NONLINEAR BEHAVIOR OF REINFORCED

 CONCRETE BEAMS BY THE FINITEELEMENT METHOD

By
A LEXANDER JEAN LIASSKER
Diploma, Civil Engineering
Swiss Federal Institute of Technology
Zurich, Switzerland
December, 1964
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSOPHY
May, 1972

Kesis
$1972 D$
2347π
1347π
cop. 2

AUG 101973

NONLINEAR BEHAVIOR OF REINFORCED CONCRETE BEAMS BY THE FINITE
 ELEMENT METHOD

Thesis Approved：

To my wife,

Elizabeth

A CKNOWLEDGMENTS

I wish to express my sincere appreciation to the members of my committee:

To Dr. W. P. Dawkins, who served as my major advisor, for his invaluable guidance, interest and friendship throughout the preparation of this dissertation;

To Dr. D. E. Boyd for his many suggestions, his helpful advice and encouragement;

To Drs. R. K. Munshi and A. E. Kelly for their sound instruction.

The author takes this opportunity to thank Dr. M. Abdel-Hady, F. G. Amrhein, V. G. Tracey, and E. Hardy for their friendship. Thanks are also due to J. H. Hepp for his invaluable assistance with the computer program.

In addition, I would like to thank Mr. and Mrs. J. Eichhorn and Mr. and Mrs. G. Elliott for their encouragement and support.

Finally, I am deeply indebted to my family, especially to my wife, Elizabeth, my son, Urs, and my parents for their patience, understanding and support.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 General Discussion. 1
1.2 Purpose and Scope of This Study 3
1.3 Historical and Literature Review 4
1.4 Problem Approach 8
II. FINITE ELEMENT PROPERTIES 9
2.1 General 9
2.2 Structural Idealization 10
2.3 Constitutive Relations 19
2.4 Development of Element Stiffness Matrices 28
III. MA TRIX ITERATIVE PROCEDURE 43
3.1 Review of Iterative Procedures for Problems With Nonlinear Material Properties 43
3.2 Proposed Iteration Procedure. 54
IV. COMPUTER PROGRAM 59
4.1 General 59
4.2 Computer Idealization of the Beam 59
4.3 Flow Chart 62
4.4 Solution of Equilibrium Equations 62
4.5 Input List 67
4.6 Output Information 72
V. NUMERICAL RESULTS 73
5.1 General 73
5.2 Example Problem 1: Scordelis' Beam A-1 73
5.3 Example Problem 2: Simple Beam Loaded at Midspan 80
5.4 Example Problem 3: Simple Beam Loaded
Symmetrically by Two Concentrated Loads 84
VI. SUMMARY AND CONCLUSIONS 88
6.1 Summary 88
6.2 Conclusions and Recommendations 89
Chapter Page
BIBLIOGRA PHY 91
APPENDIX A - STIFFNESS MATRICES IN TABLE FORM 95
APPENDIX B - LISTING OF COMPUTER PROGRAM 100
APPENDIX C - INPUT SEQUENCE FOR NARCOS-2. 121
APPENDIX D - SAMPLE INPUT AND OUTPUT 128

LIST OF FIGURES

Figure Page

1. Example of a Singly Reinforced Concrete Beam 12
2. Finite Element Assemblage of Singly Reinforced Beam 13
3. Components of Finite Element Model 15
4. Configuration of Bond Links 16
5. Typical Stress-Strain Curves for Steel and Concrete 20
6. Idea lized Stress-Stra in Curves 22
7. Anisotropic Triangular Element 24
8. Material Constants for Anisotropic Element 24
9. Stress-Relative Displacement Relations for Bond 29
10. Arbitrary Triangular Concrete Element 33
11. Steel Bar Elements 38
12. Bond Link 38
13. Cracked Element 41
14. Classification of Concrete Elements in the Elastic Range 55
15. Classification of Concrete Elements in the Inelastic Range 56
16. Results of Convergence Study 60
17. Example of Nodal Arrangements 61
18. General Flow Chart 63
19. Flow Chart Symbols 65
20. Block Arrangement of Main Stiffness Matrix 66
21. A rrangement of Input Data 68
Figure Page
22. Example Problem 1: Scordelis' Beam A-1 75
23. Mathematical Model of Beam A-1 76
24. Example Problem 1: Stresses at $P=7200$ Lbs. 77
25. Example Problem 1: Stresses at $P=8000$ Lbs. 78
26. Example Problem 1: Stresses at $P=8800 \mathrm{Lbs}$ 79
27. Example Problem 2: Simple Beam Loaded at Midspan 81
28. Example Problem 2: Crack Pattern at $P=2000$ Lbs. 82
29. Example Problem 2: Crack Pattern at $P=4000$ Lbs. 83
30. Example Problem 3: Simple Beam Loaded Symmetri- cally by Two Concentrated Loads 85
31. Example Problem 3: Crack Pattern and Stress Distri- bution at $P=10,000$ Lbs. 87
32. Nodal Arrangement of Scordelis' Beam A-1 129

NOMENCLATURE

A	area of concrete element
$[\mathrm{a}]$	rectangular matrix: function of position coordinates of a point within an element
[b]	Strain displacement transformation matrix
$[\mathrm{D}]$	square matrix of elastic constants
E	modulus of elasticity
$\{\mathrm{e}\}$	column vector of total strains within an element
G	shear modulus
H^{\prime}	strain hardening parameter (slope of effective stresseffective plastic strain function)
I_{2}	second stress invariant
J_{2}	second strain invariant
$[\mathrm{R}]$	coordinate transformation matrix for concrete elements
S	surface on the boundary of a continuum
$[\mathrm{T}]$	coordinate transformation matrix for steel and bond
	elements
$\{U\}$	column vector of nodal displacements in the global coordinate system
$\{u\}$	column vector of nodal displacements in the local system
u	displacement function
V	volume of concrete elements
$\left.\begin{array}{l}x \\ y\end{array}\right\}$	coordinates of nodes

variational operator
Δ
$\left\{\Delta \epsilon_{0}, p\right\} \quad$ initial strain increments
$\left\{\Delta \epsilon_{p}\right\} \quad$ plastic strain increments
$\{\epsilon\} \quad$ column vector elastic strains within an element
ϵ_{o}
$\epsilon_{e f f}$
ν
$\{\sigma\}$
σ_{0}
$\sigma_{\text {eff }} \quad$ effective stress
$\tau_{\text {oct }}$
symbol for incremental values
uniaxial strains
effective strains
Poisson's ratio
column vector of stresses within an element
uniaxial stress
octahedral shear stress

CHAPTER I

INTRODUCTION

1.1 General Discussion

The behavior of reinforced concrete structures subjected to various types of loads has been studied extensively during the past few decades. In spite of many efforts, no basic analytical approach has been developed to determine accurately the stress distribution in the concrete and the steel. This is mainly due to the fact that the constitutive relations for concrete depend on a number of factors such as the size and shape of the structure, the size, the material properties and the composition of the aggregate, and the rate and duration of loading. Furthermore, the tensile strength of concrete is much lower than its compressive strength. Therefore, additional difficulties ar ise from the continuing change in structural configuration caused by cracks in the concrete.

It is even more difficult to express the many different geometric shapes of the stress-strain curves for steel in analytical form. Here the manufacturing process and the choice of alloys have the most significant influence on the material properties. Finally, time-dependent effects on concrete strains, steel relaxation and complicated laws of interaction between concrete and reinforcements render a closed-form solution practically impossible. It is, therefore, necessary to utilize empirical laws obtained from extensive test data.

Present methods of analysis or design are based on assumptions which allow the application of the fundamental principles of continuum mechanics and empirical or simplified constitutive equations. Two different approaches are commonly used in the design of reinforced concrete structures. Both methods assume a perfect bond between steel and concrete and neglect the tensile resistance of concrete. The first assumption allows the use of the classical Navier-Bernoulli stipulation for planes perpendicular to the member axis. According to this assumption, these planes remain plane and perpendicular to the centroidal axis during the entire load history. Experiments on reinforced concrete beams have confirmed that the assumed strain distribution actually deviates very little from the real strain condition, provided that good bonding exists.

The main difference in the two methods lies in the choice of stress-strain relations. The "Working Stress Method" (1) utilizes linear material laws. Since concrete behaves elastically only as long as the maximum compressive stress is less than about half the ultimate strength, this approach has failed to give correct pictures of the stress distribution at high loads.

The "Ultimate Strength Method" (1), on the other hand, is based upon stress conditions just before failure occurs. It may appear essential to use realistic constitutive relations at these high stress levels. However, this is not the case because the geometric shape of the stress distribution has little effect on the location and magnitude of the resultant compressive force in the concrete. The real stress situation is therefore usually approximated by an equivalent rectangular or trapezoidal stress block.

A lthough both methods are of chief importance in design, neither one is of much help in studies of the nonlinear behavior of reinforced concrete beams. Such investigations are extremely involved due to previously stated reasons. Any reliable approach must therefore resort to numerical methods. With the introduction of the finite element technique to be discussed subsequently, such an analysis procedure has been established for the solution of complex problems of continuum mechanics. The application of this method results in a large system of linear, simultaneous equations which can be solved very efficiently on digital computers. Nonlinear problems introduce no new difficulties, since they can be treated either by iteration or as a sequence of consecutive linear problems.

1.2 Purpose and Scope of This Study

The purpose of this study is to develop a reliable tool for the analytical study of reinforced concrete members through their entire elastic, inelastic, and ultimate ranges.

The main emphasis is placed on the behavior in the inelastic range. Consequently, the problem approach is based upon nonlinear constitutive relations for steel, concrete, and bond. Nonlinearities introduced through the change in geometry are not included since the beams are assumed to have failed long before large displacements develop. Also, time dependent effects on concrete strains (such as creep and relaxation of reinforcements) are neglected. The loading history is restricted to monotonically increasing static loads.

After each load increment, the stress and strain distributions will be calculated. The arrangement of steel components is kept flexible in order to allow the study of various types of reinforcements.

1.3 Historical and Literature Review

The successful application of matrix analysis methods to materially nonlinear framed structures by Wilson (2) in 1960, and Goldberg and Richard (3) in 1963 demonstrated the feasibility of the finite element method for the solution of nonlinear problems. Wilson subsequently extended the incremental load procedure to a class of two-dimensional, nonlinear structures (4) in 1963. In the same report an iterative technique similar to the Newton-Raphson Method was applied to in-plane loaded thin plates with bilinear constitutive relations.

Argyris (5) and Denke (6), in 1964, adapted the matrix force method to elasto-plastic problems. Comprehensive presentations of the elasto-plastic displacement method were given by Pope (7) in 1965 for plane stress and plane strain states and by Argyris (8, 9) for threedimensional states of stress. Both publications distinguish clearly between the two basic incremental procedures referred to as "Initial Strain Method" and "Tangent Modulus Method."

The "Initial Strain Method" was developed in matrix form by Argyris (8, 9). It involves approximating the change in plastic strain during each load increment. These plastic strains are then used as initial strains to reevaluate the stress distribution. Therefore, this procedure requires iterations in each loading step.

The "Tangent Modulus Technique" makes use of incremental stiffness matrices which are derived from well-known incremental stress-strain relations. For strain-hardening material, the stiffness matrices must be modified after each load increase. A partial stiffness method for elasto-plastic problems based on the "Tangent Modulus Approach" was first proposed by Marcal(10) in 1965 and later modified for use in the finite element method by Marcal and King (11). These papers state the necessary equations in matrix form and suggest the sequence of steps suitable for digital computation.

In his classical treatise, Zienkiewicz (12) presents an excellent summary of these fundamental matrix methods and also presents Wilson's "Direct Iterative Approach" as a third basic technique. The amount of research conducted in the area of nonlinear analysis by finite elements has increased rapidly since these initial efforts. Therefore, only the most significant publications pertinent to this study will be mentioned. In general, recent investigations have only refined the earlier formulations of the elasto-plastic problem.

Felippa's paper (13) can be considered as one of the early attempts to introduce refinements into the matrix methods for linear and nonlinear analysis of two-dimensional structures. Other planar problems were solved by Akyuz (14) and Akyuz and Merwin (15). Special attention was given in these publications to the computational difficulties arising from the repeated solution of simultaneous equations. A half-step method related to the Runge-Kutta procedure was applied to improve the accuracy. The comparative study by Marcal (16) in 1968 revealed that the Initial Strain Method fails for the case of elastic-perfectly-plastic material. Otherwise, the two incremental
techniques were found to provide very similar results. A nother contribution to the topic was presented by Marcal (17) in 1969. At the same time, Yamada (18) gave a general review of Japanese developments in the field of elasto-plastic matrix analysis. His paper contains an incremental stress-strain matrix for anisotropic materials and shows several practical applications of the step-by-step approach.

A variation of the Initial Strain Method based on known stress functions was proposed by Yamada et al. (19) in 1968. However, because the publication of their paper was delayed until 1969, it appears that Zienkiewicz, Valliappan and King (20) should earn full credit for the development of the so-called "Initial Stress Method." This new technique makes use of the fact that plastic strain increments prescribe uniquely the stress system, even in the case of an ideally plastic material. With this in mind, Zienkiewicz et al. were able to retain the advantages of the Initial Strain Method for which the matrix of elastic constants remains unchanged during the loading history. Probably the most comprehensive survey concerning nonlinear structural analysis techniques was made by Oden (21) in 1969. The main solution methods for both geometrically and materially nonlinear structures are discussed and presented in tensor form. Furthermore, the incremental stiffness approach first suggested by Pope (7) is generalized. The paper also includes an extensive list of selected references.

Despite the fact that finite element methods are highly suited for stress analyses, relatively few studies have adopted these techniques to investigate the behavior of concrete structures. Rashid (22) reported in 1966 the results of a two-dimensional finite element scheme used to analyze a prestressed concrete pressure vessel. In order to
obtain a realistic model of this composite, heterogeneous, axisymmetric structure, three kinematically dissimilar elements were introduced to simulate the concrete, reinforcements and the steel liner. The program was later modified by Rashid (23) to include cracks in the concrete and the effects of plastic deformation in the steel components. As a special feature, Rashid proposed to treat the influence of a crack as a mechanism that changes the behavior of continuous elements from isotropic to orthotropic.

