • ~ ~(p) 1 + A] 1r - J;_.(!(t),t) ) 

where 

and 

.Y' (t) • I1 lr .Y(t). 

The transformation na.trtx 11 is b x r and the transformation 11.atrtx 

I 2 is (r - b) x r. The transfo::mation dee~mposes the r algebraic- equa.-
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tions into two sets of equations. The first r algebraic equations con

sti tute a directly p -controllable sµbsystem where Y' ( t) is specified in 

feedback fom as dictated by the first r equations& 

Y' (t) • I 1 ( cp ( p) !z. + ! !t.c, - !,r(!(t),t) 

for any r x r skew syJDllletrie matrix i• If the remaining (r - b) alge-

bra.ie equations, given by 

are satisfied by specification of the .§ matrix components, then the 

systm is p-eontrollable, Likewise, if the system is p-eontrollable 

then the algebraic equations of (;,44) and (J,4.5) must be satisfied. 

Since the equations of (J.44) a.re satisfied by specifying the controls 

as indicated, the general requirement for a system to be p

contnllable is that the equations of (J.4.5) be satisfied. 

Theoran J•5 

Let b denote the rank of !z.• A system is p-controllable if and 

only if 

for some r x r skew symmetric matrix!• I.2 is an (r - b) x r matrix 

of rank (r - b) and 

Theorem J•.5 simply expresses the requirement of equation (J.4,5) in 

a formal theorem. The proof is a direct result of the development. 
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As in the section on a-controllable systems, the 1mport ef the 

general theorem is best illustrated when applied to linear systems. An 

n-dimensional linear system. ea.n be partitioned in the fom 

t,.46) 

where (3.~) is equivalent to the partitioned linear system of (3.29) 

and Ar and ,As are given by-

As • [!-rs] 
Ass • 

Theorem '.3.6 

A linear system in the fo:rm of equation t,.46) is p-eontrolla.ble 

if and only if 

i) 12 A,, ... .Q., and 

ii) l2 Ar • l2 §. + p( p ) l2 

for some r x r skew symmetric aa.trix §., The matrix 12 is an (r - b) x 

r matrix of rank (r - b) for which 

iii) l2 ~ "".Q. • 

Proof I The sufficiency of the oondi tions is ver1:f'1.ed by subs ti tu

tion into the algebraic equations of (3.45). From Theorem 3,5, the 

linear system is p-eontrollable if 

where I2 is an (r - b) x r aatrix of rank (r - b) and 
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Since equation ('.3,47) must be valid for all !(t), the necessity of 

conclition i is verified from equation (3,47) if' ,k(t) • Q and the compo· 

nents of Lare 1, Conclition ii is verified from equation (3,47) if 

. Zs • .Q and the components of~ are 1, completing the proof, 

The use of Thearem. 3,6 is illustxated by the following exaµiple, 

Example 3,,5 ·-

Consider the linear system 

Xi 0 1 -1 -1 X1 1 0 

x2 1 1 0 -2 Xz 1 1 [~] d/dt • + 
'X'.3 -1 0 1 2 XJ -1 1 

~ -2 -1 1 0 0 

with a system error signal of 

and a perfomance measure of 

The algebraic equations which mininlize the performance measure are 

1 0 [U1] --i 
0 12 0.1:3 0.14 xi 0 1 -.u -1 xi 

1 1 I: ·°t -1 ~'.3 0.24 X2 1 1 0 -2 x2 

u2 -a:, -1 1 -~, -1 0.34 x, -1 0 1 2 X'.3 

0 0 -0..14 -~4-°'4 -1 Xli, -2 -1 1 -1 x4 • 

For this example, r • :n, so eonclition i of Theorem '.3,6 iSJ trivially 

~a.t~~f~~' 
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The rank of ~ is 2, s<> a suitable tra.nsfo:r;mation matrix is given 

by· 

1 0 0 0 

1 ... l!~l. -1 __ o __ 1 __ o_ 
[1J 2 -1 1 0 

0 0 0 1 , 

and the transformed algebraic equations a.re given by 

t11 -1 a.12 °'1:3 a.14 

~ - (-°i_3+1) (-~3-a,.2~. · (-1- a13) ( °,4· a.14) 

0 
- - - - - - - - - - - - - - - - - - - ~-< °'1.2-0.13- 2) (2<lj_2+1~3) <2'i.r0,.3-1) (~4-~47 ) 

0 -a.14 -a.24 -~4 -1 

0 1 -1 -1 X1 

-1 -1 2 '.3 ~2 

-2 1 -1 2 X:3 

-2 -1 1 -1 X4 • 

xi 

x2 

X) 

The first twe algebraic equations correspond to equation (J.44) and 

are satisfied by specifying u1 and u2 as dictated by the equations. The 

la.st two equations correspond to equation t,.45) and are satisfied by 

specification of the a. coefficients. Equating the coefficients in the 

last two equations to zero yields the necessary conditions, 

(-2 + °"12 - a.13) + 2 ... o, 

(2 a.12 + 1 - a.23) - 1 • o, 

(2 0.13 - a. 23 + 1) + 1 ... o, 

<2 a.14 - a.24 + a. J4) • 2 ""' o • 

0.14 - 2 • o, 

0.24 + 1 ... o, 

0.34 - 1 = o, 



The necessary conditions thez,~fore reduce to 

a. = -1, . 34 

The control solution of the example is then given by 

.1! ... 

0 <\2 °"12 
2 

-o. 0 20.12 1 
i= 12 

- 0. -2(\ 12 2 0 -1 

-2 -1 1 0 

where a.12 is selected fro• secondary considerations. 

The results of Corollary 3• 2 and Corollary 3. ·3 can be extended to 

general. p-controllable systems. 

Corollary 3.4 

A linear system 'Hi th eoneta.nt coefficients is p-controllable if 

and only if 

1) !2 ~ .. Q, 

1:p h(p) = 4 k2 p 2 where k is a real number, 

111) 12 J.r • ,1:2 .§ + k I 2 for some skew symmetric matrix i• 

The matrix ! 2 is a.n (r - b) x r aa.trix of rank (r - b) and 

iv) I.2 l!r • Q• 

Corollary 3.4 follows directly from Theorem 3.4, Theorem 3.6 and 

their proofs, 
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Corollary 3,5 
If the fundamental inner-product law can be solved for p(t) as a. 

time :function, then a linear system with time-varying coefficients is 

p-eontrollable if and only if 

1 ) ! 2 As .. .Q. , and 

11) ! 2 Ar • I.2 1 + cp(t) Iz for some r x r skew symmetric matrix 

!• The matrix 12 is an (r - b) x r matrix '1>f rank (r - b) and 

.111) .; ~ = .Q. • 

In Corollary 3• 3 the :f'unda.lllental inner-product law had to be 

salved as a time function 1£ the diagonal el•ents of.Arr were time

va.rying. In Corollary 3.5 this requirement is stated as an assumption 

since the ! 2 matrix has destroyed the properties of~~· lt'herefore,· if 

a· linear:.systeill has both constant and time-varying coefficients, then 

the conditions of Oero1la.:t7" 3.4 and Corollary 3•5 present possible 

necessary and su:f'f1<\1ent conditions. 

