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NOMENCLATURE

area of concrete element

rectangular matrix: function of position coordinates of

a point within an element

strain displacement transformation matrix

square matrix of elastic constants

modulus of elasticity

column vector of total strains within an element

shear modulus

strain hardening parameter (slope of effective stress-
effective plastic strain function)

second stress invariant

second strain invariant

coordinate transformation matrix for concrete elements
surface on the boundary of a continuum

coordinate transformation matrix for steel and bond
elements

column vector of nodal displacements in the global coor-
dinate system

column vector of nodal displacements in the local system
displacement function

volume of concrete elements

coordinates of nodes
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variational operator

symbol for incremental values

initial strain increments

plastic strain increments

column vector elastic strains within an element
uniaxial strains

effective strains

Poisson's ratio
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effective stress
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CHAPTER I

INTRODUCTION

1.1 General Discussion

The behavior of reinforced concrete structures subjected to
various types of loads has been studied extensively during the past few
decades. In spite of many efforts, no basic analytical approach has
been developed to determine accurately the stress distribution in the
concrete and the steel. This is mainly due to the fact that the constitu-
tive relations for concrete depend on a number of factors such as the
size and shape of the structure, the size, the material properties and
the composition of the aggregate, and the rate and duration of loading.
Furthermore, the tensile strength of concrete is much lower than its
compressive strength. Therefore, additional difficulties arise from
the continuing change in structural configuration caused by cracks in
the concrete.

It is even more difficult to express the many different geometric
shapes of the stress-strain curves for steel in analytical form. Here
the manufacturing process and the choice of alloys have the most signi-
ficant influence on the material properties. Finally, time-dependent
effects on concrete strains, steel relaxation and complicated laws of
interaction between concrete and reinforcements render a closed-form
solution practically impossible., It is, therefore, necessary to utilize

empirical laws obtained from extensive test data.



Present methods of analysis or design are based on assumptions
which allow the application of the fundamental principles of continuum
mechanics and empirical or simplified constitutive equations. Two
different approaches are commonly used in the design of reinforced
concrete structures. Both methods assume a perfect bond between
steel and concrete and neglect the tensile resistance of concrete. The
first assumption allows the use of the classical Navier-Bernoulli stipu-
lation for planes perpendicular to the member axis. According to this
assumption, these planes remain plane and perpendicular to the cen-
troidal axis during the entire load history. Experiments on reinforced
concrete beams have confirmed that the assumed strain distribution
actually deviates very little from the real strain condition, provided
that good bonding exists.

The main difference in the two methods lies in the choice of
stress-strain relations. The ''Working Stress Method'' (1) utilizes
linear material laws. Since concrete behaves elastically only as long
as the maximum compressive stress is less than about half the ultimate
strength, this approach has failed to give correct pictures of the stress
distribution at high loads.

The "Ultimate Strength Method'' (1), on the other hand, is based
upon stress conditions just before failure occurs. It may appear
essential to use realistic constitutive relations at these high stress
levels. However, this is not the case because the geometric shape of
the stress distribution has little effect on the location and magnitude of
the resultant compressive force in the concrete. The real stress
situation is therefore usually approximated by an equivalent rectangular

or trapezoidal stress block.



A lthough both methods are of chief importance in design, neither
one is of much help in studies of the nonlinear behavior of reinforced
concrete beams. Such investigations are extremely involved due to
previously stated reasons. Any reliable approach must therefore re-
sort to numerical methods. With the introduction of the finite element
technique to be discussed subsequently, such an analysis procedure has
been established for the solution of complex problems of continuum
mechanics. The application of this method results in a large system
of linear, simultaneous equations which can be solved very efficiently
on digital compﬁters. Nonlinear problems introduce no new difficulties,
since they can be treated either by iteration or as a sequence of

consecutive linear problems.

1.2 Purpose and Scope of This Study

The purpose of this study is to develop a reliable tool for the
analytical study of reinforced concrete members through their entire
elastic, inelastic, and ultimate ranges.

The main emphasis is placed on the behavior in the inelastic
range. Consequently, the problem approach is based upon nonlinear
constitutive relations for steel, concrete, and bond. Nonlinearities
introduced through the change in geometry are not included since the
beams are assumed to have failed long before large displacements
develop. Also, time dependent effects on concrete strains (such as
creep and relaxation of reinforcements) are neglected. The loading

history is restricted to monotonically increasing static loads.



After each load increment, the stress and strain distributions
will be calculated. The arrangement of steel components is kept

flexible in order to allow the study of various types of reinforcements.

1.3 Historical and Literature Review

Thev successful applicatibn of matrix analysis methods to
materially nonlinear framed structures by Wilson (2) in 1960, and
Goldberg and Richard (3) in 1963 demonstrated the feasibility of the
finite element method for the solution of nonlinear problems. Wilson
subsequently extended the incremental load procedure to a class of
two-dimensional, nonlinear structures (4) in 1963. In the same report
an iterative technique similar to the Newton-Raphson Method was
appli‘ed to in-plane loaded thin plates with bilinear constitutive
relations.

Argyris (5) and Denke (6), in 1964, adapted the matrix force
method to elasto-plastic problems. Comprehensive presentations of
the elasto-plastic displacement method were given by Pope (7) in 1965
for plane stress and plane strain states and by Argyris (8, 9) for three-
dimensional states of stress. Both publications distinguish clearly be-
tween the two basic incremental procedures referred to as ''Initial
Strain Method" and "Tangent Modulus Method."

The "'Initial Strain Method" was developed in matrix form by
Argyris (8, 9). It involves approximating the change in plastic strain
during each load increment. These plastic strains are then used as
initial strains to reevaluate the stress distribution. Therefore, this

procedure requires iterations in each loading step.



The "Tangent Modulus Technique' makes use of incremental
stiffness matrices which are derived from well-known incremental
stress-strain relations. For strain-hardening material, the stiffness
matrices must be modified after each load increase. A partial stiff-
ness method for elasto-plastic problems based on the "Tangent Modu-
lus Approach' was first proposed by Marcal (10) in 1965 and later
modified for use in the finite element method by Marcal and King (11).
.These papers state the necessary equations in matrix form and suggest
the sequence of steps suitable for digital computation.

In his classical treatise, Zienkiewicz (12) presents an excellent
summary of these fundamental matrix methods and also presents
Wilson's ""Direct Iterative Approach' as a third basic technique. The
amount of research conducted in the area of nonlinear analysis by
finite elements has increased rapidly since these initial efforts. There-
fore, only the most significant publications pertinent to this study will
be mentioned. In general, recent investigations have only refined the
earlier formulations of the elasto-plastic problem.

Felippa's paper (13) can be considered as one of the early
attempts to introduce refinements into the matrix methods for linear
and nonlinear analysis of two-dimensional structures. Other planar
problems were solved by Akyuz (14) and Akyuz and Merwin (15).
Special attention was given in these publications to the computational
difficulties arising from the repeated solution of simultaneous equa-
tions. A half-step method related to the Runge-Kutta procedure was
applied to improve the accuracy. The comparative study by Marcal
(16) in 1968 revealed that the Initial Strain Method fails for the case of

elastic-perfectly-plastic material. Otherwise, the two incremental



techniques were found to provide very similar results. Another con-
tribution to the topic was presented by Marcal (17) in 1969. At the
same time, Yamada (18) gave a general review of Japanese develop-
ments in the field of elasto-plastic matrix analysis. His paper contains
an incremental stress-strain matrix for anisotropic materials and
shows several practical applications of the step-by-step approach.

A variation of the Initial Stfaiﬁ Method based on known stress
functions was proposed by Yamada et al. (19) in 1968. However, be-
cause the publication of their paper was delayed until 1969, it appears
that Zienkiewicz, Valliappan and King (20) should earn full credit for
the development of the so-called ''Initial Stress Method.'" This new
technique makes use of the fact that plastic strain increments prescribe
uniquely the stress system, even in the case of an ideally plastic
material. With this in mind, Zienkiewicz et al. were able to retain
the advantages of the Initial Strain Method for which the matrix of
elastic constants remains unchanged during the loading history. Prob-
ably the most comprehensive survey concerning nonlinear structural
analysis techniques was made by Oden (21) in 1969. The main soluticn
methods for both geometrically and materially nonlinear structures
are discussed and presented in tensor form. Furthermore, the incre-
mental stiffness approach first suggested by Pope (7) is generalized.
The paper also includes an extensive list of selected references.

Despite the fact that finite element methods are highly suited for
stress analyses, relatively few studies have adopted these techniques
to investigate the behavior of concrete structures. Rashid (22) re-
ported in 1966 the results of a two-dimensional finite element scheme

used to analyze a prestressed concrete pressure vessel. In order to



obtain a realistic model of this composite, heterogeneous, axisymmet-
ric structure, three kinematically dissimilar elements were introduced
to simulate the concrete, reinforcements and the steel liner. The
program was later modified by Rqshid (23) to include cracks in the
concrete and the effects of plastic deformation in the steel components.
As a special feature, Rashid proposed to treat the influence of a crack
as a mechanism that changes the hehavior of continuous elements from
isotropic to orthotropic. )“,,

An alternative approach, su/ggested in 1967 by Scordelis and Ngo
(24), introduced complete crack patterns by separating interelement
boundaries. This study also included the simulation of bonds between
reinforcement and concrete. Finally, the disadvantage of two-dimen-
sional approximations has been overcome through the implementation
of the ""SAFE-3D" computer program, developed by Cornell et al. (25).
This program was used by Corum and Krishnamurthy (26) to investigate
a series of models of prestressed reactor vessels. It uses tetrahedral
concrete elements, uniaxial bars, and triangular membrane steel
components. As expected, the three-dimensional model provided much
better results. However, a significant increase in computer time
resulted from use of three-dimensional elements. Quite a different
approach was taken by Cervenka (27) in his study entitled "Inelastic
Finite Element Analysis of Reinforced Concrete Panels under In-Plane
Loading." No individual reinforcement bars were considered. Instead,
the total steel area was distributed over the quadrilateral element.

The cracked state then could be visualized as a planar lattice structure.



1.4 Problem Approach

The solution method used herein is a combined iterative and step-
by-step procedure based upon the matrix displacement method. The
structure is analyzed as a plane stress problem. For each load incre-
ment, repeated elastic solutions are performed until the disp‘[acements
meet a specified tolerance.

The mathematical model consists of an assemblage of triangular
concrete plate elements, steel bar elements and bond links. The dis-
placement fields are assumed to be linear for all three parts. The
elastic constants (i. e., modulus of elasticity, Poisson's ratio, etc.)
which are needed in the derivation of the elemental stiffness matrices
are extrapolated from the pertinent uniaxial stress-strain curves.

For all elements, these functions are approximated by piecewise

linear polygons. The appropriate values of the material constants are
found by entering the stress-strain diagram at the corresponding values
of the principal strains.

A standard Gauss Elimination procedure is used to solve the
equilibrium equations. Two computer programs were written to imple-
ment the method. Both provide stresses and strains in each element
and the nodal displacements at all specified load levels.

A comparative study was made with the solutions presented by
Scordelis for a simply supported beam (24). A second, more realistic
problem was investigated to show the feasibility of the method to study

crack propagation.



CHAPTER II
FINITE ELEMENT PROPERTIES
2,1 General

The finite element analysis of a continuum consists of three funda-
mental steps. First, the real structure is replaced by a suitable mathe-
matical model. This is usually accomplished by dividing the original
continuum into an assemblage of discrete elements. All elements are
assumed to be interconnected at a discrete number of nodal points situ-
ated at the intersections of their fictitious boundaries. The second step
is the formulation of the finite element characteristics.

In the matrix displacement approach, the material properties are
described in the form of the elemental stiffness matrices. In recent
years extensive research has been done in order to improve the various
derivation procedures. Methods based upon energy theorems and re-
lated variational principles have been found to be the most satisfactory
techniques. The foundation for such derivations is the assumption that
an energy functional derived for the continuous system is equal to the
same functional determined from the finite element model. The element
properties can then be obtained by minimizing the functional through
well-known variational methods.

Once the element properties of all the elements have been de-

fined, the discrete system can be analyzed as a conventional structural
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problem. Hence, the last phase consists of a star;dard analysis of a
structural system by means of suitable computer programs. In this
chapter, the first two steps (i. e., the structural idealization and the
evaluation of element characteristics) will be discussed. The mathe-
matical models for concrete, steel reinforcements, and bond between
the two materials are developed in section 2. 4. The ;:lerivafc\ion of the
solution procedure for linearly elastic problems and the necessary

modifications for the nonlinear case will be presented in Chapter III.

2.2 Structural Idealization

In general, a reinforced concrete member must be considered as
a three—dimensional, nonhomogeneous, nonisotropic, composite struc-
ture.* The difficulties encountered in the solution of such structural
systems have already been described in section 1.1. Clearly, a series
of assumptions must be introduced in any solution procedure. The
choice of suppositions is governed by the type of structure under con-
sideration, the character of the results desired, and the numerical
method utilized. In the case of reinforced concrete beams, simplifica-
tions concerning the type of structure are the n:ost critical group. In
order to obtain a reliable approximation, the model must include all
physical constituents of the real composite structure. In addition,
special attentioﬁ should be given to the simulation of the interaction be-

tween the parts. A list of the necessary assumptions for the construc-

tion of a relevant model is set forth below.



2.2.1 General Assumptions

11

The following stipulations may be regarded as preparatory re-

quirements for a possible application of the finite element method.

Real Structure

a. Three-dimensional,;

b. Nonhomogeneous components;

c. Nonisotropic components;

d. Random change in structural
configuration due to crack-
ing;

e. Continuous bond between con-
crete and steel reinforce-
ments; bond-slip;

f. Influence of time-dependent
effects such as creep and

relaxation.

The next set of assumptions concerns the selection of the finite elements

and their individual properties.

Assumed Structure

a. Two-dimensional (of the plane

stress type);

. Homogeneous components;

. Isotropic or orthotropic com-

ponents;

. Cracking predicted by princi¥

pal tensile stresses in the

concrete;

. Discrete attachment between

steel and concrete via bond
links;

Neglected.

Figure 1 shows a typical, singly-reinforced concrete beam under

an arbitrary static, in-plane loading condition. The finite element

idealization relevant to this study is displayed in Figure 2 in an

exaggerated view.

Three kinematically and geometrically dissimilar elements have

been chosen as basic components of the model. The entire concrete
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body is divided into flat, triangular panels. Combined with the steel
segments (represented by "two-force' members), they constitute the
material part of the composite structure. The complicated phenomenon
of bond interaction between concrete and steel is simulated by a dimen-
sionless connecting device, called a linkage element. According to
Scordelis (24), these bond links can be conceptually thought of as linear
springs. Both steel reinforcements and the connecting elements have
been extracted in Figure 4 for illustrative purposes. In the real
assernblége, the nodes of the steel bars and the connecting springs
originally occupy the same geometrical posiﬁon as their corresponding
concrete joints. Therefore, these nodes have the same global coor-

dinates. However, topologically they must be treated as separate joints.
2.2.2 Concrete Elements

The concrete body can be subdivided in a number of ways. The
most commonly used configurations are triangular, rectangular, and
quadrilateral meshes. Rectangular elements provide slightly better
results. However, triangular panels are preferred for problems with
irregular boundaries. In early publications the stiffness matrices were
derived by the so-called direct approach (28). Recently, descriptions
of a number of refined elements have been published as a result of the
implementation of variational techniques. An excellent summary may
be found in Reference 29. In this study, the traditional, constant-
strain, triangular panel (Figure 3a) has been adopted for two reasons.
First, it is desirable to decrease the size of elements in the vicinity of
large stress gradients. A gradual change in size can easily be accom-

plished in the case of triangular panels. The second criterion for
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selecting constant-strain elements is reflected by the fact that yielding
takes place throughout the whole element. Elements with nonuniform
stress distributions are subject to local yielding which results in addi-

tional complications in determining the state of stress.
2.2.3 Steel Elements

The reinforcement occupies a relatively small volume compared
to that of the concrete. It is therefore justifiable to idealize the steel
tendons by simple two-force members (Figure 3b). The triangular
model used by Scordelis was abandoned mainly because the very small
vertical reinforcements would require a large number of additional
elements or extremely slender triangles which are known to behave

unsatisfactorily (30).
2.2.4 Bond Links

To account for bond slip, the steel must be attached to the con-
crete by a special connection mechanism. The bond link (Figure 3c)
is designed to allow for relative displacements between the steel bars
and the concrete panels, As pointed out earlier, these elements are
dimensionless because only their mechanical properties are of impor-
tance. Nevertheless, additional nodes must be provided to permit

relative displacements between adjacent concrete and steel joints.
2.2.5 Displacement Functions

After the shape of an element has been chosen, all geometric
relations can be established. The next logical step is to decide upon a

suitable displacement function representing the deformation of the
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element. It should be noted that the degree of approximation which can
be achieved depends very heavily on the element shape and the chosen
deflection pattern. To ensure convergence, the assumed displacement
function should resemble the real displacement distribution. According
to Zienkiewicz (12), good deflection functions are obligated to satisfy
the following five requirements:

1. Internal and interelement compatibility;

2. Linear dependence on nodal displacements;

3. Inclusion of rigid body displacements;

4., TUniform strain state;

5. Independence of the external frame of reference.
For all three elements utilized in this study, these criteria are satisfied

by assumed linear displacement functions of the form

ux=c1x+02y+c3 .

for concrete panels (2.1)
uy= Cy X + c5y+ Cg
u, = c.,x +c for steel and bond elements (2.2)

1 7 8

It can easily be shown that the assumed displacements vary
linearly along the edges of the concrete panels and that they depend
only on the displacement of the two vertices on that particular edge (31).
This ensures displacement compatibility along the common boundary
of two triangular elements.

The assumed linear deflection pattern for the "two-force' steel
bars results not only in a compatible but also in an exact strain distri-
bution, since the elements are one-dimensional.

On the basis of these chosen deformation functions, the kinematic

relations (i. e., the strain-displacement equations) are derivable
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through ordinary differentiation. To complete the preparations for the
development of the stiffness matrices, the material laws for each ele-

ment will be reviewed in the next section.

2.3 Constitutive Relations

2.3.1 General

The behavior of a material is characterized in the way it deforms
under an imposed stress condition. It is therefore customary to ex-
press the material laws in the form of stress-strain curves. Two
typical plots for a uniaxial, stress condition of nominal stress versus
conventional strain for mild steel and concrete are shown in Figure 5.
Both curves illustrate the complex, nonlinear character of the constitu-
tive relations. Actually, the material characteristics can become even
more complicated if the effects of time and temperature upon the rate
of change of strains are included. It is therefore necessary to replace
these empirical curves by mathematically defined expressions. The
selection of an idealized stress-strain relationship depends upon
several factors such as the nature of the problem, the kind of material,
the type of load, desired accuracy, etc.

The most commonly used expression is the simple idealization

known as Hooke's LLaw. In matrix form,

(4- P19 2
The {e} is the vector of total strains, {o} designates the stress vector,
and [D] is a square matrix containing the elastic constants. This

linear relationship is, of course, very popular in engineering practice;

however, its restriction to linearly elastic behavior must be remem-
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bered. In an investigation concerning the nonlinear behavior, the entire
stress-strain curve will be needed for the evaluation of the element
characteristics. Analytical inelastic theories require that the constitu-
tive relations may be replaced by reasonably simple continuous func-
tions. The Ramberg-Osgood Law and the Bi-Linear Law are typical
examples of such expressions (32). If more accurate idealizations are
desired, the possibility of using a curve-fitting scheme always exists.
In a numerical procedure, on the other hand, empirical data may be
used directly in table-form. Values between discrete data points are
easily calculated by means of suitable interpolation formulas. The
approach adopted in this study is based upon linear interpolation; i.e.,
the stress-strain curves are replaced by a polygon (Figure 6).

After the idealized constitutive relations have been established,
the elastic constants are available at any load level. Since the matrix
[D:\ contains ''elastic constants'' only, its derivation appears to be a
straightforward procedure. This is true for the elastic interval. How-
ever, the evaluation of [D] in the inelastic range presents some diffi-
culties because of the biaxial state of stress in the concrete.

By methods well known from strength of materials, the biaxial
state of stress can be reduced to two principal stresses acting at right
angles to each other on an appropriately oriented elementary cube,
Either, or both, of the principal stresses can be tension or compres-
sion.

In most cases only the uniaxial stress-strain relation of concrete
is known from simple tests. To predict the elastic constants for a
structure under a combined stress situation, it is necessary to relate

the material properties to the uniaxial test parameters. Six different
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quantities (i. e., maximum principal stress, maximum shearing stress,
maximum strain, total strain energy, strain energy of distortion, and
octahedral shearing stress) are available to compare the multiaxial
state of stress with a.tensile specimen. When the specimen starts to
yield (or fracture), all six quantities reach their limiting values simul-
taneously. In members under biaxial or triaxial states of stress, the
limits usually do not occur at the same time. Since the type of failure
of a concrete member is dependent upon many variables (i.e., state of
stress, shape and size of structure, type and duration of loading, etc.),
it is extremely difficult to choose the proper failure criterion. In spite
of extensive and continuing research, no reliable theory for. the selec-
tion of the propef failure mode has yet emerged. The highly nonhomo-
geﬁeous nature of concrete and the phenomenon of microcracking are
possible reasons for the insufficient reliability of these theories. The
most commonly used criteria are the Maximum-Tension-Stress, the

Mohr, and the Octahedral Shear Stress theories (33).
2.3.2 Proposed Idealization of Stress-Strain Characteristics

Concrete. In order to arrive at the proper [D] matrix for con-
crete, this study used the following approach. Consider an element
(shown in Figure 7) under an arbitrary strain condition €4 and €,
From the stress-strain curve, Figure 8, it appears that two different
Young's moduli, Eu and Ev’ can be associated with the strains eu and
Ev’ respectively. The material behavior is obviously different in
these two directions; in other words, the structure may be thought of
as anisotropic. It should be noted that this anisotropy is different from

the term used in the theory of elasticity. There, an anisotropic body
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is defined as a continuum with different values for E in at least two
distinct directions. However, the elastic constants at each point in the
structure are the same for one particular direction. Here, the behavior
is assumed to change with the state of stress or strain at a point. If

€4 and €, are known, the corresponding values for the moduli of
elasticity can be determined from the uniaxial stress-strain curve.

The constitutive relations for an anisotropic body are, in general,

of the form

{o} = [Dg] {e} (2. 3a)

where [Dg] is a symmetric matrix containing six independent, non-
zero constants. For the principal axes of anisotropy, they reduce to
four independent coefficients. The material is then referred to as
"orthotropic' with respect to the axes u and v. Once again, the stan-
dard definition of orthotropy does not apply to the structures considered
in this study.

For the principal axes of anisotropy, the constitutive equations

become
g = 1 (E e + E €
u 1-v uu \)vuuv)
uv vu
g = 1 (v.. E e + E €) (2.4)
uv. v u vV Vv )

1 - v
v \)UVVU.

g =G__€
uv uv uv

Under the assumption that the structure behaves locally as an ortho-
tropic structure, one can assume that the principal axes of stress and
strain coincide. Furthermore, these axes (1 and 2 in Figure 7) are

taken as principal axes of anisotropy. With E being the material

1° V21

constants in the direction of the first principal axis and EZ’ Vi9 being
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the values for the second, Equation (2.4) now reduces to

1
g, = ———— (E e, + v,,E_€,)
I 1-vigvgy 11 217172
0y = T———— (Vo Eqe. + E €,) (2.5)
2 1-vi9Veg 217271 272
012=O

Once the principal strains have been calculated, the corresponding

maximum stresses may be evaluated directly as

{0'} = [Da] {e} (2. 6)

where
E1 v21E1 0
1
[Da:‘=—-——— v, ,E E 0 (2.7)
1—\)12\)21 1272 2
0 0 0
C _

It must be kept in mind that such an approach is contingent upon the
assumption that the principal axes exist. The conditions for the exis-
tence of principal directions are stated in Reference 34. Since the
computer solution does not calculate the stresses in any other but the
principal directions, no stress transformations are performed. Thus,
the transformation of elastic constants for new coordinate systems can
be omitted, and transformation of coordinate systems is performed
on the entire element stiffness matrix.