An alternative approach, suggested in 1967 by Scordelis and Ngo (24), introduced complete crack patterns by separating interelement boundaries. This study also included the simulation of bonds between reinforcement and concrete. Finally, the disadvantage of two-dimensional approximations has been overcome through the implementation of the "SAFE-3D" computer program, developed by Cornell et al. (25). This program was used by Corum and Krishnamurthy (26) to investigate a series of models of prestressed reactor vessels. It uses tetrahedral concrete elements, uniaxial bars, and triangular membrane steel components. As expected, the three-dimensional model provided much better results. However, a significant increase in computer time resulted from use of three-dimensional elements. Quite a different approach was taken by Cervenka (27) in his study entitled "Inelastic Finite Element Analysis of Reinforced Concrete Panels under In-Plane Loading. " No individual reinforcement bars were considered. Instead, the total steel area was distributed over the quadrilateral element. The cracked state then could be visualized as a planar lattice structure.

1.4 Problem Approach

The solution method used herein is a combined iterative and step-by-step procedure based upon the matrix displacement method. The structure is analyzed as a plane stress problem. For each load increment, repeated elastic solutions are performed until the displacements meet a specified tolerance.

The mathematical model consists of an assemblage of triangular concrete plate elements, steel bar elements and bond links. The displacement fields are assumed to be linear for all three parts. The elastic constants (i.e., modulus of elasticity, Poisson's ratio, etc.) which are needed in the derivation of the elemental stiffness matrices are extrapolated from the pertinent uniaxial stress-strain curves. For all elements, these functions are approximated by piecewise linear polygons. The appropriate values of the material constants are found by entering the stress-strain diagram at the corresponding values of the principal strains.

A standard Gauss Elimination procedure is used to solve the equilibrium equations. Two computer programs were written to implement the method. Both provide stresses and strains in each element and the nodal displacements at all specified load levels.

A comparative study was made with the solutions presented by Scordelis for a simply supported beam (24). A second, more realistic problem was investigated to show the feasibility of the method to study crack propagation.

CHA PTER II

FINITE ELEMENT PROPERTIES

2.1 General

The finite element analysis of a continuum consists of three fundamental steps. First, the real structure is replaced by a suitable mathematical model. This is usually accomplished by dividing the original continuum into an assemblage of discrete elements. All elements are assumed to be interconnected at a discrete number of nodal points situated at the intersections of their fictitious boundaries. The second step is the formulation of the finite element characteristics.

In the matrix displacement approach, the material properties are described in the form of the elemental stiffness matrices. In recent years extensive research has been done in order to improve the various derivation procedures. Methods based upon energy theorems and related variational principles have been found to be the most satisfactory techniques. The foundation for such derivations is the assumption that an energy functional derived for the continuous system is equal to the same functional determined from the finite element model. The element properties can then be obtained by minimizing the functional through well-known variational methods.

Once the element properties of all the elements have been defined, the discrete system can be analyzed as a conventional structural
problem. Hence, the last phase consists of a standard analysis of a structural system by means of suitable computer programs. In this chapter, the first two steps (i.e., the structural idealization and the evaluation of element characteristics) will be discussed. The mathematical models for concrete, steel reinforcements, and bond between the two materials are developed in section 2.4 . The derivation of the solution procedure for linearly elastic problems and the necessary modifications for the nonlinear case will be presented in Chapter III.

2. 2 Structural Idealization

In general, a reinforced concrete member must be considered as a three-dimensional, nonhomogeneous, nonisotropic, composite structure. The difficulties encountered in the solution of such structural systems have already been described in section 1.1. Clearly, a series of assumptions must be introduced in any solution procedure. The choice of suppositions is governed by the type of structure under consideration, the character of the results desired, and the numerical method utilized. In the case of reinforced concrete beams, simplifications concerning the type of structure are the most critical group. In order to obtain a reliable approximation, the model must include all physical constituents of the real composite structure. In addition, special attention should be given to the simulation of the interaction between the parts. A list of the necessary assumptions for the construction of a relevant model is set forth below.

2.2.1 General Assumptions

The following stipulations may be regarded as preparatory requirements for a possible application of the finite element method.

Real Structure

a. Three-dimensional;
b. Nonhomogeneous components;
c. Nonisotropic components;
d. Random change in structural configuration due to cracking ;
e. Continuous bond between concrete and steel reinforcements; bond-slip;
f. Influence of time-dependent effects such as creep and relaxation.

Assumed Structure
a. Two-dimensional (of the plane stress type);
b. Homogeneous components;
c. Isotropic or orthotropic components;
d. Cracking predicted by principal tensile stresses in the concrete;
e. Discrete attachment between steel and concrete via bond links;
f. Neglected.

The next set of assumptions concerns the selection of the finite elements and their individual properties.

Figure 1 shows a typical, singly-reinforced concrete beam under an arbitrary static, in-plane loading condition. The finite element idealization relevant to this study is displayed in Figure 2 in an exaggerated view.

Three kinematically and geometrically dissimilar elements have been chosen as basic components of the model. The entire concrete

Figure 1. Example of a Singly Reinforced Concrete Beam

Figure 2. Finite Element Assemblage of a Singly Reinforced Beam
body is divided into flat, triangular panels. Combined with the steel segments (represented by "two-force" members), they constitute the material part of the composite structure. The complicated phenomenon of bond interaction between concrete and steel is simulated by a dimensionless connecting device, called a linkage element. According to Scordelis (24), these bond links can be conceptually thought of as linear springs. Both steel reinforcements and the connecting elements have been extracted in Figure 4 for illustrative purposes. In the real assemblage, the nodes of the steel bars and the connecting springs originally occupy the same geometrical position as their corresponding concrete joints. Therefore, these nodes have the same global coordinates. However, topologically they must be treated as separate joints.

2.2.2 Concrete Elements

The concrete body can be subdivided in a number of ways. The most commonly used configurations are triangular, rectangular, and quadrilateral meshes. Rectangular elements provide slightly better results. However, triangular panels are preferred for problems with irregular boundaries. In early publications the stiffness matrices were derived by the so-called direct approach (28). Recently, descriptions of a number of refined elements have been published as a result of the implementation of variational techniques. An excellent summary may be found in Reference 29. In this study, the traditional, constantstrain, triangular panel (Figure 3a) has been adopted for two reasons. First, it is desirable to decrease the size of elements in the vicinity of large stress gradients. A gradual change in size can easily be accomplished in the case of triangular panels. The second criterion for
a) CONCRETE PANEL

b) STEEL BAR

c) BOND LINK

Figure 3. Components of Finite Element Model

Figure 4. Configuration of Bond Links
selecting constant-strain elements is reflected by the fact that yielding takes place throughout the whole element. Elements with nonuniform stress distributions are subject to local yielding which results in additional complications in determining the state of stress.

2.2.3 Steel Elements

The reinforcement occupies a relatively small volume compared to that of the concrete. It is ther efore justifiable to idealize the steel tendons by simple two-force members (Figure 3b). The triangular model used by Scordelis was abandoned mainly because the very small vertical reinforcements would require a large number of additional elements or extremely slender triangles which are known to behave unsatisfactorily (30).

2.2.4 Bond Links

To account for bond slip, the steel must be attached to the concrete by a special connection mechanism. The bond link (Figure 3c) is designed to allow for relative displacements between the steel bars and the concrete panels. As pointed out earlier, these elements are dimensionless because only their mechanical properties are of importance. Nevertheless, additional nodes must be provided to permit relative displacements between adjacent concrete and steel joints.

2.2.5 Displacement Functions

After the shape of an element has been chosen, all geometric relations can be established. The next logical step is to decide upon a suitable displacement function representing the deformation of the
element. It should be noted that the degree of approximation which can be achieved depends very heavily on the element shape and the chosen deflection pattern. To ensure convergence, the assumed displacement function should resemble the real displacement distribution. According to Zienkiewicz (12), good deflection functions are obligated to satisfy the following five requirements:

1. Internal and interelement compatibility;
2. Linear dependence on nodal displacements;
3. Inclusion of rigid body displacements;
4. Uniform strain state;
5. Independence of the external frame of reference.

For all three elements utilized in this study, these criteria are satisfied by assumed linear displacement functions of the form

$$
\begin{array}{ll}
u_{x}=c_{1} x+c_{2} y+c_{3} & \text { for concrete panels } \\
u_{y}=c_{4} x+c_{5} y+c_{6} & \\
u_{1}=c_{7} x+c_{8} & \text { for steel and bond elements } \tag{2.2}
\end{array}
$$

It can easily be shown that the assumed displacements vary linearly along the edges of the concrete panels and that they depend only on the displacement of the two vertices on that particular edge (31). This ensures displacement compatibility along the common boundary of two triangular elements.

The assumed linear deflection pattern for the "two-force" steel bars results not only in a compatible but also in an exact strain distribution, since the elements are one-dimensional.

On the basis of these chosen deformation functions, the kinematic relations (i.e., the strain-displacement equations) are derivable
through ordinary differentiation. To complete the preparations for the development of the stiffness matrices, the material laws for each element will be reviewed in the next section.

2. 3 Constitutive Relations

2.3.1 General

The behavior of a material is characterized in the way it deforms under an imposed stress condition. It is therefore customary to express the material laws in the form of stress-strain curves. Two typical plots for a uniaxial, stress condition of nominal stress versus conventional strain for mild steel and concrete are shown in Figure 5. Both curves illustrate the complex, nonlinear character of the constitutive relations. Actually, the material characteristics can become even more complicated if the effects of time and temperature upon the rate of change of strains are included. It is therefore necessary to replace these empirical curves by mathematically defined expressions. The selection of an idealized stress-strain relationship depends upon several factors such as the nature of the problem, the kind of material, the type of load, desired accuracy, etc.

The most commonly used expression is the simple idealization known as Hooke's Law. In matrix form,

$$
\begin{equation*}
\{\sigma\}=[D]\{e\} \tag{2.3}
\end{equation*}
$$

The $\{e\}$ is the vector of total strains, $\{\sigma\}$ designates the stress vector, and $[D]$ is a square matrix containing the elastic constants. This linear relationship is, of course, very popular in engineering practice; however, its restriction to linearly elastic behavior must be remem-
a) CONCRETE

b) STEEL

Figure 5. Typical Stress-Strain Curves for Steel and Concrete
bered. In an investigation concerning the nonlinear behavior, the entire stress-strain curve will be needed for the evaluation of the element characteristics. Analytical inelastic theories require that the constitutive relations may be replaced by reasonably simple continuous functions. The Ramberg-Osgood Law and the Bi-Linear Law are typical examples of such expressions (32). If more accurate idealizations are desired, the possibility of using a curve-fitting scheme always exists. In a numerical procedure, on the other hand, empirical data may be used directly in table-form. Values between discrete data points are easily calculated by means of suitable interpolation formulas. The approach adopted in this study is based upon linear interpolation; i. e., the stress-strain curves are replaced by a polygon (Figure 6).

After the idealized constitutive relations have been established, the elastic constants are available at any load level. Since the matrix $[D]$ contains "elastic constants" only, its derivation appears to be a straightforward procedure. This is true for the elastic interval. However, the evaluation of $[D]$ in the inelastic range presents some difficulties because of the biaxial state of stress in the concrete.

By methods well known from strength of materials, the biaxial state of stress can be reduced to two principal stresses acting at right angles to each other on an appropriately oriented elementary cube. Either, or both, of the principal stresses can be tension or compression.

In most cases only the uniaxial stress-strain relation of concrete is known from simple tests. To predict the elastic constants for a structure under a combined stress situation, it is necessary to relate the material properties to the uniaxial test parameters. Six different

Figure 6. Idealized Stress-Strain Curves
quantities (i.e., maximum principal stress, maximum shearing stress, maximum strain, total strain energy, strain energy of distortion, and octahedral shearing stress) are available to compare the multiaxial state of stress with a.tensile specimen. When the specimen starts to yield (or fracture), all six quantities reach their limiting values simultaneously. In members under biaxial or triaxial states of stress, the limits usually do not occur at the same time. Since the type of failure of a concrete member is dependent upon many variables (i.e., state of stress, shape and size of structure, type and duration of loading, etc.), it is extremely difficult to choose the proper failure criterion. In spite of extensive and continuing research, no reliable theory for the selection of the proper failure mode has yet emerged. The highly nonhomogeneous nature of concrete and the phenomenon of microcracking are possible reasons for the insufficient reliability of these theories. The most commonly used criteria are the Maximum-Tension-Stress, the Mohr, and the Octahedral Shear Stress theories (33).

2.3.2 Proposed Idealization of Stress-Strain Characteristics

Concrete. In order to arrive at the proper [D] matrix for concrete, this study used the following approach. Consider an element (shown in Figure 7) under an arbitrary strain condition ϵ_{u} and ϵ_{v}. From the stress-strain curve, Figure 8, it appears that two different Young's moduli, E_{u} and E_{v}, can be associated with the strains ϵ_{u} and ϵ_{v}, respectively. The material behavior is obviously different in these two directions; in other words, the structure may be thought of as anisotropic. It should be noted that this anisotropy is different from the term used in the theory of elasticity. There, an anisotropic body

Figure 7. Anisotropic Triangular Element

Figure 8. Material Constants for Anisotropic Element
is defined as a continuum with different values for E in at least two distinct directions. However, the elastic constants at each point in the structure are the same for one particular direction. Here, the behavior is assumed to change with the state of stress or strain at a point. If ϵ_{u} and ϵ_{v} are known, the corresponding values for the moduli of elasticity can be determined from the uniaxial stress-strain curve.

The constitutive relations for an anisotropic body are, in general, of the form

$$
\begin{equation*}
\{\sigma\}=\left[D_{g}\right]\{e\} \tag{2.3a}
\end{equation*}
$$

where $\left[D_{g}\right]$ is a symmetric matrix containing six independent, nonzero constants. For the principal axes of anisotropy, they reduce to four independent coefficients. The material is then referred to as "orthotropic" with respect to the axes u and v. Once again, the standard definition of orthotropy does not apply to the structures considered in this study.