Fixed Configumtion Oe>ntrol 

The fixed configuration control strue~ure considered is the system 

introduced by Mulholland and. Rhoten (10), The systel!l is described by 

the equations 

i·A!+ el!! 
e .. f(p) 

p- !; Z:r 

whdl f is a scalar feedback control signal. The system is equivalent 

to a linear systE!lll in which the e,~trol veotar is given by 
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The procedure presented in the previot1S section ref1ects the phil

osophy of satisfying the scalax fundamental inner-product law indirectly 

through the equivalent algebraic equations. By fixtng the control 

structure ~ indicated, the scalar funda.111.ental inner-product law can be 

satisfied by specifying the seal.ax controller f(p) in some problEDS• 

Substituting the system. equation into the fundamental inner-product 

law , yields 

Sol ~ng directly for the control signal e gives 

where 

T If l:r ~ is sem.idefini te or indefinite, then there exist regions 

of the state space for which the control signal is unbounded. Since 

unbounded eountrols are physically Ul'lrealiza.ble, the above controller 

is applicable only if the denominator is nonzero for all !(t) r o. In 

order to insure this requirement for all !( t) r O, the symmetric portion 

of l_r ~ mt1St be positive definite or negative definite. This requires 

k to be then x n identity matrix and the symmetric portion of~ to be 

a definite matrix. If these eond.i ticrns a.re satisfied, then the above 

control signal prescribes the optimal feed.be.ck control signal for the 

. fixed configuration. This restriction of the applicability of the fixed 

configuration was a principal factor in selecting a general control 

structure and a general error signal for this research. 



Under the condition that lr • 1 the control signal reduces to 

If the plant matrix A is skew symmetric and the system is directly 

controllable with J! • 1, then the feedback control signal becomes a true 

inner-product et1mtroller, 

The control structure in this oa.se consists of a single nonlinear trans

ducer whose input is the asystem error signal. A complete summary of the 

results for fixed configuration controllers with J! nonsingular a.re pre

sented by Mulholland and Rhoten (10). 

The theorems presented in Chapter III provide the necessary and 

sufficient oondi tions fer systems to be p-controlla.ble. Theorem :3.1, 

Theorera 3•2 a.nd Corollary :3.1 apply to directly controllable systems 

a.nd directly p-contro1lable systems. Theorem '.3·3 gives the general 

. necessary a.nd sufficient eondi tions for a-controllable systems, and 

Theorem 3.4 and Corollaries 3,2 and 3.:; extend the results to linear 

systas. Theorem 3,5 considers the necessary and sufficient conditions 

for systems to be p-controlla.ble, a.nd Theorem 3,6,and Corollaries 3,4 

and :;.5 extend the result to linear systems, 

Together these theorems provide a firm foundation for detel.'lllining 

the applicability of' the inner-product approach to any given system, if 

a global..ly optimal feedback control is desired. Chapter IV eonsiq.ers 
7 

··-
non-'globally' optimal feedback controls •. 



CHAPTER J;V 

OPEN LOOP INNED-PRODUCT FEEDBACK CONTROL 

Introduction 

A control system is ueually comid.ered to be a closed loop system 

if it is a feedback system, and an open loop system if it is not a feed• 

back system. In most modern control literature the terms closed loop 

and f eedba.ek are used. intez,c.m.a.ngea.bly • as are the terms open loop a.nd 

nonfeedba.ck. :fbwever, in the inner-product formulation, the resultant 

control system can exhibit properties of an open loop control system a.nd. 

a. closed loop control system. From the conventional point of view such 

controls a.re ~ither open loop nor closed loop, since the classification 

is nomal.ly a mutually excl'US:1ve one. The term ™~inner-product 

feec;\back control has therefore been adopted to indicate this particular 

class of control solutions, The following example and preparatory re

marks illtstrate the open loop and feedback characteristics of such 

solutions. 

The open loop inner-product feedback controls are based. upon satis• 

fying the a1gebra.1e equations equiva1ent to the f'undamenta1 inner

prod'l!lct law by use of the following theorem •. The theorem is a direct 

consequence of elementary ea1culus, and a1though it is quite simple in 

concept it results :tn a significant extension in the applicability of 

the inner-product control theory. 



Theorem 4.1 

Let g(t) be a continuous :real .. valued function. The function 

g(t) • a where a is a constant for al.l t >t0 if 

i) g(t0 ) • a., and 

ii) dg(t)/dt • O for al.l t ~t0 • 

(4.1) 

(4,2) 

Proofs The theorem follows from the mea.n val.ue theorem. For any 

., tim.e t 1 > t 0 , the mean value theorem states that there exists a time 

t 2 such that 

and 

If g(t0 ) • a. and dg(t)/dt = O for all t ~ t 0 , then equation (4.3) 

reduces to 

which proves the theorem. 

The idea expressed in the theorem is that a time-varying function 

is equal to a constant value for all time if is is set a.t the desired 

value and not al.lowed to vary. If' dg(t)/dt"" 0 then the function will 

stay in place and g ( t) "' a for t ~ t 0 as desired, 

In some control problems the initial conditions of some of the 

state variables a.re unspecified, In the inner-product fo:cmula.tion the 

added degree of freedom may provide the f'lexibility needed to solve a.n 

optimal control problem, Theorem 4.1 can also be used to obtain control 

solutic,ns which require no adjustment of the initial conditions, but 

specify constraints on the initial conditions such as x3(to) r o. 
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The algebraic eq't1ations equivalent to the fundamental inner-product 

la.ware time-varying functions analogous to the g(t) function in Theorau 

4.1. If the control vector and skew symmetric matrix components can not 

satisfy the equations, then Theorem 4.1 1'ov:tdes an al terna.te approach. 

'!'he control vector and skew symmetric matrix components may be able to 

satisfy the derive.t:tve of the equation, If this :ts the case, and the 

equation ea.n be satisfied at the :tn:t t:tal ti.tile t 0 , then the algebraic 

equation is satisfied. The :f'o1lowing example illustrates the use of 

Theorem 4.1, as well a.s the open loop and feedback ehara.eter:tst:tcs of 

the controls resulting from the use of Th~~em 4,1, 

Example 4.1 

Consider the problem of a moving unit mass wh:teh is to be control• 

led through the acceleration component of the state vector, It :ts 

assaed that the initial position of the mass :ts given at time t 0 , and 

the control :ts to be selected to drive the position of the mass to the 

origin, and maintain this position, The system. equations are 

dx1/dt • Xz 
dx2/dt • u 

where x1 represents the distance and x2 denotes the velocity. 

To place the problem in an inner-product fomulation, a system 

error signal is given by 

and the perfomance measure :ts selected as 
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J a f [4 p2 + (d p/dt}2] dt. (4.4). 
to 

The algebraic equation minimizing the performance measure is 

X "' - ~ X1• ·2 "2' . 

-.li\r:om Theorem. 4.1, the minimizing equation is satisfied if 

(4.5) 

and 

The state equations reduce the latter condition to the form 

(4.6) 

The perfomanee measure is therefore minimized if the initial ve

locity of .the moving mass is selected according to equation (4.5) and 

the acceleration control is selected in feedback fom as indicated by 

equation (4o6)e The specification of the initial velocity places the 

system trajectory on the min:1,mizing trajectory of the performance mea

sure, a.nd the feedback oontro.l maintains the system on the trapeetory. 

In contrasting the control solution of equation (4.5) and (4.6) 

w1 th oc,nventional open loop and closed loop centro.ls, the feedback na

ture of the solution is rea.dily apparent. The control 0f equation (4.6) 

is in feedback form for it specifies\the control input as a function of 

the_o·bserved system outplt.. However, the control of equation (4.6) 

specifies only one half of the total control solution. The remaining 

one half of the selution given by (4.5) is not a feedback contro.1, but 

eha.ra.cterizes the epen loop portion of the control. 
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Since ai open loop control does not utilize the system. output to 
I 

detemine the control, the deviation of the system from the assumed tra• 

jectory is not accounted for in the control. The control must therefore 

be eare:f'ally calibrated and must JD.ainta.in that calibration in order to 

be useful. If external or internal disturbances are present in the sys• 

tem, an open loop control will not perform the task for which it was 

designed. Instead, it will continue tc, apply the precomputed control 

designed for the assumed trajectory. This results in the system follow

ing a trajectory which is no longer necessarily optimal. 