Finally, it should be noted that Equation (2. 5) is subject to an
E

additional condition. The four material constants, E and Vors

10 B2 V12

are not independent. The additional relation may be obtained by com-

parison of the total work done on a differential element for two different
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loading sequences. The resulting supplementary equation relates the

Poisson's ratios to the moduli of elasticity as follows:
= = (2.8)

Substituting Equation (2. 8) into Equation (2. 5) yields the constitutive

laws
El
o, = ———— (€, + v, €,)
1 1—\)12\)21 1 212
El
0y = 77— (vy,€, + ne,) (2.9)
2 1—\)12\)21 2171 2
99=0
where
E
n= _2 (2.10)
E
1
In matrix form
- _ —_ - -
01 1 \)21 0 €1
El
o) = T |V n 0 € (2.11)
2 1- v12v21 12 2
0 | 0 0 0|0 ]

. ) ] (4

Steel and Bond Links. Since in this study the steel elements will

be considered as two-force members only, the uniaxial stress-strain
curve may be used directly to determine the material properties. It
should be mentioned that any other element would require more

sophisticated tools for the evaluation of the material constants. A
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proper yield criterion and plastic stress-strain relations, such as the
Prandtl-Reuss equations (32) would have to be adopted.

Here the incremental stress AGX in the longitudinal direction is
calculated by

Ac_= E Ae (2.12)
p: 4 S X

The appropriate modulus of elasticity is read from the uniaxial stress-
strain curve for steel at the location of the total strain €, In the case
of an elastic-perfectly-plastic material, the incremental stresses will
become zero beyond the yield stress. However, the total stress O is
still available from the stress-strain curve.

A similar situation exists for the bond links. Again, the uniaxial

stress-strain relations provide the material constant E, directly. The

b
same approach as used for steel members yields the stress increments
A'rb and the total bond stress L at any load level.

A'rb = EbAr (2.13)
Ar denotes the relative displacement between a steel and the corres-
ponding concrete node. Figure 9 displays some possible stress-rela-

tive displacement curves (from Reference (35)).

2.4 Development of Element Stiffness Matrices

2.4.1 General

A number of alternative methods are available for the calculation
of element stiffness matrices. The variational approach based on the
principle of minimum potential energy is adopted here. Since these

methods are well established, a comprehensive repetition of the
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procedure is omitted. References (31) and (36) contain excellent intro-

ductions to the variational treatment of the energy methods.
2.4.2 Matrix Formulation for the Plane Stress Case

The first step in determining the properties of the idealized ele-
ment is to assume that the interior displacements {u} at any point are
expressible in terms of the nodal displacements {U} by a set of equa-

tions given as

(o} =[] {1} (2. 14)

[a:! is a rectangular matrix which is a function of the coordinates of
the point under consideration. For discrete element systems, the
matrix [a] is an approximate expression. The total strain distribution
{e} ({e} may include initial strains {60}) within a particular element
is obtained by differentiating Equation (2. 14) which leads to the matrix

equation

(313 () -F1 9

This expression replaces the kinematic relations used in the ordinary‘
theory of elasticity.

Under the assumption that a unique matrix [b] exists, the
stresses may be determined from any conceivable constitutive relation-

ship of the form

{o=[P] (1} - {=D) (2. 16)

By substitution of Equation (2. 15) into Equation (2. 16)

(4 P16 9 [5] 4
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{o}, of course, represents the three stress components, o oy, oxy
and [D] is a square matrix containing the elasticity constants, E, G,
v, etc.

It is now possible to express the total energy functional in matrix

-] [IGHa) 0-16.0) (D
3 [ odes o1

n= element index

P, = prescribed surface tractions
Vn= volume of element n
S0 - portion of element surface over which the

surface tractions p, are prescribed.
Substituting Equations (2.15) and (2. 17) into Equation (2. 18)

yields the required expression for IT.

1=3 [ o) o] T2, [, o)

n=1 Vrl

PR - (o BT e Dav
T ) s 219

n=1 Soln
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Application of the principle of minimum potential energy
6= 0 (2. 20)

to Equation (2. 19) will result in the desired stiffness matrix [K]

(<] = S0 Bl [P o] o (2. 21

and three equivalent force vectors due to initial strain conditions, pre-
scribed body forces and surface tractions (29).

Consideration will now be given to the three specific elements as
shown in Figure 3. If the strain-displacement transformation matrix
[bn] and the matrix of .ela'stic constants [Dn] are known, the stiffness

matrix [Kn] can be determined by evaluation of expression (2. 21).
2.4.3 Triangular Concrete Panels

It is possible in this case to obtain the stiffness matrix [Kn]
directly in terms of global coordinates x and y. The assumed displace-
ment function will be taken as

u, = ¢4X + cy + Cq
(2. 22)

u

5 CyX +05y+c:6

The six arbitrary constants, Cys - result from six boundary

. Cqs

conditions involving the three vertices of the triangle, Figure 10. Upon
substitution of the vertex coordinates into Equation (2. 22), the displace-

ment functions are obtained as follows:

ux(x, y) = _211-\_ [y32(x—x2) B x32(y- Yz)]Ul
n.
* ['ysl(x'xs) + X31(y-y3)] U, (2. 23a)

+ [yzl(x'xl) - X21(3”‘3’1)] Ug
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1
uy(x, Y) = —ZK;EY32(X~y2) - X32(y—y2)] U2
+ [‘Y31(X‘X3) + X31(y-y3)]U4 (2. 23b)

+ [yZl(_Xl) - X21(y_y1)] U6

where
A T X39Y¥91 T X91Y32 (2.24)
and
X.., & X. - X,
1) 1 J
(2.25)
yij = yi - yj

Thus, matrix [bn] is a function of the vertex coordinates only and
therefore is unique. The strain-displacement transformation matrix

is obtained by differentiating Equation (2. 23). Hence,

Uy
L _ o,
% yg2 0 vy 0 yy O
U
- 1 ) 3
y|Tz | ° M2 0 ¥y 0 Ey
Uy
Xy “X32 Y32 %31 Y31 Fa1 Y21
L — “lu
5
Ug
- —

(2.26)

or

(- B0

The assumption of linear displacement functions results, in this

particular case, in a constant strain field. The compatibility equations
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are therefore satisfied within each element. Furthermore, displace-
ments along the interelement boundaries are linear functions of the
corresponding vertices and are identical for adjacent edges.

Since the elements under consideration are of unit thickness, the

expression (2. 21) reduces to

5]« [0 [o,) o) v 2.3

the integration being carried over the area of the triangle. Both ma-
trices, [bn] and [Dn] , are independent of the integration parameters
and can be taken out of the integral sign. The integration then simply

reduces to a matrix product of the form

5] - ] [, 0o o

where A denotes the area of the triangle 1, 2, 3.
The resulting stiffness matrices for different matrices [Dn] are

tabulated in Appendix A.
2.4.4 Steel Bars

The derivation of [Kn] for the linear steel elements is consider-
ably less involved. Only one displacement function in the direction of
the member axis is needed. It has been mentioned before that the

assumption of linear functions of the form

U, U+ 1 (U5

will provide the exact strain distribution. I—J’l designates the displace-

D) (2.30)

ments in local coordinates, Figure 11.
Upon differentiation of Equation (2. 30), the longitudinal strain

€ becomes
X1



36

ou
X1 1 = =
€ T = (Tg-Tp) (2.31)
1 1
Uy
€
X -1 0 1 0 U
1.1 2 (2.32)
e L
Y4 0o -1 0 1 Uq
Uy
and therefore,
-1 0 1 0
[b]=1-1: (2. 33)
S 0 -1 0 1

For one-dimensional elements, [DS] reduces to one term, Es' The
stiffness matrix then, after integrating over the length, can be written

as

[Ks] i-i-zﬁ (2. 34)

0 0 0 0

Young's modulus, naturally, must be chosen according to the prevailing
strain condition in the member.

Although the stiffness matrix could be stated in the datum coor-
dinate system directly, it is more convenient to develop the relations
in local coordinates first and subsequently rotate the entire matrix
into the global axes. According to Reference (2), the appropriate

transformation is expressed by the matrix equation
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]~ [ <], ) 2.5

where [T:\ is an orthogonal matrix which relates the nodal displace-
ments {U} in the global system to the local deflections {ﬁ} in the
following manner. 6 denotes the angle between the local and global

x-axis (Figure 11).

{v} - I:T] {U} (2. 36)

"~ cos6 sin® l 0 0
-sin6 cos®6 | 0 0
I:T:\ = (2.37)
0 0 | cosé sinf
0 0 ’ -sin® cos6

2.4.5 Bond Links

Finally, the derivation of the bond link stiffness matrix follows
closely the procedure set forth in section 2.4. 4. Consider a linkage
element oriented at an arbitrary angle 6 relative to the global axes
x and y, Figure 12. Let the springs in the %y and ¥y directions have
stiffness coefficients k, and kz. Hence, the stress-strain relations

1

in matrix notation simply become

ORILNES e

X0 1 Xy
s 1=l o0 & . (2.39)
Y1 -2 Y1

where €, and €, are the relative displacements between the adjacent
1 2
steel and concrete nodes. It can easily be verified that the strain-
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displacement relations

1 (2.40)

Yy 4 2

m
i
=l
=l

yield a [bb] matrix identical to Equation (2.33). Because of the concep-
tual similarity between the steel and bond elements, the remaining
steps are analogous to those in section 2. 4. 4 and need not be repeated.

Scordelis has found in his study of reinforced concrete beams
(24) that this type of bond mechanism simulates the interaction between
concrete and steel quite accurately. It should be mentioned that the
linkage element neglects frictional bond, local stress concentrations
along the ribs of deformed bars and dowel action.

Research has shown that the redistribution of compressive
stresses at the ribs of bars may cause small tensile stresses in the
concrete (37). However, for all standard deformed bars the concrete
is capable of sustaining these local disturbances. Therefore, these
effects are neglected in the design. Frictional bond may be significant,
especially near cracks; but it is again neglected since the coefficient of
friction is extremely difficult to predict.

Dowel action is usually significant in the corners of bent or
curved reinforcements. This study considers straight bars only.

Therefore, a bond link which does not account for this effect is justified.
2.4.6 Cracked Concrete Element

It is well known that the tensile strength of concrete is only a
fraction of its compressive strength. This rather unpleasant property

leads to cleavage failure (tension cracking) at relatively small loads.
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At any load larger than that which causes the concrete to crack, the
reinforcements are called upon to resist the entire tensile force. This
type of behavior plays an important role in the nonlinear analysis of
reinforced concrete.

In the solution procedure presented here, the influence of a crack
on a continuous triangular concrete element is treated in a similar way
as proposed by Rashid (23) in 1968. The element is cut in the direction

perpendicular to the principal tensile stress o In this new state the

1
element no longer has any stiffness normal to the crack surface
(Figure 13).

Consequently, the concrete may be considered as a uniaxial

stress condition parallel to the second principal axis. This assumption

results in the following stress-strain relationship:

9y 0 0 0 61
oy | = 0 E2 0 € (2.41)
0 0 0 OJ 0

or, in matrix formulation,

{o} = [Dcr] {e} (2. 42)

The stiffness matrix in local (principal) coordinates may now be de-

rived on the basis of Equation (2. 29). Hence,

t .
[ 1= [r] D ][b] A (2.43)
cr, e cr
For the assembly of the total stiffness matrix, the local matrix (Equa-
tion (2.19)) must be expressed in terms of global coordinates. Ordi-

narily, this is accomplished by a matrix triple product of the following

form:
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(2. 44)

{ cds¢

| -sing

sing |

cosg l

|
|

l cosg

l -sing

sing

cosg |

It should be noted at this point that similar transformations must be

performed on all anisotropic, uncracked elements, whose material

characteristics follow Equation (2.11),



CHAPTER III

MATRIX ITERATIVE PROCEDURES

3.1 Review of Iterative Procedures for Problems with Nonlinear
Material Properties

3.1.1 General

Nonlinear structures are usually classified according to the cause
of nonlinear behavior. Since all solution procedures in solid mechanics
involve equilibrium, kinematic and constitutive equations, nonlineari-
ties may arise from either of these three sets of fundamental relations.
In case of large displacements, the geometric configuration of the
assembly may change sufficiently under load to influence the equili-
brium relations. Large deflections also cause nonlinear terms in the
kinematic relations. It appears then that nonlinearities may be due to
either the geometry or the material properties or both. Thus, the#
following three categories contain all possible sources of nonlinear
conditions:

1. Geometric nonlinearity caused by nonlinear kinematic rela-

tions.

2. Material nonlinearity which arises from complex material

laws.
3. Combined geometric and material nonlinearity.
The matrix analysis methods developed for linear structures can be

extended to include the above mentioned complications., Because of

43
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the presence of nonlinear terms, the solution to the governing matrix
equations can no longer be obtained explicitly. Consequently, the use
of iterative procedures is inevitable. Most of the early applications
handle nonlinearities by calculating corrections to linear solutions., A
common method used in the solution of geometrically nonlinear systems
is due to Turner et al. (38). Tﬂhe structure is solved as a sequence of
elastic problems in which corrective stiffness matrices are generated
to update the geometry. A comprehensive review of such methods and
subsequently developed procedures can be found in Oden's paper on
nonlinear structural analysis (21).

Similar iterative schemes have a'léo been adopted in the study of
inelastic structures. Among the earliest applications were investiga-
tions concerning thermal effects and creep (39, 5). The most signifi-
cant developments are connected with research on elasto-plastic prob-
lems. Basically, four methods have emerged from such investigations:

1. Direct iterative approach;

2. Initial strain approach;

w

Variable elasticity approach;

4. Initial stress approach.
The key to these different methods is the formulation of the matrix of
elastic constants [D1 Since the coefficients of these matrices are
functions of the state of stress or strain, they must be re-evaluated
after each cycle. In the case of a uniaxial state of stress, the modulus
of elasticity may be read from the stress-strain curve directly. More
generally, under multiaxial stress conditions, the elastic constants
will depend on the stress or strain invariants. It is reasonable to

assume that the effective stress Outr is equal to the value of the second
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invariant J2 of the stress deviator tensor. Similarly, the effective

strain € off corresponds to the second strain deviator invariant 12,

where:
J2 = %{(GX - cy)z + (cy - cz)z + (O'Z - GX)Z
+6(ch2+ay22+aZX2)} (3.1)
12 = % {(EX - Ey)2 + (ey - eZ)Z +(ez- EX)2
+ 6(€Xy2 + eyzz + ezxz)} (3. 2)

Or, in terms of principal values,

Ta %{("1 - "2)2 + (o, - 03)2 + (o5 - 01)2} (3.3)

I:2 %f(el - 62)2 + (62 - 63)2 + (63 - 61)2} (3.4)
The effective or equivalent stress is introduced for convenience as
3

Opp = %2— {(01 - 02)2 + (02 - 03)2 +(c73 - 01)2} (3.5)

It is closely related to the frequently used octahedral shear stress
3

ot =%{(01 - 02)2 + (02 - 03)2 + (03 - 01)2} (3.6)
through the following relationship:
3

Toff = \72 Toct | (3.7)

Most authors prefer to use either one of these quantities in place of

the rather abstract term J2:

= (33,)° (3.8)

Q
1

eff

oct <§ J2> (3.9)

3
I
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The convenience of the above definitions and the corresponding strain
terms becomes apparent in the formulation of yield criteria. For
example, the von Mises condition relates the second stress invariant

of the multi-dimensional state of stress to the uniaxial case as follows:

3J2=cr

o) (3.10)
where o, is the uniaxial tensile or compressive stress. Thus, the
three-dimensional situation may be expressed in terms of one para-
meter, O only. Furthermore, if a unique relationship between o,
and Eo exists, one is able to determine the material constants for the

three-dimensional continuum at any load level from the uniaxial stress-

strain curve:

Q
I

f(eo)

o f(e (3.11)

off off)

3.1.2 Direct Iterative Approach

The direct iterative technique is based upon repeated elastic
solutions, where for each cycle the full load is applied. Initially, all
elements are assigned a modulus of elasticity, Eo’ and a Poisson's
ratio, \)O, corresponding to zero stress. Subsequently, the elastic
constants are redefined for each new solution. They depend on the
state of stress (or strain) reached in the previous step. According to
Zienkiewicz (12), an adequate solution requires three to four iterations.

Unfortunately, this simple method has several disadvantages. It
is, for example, impossible to include an unloading cycle in a problem,
Clearly, during a load decrease the plastic strains should remain con-

stant. Since the procedure is entirely based upon total effective
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strains, a reduction in load may cause a change in plastic deformation.
Furthermore, it is difficult to obtain reasonable, consistent represen-
tations of the equivalent Poisson's ratio.

Gallagher et al. (39), and Argyris (8) realized that both difficul-
ties can be avoided by incremental procedures. These step-by-step
methods have the additional advantage that they permit the use of incre-
mental stress-strain characteristics such as the Prandtl-Reuss equa-

tions.
3.1.3 Initial Strain Approach

The procedure here consists of applying the load in small incre-
ments. For any such load interval the incremental stresses and strains
are computed. Total stresses and strains may be obtained by adding
the current incremental values to the total stresses (or strains) reached
during the previous step. Clearly, the evaluation of the elastic strain
increments is straightforward. However, the change in plastic strain
depends on both the initial and final stress condition and cannot be
determined directly.

The total incremental strain {Ae} in any interval may, in general,
consist of elastic, plastic, thermal and creep strain increments.
Throughout this study the latter two contributions will be neglected.

Hence, the total strain increments reduce to

- {ae} + {ac)
{Ae} (bt + {ae, (3.12)
If the plastic strain increments are known, they may be treated as
initial strains {Aeo p} similar to those caused by temperature

changes. Consequently, the stress increments can be determined

through a standard elastic analysis.
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{AG} } sz' ‘i{Aee} " {Aeo, pD (3.13)

The difficulites involved in establishing the plastic strain increments
depend on the degree of sophistication desired. Any plastic constitutive
relation may be implied, including time or temperature dependent
material characteristics. One of the most commonly used set of equa-
tions, the Prandtl-Reuss flow rule, will be elaborated as an example.

In matrix notation they take on the form

{Aep} - c, [Do]'l{a} (3. 14)

where Cp is a function of the effective stress and the effective plastic

strain increment, Aep .
eff

Aegff = V;;i (Aeli - Ae%)z + (Aeg - Ae§>2

+ (Aeg - Ae?)z}% - (3.15)

The matrix [DO]—I contains v = 0.5; thus, for the three-dimensional

case
1 -.5 -.5| B
-.5 1 -.5] 0
-.5 =-.5 1 |
-1_1 |
P, I=s - — — — - _ (3. 16)
| 1.5
0 | 1.5
| 1.5
and
AeP
c = —=eff (3.17)

P Ot
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To obtain the effective incremental plastic strain, Argyris (8) suggested
two different methods. First, the so-called direct incremental
approach makes use of results obtained in the preceding step. Assume
that upon completion of increment i-1, the total and incremental

P and o are

eff eff
readily determined from Equations (3. 15) and (3. 5), respectively.

stresses and strains are available. The values of Ae€

The modulus of elasticity, Eo’ and Poisson's ratio, Vs for the zero
stress condition are used throughout the entire solution. With,EO and
Vo known, the constitutive equations needed for the formulation of the

stiffness matrices are defined as

{Ae}i = [D]_l {Aa}i + Cp,i[Do]i—l {Aa}i (3.18)

This procedure may be improved by performing, for each load step,
an initial elastic solution and a series of subsequent iterations. The
increments of stresses and strains of the current cycle are used to
obtain a new estimate of the plastic strain increment for the next itera-
tion. According to Argyris (8), this iterative-incremental method
usually converges after five iterations.

It should be mentioned that both methods require special pre-
caution when unloading occurs. During a load decrease, the structure
must behave in a purely elastic fashion which may be accomplished by
specifying the factor Cp as zero. Likewise, upon reloading, Cp must
remain zero until the current Ot is found to exceed the highest effec-

tive stress achieved during the previous increment.
3.1.4 Variable Elasticity Approach

For elastic-perfectly plastic and ideally plastic material, the

methods of sections 3.1.3 and 3.1.4 break down. This is due to the
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fact that large plastic strain increments may result even from very
small load augmentations. Pope suggested a method in 1965 (7) which
adjusts the stress-strain relationship in every load increment to take
into account plastic deformations. The works of Marcal and King (11),
Akyuz and Merwin (15) fall into the same category.

For the elastic strain increment the expression remains as

{Aee} = [De]'l {Ac} (3.19)

However, the Prandtl-Reuss equations (which express the plastic
strain increments in terms of actual accumulated stresses {c}) must

be replaced by a relationship of the form

{Aep} = [Dp]‘l {Ac} (3. 20)

To derive [Dp]—l, let H' denote the slope of the effective stress-
effective plastic strain function, which, again, will be assumed to be
available through experiments. The strain-hardening criterion in dis-

crete form then becomes

= ! p
Mg = H'AL (3. 21)

By differentiating the von Mises yield condition, a second expression

for Aceff may be obtained as follows:

Aag = 3 ! Ao_+ o'Ac +c*Ac}
eff 2ceff X X y y zZ Z

+—§——{c Ag +ag Aag +a Ac} (3.22)
Oup XY Xy yZ yz ozX ZX

where

) (cyclic sub- (3. 23)

g! = l(20 -0 _-0
3 y stitution)

X z

The above term can now be written in matrix form as
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ot
Ao, = {s} {Ao} (3. 24)
and substituted into Equation (3. 21).
p _ 1 { t{
AeP. = S} Ao} (3. 25)

Upon substitution of Equation (3. 25) into the Prandtl-Reuss relations

(3.14), one arrives at the desired incremental stress-strain rule.
AeP
P Oots o J

S D e e

or

{Aep} = [Dp]_l {Aa} (3. 27)

Hence, [Dp] depends upon the current state of stress {o} and the
strain-hardening history through the parameter H'. Combined with

the elastic constitutive relations, the total strain increments become

{Ae} - {Aee} + {Aep} = <[De]_1 + [Dp]‘1> {Ao (3. 28)

and the corresponding change in stress is

{Ao} = ([De]‘l + [Dp]“1>"1{Ae} (3. 29)

This particular method is known to converge very rapidly. Further-
more, unloading can be treated by simply inserting an elastic [D]
matrix in the increment following an unloading interval. From a com-
putational point of view, the variable elasticity approach has one disad-
vantage; at each solution step, the stiffness of the structure is changed.
Thus, for every iteration the whole structural stiffn‘ess matrix must be

reassembled, which naturally results in excessive computer time.
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3.1.5 Initial Stress Method

The most recent method of elasto-plastic analysis was introduced
by Zienkiewicz et al. (20) as an alternative approach to the "variable
elasticity'' procedure. This "initial stress' method makes use of the
fact that the total strain increments uniquely define the corresponding
stress situation throughout the entire load history. This holds true for
any type of stress-strain relationship including those for ideally plastic
structures. Therefore, it seems more reasonable to treat the stress
increments as initial values rather than the strains. The change in
stress derived from the corresponding strain increment will, in
general, be incorrect. Consequently, the initial stress approach must
again rely on an iteration scheme.

Once more, the first step in each load increment consists of
solving the problem elastically, Both the strain increments {Aee} and
the associated change in stress {Aoe} are computed. Since the calcu-
lated values for {Ace} deviate from the true stfess increments {Ao},
the equilibrium conditions are violated. In order to maintain equili-
brium, a set of '"body forces' equal and opposite to the initial stress

system {Aob} must be introduced.

{Acb} = {Aoe} - {Ao} (3.30)

In the computation, the unknown, true stress increments are replaced
by approximative values {AE} determined from the second iteration
cycle.