For the principal axes of anisotropy, the constitutive equations become

$$
\begin{align*}
\sigma_{u} & =\frac{1}{1-\nu_{u v}{ }^{\nu} v u}\left(E_{u} \epsilon_{u}+\nu_{v u} E_{u} \epsilon_{v}\right) \\
\sigma_{v} & =\frac{1}{1-\nu_{u v}{ }^{\nu} v u}\left(\nu_{u v} E_{v} \epsilon_{u}+E_{v} \epsilon_{v}\right) \tag{2.4}\\
\sigma_{u v} & =G_{u v} \epsilon_{u v}
\end{align*}
$$

Under the assumption that the structure behaves locally as an orthotropic structure, one can assume that the principal axes of stress and strain coincide. Furthermore, these axes (1 and 2 in Figure 7) are taken as principal axes of anisotropy. With E_{1}, ν_{21} being the material constants in the direction of the first principal axis and E_{2}, ν_{12} being
the values for the second, Equation (2.4) now reduces to

$$
\begin{align*}
\sigma_{1} & =\frac{1}{1-\nu_{12} \nu_{21}}\left(\mathrm{E}_{1} \epsilon_{1}+\nu_{21} \mathrm{E}_{1} \epsilon_{2}\right) \\
\sigma_{2} & =\frac{}{1-\nu_{12} \nu_{21}}\left(\nu_{21} \mathrm{E}_{2} \epsilon_{1}+\mathrm{E}_{2} \epsilon_{2}\right) \tag{2.5}\\
\sigma_{12} & =0
\end{align*}
$$

Once the principal strains have been calculated, the corresponding maximum stresses may be evaluated directly as

$$
\begin{equation*}
\{\sigma\}=\left[D_{a}\right]\{e\} \tag{2.6}
\end{equation*}
$$

where

$$
\left[\mathrm{D}_{\mathrm{a}}\right]=\frac{1}{1-\nu_{12} \nu_{21}}\left[\begin{array}{ccc}
\mathrm{E}_{1} & \nu_{21} \mathrm{E}_{1} & 0 \tag{2.7}\\
\nu_{12} \mathrm{E}_{2} & \mathrm{E}_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

It must be kept in mind that such an approach is contingent upon the assumption that the principal axes exist. The conditions for the existence of principal directions are stated in Reference 34. Since the computer solution does not calculate the stresses in any other but the principal directions, no stress transformations are performed. Thus, the transformation of elastic constants for new coordinate systems can be omitted, and transformation of coordinate systems is performed on the entire element stiffness matrix.

Finally, it should be noted that Equation (2.5) is subject to an additional condition. The four material constants, $\mathrm{E}_{1}, \mathrm{E}_{2}, \nu_{12}$ and ν_{21}, are not independent. The additional relation may be obtained by comparison of the total work done on a differential element for two different
loading sequences. The resulting supplementary equation relates the Poisson's ratios to the moduli of elasticity as follows:

$$
\begin{equation*}
\frac{\nu_{12}}{\nu_{21}}=\frac{E_{2}}{E_{1}} \tag{2.8}
\end{equation*}
$$

Substituting Equation (2.8) into Equation (2.5) yields the constitutive laws

$$
\begin{align*}
\sigma_{1} & =\frac{\mathrm{E}_{1}}{1-\nu_{12} \nu_{21}}\left(\epsilon_{1}+\nu_{21} \epsilon_{2}\right) \\
\sigma_{2} & =\frac{\mathrm{E}_{1}}{1-\nu_{12} \nu_{21}}\left(\nu_{21} \epsilon_{1}+\mathrm{n} \epsilon_{2}\right) \tag{2.9}\\
\sigma_{12} & =0
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}} \tag{2.10}
\end{equation*}
$$

In matrix form
or

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.11}\\
\sigma_{2} \\
0
\end{array}\right]=\frac{\mathrm{E}_{1}}{1-\nu_{12} \nu_{21}}\left[\begin{array}{ccc}
1 & \nu_{21} & 0 \\
\nu_{12} & \mathrm{n} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
0
\end{array}\right]
$$

Steel and Bond Links. Since in this study the steel elements will be considered as two-force members only, the uniaxial stress-strain curve may be used directly to determine the material properties. It should be mentioned that any other element would require more sophisticated tools for the evaluation of the material constants. A
proper yield criterion and plastic stress-strain relations, such as the Prandtl-Reuss equations (32) would have to be adopted.

Here the incremental stress $\Delta \sigma_{\mathrm{x}}$ in the longitudinal direction is calculated by

$$
\begin{equation*}
\Delta \sigma_{\mathrm{x}}=\mathrm{E}_{\mathrm{S}} \Delta \epsilon_{\mathrm{x}} \tag{2.12}
\end{equation*}
$$

The appropriate modulus of elasticity is read from the uniaxial stressstrain curve for steel at the location of the total strain ϵ_{x}. In the case of an elastic-perfectly-plastic material, the incremental stresses will become zero beyond the yield stress. However, the total stress σ_{x} is still available from the stress-strain curve.

A similar situation exists for the bond links. Again, the uniaxial stress-strain relations provide the material constant E_{b} directly. The same approach as used for steel members yields the stress increments $\Delta \tau_{b}$ and the total bond stress τ_{b} at any load level.

$$
\begin{equation*}
\Delta \tau_{b}=E_{b} \Delta_{r} \tag{2.13}
\end{equation*}
$$

Δ_{r} denotes the relative displacement between a steel and the corresponding concrete node. Figure 9 displays some possible stress-relative displacement curves (from Reference (35)).

2.4 Development of Element Stiffness Matrices

2.4.1 General

A number of alternative methods are available for the calculation of element stiffness matrices. The variational approach based on the principle of minimum potential energy is adopted here. Since these methods are well established, a comprehensive repetition of the

Figure 9. Stress-Relative Displacement Relations for Bond
procedure is omitted. References (31) and (36) contain excellent introductions to the variational treatment of the energy methods.

2.4.2 Matrix Formulation for the Plane Stress Case

The first step in determining the properties of the idealized element is to assume that the interior displacements $\{u\}$ at any point are expressible in terms of the nodal displacements $\{U\}$ by a set of equations given as

$$
\begin{equation*}
\{u\}=[a]\{u\} \tag{2.14}
\end{equation*}
$$

[a] is a rectangular matrix which is a function of the coordinates of the point under consideration. For discrete element systems, the matrix $[a]$ is an approximate expression. The total strain distribution $\{e\}\left(\{e\}\right.$ may include initial strains $\left\{\epsilon_{o}\right\}$) within a particular element is obtained by differentiating Equation (2.14) which leads to the matrix equation

$$
\begin{equation*}
\{e\}=\{\epsilon\}+\left\{\epsilon_{o}\right\}=[\mathrm{b}]\{\mathrm{U}\} \tag{2.15}
\end{equation*}
$$

This expression replaces the kinematic relations used in the ordinary theory of elasticity.

Under the assumption that a unique matrix $[b]$ exists, the stresses may be determined from any conceivable constitutive relationship of the form

$$
\begin{equation*}
\{\sigma\}=[D]\left(\{e\}-\left\{\epsilon_{o}\right\}\right) \tag{2.16}
\end{equation*}
$$

By substitution of Equation (2.15) into Equation (2.16)

$$
\begin{equation*}
\{\sigma\}=[D][b]\{U\}-[D]\left\{\epsilon_{o}\right\} \tag{2.17}
\end{equation*}
$$

$\{\sigma\}$, of course, represents the three stress components, $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{xy}}$ and $[\mathrm{D}]$ is a square matrix containing the elasticity constants, E, G, ν, etc.

It is now possible to express the total energy functional in matrix form

$$
\begin{align*}
\Pi & =\sum_{n=1}^{N} \iiint_{V_{n}}\left(\frac{1}{2}\left\{e_{n}\right\}^{t}\left\{\sigma_{n}\right\}-\left\{f_{b, n}\right\}^{t}\left\{u_{n}\right\}\right) d V \\
& -\sum_{n=1}^{N} \iint_{S_{\sigma_{1} n}}\left\{p_{n}\right\}^{t}\left\{u_{n}\right\} d S \tag{2.18}
\end{align*}
$$

where

$$
\begin{aligned}
f_{b, n}= & \text { prescribed body forces } \\
n= & \text { element index } \\
p_{n}= & \text { prescribed surface tractions } \\
V_{n}= & \text { volume of element } n \\
S_{\sigma, n}= & \text { portion of element surface over which the } \\
& \text { surface tractions } p_{n} \text { are prescribed. }
\end{aligned}
$$

Substituting Equations (2.15) and (2.17) into Equation (2.18) yields the required expression for Π.

$$
\begin{align*}
\Pi= & \sum_{n=1}^{N} \iiint_{V_{n}}\left(\frac{1}{2}\left\{U_{n}\right\}^{t}\left[b_{n}\right]^{t}\left[D_{n}\right]\left[b_{n}\right]\left\{U_{n}\right\}\right. \\
& \left.-\left\{U_{n}\right\}^{t}[b]^{t}\left[D_{n}\right]\left\{\epsilon_{o}\right\}-\left\{U_{n}\right\}^{t}[a]^{t}\left\{f_{n, o}\right\}\right) d V \\
& -\sum_{n=1}^{N} \iint_{\sigma_{1} n}\left\{U_{n}\right\}^{t}[a]^{t}\left\{p_{n}\right\} d S \tag{2.19}
\end{align*}
$$

Application of the principle of minimum potential energy

$$
\begin{equation*}
\delta \Pi=0 \tag{2.20}
\end{equation*}
$$

to Equation (2,19) will result in the desired stiffness matrix $[K]$

$$
\begin{equation*}
[K]=\iiint\left[b_{n}\right]^{t}\left[D_{n}\right]\left[b_{n}\right] d V \tag{2.21}
\end{equation*}
$$

and three equivalent force vectors due to initial strain conditions, prescribed body forces and surface tractions (29).

Consideration will now be given to the three specific elements as shown in Figure 3. If the strain-displacement transformation matrix $\left[b_{n}\right]$ and the matrix of elastic constants $\left[D_{n}\right]$ are known, the stiffness matrix $\left[K_{n}\right]$ can be determined by evaluation of expression (2.21).

2.4.3 Triangular Concrete Panels

It is possible in this case to obtain the stiffness matrix $\left[K_{n}\right]$ directly in terms of global coordinates x and y. The assumed displacement function will be taken as

$$
\begin{align*}
& u_{x}=c_{1} x+c_{1} y+c_{3} \\
& u_{y}=c_{4} x+c_{5} y+c_{6} \tag{2.22}
\end{align*}
$$

The six arbitrary constants, c_{1}, . . c_{6}, result from six boundary conditions involving the three vertices of the triangle, Figure 10. Upon substitution of the vertex coordinates into Equation (2.22), the displacement functions are obtained as follows:

$$
\begin{align*}
\mathrm{u}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}) & =\frac{1}{2 A_{\mathrm{n}}}\left[\mathrm{y}_{32}\left(\mathrm{x}-\mathrm{x}_{2}\right)-\mathrm{x}_{32}\left(\mathrm{y}-\mathrm{y}_{2}\right)\right] \mathrm{U}_{1} \\
& +\left[-\mathrm{y}_{31}\left(\mathrm{x}-\mathrm{x}_{3}\right)+\mathrm{x}_{31}\left(\mathrm{y}-\mathrm{y}_{3}\right)\right] \mathrm{U}_{3} \tag{2.23a}\\
& +\left[\mathrm{y}_{21}\left(\mathrm{x}-\mathrm{x}_{1}\right)-\mathrm{x}_{21}\left(\mathrm{y}-\mathrm{y}_{1}\right)\right] \mathrm{U}_{5}
\end{align*}
$$

Figure 10. Arbitrary Triangular Concrete Element

$$
\begin{align*}
u_{y}(x, y) & =\frac{1}{2 A_{n}}\left[y_{32}\left(x-y_{2}\right)-x_{32}\left(y-y_{2}\right)\right] U_{2} \\
& +\left[-y_{31}\left(x-x_{3}\right)+x_{31}\left(y-y_{3}\right)\right] U_{4} \tag{2.23b}\\
& +\left[y_{21}\left(-x_{1}\right)-x_{21}\left(y-y_{1}\right)\right] U_{6}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}=x_{32} y_{21}-x_{21} y_{32} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{i j}=x_{i}-x_{j} \tag{2,25}\\
& y_{i j}=y_{i}-y_{j}
\end{align*}
$$

Thus, matrix $\left[b_{n}\right]$ is a function of the vertex coordinates only and therefore is unique. The strain-displacement transformation matrix is obtained by differentiating Equation (2.23). Hence,

$$
\left[\begin{array}{c}
\epsilon_{\mathrm{x}} \tag{2.26}\\
\epsilon_{\mathrm{y}} \\
\epsilon_{\mathrm{xy}}
\end{array}\right]=\frac{1}{2 A_{\mathrm{n}}}\left[\begin{array}{cccccc}
\mathrm{y}_{32} & 0 & -\mathrm{y}_{31} & 0 & \mathrm{y}_{21} & 0 \\
0 & -\mathrm{x}_{32} & 0 & \mathrm{x}_{31} & 0 & -\mathrm{x}_{21} \\
-\mathrm{x}_{32} & \mathrm{y}_{32} & \mathrm{x}_{31} & -\mathrm{y}_{31} & -\mathrm{x}_{21} & \mathrm{y}_{21}
\end{array}\right]\left[\begin{array}{c}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\mathrm{U}_{3} \\
\mathrm{U}_{4} \\
\mathrm{U}_{5} \\
\mathrm{U}_{6}
\end{array}\right]
$$

or

$$
\begin{equation*}
\{\mathrm{e}\}=\left[\mathrm{b}_{\mathrm{n}}\right]\{\mathrm{U}\} \tag{2,27}
\end{equation*}
$$

The assumption of linear displacement functions results, in this particular case, in a constant strain field. The compatibility equations
are therefore satisfied within each element. Furthermore, displacements along the interelement boundaries are linear functions of the corresponding vertices and are identical for adjacent edges.

Since the elements under consideration are of unit thickness, the expression (2, 21) reduces to

$$
\begin{equation*}
\left[K_{n}\right]=\iint\left[b_{n}\right]^{t}\left[D_{n}\right]\left[b_{n}\right] d x d y \tag{2,28}
\end{equation*}
$$

the integration being carried over the area of the triangle. Both matrices, $\left[b_{n}\right]$ and $\left[D_{n}\right]$, are independent of the integration parameters and can be taken out of the integral sign. The integration then simply reduces to a matrix product of the form

$$
\begin{equation*}
\left[K_{n}\right]=\left[b_{n}\right]\left[D_{n}\right][b](1) A \tag{2.29}
\end{equation*}
$$

where A denotes the area of the triangle $1,2,3$.
The resulting stiffness matrices for different matrices $\left[D_{n}\right]$ are tabulated in Appendix A.