If equation (4.5) is satisfied then the system will begin initially 

on the optilllal trajectory a.nd the feedback oc:mtrol will maintain this 

trajectory. However, if the initial conditions are inaccurately adjust

ed or if the system is disturbed at some later time, then the feedback 

control will not sense the er:ror but will. continue to apply the feedback 

control on the assumption that the system is follcndng the original 

optilllal trajectory. If'a trdec:f'"'eedback:00ntrol is disturbed from the 

assumed trajectory, it essentially a.ssues a new optimal trajectory 

originating a.t the present observed state of the system.. In a sense 

then, the feedback control of (4.6) is mc,deling the open loop solution 

of the problem. 

The necessity of tracking precisely the minimizing trajectory of 

the performance 1aeasure is easily illustrated if the system is salved 

assuming the control of equation (4,6) without satisfying equation 

(4.5). The solution for the state variable x1(t) is given by 

If the ini ti.al veloei ty is adjusted to comply w1 th equation ( 4. 5), 



then the equation for x1(t) reduces to a.n exponential which decays to 

zero. If' the initial velocity is inaccurately specified or if the sys• 

tem is perturbed at some later time, then the steady-state value of x1 

will not be zero and the performance measure will become in:f'ini te, 

To Ulustrate the insensitive nature of the control to system 

.variations, assume that at some time t 1 the moving mass encounters u.n

expected fricticm. If' the friction ceases at time t 2, then the state 

equation for the velocity component is given by 

t< t1, t >t2 

t2> t> t1 
(4.7) 

where K2 denotes the ,effect of' the friction. During the time interval 

:f'rem t1 to t 2 the acceleration proYided by the control will be insuf'f'i• 
' 

eient to maintain the required velscity relationship with the syst• 

position. As a result the relationship between.x1 and x2 will be 

altered from the desired form. of' 

(4,8) 

to 

where k > o. The eontml w1l.l maintain the latter relationship for all 

tiae t > t 2 in the absence of any further disturbances, T.he reslll tant 

beha.Yior of the system position component under these assUD1.ptions is 

illustrated in Figure 5, where the steady-state value of' x1 is now k, 

The feedback eontml of equatien (4,6) is therefore not a globally 

optimal feedback contml·, Since the oontml measures and uses only the 

velc,city component of' the state vector, it does not sense the deviation 

of the system from the desired trajectory of equation (4.8). This 



- ---
2 -time-.. 

Figure 5. Xj,··Trajeetory- for Example 4.1 
I with Friction in System 
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failure to sense the deviation of the system from the desired perfo:rm

ance is characteristic Qf open loop control systems. The total control 

solution is therefore a feedback control which exhibits the properties 

of an open loop eontrol s hence the control is designated an ~ ~ 

inner-product feedback control. 

The fom of the control solution of Example 4.1 differs from the 

control solutions of Chapter III in that it specifies a required rel.a-

tion for the initial conditions of the components of the state vector., 

Since x1 ( t 0 ) is fixed, the contml solution of Example 4.1 is applicable 

only if x2(t0 ) can satisfy equation (4.5). In order to distinguish the 

globally ~pt:tmal controls of Chapter III from the control solutions of 

Chapter IV, the fc.llowing definition is ~estated fro.111s.Chapter II. 

Defini t1on 4. 2 

A systaa is S-eontrollable if and only if it is inner-product 
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controllable for some l( t 0 ) but not all l( t 0 ). 

The use of the term S-controllable stems from the fact th.at the 

initial condition requirement of equation (4.:5) can be included ;tn the 

feed.back control of equatien (4.6) if an im.pluse function is added. The 

resul.tant control is given by 

(4.9) 

where 8( t - t 0 ) is a unit 1.Dlpul.se at tim.e t 0 • The combination of the 

conditions of equation (4 • .5) and equation (4.6) in the fom of equation 

(4.9) is a compact notation of the total cont:rol solution. 

A distinct disadvantage of the use 0f singula:dty :functions. is that 

the performance measure of equation (4.4) nG longer includes an i_J).direot 

measure of the control input, eneg-.·L'..cHewever.r.o.neEkthe::."$115tedl ·reaches 

the trajectory of equation (4.8), for t >to, the control of (4,9) re

duces to the control 0f equation (4.6) and (dp/dt)2 a.gain pro'Vides a 

measure of the control input. In 0rder tc, avoid the difficulty of the 

singularity f'tmctiens, the contrals w.Ul remain in the form of equations 

( 4. 5). and ( 4. 6), and the general perfomance measure considered for the 

8 •contnlla.ble systeas will be 

(4.10) 

The perfemance measure ef equa.tien (4.10) is equivalent to the previous 

general perfo:r:mance measure, except the control effect of the in1tia1 
I 

condition. constraints is not inclwled in the perfomance 1measure. 

A recently published resul. t by Leeper and MulhC!>lland ( 20) for the 

8-centrolla.ble systems has been for a. el.ass of single input systems, 



Ex.amp.le 4,1 illustrates th~ el.ass of single input systems, and the 

following section general.izes the results of the pa.per. 

Single Input Systems 

The nth order single input proc~ss 

. can be expressed in the equival.ent state fo:rm.ulation given by the n 

state equations 

1 a 1,2,•••tl'l-1 
(4, 11) 

If the control objective is te drive the xj component of the state 

vector to the origin and maintain that state, then a reasonable error 

sifJnal is given by 

2 p • Xj • (4.12) 

If j • n, then the above formulation is a directly p-controllable sys

tem b:om Corollary 3.1, and the system is no longer a 0-~ontrollable 

system. It is therefore assumed that 1 > j > n, 

From Chapter II the al.gebraic equation minimizing the performance 

measure is given by 

(4.13) 

where 

(4.14) 

If the error penal.ty function is of the form 

(4.1.5) 
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then the minimizing trajectory of equation (4.13) reduces to 

(4,16) 

Differentiating equation (4,16) n - j times, and substituting 

for the derivatives :f'.ro• the state equa.tiens gives 

SGlTi.ng for the control u, the feedback control is given by 

(4.17) 

Equation (4,16) is the equation describing the optimal trajectory 

of the per.t'ernance measure, The development of equation (4.17) from 

( 4, 16) produces n - 1 - j a1.m1la.r equa.tiens from the first n - 1 - j 

differentiatimns, The optimal tra.jeetory !Ls therefore defined by 

i • j, j+i,.,.,n-1, 

Fer j • 1 this denetes a line in the n-dimensiona.l state space, and for 

j • 2 1 t denotes a plaJ),e, 

Sinoe the control obj~otive is to drive the xj state to the origin, 

x/t0 ) is assumed given and not Cl>pen to selection as part of the ccmtrol 

solution, From T.heor• 4, 1 the eC1>ntrol of equation ( 4.17) is applicable 

only if' the n - j initial conditions Xj+1Ct0 ), xj+2(t0 ), • •,, xn(t0 ) 

can be specified to satisfy the equations 

1 • j+1,j+2,,,.,n. (4,18) 

The complete control solution is therefore given by equation (4,17) and 

(4.18). The above develop111.ent is sUJDJ11.arized by the following theorem. 
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Theorem 4.2 

The single input system of equation (4.11) is ~-controllable for 

a system error of p .. x j 2 if 

1) h( p) • 4 k2 p2 where k is a real number 

and ii) x1(t0 ) • (-1/k)i-j xj(t0 ) 1 • j+1,j+2, ••• ,n. 