Before proceeding to the second solution step, each element is
examined for its type of behavior. For this purpose the calculated

stress increments are added to the total stresses {oo} reached during
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the preceding increment to establish the current stresses {a} .

{d} = {ao} + {Aae} (3.31)

These values and the corresponding strain-hardening parameter k are
substituted into a suitable yield criterion, F({o}, k). The resulting
numerical value determines whether the element exhibits elastic or
plastic behavior. From the theory of plasticity, it is known that for a

strain-hardening material, the following four cases may be distinguish-

ed:
a, F< O elastic behavior
b. = 0 and AF < 0 unloading, elastic behavior
c F=0and AF =0 neutral loading, plastic behavio(j. ?2)
d. = 0 and AF > 0 loading, plastic behavior
where

AF = ;’—% {Aa} (3. 33)

Zienkiewicz states the same conditions in a more computer-oriented
form (29).

Clearly, no further iteration is required if, after the beginning
elastic cycle, the first or second condition is satisfied throughout the
entire structure. Otherwise, the solution is continued by computing

new stress increments {Aor} .

{AE} = [Dep] {Aee} (3.34)

where [Dep]’ the matrix of material constants, is a rather involved
expression. Its coefficients are dependent upon the yield condition, the
strain-hardening parameter and the stress-strain curve. In the case

of elasto-perfectly-plastic material, the matrix still exists since the
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slope of the stress-strain curve H' appears as a single term in the
numerator (20).

All subsequent iterations must now be based on augmented load
conditions (initial, externally applied load increments plus equilibrat-

ing nodal forces). For the ith solution cycle, they are

{7} - [b]t {ad}av (3. 35)

where
{Aa‘*} = {AEi} - {A'Ei_l} (3. 36)

3.2 Proposed Iteration Procedure

The method presented here is based upon an iterative, incremen-
tal load approach. For each load increment, the whole structure is
repeatedly solved as an elastic problem until closure. Consider an
arbitrary concrete element during load increment i. Assume that at
the end of the previous step the principal strains {ep, i- 1} and stresses
{ap’ ;- 1} have been established. Based upon these values the element
may be in any one of the following conditions:

a. Type 1: Elastic, isotropic;

b. Type 2: Elastic, anisotropic;

c. Type 3: Inelastic, anisotropic;

d. Type 4: Cracked.

The four cases can be visualized diagrammatically in Figures 14 and 15,

In the present computer program, principal strains {ei_ 1} are
used to determine the relevant material constants. After the proper

modulus of elasticity, Ei’ and Poisson's ratio, My have been found for
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each element, the [D] matrices are generated. To recapitulate, the

appropriate equation shall be summarized below:

Type 1:
1 v (.
El
[D] = —5 v 1 0 (3.37)
(1-v7) .
-V
o 0 T
| .
Types 2 and 3:
1 Via 0
[D ] v n 0 (3. 38)
1-v, v,. \)12 21 12
0 0 0

(for principal axes)

Type 4:
[0 0 0]
[Dcr] =E,| 0 1 0 (3. 39)
0 0 0

(for principal axes)

The elemental stiffness matrices [ki] follow immediately as
k]~ ) ) B .40
or, for cases 2, 3, and 4,
W]-RIEIRIER] e

Next, the total stiffness matrix is assembled and solved for the incre-

mental displacements {AU}. The discussion of the procedure used will
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be postponed until Chapter IV. The incremental strains are now

evaluated as

{Aei} = [bi] {AUi} (3.42)

and added to the total strains {ei_ 1} of the preceding step to give the

new total strains

| {eil} = {ei_l} + {Aei} (3. 43)
These values constitute a new strain situation with a corresponding
new set of principal strains {ep, 1} The material properties of the
following iteration cycle are again extrapolated from the stress-strain
curve. The iteration is stopped after a specified tolerance is reached.
Before proceeding to the next increment, all total stress and strain
values are updated and stored. Similar treatment is imposed upon the
reinforcements and bond links. However, the procedure here is much

less involved since the matrix [D] reduces to a single term El'



CHAPTER IV
COMPUTER PROGRAM
4.1 General

The iteration procedure described in Chapter III has been pro-
grammed for solutior; on a digital computer., Two programs, NARCOS-
1 and NARCOS—Z,1 were written for the IBM 360-65 model operated by
the Oklahoma State University Computer Center. The standard ASA
FORTRAN language was used.

Both programs generate all necessary mesh data from a minimum
of input information. NARCOS-1 was based on the element arrange-
ment used by Scordelis (24). This first version had to be abandoned at
an early stage because of unsa'tisfactory results. A convergence study
revealed that the symmetr‘ic mesh of NARCOS-2 converges much more

rapidly, Figure 16.

4.2 Computer Idealization of the Beam

The finite element representation of the beam is arranged into
rectangles. Each rectangular unit is subdivided into four triangular
elements of equal area. The corners are numbered in a clockwise

direction, Figure 17. To ensure small band widths, the joint numbers

1NARCOS is the abbreviation for "Numerical Analysis of Rein-
forced Concrete Structures,"

09
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are arranged in the direction of the least number of nodes. Reinforce-
ments can be connected at the corner joints of the rectangles only. In-
clined reinforcing (such as shear reinforcements under 45° wrt. beam |
axis) is not allowed. The program ccnnects all steel nodes by means
of bond links automatically. As mentioned earlier, this requires a
revision of the nodal list. All input information must be specified in
terms of the original nodal arrangement, Figure 17a. At the end of
the data input, the program generates a cumulative nodal list which

includes the additional steel nodes, Figure 17b.
4.3 Flow Chart

Figure 18 shows a summary flow chart of the program NARCOS-
2, using symbols shown in Figure 19, The detailed listing is given in

Appendix B.

4.4 Solution of Equilibrium Equations

With the nodal arrangement discussed above, the stiffness matrix
for the finite element assembly will be banded. This type of matrix
lends itSelf well to direct solution by Gauss elimination. Since the
matrix is symmetric, only the upper half of the band is stored in a
rectangular array. The assembly and solution of this array is done
blockwise, Figure 20. The first step consists of a forward elimination.
Each reduced block is stored on a disk. With the last reduced block
still in core, the backward elimination is performed in reverse order.
Although several load vectors may be included in this procedure, only

one loading case is considered in the present program.
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The solution of the stiffness matrix is done in subroutine BANSOL.
A detailed description of the standard Gauss procedure shall be omitted.

Complete information on this method may be found in Reference 40.

4.5 Input List

The input data are arranged in tabular form. Topological and
geometrical properties make up the first block. The second block of
information consists of the material properties. Block 3 contains the
list of reinforcements. Loads and boundary conditions are specified in
the last block. Each table is identified by a block header card as shown
in Figure 21. The specific format of each type of data statement is
given in Appendix C. In the following the general input sequence will
be described in detail:

1. Number of problems: The first card must specify the number

of problems to be solved.

2. Problem title: One alphanumeric card initializes and identi-

fies a new problem.

3. Control card for first block: Topology and geometry. NAR-

COS-2 offers three modes for the input of geometric and topological
properties. The mode is specified, together with the number of nodes
in the horizontal and vertical direction and the number of reinforce-
ments, on the first control card.
Mode 1. Equal spacing:

Under this mode all rectangular elements

are of equal size. The program divides the

length and depth of the beam into a speci-

fied number of intervals, respectively.
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The geometry may in this case be given
by the coordinates of the upper right
corner (for example, node 32 in Figure
17b).

Unequal spacing:

This input option allows for the varia-
tion of the element size in horizontal and/
or vertical direction. Example 1 of
Appendix D demonstrates this input mode.
Individual input:

Mode 3 requires the declaration of the
geometry and topology (i.e., node and
element numbers) for each triangular
element. This option was included to
make the program available for irregular

shapes.

4. Joint coordinates: Data giving the location of either the cor-

ner node (mode 1) or of nodes which specify the interval length of un-

equally spaced elements (mode 2) follow the first header card. Input

under mode 2 may best be explained by means of Example 1 in Appendix

D. The coordinates of the interval points (1, 3, 9) in y-direction

(cards 4 to 6) are given first. The number of the joints must corres-

pond to the actual node number (Figure 32). The computer divides the

intervals into the correct number of equal segments.

5. Control card for second block: Material properties. This

data statement initializes the input list of the stress-strain characteris-

tics and specifies the number of elements with irregular thickness.



70

6. Element thickness: The program assumes a unit thickness

over the entire continuum. However, specification of other than unit
thicknesses of the rectangular elements is permitted.

7. Material properties: The stress-strain curves for concrete,

steel and bond are given by a set of points on the curve. For steel, the
maximum number of stations is not to exceed 20. The stress-strain
characteristics for concrete and bond are given by a maximum of ten
points. The point, stress equal to zero and strain equal to zero, must
also be specified (if the curve passes through the origin). Following
the input of the stress-strain graphs, the Poisson's ratios for each re-
gion between two points on the curves must be declared. The input of
Poisson's ratios is required for concrete and steel only. The last card
in this block contains the bond link stiffness, Kv. This coefficient ex-
presses the strain-relative displacement characteristic of the linkage
element perpendicular to the reinforcement. If the numerical value is
omitted (blank card), the program assumes a number which is 106 times
the value of the first coefficient on the diagonal of the main stiffness
matrix.

8. Reinforcement information: There is no special header card

for this table, since the number of reinforcement cards was given in
the control statement for the first block. FEach reinforcement input
specifies one or more bars. The cross-sectional area may be given
directly or in the standard form as bar number according to the ACI
Code. The position of reinforcements is specified by the number of

the start and end node. The computer automatically divides the bar into
two-force members of the same length as the corresponding rectangular

concrete elements and assigns the proper bond links. .
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9. Tolerance: The number on this card declares the percentage
error tolerated on the largest displacement.

10. Control card of last block: Loading and boundary conditions.

The number of loads, boundary conditions, increments and iterations
are specified. If the number of increments is equal to zero, the pro-
gram performs an elastic solution without iterations. Automatic scal-
ing is done if the parameter NINCR is equal to 1. In this case, the load
is taken as total load. During the first cycle, the problem is solved
elastically and all results are scaled until the element strains in the
extreme element correspond to the yield values. The loads are adjusted
accordingly. The difference of the total given load and the load at yield
is divided into 20 increments.

11. Loading information: One card per joint load, i.e., x- or

y- component or both, must be supplied.

12. Boundary conditions: Only one specific boundary condition

may be stated on one card. The direction is identified in alphanumeric
form (x or y). Prescribed displacements may be introduced by simply
adding the numerical value of the induced delfection after the direction
parameters, x and y.

To complete this section, a few additional remarks concerning
the data input seem necessary. It should be mentioned that the entire
input for a particular problem must be consistent with regard to dimen-
sions. The program does not allow for mixed units.

When no reinforcements are specified, several portions of the
input sequence are skipped. In this case, the user must omit stress-
strain curves for steel and bond, ''perpendicular'' bond stiffness, and

reinforcement cards.
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For problems with fixed boundary nodes, it is not necessary to
restate these boundary conditions for each load increment. If the pro-
gram encounters a blank card after the input of a load increment, the
reading of boundary conditions is suppressed. The conditions of the
first (initial) load step are assumed to apply throughout the entire
loading history.

A special feature has been introduced in the program in the form
of a CHECK EQUILIBRIUM card. If such a card is included at the end
of the first set of boundary conditions, the program checks the equili-
brium for each vertical strip of elements. The shear equilibrium and
bending stress equilibrium (including forces in steel tendons) are
checked. The average shear and normal stresses for each rectangular
unit and the residual force on the cross section is output at the end of

each load increment.

4.6 Output Information

The complete list of input data is printed in tabular form. The
calculated topological and geometrical properties refer to the updated
cumulative nodal list. Results are provided after each successfully
completed load increment. The results consist of a complete list of
nodal displacements and stresses and strains in all elements. Several
supplementary messages are included to clarify the large output. In
addition, two ''print error'' subroutines report the most common input
mistakes. A few are automatically corrected. The corrections made
are recorded as nonfatal error messages. Sample output is included

in Appendix D.



CHAPTER V
NUMERICAL RESULTS

5.1 General

Three singly reinforced concrete beams were solved with NAR-
COS—Z. All examples were chosen to be simply supported and acted
upon by concentrated loads as shown in Figures 22, 23, 27 and 30.

Because of the symmetric loading, boundary and geometric con-
ditions, the solution could be performed for half beams only. The out-
put consisted of stresses in the concrete and reinforcements together
with the principal stresses and their directions for each triangular ele-
ment. Bond forces as well as the relative displacements between steel
and concrete nodes were printed. Several indicators, such as the con-
dition of the concrete elements (e. g., cracked) and equilibrium checks,
were included in the listing to facilitate the interpretation of the exten-
sive computer output. Selected results will be discussed in the follow-

ing sections.

5.2 Example Problem 1: Scordelis' Beam A-1

Several purely elastic problems were considered to serve as a
check on the computational procedure and the program development .
Existing programs for the analysis of in-plane loaded plates were

primarily used for this purpose.

73
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Next, Scordelis' beam A-1 was solved with NARCOS-2. The re-
sults reported in his paper (24) could be considered as a general guide
only because of several differences in the problem setup. First, arti-
ficial cracks were introduced in beam A-1 at the beginning of the load-
ing process, The procedure here was to let cracks develop in the
direction perpendicular to the principal tensile stresses when the
maximum allowable tensile stress was reached. Second, Scordelis did
not allow for any tensile resistance in the concrete. In this study, the
modulus of rupture was assumed to be 300 psi. As a result of this, the
beam under investigation showed a higher loading capacity before
cracking took place. Thus, Scordelis' initial load of 1000 pounds had
to be modified to Po = 7000 pounds. Cracking was initiated at a load
level of 7200 pounds. Several cracks developed simultaneously at the
bottom edge of the beam. Obviously, this type of crack pattern was to
be expected with the moment being constant between the support and
the point of application of the load (support at midspan). Subsequently,
the load was increased by 200 pound increments up to 8800 pounds.

The cracks continued to develop in the same direction (i.e., perpen-
dicular to the edge) and additional cracks occurred along the bottom
edge. The stress patterns, including the bond forces and crack propa-
gation, are shown for different load levels in Figures 24 through 26,
Figure 22 contains the information about the stress-strain characteris-
tics used. Poisson's ratios of 0. 3 for the reinforcements and of 0. 15
for the concrete were chosen to be constant throughout the entire load
history. The values for the bond stiffness corresponded to those given

by Scordelis (K, = 2.2 x 10° psi).
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As mentioned earlier, the introduction of new nodes for the rein-
forcement required the renumbering of all nodes. To illustrate the
difference between the intitial mesh and modified nodal arrangement,
the two numbering systems are shown in'Appendix D accompanied by

the listing of the data input statements.

5.3 Example Problem 2: Simple Beam Loaded at Midspan

A simply supported beam acted upon by a concentrated lead at
midspan was chosen to study the crack propagation in the concrete,
Figure 27. This type of structure and load configuration seemed par-
ticularly suited for such an investigation, because relatively large
cracks should be expected to develop near the center of the beam. An
initial load of P = 1500 pounds was applied. The cracks appeared dur-
ing the first load increment of AP = 100 lbs (i.e., at P = 1600 lbs).
The cracking moment obtained from the simple beam theory was found
to correspond to a load of PC = 1564 1bs.

Figures 28 and 29 illustrate the crack pattern at different load
levels. The cracked elements have been identified by shading. Small
vertical cracks first appear in the bottom elements of the beam. Dur-
ing the next few load increments, new cracks occur in the elements
above those which have already cracked. In addition, small vertical
cracks appear along the bottom edge farther away from the load. For
higher lcad levels, the cracked elements tend to group in the vicinity
of the center of the beam. Near the bottom edge the cracks remain
practically vertical. However, Figure 29 clearly indicates that the
directions of the cracks in the higher elements begin to point toward

the load. Local disturbances in the crack pattern may be observed in
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the neighborhood of the supports, especially the two triangular elements,
six and seven, exhibit no cracks at all but experience relatively high
compressive stresses in the x-direction. This irregularity may be
caused by the vertical load at node four (the total concentrated load has
been distributed over the nodes at the supports). Also, the steel rein-
forcement is fixed in the x-direction at support joint three. Thus, the
applied vertical load at joint four must be transferred to the steel
through the two concrete elements in question, causing high compres-
sive stresses in these elements.

Several other elements at the bottom edge of the beam did not
crack because of local stress redistributions. Element 124, for
example, is obviously situated between two cracks. There the tensile
stresses seem to have decreased enough in order not to cause cracking.
Farther out in the beam the crack distribution becomes more regular
with uncracked elements occurring more frequently.

5.4 Example Problem 3: Simple Beam Loaded Symmetrically by
Two Concentrated Loads

A third, simple beam problem was solved to study the nonlinear
stress distribution in the compressive zone of the concrete beam after
crackiné has taken place. The same structural model as in Problem 2
was loaded symmetrically by two concentrated loads at 36 inches from
midspan, Figure 30.

Cracks developed again at the bottom edge and continued to ex-
tend vertically. The stress-distribution for only one load level will be
reported to demonstrate the stress distribution in the compression
zone. Due to the small number of relatively large elements in this

problem, the stress distribution must be regarded as a crude approxi-
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mation. However, the results clearly show the nonlinear character of

the concrete stress block above the neutral axis, Figure 31.



lp = 10,000 LBS

N\ NN NNVEEINY
N \\Q ‘ N

D 4 D {
W
B iy
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

The feasibility of the finite element method in the investigation of
reinforced concrete beams composed of Hookean material has been es-
tablished by Scordelis (24). The objective of this thesis was tc evaluate
the potential of the finite element approach in the study of the nonlinear
behavior of reinforced concrete beams under static loads and to provide
a tool for the investigation of such structures.

The actual situation was approximated by a structural model of
the plane stress type using a finite number of triangular, constant-
strain, concrete elements, linear steel bars, and a mechanism to
simulate the interaction between the two materials. In selecting the
proper material constants for the concrete elements, the principal
stresses were used to determine whether an element behaves isotropic-
ally, anisotropically or develops a crack. All material characteristics
were replaced by piecewise linear stress-strain curves. The finite
element approach was implemented in the form of a combined step-by-
step, iterative procedure. Three example problems were solved on a

digital computer.
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6.2 Conclusions and Recommendations

The proposed finite element, step-by-step, iterative procedure
is a feasible method to analyze reinforced, concrete beams. The
simulation of the inelastic behavior by quasi-anisotropic, finite ele-
ments has shown satisfactory results. Likewise, the bond link models
appear to approximate the bond slip phenomenon quite accurately. Two
major difficulties had to be overcome in connection with the computer
solution. First, the introduction of additional steel nodes presented
some assembly problems. The use of a cumulative nodal list for the
assemblage of such mathematical models proved to be extremely help-
ful. This technique allows the introduction of any number of additional
nodes within any basic nodal configuration. Second, some difficulties
were experienced with the bond link stiffness coefficients. To suppress
relative displacements between steel and concrete nodes perpendicular
to the steel bars, large numerical values for the vertical stiffness co-
efficients had to be used. These values must be selected with great
caution. Extremely large numbers may cause completely erroneous
solutions.

The convergence of the iterative process has been found to be
slow for large load increments. On the other hand, too many small
increments will result in excessive computer time. It would be advan-
tageous to employ the solution procedure proposed by Zienkiewicz (20)
which does not require the assemblage of the structural stiffness
matrix for each iteration.

The present method may be recommended for extension to include
time dependent effects such as creep or initial stress conditions result-

ing from temperature or prestressing forces. The method could be
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modified for three-dimensional assemblies. However, the need for
larger digital machines becomes even more apparent for such models.
There is considerable doubt that the method could be used for
dynamic loading conditions. Additional iteration cycles would probably
increase the computer time tremendously. In addition, the program
would have to be modified to include the possibility of unloading condi-

tions.
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APPENDIX A

STIFFNESS MATRICES IN TABLE FORM
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A.1 [Isotropic Stiffness Matrix for Triangular Concrete Panels

Using the numbering system shown in Figure 10 and the strain-
displacement transformation matrix from Equation (2. 32), the following
stiffness matrix results from Equation (2. 35), For convenience, the
matrix is separated into two component matrices (Equations (A. 1) and
(A.2)): [KS] represents the stiffness due to shear and [K] contains

terms due to normal stresses only.

A.2 Anisotropic Stiffness Matrix for Triangular Concrete Panels

The stiffness matrix (Equation (A. 3) below) is in terms of local
coordinates, the axes being u and v, Figure 7. Again, the nodes are
numbered in clockwise directions. The matrix becomes much less

complex for the principal axes, since G vanishes.

A.3 Stiffness Matrix of Steel Bars

Linear bar stiffness matrices are conveniently given in global
coordinates directly, i.e., after the transformation (Equation 2, 41)

has been performed.

C
X
2
c_C Cy
EA
K g = = (A.G)
[, S.-J L 2 2
~-C -C_C (]
X Xy X
2 2
-Cc_C -C C C
| xy y Xy y o]

where
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A.4 Bond Link Stiffness Matrix

&
X

C

cosb

y

99

(A.7)
(A.8)

Similar to the "two-force' members, the bond link matrices are

given in the datum system directly.

[ijgz

[~ 2 2
cX L«:1 + sX L«:2
2 2
chxkl - chxk2 8, L«:1 + cX k2
2 2 2 2
_Cx kl " Sx k2 —chxkl + chka Cx + Sx I:{2
2 2 2 2
—sxcxk + sxcxk -5, kl - ¢ k2 sxcxk - chxkl 8, k2 + & k2
(A.9)
A.5 Cracked Concrete Element
0]
0 symme-
tric
: 0 x322 0
[K ]= (A.10)
u
0 ~Xg9Xg 0
0 0
0 X 0 -X X 2
X91%32 21731 21
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26 90 00 E 000000 r00000000000000000000200000000000sC0C00CNOIREIRRITIITIOORIRTIOIRRRTS

PROGRAM NARCOS

LANGUAGE USED
DIGITAL MACHINE
PROGRAMMER

PLANE STRESS TYPE.

NONLINEAR ANALYSIS

20 000000 000000000c000000020000E0E0T0000Pcscosvtoestrrersosonsoscscscaosn

DATE OF COMPLETION

NONL INEAR ANALYSIS JF KEINFORCED CONCRETE STRiI.TURES

2 FORTRAN IV

2 IBM 360-65 .
3 ALEXANOER J. LASSKER
$ JUNE 30, 1971

DESCRIPTION OF PROGRAM
THIS PROGRAM SOLVES REINFORCED CONCRETE STRUCTURES OF THE

THE FINITE ELEMENT METHOD IS USED IN AN

ITERATIVE PROCEDURE. AT EACH LOAD STEP THE PRUBLEM 1S SOLVED
AS AN ELASTIC PROBLEM. DETAILED INFORMATION CAN BE FOUND IN:

UF REINFORCED CONCRETE BEAMS UNDER STATIC

LOADS. PH.D. DISSERTATION BY A.J. LASSKER, OSU» AUGUST 1971.

PROBLEM PARAMETERS USED IN THIS PROGRAM

WORKING AREA

RECTANGULAR ELEMENTS
TRIANGULAR ELEMENTS

NODES VERTICALLY

NODES HORIZONTALLY

DEGREES OF FREEDCM AT ONE NODE

X = COORDINATES

Y - COORDINATES

ANGLE OF PRINCIPAL AXES

TOPOLOGY OF CUNCRETE ELEMENTS

CONTRINS NOOE NUMBERS IN CLOCKWISE DIRECTIUN
THICKNESS OF RECTANGULAR ELEMETS

TYPE OF BEHAVIOR OF CONCRETE ELEMENTS
STRESS - STRAIN VECTOR FOR CONCRETE

CONT AINS STRESSES IN COLUMN 1

CONTAINS STRAINS IN COLUMN 2

MUODULI OF ELASTICITY FOR CONCRETE
POISSON'S RATIOS FUR CONCRETE

STRAINS FOK TRIANGULAR ELEMENTS

PRINCIPAL STKAINS FOR TRIANGULAR ELEMENTS
STRESSES IN TRIANGULAR ELEMENTS

.