2.4.4 Steel Bars

The derivation of $\left[K_{n}\right]$ for the linear steel elements is considerably less involved. Only one displacement function in the direction of the member axis is needed. It has been mentioned before that the assumption of linear functions of the form

$$
\begin{equation*}
\overline{\mathrm{u}}_{\mathrm{x}_{1}}=\overline{\mathrm{U}}_{1}+\frac{\mathrm{x}_{1}}{\mathrm{~L}}\left(\overline{\mathrm{U}}_{3}-\overline{\mathrm{U}}_{1}\right) \tag{2.30}
\end{equation*}
$$

will provide the exact strain distribution. $\overline{\mathrm{U}}_{1}$ designates the displacements in local coordinates, Figure 11.

Upon differentiation of Equation (2, 30), the longitudinal strain $\epsilon_{\mathrm{x}_{1}}$ becomes

$$
\begin{gather*}
\epsilon_{\mathrm{x}_{1}}=\frac{\partial \overline{\mathrm{u}}_{\mathrm{x}_{1}}}{\partial \mathrm{x}_{1}}=\frac{1}{\mathrm{~L}}\left(\overline{\mathrm{U}}_{3}-\overline{\mathrm{U}}_{1}\right) \tag{2.31}\\
{\left[\begin{array}{l}
\epsilon \mathrm{x}_{1} \\
\epsilon \mathrm{y}_{1}
\end{array}\right]=\frac{1}{\mathrm{~L}}\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathrm{U}_{1} \\
\mathrm{U}_{2} \\
\mathrm{U}_{3} \\
\mathrm{U}_{4}
\end{array}\right]} \tag{2.32}
\end{gather*}
$$

and therefore,

$$
\left[b_{s}\right]=\frac{1}{L}\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \tag{2.33}\\
0 & -1 & 0 & 1
\end{array}\right]
$$

For one-dimensional elements, $\left[D_{s}\right]$ reduces to one term, E_{s}. The stiffness matrix then, after integrating over the length, can be written as

$$
\left[K_{S}\right]=\frac{A E_{s}}{L}\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \tag{2.34}\\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Young's modulus, naturally, must be chosen according to the prevailing strain condition in the member.

Although the stiffness matrix could be stated in the datum coordinate system directly, it is more convenient to develop the relations in local coordinates first and subsequently rotate the entire matrix into the global axes. According to Refer ence (2), the appropriate transformation is expressed by the matrix equation

$$
\begin{equation*}
[\mathrm{K}]_{g}=[\mathrm{T}]^{\mathrm{t}}[\mathrm{~K}]_{\mathrm{L}}[\mathrm{~T}] \tag{2.35}
\end{equation*}
$$

where $[\mathrm{T}]$ is an orthogonal matrix which relates the nodal displacements $\{\mathrm{U}\}$ in the global system to the local deflections $\{\overline{\mathrm{U}}\}$ in the following manner. θ denotes the angle between the local and global x -axis (Figure 11).

$$
\begin{gather*}
\{\overline{\mathrm{U}}\}=[\mathrm{T}]\{\mathrm{U}\} \tag{2.36}\\
{[\mathrm{T}]=\left[\begin{array}{cc|cc}
\cos \theta & \sin \theta & 0 & 0 \\
-\frac{\sin \theta}{-\cos \theta} & 0 & 0 \\
0 & 0 & \cos \theta & \frac{\sin \theta}{0} \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right]} \tag{2,37}
\end{gather*}
$$

2.4.5 Bond Links

Finally, the derivation of the bond link stiffness matrix follows closely the procedure set forth in section 2,4.4. Consider a linkage element oriented at an arbitrary angle θ relative to the global axes x and y, Figure 12. Let the springs in the x_{1} and y_{1} directions have stiffness coefficients k_{1} and k_{2}. Hence, the stress-strain relations in matrix notation simply become

$$
\begin{gather*}
\{\sigma\}=\left[\mathrm{D}_{\mathrm{b}}\right]\{\epsilon\} \tag{2,38}\\
{\left[\begin{array}{c}
\sigma_{\mathrm{x}_{1}} \\
\sigma_{\mathrm{y}_{1}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{k}_{1} & 0 \\
0 & \mathrm{k}_{2}
\end{array}\right]\left[\begin{array}{c}
\epsilon \mathrm{x}_{1} \\
\epsilon \\
\mathrm{y}_{1}
\end{array}\right]} \tag{2.39}
\end{gather*}
$$

where $\epsilon_{\mathrm{x}_{1}}$ and $\epsilon_{\mathrm{x}_{2}}$ are the relative displacements between the adjacent steel and concrete nodes. It can easily be verified that the strain-

Figure 11. Steel Bar Elements

Figure 12. Bond Link
displacement relations

$$
\begin{align*}
& \epsilon_{\mathrm{x}_{1}}=\overline{\mathrm{U}}_{3}-\overline{\mathrm{U}}_{1} \tag{2.40}\\
& \epsilon_{\mathrm{y}_{1}}=\overline{\mathrm{U}}_{4}-\overline{\mathrm{U}}_{2}
\end{align*}
$$

yield $\mathrm{a}\left[\mathrm{b}_{\mathrm{b}}\right]$ matrix identical to Equation (2.33). Because of the conceptual similarity between the steel and bond elements, the remaining steps are analogous to those in section 2.4.4 and need not be repeated.

Scordelis has found in his study of reinforced concrete beams (24) that this type of bond mechanism simulates the interaction between concrete and steel quite accurately. It should be mentioned that the linkage element neglects frictional bond, local stress concentrations along the ribs of deformed bars and dowel action.

Research has shown that the redistribution of compressive stresses at the ribs of bars may cause small tensile stresses in the concrete (37). However, for all standard deformed bars the concrete is capable of sustaining these local disturbances. Therefore, these effects are neglected in the design. Frictional bond may be significant, especially near cracks; but it is again neglected since the coefficient of friction is extremely difficult to predict.

Dowel action is usually significant in the corners of bent or curved reinforcements. This study considers straight bars only. Therefore, a bond link which does not account for this effect is justified.

2.4.6 Cracked Concrete Element

It is well known that the tensile strength of concrete is only a fraction of its compressive strength. This rather unpleasant property leads to cleavage failure (tension cracking) at relatively small loads.

At any load larger than that which causes the concrete to crack, the reinforcements are called upon to resist the entire tensile force. This type of behavior plays an important role in the nonlinear analysis of reinforced concrete.

In the solution procedure presented here, the influence of a crack on a continuous triangular concrete element is treated in a similar way as proposed by Rashid (23) in 1968. The element is cut in the direction perpendicular to the principal tensile stress σ_{1}. In this new state the element no longer has any stiffness normal to the crack surface (Figure 13).

Consequently, the concrete may be considered as a uniaxial stress condition parallel to the second principal axis. This assumption results in the following stress-strain relationship:

$$
\left[\begin{array}{c}
\sigma_{1} \tag{2.41}\\
\sigma_{2} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \mathrm{E}_{2} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
0
\end{array}\right]
$$

or, in matrix formulation,

$$
\begin{equation*}
\{\sigma\}=\left[\mathrm{D}_{\mathrm{cr}}\right]\{\epsilon\} \tag{2,42}
\end{equation*}
$$

The stiffness matrix in local (principal) coordinates may now be derived on the basis of Equation (2.29). Hence,

$$
\begin{equation*}
\left[\mathrm{k}_{\mathrm{cr}, \mathrm{e}}\right]=[\mathrm{b}]^{\mathrm{t}}\left[\mathrm{D}_{\mathrm{cr}}\right][\mathrm{b}] \mathrm{A} \tag{2.43}
\end{equation*}
$$

For the assembly of the total stiffness matrix, the local matrix (Equation (2.19)) must be expressed in terms of global coordinates. Ordinarily, this is accomplished by a matrix triple product of the following form:

Figure 13. Cracked Element

$$
\begin{equation*}
\left[\mathrm{k}_{\mathrm{cr}, \mathrm{~g}}\right]=[\mathrm{R}]^{\mathrm{t}}\left[\mathrm{k}_{\mathrm{cr}, \mathrm{e}}\right][\mathrm{R}] \tag{2.44}
\end{equation*}
$$

where

It should be noted at this point that similar transformations must be performed on all anisotropic, uncracked elements, whose material characteristics follow Equation (2.11).

CHAPTER III

MATRIX ITERATIVE PROCEDURES

3.1 Review of Iterative Procedures for Problems with Nonlinear Material Properties

3.1.1 General

Nonlinear structures are usually classified according to the cause of nonlinear behavior. Since all solution procedures in solid mechanics involve equilibrium, kinematic and constitutive equations, nonlinearities may arise from either of these three sets of fundamental relations. In case of large displacements, the geometric configuration of the assembly may change sufficiently under load to influence the equilibrium relations. Large deflections also cause nonlinear terms in the kinematic relations. It appears then that nonlinearities may be due to either the geometry or the material properties or both. Thus, the following three categories contain all possible sources of nonlinear conditions:

1. Geometric nonlinearity caused by nonlinear kinematic relations.
2. Material nonlinearity which arises from complex material laws.
3. Combined geometric and material nonlinearity. The matrix analysis methods developed for linear structures can be extended to include the above mentioned complications. Because of
the presence of nonlinear terms, the solution to the governing matrix equations can no longer be obtained explicitly. Consequently, the use of iterative procedures is inevitable. Most of the early applications handle nonlinearities by calculating corrections to linear solutions. A common method used in the solution of geometrically nonlinear systems is due to Turner et al.(38). The structure is solved as a sequence of elastic problems in which corrective stiffness matrices are generated to update the geometry. A comprehensive review of such methods and subsequently developed procedures can be found in Oden's paper on nonlinear structural analysis (21).

Similar iterative schemes have also been adopted in the study of inelastic structures. Among the earliest applications were investigations concerning thermal effects and creep (39, 5). The most significant developments are connected with research on elasto-plastic problems. Basically, four methods have emerged from such investigations:

1. Direct iterative approach;
2. Initial strain approach;
3. Variable elasticity approach;
4. Initial stress approach.

The key to these different methods is the formulation of the matrix of elastic constants $\lceil\mathbf{D}\rceil$. Since the coefficients of these matrices are functions of the state of stress or strain, they must be re-evaluated after each cycle. In the case of a uniaxial state of stress, the modulus of elasticity may be read from the stress-strain curve directly. More generally, under multiaxial stress conditions, the elastic constants will depend on the stress or strain invariants. It is reasonable to assume that the effective stress $\sigma_{\text {eff }}$ is equal to the value of the second
invariant J_{2} of the stress deviator tensor. Similarly, the effective strain $e_{\text {eff }}$ corresponds to the second strain deviator invariant I_{2}, where:

$$
\begin{align*}
J_{2} & =\frac{1}{6}\left\{\left(\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}\right)^{2}+\left(\sigma_{\mathrm{y}}-\sigma_{\mathrm{z}}\right)^{2}+\left(\sigma_{\mathrm{z}}-\sigma_{\mathrm{x}}\right)^{2}\right. \\
& \left.+6\left(\sigma_{\mathrm{xy}}^{2}+\sigma_{\mathrm{yz}}^{2}+\sigma_{\mathrm{zx}}{ }^{2}\right)\right\} \tag{3.1}\\
\mathrm{I}_{2} & =\frac{1}{6}\left\{\left(\epsilon_{\mathrm{x}}-\epsilon_{\mathrm{y}}\right)^{2}+\left(\epsilon_{\mathrm{y}}-\epsilon_{\mathrm{z}}\right)^{2}+\left(\epsilon_{\mathrm{z}}-\epsilon_{\mathrm{x}}\right)^{2}\right. \\
& \left.+6\left(\epsilon_{\mathrm{xy}}^{2}+\epsilon_{\mathrm{yz}}^{2}+\epsilon_{\mathrm{zx}} 2\right)\right\} \tag{3.2}
\end{align*}
$$

Or, in terms of principal values,

$$
\begin{align*}
& J_{2}=\frac{1}{6}\left\{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right\} \tag{3.3}\\
& I_{2}=\frac{1}{6}\left\{\left(\epsilon_{1}-\epsilon_{2}\right)^{2}+\left(\epsilon_{2}-\epsilon_{3}\right)^{2}+\left(\epsilon_{3}-\epsilon_{1}\right)^{2}\right\} \tag{3.4}
\end{align*}
$$

The effective or equivalent stress is introduced for convenience as

$$
\begin{equation*}
\sigma_{\mathrm{eff}}=\frac{1}{r_{2}}\left\{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right\}^{\frac{1}{2}} \tag{3.5}
\end{equation*}
$$

It is closely related to the frequently used octahedral shear stress

$$
\begin{equation*}
\tau_{\text {oct }}=\frac{1}{3}\left\{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right\}^{\frac{1}{2}} \tag{3.6}
\end{equation*}
$$

through the following relationship:

$$
\begin{equation*}
\sigma_{\mathrm{eff}}=\frac{3}{\bar{V}_{2}} \tau_{\mathrm{oct}} \tag{3.7}
\end{equation*}
$$

Most authors prefer to use either one of these quantities in place of the rather abstract term J_{2} :

$$
\begin{align*}
& \sigma_{\mathrm{eff}}=\left(3 J_{2}\right)^{\frac{1}{2}} \tag{3.8}\\
& \tau_{\text {oct }}=\left(\frac{2}{3} J_{2}\right)^{\frac{1}{2}} \tag{3.9}
\end{align*}
$$

The convenience of the above definitions and the corresponding strain terms becomes apparent in the formulation of yield criteria. For example, the von Mises condition relates the second stress invariant of the multi-dimensional state of stress to the uniaxial case as follows:

$$
\begin{equation*}
3 \mathrm{~J}_{2}=\sigma_{\mathrm{eff}}^{2}=\sigma_{\mathrm{o}}^{2} \tag{3.10}
\end{equation*}
$$

where σ_{0} is the uniaxial tensile or compressive stress. Thus, the three-dimensional situation may be expressed in terms of one parameter, σ_{0}, only. Furthermore, if a unique relationship between σ_{o} and ϵ_{o} exists, one is able to determine the material constants for the three-dimensional continuum at any load level from the uniaxial stressstrain curve:

$$
\begin{align*}
\sigma_{o} & =f\left(\epsilon_{\mathrm{o}}\right) \\
\sigma_{\mathrm{eff}} & =\mathrm{f}\left(\epsilon_{\mathrm{eff}}\right) \tag{3.11}
\end{align*}
$$

3.1.2 Direct Iterative Approach

The direct iterative technique is based upon repeated elastic solutions, where for each cycle the full load is applied. Initially, all elements are assigned a modulus of elasticity, E_{o}, and a Poisson's ratio, ν_{0}, corresponding to zero stress. Subsequently, the elastic constants are redefined for each new solution. They depend on the state of stress (or strain) reached in the previous step. According to Zienkiewicz (12), an adequate solution requires three to four iterations. Unfortunately, this simple method has several disadvantages. It is, for example, impossible to include an unloading cycle in a problem. Clearly, during a load decrease the plastic strains should remain constant. Since the procedure is entirely based upon total effective
strains, a reduction in load may cause a change in plastic deformation. Furthermore, it is difficult to obtain reasonable, consistent representations of the equivalent Poisson's ratio.