The resultant feedback control is given by 

Since the state equations of x1,x2, ••• ,xj.1 are not used in the 

development of Thel!>rEllll 4.2, the first j - 1 equations in the single in

put system do not need to be in the fem of equation ( 4.11). This 

al.lows the extension of Theorem 4. 2 to multiple input systems if only 

one control tem appears in the state equations of xj,••·,~· The 

single input system of equation ( 4.11) can therefore be general.ized to 

1 ~1 <- j-1 - -
Xi+1 j <·1 <-n-1 - - (4.19) 

f(x1,Xz••••,~) + uo. 

where 1 < c,: < m, - -
Corolla.ry 4. 1 

· The system of equation ( 4, 19) is 8-controllable fo_r a syetem error 

of p'- xj2 if 
2 2 i) h( p) • 4 k p where k is a real number, and 

11) Xi (t0 ) • (-1/k)i•j x/t0 ) 1· • j+1,j+2,• •• ,n. 

The resultant feedback control is given by 

(4.20) 
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Although systems in the form of equations (4.11) or (4.19) may be 

S-eontrollable for 

the general formulation of the solution for such systems is difficult to 

express. If h( p ) is not in the assum.ed form of equation ( 4.1.5), the 

solution proceeds as follows:. 

Since h( p ) is a function of p , and p • x j 2, the error penaJ. ty 

:function ean be expressed as a. function of xj and 

(4.21) 

Equation (4.13) becomes 

where 

While equation (4.16) ea.n be differentiated n - j tim.es directly, 

equation ( 4. 22) is not linear and therefore does not lend itself to such 

a. direct approach. Define 

If j > n - 4, then at lea.st four differentiations of equation 

(4.22) are necessary. The first four differentiations are given below. 

X ... g(1) x 
j+2 . j+1 (4.24) 

x ... g(1) x + g(2) x2 
j+j ·j+2 j+1 ( 4. 2.5) 

(1) . (2) - (:3) 3 
Xj+4 • g Xj+; + ) g Xj+1:-Xj+2 + g Xj+1 (4.26) 



xj+.5 • g(1) xj+4 + g(2) [ 4 xj+1 xj+:3 + 3 ~J 
+ 6 g(j) '1+1 Xj+2 + gC4) xj+1 
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(4.27) 

It is readily a.ppa.::rent that as n • j becomes larger, the equations 

correspcmding to ( 4. 24) - ( 4. 27) become more a.nd more complex. These 

equations, together with the original equation (4.22) define the ope1ma1 

trajeetory:tn state space upc,n which the system. must lie a.t time t 0 • 

The :1n1tia1 condition requirements of the system therefore come from 

these.equations, and the feedback contnl comes from the (n-j)th dif• 

ferentiat1en of equation (4.22). To illustrate the extension of Theorem 
.· 

4,2 to systems with other er;ror penalty functions, the following example 

is given. 

Exa.mpl.e 4,2 

Consider the linear eysta 

dx1/dt 1111 ~ 

d.xv'dt • X'.3 

dxj/dt 1111 ~ 

dx4"dt 1111 Xi+ 2x2 + j~ + 4Xq. + U 

with a. system error signal of 

and a.n errc>r penalty function of 

Defining the ernr penalty function defines the perfor.mance measure, 
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For the error penalty function specified, 

and the minimizing trajeetory of the system from equation (4.1'3) is 

or 

(4.28) 

Equation (4.28) describes the opt1.mal trajectory for the perform-

a.nee measure specified. In contrast to the optimal trajectery when 

h( p) ;. 4 k2 p 2, this equation is nonlinear while the corresponding 

equation (4.16) is linear, Differentiating equation (4,28) three times 

and substituting for the derivative from the state equ.a.tions gives 

X'J •.,. ) x12 X2 

~ • - 6 x1 x22 • 3 x12 x3 

X1 + 2 x2 + '.3x3 + 4~ + u • - 6 X2'J - 18 X1X2X3 • 3 x12 ~· 

(4.29) 

(4.30) 

(4.J1) 

The feedback control is o'btained from equation (4.J1) by solving • 

tor u, and the initial condition requirements a.re given by equations 

( 4. 28), ( 4. 29) and ( 4. 'JO) at · .time t 0 • The initial eondi tion require-

menta redu.oe to 

x2(t0 ) • • x1'3(t0 ), 

5 x3(t0 ) • 'J x1 (t0 ), 

and 

x5(t0 ) • • 15 x17(t0 ). 

T~~~:f'~r~ t~~ s~~' !Jl~ltt ~~1-i~!!l ~~ &oontroll!itbl~ :For ~~~ 
P~~*-¥ ~et~eM et~@F ~~ tr" ~et;~~ ~f ~<!Wt.°!itRn ~4, i? ,,_, wnm-~ 
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4.2 and Corollary 4.1 a.re intended to indicate the sufficient conditions 

for a class c,f error functions. While the general ease if? solvable, the 

continuous application of the 'chain rule to nonlinear equations results 

in an optimal trajectory which is difficult to express. 

! , (; 

Multiple Single Input Systems 

A :natural extension of the single input systems are systems which 

can be formulated as multiple si~e input systems. The dynamics of a 

multiple single input system. are assmed to be described by k single 

input processes in the form. of equation (4.19). The state fomulation 

of suc.h systems is given by 

dxi/dt .. ~+1 1 < i < nk, i f n{,n2,··~,,nt1 

~/dt ~ fi(x1, ••• ,Xn) + ·'1. i .. 1,2,•••, k 

~/dt • gi(xpx2, ••• ,~,111t••• ,t2xn) nk < i < n, 

and the system error signal is given by 

P.. 2 2 2 2 
• xi + Xii1+1 + ~+1 + • • • + Xiik-1+1 • 

The following system illustrates a multiple single input system 

a.x1/dt • x2 

~/dt • X'.3 

wc,/dt • x1 + X4 + u1 - - - - ' - - - - - --
dJQ/dt • x.5 

dx;fdt • x2 + ~ + u2 
- - - - ""!'9 - - - - _...__ 

If the system err0r signal 1~ given by 

J 4. 32) 

(4.33) 

(4.'.34) 

(4. 3.5) 



then the state equations for x1, x2 and x'.3 eonsti tute a single input 

system., as do the equations for~ and x5, 
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The state equations for x1, x2 and~ correspond to equation (4,'.32) 

while the state equations fer x'.3 and x5 correspond to equation (4,'.33), 

The single state equation for x6 corresponds to (4.J4) and illustrates 

that additional equations can be included in the formulation, as long as 

the error signal and first nk state equations a.re in the form indicated, 

Th:liJ exaaple syst1ft fits the formulation f'im a multiple single input 

system. for many system. error signals, If the system error signal is 

given by 

the state equation for x6 becomes a degenerate single input system. which 

is a. directly p-controlla.ble subsystem. Although directly p-control

la.ble systems were o-1tted from eotlsidera.tion in the previous section, 

they a.re acceptable in the multiple single input system formulation if' 

at least one of the k single input systems is not directly p-control

lable, 

Since p is of ra.nk k, the algebraic equations minimizing the 

performance measure a.re specified by the following k equations 

where 

Xn1+1 

and.§. is any r x r skew symmetric matrix, 

••• . ) I 
:,c .f+1 ,, --nk-f 

(4.36) 
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The k algebraic equations of (4,;6) are considered separately as 

k single input systems. The significant difference between the multiple 

single input systellls and the single input systems is that in satisfying 

the initial condition constraints, the components of the.§ matrix are 

available in the form.er, This can :r;educe the apparent number of initial 

conditions which a.re to be adjusted,~~and in some cases eliminate the 

need for adjusting any initial conditions, 

The solution procedure for mul. tiple single input systems is illus .. 

trated by the following example by .Leeper and Mulholland ( 19 ). 