.

« NN = BLOCK LENGTH

« MA = BLOCK WIDTH

o« NH = LENGTH OF

« NREL = NUMBER OF

« NTEL = NUMBER OF

« NODV = NUMBER OF

« NOOH = NUMBER OF

« NOF = NUMBER OF

-

« X{NUMNOD) =

« YUNUMNGD) =

o THETAINTEL) =

+» JTOPINREL+4) =

.

« THICKINREL) b

o« ITYPE(NTEL) =

« SECL10:,2) =

.

.

« ES(9) =

« XNUC(9) =

« EPSINTEL,3) =

« EPRINTEL:2) =
STRINTEL,3) =
STRP(NTEL,2) =

NLCAD = NUMBER OF
NBC S = NUMBER OF
XLOAD(NLOAD,:3) =

XBOUNDINBCS,»3)
U(NUMNOD*NDF )

TUINUMNOD*NDF)
UB{ NUMNUD*NDF )
UIUNUMNGO*NOF )

L T T )

PRINCIPAL STRESSES FOR TRIANGULAR ELEMENTS
LOADING CARDS

BOUNDARY CONDITIONS SPECIFIED ( X,Y DIR.)
LOAD ING VECTUR

CONTAINS NODE NUMBER IN CULUMN 1

CONTAINS X - CUMPUNENT iN COLUMN 2
CONTAINS Y - COMPONENT IN COLUMN 3
PRESCHRIBED DISPLACEMENT VECTOR

NODAL DI SPLACEMENTS FOR A LUAD INCREMENI
TOTAL NUDAL OISPLACEMENTS

AUXI LIARY DISPLACEMENT VECLTOR

AUXILEARY TUTAL DISPLACEMENTS AT BEGINNING OF

X e N e N N e N N N o o ke N N N o Y o ol oW W ol o W o W ¥ W N o W W W W W o ¥ W oY

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A NEW LOAD INCREMENT

ITOP(NUMBAR14) = TCPOLOGY OF REINFURCEMENT BARS
CONTAINS NODE NUMBERS FCR REINFURCEMENTS

ISTYPE{NUMBAR} = TYPE OF JEHAVIOR OF STEEL ELEMENTS
SESL 2042} = STRESS = STRAIN VECTUR FGR STEEL
ES(19) = MODULI OF ELASTICITY FOR STEEL
XNUS(19) = POISSUN®S RATIUS FOR STEEL
SAREA(NUMBAR) = STEEL AREA .

ESPS (NUMBAR)} = STRAINS IN STEEL REINFORCEMENTS
STRS{NUMBAR) = STRESSES IN STEEL REINFORCEMENTS
A(NH,MA) = WORK ING AREA FOR MAIN STIFFNESS MATRIX
BUNH} = CORRESPUNDING WORKING SPACE FUR LOADS

CURRENT SIZE OF PROGRAM

NN = 54

NH = 108

MA - 54 {MBAND IS MAX. 54)
MJMNOD = 620 :

NREL = 288

NTEL = 1152

NJMBAR = 50

MAXNDF = 1300

STRESS — STRAIN CURVE GIVEN BY NU MURE THAN 10 PQINTS
MODULI OF ELASTICITY GIVEN BY NU MORE THAN 9 POINTS
POISSUN®S RATIOS GIVEN BY NO MURE THAN 9 POINTS
NUMBER OF LOADS GIVEN IS LESS THAN S

NUMBER OF BOUNDARY CONDITIONS GIVEN IS LESS THAN 5

IMPLICIT REAL*8(A-H,0-2}

REAL®*3 DATAN2,0SINsDCOS 9 DABS

COMMON S{'1Q4 10} g VKH , VKV

COMMON DXXy D¥Y4 Ely E24 CNUsCNULZ9CNU2 L1EPLSEP 2y SNU,PI

COMMON NN yNH ¢ MAy NODV s NODHsNUMNODo NREL s NT EL o NUMBAR s MAXNDF MBAND
COMMON NINCRKINCR ¢ NCUR ¥C ¢ NCURVS 9y NZC ¢NZS s I SCALE ¢ NOF, [AUTO
COMMON NUMDFy NUMTDFyNIT» IT,NCURVB,NZB,NDOD2

COMMON/ELEM / X(650) yY(650) ¢ THETAI 115242} ,U(1300),TU(13001
COMMON/ ELEML / JTOP (288 44 )y THICK(288)

COMMON/POOL /7 A(108,54) s8(108) ¢ NOMBLK

COMMON/TYP / ITYPE( 115209 ISTYPE(50) 4I1BTYPEC(LO0) 4KDIR .

COMMON/ MODULC/ SEC(1042),ECL9)9 XNUC(9),TOL

COMMON/MGDULB/ SEB{10+2) 0EBL9)

COMMON/ MODULS/ SES(20421+ESI19),XNUSIL9)

CUMMGN/LOADS / XLOAD( 20,23 ,XBOUND( 20,2)

COMMON/LOADSL1/ ALOAD( £0,2) sABOUNDL 20420

CUMMON/LOADS2/ ILOAD( 20)¢ IBOUND( 20),NLUAD,NBCS

COMMON/REINF / SAREA(L 50)3JCNLI65052),ITOP{ 50,6) 4NREINF, IS1, 152
COMMUN/CONSTR/ STR( 4152933 ¢« STRPU115242) 4EPSIL152,3) 3EPRILL52,42)
COMMON/CONSTL/ TSTR(1152,3)0,TEPS(1152,3)

COMMON/STLSTR/ ESPS( 501 ¢STRS( 50) +TESPS( 50),TSTRS( 50,2)
COMMON/BOND /7 EPSB{ 100,21y STRB(10042) yTEPS8(10042) yTSTRB(100y2}
DATA DVKV/1.00+06/ , ZERU/0.00+00/

DIMENSION UB(1300},kA(10)
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EQUIVALENCE (KA(L) K1) pEKAL2E1K2) o (KAL3) »K3 } s (KAL4),K4)
EQU IVALENCE (KA(5)4K5),{KAL6) ¢KO o {KALT) oKT] +iKA(D) yKB)
EQUIVALENCE (KAL91)4K9), (KA(L0),K10)

READ NUMBER OF PRUBLEMS

READ(5,8000) NPROB
8000 FORMAT(IS5)
KPROB = 0
IF{NPROB.GT.0) GOTO 100
WRITE(6,9000) NPRO3
9000 FORMAT(1HL ¢1X ¢*NUMBER OF PROBLEMS MUST BE GREATER THAN ZERO"y/, LX,
L'NUMBER OF PROBLEMS SPECIFIED = *,I5)
CALL EXIT

EACH NEW PROBLEM STARTS AT STATEMENT NO. 100
INITIALIZE MAIN PRUBLEM PARAMETERS

100 CONTINUE
KPROB = KPROB + 1

CALL INITL

ICHECK = 0
CALL READIN{ ICHECK)

CALL QUTPUT
EACH NEW LOAD INCREMENT STARTS AT STATEMENT NO. 200

2C0 CONTINUE

IT = 0

00 210 L = 1.NUMTOF
210 UlL) = ZERO

EACH ITERATION CYCLE STARTS AT STATEMENT NO. 300

300 CONTINUE
1T =
1
1S
NUMBLK
KSHIFT
ISWICH
IL
D0 305 IA = 1lyNH
B(IA) = ZERC
D0 305 JA = L.MA
305 AlIAsJA) = ZERD
DO 310 KU = 1,NUMTOF
310 UB(KU) = TUIKU) + UlKU)

T +1

N -X-N-N-¥

REWIND 1
REWIND 2

SETUP BLOCKS OF THE MAIN STIFFNESS MATRIX
EACH BLOCK SETUP STARTS AT STATEMENT NO. 400

400 COUNTINUE

(X2l 2]

[z aNaNal oN el [« Xz R gl

[aKaN Nzl

410

430

470

475

480

NUMBLK = NUMBLK + 1
PROCESS ONE ELEMENT AT THE TIME

MTYP = |

[ =1+

J = 4%] - 3

Jl = JTOP(1,.1)
J2 = JTOP(I.2)
J3 = JTOP(1+3)
J4 = JTOPL I o4}
J5 = Jl + NODV

K2 = 2% JCNLTJL,2)

Kl =K2-1

IFCIKL = KSHIFT} -~ NN) 43094300420
I =1 -1 :
GOTO 490

K4 = 2%JCNL (42,22

K3 = K4 - 1

K6 = 2¢JCNL(J3:2)

K5 = K6 - 1

K8 = 2%JCNL{J4,2)

K7 = K8 - 1 }

K10 = 2%JCNL(J5,2)

K9 = K10 - 1

CALL STIFF(L+MTYPodsl9d1led2535:1+2,5)
J=J+]
CALL STIFF{2,MTYPsJyl1J2+43¢4552,3,5)
Jd=Jde+]
CALL STIFFU2sMTYP1Jdel 4d55J3 50435593 +4)
Jd=J o+l
CALL STIFF{(2MTYPsJylsdled5ed4sle5:s4)

CHOSE PROPER VKV - VALUE
IFCNREINF.EQ.0) GOTO 475

ASSEMBLY OF RECTANGULAR ELEMENT STIFFNESS MATRIX
FORM BLOCKS OF MAIN STIFFNESS MATRIX

SIZE OF WORKING AREA IS MA*NH

ONE BLOCK IS HALF OF THE WORKING AREA

D0 480 KI = 1,10

TINA = KA{KI} - KSHIFT

KINA = KA(KI) - K1 + ]

DO 480 KJ = 1,10

JS = KALKS) ~ Kl + |}

IF(JS.LT.KINA} GOTO 480

JINA = KA(KJ) - KALKI) + 1

AUIINAJJINAD = ACLINAJJILINA) + S(KIsKJ)
CONTINUE

IFCIVKV .EQ.040) cAND{ 1.EQ.1}) VKV = DVKV¥A(1,1)

END OF LOOP FOR ELEMENT PRUCESSING WITHIN UNE BLOCK
CHECK IF THE ELEMENT BELONGS TO THE CURRENT BLUCK

IFU1.LT .NREL) GUTO 410

01
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490

500

535

540
541

545

546

548

CONTINUE
IF { NREINF .EQ. 0 ) GU TO 560

ASSEMBLY OF LINEAR BAR STIFFNESS MATRICES

00 500 IR = 1,10

D0 500 JR = 1,10
S(IRsJR) = 0.0

00 550 IS = 1ysNUMBAR
MTYP = 2

ISWICH = 1

ILINK = 0

IS1 = ITOP(IS+3)

I1S2 = ITOP(IS,4)

K2 = 2¢1TOP(1S,5)

Kl =K2~1

Ké = 2% TOPLIS,6)

K3 = K& - 1

IF ( IS2 .LT. ( IS1 + NOD2 ) ) ISWICH = 2

CHECK IF BAR BELONGS TGO CURRENT BLOCK

IFU(KLeLESKSHIFT)0R. (K1.GT JEKSHIFT#NNJ)) GOTO 541
CALL STIFF(ISWICH sMTYPsLSeISeES1415S241529141,41)

ASSEMBLE

DO 540 KI = 144

LINA = KA{KI) - KSHIFT
KINA = KA(KI) - K1 + 1

00 540 KJ = 144

JS = KA(KJ) - K1 + 1
IF(JS.LT.KINA) GOTO 540
JINA = KA(KJS) - KAEKI) + 1
ACIINASJINA) = A(LINAJJINAY + S(KI,KJ)
CONTINUE

ILINK = ILINK ¢ 1

GOTO (545954845500 o ILINK

CHECK IF LINK BELONGS TO CURRENT BLOCK
IF IT DOES NOT, SKIP BOTH LINKS

KLl = 2#JCNL{IS1,2) - 1
IFCEKLLeLESKSHIFT) o ORe 4 KL1.GTo (KSHIFT+NN) )} GOTO 548

BONC LINK FOR START NODE OF STEEL BAR

K44 = K4

K33 = K3

K4 = K2

K3 = K1

Kl = K11

K2 = KLl + 1
Iv = IS§

GOTC 549

BOND LINK FOR END NOUE OF STEEL BAR

IF { IS .NE. NUMBAR ) GO TO 550

oo n

[aXal X s Nl

[aX 2N o

549

550

560

580

590

600

610

K2 = 2%JCNL{1S2,2)

Kl = K2 -1
IF(K1.LE.KSHIFT.0R.K1.6To{KSHIFT+NN}) GOTU 550
Ké = Ké4

'K3 = K33

Iv = [S + 1

CONTINUE

Il = 2 ® [S -~ ISWICH + 1

EPL = TEPSBLIL.1)

MTYP = 3 -

CALL STIFF { ISWICHs MIYP, IVe ISy ISy ISe ISe ls 1¢ 1)
GATO 535

CONTINUE

PROCESS LOAOS AND BOUNDARY CONOITIONS FOR EACH BLUCK
PUT CONCENTRATED LOADS FROM ARRAY XLOAD INTO 8

DO 580 IL = 1l,NLOAD

L = 2% JCNLUILOADCEL) +2) = KSHIFT

IFCCLJL=1) +GTNN)OR UL JL~1).LE.O)} GOTO 570
B(JL-1) = XLOAD(1L,1)
IF({JL.GT.NN).OR. (JL. LE.O)) GOTO 580

BLJL) = XLOADCIL,2)

CONTINUE

PROCESS BOUNDARY CUNDITIONS
MODIFY EQUATIONS FOR SPECIFIED UISPLACEMENTS AT BOUNDARY
MODIFICATIONS FOR STEEL BOUNDARY CONDITIONS INCLUDED

DO 600 I8 = 1,NBCS

IF{ IBOUND(EB).LE.O) GGTO 590

JB = 2% JCNL(IBOUND{ IB)9e 2} ~ KSHIFT
IF(((JB=1)GToNH}.ORs (L JB=1) . LE.O)) GOTO 600

CALL MODIFY((JB~1)yXBOUND( 1B, 1))

IF(JCNL(IBOUND(IBI+1).EQ.0) GUTO 600
IFC((JB+]1) eGT.NH) . OR. {{JB*1)}.LE.O)) GOTO 600

CALL MODIFY{{JB+1)yXBOUND(1IBe1))

GOTQd 600

J8N = -IBOUND(IB)

J8 ® 24JCNL(JBNs2) -~ KSHIFT

IFELJB.GT.NH) .OR.{JB.LE.O}) GOTO 600

CALL MODIFY(JByXBOUND(IB+2)) *
IF(JCNL (JBN,1).EQ.0) GUTO 600 \
IFCL(JB+2) «GToNH) sOR(( JB+2 )} 4LE.O)) GOTO 600

CALL MODIFY{{JB+2) 9 XBOUND{IB+2))

CONTINUE

WRITE BLOCK ON TAPE 2 AND SHIFT LOUWER PART INTO UPPER PART

WRITEC2) (BUN)o(A(NsM)  M¥=] s MBAND) ¢ N=1,NN)
DO 610 N = 14NN

K = N + NN

B{N)} = B(K)

B(K) = 0.0

DO 610 M = 1,MBAND

ALNM} = ALK M)

A(KyM) = 0.0

KSHIFT = KSHIFT ¢ NN

€01
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630
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670
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690

CHECK FOR LAST BLOCK
COMPLETE LOADS AND BOUNDARY CONDITIONS IN LAST BLUCK
IF I = NREL y INCREASE NUMBLK AND I BY 1

IF(I - NREL) 400,620,630
IF((2%JCNLCJITOP(193) 92) }oLE.KSHIFT) GOTO 0630
NUMBLK. = NUMBLK + 1

1 =1 +1

GOTG 560

SOLVE SYSTEM OF EQUATIONS BLOCKWISE BY GAUSS ELIMINATIUON
CONTINUE
CALL BANSOL

KU =0

NIN = NN + ]

D0 640 NBU = 1,NUMBLK
00 640 NMU- = NIN,NH
KU = KU + 1

U(KU) = A(NMU,NBU)

CALCULATE STRAINS, PRINCIPAL STRAINS, STRESSES AND PRINCIPAL STR.

00 670 I = 1,NREL
J=4x] -3
= JT0P{1,+1)
= JTOP(1e2}
J3 = JTOP(IL 43} _
= JTOP{I1+4)
J5 = Jl + NODV

-1
CALL STRESS(IedsJled2,d5,MTYP)
J=Jd+1l

CALL STRESS(I¢Jsd2943+45,HTYP)
J=4 ¢l

CALL STRESS (12dsd5¢J3,d4yNTYP)
J=J+1

CALL STRESS (LydsJdlydSsdésHTYP)
IFCNREINF.£Q.0) GOTO 690

MIYP = 2

D0 680 J = 1;NUMBAR

JSL = ITOP(4,3)

JS2 = ITOP(Jdy4)

CALL STRESS (Jyd1dS1,d52,J52,MTYP)

DETERMINE ITERATION PROCEDURE
SEARCH FOR LARGEST ERROR IN DISPLACEMENTS

IF{(NINCR.EQ.0) «OR. (KINCR.EQ.1)) GOTO 720
IF(IT.EQ.1) GOTO 300

DIFF = ZERO

LToL = |}

D0 700 L = 1,NUMTDF

DIFFL = DABSU{{TU(L} + ULL)) =~ UB(L))}
IF(DIFF).LE.DIFF)} GOTO 700

DIFF = DIFF1

LTOL = L

700

9020
710

CONTINUE

DTOL = DABS{TOL®(TUILTOL) + UILTOLI))
WRITE(6,9020) DTOL,LTOL
FGRMAT(/ 41X s TOLERANCE = *,1PD12 ¢4 "
IF(DIFF.LE.DTOL) GOTO 720
IFCITLLT.NIT) GOTO 300

WRITE(6+9100) NIT,DIFF,DTOL

AT DISPLACEMENT *p15)

9100 FORMAT(/s1Xy"ERROR IN ITERATION NO *,I3,* IS BIGGER THAN TOLERANCE ‘

9200

(¥ 2N al

720
800

810

‘815

8l6
8020

oan

820

[aN X al

830
840

850
9010

460

1%/ 31Xe "ERROR = *4 IPD12.543Xs *TOLERANCE =
2F ITERATIONS. INCREASED BY 5°%,/)

NIT = NIT + 5

IFENIT.LT.15) GOTO 300

WRITE(6+9200)

FORMAT(///77/+1X+*SOLUTION STOPPED BECAUSE NIT EXEEDS i5%)
CALL EXIT

CALCULATE TOTAL STRAINS,; STRESSES AND DISPLACEMENTS

D0 800 KU = 1,NUMTDF

TUCKU) = TULKU) + UIKU)

D0 810 KE = LsNTEL

DO 810 JE = 1,3

TEPS(KE¢JE) = TEPSIKEsJE) + EPS(KEvJE)
TSTRUIKE yJE} = TSTRUKEJE) + STRIKE.JE)
IF(NREINF.EQ.0) GOTO 8020

00 815 KS = 1 ,NUMBAR

TESPSIKS) = TESPS(KS) + ESPS(KS)
TSTRS(KSs1} = TSTRS(KS,1) + STRSIKS)

NBLl =2 & ( NUMBAR + 1 )

DO 8l6 JS = 1,2

00 8l6 KS = 1, NBL1L

TEPSB(KS 9JS)} = TEPSBIKS #»JS) .+ EPSBIKS¢JS)
TSTRB(KSsJS) = TSTRB(KS,J45) + STRBIKS,JS)
CALL RESOUT (ICHECK)

IFININCR.EQ. Q) GUTO 850
IFENINCR.GT .1) GOTO 830
IF(ISCALE) 830,820,830

SCALE LOADS AND PRESCRIBEU DLSPLACEMENTS

ISCALE = |}
CALL SCALE
6O0TQ 200

PROCESS NEW LOAD INCREMENT

IFENINCR - KINCR) 460,850,840
CALL SCALE2

60TG 200

WRITE(64,9010) KPROB :
FORMAT(// 41X 5" END OF PROBLEM',15)

IF(KPROB.LT.NPROB) GOTO 100
CALL EXIT
END

SUBROUTINE INLTL

C
C  cecssvscesccnccvencssscressccrcasnnsesenscecvocsssocsssssesssasrsnccnasae
C

Y2 IPD 1o 59/ ¢ Xy " NUMBER C

01



OO0 OOMN00

THIS SUBROUTINE INITIALIZES ALL ARRAYS USED IN THE PROGRAM 00 10 I = 1 MUMNOD

110 XNUC(ID

DO LOQPS ARE MORE EFFICIENT THAN DATA STATEMENTS . JCNL(Is1) =
. JCNL( 1y2) =
PARAMETERS USED3: _ . (1 =
’ . 10 Yt =
MUMNOD = NUMNOD . 00 20 1 = 1,MREL
MREL = NREL . THICK(D) =
MTEL = NTEL . D0 20 J = le4
MUMBAR = NUMBAR . 20 JTOP(I+d) =
MLOAD = NLOADR . 00 30 I = 1 ,NUMTDF
MBCS = NBCS . . TUlI) =
. ;30 udI =
0050000060060 0000000008008800000000su000s0s00sssssssesasiosstsnsncsaans D0 50 I = 1 ,MTEL
ITYPE(I} =
IMPLICIT REAL*8 (A=H,0-1) DO 40 J = 1,3
COMMON S 104100 ¢ VKH »VKY EPS(I,Jd) =
COMMON DXX,DYYe Ely E29 CNUsCNUL2sCNU214EPLIEP2 ¢ SNUsPL TEPS(I:d) =
COMMON NNy NH ¢ MA, NODY » NODH NUMNO Dy NR EL ¢ NT EL s NUMBARK , MAXNDF ¢ MBAND TSTRUL + ) =
COMMON NINCRyKINCRsNCURVC yNCURYS ¢NZC yNZS ¢ I SCALE ,NDFy IAUTOQ 4C STREI J) ~ =
COMMON NUMDFyNUMTDF,NIT, IT,NCURVS ¢NZ8,NOD2 00 50 J = 1,2
. THETA(L 4 J) =
COMMON/ELEM / X(650) 4¥(650) s THETA(1152,2) ,U(1300),TU(1300) EPRUI,Jd) =
COMMON/ ELEML /7 JTOP(288,4), THICK(288) 50 STRP(14d) =
COMMON/POOL 7 A(108 454} 4B8{108) 4 NUMBLK DO 601 = 1,NH
COMMON/TYP  / ITYPE(1152) ISTYPE(50) ,IBTYPE(100) ,KOIR 8tn =
COMMON/ MODULC/ SEC(10,2)+EC(9),XNUC(9),TOL DO 60 J = 1,MA
COMMON/MODULS/ SES(2042) sES(190 »XNUS(19) 6C ALL,d) a
COMMON/MODULB/ SEB(1042),E8( %) DO 80 I = 1,MUMBAR
COMMON/LCADS / XLOAD{ 2042} ,XBOUNO( 20s2) ISTYPE(I) =
COMMON/LOADSL/ ALOAD( 204+2) ¢ABOUND( 20,2) I8TYPE(I) =
COMMON/LOADS2/ ILOAD( 20), IBOUND( 20) yNLOADsNBCS . IBTYPE( I+MUMBAR) =
COMMON/REINF / SAREA{ 50) s JCNL{65042) 4 ITOP{ 50,6 s NREINFs IS1sIS2 SAREA(I) =
COMMON/CUNSTR/ STRU1152+3) ¢ STRP{1152,2) sEPS(1152+3) 4EPR(L15242) . ESPS(I) =
COMMON/CONSTL/ TSTR41152431,TEPS(1152,3) STRS 1) =
COMMON/STLSTR/ ESPS( 503 4STRS{ 501, TESPS{ 50),TSTKS( 50,2) TESPS(I) =
COMMON/BOND / EPSB(10042)¢ STRB(100+2) +TEPSB(100,2) 4 TSTRB1100,2) TSTRS(I,1) =
. TSTRS (1,42) =
PI = 3,1415926535898 DO 80 J = 1,46
NDF = 2 . , 80 1TOP(14d) =
MUMTON = 650 . NUMBO = 2%MUMBAR
MUMNGD = 650 DO 70 I = 1,NUMBD
MREL = 288 DO 70 4 = 1,2
MTEL =4 % MREL EPSB(Isd) =
MUMBAR = 50 , STRB{1,4) =
MLOAD = 20 TEPSB(1,J) =
MBCS = 20 70 TSTRBUI o) =
00 90 I = 1,MLOAD
KINCR = 1 ILOAD(I) =
ISCALE = 0 : 00 90 J = 142
1AUTO = 0 ALDAD(I,4) =
ITYPES = 1 90 XLOAO(I,J) =
KTYp = 1 00 100 I = 1,MBCS
1Typ = 1 IBOUND(I) =
00 100 J = 1,2
MA = 54 XBOUND(I ) =
NN = 54 100 ABGUND( 1,41 =
NH = NN + NN . DO 110 I = 1,9
NUMTDF =  MUMTDN®NDF - EC(I) =