Gallagher et al. (39), and Argyris (8) realized that both difficulties can be avoided by incremental procedures. These step-by-step methods have the additional advantage that they permit the use of incremental stress-strain characteristics such as the Prandtl-Reuss equations.

3.1.3 Initial Strain Approach

The procedure here consists of applying the load in small increments. For any such load interval the incremental stresses and strains are computed. Total stresses and strains may be obtained by adding the current incremental values to the total stresses (or strains) reached during the previous step. Clearly, the evaluation of the elastic strain increments is straightforward. However, the change in plastic strain depends on both the initial and final stress condition and cannot be determined directly.

The total incremental strain $\{\Delta \mathrm{e}\}$ in any interval may, in general, consist of elastic, plastic, thermal and creep strain increments. Throughout this study the latter two contributions will be neglected. Hence, the total strain increments reduce to

$$
\begin{equation*}
\{\Delta \mathrm{e}\}=\left\{\Delta \epsilon_{\mathrm{e}}\right\}+\left\{\Delta \epsilon_{\mathrm{p}}\right\} \tag{3.12}
\end{equation*}
$$

If the plastic strain increments are known, they may be treated as initial strains $\left\{\Delta \epsilon_{o, p}\right\}$ similar to those caused by temperature changes. Consequently, the stress increments can be determined through a standard elastic analysis.

$$
\begin{equation*}
\{\Delta \sigma\}=[\mathrm{D}\urcorner,\left(\left\{\Delta \epsilon_{\mathrm{e}}\right\}-\left\{\Delta \epsilon_{\mathrm{o}, \mathrm{p}}\right\}\right) \tag{3.13}
\end{equation*}
$$

The difficulites involved in establishing the plastic strain increments depend on the degree of sophistication desired. Any plastic constitutive relation may be implied, including time or temperature dependent material characteristics. One of the most commonly used set of equations, the Prandtl-Reuss flow rule, will be elaborated as an example. In matrix notation they take on the form

$$
\begin{equation*}
\left\{\Delta \epsilon_{p}\right\}=C_{p}\left[D_{o}\right]^{-1}\{\sigma\} \tag{3.14}
\end{equation*}
$$

where C_{p} is a function of the effective stress and the effective plastic strain increment, $\Delta \epsilon_{\mathrm{eff}}^{\mathrm{P}}$.

$$
\begin{align*}
\Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}} & =\frac{\sqrt{3}}{2}\left\{\left(\Delta \epsilon_{1}^{\mathrm{p}}-\Delta \epsilon_{2}^{\mathrm{p}}\right)^{2}+\left(\Delta \epsilon_{2}^{\mathrm{p}}-\Delta \epsilon_{3}^{\mathrm{p}}\right)^{2}\right. \\
& \left.+\left(\Delta \epsilon_{3}^{\mathrm{p}}-\Delta \epsilon_{1}^{\mathrm{p}}\right)^{2}\right\}^{\frac{1}{2}} \tag{3.15}
\end{align*}
$$

The matrix $\left[D_{o}\right]^{-1}$ contains $\nu=0.5$; thus, for the three-dimensional case

$$
\left[D_{0}\right]^{-1}=\frac{1}{E}\left[\begin{array}{cccccc}
1 & -.5 & -.5 \mid & & & \tag{3.16}\\
-.5 & 1 & -.5 \mid & 0 & \\
-.5 & -.5 & 1 & 1 & & \\
- & - & - & - & - & - \\
& 0 & \mid & 1.5 & \\
& & \mid & & 1.5
\end{array}\right]
$$

and

$$
\begin{equation*}
C_{p}=\frac{\Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}}}{\sigma_{\mathrm{eff}}} \tag{3.17}
\end{equation*}
$$

To obtain the effective incremental plastic strain, Argyris (8) suggested two different methods. First, the so-called direct incremental approach makes use of results obtained in the preceding step. Assume that upon completion of increment i-1, the total and incremental stresses and strains are available. The values of $\Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}}$ and $\sigma_{\text {eff }}$ are readily determined from Equations (3.15) and (3.5), respectively. The modulus of elasticity, E_{o}, and Poisson's ratio, ν_{o}, for the zero stress condition are used throughout the entire solution. With E_{o} and ν_{0} known, the constitutive equations needed for the formulation of the stiffness matrices are defined as

$$
\begin{equation*}
\{\Delta e\}_{i}=[D]^{-1}\{\Delta \sigma\}_{i}+C_{p, i}\left[D_{o}\right]_{i}^{-1}\{\Delta \sigma\}_{i} \tag{3.18}
\end{equation*}
$$

This procedure may be improved by performing, for each load step, an initial elastic solution and a series of subsequent iterations. The increments of stresses and strains of the current cycle are used to obtain a new estimate of the plastic strain increment for the next iteration. According to Argyris (8), this iterative-incremental method usually converges after five iterations.

It should be mentioned that both methods require special precaution when unloading occurs. During a load decrease, the structure must behave in a purely elastic fashion which may be accomplished by specifying the factor C_{p} as zero. Likewise, upon reloading, C_{p} must remain zero until the current $\sigma_{\text {eff }}$ is found to exceed the highest effective stress achieved during the previous increment.

3.1.4 Variable Elasticity Approach

For elastic-perfectly plastic and ideally plastic material, the methods of sections 3.1 .3 and 3.1 .4 break down. This is due to the
fact that large plastic strain increments may result even from very small load augmentations. Pope suggested a method in 1965 (7) which adjusts the stress-strain relationship in every load increment to take into account plastic deformations. The works of Marcal and King (11), A kyuz and Merwin (15) fall into the same category.

For the elastic strain increment the expression remains as

$$
\begin{equation*}
\left\{\Delta \epsilon_{e}\right\}=\left[D_{e}\right]^{-1}\{\Delta \sigma\} \tag{3.19}
\end{equation*}
$$

However, the Prandtl-Reuss equations (which express the plastic strain increments in terms of actual accumulated stresses $\{\sigma\}$) must be replaced by a relationship of the form

$$
\begin{equation*}
\left\{\Delta \epsilon_{\mathrm{p}}\right\}=\left[\mathrm{D}_{\mathrm{p}}\right]^{-1}\{\Delta \sigma\} \tag{3.20}
\end{equation*}
$$

To derive $\left[D_{p}\right]^{-1}$, let H^{\prime} denote the slope of the effective stresseffective plastic strain function, which, again, will be assumed to be available through experiments. The strain-hardening criterion in discrete form then becomes

$$
\begin{equation*}
\Delta \sigma_{\mathrm{eff}}=\mathrm{H}^{\prime} \Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}} \tag{3.21}
\end{equation*}
$$

By differentiating the von Mises yield condition, a second expressions for $\Delta \sigma_{\text {eff }}$ may be obtained as follows:

$$
\begin{align*}
\Delta \sigma_{e f f} & =\frac{3}{2 \sigma_{e f f}}\left\{\sigma_{x}^{\prime} \Delta \sigma_{x}+\sigma_{y}^{\prime} \Delta \sigma_{y}+\sigma_{z}^{\prime} \Delta \sigma_{z}\right\} \\
& +\frac{3}{\sigma_{e f f}}\left\{\sigma_{x y} \Delta \sigma_{x y}+\sigma_{y z} \Delta \sigma_{y z}+\sigma_{z x} \Delta \sigma_{z x}\right\} \tag{3.22}
\end{align*}
$$

where

$$
\sigma_{\mathrm{x}}^{\prime}=\frac{1}{3}\left(2 \sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}-\sigma_{\mathrm{z}}\right) \quad \begin{align*}
& \text { (cyclic sub }- \tag{3.23}\\
& \text { stitution })
\end{align*}
$$

The above term can now be written in matrix form as

$$
\begin{equation*}
\Delta \sigma_{\mathrm{eff}}=\{\mathrm{S}\}^{\mathrm{t}}\{\Delta \sigma\} \tag{3.24}
\end{equation*}
$$

and substituted into Equation (3.21).

$$
\begin{equation*}
\Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}}=\frac{1}{\mathrm{H}^{\prime}}\{\mathrm{S}\}^{\mathrm{t}}\{\Delta \sigma\} \tag{3.25}
\end{equation*}
$$

Upon substitution of Equation (3.25) into the Prandtl-Reuss relations (3.14), one arrives at the desired incremental stress-strain rule.

$$
\begin{align*}
\left\{\Delta \epsilon_{\mathrm{p}}\right\} & =\frac{\Delta \epsilon_{\mathrm{eff}}^{\mathrm{p}}}{\sigma_{\mathrm{eff}}}\left[\mathrm{D}_{\mathrm{o}}\right]^{-1}\{\sigma\} \\
& =\frac{1}{\mathrm{H}^{\prime} \sigma_{\mathrm{eff}}}\left[\mathrm{D}_{\mathrm{o}}\right]^{-1}\{\sigma\}\{\mathrm{S}\}^{t}\{\Delta \sigma\} \tag{3.26}
\end{align*}
$$

or

$$
\begin{equation*}
\left\{\Delta \epsilon_{p}\right\}=\left[D_{p}\right]^{-1}\{\Delta \sigma\} \tag{3.27}
\end{equation*}
$$

Hence, $\left[D_{p}\right]$ depends upon the current state of stress $\{\sigma\}$ and the strain-hardening history through the parameter H^{\prime}. Combined with the elastic constitutive relations, the total strain increments become

$$
\begin{equation*}
\{\Delta \mathrm{e}\}=\left\{\Delta \epsilon_{\mathrm{e}}\right\}+\left\{\Delta \epsilon_{\mathrm{p}}\right\}=\left(\left[\mathrm{D}_{\mathrm{e}}\right]^{-1}+\left[\mathrm{D}_{\mathrm{p}}\right]^{-1}\right)\{\Delta \sigma\} \tag{3.28}
\end{equation*}
$$

and the corresponding change in stress is

$$
\begin{equation*}
\{\Delta \sigma\}=\left(\left[\mathrm{D}_{\mathrm{e}}\right]^{-1}+\left[\mathrm{D}_{\mathrm{p}}\right]^{-1}\right)^{-1}\{\Delta \epsilon\} \tag{3.29}
\end{equation*}
$$

This particular method is known to converge very rapidly. Furthermore, unloading can be treated by simply inserting an elastic $[D]$ matrix in the increment following an unloading interval. From a computational point of view, the variable elasticity approach has one disadvantage; at each solution step, the stiffness of the structure is changed. Thus, for every iteration the whole structural stiffness matrix must be reassembled, which naturally results in excessive computer time.

3.1.5 Initial Stress Method

The most recent method of elasto-plastic analysis was introduced by Zienkiewicz et al. (20) as an alternative approach to the "variable elasticity" procedure. This "initial stress" method makes use of the fact that the total strain increments uniquely define the corresponding stress situation throughout the entire load history. This holds true for any type of stress-strain relationship including those for ideally plastic structures. Therefore, it seems more reasonable to treat the stress increments as initial values rather than the strains. The change in stress derived from the corresponding strain increment will, in general, be incorrect. Consequently, the initial stress approach must again rely on an iteration scheme.

Once more, the first step in each load increment consists of solving the problem elastically, Both the strain increments $\left\{\Delta \epsilon_{e}\right\}$ and the associated change in stress $\left\{\Delta \sigma_{e}\right\}$ are computed. Since the calculated values for $\left\{\Delta \sigma_{e}\right\}$ deviate from the true stress increments $\{\Delta \sigma\}$, the equilibrium conditions are violated. In order to maintain equilibrium, a set of "body forces" equal and opposite to the initial stress system $\left\{\Delta \sigma_{b}\right\}$ must be introduced.

$$
\begin{equation*}
\left\{\Delta \sigma_{b}\right\}=\left\{\Delta \sigma_{e}\right\}-\{\Delta \sigma\} \tag{3.30}
\end{equation*}
$$

In the computation, the unknown, true stress increments are replaced by approximative values $\{\Delta \bar{\sigma}\}$ determined from the second iteration cycle.

Before proceeding to the second solution step, each element is examined for its type of behavior. For this purpose the calculated stress increments are added to the total stresses $\left\{\sigma_{o}\right\}$ reached during
the preceding increment to establish the current stresses $\{\sigma\}$.

$$
\begin{equation*}
\{\sigma\}=\left\{\sigma_{o}\right\}+\left\{\Delta \sigma_{\mathrm{e}}\right\} \tag{3.31}
\end{equation*}
$$

These values and the corresponding strain-hardening parameter k are substituted into a suitable yield criterion, $\mathrm{F}(\{\sigma\}, \mathrm{k})$. The resulting numerical value determines whether the element exhibits elastic or plastic behavior. From the theory of plasticity, it is known that for a strain-hardening material, the following four cases may be distinguished:
a. $\mathrm{F}<0$ elastic behavior
b. $F=0$ and $\Delta F<0$ unloading, elastic behavior
c. $F=0$ and $\Delta F=0$ neutral loading, plastic behavior
d. $F=0$ and $\Delta F>0$ loading, plastic behavior
where

$$
\begin{equation*}
\Delta F=\frac{\partial F}{\partial\{\sigma\}}\{\Delta \sigma\} \tag{3.33}
\end{equation*}
$$

Zienkiewicz states the same conditions in a more computer-oriented form (29).