Example 4.3 

Consider the problem of a body spinning in free space, The state 

equations for the system are given by 

dx1/dt • xv dxfdt • Xq., dxydt.., :le(; 

dxz/dt-= /31 X4 x6 + u1 

dxq/dt • /32 X2 X6 + U2 

<ixe;/dt • /3) X2 X4 + U3 • 

For the problem of attitude control, the control objective is to 

fix the position of the spinning body, It is assumed that the state 
' 

equations have been defined so that the desired attitude is aehteved if 

the angular displacement components are driven to zero, Since xi' x3 

and x5 correspond to the angular displacements of the body, a natural. 

er:ror signal is 

JJs:J.ng the genera.i performance measure of equat;on (~·tQ), the 
L ::;. L.:..) -: c. .. · · c. ..._ , -, _;.10£1;~: u~i- .._: , ·. 1 ;_ • ., • 7 

m:J,~:J.z:J.ng trajectory ~s ~ven by the fun<;l.a.lll.enta.;J. ~nner-product law 
1. . r~.~: ·~:,,:,· - ··· v ~- ~, •••••• ,.,, ----- ·~ ~ _~ ~-· • : •• 
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The algebraic equations corresponding to the fundamental inne:c-

product law a.re given by 

x2 X1 0 0.12 Cl.13 x1 

X4 ... 'P( p) x2 + -n1 0 
~3 X3 (4.37) 2 

~ x, - 0.13 -~,· 0 X5 

where cp( p) is defined in equation (4 •. 14 ). 

In general the components If the J matrix may be time-varying, 

but in this example they a.re restricted to constants. 

Differentiating the above equations with respect to time and sub

stituting for the derivatives from the state equations gives the 

feedback controls 

u1 • • /11 x4 x6 + cp( p) X2 + 0.12 x4 + 0.13 X6 + 'P( p) x1 

u2 • - {52 Xi xe, + cp( P ), X4 • 0.12 x2 + 0.23 x6 + VJ(P) x3 

u, 1111 • {3,3 Xi X4 + cp(p )1 JC6 • Q.13 X2 • Q.2J Xq. + ¥'( p) X5 

. where 
\ 

l/1( p) ~·dcp( p )/dp [ dp/dt]. 

The control solution is given by th.Ehfeedback controls defined 

above and by the ini tia1 eondi ticim: eenstra.!nts of ( 4. 37) which 111ust be 

satisfied at time t 0 • Fbr the nth order single input process, n - 1 

initial conditions had to be satisfied, however only one initial con

dition of (4.37) need be altered to satisfy the equations. This is due 

to the faet that the skew symmetric components of~ can be utilized to 
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satisfy two of the three equations. Therefore the feedback controls are 

valid and. the system. is 8-eont:rollable if x2(t0 ), "4(t0 ) or X(5(t0 ) can 

be adjusted. 

In Example 4. 3 each of the three single input systems is of order 

two, so the systelll is solved sim.ul taneous.ly. When the order of the 

. single input systss differs, the systeas must be solved separately, 

and the results combined for the tetsl. control solution. In such situa.-

tions the lower order single input subsystems must be solved first, for 

. these results are required in the higher order single input system.a. 

The f'ollewing example illustrates the solution for a multiple single 

input system. with different orders. 

Example 4.4 

Consider the linear syste111 

dx1/dt • X2 

dx2/dt •Xi+~ +·u1 

dxydt • x4 

wt4/dt. x., 

dx/dt • x, + ~ + 112 

with a system error signal of 

The Xj_ and x2 states f'om a seeond orde;t- single input system., while the 

x,, ~ and x.5 states' ee:nstit11te a. thixd order single input subsystem. 

If the el:'%'Gr penalty function is selected as 

h(p) • 4 p2 



then the algebraic equations minim.izing the perfomance measure a.ll'e 

X2 = • Xi + 0 12 X; 

x4 • - x; .. 0..12 x1 • 

The first equation is solved as a. single input.system. by 

differentiating it onee. The resultant equation for a.12 constant is 

The second equation is differentiated twice and the resultant 

equations are 

and 

Using the solution for u1 in equation ( 4. ;8), the above equation 

reduces to 

. 2 
U • ·- a. X • X • ( 1 • Q'..1· ) X1, • X,:e 2 12 2 3 2 --.+ J 

(4.;8) 

(4.39) 

The f eedbaek controls are dethined by equations ( 4. ;8) and ( 4. ;9), 
\ 

a.nd the initial condition const:ra.ints are 

x2(to) .. - xi (to) + Cl12 x3(to) 

x4(tQ) • - x3(\i,) - °'12 x1 (to) 

x5(to) .. - ~(to) .. a.12 x2(to) • 

If' a systen can be represented in the multiple single input formu

lation of equations (4.32)-(4.r), with a. system error signal in the 

form of equation (4.3.5), then the system is 0-controllable if the 

initial. cond.1 tion constraints can _be satisfied, 
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~ -Controllable Systems 

For a general dynamie system. described by n differential equations 

• 
!(t) • .t(!(t),t) + !(t) y(t) 

the techniques of Chapter IV ean o~en be combined with the techniques 

of Chapter III to yield 0pen loop inner-product feedback controls, 

The necessary conditions of inner-product controllability a.re 

given by the r algebraic equations 

where !x,, ~ and .lr(!(t),t) a.re defined by equations (3.3), (3,4) and 

(3,5), and J is any r x r skew symmetric matrix, The above system can 

be tra.nsfomed into two subsystems by a nonsingular transformation I as 

in Chapter III, The first b algebraic equations constitute a directly 

p-eontrellable subsystem which defines b components of the cont;rol 

vector. The remaining r - b algebraic equations are given by 

If k of the (r-b) equatiens can be solved by specification of the 

! matrix components, the remaining (r-b-k) equations can be considered 

as possible 8-c0ntrellable systems, In such cases, the open loop 

nature of the 8-controllable subsystem wil.l render the total system 

8 ~e0ntrollable, 
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The previous examp1es in this cl!lapter have required the adjustment 

of initial conditions of the state vector in the control sclution, Al· 

though tb.e adjustment of initial conU,lens is meaningf'lll in some physi• . . 

cal systeas, the majority of control solutions do not allow this added 

freedom, The control solution fer o-controllable systems can .lead to 

open loop feedback controls which do not require the adjustment of the 

ilili tial condi tion.s of the state variables, The initial condition re-

quirements of such systems are satisfied by specification of the skew 

symmetric matrix components. The following examp1e illustrates the 

prce·edure for 8-eontrollable systems, and yields a control solution 

that requires no adjustment of the initial conditions. 

Consider the linear system 

a.x1/dt • x2 + ~ + u1 

dxz/dt • Xi - Xz 

dxfdt • X3 + X4 

~dt • Xi - X) + Uz 

with a system error signal of 

If the error penalty f'lll.nction is selected as 

h(p) • 4 p 2 

then the algebraic equations minimizing the perfomance measure can 

be expressed in the.fem 



X2 + X4 + U1 • - X1 + Q12 X2 + Q1J X3 

x1 - x2 ~ - x2 - n12 x1 + <l.23 x3 

x3 + X4 ... - x3 - a1'.3 xi - U23 x2 • 
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The first equa.tit1>n is. directly solvable for the control u1• The 

seecmd equation is satisfied if a 12 • - 1 and a23 • O, The third 

equation must be satisfied by Theorem 4.1, If the equation can be sat• 

isfied by Theorem 4,1, then the algebraic equations of Example 4,5 can 

be decomposed into a directly p-controlla.ble system, an Cl,•ecmtrollable 

system and a 0-eontrolla.ble system, 

Differentiating the third algebraic equation with a. 13 assumed 

constant, and simplifying the result yields the control u2 

The complete cont:rol solution is then given by 

u1_ ,;. - x1 - 2 x2 + ~3 x3 .:. XL,. 