o

et
co®oco00

O 00QCOOOmIrrm

GOT



AN

DG 120 I = 1410 9030 FORMAT(//)
DO 120 J = 1,2 c
SEBUI ¢J) = 0.0 READ(5,8000) (NAME(I),I=1,18)
120 SEC{1¢d) = 0.0 WRITE(6,9000) (NAME(I)s I=1,18}
DO 130 I = 1,19 [ :
ES(I) = 0.0 c READ NODAL INFORMATION
130 XNUS (1) = 0.0 c
DO 140 I = 1,20 READ(5,8010) NNV, NNH,KT OPy NREINF
DO 140 J = 142 IF(NREINF.LT.0) CALL PRERL(6)
140 SESUI,J) = 0.0 NOOV = 1ABS (NNV)
c NODH = 1ABS {NNH)
RETURN NELV = NODV - 1
END NELH = NODH - 1
SUBROUTINE READIN{ICHECK) IF(KTOP.EQ.1) GOTO 30
c NREL = NELVHNELH
€ secseccesscecsescassasscsosasetassesessioesassecoscsansesocssocasvocsa ATEL = 4*NREL
[ . . NUMNOD = NODVENQOH + NREL
C . SUBROUTINE READIN READS ALL INPUT INFORMATION AND DOES ALL . NOD2 = 2#NGOV -~ 1
C o NECESSARY AUTOMATIC NUMBERING PROCESSES . c
c . . . 4 INDIVIDUEL INPUT OF TOPOLOGY
[4 A c
¢ DO 10 N = L1sNREL
IMPLICIT REAL*8(A-H,0-2) . 10 READ(5,8020) IP,(JTOPLIPsJ) ¢d=le4)
COMMON S{10¢10) ¢ VKH VKV DO 20 N = 1,NUMNOD
COMMON DXXsDYY,ELyE2sCNUsCNUL2yCNUZLEPLEP24SNULPI 20 READ{5¢8030) KsXIK},Y{K)}
COMMON NNyNH ¢ MAy NODV ¢ NODHy NUMNO Dy NR EL ¢ NT EL  NUMBAR ¢ MAXNQF » M3AND READ(5,8010) MBAND
COMMON NINCR,KINCR,NCURVCyNCURVSsNZC ¢NZS +1SCALE ¢NDF 4 IAUTO GOTO 220
COMMON NUMDF(NUNTDF¢NIT, IT¢NCUR VB4N2B,NOD2 : ¢
¢ ) [4 AUTOMATIC PROCESSING OF NUOOAL ARRANGEMENTS -
COMMON/ELEM / X(650) 4¥1650) 4 THETA(L1152,2) ,U(1300),TU{1300) c
COMMON/ ELEML /-JTOP(28B44), THICK( 288} : 30 READ(5,8040) JJ,OTENP
COMMGN/MODULC/ SECI10,2) +EC{9),XNUCI9) . TOL : IFINNV} 40,2000,60
COMMON/MODUL S/ SES[2052) sESE19) ¢ XNUS(19) c
COMMON/MODUL B/ SEBI10,2),EBI9) c EQUAL SPACING
COMMON/LOADS 7/ XLOADI 20,2) +XBOUND( 20,2} ¢
COMMON/LOADSL/ ALOAD( 2042) yABOUND( 2042) 40 DD = DTEMP/NELV
COMMON/ LOAOS2/ ILUAD{ 20), IBOUND( 20)yNLOAD,NBCS DDD = DD/2.0
COMMON/REINF / SAREA( 50) yJCNL(65042) 4 ITOP( 50,6) ¢NREINF, IS1,152 DU 50 N = 1,NELV
DATA 020/1.0D0-20/ , ZERO/0.0D 00/ o« LABELL/*X'/ , LABEL2/°'Y"/ Y{N) = (N - 1)*DD
DATA IEQUI/Z'EQI*/ 50 Y(NODV + N) = Y(N} + DDD
DIMENSION NAME(18) YINODV) = NELV*DD
c . GuTO 90
8000 FORMAT (18A%) [4
801C FORMAT(4I5) [3 UNEQUAL SPACING
8020 FORMAT(515) E B c
8030 FORMAT{(I5,2D012.4) . 60 L = 1
8040 FORMAT(15,012.4) D= 0.0
8050 FORMAT {I5,012.44012.:6) - 00 80 I = 14NELV
8060 FORMAT(154D12.6) . READ(598040) J,DYTENP
8070 FORMAT(I5,2D12.4) . : K =J=-JdJ
8080 FORMAT (IS ¢4XsAl4D12.4) D = (DYTEMP — DTEMPI/K
8090 FURMAT(2154D12445215) : DO 70 LK = LK
8100 FORMAT(5X,D12.5) . : Y(L) =D
8110 FORMAT (A4) L=L+1
90G0 FORMAT(1H135// e1XsT7901HE) o/ 42H * ,TTX yLH® o/ o1 X oL H¥ 43X 418BA% ¢ 2Xs LH¥*4 /) 70 0 =0+ DD
L2H *37TX s LH*y/  2H o TB( LH*),//) DTEMP = DYTEMP
9010 FORMAT(//+1X'* FINITE ELEMENT ANALYSIS OF'/' ® PLANE STRESS REINF 80 JJ = J
10RCED CONCRETE STRUCTWRES!/) Y(L) =D
9020 FORMAT (1X,** PROGRAM CHECKS EQUILIBRIUM®/) NODV = JJ

901



[aXa¥a)

85
90

100

110
120

125

130

140

142
145

155

160

170

1€0

NELV = NQDV = 1

NOD2 = 2¢#NODV -~ 1

DO 85 LV = 14NELV

YLV + NODV) = 0.5¢(YELV+l) — Y(LV)) + Y{LV
READ(5+8040) MM, DTEMP .
c=0.

IF{NNH) 100,2010,130

EQUAL SPACING

D = DTEMP/NELH
£ooD = /2.0

N =1

DU 120 N = 1,NELH
X{NI) = (N =~ 1)%D

UNEQUAL SPACING

DO 110 NV = 1,NELV

X(NI + NV} = X{NI)

X{NI + NV + NELV) = X(NI) + DOLD
NI = NI + 2%NODV - 1

X(NI} = X{NI-1} + DDDD

D0 125 NV = 1,NELV

X{NI + NV) = X{NI}

GOTO 170

KSTART =1

KEND = NODV

00 160 I = LyNELH
READ(5¢8040) M,OXTEMP
K =0 - MM

0D = (DXTEMP — DTEMPI/K
oC = DD/2.0

D0 150 LK = 14K

DO 140 L = KSTART.KEND
XiLh = D

IF(LK.EQal) GOTO 145
0O 142 KS = leNELV
X(KSTART ~ KS} = X{KSTART) - DC
KSTART = KSTART + NOD2
KEND = KSTART + NELV

D =D + DD

NOO4 = NDD2 - 1

KD = KEND = NOD2

DO 155 KS = 14NOD4
X(KEND - KS) = X{KD - KS) + DD
DTEMP = DXTEMP

MM = M

X(KEND} = X(KEND - 1}
NODH = MM

NELH = MM - 1

NREL = NELV¥NELH

NTEL = 4*NREL

NUMNOD = NODV#NODH + NREL
NOD2 = 2#NDDV ~ 1
NUMDF = NUMNOD*NDF
NSTART = 0 -

I =1

DO 190 K = 1,NELV

[2X a2 ¥ x!

[xXsX gl

[xXsK gl

190

2000
959
2010
2020
200

210
220

21
211
230

212
240

250

260

270

280

MK = NSTART + K
NKK = NK + NOD2
JTOPEIy1) = NK
JTOP(L42) = NK + 1
JTOP(1,3) = NKK + 1
JTGP(1s4) = NKK

I =1+1
IF(1.GT.NREL) GOTG 200
NSTART = NSTART + NOD2
GuTO 180

CHECK NUMBERING

IPRER = 2

CALL PRERL{LPRER)
IPRER = 1

6OTG 999

IPRER = 8

GOTO 999

CONTINUE

NGD3 = NOD2 + 1

D0 210 KNS = NGD3, NUMNDD
Y(KNS) = Y(KNS — NGD2)
CONTINUE

READ STRESS — STRAIN LAWS

READ(5,80102 NTH¢NCURVLoNCURVS,)NCUR VB
IF{NTH.EQ.0) GOTO 240
READ(5, 8040) NT,THIC
IF(NT.GT.0) GOTO 211

00 21 N = 1 +NREL
THICKIN) = THIC

GOTQ 240

IF{NT.EQ.1) GOTO 212

D0 230 N = 24,NTH
READ(548040) NT,THICK(NT)
GOTO 240

THICK(1) = THIC

CONTINUE

'CONCRETE

D0 250 N = 1,NCURVC

READ(59 8050) K9SECUK 1) 9SEC(K,2)

IF(LSECINy 1) .EQ.0.0).AND.(SECINs2).EQ.0.0)) NIC = N
NNC = NCURVC - 1

DO 260 N = LsNNC

ECIN) = (SEC(N#l,1) — SECINy1)}/ (SECIN+1,2) - SECIN,2))
READ(5,8060) K,XNUC(K)

IF(NREINF.EQ.Q) GOYO 490

STEEL

0O 270 N = L+NCURVS

READ{ 548050} KySES(Ksl) »SES(K,2)

IFCUSESINS L ).EQu0.0) . AND.(SESINS2}).EQ.0.0)) NIS = N
NNS = NCURVS - 1

DO 280 N = 1+NNS

ES(N) = (SESIN+1l,1) - SESINs L)) /USESIN+1,2) - SES(N,2))
READ(5+68060) KsXNUSIK!}

LOT
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[aX X gl

290

300

350

360

370

380
390
400
410

420

430

B8OND

00 290 N = 1,NCURVB

READ(598050) KySEBIK.L1} 4SEB(Ks2)

IFC(SEB(Ny1).EQ.0.0) AND.LSEBIN,2).EQ.0.0)) NZIB = N
NNB = NCURVS - 1 :

DO 300 N = 1,NNB

EBIN) = (SEB(N+1y1) = SEB(N, 1)) /(SEB(N+1,2) - SEBIN.2))
READ(5,8100) VKV

READ INFORMATION ABOUT REINFORCEMENT

NUMBAR = 0

DG 350 NJC = 1,NUMNOD

JCNL(NJC,2) =0

DO 450 NR = 1,NREINF

READ(5,8090) NBARyNO,JRAREA,NBEGsNEND
IF(NEND -~ NBEG) 370,360,380

KPRERL = 3

CALL PRERL (KPRER1)

NNBEG = NBEG

NBEG = NEND

NEND = NNBEG

KPRERZ2 = 5

CALL PRERZ(KPRER2)

IF(DABS (RAREA) .4 T.020) RAREA = ZERO
IF (RAREA) 390,400,410

KPRERL = %

CALL PRERL {KPRER1)

RAREA = NBAR®(0.25#PI*{NO*0.125)*{NO*0.125))
CHECK WHETHER HORIZONTAL OR VERTICAL BAR
KEND = NBEG + NOO2

IF(NEND.GE.KEND) GOTO 430

VERT ICAL BAR

NUMBAR = NUMBAR + 1

ITOP(NUMBAR, 1) = NBAR-
ITOP(NUMBAR¢2) = ND
ITOP(NUMBARs3) = NBEG
ITOP(NUMBAR,4) = NBEG + 1

JCNLINBEGs1) = 1

JCNLINBEG + 1,1) = 1
SAREA{NUMBAR) = RAREA

NBEG = NBEG + 1

IF((NBEG+1) =~ NEND) 420 +420,450
HOR [ZONTAL 8AR

NUMBAR = NUMBAR + 1
ITOPUNUMBAR, 1) = NBAR
ITOP(NUMBAR.2) = NO
ITGP(NUMBARs3) = NBEG

ITOP(NUMBAR+4) = KEND

JONLUNBEGs2) = 1

JCNL{KEND,2) = 1

SAREA(NUMBAR) = RAREA

NBEG = KEND

KEND = NBEG + NOD2

IF{NEND.GE .KEND) GUTO 430
IF(((NEND+NOD2) — KEND).EQ.0) GOTD 450
KPRERL = 5

Qo0 0O o0 oo

[sX2X sl

450
460

470

480

©90

310

315

318
320

5C0

CALL PRERLI{KPRERL)

GOTO 430

CONT INVE

DU 460 N = 1 ,NUMNOD

JONLONs 1) = "JCNL(Ns1) + JCNLIN,2)

GENERATE CUMULATIVE NODE LIST

JCNL(1,2) = 1

DU 470 N = 2,NUMNOD

JCNL{Ny2) = JCNL(N-1,2) + JOCNLIN-1,1) + 1
DU 480 IS = 1,NUMBAR

IBGND = 1

JBOND = 1

iS1 = ITOP({1S,3)

1S2 = [TOP(ISs4)

KS1 = JCNLUIS1.2)

KS2 = JCNL{1S2.,2)
IFCCJCNLETISLe1) sEQe2) o AND. (ITOP(ISy4) LT LITOP(IS,3) + NOD2))}

LIBCND = 2

TECUJCNL(IS2+1)eEQe2) AND{ITOP(ISy%)oLT o( ITOP( ISy 30 + NOD2)))

1JBOND = 2

ITOP(IS#5) = KS1 + IBOND
ITOP(IS,6) = KS2 + JBOND

CONT INUE

READ TOLERANCE

READ(5,8100) TOL

READ LOADING lNFURHAf[UN AND BOUUNDARY CONDITIONS

READ(5,B8010) NLOAD¢NBCSyNINCReNIT
DU 310 N = 1+NLOAD

READ{5,8070) ILOAD(N) ¢X LOAD{Ny1)+XLOAD(N,2)
ALOAD(Ns 1) = XLOAD(N,1)
ALCAD(Ns2) = XLOAD(N,2)

D0 320 N = 1,N8CS

READ(5,8080) NIBND«IBTYPsVALUE
IF{IBTYP NE.LABELL1) GOTO 315
IBOUND(N) = NIBND

XBOUND(N.1) = VALUE

GOTG 318 .

IF(IBTYP.NE.LABEL2) CALL PRERL(9)
I80UND(N) = —~NIBNO

XBOUND(N,2) = VALUE

ABOUND(N,1) = XBOUND(N,s1)
ABOUND{IN,2) = XBOUND(Ns 2)

DETERMINE BANDWIOTH

MBAND = 0

N = 0

00 510 N = 14NELH

00 500 K = LyNELY ’
NK = NK + 1

JD = JCNL(JTOP(NKs3)e2) — JONLLJTOP(NKys1),2)
IFCJO.GT.MBAND) MBAND = JD
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o000

JD = JCNLUJTOPINK4292) = JONLIJTOPINKy2)02)
510 IF(JD.GT.MBAND) MBAND = JD

MBAND = 2*MBAND + 2

IF (MBAND.GT.MA} GOTO 2020

NUMTODF = Z‘JCNL(JTUP(NREL.BDnZD

READ(5,8110) ICHECK

WRITE{6,9010)

1F( (CHECK .EQ.IEQUI) WRITE(6,9020)

WRITE(6,49030)

RE TURN

END

SUBROUT INE OQUTPUT

o THIS SUBROUTINE PRINTS ALL INITIAL INFORMATION (N TABULAR FORM .

e e e e saasat it erera0rtastes e e st reera0Pesses st sssssecssentatae
IMPLICIT REAL*8(A-H,0-2)
COMMON S(10,10) 5 VKH VKV
COMMON DXXoDYYsELyE23CNUsCNUL2¢CNU2L1,EPLYEP24SNU,PI
COMMON NNosNH s MAy NODY ¢ NODH: NUMNO Dy NR EL o NT EL s NUMBAR s MAXNDF ¢ MBAND
COMMON NINCR yKINCR¢NCURVC ¢NCURVS ¢NZC yNZS s ISCALE s NOF ¢ 1AUTO
COMMON NUMDF NUMTDFyNIT, IT:NCUR VH yNZ5,NDD2

COMMON/ELEM / X(650) ,Y(650) ,THETA(1152,2),U€1300),TU(1300)
COMMON/ELEML / JTOP(28854)» THICK{288)

COMMGN/ MODULC/ SEC(1042)5EC(9),XNUC(9),TOL

COMMON/MODUL S/ SES(20,2)4ES(19) ,XNUS(19)

COMMON/MODUL B/ SEB(1042),EBL9)

COMMON/LOADS / XLOAD( 2042) sXBOUND( 20+2)

COMMON/LOADS1/ ALOAD( 20,2) »ABOUNDL 20,2)

COMMON/ LOADS2/ 1LOAD( 20), I80UND( 20)4NLOADsNBCS

COMMON/REINF / SAREA( 50) s JCNLE650,2)oITOPU 50,6 )9 NREINF,IS1,152

9000 FORMAT(/1X,42(1H*}/43H * COORDINATES OF NODES *,
1/91Xga2({ 1H*) 4/}

9010 FORMAT (* NODE NO X~COORDINATE

9020 FORMAT(1X+15,6Xe1PDL2.4+5X21PDL2.4)

9025 FORMAT(LXy15¢6Xs1PD12+4+5Xe1P012.4s5X,* STEEL")

9030 FORMAT(1HL,42(1H*)/43H * TOPOLOGICAL PROPERTIES OF ELEMENTS *y
1/+1Xe42(1H*) ,/)

Y-COURDINATE® ,/)

9040 FORMAT(' ELEMENT NU NODE A NOODE B8 NGDE C NODE O NODE ™
1L THICKNESS?4/)

9050 FORMAT(1HL+//)

9060 FORMAT(IBy4XsI5+404Xe 150 5%y 1PO12.4)

9070 FORMAT(///+* NO REINFORCEMENT IN THIS PROBLEM')

9080 FORMAT(1HLy42(1H*)/43H * ARRANGEMENT OF REINFORCEMENT *y
1/¢1X¢42(1H*)47)

9090 FORMAT(® BAR NUMBER NO OF BARS TYPE OF BARS

TOTAL AKEA
1 FROM JOINT TO JOINT*,/) :
9100 FORMAT(1X, I16411XsI3411X,*NO®yI3,6K, lPUL2.495X¢1445X,14)
9110 FORMAT(///41X+"CALCULATED BANOWIDTH: MBAND = ', 14}
9120 FORMAT(LHL,42{ 1 H*)/43H * STRESS - STRAIN LAWS *y
17 41X 44211H*) /)
9130 FORMAT(/,* CONCRETE:* 415,
9140 FORMAT(' POINT SIGMA IN PS1
1 NU-VALUE BETWEEN POINTS*,/)
9150 FORMAT(1Xy13,5X91PD124598K91P0L2e51+/ 150X y1PD12s5352Ks0PD12.555%,1c,
1* AND 'y 12}

PCGINTS GIVEN® /)

EPSILON IN IN/INN E-NUDUL

9290 FORMAT(///:1X+*INDIVIDUAL LOAD AND DISPL . INPUT',/,1X,'PRUGRAM REA

[g N 2 N 2}

[ X2k sl

9160 FORMAT{1Xys1345X1PD12.58X11PD12.545/)

9170 FORMAT{(/,* STEEL:*s3X,15,* PULINTS GIVEN",/}

9180 FURMAT(/ " BOND:®,4X¢15,* POINTS GIVEN',/)

9190 FORMAT(///:* NUMBER OF (TERATIONS ="' ,14,5X*TOLERANCE = *,1PDl12.5)

9200 FORMAT (1HLly42(1H*)/43H * LOADING INFORMATION *,
1/ 41X 942(1H*) /)

9210 FORMAT{1X,*'LOADS FUR INCREMENT NO* 415,/)

9220 FORMAT (* NODE NUO X=LOAD?®, 10X, *Y-LOAD IN LBS* /)

9230 FORMAT(1HL s42(1H*)/43H * BOUNDARY CONDIT IONS *
17+ 1Xs42(1H*)4/)

9240 FORMAT (1X " PRESCRIBED DISPLACEMENTS FOR INCREMENT

9250 FORMAT(* NODE NO X~DI SPL® ¢7X,* Y-DISPL

9255 FORMAT (1X, 1558Xs1PD12.554Xy1PD12.5)

926C FORMATU(LX,15+8Xs1PD12.5) ’ 4

9265 FORMAT{1X,15924X,1PD12.5)

9270 FORMAT{///,1X4"ELASTIC SOLUTION ONLY®)

9280 FORMAT(///9y1X " AUTOMATIC SCALING"+/+1X,*GIVEN LOADS AND DISPL. ARE
1 ASSUMED AS TOTAL VALUES*}

NO¢s15,/)
IN INCHES',/)

DSy 154" INCREMENTS")

PRINT NOODAL INFORMAT ION

WRITE(6,9000)
WRITE(6,9010)
KP = 0
IPAGE = 36
DO 10 NC = 1,NUMNOD
IF(KP.NE.IPAGE} GOTO 5
KP =0
IPAGE = 55
WRITE( 649050}
WRITE(6,9010)

S KP = KP + 1
WRITE(699020) JCNLINC 92) ¢ XUNC) 4Y(NC)
IF(SCNL (NC,1).EQ.0) GOTO 10O
KC = JCNLINC,2) + 1
WRITE{649025) KC o X{NC ), YINC)
KP = KP + 1
IF(JCNLINC,1).EQ.1) GOTO 10
KC = KC + 1 .
WRITE (6 949025) KCoXINC),YINC)
KP = KP + ]

10 CONT INUVE

PRINT TOPOLOGICAL QUANTITIES

WRITE(6,+9030)
WRITE(649040)
KP = 0
{PAGE = 45
00 30 IP = 1,NREL
IFIKP NE.IPAGE) GOTO 20
KP = 0
IPAGE = 55
WRITE(6,9050)
WRITE (6 49040)
20 KP = KP + 1
30 WRITE(699060) IPy{JONLUITOP{IPeJd)92)9J=134) s JCNLL(JTGPIIP 1) +NODV)
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[2X2X 2]

[aX 2Kzl

aoo

40

50

60

70

80

85

9145

9155

86
9165

90
91

92

192)» THICK(IP)
PRINT REINFORCEMENT INFORMAT ION

IF{NREINF.NE.O} GOTO 40

WRITE{6,9070}

GOTO 60

WRITE(6,9080)

WRITEL6,9090)

D0 50 IR = 1¢NUMBAR

WRITE(6,9100) IR,ITOPUIRs1)»ITUPLIRY 2),SAREALIR}
LITOP(IR5) 4 1TOP(IRs6)

CONT INUE

WRITE(6,9110) MBAND

PRINT CONSTITUTIVE LAWS FOR CONCRETE AND STEEL

WRITE(6,9120)

WRITE(6,9130) NCURVC

WRITE(649140)

NCURY = NCURVC - 1

DO 70 NC = 1sNCURV

NE = NC + 1

WRITE(649150) NCoSECINC, 1).SE£(NC'2).EC(NC):XNUC(NC).NC.NE
WRITE(699160) NEySEC(NEs1)sSECINES2)
LF(NREINF.EQ.0) GOTO 90
WRITE(6,9120)

WRITE(659170) NCURVS

MRITE(6,9140)

NCURYV = NCURVS - 1
DO 80 NS = 1,NCURV _
NE = NS + 1

WRITE(639150) NS»SESINSy 1)y SESINS2) sESINS) s XNUSINS) NS ¢ NE
WRITE(649160) NEySES(NEy1),sSES(NEs2)

WRITE(6,9120)

WRLTE(6,9180) NCURYB

WRITE (6 49140)

NCURV = NCURVB - 1

DG 85 NB = 1,NCURV

NE = NB + 1

WRITE(6,9145) NB,SEB(NB,1) SEBINB 2] +EBINB) oNBsNE
WRITE(6,9160) NE,SEB(NE,L)sSEB(NEs2)

FORMAT(1XsI395Xs1P0L25 40X ¢1PDLZ45s/ +48Xy *BOND STIFFNESS ' 1PD12.5

1le5X,12¢* AND *,12)
IF(VKV.EQ.0.0) GOTO 86
WRITE(6,9155) VKV

FORMAT (//¢1X*SPECIFIED DOWEL ACTION STIFFNESS KV = ',lPDlZ 5)

G070 90
WRITE(6,9165)

FURMAT(// 41X, 'DOWEL ACTIUN STIFFNESS CHOSEN AS (LO“IO)‘SPL-II'J

PRINT ITERATION AND TOLERANCE VALUES

WRITE(6,9190) NIT,TOL
IFUNINCK = 1) 91:92+93
WRITE(6+49270)

GOTO 95

WRITE{6,9280)

GOTO 95

oo,

[2XsK gl

(¥ sl RN oaRal e R oo aR e a NN o o}

93 WRITE(6,9290} NINCR

PRINT LUADING INFURMATION

95 WRITE(6,9200)
WRITE{6,9210) KINCR
WRITE(6,9220)

00 100 I

L = 1sNLOAD

100 WRITE(6+9255) JCNLLILOAD(IL)92) » XLOAD{IL,1) 5 XLOAD{IL,2)

105
110

PRINT BOUNDARY CONDITIONS

WRITE(6,923D)

WRITE(G6,
WRITE(6,
00 110 1
NIBND =

9240) KINCR
92501

B = 1,NBCS

18OUND(IB)

IF(NIBND.LE.O} GOTO 105

WRITE(6,

G3TO 110

NIBND =
WITE( 6,

CONT INUE

RETURN
END

9260) JCNL{NLBNDs2} » XBOUND(IB,1)

-NIBND
9265) JCNLINIBND2) o XBOUND(IB,2)

SUBROUT INE STIFF(ISHLICH MTYP pJsIeJJledd2eJdJd3sK1lsK2¢K3)

B0 e 0000000000000 000000000000D000 0000000000000 000s8s0RIVEIETS

THIS SUBROUTINE CALCULATES ALL ISOTROPIC AND ANISOTRUPIC
STIFFNESS MATRICES FOR THE CONCRETE PANELS, STEEL BARS AND
AND BOND LINKS. '

PARAMETERS AND ARRAYS:

5(84+8)
$5(8,8)
ST{848)
ROT (8,8)

= AUXILIARY STIFFNESS MATRIX
AUXILIARY STIFFNESS MATRIX

= STIFFNESS MATRIX .
= ROTAT JONAL TRANSFORMAT ION MATRIX .