Clearly, no further iteration is required if, after the beginning elastic cycle, the first or second condition is satisfied throughout the entire structure. Otherwise, the solution is continued by computing new stress increments $\{\Delta \bar{\sigma}\}$.

$$
\begin{equation*}
\{\Delta \vec{\sigma}\}=\left[\mathrm{D}_{\mathrm{ep}}\right]\left\{\Delta \epsilon_{\mathrm{e}}\right\} \tag{3.34}
\end{equation*}
$$

where $\left[D_{e p}\right]$, the matrix of material constants, is a rather involved expression. Its coefficients are dependent upon the yield condition, the strain-hardening parameter and the stress-strain curve. In the case of elasto-perfectly-plastic material, the matrix still exists since the
slope of the stress-strain curve H^{\prime} appears as a single term in the numerator (20).

All subsequent iterations must now be based on augmented load conditions (initial, externally applied load increments plus equilibrating nodal forces). For the ith solution cycle, they are

$$
\begin{equation*}
\left\{\overline{\mathrm{P}}_{\mathrm{i}}\right\}=[\mathrm{b}]^{\mathrm{t}}\left\{\Delta \sigma_{\mathrm{i}}^{*}\right\} \mathrm{dV} \tag{3.35}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\{\Delta \sigma^{*}\right\}=\left\{\Delta \bar{\sigma}_{i}\right\}-\left\{\Delta \bar{\sigma}_{i-1}\right\} \tag{3.36}
\end{equation*}
$$

3.2 Proposed Iteration Procedure

The method presented here is based upon an iterative, incremental load approach. For each load increment, the whole structure is repeatedly solved as an elastic problem until closure. Consider an arbitrary concrete element during load increment i. Assume that at the end of the previous step the principal strains $\left\{e_{p, i-1}\right\}$ and stresses $\left\{\sigma_{p, i-1}\right\}$ have been established. Based upon these values the element may be in any one of the following conditions:
a. Type 1: Elastic, isotropic;
b. Type 2: Elastic, anisotropic;
c. Type 3: Inelastic, anisotropic;
d. Type 4: Cracked.

The four cases can be visualized diagrammatically in Figures 14 and 15.
In the present computer program, principal strains $\left\{e_{i-1}\right\}$ are used to determine the relevant material constants. After the proper modulus of elasticity, E_{i}, and Poisson's ratio, u_{1}, have been found for

(a) TYPE I

(b) TYPE 2

Figure 14. Classification of Concrete Elements in the Elastic Range

(a) TYPE 3

(b) TYPE 4

Figure 15. Classification of Concrete Elements in the Inelastic Range
each element, the $[D]$ matrices are generated. To recapitulate, the appropriate equation shall be summarized below:

Type 1:

$$
[D]=\frac{\mathrm{E}_{1}}{\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \tag{3.37}\\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

Types 2 and 3 :

$$
\begin{aligned}
{\left[\mathrm{D}_{\mathrm{a}}\right] } & =\frac{\mathrm{E}_{1}}{1-\nu_{12} \nu_{21}}\left[\begin{array}{ccc}
1 & \nu_{12} & 0 \\
\nu_{12} & \mathrm{n} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \text { (for principal axes) }
\end{aligned}
$$

Type 4:

$$
\left[D_{\mathrm{cr}}\right]=\mathrm{E}_{2}\left[\begin{array}{ccc}
0 & 0 & 0 \tag{3.39}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(for principal axes)

The elemental stiffness matrices $\left[k_{i}\right]$ follow immediately as

$$
\begin{equation*}
\left[k_{i}\right]=[b]^{t}[D][b] \tag{3.40}
\end{equation*}
$$

or, for cases 2, 3, and 4,

$$
\begin{equation*}
\left[\mathrm{k}_{\mathrm{i}}\right]=\left[\mathrm{R}^{\mathrm{t}}\right][\mathrm{b}]^{\mathrm{t}}\left[\mathrm{D}_{\mathrm{j}}\right][\mathrm{b}][\mathrm{R}] \tag{3.41}
\end{equation*}
$$

Next, the total stiffness matrix is assembled and solved for the incremental displacements $\{\Delta U\}$. The discussion of the procedure used will
be postponed until Chapter IV. The incremental strains are now evaluated as

$$
\begin{equation*}
\left\{\Delta \mathrm{e}_{\mathrm{i}}\right\}=\left[\mathrm{b}_{\mathrm{i}}\right]\left\{\Delta \mathrm{U}_{\mathrm{i}}\right\} \tag{3.42}
\end{equation*}
$$

and added to the total strains $\left\{e_{i-1}\right\}$ of the preceding step to give the new total strains

$$
\begin{equation*}
\left\{e_{i}^{1}\right\}=\left\{e_{i-1}\right\}+\left\{\Delta e_{i}\right\} \tag{3.43}
\end{equation*}
$$

These values constitute a new strain situation with a corresponding new set of principal strains $\left\{e_{p, i}\right\}$. The material properties of the following iteration cycle are again extrapolated from the stress-strain curve. The iteration is stopped after a specified tolerance is reached. Before proceeding to the next increment, all total stress and strain values are updated and stored. Similar treatment is imposed upon the reinforcements and bond links. However, the procedure here is much less involved since the matrix $[\mathrm{D}]$ reduces to a single term E_{1}.

CHAPTER IV

COMPUTER PROGRAM

4.1 General

The iteration procedure described in Chapter III has been programmed for solution on a digital computer. Two programs, NARCOS1 and NARCOS-2, ${ }^{1}$ were written for the IBM $360-65$ model operated by the Oklahoma State University Computer Center. The standard ASA FORTRAN language was used.

Both programs generate all necessary mesh data from a minimum of input information. NARCOS-1 was based on the element arrangement used by Scordelis (24). This first version had to be abandoned at an early stage because of unsatisfactory results. A convergence study revealed that the symmetric mesh of NARCOS-2 converges much more rapidly, Figure 16.

4.2 Computer Idealization of the Beam

The finite element representation of the beam is arranged into rectangles. Each rectangular unit is subdivided into four triangular elements of equal area. The corners are numbered in a clockwise direction, Figure 17. To ensure small band widths, the joint numbers

[^0]

Figure 16. Results of Convergence Study

Figure 17. Example of Nodal Arrangements
are arranged in the direction of the least number of nodes. Reinforcements can be connected at the corner joints of the rectangles only. Inclined reinforcing (such as shear reinforcements under 45° wrt. beam axis) is not allowed. The program connects all steel nodes by means of bond links automatically. As mentioned earlier, this requires a revision of the nodal list. All input information must be specified in terms of the original nodal arrangement, Figure 17a. At the end of the data input, the program generates a cumulative nodal list which includes the additional steel nodes, Figure 17b.

4.3 Flow Chart

Figure 18 shows a summary flow chart of the program NARCOS2, using symbols shown in Figure 19. The detailed listing is given in Appendix B.

4.4 Solution of Equilibrium Equations

With the nodal arrangement discussed above, the stiffness matrix for the finite element assembly will be banded. This type of matrix lends itself well to direct solution by Gauss elimination. Since the matrix is symmetric, only the upper half of the band is stored in a rectangular array. The assembly and solution of this array is done blockwise, Figure 20. The first step consists of a forward elimination. Each reduced block is stored on a disk. With the last reduced block still in core, the backward elimination is performed in reverse order. Although several load vectors may be included in this procedure, only one loading case is considered in the present program.

Figure 18. General Flow Chart

Figure 18. General Flow Chart (continued)

Figure 19. Flow Chart Symbols

Figure 20. Block Arrangement of Main Stiffness Matrix

The solution of the stiffness matrix is done in subroutine BANSOL. A detailed description of the standard Gauss procedure shall be omitted. Complete information on this method may be found in Reference 40.

4. 5 Input List

The input data are arranged in tabular form. Topological and geometrical properties make up the first block. The second block of information consists of the material properties. Block 3 contains the list of reinforcements. Loads and boundary conditions are specified in the last block. Each table is identified by a block header card as shown in Figure 21. The specific format of each type of data statement is given in Appendix C. In the following the general input sequence will be described in detail:

1. Number of problems: The first card must specify the number of problems to be solved.
2. Problem title: One alphanumeric card initializes and identifies a new problem.
3. Control card for first block: Topology and geometry. NAR-COS-2 offers three modes for the input of geometric and topological properties. The mode is specified, together with the number of nodes in the horizontal and vertical direction and the number of reinforcements, on the first control card.

Mode 1. Equal spacing:
Under this mode all rectangular elements are of equal size. The program divides the length and depth of the beam into a specified number of intervals, respectively.

Figure 21. Arrangement of Input Data

The geometry may in this case be given by the coordinates of the upper right corner (for example, node 32 in Figure 17b).

Mode 2. Unequal spacing:
This input option allows for the variation of the element size in horizontal and/ or vertical direction. Example 1 of Appendix D demonstrates this input mode.

Mode 3. Individual input:
Mode 3 requires the declaration of the geometry and topology (i.e., node and element numbers) for each triangular element. This option was included to make the program available for irregular shapes.
4. Joint coordinates: Data giving the location of either the corner node (mode 1) or of nodes which specify the interval length of unequally spaced elements (mode 2) follow the first header card. Input under mode 2 may best be explained by means of Example 1 in Appendix D. The coordinates of the interval points (1, 3, 9) in y-direction (cards 4 to 6) are given first. The number of the joints must correspond to the actual node number (Figure 32). The computer divides the intervals into the correct number of equal segments.
5. Control card for second block: Material properties. This data statement initializes the input list of the stress-strain characteristics and specifies the number of elements with irregular thickness.
6. Element thickness: The program assumes a unit thickness over the entire continuum. However, specification of other than unit thicknesses of the rectangular elements is permitted.
7. Material properties: The stress-strain curves for concrete, steel and bond are given by a set of points on the curve. For steel, the maximum number of stations is not to exceed 20. The stress-strain characteristics for concrete and bond are given by a maximum of ten points. The point, stress equal to zero and strain equal to zero, must also be specified (if the curve passes through the origin). Following the input of the stress-strain graphs, the Poisson's ratios for each region between two points on the curves must be declared. The input of Poisson's ratios is required for concrete and steel only. The last card in this block contains the bond link stiffness, K_{V}. This coefficient expresses the strain-relative displacement characteristic of the linkage element perpendicular to the reinforcement. If the numerical value is omitted (blank card), the program assumes a number which is 10^{6} times the value of the first coefficient on the diagonal of the main stiffness matrix.
8. Reinforcement information: There is no special header card for this table, since the number of reinforcement cards was given in the control statement for the first block. Each reinforcement input specifies one or more bars. The cross-sectional area may be given directly or in the standard form as bar number according to the ACI Code. The position of reinforcements is specified by the number of the start and end node. The computer automatically divides the bar into two-force members of the same length as the corresponding rectangular concrete elements and assigns the proper bond links.
9. Tolerance: The number on this card declares the percentage error tolerated on the largest displacement.
10. Control card of last block: Loading and boundary conditions. The number of loads, boundary conditions, increments and iterations are specified. If the number of increments is equal to zero, the program performs an elastic solution without iterations. Automatic scaling is done if the parameter NINCR is equal to 1 . In this case, the load is taken as total load. During the first cycle, the problem is solved elastically and all results are scaled until the element strains in the extreme element correspond to the yield values. The loads are adjusted accordingly. The difference of the total given load and the load at yield is divided into 20 increments.
11. Loading information: One card per joint load, i. e., x - or y - component or both, must be supplied.
12. Boundary conditions: Only one specific boundary condition may be stated on one card. The direction is identified in alphanumeric form (x or y). Prescribed displacements may be introduced by simply adding the numerical value of the induced delfection after the direction parameters, x and y .

To complete this section, a few additional remarks concerning the data input seem necessary. It should be mentioned that the entire input for a particular problem must be consistent with regard to dimensions. The program does not allow for mixed units.

When no reinforcements are specified, several portions of the input sequence are skipped. In this case, the user must omit stressstrain curves for steel and bond, "perpendicular" bond stiffness, and reinforcement cards.

For problems with fixed boundary nodes, it is not necessary to restate these boundary conditions for each load increment. If the program encounters a blank card after the input of a load increment, the reading of boundary conditions is suppressed. The conditions of the first (initial) load step are assumed to apply throughout the entire loading history.

A special feature has been introduced in the program in the form of a CHECK EQUILIBRIUM card. If such a card is included at the end of the first set of boundary conditions, the program checks the equilibrium for each vertical strip of elements. The shear equilibrium and bending stress equilibrium (including forces in steel tendons) are checked. The average shear and normal stresses for each rectangular unit and the residual force on the cross section is output at the end of each load increment.

4. 6 Output Information

The complete list of input data is printed in tabular form. The calculated topological and geometrical properties refer to the updated cumulative nodal list. Results are provided after each successfully completed load increment. The results consist of a complete list of nodal displacements and stresses and strains in all elements. Several supplementary messages are included to clarify the large output. In addition, two "print error" subroutines report the most common input mistakes. A few are automatically corrected. The corrections made are recorded as nonfatal error messages. Sample output is included in Appendix D.

CHAPTER V

NUMERICAL RESULTS

5.1 General

Three singly reinforced concrete beams were solved with NAR-COS-2. All examples were chosen to be simply supported and acted upon by concentrated loads as shown in Figures 22, 23, 27 and 30.

Because of the symmetric loading, boundary and geometric conditions, the solution could be performed for half beams only. The output consisted of stresses in the concrete and reinforcements together with the principal stresses and their directions for each triangular element. Bond forces as well as the relative displacements between steel and concrete nodes were printed. Several indicators, such as the condition of the concrete elements (e.g., cracked) and equilibrium checks, were included in the listing to facilitate the interpretation of the extensive computer output. Selected results will be discussed in the following sections.

5.2 Example Problem 1: Scordelis' Beam A-1

Several purely elastic problems were considered to serve as a check on the computational procedure and the program development. Existing programs for the analysis of in-plane loaded plates were primarily used for this purpose.