U2 • (;0.13 - 1) Xi + Q.13 X2 + ('.3 • 0.f3) X3 + 2 X4 

If x1 (t0 ) r O, then the initial condition constraint can be sa.tis• 

fied by speeifiea.tion of o.13, and hence no initial eanditions need be 

adjusted in order to satisfy the equations. The solution is still an 

op~n loop type of inner-product eontrol'.'..and the system is therefore a 

S,-eontrol.lable system. 
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Summary 

The extension of the inner-product approach to S-controlla.ble 

systems leads to e,edba.ck __ ,controls which possess open loop cha.ra.eterist

ics. Al.though few theorems a.re given, the procedures have been out

lined and illustrated by examples. The fo:r.inulation of necessa;ry and 

sufficient conditions for ~ •controllable systems is deemed to be not 

ma.thematically tractable although the procedures are well defined. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This dissertation stlillI!larlzes the resul.ts of the development of a 

theory of asymptotic inner-product control for genera1 nonlinear sys-.· 

tems. The problem. is lillli ted to those systems in which the control is 

linearly separable, aJiJ.d seeks to detemine the optimal control in feed

back fora. 

The inner-product formulation of optimal control is based upon the 

use of an inner-product performance er.t terta. The performance cri ter.ta 

selected is an integral function of an inner-product error signa1 and 

its derivative. The specification of a. perfomanee measure of this form. 

al.lows a. direct solution to the problem which avoids the eonventiona1 

two-point boundary va1ue problem. The philosophy of the approach is to 

select the control such that the system trajectory follows a. minimizing 

trajectory of the perfomance measure. The minimizing trajectory of the 

performance measure is ea1led the f'unda.nlental inner-product la.wand is 

developed in Chapter II. 

The inner-product approach is aimed entirely at obtaining closed 

form feedback control laws for optimal. control problemso The control 

solutions are of two types I true closed loop feedback controls, and 

feedbaek controls with open loop response characteristics. The form.er 
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represent globally optimal feedback control laws. The feedback controls 

in Chapter IV are closed fom f eedbaek controls, but aJ.so possess open 

loop charaeteristies relative to the error correction ability of the 

controls. 

Chapter III presents the necessar;y and sufficient conditions for a 

system to yield closed loop inne:r-product feedback controls. The theo

rems provide a fim mathematical foundation for dete:rmining the appli

cability of the inner-product approach to a given system., if a el.osed 

loop globally optimal control is desired. The solution procedures and 

solution feasibility are illustrated by several examples. 

The extension of the inner-product approach.to feedback controls 

with open loop characteristics is considered in Chapter IV. The con

trols of Chapter IV are non-globally optimal, Sufficient conditions are 

given for special system configurations and the general procedures 

are illustrated by examples. 

The results cf Chapter III and Chapter IV depend upon the equiva

lence of the funda.tllental inner-product law and a set of algebraic equa

tions. This equivalen,ee is based on the results of Appendix A, and 

represents a major step in the general development. 

'rW(lll sets of al.gebrt:,,ic equations are indicated by the results of 

Appendix A. The two fo:rms are quite different in structure but are 

proven equivalent. Appendix B presents a sUffl..lllary of results for the 

alternate fom which are analogous to those of Chapters III and IV. 

Conclusions 

This thesis has accomplished the objectives set forth in Chapter I. 

For the closed loop inner-product control systems, the underlying struc-



tu.re of systems for which the inner-product approach is suita.ble are 

well defined in the theorems of Chapter III. For the open loop controls 

the general necessary conditions are discussed, al.though a.n explicit 

fom.ulation as in Chapter III is deemed to be not mathematical.ly tract

able. Within the framework specified, the procedures for detemining 

the optimal inner-product control a.re· well defined and. .are ·.illus·t.tat.ed 

by several examples. 

The principal. limiting feature of the original work in the inner

product cbntrol theory is the inability to obtain optimal bounded con

trols for problEDs in which the control input matrix is singular. A 

major emphasis of this dissertation is the extension of the inner

product approach to systems in which the control input matrix is 

singular. 

Orig1na1 efforts in this direction assumed the fixed configuration 

illustrated in Figure 1, and attempted to extend the results for a 

nonsingular! matrix to a corresponding singular! matrix. The subopti

mal approximations were based on the use of generalized matrix inverses 

(21). The resultant solutions were necessarily suboptimal, and proved 

to be unstable for several problems. The unstable nature of the solu

tions made this app:coach impractical. 

The raaoval of the constraint of a fixed configuration cont:coller 

is essential to the extension c,f the original work to singular control 

input matrices. The use of a general feedback control structure also 

allows the system error signal. to be generalized in the resulting inner

p:coduct theory. 

In retrospect, it is noted tha.t the inner-p:coduct theory develop

ment is based upon the use of two simple mathematical. p:coperties and the 
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use of linear algebra. The equivalence of the fundamental inner--product 

law and the r algebraic equations of (2.27) is basic to the development 

of Chapter III and Chapter IV. This equivalence evolved from the in

corporation of a general skew symmetric matrix in the solution of the 

vector equation. It is well known that 

for any vector A if .§ is a skew symmetric matrix, but the reaJ.ization 

that this equality was the key to decomposing the fundamental inner-

product law was a major step in the devel.opmen¢.. 

The second mathematical property used was the initial condition 

theorem of Chapter IV. Theorem 4.1 is also quite silllple in concept, but 

it results in a significant extension of the inner--product approach. 

The realization that this theorem could be used on the algebraic equa

tions of (2.27) provided the key to the open loop type of feeg.baek 

controls in Chapter IV. 

Suggestions for Further Study 

The inner--produet app:coach to optimal control offers an unlilllited 

nUlllber of areas in which further research would be useful and :f'ruitful. 

The areas indicated in this section are considered to be reasonable ex.

tensions of the results of this thesis. 

Within the framework of this study, further study of the _necessary 

and sufficient conditions of the controls of Chapter IV is desirable. 

As noted in the conal.usions, the general conditions are not considered 

mathematical.ly tractable, however, for special system configurations it 

is probable that some elosed form definite results are possible. 
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It would also be desirable to ~onduct a sensitivity study into the 

control solutions of Chapter IV. It is possible that a sensitivity 

analysis of special system configurations would provide a key to the 

general conditions of Chapter IV. 

On a more general scale, it is noted that the inner-product ap

proach is dependent upon the fundamental inner-product law, While this 

dissertation was restricted. to the asymptotic control of systems using 

the perfo:cnanee measure of equations (1.5), similar results could be 

obtained from similar fundamental inner-product laws. The results of 

this study eotil.d therefore be extended to finite time control pro bl ems 

and to other general inner-product perform.a.nee measures, as long as an 

expression similar to the fund.a.mental inner-product law is obtained from 

the Euler-Lagrange equation. 

In investigating more general inner-product performance measures, ' 

it would be desirable if a better measure of the contro~ input energy 

could be incorporated. in the performance measure, without d~stroying the 

fundamental inner-product law results. Some effort has been focused in 

this direction, but no significant results were obtained. 