IMPLICIT REAL*8(A-H,0-2}

REAL*8 NUAsNUByNUAB,NUAB2,DSQRTDCUS,DSIN

COMMCN S(10310) sVKH, VKV

COMMON DXXsDYY,ELsE2 syCNUJCNUL2,CNU21 +EPL 4EP2 4SNU, PI

COMMON NNyNHyMA¢NODV s NODHsNUMNUD ¢y NREL s NTEL y NUMBAR s MAXNOF ¢ MBAND
COMMUON NINCR ¢KINCR ¢NCURVC ¢NCURVS ¢NZC+NZS+ ISCALE,NDF, IAUTO
COMMON NUMDFyNUMTODF yNIT,IToNCURVB #NZB »NOD2

COMMON/E

LEM / X(650) 4Y(650) , THETA(L152,2),U(1300),TU(1300)

COMMON/.ELEM1 / JTOP(288,4), THICK(288)

COMMON/TYP / ITYPE(LL52}¢ISTYPE(50), IBTYPE(100),KDIR
COMMON/MODULC/ SEC(10,52)4EC(S)¢+XNUC(9) ,TOL

COMMON/MODULS/ SES(20¢21+ES(19)+XNUS(19)

COMMON/MODULB/ SEB(10s21),EB(9)

COMMON/REINF / SAREAL 50) s JUNL(650,2) s1TOP( 50,46) ¢ NREINF,1S1,15¢2
DIMENSION ROT(10,10) » SS410+10) s ST(10,101%

DIMENSION H{(10,3),B8(3,10),DD{3,3)

DATA ZEROD/0.0D+00/ » ROT/100%*0,00+400/ » D180/180.00+00/
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20
3¢

35

38

00 8L = 1,3

DO 9 M = 1,3
DD(L M) = ZE
00 8 M= 1,1

RO
0

8B{L,M} = ZERO

IFININCR.EQ.
CALL TYPE(J,
CONTINUE

1) GOTO 19
MTYP)

GQTO (10,200,230} , MTYP
IF( ISWICH.NE.1} GOTQ 30

DO 20 L =1,
DO 20 M = 14
S{L .M} = 0.0
ITYP = ITYPE

10
10

(J)

IFCITYP.GT.1) GOTO 35

X32 = X(JJ43)

X31 = X{JJ43)
X2l = X{JJ2)
Y32 = Y(J443)
Y3l = Y{J4J3)
Y21l = Y(JJ2)
GOTO 38

- X4J442}
- X{J41)
- xtdalid
- Ytdaz)
- Y4yl
- Y(JJd1l)

UMEGA = THETA(J,1)*P1/D180
OMEGAL = DCOS(QMEGA)

OMEGA2 = DSI

N{QMEGA)

CHIL = OMEGAL*X(J4J1) + DMEGA2*Y(JJ1l)
ETAL = —0OMEGA2*X{JJLl) + OMEGAL*Y(JJ1)
CHI2 = OMEGAL*X{JJ2) + OMEGA2*Y(JJ2)
ETA2 = ~OMEGA2#X(JJ2Z2) + OMEGAL*Y(J42)
CHI3 = OMEGAL*X(JJ3) + OMEGA2*Y(JJ3)
ETA3 = -OMEGA2*¥X(JJ3) + OMEGAL*Y(JJ3}
X32 = CHI3 - CHI2

Y32 = ETA3 - ETA2

X31 = CHI3 - CHI1

Y31 = ETA3 - ETAlL

X21 = CHI2 - CHIl

v2l = ETA2 - ETAL

KJ2 = 2%Kl

Kdl = KJd2 - 1

KJ4 = 2¥K2

Kd3 = KJ4¢ =~ 1

KJ6 = 2%K3

K5 = KJ6 - 1

Al = 0.5%(X32%Y2]1 - X21%Y32)

AR = 1.0/(2.0%Al)

8B{1lsKJ1) = AR#*Y¥32

B8B(1lsKJ3) = —AR*Y3]l

88(1,KJ5) = AR#*Y21

B8B(2+KJ2) = —AR#®X32

BB(2+KJ4) = AR¥X3]

88{2,KJ6) = —-AR*X21

BB(3,KJ1l) = BB(2sKJ2)

B8(3,KJ2) = BB(1l41KJ1)

8B(3,KJ3) = BB(2+KJ4)

BB{3,KJ4} = BB(l+KJ3)

BB{3,KJ5) = BB(2+KJ6)

BB(3,KJ6) = BB{1:KJI5)

IF(ITYP.GT.1) GUTO 100

[sXzX3]

(g X ool

o060

OO0 A00

5C

w

w

150

160
117C

180
190

100

ELASTIC STIFFNESS

CN = EL*THICK(I)/{1.0 - CNU*CNU)
DD{1es1) = CN¥*Al

0D{1,2) = CN¥CNU*AL

DD(241) = DD(1,2)

00(2,2) = DD{1,1)

DD{(3,3) = CN*0.5%{1.0 - CNU}*Al

BBT*0D*BB

DD 2L =

00 2 M= 1,3
H{L,M) =

DO 2 K = 143 ~

HIL M) = H{L,M) + B8B(KsL)*DO(K,M)
IFULITYP.GT.1) GUTOD 4

00 3 L = 1,410

80 3 M= 1,10

00 3 K = 1,3
S(LsM) = S(LsM) + HLK)*BBIK:M)
RETURN

DD 5 L = 1,10

DO 5 M = 1,10

SS{L,M) = ZERO

DO 5 K = 1,3

SS{LyM} = SS{LsM) + HOL K} *BB(K,M)

ROTATE ANISOTROPIC OR CRACKED STIFFNESS MATRIX

D0 150 L = 1,102

ROT(L,L3 = OMEGAL

ROT{LeL+1) = OMEGA2

ROT{L+1l,L) ==0MEGAZ

ROT(L+l,L+1l) = OMEGAL

00 170 L = 1,10

00 170 M = 1,410

ST(L,M) = 0.0

DO 160 LM = 1,10

ST(LeM) = STULsM) + ROT{LM,LI*SS(LM M)
CONTINUE

D0 190 L = 1,10

00 190 M = 1,10

STEMP = 0.0

DO 180 LM = 1410

STEMP = STEMP + ST (L,LM)*RUT (LMyM}
S(LyM) = S(LeM) + STEMP .

RETURN

CRACKED ELEMENT

CONTINUE

ANISOTROPIC OR CRACKED ELEMENT STIFFNESS MATRIX
CA = 1.0/(1.0 - CNUL2*CNUZ21)*THICK(I)

OD(1,1) = E1%CA
DD(1,2) = EL*CA%CNUL2
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OO0OO0O00

00(2+1) = DDLL1,2) ‘ : S{3,43) = S(l,1)

0D(2¢2) = E2%CA St 3,4) = S{1y2)
DOl 3, 3)= DSQRTI(EL/(1+0CNUL2)I*(E2/(1.0¥CNU21)) /400 *THICK(]) St4e4) = Si2,2)
IFCITYPELJ) +EQe4) DDI3,3) = 2ERO GOTg 210
GOTO S0 [
END
THIS PART OF STIFF CALCULATES THE MEMBER STIFFNESS MATRIX SUBROUTINE TYPE(J,MTYP)
FOR THE REINFORCEMENT BARS C
C 4P s es s e esu 0800000000 0esenssssestsestentststatotatesabsenssesnssens Y
200 XX = X{(JJ2}) - X{J4Jli} c . .
Yy = v(J4d2) - v(J4Jd1} C o THIS SUBROUTINE .CALCULATES THE PROPER MOCULI OF ELASTICITY .
ALS =DSQRT{XX*XX + YY#YY) c « AND ASSIGNS. THE PARAMETER ITYPE TU THE ELEMENTS .
CX = XX/XLS [ o ITYPE = 1 ISOTROPIC, ELASTIC .
CY = YY/XLS C « ITYPE = 2 ANISUTROPIC, ELASTIC .
C = EL*SAREA{(JI/XLS C o ITYPE = 3 ANISOTROPIC, PLASTIC- .
CX2 = CX*CX C . .
CY2 = CY*CY [ T
CXY = CX*(CY [%
[
St{l,1) = C*Cx2 IMPLICIT REAL*8(A-H,G-2)
S5{(1s2) = C*CXY . COMMON 5(10, 10}, VKH, VKV
S(143) = =Sil+l) . . CUOMMON DXX9DYY 9ELyE2yCNUSCNULZsCNUZL,EPL,EP2,SNU,PI
Sl1y4) = -S(1,2) . COMMON NNyNHyMA yNOOV ¢y NOOH s NUMNUOD ¢ NREL ¢ NTEL s NUMBAR y MAXNDF y MBAND
5(2,2) = C*(CY2 COMMON NINCRsK INCRyNCURVCsNCURVSyNZCyNZS,ISCALE,NDF,1AUTO
S(2,3) = S{1,4) COMMON NUMDF ¢ NUMTDF oNIT ¢IT ¢ NCURVB ¢NZB2NOD2
S${2¢4) = =5{2,2) COMMON/TYP / ITYPE(1152)9ISTYPEL50) ,IBTYPE(L100) KDIR
S€3+3) = S(1ls1) COMMON/ MODULC/ SEC(1042)4+EC(9)sXNUC{9),TOL
S(3,4F = S(1,2) COMMON/MODULS/ SES(20,2) sES(19}) o XNUSLLS)
Sl4s4) = S(252) COMMON/MODUL B/ SEB(1052)+EB(9) R ’
210 DO 220 IR = 1% COMMON/CONSTR/Z STRUL152 ¢3) oSTRP(1152,2),EPS{1152,3),EPR(1152,2)
D0 220 JR = 1,4 : COMMON/STLSTR/ ESPS{ 50),STRSt 50) (TESPSL 501 ,TSTRS{ 50,2)
220 S(JRsIR) = SUIRyJR) i COMMON/BOND / EPSB{100+2)eSTKB(100,2),TEPSB{100,2),TSTRB(100,2)
RETURN : DATA D10/1.00-10/ ¢ D20/1.00-20/ s ZERG/0.00+00/
[
STIFFNESS OF BOND L INKS . 9000 FORMAT (//+1X+*CONCRETE ELEMENT NO.*,16}
ISWICH = 1 HORIZONTAL 9010 FORMAT(//41X,*STEEL ELEMENT NO.*,16)
ISWICH = 2 VERTICAL [ .
[% NINCR = 1 CALLS FUR AUTOMATIC SCALING
230 DO 240 IB = 144 [ TYPE MUST REMAIN UNCHANGED {ITYPE(J) = 1) FOR PROPER SCALING
DO 240 JB = 1,4 [
240 S(IBsJB) = 0.0 ~ KPRER = 0
IF(ISNICH.EQ.1) GOTO 250 IF(MTYP - 2) 10,120,210
VERTICAL STEEL HAR [
€O = 0.0 [ DETERMINE TYPE UF CONCRETE ELEMENTS
SI = 1.0 [
GOTO 260 10 K =1
HORJIZONT AL STEEL BAR I1 = NZC
250 CO = 1,0 12 = NIC
Sl.= 0.0 EPL = EPR{J,1).
260 €2 = CO*Co EP2 = EPRUJ+2)
$2 = SI#SI : - GOTO 30
SC = SIxC0 20 K = 2
Stlsl) = VKH&CZ ¥+ VKV*S2 : ) EPL = EP2
S(1,2} = VKH*SC - VKv¥S( I1 =12
S(1ls3) = =S{1lsl) ’ 30 IF { EP1 .GE., 0.0000 ) Gu TG 70
S{1ls4) = -S(1,2) 12 = N2C - 1
5(242) = VKH*S2 + VKV¥(C2 50 IF { EP1l +GE. SEC(I2,2) ) GO TO 60
S(2+43) = S(ls4) 12 =12 -1
S{244) = -8(242} . IFtI2.GE.1) GOTQ 50

(2!
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EPlL +GE. 0.0D00 ) GO TO 160

KPRER = 1 1F (
12 = 1 Il = NZ§ - 1
60 IF(K-1) 65,420,100 140 IF ( EPl .GE. SES(Il,2) ) GO TO 190
65 WRITE(6,2000) J, MTYP i1 =11 -1
2000 FORMAT & / * STOP AT J =*, IS5, * MTYP =%, I3 } IF{11.6E.1) 60TO 140
STGQP . KPRER = 1
70 12 = NIC Il =1
IF(EPl.LT.SECI{I2+1+2))} GOTQ 90 62 TO 190
160 11 = NZ$
CRACKED ELEMENT 170 IF ( EPl .LE. SES(Il*1,2) ) GO TO 190
Il = [1 + 1
ITYPE(J) = 4 IF(IleLE. (NCURVS~l}) GOTO 170
El = ZERQ KPRER = 2
CNU12 = ZERO Il = NCURVS - 1
12 = NZC 190 El = ESCIL}
CNu21 = ZERO SNU = XNUS(Il}
IF(EP2.LT.0.0000) GOTO 75 ISTYPE(J) = 2 -
IF{EP2 JLT.SECINCURVC,2)) GOTQ 78 IF ¢ { Il .EQ. MNIS ) OR, ( Il .EQ. ( NIS=1) 2 ) ISTYPE(J} = 1
WRITE(6,7310) IF ( KPRER <EQ. 0 ) RETWRN
7310 FORMAT(®* DOUBLY CRACKED ELEMENT, PROGRAM STOPS®) WRITE(6,9010) J
CALL EXIT CALL PRER2 (KPRER)
EP2 NEGATIVE RETURN

75 12 = NIC - 1 C
76 IF(EP2.GE.SECII2,2)) GOTO 78 c DETERMINE TYPE OF BOND ELEMENTS
2=12-1 : c
IF(12.GE.1) GOTO 76 210 11 = NZB
KPRER = 1 IF ( EPL .GE. 0.0000 ) GO TQ 250
12=1 Il = NI8 - 1
78 E2 = EC(I2) 230 IF ( EPL .GE. SEB(Il:2} ) GO TO 280
60TC 110 =i -1 .
90 IF(K.EQ.1) GOTO 20 _ IF(I1 - 1) 270,230,230 _ , .
100 2 = EC(12) ' 250 Il = NZB
El = EC(IL) 26C IF ( EP1 .LE. SEBI11+1,2) ) GO TO 280
IFIEL.LT.E2] GOTO 101 11 =1I1+1
ASSIGN NUL2 ‘ IF(I1.LE, (NCURVE-1)) GOTO 260
CNUL2 = XNUC(11) c
CNU21 = E2/E¥CNU12 C BOND LINK BREAKES GOWN, ASSIGN ZERO STIFFNESS
GOTO 106 c IN DIRECTION OF FAILURE
ASSIGN Nu2l c
101 CNUZ1=XNUC(12) 270 VKH = ZERD
CNUlZ = El/E2¥CNU2L IBTYPELY) = 3
106 ITYPE(S) = 3 RETURN
IFC{I1.LT o (NZC-1)).0R L [1.GEINZC+1))) GOTO 110 c
IF((12.LT.{NZC-1}) +0R<{12.6E+(NZC+1))) GOTQ 110 ; c ACTING BOND LINK VKH = STIFFNESS PARALLEL TO BAR
ITYPE(J) = 1 c . VKV = STIFFNESS PERPENDICULAR TQ BAR,
IF(CI11.EQ.NZC) +AND.{ 12.EQ.11.0R .12, EQ.NZC-11) GO TO 110- C ASSIGNED FOR ALL LINKS IN MAIN
IF({I1.EQ.NZC-1) .AND.¢I2.EQ.11.0R.12.EQ.NZC}} GO TO 110 c
ITYPE(J) = 2 280 VKH = EB(IL)
110 CONTINUE IBTYPE(J) = 2
CNU = CNUL2 IF((11.EQ. (NZB-1}).OR.(I1.EQ.NZBI) IBTYPE(J) = 1
IF(KPRER .EQ.0} RETURN RE TURN
WRITE(649000) J ENC
CALL PRER2(KPRER) ~ SUBROUTINE BANSOL
RETURN [
C SUBROUT INE BANSOL SOLVES BANDED MATRICES 8Y THE GAUSS ELiMINATION
DETERMINE TYPE OF STEEL ELEMENTS c PROCEDURE. THE BANDMATRIX IS STORED DIRECTLY IN A RECTANGULAR
c ARRAY AND TREATEOD BLOCKWISE.
120 11 = NIS : c
EP1 = TESPS(J} IMPLICIT REAL®*8(A~H,C-2)

€11



(2N aX el [N aN o X o TN oY

[2X 2K 2

oo

o0

w

O™

10

COMMON S{10,10),¥YKH,VKY

COMMON DXX9DYYoELE2 ¢CNUSCNULZ ¢ CNUZLEPLEP24SNUsPI

COMMON NNyNH¢MA yNODV 5 NGDHy NUMNOD » NREL s NTEL ¢ NUMBAK ¢ MAXNDF » MBAND
COMMON NINCRyKINCRy NCURVC/NCURVS o NZC,NZS, ISCALE,NDF,{AUTO
COMMON NUMDF ¢ NUMTDF yNIT o1 ToNCURVB yNZB,NCOD2

COMMON/ POOL /7 A(€108454),B(108)4NUMBLK

N8 =0

NL = NN #+ ]

REWIND 1
REWIND 2

GOTo 2

SHIFT LOWER PART JF B AND A INTO UPPER PART
CLEAR LOWER PART

NB = NB + 1

DO 3 N = L4NN

NM = NN + N

BIN) = B(NM)

BINM) = 0.0

DO 3 M = 14MBAND
A(NsM) = A(NMyM)
A(NM,M} = 0.0
IF(NUMBLK - NB) 24,2

READ LOADS AND STIFFNESS INTO LOWER PART OF A AND B

READ(2) ( BUN),{A(NsM}y M=1,MBAND) . N=NL,NH)
IF(NB) 44le4

REDUCE . UPPER PART ¢

CONTINUE

00 5 N = 14NN
IFCAIN,LD] 64546
BIN} = BINI/A(N,1)
D0 7 L = 2yMBAND
IFCAINSL)) 84748
Q = A(NoLI/ZAIN, 1}
I=N+L-1
Jd=0

D0 9 K = LoyMBAND

J=J +1

All«d) = A(l4J) — Q¥A(NsK)
altn = B{I) ~ A(N,LI*B(N}
A(NsL) = Q

CONTINUE

CONTINUE

IF(NUMBLK - NB) 10,11,10

WRITE LOADS AND STIFFNESS ON TAPE NUMBER 1

WRITE(L) (BIN)os{A(NoM)y M=2,MBAND), N=1,NN)
GOTO 1

BACKSUBSTITUTION STARTS WITH LAST BLOCK STILL IN CURE

[aXaks)

(2N aNaN oY R uN a¥ ol o]

OO0

il

13

12

14

15

20

30

COUNTINUE

00 12 M = L¢NN
A= NN+1-M
00 13 K = 2,MBAND
L=N+K -1
BIN) = BIN) = AUN,KI*B(L}
NM = N +# NN

BINM) = B(N)
A(NMyNB) = BIN}
N8 = NB - 1
IFINB) 14915,14

BACKSPACE TAPE ONE RECORD AND READ NEW BLOCK

BACKSPACE 1

READ(L) (BUN) o (A{NsMIy M=2 4MBAND)}» N=14NN)
BACKSPACE 1

GOTO i1

RETURN

SUBROUT INE MODIFY(I,USTAR)

THIS SUBROUTINE MODIFIES THE MAIN STIFFNESS MATRIX

FOR PRESCRIBED DISPLACEMENTS U(I) = USTAR

THE ELEMENTS OF THE I-TH ROW AND COLUMN ARE SET EQUAL TO ZERO

THE ELEMENT IN THE DIAGONAL IS SET EQUAL TU 1.0

PARAMETERS: 1 = POSITION OF OISPLACEMENT RELATIVE TG BLICKBEG
USTAR = VALUE OF THE DI SPLACEMENT

IMPLICIT REAL*8(A—H 40~2) h

COMMON S(10410) 5 VKH, VKV

COMMON. DXX ¢ DYY y EL ¢ E25 CNU 3 CNUL 25 CNUZ1s EPL+ EP24 SNU4P I

COMMON NNyNH yMA yNODYV y NODH s NUMNGO s NREL » NT EL » NUMBAR » AX NDF  MEAND

COMMON NINCR,K INCR, NCURVC,NCURVS ;NZCyNZ S ¢ I SCALE sNDF 51 AUTO

COMMON NUMDF (NUMTDF,NIT, IT ¢NCURV B, NZ B, NOD2

COMMON/POOL 7/ A(108,54) 48(108) »NUNBLK

00 30 J = 1,MBAND :
K=1-J+1

IF(K.LE.O) GOTO 20

BIK) = BIK) — A(KsJI®USTAR

AlKeJ) = 0.0

Kal+J-1

IF(K.GT.NH) GOTO 30

BIK) = BIK) — AUI,JI*USTAR

A(I+J} = 0.0

CONTINUE -
AlIsl) = 1.0 '