Next, Scordelis' beam A-1 was solved with NARCOS-2. The results reported in his paper (24) could be considered as a general guide only because of several differences in the problem setup. First, artificial cracks were introduced in beam A-1 at the beginning of the loading process. The procedure here was to let cracks develop in the direction perpendicular to the principal tensile stresses when the maximum allowable tensile stress was reached. Second, Scordelis did not allow for any tensile resistance in the concrete. In this study, the modulus of rupture was assumed to be 300 psi . As a result of this, the beam under investigation showed a higher loading capacity before cracking took place. Thus, Scordelis' initial load of 1000 pounds had to be modified to $P_{o}=7000$ pounds. Cracking was initiated at a load level of 7200 pounds. Several cracks developed simultaneously at the bottom edge of the beam. Obviously, this type of crack pattern was to be expected with the moment being constant between the support and the point of application of the load (support at midspan). Subsequently, the load was increased by 200 pound increments up to 8800 pounds. The cracks continued to develop in the same direction (i.e., perpendicular to the edge) and additional cracks occurred along the bottom edge. The stress patterns, including the bond forces and crack propagation, are shown for different load levels in Figures 24 through 26. Figure 22 contains the information about the stress-strain characteristics used. Poisson's ratios of 0.3 for the reinforcements and of 0.15 for the concrete were chosen to be constant throughout the entire load history. The values for the bond stiffness corresponded to those given by Scordelis ($\mathrm{K}_{\mathrm{h}}=2.2 \times 10^{6} \mathrm{psi}$).

(a) SCORDELIS' BEAM A-I

(b) MATERIAL PROPERTIES

Figure 22. Example Problem 1: Scordelis' Beam A-1

NUMBER OF TRIANG. ELEMENTS
NTEL = 864
NUMBER OF NODES (INCL. STEEL)
NUMBER OF LOADS
NUMNOD $=495$
NLOAD
$=1$
NUMBER OF BOUND. COND.
NBOUND $=10$
Figure 23. Mathematical Model of Beam A-1

Figure 24. Example Problem 1: Stresses at P = 7200 Lbs.

Figure 25. Example Problem 1: Stresses at $P=8000$ Lbs.

Figure 26. Example Problem 1: Stresses at $P=8800$ Lbs.

As mentioned earlier, the introduction of new nodes for the reinforcement required the renumbering of all nodes. To illustrate the difference between the intitial mesh and modified nodal arrangement, the two numbering systems are shown in'Appendix D accompanied by the listing of the data input statements.

5. 3 Example Problem 2: Simple Beam Loaded at Midspan

A simply supported beam acted upon by a concentrated load at midspan was chosen to study the crack propagation in the concrete, Figure 27. This type of structure and load configuration seemed particularly suited for such an investigation, because relatively large cracks should be expected to develop near the center of the beam. An initial load of $P=1500$ pounds was applied. The cracks appeared during the first load increment of $\Delta P=100 \mathrm{lbs}(\mathrm{i} . \mathrm{e}$. , at $\mathrm{P}=1600 \mathrm{lbs}$). The cracking moment obtained from the simple beam theory was found to correspond to a load of $\mathrm{P}_{\mathrm{c}}=1564 \mathrm{lbs}$.

Figures 28 and 29 illustrate the crack pattern at different load levels. The cracked elements have been identified by shading. Small vertical cracks first appear in the bottom elements of the beam. During the next few load increments, new cracks occur in the elements above those which have already cracked. In addition, small vertical cracks appear along the bottom edge farther away from the load. For higher load levels, the cracked elements tend to group in the vicinity of the center of the beam. Near the bottom edge the cracks remain practically vertical. However, Figure 29 clearly indicates that the directions of the cracks in the higher elements begin to point toward the load. Local disturbances in the crack pattern may be observed in

(a) BEAM 2

Figure 27. Example Problem 2: Simple Beam Loaded at Midspan

Figure 28. Example Problem 2: Crack Pattern at $P=2000$ Lbs.

Figure 29. Example Problem 2: Crack Pattern at $P=4000$ Lbs.
the neighborhood of the supports, especially the two triangular elements, six and seven, exhibit no cracks at all but experience relatively high compressive stresses in the x -direction. This irregularity may be caused by the vertical load at node four (the total concentrated load has been distributed over the nodes at the supports). Also, the steel reinforcement is fixed in the x-direction at support joint three. Thus, the applied vertical load at joint four must be transferred to the steel through the two concrete elements in question, causing high compressive stresses in these elements.

Several other elements at the bottom edge of the beam did not crack because of local stress redistributions. Element 124, for example, is obviously situated between two cracks. There the tensile stresses seem to have decreased enough in order not to cause cracking. Farther out in the beam the crack distribution becomes more regular with uncracked elements occurring more frequently.

5.4 Example Problem 3: Simple Beam Loaded Symmetrically by Two Concentrated Loads

A third, simple beam problem was solved to study the nonlinear stress distribution in the compressive zone of the concrete beam after cracking has taken place. The same structural model as in Problem 2 was loaded symmetrically by two concentrated loads at 30 inches from midspan, Figure 30.

Cracks developed again at the bottom edge and continued to extend vertically. The stress-distribution for only one load level will be reported to demonstrate the stress distribution in the compression zone. Due to the small number of relatively large elements in this problem, the stress distribution must be regarded as a crude approxi-

FOR MATERIAL PROPERTIES, SEE FIGURE 27.
Figure 30. Example Problem 3: Simple Beam Loaded Symmetrically by
Two Concentrated Loads
mation. However, the results clearly show the nonlinear character of the concrete stress block above the neutral axis, Figure 31.

Figure 31. Example Problem 3: Crack Pattern and Stress Distribution at $P=10,000$ Lbs.

CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

The feasibility of the finite element method in the investigation of reinforced concrete beams composed of Hookean material has been established by Scordelis (24). The objective of this thesis was to evaluate the potential of the finite element approach in the study of the nonlinear behavior of reinforced concrete beams under static loads and to provide a tool for the investigation of such structures.

The actual situation was approximated by a structural model of the plane stress type using a finite number of triangular, constantstrain, concrete elements, linear steel bars, and a mechanism to simulate the interaction between the two materials. In selecting the proper material constants for the concrete elements, the principal stresses were used to determine whether an element behaves isotropically, anisotropically or develops a crack. All material characteristics were replaced by piecewise linear stress-strain curves. The finite element approach was implemented in the form of a combined step-bystep, iterative procedure. Three example problems were solved on a digital computer.

6. 2 Conclusions and Recommendations

The proposed finite element, step-by-step, iterative procedure is a feasible method to analyze reinforced, concrete beams. The simulation of the inelastic behavior by quasi-anisotropic, finite elements has shown satisfactory results. Likewise, the bond link models appear to approximate the bond slip phenomenon quite accurately. Two major difficulties had to be overcome in connection with the computer solution. First, the introduction of additional steel nodes presented some assembly problems. The use of a cumulative nodal list for the assemblage of such mathematical models proved to be extremely helpful. This technique allows the introduction of any number of additional nodes within any basic nodal configuration. Second, some difficulties were experienced with the bond link stiffness coefficients. To suppress relative displacements between steel and concrete nodes perpendicular to the steel bars, large numerical values for the vertical stiffness coefficients had to be used. These values must be selected with great caution. Extremely large numbers may cause completely erroneous solutions.

The convergence of the iterative process has been found to be slow for large load increments. On the other hand, too many small increments will result in excessive computer time. It would be advantageous to employ the solution procedure proposed by Zienkiewicz (20) which does not require the assemblage of the structural stiffness matrix for each iteration.

The present method may be recommended for extension to include time dependent effects such as creep or initial stress conditions resulting from temperature or prestressing forces. The method could be
modified for three-dimensional assemblies. However, the need for larger digital machines becomes even more apparent for such models. There is considerable doubt that the method could be used for dynamic loading conditions. Additional iteration cycles would probably increase the computer time tremendously. In addition, the program would have to be modified to include the possibility of unloading conditions.

BIBLIOGRAPHY

(1) Winter, George et al. Design of Concrete Structures, 7th ed. New York: McGraw-Hill Book Company, 1968.
(2) Wilson, E. L. "Matrix Analysis of Nonlinear Structures." Proceedings, Second Conference on Electronic Computation, Pittsburgh, Pa., September 8-9, 1960, 415-428.
(3) Goldberg, J. E. and R. M, Richard. "Analysis of Nonlinear Structures." Journal of the Structural Division, ASCE, Vol. 89, No. ST4 (August, 1963), 333-351.
(4) Wilson, E. L. "Fine Element Analysis of Two-Dimensional Structures." Structural Engineering Laboratory Report No. 63-2, University of California at Berkeley, June, 1963.
(5) Argyris, J. H. et al. "Matrix Methods of Structural Analysis-A Precis of Recent Developments, " Matrix Methods in Structural Analysis--AGARDograph 72. Ed. Fraeijs de Veubeke, Oxford: Pergamon Press, 1964.
(6) Denke, P. H. "Digital Analysis of Nonlinear Structures by the Force Method." Matrix Methods in Structural Analysis-AGARDograph 72. Ed. Fraeijs de Veubeke. Oxford: Pergamon Press, 1964.
(7) Pope, G. G. "The Application of the Matrix Displacement Method in Plane Elasto-Plastic Problems." Proceedings, Conference on Matrix Methods in Structural Mechanics. Ed. J. S. Przemieniecki et al. AFFDL TR 66-80, Wright-Patterson AFB, Ohio, November, 1966, 635-654. (Conference held in October, 1965.)
(8) Argyris, J. H. "Elasto-Plastic Displacement A nalysis of ThreeDimensional Continua." Journal of the Royal Aeronautical Society, Vol. 69 (September, 1965), 633-636.
(9) Argyris, J, H. "Continua and Discontinua." Proceedings, Conference on Matrix Methods in Structural Mechanics. Ed. J. S. Przemieniecki et al. AFFDL TR 66 80, WrightPatterson AFB, Ohio, November, 1966, 11-189. (Conference held in October, 1965.)
(10) Marcal, P. V. "A Stiffness Method for Elastic-Plastic Problems." International Journal of Mechanical Science, Vol. 7 (1965), 229-238.
(11) Marcal, P. V. and I. P. King. "Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method. " International Journal of Mechanical Sciences, Vol. 9 (1967), 143-155.
(12) Zienkiewicz, O. C. and Y. K. Cheung. The Finite Element Method in Structural and Continuum Mechanics. London: McGraw-Hill Book Company, Ltd., 1967.

Felippa, C. A, "Refined Finite Element Analysis of Linear and Nonlinear Two-Dimensional Structures." Structures and Materials Research Report No. 66-22, the University of California at Berkeley, October, 1966.
(14) Akyuz, F. A. "On the Solution of Two-Dimensional Problems by the Finite Element and Direct Stiffness Method, " Proceedings, Fifth AIAA A erospace Science Meeting, AIAA Paper No. 67-144, January 23-26, 1967.
(15) Akyuz, F. A. and J. E. Merwin. "Solution of Nonlinear Problem of Elasto-Plasticity by the Finite Element Method. ' AIAA Journal, Vol. 6 (October, 1968), 1825-1831.
(16) Marcal, P. V. "A Comparative Study of Numerical Methods of Elasto-Plastic Analysis. " AIAA Journal, Vol. 6 (January, 1968), 157-158.
(17) Marcal, P. V. "Finite Element Analysis with Material Nonlinearities." Proceedings, Japan-U.S. Seminar on Matrix Methods in Structural Analysis and Design, 1969, 257-282.
(18) Yamada, Y. "Recent Japanese Developments in Matrix Displacement Methods for Elasto-Plastic Problems." Proceedings, Japan-U.S. Seminar on Matrix Methods in Structural Analysis and Design, 1969, 283-316.
(19) Yamada, Y. et al. "Analysis of the Elastic-Plastic Problems by the Matrix Displacement Method. " Proceedings, Second Conference on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, Ohio, 1968, 1271-1299.
(20) Zienkiewicz, O. C. et al. "Elasto-Plastic Solutions of Engineering Problems, 'Initial stress' Finite Element Approach." International Journal of Numerical Methods in Engineering, Vol. 1 (1969), 75-100.
(21) Oden, J. T. "Finite Element Applications in Nonlinear Structural Analysis." Proceedings, Symposium on the Application of Finite Element Methods in Civil Engineering, Nashville, Tenn., November 13-14, 1969, 419-456.
(22) Rashid, Y. R. "Analysis of Axisymmetric Composite Structures by the Finite Element Method. " Nuclear Engineering and Design, Vol, 3 (1966), 163-182.
(23) Rashid, Y. R. "Ultimate Strength Analysis of Prestressed Concrete Pressure Vessels." Nuclear Engineering and Design, Vol. 7 (1968), 334-344.
(24) Scordelis, A. C. and D. Ngo. "Finite Element Analysis of Reinforced Concrete Beams." A CI Journal, Vol. 64 (March, 1967), 152-163.
(25) Cornell, D. C. et al. "SAFE-3D; A Computer Program for the Three-Dimensional Stress Analysis of Composite Structures." Atomic Energy Commission Research and Development Report No. GA-7855, September, 1967.
(26) Corum, J. M. and N. Krishnamurthy. "A Three-Dimensional Finite Element Analysis of a Prestressed Concrete Reactor Vessel Model." Proceedings, Symposium on the Application of the Finite Element Method in Civil Engineering, ASCE, Vanderbilt University, Nashville, Tenn., November 13-14, 1969, 63-94.
(27) Cervenka, V. "Inelastic Finite Element Analysis of Reinforced Concrete Panels Under In-Plane Loading." Ph. D. Dissertation, University of Colorado, 1970.
(28) Clough, R. W. "The Finite Element in Plane Stress Analysis." Proceedings, Second ASCE Conference on Electronic Computation, Pittsburgh, Pa., September, 1960.
(29) Pian, T. H. H. and P. Tong. "Basis of Finite Element Methods for Solid Continua. " International Journal for Numerical Methods in Engineering, Vol. 1 (1969), 3-28.
(30) Zienkiewicz, O. C. and G. S. Holister. Stress Analysis, Recent Development in Numerical and Experimental Methods. London: John Wiley and Sons, Ltd., 1965.
(31) Przemieniecky, T. S. Theory of Matrix Structural Analysis. New York: McGraw-Hill Book Company, 1968.
(32) Mendelson, A. Plasticity; Theory and Application. New York: The MacMillan Company, 1968.
(33) Richart, F. E. et al. "A Study of the Failure of Concrete Under Combined Compressive Stresses." Bulletin 185, Engineering Experiment Station, University of Illinois, 1958.
(34) Lekhnitskii, S. G. Anisotropic Plates. New York: Gordon and Breach, Science Publishers, 1968.
(35) Rehm, G. "Uber die Grundlagen des Verbundes Zwischen Stahl und Beton." Deutscher Ausschuss für Stahlbeton, Heft Nr. 138, Berlin, 1961.
(36) Washizu, K. Variational Methods in Elasticity and Plasticity. Oxford: Pergamon Press, 1968.
(37) Peattie, K. R. and T. A. Pope. "Tests of the Bond Between Concrete and Steel. " Civil Engineering and Public Works Review 51, 1956.
(38) Turner, M. J. et al, "Large Deflections of Structures Subjected to Heating and External Loads." Journal of Aerospace Sciences, Vol. 27 (1960), 97-102.
(39) Gallagher, R. H. et al. "Stress Analysis of Heated Complex Shapes." Journal of the American Rocket Society, Vol. 32 (1962), 700-707.
(40) Zurmüh1, R. Praktische Mathematik für Ingenieure und Physiker. Fünfte Auflage. Berlin: Springer-Verlag, 1965.