F.Lna1ly, it is obvious that some effort is necessary in considering 

the inner-prod.t:1et fo:cnula.tion in the presence of system constraints. In 

most modern contml problS11s there are constraints on the range of 

values which the system components and control components can assume, 

Consideration of systems with constraints will be necessary before the 

inner-product appreach becomes a realistic engineering tool. 
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APPENDIX A 

Let A and l! be n-dimansional veetors in the E11elidean space En. 

The inner-product of A and l! is the real number 

(A.1) 

where 

AT. (a1 a2 ••• 
T· 

(b1 b2 ! • ••• 

Lemma A,1 

Let A be a given nonzero vector in En, Any vector I satisf~:ng 

the equation 

can be expressed in the form. 

where.§ is an n x n skew symmetric matrix, 

Proofs The theorem is proven by constructing a. skew symmetric 

matrix.§ which satisfies equation (A,3) for a given solution vector,!!, 

Let! be a solution vector of (A,2), Since A is a nonzero vector 

it contains at least one nonzero component, a.r' The .§ matrix is con

structed. in the following manners 
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i • 1, 2, •••• n; if r 

sri "' - sir (A,4) 

Sjk"' 0 otherwise 

where Sjk denotes the element in the jth row and kth e0lumn of the§. 

matrix. 

The vector equatien of (A,3) is satisfied if then equations equiv

aJ.ent to it a.re satisfied, Using the skew symmetric matrix of equation 

(A.4), then equations a.re given by 

i "'1, 2, ••• , ns i r r (A,5) 

(A,6) 

The n •' 1 equations of (A. S) a.re automatically vaJ.id due to the 

definition of the sir' Substituting the sri in equation (A.6) and mul

tiplying by~ gives 

which is an expansion of the vector equation of (A,2). 

Sinee the equations of (A,,5) and (A,6) are satisfied, the equiva

lent vector equation (A,3) is satisfied. Therefore any vector J?. which 

satisfies equation (A,2) ca.n be expressed in the fo:cm of equation (A,3) 

if the skew symmetric matrix§. is defined as in equation (A,4). Al

though the matrix§. is not unique, equa.tien (A.4) verifies that there 

exists at lea.st one matrix 1 satisfying equation (A,J), thus proving 

the lemma. 
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Thff!em A.1 
Let A be a given nonzero vector in En. The solution of the scalar 

equation 

(A.8) 

is 

where .§ is a.ny n x n skew symmetric matrix. 

Proof, Equation (A.9) is a solution of (A.8) since 

(A,10) 

for any vector A if.§. is skew synuaetrio, Therefore it is necessary 

and s'ttf'fieient to prove that any solution of (A,8) can be expressed in 

the fo:cm of equation (A,9), 

Let! be a solution vecter of (A,8) and define 

Q_• ! ... A• (A, 11) 

Mul tiply1ng equation (A, 11) on the left by AT reduces the equation to 
k~ ; i 'F 

T A .Q•O. (A,12) 

From Lemma A,1, any vector .Q satisfying equation (A,12) can-be expressed 

int.tie fo:m 

(A.13) 

where.§ is an n x n skew symmetric matrix, 

Solving equation (A,11) fCl>r ! and using the result of equation 

(A,13)~ any vector! satisfying equation (A,8) can rea.dily be expressed 
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in the form of equation (A.9). Therefore all solutions of equation 

,(A.8) a.re contained in the olaas of solutions characterized by equation 

( i. 9), thus proving the theGrem. , 

The det product of A and! is equivalent to the inner product af 

A and! and offers insight into the results of Theorem A.1, Considering 

equa.ticin (A.8) as a dot product gives 

(A.14) 

where '9 is the angle between A and !, and IA I is the nom of the vector 

I I . ( 2 2 2)f A • a.1 + a2 +•••+an (A.1.5) 

Since! is assumed to be a nonzero vector, equation (A,14) reduces to 

111 co.s ,9 • t ! J • (A.16) 

For a vector to satisfy equation (A,9) its no:cm must therefore 

equal the norm of A when projected along the vector!• In the Euclidean 

space E2 this reqUires the end point of the vector! to lie on the line 

perpendicular to A and passing through the endpoint of the vector A·· In 

E3 the end point of the solution veetQrs JIUSt .lie in the plane no:rmal to 

A and passing through the end point of!• In general, the end point of 

! must lie in the hyperplane in En which is nomal to tA and passes 

t,.hroitlg!'l;!the::eil.dpot~t ofr;tpeJ.vector !• 

Figure 6 illustrates the eo.lution for the two-dimensional case, 

Any vector! whose end point lies on the line L will satisfy the equa• 

tion (A,8). The skew symllletric matrix! is simply a method of 

describing the vector .Q• For this two-dimensional case, the! matrix 
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'~ 

-x---- \ I 

Figure 6. E2 mustra.tion of J?! • tl ! 
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describes the .Q vector indirectly by describing the length and direction 

of Q relative to A• Im.i.pa.rl1cular, 
,.,,,··":-; 

J_• r o - , 1£
0
111& PJ . 

L<l.gl/lA I) 
(A.17) 

The absolute value of s12 c<!>rrespc,nds to the no:cma1ized length of .Q, and 

the sign of s12 detemines if the! ~eetor is above er below A• 

Oprolla.ry; A.t 
Let A be a given nonzeJ:."O vector in En, and K1 and K2 be real 

numbers w1 th K1 -f o. The solution of the vector equation 

is given by 

where! ii, any n x n skew sj'llllQ.etrie matr:t.x. 

(A.18) 

(A.19) 
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The proof' of Corollary A.1 is identical in structure to that of 

Theorem A.1, 

Another general form of solution for equation (A, 18), proposed by 

Sr.tdha.r (22), is given by 

(A,20) 

where I is ani;i. x n 11atrix. In order to guarantee that the coefficient 

(AT JJ i?J. A) is bounded, I is assumed to be a. positive definite or neg

a.ti ve definite matrix, Substitution c,f (A,20) into equation (A,18) 

rea.dily Teri.fies that it is a solution, and although (A,19) and (A,20) 

are quite different in structure, the two solutions a.re equivalent. 

Thec,rem A,2 

Equations (A,19) and (A,20) are equivalent solutiens for a.ny 

vector A, if K1 r O and. I is a.. definite matrix, 

P.J!ioofs The two vectors a.re eq'l11valent if a.nd only one can be 

der.lTed f'rom the other, Equa:tion· (A,19) can be derived directly from 

(A, 20) by selecting the I matrix to be the identity matrix, The remain

ing p:ceblem is to show that a.ny solutic,n in the fo:cn of equation (A,20) 

can be expressed in the fo:cn of equation (A, 19 ), Let 

(A,21) 

a.nd express equation (A,20) in ihe,fom 

1! ~ ( ~/K1) A + ll A • 
I 

(A,22) 

If the .B matrix is skew synunetrie, then equ.tion (A,20) is in the 

f'om of equation (A, 19) and the theorem pnolfi' tsccaplete. 