B(I) = USTAR

RETURN

ENG

SUBROUTINE SCALE

SUBROUT INE SCALE ADJUSTS THE LOAD VECTOR ALOAD AND THE
PRESCRIBED DISPLACEMENT VECTOR AFTER THE FIRST SOLUTIUN STEP
FOR NINCR = 1} THE LOAD INCREMENTS ARE AUTOMATICALLY CALCULATED
AND PLACED IN XLOADy ALUAD CONTAINS THE CURRENT LOAD APPLIED
IF THE STRAINS ARE LESS THAN THE ELASTIC LIMIT, THE PROGRAM

PIT
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STOPS AFTER THE FIRST RUN
FOR NINCR GT 1 THE PROGRAM REAMS THE IN®IVIDUAL LUAD INCREMENTS
AND ADDS THEM TO ALOAD

IMPLICEIT REAL*8{A~H,0~-2)

COMMON S(10410) ¢ VKH, VKV

COMMON DXXoDYY,EL ¢ £2 yCNU,CNUL2,CNU214EPLyEP2,SNU,PI

COMMON NNe¢NHeMAyNODV » NODH » NUMNGD s NREL ¢ NTEL ¢ NUMBAR y MAXNDF » MBAND
CUMMON NINCR sKINCRy NCURVCoNCURVS ¢NZCyNZSy iSCALE+NDF,IAUTO
COMMON NUMDF s NUMTDF oNIT »IT ¢y NCURV B¢ NZ By NOD2

COMMON/MODULC/ SEC110+2)9EC(90 ¢ XNUCL9) ,TOL

COMMON/MODUL S/ SES(204+2)+ES(19)9XNUS(19)

COMMON/MODULB/ SEB(10s2) 4EB(9)

COMMON/LOADS /7 XLOAD( 20,2) ¢ XBOUND( 20,2)

COMMON/LOADSL/ ALOADU 20,42) s ABOUNDL 20,21

COMMON/LOADS2/ ILOAD( 20) o IBOUND( 20) sNLOAD,NBCS

COMMON/ REINF '/ SAREAL 50)9JCNLL 650420 s ITOPL 5046) yNREINFsISL 4152
COMMGN/ CONSTR/ STRI1152 +3) «STRP(1152+2)sEPS (1152430 EPREL15242)
COMMON/CONSTL1/ TSTR{1152,3),TEPS{1152,3)

COMMON/STLSTR/ ESPS( 50),STRSL 50),TESPS( 50),TSTRS( 50,2}

SEARCH FOR LARGEST STRAIN AT THE END OF THE FIRST SOLUTION

ECHMAX = 0.0

ETHAX = 0.0

DO 1 KSCALE = 1,NTEL
LF(STRPUKSCALEyLl) — ETHAX) 242420

20 ETMAX = STRPIKSCALE.l)

IELMAX = KSCALE
IF{ STRPIKSCALE y2) = ECMAX) 100.1.1

100 ECMAX = STRP(KSCALE,2)

-

2000 FORMAT(///7,'

v

JELMAX = KSCALE

CUNTINUE

FIND THE PROPER SCALING FACTORS
XSCALL = SEC(NIC+l,1)/ETHAX
XSCAL2 = SEC(NZC-1,1) /ECMAX
WRITE(6,2000)
LXSCALZ
SCALING INFORMATION®s/ ,* ELEMENT NO* L5,
1 STRESS: SPl = %,1PD12.54" SCALE FACTOR = "4 1PD10.3,/¢" ELEMENT
2 NO'15," PRINCIPAL STRESS: SP2 = *,1PDl2.54" SCALE FACTOR = ¢
31PD10.3)

IFC(XSCALL «GT 41400 .0R(XSCAL2.6T,.1.,0)) GOTO 3

LOAD YIELDS STRAINS LARGER THAN ELASTIC LIMIT
XLOAD CONTAINS INCREMENTAL LOADS
ALOAO CONTAINS LOAD AT LIMIT AND SUBSEQUENT TOTAL LOADS

XSCAL = XSCAL2

NINCR = 2% XSCAL

IF(XSCALL.LT.XSCAL2) XSCAL = XSCAL1

DECREASE LOADSy CALCULATE lNCREHENTS

DO S5 IL = 1,NLOAD

ALOAD(IL+1) = XLOAD(IL,1)*XSCAL

ALOAD(IL+2) = XLOADCIL,2)%XSCAL

X.OADCILs1) = (XLOADCILsL1) — ALUAD(ILs12)/NINCR
XLOAD(IL+2) = (XLOAD(ILs2) = ALOUAD(ILy2))/NINCR
DD 6 IB = 1,NBCS

ABOUNO( IBs1) = XBOUND(IB, 1)*XSCAL

TELMAXy STRP( IELMAX 1) ¢ XSCAL Ly JELMAX,STRP(JELMAX,2) »

PRINCIPAL

600 ao0o0n

ABOUND{ IB,2) = XBOUND(IB,2)*XSCAL
XBOUND(IBel) = (XBOUND( IBs1l) = ABUUND(IB,1))/NINCR

& XBOUND(IB,2) = (XBOUND( I1892) = ABOUND(IB,2))/NINCR
JIAUTO = 1 R
GOTO 14 .
[ LARGEST STRAIN IS LESS THAN ELASTIC LIMIT
3 IFININCR - 1) 849,10
C WRONG NINCR, CHANGED TO 1
8 NINCR = 1.
KPRERZ = 3

CALL PRERZ (KPRERZ)

c TOTAL LOAD APPLIED DOES NOT GIVE INELASTIC BEHAVIOR
c ELASTIC SOLUTION ONLY
9 KPRERZ =
CALL PRERZIKPRER2)
11 CONTINVE
STOP
FIRST INCREMENT IS TOU SMALL TD YIELD INELASTIC STRAINS
READ NEXT INCREMENT
10 CONT INUE

ENTRY SCALE2
AF (KINCR+EQ.NINCR) GOTO 11
00 12 IL = 1.NLOAD
IF(1AUTO.EQ.1) GOTO 122
READ{5,1000) KLOADsXLOAD(IL 1) 9XLOAD(IL,2)
IF(KLOAD.EQ.ILOADIIL)) GOTO 122 .
WRITE(6,1100) IL
11C0 FORMAT(* LOAD ERROR AT LOAD®*,I5)
CALL EXIT
1000 FORMAT(I5,2F12.4)
122 ALOAD(ILs1) = ALOAD(IL,1) + XLOADI(IL,1)
12 ALOAD(IL+2) = ALOAD(ILs2) + XLOAD(IL,2)
READ(541919) KBCS
1919 FURMAT(IS) :
IF(KBCS.EQ.0) GOTO 14 .
DO 13 IB = 1,NBCS
IF({ IAUTD.EQ.1) GOTO 133
READ(5,1000) lBOUND(lBl'XBOUND(IB'II.XBUUND( 18,2)
133 ABOUND(IB41) = ABOUND(IB,1) + XBOUND(IB,1)
13 ABOUND(IBs2) = ABOUND(IBs2) + XBOUND( I8+ 2)
14 CONTINUE )
KINCR = KINCR + 1
WRITE(6,5020)

502C FORMAT(1Hl ,4211H*)/43H * LOADING INFORMAT ION *, .

L/ 1Xe4201H*)4/)
WRITE(6,5220) NINCRsKINCR

5220 FORMAT(1X,*TOTAL NUMBER OF INCREMENTS® ,i5///1X,%LOADS FOR INCREMEN
1T NO.*y I5¢/)
WRITE(6,5021)

5021 FORMAT (' NODE NGO
DO 62 IL = 1,NLOAD

€2 WRITE(6,5032) JCNLCILOADCIL)+2) XLOADCIL 1), XLOADLIL,2)

WRITE(6,9010) KINCR

9010 FORMAT(///+1X,*TOTAL LOADS FOR lNCREHENT'.lSvII
WRITE{6,5021)

X=LOAD® 410X, Y-LOAD IN LBS* 7 )

GIT



D0 602 IL = 1,NLGAD
602 WRITE{6,5032) JCNL{ILUAD(IL) 28 ,ALOADCIL ,1),ALOAD(IL,2)
IF(KBCS .EQ.0) RETURN
WRITE(6,5030) .
5030 FORMAT(1HL, 42( 1H#*) /43H. * BOUNDARY CONDITIONS *y
17 41X y42{1H*) 4/ )
WRITE{6+5331) NINCR,KINCR
5331 FORMAT(1X, *TOTAL NUMBER OF INCREMENTS®,15,///,1Xs'DISP. FOR INCREM
1ENT NG.* ;154/)
WRITE( 645031}
5031 FORMAT (' NODE NO
D0 61 IB = 1,NBCS _
61 WRITE{6,5032) IBOUND(IB),XBOUND (IB,1) ,XBOUND(IB,2)
5032 FORMAT (1X¢ 158Xy 1PD1245¢4Xs 1PD12.5)
WRITE(6+9020) KINCR
9020 FORMAT(///41Xs STQTAL DI SPL. FGR INCREMENT!,I15,/)
WRITE(6,45031)
D0 612 I8 = 1,NBCS
612 WRITE(645032) IBOUND(IB),ABOUND {IB,1) ,ABOUNDL IB,2)
RETURN
END
SUBROUT INE STRESS(I,Jsdd1,dJ2,4J3,HTYP)

D R R Y LR R R R TR

X-DISPL®,TXs* VY-DISPL IN INCHES?',/)

o I = NUMBER OF RECTANGULAR ELEMENT PROCESSED .
o« Jd = NUMBER OF TRIANGULAR ELEMENT PROCESSED .
o JJdl = NUMBER OF NODE 1 .
« JJ2 = NUMBER OF NODE 2 .
« JJ3 = NUMBER OF NOLE 3 .
« MTYP = MATERIAL TYPE = 1 FOR CONCRETE .
- = 2 FQR STEEL .

KzisXzXzRaNaNakaRaRal el

IMPLICIT REAL*8(A-H,0~1)

COMMON S(10410) ¢ VKH 4 VKV

COMMON DXX DYV 9E19E2sCNUsCNUL2,CNU214EPLsEP29SNU,PI

COMMON NNy NHyMA, NODV ¢ NODHy NUMNUO Do NR EL » NT £ s NUMBAR s MAXNOF s MBAND
COMMON NINCRyKINCRyNCURVC 4NCURVS ¢NZC ¢NZS s ISCALE ¢ NOF, IAUTO
COMMON NUMDF ¢ NUMTDFoNIT, IT,NCURVE 4NZB,NOD2

s
COMMON/ELEM / X(650) 4¥(650), THETA(1152,2),U(1300},TU(1300)
COMMON/ELEML / JTOP(28894) THICK(288)

COMMON/TYP / ITYPELLL52) ¢ ISTYPE(S50),18TYPE(L100),KDIR
COMMON/MODULC/ SEC410,2)+ECL9) +XNUC (9) »TOL

COMMON/MODULS/ SES(209234ES(19)9XNUS(19)

COMMON/MODULB/ SEB(1042)+EB(9)

COMMON/REINF / SAREA( 50)9JCNL( 650,21 o1TOP{ 5046) yNREINF 41515152
COMMON/CONSTR/ STRILL52+3)9STRP(1152+2)4EPSU115293)+EPR(1152,2)
COMMON/CONSTL/ TSTRI115243) 4 TEPS{L152,3)

COMMON/STLSTR/ ESPS( 50)9STRS( 50),TESPS( 50),TSTRS( 50,2)
COMMON/BOND / EPSB(LOD#2)9STRBI10042),TEPSB(10042)eTSTRE( 100,52}
DATA 020/1.00-20/ , ZERO/0.0D 00/ , D10/1.0D-10/

DIMENS ION H(3,6) » UUL6) » D(3,3) , JCI(3)

CALL TYPE(J,MTYP)

IF(MTYP .NE.1} GDTO 110

00 10 LH = 1,3

DO 10 MH = 1,46
10 H(LH¢MH) = 0.0
D0 20 LD = 1,3

[2 Xzl ol

2Kk el

[N eX ol

o0

20

25

30
40

50

DQ 20 MD = 1,3

0(LD,MD) = 0.0

ALPHA = 0.0

BETA = 0.0

Jetl) = JJ1

JC(2) = JJ2

JC(3) = JJ3

CB = 1. 0/0( X(JJ3)=-X{JJd2) b *(V(JI2}-Y{JJ1)) ~

(X(JJ2)=X(JJLDI*(Y(JI3}-Y(JJ2)))

SIGMA = D*H*U

00 25 K = 1,3

JI = 2%JCNLLJC(KD 2)
UU(2%K ~ 1) = U4l - 1}
uu(exK) = utJl)

SET UP H -~ MATRIX

Hi1e1) = CB*(Y(JJ3) -~ YviJJ2})
H{l,3) = —CB*{Y{JJ3) - YJJ1))}
H{1,5) = Co8*(v(JJd2) - Y(JJl1))
H{2,2) = -CB*(X(JJI - XxX(JJ2))
H(244) = CB*(X(JJ3) - X{JJ1))
H{2+6) = —-CB*(X(JJ2) - X(JJ1)}
H(3,1) = H{2+2)
H(3,42) = H(l41)
H{3,3} = H(2,4)
H{3s4) = H{le3)
H(345) = H{2,6)
H(3,6) = H(1,5}

00 40 L = 1,3

ETEMP = 0.0

D0 30 M = 1,6

ETEMP = ETEMP + H{L M)*UUIM)
EPS(JeL) = ETEMP

CALCULATE PRINCIPAL STRAINS

EPSX = TEPS(J,1) + EPS(Js1)

EPSY = TEPS(J,2) + EPS{Js2}

EPSXY = TEPS(J,3} + EPS(J+3)

RAD = ((EPSX = EPSY)/2.0)%%2 + (0.5%EPSXY )*%2
EMAX = DSQRT(RAD)

EAVK = (EPSX + EPSY)/2.0

EPR(Jy1) = EAVR + EMAX

EPR(Jy2) = EAVR - EMAX

IF (DABS (EPSX -~ EPSY).LT.D20) GOTO 50
TAN2A = EPSXY/(EPSX — EPSY)

ALPHA = DATAN(TAN2A)*90.0/PI
THETA(J,s1) = ALPHA

UPBATE TYPE

CALL TYPE(JMTYP)
IFCITYPE(J) .NE.1) GOTO 80

ELASTIC » ISOTROPIC

911
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60
70

80

90
100

110

CD = Ell(l 0 = CNU*CNU)
Df{l,1) =
D(1,2) = CD"'CMJ

Dl2s1) = D(1,2)

Di2,2) = CO -

083,3) = CD*0.5%{1.0 - CNU}

DOTO L = 1,3

STEMP = 0.0

00 60 N = 1,3

STEMP = STEMP + D{L,MI*EPS (JyM)
STR{JsL) = STEMP

PRINCIPAL STRESSES

SIGX TSTR(Js1) + STRIJ, 1)

SkGY TSTR(J2) + STR(J,s2)

SIGXY = TSTR(J,»3) + STR(J,3)

RAD = ({SIGX - SIGY)/2.0)%%2 + SIGXY*%2
SMAX = DSQRT (RAD)

SAVR = {SIGX + S5IGY)/2.0

STRP{Js1) = SAVR + SMAX

STRP(Js2) = SAVR — SMAX
IF(DABSISIGX - SIGY).LT.D20) RETURN
TAN2B = (SIGXY*2.0)/(S1GX - SIGY)
BETA = DATAIl(TANZB)")O /Pl
THETA{J,2) = BETA

RETURN

ANISOTROPIC

CDA = 1.0/(1.0 = CNUl2*¥CNU21)
Dllel) = EL*CDA

D{l 2} = E1*CDA*CNI12

0(2:1) = Di1+2}

DE2,2) = E2¥%CDA

00 100 L = 142

STEMP = 0.0 .

DO 90 N = 1,2

STEMP = STEMP + D{L,MI*EPR{J+M)
STRP(JoL) = STENP

RETURN

STEEL BAR STRAINS AND STRESSES
BOND LINK STRAINS AND STRESSES

XJI = X(JdJ2) - x{JJ1)

YJE = Y442 ~ YiJJ1)

SL2 = XJI*XJI + YJi*YJ]

KS1 = 2%ITOP(J,5)

KS2 = 2*%ITOP(J,6)

ESPS(J) = (XJI*(UIKS2-1) = UIKS1=1)) + YJII*{U(KS2) ~ ULKSL))I/SL2
IF(EL.LT.D20) CALL EXIT

IF STEEL STRESS~STRAIN CURVE HORIZONTAL PROGRAM STOPS

STRS{J) = EL*ESPS(J}

DETERMINE TOTAL STEEL STRESS FROM STRESS-STRAIN CLRVE

[N a¥ o}

[2 XXl

[Nl

o006

[aXaNaNaNal gl

120

125

130

140
1

NCURV = NCURVS -1

I€ = NLS

BO 120 K = 1,NCURV

DE = 1.00 10

LF{UABSIEL — ES(K)}«LT.U10) DE = ZERO

IF(0E.EQ.ZERD) IE = K

CUNTINUE

ED = TESPS(J)} + ESPS(J) ~-SES(IE,2)

TSTRS(Je2) = SES(IE,)1) + ED*(SES{IE+1,1) ~ SESUIE,L))/
LUSES(IE+L42) ~ SES(IE.2))

BOND STRAINS AND STRESSES

MTYP = 3
IF{JJ2.GE.(JJL + NOD2)) GOTO 125

VERTICAL BAR

€O = 0.,00+00
SI = 1.00+00
KOIR = 2
60TO 130

HORIZONT AL BAR

CO = 1.00+00

S1 = Q.00+00

KDIR = 1

CONT INUE

KLAST = O

KBL = 2 ® JCNL{LITOP(J,3),2)

KB2 = 2 * [TOP(J,5)

L =2 * J - KDIR + 1

EPSB(Lsl) = - CO * U(KBL~1) - SI * U{(KBL) + CO * U{KB2-1} +
S1 * UlkB2)

EPL = TEPSBIL.L) + EPSB(L,1)
CALL TYPE ( Lo MTYP )

STRBIL,1) = VKH * EPSBIL.1)
STRBUL,2) = VKV * EPSBLL,2)

IF LAST BAR ENCOUNTERED, PROCESS END LINK STRESSES

IF ( J «NE. NUMBAR } GO TO 170
IF { KLAST «EQ. 1 ) GO TO 170
L = 2% { J+1)~KDIR + 1]
KBL = 2 *® JCNL(ITOP(J,s41,2)
KB2 = 2 * [TOP(J,6)

KLAST = }

GO TO 140

RE TURN

END

SUBROUT INE RESOUT( ICHECK)

teseaseeeasaet st taeteeseseetasescrcetesssesetsiteronesssssterssenrtee
SUBROUT INE RESOUT PRINFS ALL RESULTS AFTER EACH LOAD INCREMENT .
RESULTS APPEAR [N TABULAR FORM ‘

€ 6000 0000000000000 0000C0I00I000000000000000000s00300000000cn00ssRsTT

EPSBILs2) = SI®U(KBL-l) — COWI(KBL) ~ SI*U(KB2-1) + CO*U(KB2) - -

LTT
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c
c
4

[
c
4

IRPLICIT REAL*B(A-H,0-4)

COMMCN S(10,10) yVKH,VKY

COMMON DXXeDBYY EL9E2 +CNUSCNUL2,CNUZL +EPL yEP2 +SNU,PL

COMMON NNy NHyHA¢NODV y NODHy NUNNOD o NREL ¢ NTEL » NUMBAR y MAXNDF s HBAND
COMMUGN NINCR;KINCRoNCURVC ¢yNCURVS sNZL ¢ NZS s ISLALESNOF, 1AUTO
COMMON NUMDF ¢NUNMTOF yNIT oI T,NCURYB sNZ8 ¢+N0OD2

t
COMMCN/ELEM / XU650),Y(650)THETALLL152,20,0(1300}):TUL1300}
COMMON/ELEML / JTOP(288+4)THICK(288)
CUMMON/TYP / ITYPE(1152) ISTYPEL50),IBTYPEL 1001 +KDIR
COMMON/REINF / SAREA( 50) ¢ JCNLI65022)+ITOPL 50461 4 NREINF, ISy IS
COMMON/CONSTR/ STRU1152+3) ySTRPUL115242) 4EPSIL11523) 4EPRIL1152,2)
COMMON/CONSTL/ TSTRU1152,3)+TEPS(1152,3)
COMMON/STLSTR/ ESPSL 50),STRSL 50),TESPSL 50) (TSTRS{ 50,2)
COMMON/ BUND 7/ EPSBL100,2),STR8L100,2),»TEPSBL 100,2) ,TSTRB(100,2)
DIMENSION SUMI3) ,ROWSUMI3)
DATA ZERO/0.0D00/ 4 D4/4.0000/ , IEQUI/®EQUIY/

PRINT NODAL DISPLACEMENTS

ILINE = O
WRITE(6,1000)

1000 FORMAT{ 1M1, 42 1H*) /43H * NUDAL UISPLACEMENTS *y

1001 FORMAT(®* NUDE NO.

1002

1/01Xs42(1H*) /)
wWRITE(641001)
X=01 SPLACEMENT Y~DISPLACEMENT! 4/)
K =0

00 10 NM = 1 ,NUMTDF ,2

ILINE = ILINE + 1
K= K+ ]

WRITE(6,1002) Ky TU(NM), TULNME]L)

FORMAT (1X; 548Xy 1PD12.59 8X, 1PD12.5)
IFUILINE.NE.55) GOTO 10

WRITE( 6, 1003)

1003 FORMAT (1H1+/7)

WRITEL6,1001)

ILINE = 0O
10 CONT INVE
PRINT ITERATION INFORMATION
WRITE(6,7200) IT
7200 FORMAT(/,1X,'ERROR LESS THAN TOLERANCE IN ITERATION NO *,13:/41%s*
1SO0LUTION CONTINUES*y/)
PRINT STRESSES IN CONCRETE
WRITE(6,1004&)
1004 FORMAT(1HL,42(1H*) /43H * STRESSES AND STRAINS IN CONCRETE *,
1/91X44201H*) /)
#RITE(6,1005)
10C5 FORMAT(®* ELEN NO. SIGMA - X SIGMA - ¥ 1Ay - XY Sl
1G6MA -~ 1 SIGMA - 2 THETAL1) TYPE *9 /s 12Xy "EPSILON-X
2 EPSILON-Y GAHMA-~XY EPSILUN-1 EPS ILUN-2 THETA{
32)%/)
ILINE = O

DO 20 NE = 1,NTEL
ILINE = JLINE + ]
IFOITYPEINE} LEQC LY LU 1D

[
c
[

C
c
c

WRITE(6,4060) NEySTRPUNEy 1) sSTRPIMNE 22) s THETAINE 1)y ITYPEINE},
LEPRUNE 1) yEPR{NE 2) ,THETA(NE 21}

1060 FORMAT( 1X» I5,48Xy 20 1PD1245¢2X} 01 X91PD1245:2Xe1347¢54X 2 {1PDLL5 42X

1)4iX41PD12.5})
LFCITYPEINE)«EQ.4) wWRITE(&,1007)

1007 FORMAT (1H+,105X; *CRALKED*)

60TC 16

15 WRITE1641006) NE¢TSTRUNE 1) o TSTRINE 220 yTSTRUNE 35 » STRPINE )11 ¢STRPU

INEs2 Yy THETAUNE 920 o ITYPEUNE Dy TEPSINE, 1), TEPSINE, 2}, TEP SINE »3) 4EPRIN
2E¢1) JEPRINE 42} s THETAINE ¢1)

1006 FURMATULXyI5¢4Xs3(1P012¢5,2X)s2Xs201PDI24542X) st X iPDL245+2X5134/

11X e5X 04X g3 (LPD12.5s2X ) s 2X5211PD12.592K )0 1%y IPLiz <05}

16 IF{ILINE.NE.28) GOTO 20

20

9070

9080

wRITE(6,1003)
aRITE(6,1005)

ILINE = 0

CONT INVE

IFENREINF. EQ.Q) GOTO 50

PRINT STEEL AND BOND STRAINS AND STRESSES

WRITE(6,5070}

FORMAT (1H1, 42(1H*),/43H * STRESSES & STRAINS IN KEINFORCEMENTS *«
la/olXe&2{1H*) /)
MRITE(6,9080}
FORMAT (* BAR NG.
LICTED* ¢5Xe*TYPE®/)
00 30 IB = 1,NUMBAR

EPS ILON SIGMA (ALC. SIGMA DBk&P

30 WRITE(6,49090) IB,)TESPSUIB)TSTRSUIBy1)oTSTRSUIB,2)oISTYPE(IB)
9090 FORMATU 595Xy 1PD12. 596X 1P01245,5Xy1PD1245,10X,J3)

WRITE(6,9100)

9100 FORMAT(1HL y42(1H*) 4/43H * BUND STRESSES *

40

9110

9120

9030

5C

9130

G135

ls/943H * IN DIRECTIUN OF GLOBAL AXES
WRITEE6,21101

U0 40 L = 1, NUMBAR

K= 2%

WRITE(6,9120) ITOP(L,S5), TEPSBIKs1)y TEPSBIK,2), TSTRB(K,1l),

1 TSTRBUK¢2) + IBTYPE LK) :

IF ( IBTYPE(L) .EQ. 3 ) WRITE(6,9030}

CUNT INUE

K= 2% { NUMBAR + 1 }

WRITE(6,9120) ITOPUINUMSAK,6)s TEPSBIKsLlls TEPSBI(K,2), TSTRBIK,L),
1 TSTRBUIK2 ) + IBTYPE(K)

IF { IBVYPE(NUHBAR¢L) .EQ. 3 )} WRITE(6,9030)

FORMAT (' LINK NO. AT NODE REL .« X-0ISP, REL. Y-ulSP. x -
1FORCE Y ~ FORCE? 43X, TYPE'/)

FORMAT € 11Xy IS, oXy 4 {1 [PD12.5, 3X ) 412)

FORMAT L1 Ht 499X *FALLEU* )

IFUICHECK.NE.TEQUL} RETUxN

Fy/9lXe42(LlH*), /)

STATIC EQUILIBRIUM CHECK

WRITE(6,9130)
FORMAT {1HL s42(1H*),743n * QUL IBRIUM CHECK FUK EALH CULUMN -
14/41X54201H%) ./}
WRITEL6,9135)

FURM2T(LX,* RELT. Eirp¥ AV .
LRCEY D

KP = O

R-FORCE AY . Y- FUKLE AV «SHEAR )

811



(2 Xz X=X akal

NHOR = NODH - 1
NVER = NODV - 1
. 1PAGE = 48/(NVER+3)
9160 FORMAT(1Hl,1X,' RECT. ELEM. Ave X-FORCE  AV. V-FORCE
LR FORCE®/)
IEL = 0
00 80 K = 1,NHOR
D0 55 KK = 1,3
55 ROWSUM{KK) = ZERO
DO 70 KROW = L,NVER
DO 60 KK = 1,3
60 SUMIKK) = ZERD
IEL = IEL + 1
ITEL = 4*IEL - 3
DO 65 L = ly4
D0 66 LL = 143
66 SUN(LL) = SUMILL) + TSTRCITELsLL}
65 ITEL = ITEL + 1
00 67 LL = 1,3
SUMILL? = SUM(LL)*(Y(KROWt1) — Y{KROW)I*THICK{IEL)/ D4
67 ROWSUM(LL) = ROWSUM(LL} + SUMILL)
70 WRITE(6,9140) IELs (SUM(LL)sLL=1,3}
WRITE(659150) Ko(ROWSUMILL) sLL=1,3)
IF(KP.LT.IPAGE) GOTO 80
KP =0
IPAGE = 54/ (NVER+3)
WRITE(6,9160)
80 KP = KP ¢ 1
9140 FORMAT(1649%3(2X,1PD12.5))
9150 FORMAT(/®  ROW®,[5,4X,3(2X,1PD12.5),* RESIDUAL FORCES'/)
RETURN , A
END
SUBROUT INE PRERL (J)

AV.SHEA

THIS SOUBROUTINE DECLARES ALL FATAL ERRORS
PROGRAM STOPS AFTER ERRUR MESSAGE 1S PKINTED

IMPLICIT REAL*8{A-H,0-2)

COMMON S(10+10) s VKH, VKV

COMMON DXXsDYYoEL2E2 ¢CNUsCNUL2/CNU2L4EPL yEP2,SNU,PIL

COMMON NNg NHpMA¢ NODV 3 NODHy NUMNODSNREL s NTEL » NUMBAR ¢ MAXNDF ,MBAND
COMMON NINCR yKINCR #NCURVC ¢ NCURVS yNZCyNZS, ISCALEs NDF, 1AUTO
COMMON NUMDF ¢NUMTDF eNIT o1 ToNCURVB ¢NZB #NOD2

GOTO(L 122394 ¢5¢6¢72849) ¢ J
1 PRINT 11
L1 FORMAT(///+1XyLLHFATAL ERROR,//¢1X¢35HNUMBER OF NODES HORIZUNTAL
1Is ZERO)
G0TO 99
2 PRINT 12
12 FORMAT(///+1Xes11HFATAL ERRORy//1X,33HNUMBER OF NODES VERTICAL IS
1ZERQ) . :
GOTC 99
3 PRINT 13
13 FURMAT(///+1X:11HFATAL ERROR,//1X, *NBEG IS EQUAL TU NEND®)
GGT0 99
4 PRINT 14
14 FORMAT(///+1X,LLHFATAL ERRORy//1X,*STEEL AREA NEGATIVE')

(s XN aXaN gl

Gara 99
5 PRINT 15
15 FORMAT(///¢1Xy L1HFATAL ERROR /71X ¢" INCORRECT ENDNODE®)
GOTO 99
6 PRINT lo
16 FORMAT(///41Xy11HFATAL ERRURy//1Xe* NUMBER OF RELINFORCEMENTS SPECIF
11ED IS NEGATIVE')
GOTO 99
T PRINT 17
17 FORMATU///+1Xsl1HFATAL ERRORy//1Xe*STATEMENT 1 BEFORE STATEMENT 40
14 IS FALSE » CALL ON PROGRAMMER?)
GOTO 99
6 PRINT 18 , MBAND
18 FORMATI///31Xs11HFATAL ERROR¢//1X »* BANDWIDTH EXEEDED MBANO =%, [4,*
i CALL PROGRAMMER®)
GOTO 9%
9 PRINT 19
19 FORMAT(/// 41X411HFATAL ERROR¢//¢1X, *BOUNDARY CONDITIONS ARE LINCORR
- 1ECTLY LABELED®)
99 CALL EXIT

RETURN
END
SUBROUTINE PRER2(J)
THES SUBROUTINE PRINTS NONFATAL ERROR MESS AGES
THE PROGRAM CONTINUES AFTER ASSIGNING A VALUE TO THE VARIABLE
WHICH IS OUT OF RANGE -
IMPLICIT REAL*8(A-H,0-1)
COMMON S{10,10)sVKHs VKV
COMMON DXX3DYYoEL2E2»CNULCNUL2sCNU21 ,EPL 4EP2,SNU,PI
COMMON NNyNHyMA9 NODVy NODHe NUMNOD sNREL y NTEL y NUMBAR s MAXNDF o MBAND
COMMON NINCRoKINCRy NCURVCyNCURVS¢NZCyNZS 5 ISCALE,NDF, TAUTO
COMMON NUMDF ¢NUMTDF ¢NIT 1 ToNCURVB yNZB s NOD2
COMMON/MODULC/ SEC(1092)+EC(S),XNUCL9)TOL
COMMON/MODULS/ SES(2042)9ES{19),XNUS{19)
COMMON/MODULB/ SEB(10,2)+EB(S)
PRINT 99
$9 FORMAT{/}

PRINT 100

100 FORMAT (1X,"*** SUBROUTINE PRER2 YelaXythkk?,/,
L1X,**%% NUNFATAL ERRORy SOLUTION CUNTINUES *kxt)

GOTO(1929394¢5) » J
1 PRINT 101 .,El+E2 ’
101 FORMAT(/4LXe"*%% EMODUL OUT OF RANGE, LAST VALUES?® 419X, %%%¢,T40,"
LEL =',1PD12.49/3T404%E2 =9, 1PD12.4)
GOTO 999
2 PRINT 101,E1¢E2
GUTO 999
3 PRINT 103
1C3 FORMAT(//¢1Xs*%%*% NUMBER OF INCREMENTS SPECIFIED IS LESS XY,/ ,
L1Xy*#xx THAN ONE, ROGRAM ASSUMES NINCR = 1. LA LAY
GOTO 999 .
4 PRINT 104
104 FORMAT(/  1X,*%%% TOTAL LOAD APPLIED DUES NOT GIVE RISE?;9X,'%%x1/,
11X, %% TO INELASTIC BEHAVIOR, SOLUTION ELASTIC ONLY E2T TN
GOTO 999
5 PRINT 105
105 FURMAT{//,1X,**%% NUMBER OF START NODE GREATER THAN NUMBER x%x3,/,

611
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APPENDIX C

INPUT SEQUENCE FOR NARCOS-2
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Number of Problems:

one card: (I5)

1 5

122

(FNPROB :

NPROB = number of problems

Problem Identification Card:

one card: (18A4)

1

72

" vane

NAME = problem title

First Control Card:

one card: (4I15)

o6 10 11 15 16 20

1
/I I I I ]
NNV NNH KTOP NREINF
NNV = number of nodes vertically
NNV > 0: unequal spacing
NNV < 0: equal spacing
NNH = number of nodes horizontally
NNH > 0: unequal spacing
NNH < 0: equal spacing
KTOP = input mode parameter
KTOP = 1: automatic mesh generation
KTOP = 2: individual input

NREINF = number of reinforcements
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4, Coordinate Data Cards:

min, two cards: (I5, D12.4)

1 56 17

¥

/I J | DTEMP |
J = node number
DTEMP = x- or y-coordinate of nodes
for NNV < 0 or NNH < 0: one card, respectively
for NNV > 0: NNV cards

for NNH > 0: NNH cards

5. Second Control Card:

one card: (4I5)

1 26 10 11 15 16 20

| l l

| .
ﬁ NTH NCURVC NCURVS NCURVB

NTH = number of elements with irregular thickness

NCURVC = number of points on concrete curve
NCURVS = number of points on steel curve
NCURYVB = number of points on bond curve
for NTH = 0-all elements are of unit thickness

6. Thickness (Optional):

NTH cards: (I5, D12.4)

1 56 ‘ 17

j I
(l NT THICK
NT = element number (rectangle)
NT = 0: all elements are changed to new thickness

NT > 0: supply NTH cards
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Stfess-Strain Data:

NCURVB cards: (I5, D12.,4, D12.6)
1 26 17 18 29

I | f
/r I STRESS STRAIN
= number of point on curve
STRESS = stress at point I

STRAIN = strain at point I

Poisson's ratios:

(NCURVB - 1) cards: (I5, D12.6)
1 56 17
/l T I
I NUB

I = interval (between two points given under 7)

NUB = Poisson's ratio
Blocks 7 and 8 are repeated for steel and bond if the parameter

NREINF is greater than zero.

Bond Stiffness (Optional):

one card: (5X, D12,5)
1 ) 17
'/f I T
VKV

VKV = bond stiffness in direction perpendicular to reinforcement

This card must be omitted if NREINF = 0, If a blank card is

supplied, VKV is chosen as mentioned in Chapter IV.

Reinforcement {Optional):

NREINF cards: (2I5, D12.4, 2I5)
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1 56 10 11 22 23 27 28 32

I I I I I
I/| NBAR  NO RAREA NBEG NEND

NBAR = number of bars
N® = bar number (ACI Code)

RAREA = total cross-sectional area

NBEG = start node

NEND

end node

When standard bars (ACI Code) are selected, the total cross-
sectional area is computed automatically. In this case, the
parameter RAREA must be omitted. If RAREA is specified,

the parameters NBAR and N® may be omitted.

11. Tolerance:
one card: (55X, D12.5)

1 o6 17

(I | TOL !

TOL = tolerance

12, Third Control Card:

one card: (4I5)

1 26 10 11 1516 20

/F T r I !
NLOAD NBCS NINCR NIT
NLOAD = number of loads
NBCS = number of boundary conditions

NINCR = number of increments

NINCR = 0: elastic solution

NINCR

1: automatic scaling



NINCR > 1: specified increments

NIT = number of iterations

13. Loading Data:

NLOAD cards: (I5, 2D12.4)
1 56 17 18

126

b !
(f I X Y
I = joint number

X = X-~-component of load at I

Y = Y-component of load at I

14, Boundary Conditions:

NBCS cards: (I5, 4X, A1, D12.4)

1 56 910 11

22

(T I | | *l VALUE
| I = restrained node

#=X: X-restvraint

#¥=7Y: Y-restraint

VALUE = value of prescribed displacement

15, Equilibrium Check:

one card: (A4)

1 4
(! T
P
P = alphanumeric parameter

P= EQUIL: initializes checking procedure

A blank card is required if no checking is requested.
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16, Remarks:

a.

b.

For NINCR > 1 group 13 is repeated NINCR-1 times.

If during the increments 2, 3, . . ., etc., the boundary
conditions remain the same, one blank card may be sup-
plied instead of the whole block 14.

If the EQUI card is inserted, the checks are done for all

increments.



APPENDIX D

SAMPLE INPUT AND OUTPUT
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26 43 60 77 94 il

N R ey @ 0

—

a)

b)

17 134] 51
25 42

I3 31
22—
3 |2

40—
39

o~

20
N 29

38

19

MODIFIED TO INCLUDE STEEL NODES

37

45!

468

442|459
450—467

441|458
449466

440[457
448465

439 456
447—464

438|455
446463

4371454
445—462

436 |453
444461

435]452
460

443
460 478 495

I4se 486
—459—477——494

| 467 | 485
—458—476——1493

466 | 484
—457—475—1492

465 | 483
—456—474——|49 |

464 | 482
—455—473——490

463 | 481
—454—472——489

453 | 471 | 480
452 470 488

a6i | 479
451 469 487

Figure 32, Nodal Afrangement of Scordelis' Beam A-1
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SIMPLE BEAM, SCORDELIS CHECK PROBLEM9 1 REINF.s 468 NODESs 864 TRIANGs

3 =28 1 1 .
1
3 560
9 2240
468 81.0
1 4 5 3
1240
1 =400040 -04002
2 =3000.0 =-0.001
3 0.0 00
4 300.0 00001
1 Os15
2 0415
3 0.15 . .
1 -4000040 -0.002
2 —-30000.0 " =0s001
3 . 040 - 0.0
4 3000040 0.001
5 4000040 0002
1 Oe3
2 Oe3
3 Oe3
4 0.3
1 =2200.0 -0001
2
3 220040 0001
1.00000D0.12
2 9 2 444
0«05 : '
1 10 10 3
145 -7000.0
1 X
2 X
3 X
4 X
5 X
6 X
7 X’
8 X
9 X 4
409 Y
CEQUILIBRIUM CHECK
145 ~20040
145 ~200.0
145 ~20040
145 ~200.0
145 =20040

145 ~20060

145 ~20040



~ O

NOUPWONER NOUE WN e

~NoOwmPEs WN

~8433333
-4e16667

~16466667
~33.33333
-33,33333
~33,33333
~33,33333

~33433333.

~16466667

-83433333
~166466667
~166466667
—166466667
~166466667
~166466667

~83433333

~83433333
=166+66667
~166466667
~166466667
~166466667
~166466667

~83433333

131
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1
SIMPLE BEAM APPROXIMATION ,637 NODES WITH STEELs PMAX = 3000 LBS
-7 =46 1 1
7 12.0
46 90.0
1 7 5 3
0 80
1 =3000.0 -«002
2 =2980.0 ~¢00175
3 =2760.0 © ~e00125
4 =24754,0 -«001
5 =150040 -+0005
6 0.0 0.0
7 300.0 00001
1 15
2 «15
3 15
4 15
5 «15 .
6 e15
1 ~50000.0 -e005
"2 —47000.,0 - -e00162
3 - 060 ‘ 0.0
4 47000.0 0.00162
5 50000.0 0005
1 ¢333333
2 -¢333333
3 ¢333333
4 ¢333333
1 -22004.0 -+001
2 0.0 0.0
3 220040 0.001
. 1400000Ds12
1 0 l.0 2 574
005
1 8 5 3
1 '6205
2 ~125.
3 ~125
4 =125,
5 =125
6 ~125.
7 ~62e5
1 X
2 X
3 X
4 X
5 X
6 X
7 X
573 Y
EQUI -
1 ~4416667
2 -8¢33333
3 -8433333
4 —833333
5 ~8¢33333



133 -

145 ~20040

145 ~20040



ELEM NO.

256
257
258
259
260

262
263
264
265
266
267
268
269
270
271
272
273
274
275.
276
2717
278
279

280

SIGHA - X
EPSILON-X

-4.03533D 02
~1.34065D~04%
~4.,64396D 02
~1.50443D0-04
~3.512290 02
~1.06346D-04
~2.903660 02
~8.99614D-05
2.984160 02
9.94673D-05
2.62184D 02
8.68555D-05

2.200410 02
7.35621D-05
1.818550 02
6,02238D-05
2.199610D 02
7.35172D-05
2.581460 02
8.68555D-05
1.35147D 02
4,56004D-05
9.278100 01
3,08541D-05
1.349150 02
4, 56 TT50-05
1.77281D0 02
6.02238D-D5
4.691570 01
1.66894D~05
5.367150 00
2.190890-06
4.628590 01
1.635560-05
8.78345D 01
3.085410-05
~4,01684D Ol
~1.16484D~05
-8.18849D 01
~2.62850D-05
-4.16731D 01
-1.2445TD-05
4,337720-02
2.19089D-06
-1.276350 02
~3.,973200-05
-1, 713680 02
~5.52967D-05
-1.316310 02
-4,18497D-05
-8, 789750 Ol
-2.52850D-05

SIGMA - ¥
EPSI LON-Y

-8.92756D 00

1.72008D-05
-8.69907D 01
~5.77709D-06
-2.14609D0 02
-5.39749D-05
~1.36546D 02
-3.099700~-05

9.14862D-02
-1.489030-05

1.078390 01

"=9,514560-06

-4,30254D 00
~1.243620~05

7.89360D 00
~6.461570-06
-3.937490 00
~1.231050-05
-1.61336D 01
-1.828520~05
-1.102960 01
-1.043390-05

1.457200 00
-4.15331D-06
~1.,01174D 01
-1.011820-05
-2.26041D 01
-1.63987D-05
-2.10163D 01
~9.351210-06
-8.03671D 00
-2494726D-06
-1.85397D 01
~8.49421D-06
-3.151930 01
-1.483820-05
-3.48224D0 01
-9.59904D-06
-2.019950 01
~2.638910-06

-2.89956D 01

~7.55156D~06
-4,352860 01
-1.451170-05
~5.625690 01
-1.237060-05
~-3.651570 01
-3.60354D-06
-4,05427D 01
-6.93271D0-06
-6.028350 0L
~1.569970-05

TAY - XY
GAMMA~-XY

-3.031600 01
-2.32423D-05
-8.,12503D 01
~6.229190-05
-8.,27862D 01
-6.34694D-05
~3.,185190 01
-2.441980-05
1.50205D0 01
1.151570-05
1.123520 00
8.613630-07

3.193750 01
2.44854D~05
1.75543D 01
1.345830-05
3,104790 00
2.380340-06
1.748790 01
1.34074D-05

3.81943D 01 .

2.92823D-05
2.55655D 01
1.96002D-05
1.271760 01
9.75017D-06
2.53464D 0Ol
1.94323D-05
4.261220 01
3.26694D~05
3.047760 01
2433662D-05
1.774830 Ol
1.360700-05
2.988290 01
2.291020-05
4.47490D0 01
3.430750-05
3.31088D 01
2.53834D~05
2.00476D 01
1.536980-05
3.16877D0 Ol
2.429290-05
4.652360 01
3.56681D-05
3.58275D Ol
2.74678D-05
2.135730 01
1.637402-05
3.20534D 01
2.457430-05

SIGMA - )
EPSILON-1

-6.61209D 00
1.80884D-05
~7,02419D 01
6.43287D-07
-1.75589D 02
-3.90171D-05
-1.30211D 02
-2.85687D-05
2.99170D 02
9.975650-0%
2.62189D 02
8.,68574D-05
0.0
1.00842D~04
0.0
1.131870-04
2.24499D 02
7.52710D0-05
1.836090 02
6.08960D0~05
2,20004D 02
7.353370-05
2.59257D 02
8.72812D-05
1.44525D 02
4.91954D~05
9.94507D 01
3.341090~05
1.360220 02
4.590170-05
1.804450 02
6414366D~05
6.744270 01
2.45581D-05
2.987100 01
1.15840D0-05
5.08270D 01
1.809640~05
9.489830 01
3.356190~05
7.23331D 00
6.56064D-06
-5.79326D 00
2.883470~06
-1.42499D 01
~1.,933550-06
1.,67118D 01
8.58046D-06
-3,331010 01
-3.574290-06
-2.758810 01
~1.812780-07
-3,57837D 01
-5.10843D-06
~3.919010 01
-7.613800-06

SIGMA - 2
EPSILON=2

-4, 058490 02
~1.34952D-04
~4,811450 02
-1.568700-04
-3.90249D 02
-1.21304D-04
~2.96T701D 02
-9.23897D-05
-64628830=01
=1.517950~05
1.077890 01
-9.516480~-06
-4.54758D 01
-1+ 515860-05
~6.08027D0 01
~-2,02676D-05
-B8.76056D0 00
-1.41451D-05
6.13989D 00
~7.133820-06
-3.,98053D0 00
-1.232700-05
~1.724420 91
-1.871090-05
~2.040770 O1
~1.402880-05
-5.,21258D0 00
-6.71006D-06
~1.12241D0 01
-1.05424D-05
-2.57681D 01
-1.761160-05
~4.15433D0 01
-1.72199D0~05
~3.,25406D 01
~1.23404D-05
-2.30808D O1
~1.023500-05
-3,85831D 01
~1.760590-05
-8.23241D 01
-2.780800-05
~9.629110 01
~3.18074D-D5
~5.632870 01
~1.806380-05
~6.01970D D1
-2.090130-05
-1.50581D 02
-4,85283D-05
-1.802950 02
—5.87130D-05
-1.363900 02
~4.36740D-05
-1.08991D 02

-3.437090-05

THETA{L}
THETA(2)

4.36765D 00
4.36765D 00
1.164770 01
1.16477D 01
2.523630 01
2.52363D 01
1.12483D 01
1.12483D 01
2. 875130 00
2.875130 00
2.560500-01
2. 560500-01

~2.75066D 00

-2.75066D 00

-1.001320-01

-1.00132D-01
7.946350 00
7.94635D 00
5.70504D 00
5.705040 00
7.943140-01
7. 94314D-01
3.633530 00
3.63353D 00
1.379530 O1
1.37953D 01
1. 462200 01
1.462200 01
4.97359D 00
4. 973590 00
7.11538D 00
7.11538D 00
2.572090 01
2.572090D 01
3, 879910 01
3.879910 01
1.43519D 01
1. 435190 01
1.32996D 01
“1. 329960 01

-4.32908D 01

~4.32908D 01

-2.35147) 01

-2.35147D 01

-3, 616850 01

-3.616850 01
2.77453D 01
2. 774530 01

-2.625390 01

-2.625390 01

-1.39922D 01

-1.399220 01

-1.256190 01

~1.25619D 01

-3.334820 01

~3.334820 01

TYPE

+» +» -

—

CRACKED
CRA