A square matrix can be expressed as the sum of a symmetric matrix 

and a skew symmetric matrix, Assume that the matrix .B has a symmetric 

pa.rt, and let 

(A,23) 

where 1ls is an n x n symmetric matrix and Bes is an n x n skew symmetric 

matrix, Equation (A,22) then reduces to 

Since equation (A,24) is equiva.lent to eqwa.tion (A,20), it must satisfy 

equation (A,18), Substituting (A,24) into (A,18) reduces to 

(A, 2.5) 

which is true for a symmetric matrix lls only if ,Be is a. zero matrix, 

Therefore, equation (A,20) can be expressed in the fom of (A,19) and 

the theerem is proven, 

Althe1:2gh a. selution in the for.m. of (A,20) can be expressed in the 

form of (A, 1.9) for any given A, the representation may require the use 

of switching functions if A is tillle-va:r:ying, An illustration of the 

correspondence between (A,19) and (A,20) is given by the following 

example, 

Example A, 1 

Consider the solution of (A,18) with K1 • ~ ·.., 1 and n • 2, 

The solution corresponding to (A,19) is 
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(A,26) 

where a.12 is the arbitrary entry of the 2 x 2 skew symmetric matrix I• 

The solution oorrespc,nding to (A, 20) depends upon the 11 matrix 

specified, For this eXaJRple, if 

then the solution is given by 

(A,27) 

where. y is the a.rbi trary entry of the skew symmetric matrix, and 

If the two solutions a.re equivalent, then there exists an a.12 such 

that the first fomulation corresponding to (A,19) can represent the 

solution eerresponding to (A. 20 ). Equating the two solutions yields the 

equa.tio:ns 

ai + a.12 a2 • ra.1 + ( r+-Y) a.2 

a.2 - a.12 a.1 • <r-Y) a1 + 2 r a.2· 

If a.1 ",. o, the equations are satisfied if a.12 is selected a.a 

If a.2 r o, the equations a.re satisfied if a12 is selected a.s 
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tf both a1°• a2 • o, the two formulations are both O and are then 

equivalent. 

If the vector A is tiJn.e-varying a.s illustrated in Figure 7, then 

a1 and a.2 ma.y periodically be zero. In order to represent the solu~ion 

of (A. 27) in the fo:cn of (A. 26), Oi2 must be a swi tiling function. 

An example of such a. function is given by 

..., .,. r + ( f • 1)(a1/a.2) . if la1l:S la2I 

a:12 • ·t- r - <2 r :.. 1 )<a.2/a.1) if la.21 >la1I 

0 if a = a • o. 1 2 

The solution fo:cnula.tion of equation (A.19) is utilized in this 

thesis whenever the vector equation (A.18) is encountered. The corre

sponding results for the solution form:utla.tion of (Ao20) are presented in 

Appendix :B. 

Figure 7. Example State Trajectory of A 



APPENDIX B 

ALTE!UfATE REPRESENTATION RESULTS 

The solution of the ftmdamental inner-p:t'Oduet law can be represent• 

ed. in the form 

~(t) ~ [cp<p) 1 + 1·] li,(t) 

where !r • 1r 1, i' is , any r x r skew symmetric matrix and 

An equivalent representation is given by 

where A is any rx r skew symmetric .q1atrix, 1!! is any r x r definite 

matrix and 

(B.1) 

(B.2) 

(B.J) 

(B.4) 

The representation of equation (B,1) is utilized in the development 

of Chapter III and Chapter IV of the dissertation. This appendix notes 

those results which change if the representation of equation (B.J) were 

used in Chapters III and IV. The actual results of the dissertation do 

not change, but the representation of those results differs for the 

representation of (B.J). 
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The~· matrix of (B.1) incorporates the effects of the.§ matrix and 

! matrix of (B,3) by the use of switching :functions. Therefore when 

Chapter III censiders the use of the.§' matrix in the control solution, 

. the use of the §. and .H matrix of (B. J) are implied, This observation 

requires a revision of Definition 3•2 for the representation of (B,3). 

Definition B,1 

A system is oalled an 0.•eontrol;J.§ble system if it is p· 
eont:rolla.ble and utilizes only the.§ matrix and! matrix in the 

control solution. 

The revisio~ of Definition 3.2 necessitates a revision of the 

statement of Theorem 3•3• 

Theorem :S.1 

A system is a.·mntrollable if and only if 

. 1) !r ~ .Q. ' 

and 11) .r,,.(l(t),t) • [ ~ (Jt) .!I+§] ir.,(t) 

(B,5) 

(B.6) 

for soae r x r skew symm.etric matrix I and some r x r definite matrix!• 

The application ef Theorem J• 3 to linear systms is not changed by 

the representation ef (B. 3 ). For the linear system of equation ( 3• 29), 

(B,6) reduces to 

(B,7) 

This equation must be val.id for all !(t). If ls• .Q. and the components 

of ~ a.re 1, then equation (B. 7) reduces to 

(B,8) 
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Since the components of Arr are the coefficients of a linear system. 

they must be constant or time-varying terms, Since !(t) is not known 

exp.lie! tly as a function of time, ~ (!) can not be constant or time

va.rying explicitly unless !1 a k I for some real number k, If!:!• k 1 

the representation of (B,3) reduces to the representation of (B,1), so 

the results of Chapter III for linear systems are directly applicable 

to the representation of (B,3). 

The only remaining theorem of Chapter III which is revised by the 

representation of (B,3) is Theorem 3•.5• 

Theorea B,2 

Let b denote the rank of ~· A system is p-controllable if and 

only if 

(B,9) 

for some r x r skew symm.etrie matrix .i and some r x r definite matrix !1, 

where 12 is an (r-b) x r matrix of '.rank (r-b) and 

(B,10) 

The results of Chapter IV for single input systems are identical 

for the representation of (B,j) since the two representations are the 

'same if the rank of the system error signal is one, 

For g-eontrollable systems, the equations of (B,9) are appliea.ble, 

If k of the (r-b) equations can be satisfied by specification of the.§ 

and! aatrix components, the relllaining (r-b-k) equations are considered 

as pessible S-eontrollable s;ysteme, The (r-b-k) equations are differ

entiated until the equation can be satisfied by specification of the 



.§. a.nd 11 matrix components, or by a eontnl vector component. The 

initial condition requirements are then satisfied by.§ and !1 matrix 

ei,mponents or by adjusting the free initial e0nditions of the state 

variables. 
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Since ~ (!) is an explicit function of the state variables, bu.t 

is dependent upon the 11 matrix specified, the uee of the representation 

of (B.'.3) is quite complex for the silllpliest of problems. The following 

exaD1.ple ill't1Stra.tes the complexity which is encountered with the use of 

(B.3). 

Example B.1 

Consider the linear system 

dx1/dt • x3 

dx2/dt • u1 

dx:3/dt • U2 

with a. system error signal of 

and an error penalty function of 

where 

The algebraic equations min1mizing the perfomance measure a.re 

X3 • '(!) <•11. xi + m12 x2) + a.12 x2 

u1 • ~{!) (m21 x1 + m22 x2) - °t2 xi " 
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The second equatian is satisfied if u1 is specified in feed.back 

fc,rm. as indicated by the equation. '!'me first equation must be satisfied 

by use c,f TheorElll 4.1. In addition, the solution must insure that }1 is 

:positive definite or negative definite, 

If the components of the i and 11 matrix a.re assumed constant and 

the first equation is differentiated and solved for u2' the control · r: 

. veotc!>r is complete. 

where 

ut • {(!) (m21 x1 + m22 x2) - 0.12 x1 

u2 • 1](!) (nt11x1 + m12x2) + '(!) m11x, 

"·1: 

+ ( 0.12 + m12 6 (!)) ( 6 (!Hm21 x1 + m22X2 )- °t2x1) 

.§ .. 
O -a.12 

M• -a.12 O 

The generality of the soluticm is obviu.us, but equally obvious is 

the fact that fez complex system. the oalclil.ations become quite cUlllber-

some, The o.ha.ra.cteriza.tion of the general necessary conditions becomes 

more rea.ote with the representation of (B.3). For this reason, the 

representation of (:B, 1) was ad.opted for the main body of the thesis, 
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