APPENDIX A

STIFFNESS MATRICES IN TABLE FORM

A. 1 Isotropic Stiffness Matrix for Triangular Concrete Panels

Using the numbering system shown in Figure 10 and the straindisplacement transformation matrix from Equation (2.32), the following stiffness matrix results from Equation (2.35). For convenience, the matrix is separated into two component matrices (Equations (A.1) and (A.2)): $\left[K_{S}\right]$ represents the stiffness due to shear and $[K]$ contains terms due to normal stresses only.

A. 2 Anisotropic Stiffness Matrix for Triangular Concrete Panels

The stiffness matrix (Equation (A. 3) below) is in terms of local coordinates, the axes being u and v, Figure 7. Again, the nodes are numbered in clockwise directions. The matrix becomes much less complex for the principal axes, since \bar{G} vanishes.

A. 3 Stiffness Matrix of Steel Bars

Linear bar stiffness matrices are conveniently given in global coordinates directly, i.e., after the transformation (Equation 2.41) has been performed.
$\left[K_{S}\right] g=\frac{E A}{L}\left[\begin{array}{c|c|c|c}c_{x}{ }^{2} & & & \\ \hline c_{x} c_{y} & c_{y}{ }^{2} & & \\ \hline-c_{x}{ }^{2} & -c_{x} c_{y} & c_{x}{ }^{2} & \\ \hline-c_{x} c_{y} & -c_{y}^{2} & c_{x} c_{y} & c_{y}^{2}\end{array}\right]$
where

$$
\begin{aligned}
& {\left[\mathrm{K}_{\mathrm{s}}\right]=\frac{\mathrm{Et}}{8 \mathrm{~A}(1+\nu)}\left[\begin{array}{cccccc}
\mathrm{x}_{32}{ }^{2} & & & & & \\
-\mathrm{x}_{32} \mathrm{y}_{32} & \mathrm{y}_{32}{ }^{2} & & & & \\
-\mathrm{x}_{32} \mathrm{x}_{31} & \mathrm{y}_{32} \mathrm{x}_{31} & \mathrm{x}_{31}{ }^{2} & & & \\
\mathrm{x}_{32} \mathrm{y}_{31} & -\mathrm{y}_{32} \mathrm{y}_{31} & -\mathrm{x}_{31} \mathrm{y}_{31} & \mathrm{y}_{31}{ }^{2} & & \\
\mathrm{x}_{32} \mathrm{x}_{21} & -\mathrm{y}_{32^{\mathrm{x}} 21} & -\mathrm{x}_{31} \mathrm{x}_{21} & \mathrm{y}_{31} \mathrm{x}_{21} & \mathrm{x}_{21}{ }^{2} & \\
-\mathrm{x}_{32} \mathrm{y}_{21} & \mathrm{y}_{32} \mathrm{y}_{21} & \mathrm{x}_{31} \mathrm{y}_{21} & -\mathrm{y}_{31} \mathrm{y}_{21} & -\mathrm{x}_{21} \mathrm{y}_{21} & \mathrm{y}_{21}{ }^{2}
\end{array}\right]}
\end{aligned}
$$

(A. 2
where

$$
\begin{align*}
\mathrm{G}=\frac{\mathrm{G}_{21}}{\mathrm{E}_{1}}\left(1-\nu_{12} \nu_{21}\right) \text { and } \mathrm{G}_{21} & =\left\{\left[\frac{\mathrm{E}_{1}}{2\left(1+\nu_{21}\right)}\right]\left[\frac{\mathrm{E}_{2}}{2\left(1+\nu_{12}\right)}\right]\right\}^{\frac{1}{2}} \tag{A.4}\\
\mathrm{n} & =\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}} \tag{A.5}
\end{align*}
$$

$$
\begin{align*}
& c_{x}=\cos \theta \\
& c_{y}=\sin \theta \tag{A.8}
\end{align*}
$$

(A.7)

A. 4 Bond Link Stiffness Matrix

Similar to the "two-force" members, the bond link matrices are given in the datum system directly.
$\left[K_{b}\right] g=\left[\begin{array}{ll|l|l|l}c_{x}^{2} k_{1}+s_{x}^{2} k_{2} & & & \\ \hline s_{x} c_{x} k_{1}-s_{x} c_{x} k_{2} & s_{x}^{2} k_{1}+c_{x}^{2} k_{2} & & \\ \hline-c_{x}^{2} k_{1}-s_{x}^{2} k_{2} & -s_{x} c_{x} k_{1}+s_{x} c_{x} k_{2} & c_{x}^{2} k_{1}+s_{x}{ }^{2} k_{2} & \\ \hline-s_{x} c_{x} k+s_{x} c_{x} k & -s_{x}{ }^{2} k_{1}-c_{x}{ }^{2} k_{2} & s_{x} c_{x} k-s_{x} c_{x} k_{1} & s_{x}^{2} k_{2}+c_{x}^{2} k_{2}\end{array}\right]$
(A.9)

A. 5 Cracked Concrete Element

$\left[\mathrm{K}_{\mathrm{u}}\right]=$| 0 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | | | | | symme-
 tric |
| 0 | $\mathrm{x}_{32}{ }^{2}$ | 0 | | | |
| 0 | $-\mathrm{x}_{32} \mathrm{x}_{31}$ | 0 | | | |
| 0 | 0 | 0 | | 0 | |
| 0 | $\mathrm{x}_{21} \mathrm{x}_{32}$ | 0 | $-\mathrm{x}_{21} \mathrm{y}_{31}$ | 0 | x_{21}^{2} |

APPENDIX B

LISTING OF COMPUTER PROGRAM

```
pROGRAM NARCOS
```

nonk inear analysis jf ke inforced concrete strictures

```
LANGuAGE uSED
DIGITAL MACHINE
DIGITAL MACC
PROTEAFMERM: ALEXANOER
FORTRAN IV 
ALEXANOER A. LASSKER
ALEXANOER J97L
```

description of program
this program solves reinforced concrete structures of the
PLANE STRESS TYPE. THE FINITE ELEMENT METHOD IS USED IN AN
ITERATIVE PROCEDURE. AT EACH LOAD STEP THE PRUBLEM IS SOLVED
AS AN ELASTIC PRUBLEM. DETAILED INFORHATION CAN BE FOUND IN:
NONLINEAR ANAL YSIS OF REINFGRCED CONCRETE BEAMS UNOER STAIIC
LOADS. PH.D. DISSERTATION BY A.J. LASSKER, OSU. AUGUST 1971 .
problem parameters used in this program
NN
MA
BLOCK LENGTH
- BLOCK HIDTH
- LENGTH of mORKING area
- NUMBER OF RECTANGULAR ELEMENTS
NTEL = Number of triangular elements
NODV = NUMBER OF NODES VERTICALLY
NODH $=$ NUHBER OF NODES VERTICALLY
MOF
$=$ NUMBER OF NOEES HONIzONTALLY

- xinumnodi
Y(NUMNGDI $\quad=Y$ - COOORDINATES
thetandels
JTOP(NREL,4)
- thick(nrel)
ITYPEINTEL
SEC(10.2)
ES(9)
EP S(NTEL, 3)
EPR(NTEL,2)
STK (NTEL,3)
$\operatorname{STRP}(N T E L, Z)$
NLOAD $=$ NUIM
NLOAD $=$ NUMBER
NBCS = NUMBER
XLOAD(NLOAD,3)
XBOUNDINBCS,3)
U(NUMNDD**DFI
TU(NUMNOD*NDF)
UI(NUMNGD*NDF)
= - COORDINATES
$=$ Y COORDINATES
= YNGEE OF PRINCIPAL AXES
$=$ TOPGLOGY OF CUNCRETE ELEMENTS
CONTRINS NOOE NUMBERS IN CLOCKWISE DIRECTIUN
CONTKINS NOOE NUMBERS IN CLOCKW
= THICKNESS GF RECTANGULAR ELEMEIS
$=$ TYPE OF BEHAVIOR OF CONCRETE ELEMENTS
= STRESS - STRAIN VECTOR FDR CONCRETE
CONTAINS STRESSES IN COLUMN 1
CONTAINS STRAINS IN COLUMN 2
 - Moduli of elasticitr for coincrete
 - POISSON'S RATIUS FUR CONCRETE
AR ELEMENTS
= PRINCIPAL STKAINS FOR TRIANGULAR ELEmENTS
= PRINCIPAL INRAINGNGLAR ELEMENTS
$=$ STRESSES INIANGULS
$=$ PRINCIPAL STHESSES FOR TRIANGULAR ELENENTS
 - Principal stresses for triangular elements
LOADING CARDS
of BOUNDARY CUNDITIONS SPECIFIED $(X, Y$ DIR. 1
LUADING VECTUR
CONTAINS NODE NUMBER IN CULUMN
contains x-- cumpunent in column
CONTAINS Y-COMPONENT IN COLUMIN 3
= PRESCKIDED UISPLACEMENT VECTOR
$=$ NUDAL OISPLACEMENTS FOR A LUAD Increment
$=$ TOTAL NUD AL OISPLACEMENTS
= auxiliahy tutal displacements at beginning of

DESCRIPTIOM OF procram

this program solves reinforced concrete structures of the PLANE SIRESS TYPE. THE FINITE ELEMENT METHOD IJ PROCEDURE. AT EACH LUAD STEP THE PRUBLEM IS SOLVED AS AN ELASTIC PRUBLEM. DEIAILEO INFORHATION CAN BE FOUND IN: LOADS. PH.D. DISSERTATION BY A.J. LASSKER, OSU, AUGUST 1971.

Probleh paraheters used in this prograh

auxiliaky tutal displacements at beginning of

ITOP(NUMBAR,4) = TCPOLOGY OF REINFURCEMENT BARS CONTAINS NODE NUMBERS F ER REINKURCEMENTS - TYPE OF dEHAVIOR OF STEEL ELEMENTS = STRESS - STRAIN VECTUR FGR STEEL - poissunds ratius for steel

- STEEL AREA
$=$ STRAINS IN STEEL REINFORCEMENTS
$=$ STRESSES IN STEEL REINFURCEMENTS
= WORK ING area for main Stiffness matrix $=$ WORX ING AREA FIR MAIN STIFFNESS MATRIX
$=$ CORRESPUNOING WORKING SPACE FUR LOADS
(MBAND IS MAX. 54)

NN	$=54$ $=\quad 108$
NH	$=108$
ma	- 54
NUHNOD	- 620
nrel	$=288$
NTEL	$=1152$
numbar	50

NJRBAR $=\begin{array}{r}50 \\ \text { MAXADF }\end{array}=1300$

StRESS - Strain curve given by no mure than 10 points
moduli of elasticity given by no hore than g points
poissonas ratios given by no mure than 9 points
NNHBER OF LOADS GIVEN IS LLESS THAN 5
NUMBER OF BOUNOARY CONDI
number of bounoary conditions given is less than 5
$\stackrel{c}{c}$
IMPLICIT REAL* $8(A-H, 0-2)$
REAL*8 DATAMR, DS IN, DCOS, DABS
COMMON SI $10,101, V K H, V K V$
COMMON OXX, OYY, E1, E2, CNU, CNU12, CNU2 1,EP $1, E P 2$, SNU, PI
COMMON NN, NH, MA, NODV, NODH,NUHNOD, NREL, NT EL, NUMBAR, MAXNDF, MBANO
COMMON NINCR,KINCR, NCUR VC, NCUKVS, NZC, NLS, ISCALE, NUF, I AUTO
COMMON NUMDF,NUMTDF,NIT, IT,NCURVB,NZE,NODZ
c
COMMON/ELEM / X 650), Y(650), THE TA(1152,2),U(13001, TU(1300)
COMHON/ELEML/ JTOP(28B,4),THICK(28日)
COMMON/TYP , ITYPE(11521,ISTYPE(501,IBTYPE(100), KDIR
COMMON/ MODULC/ SEC(10,21,EC(9), XNUC(91,TOL
COMMON/MODULB/ SEB(10,2),EB(9)
COMMON/MODULS/ SES (20,21,ES(19),XNUS(19)
COMMGNLODALS $/$ XLOAD $(20,21, \times B O U N D C(20.21$
COMMON/LOADS2/ ILOADC 201, IBOUND 201 , NLUAD, NBCS
COMMON/REINF / SAREA (50), JCNL 650,21 , ITOP (50,6), NREINF. IS1, IS 2
COMMUN/CONSTR/ STR(1152,31, SIRP(1152,2),EPS(1152,3),EPR(1152,2)
COMMON/CONSTI/ TSTR(1152,3i,TEPS(1152,3i)
COMAON/STLSTR/ ESPS (S0), STRS (50), TESPS (50), TSTRSI 50.21
COMMON/BUND ' EPSET 100,21, STRB (100,2), TEP Sd (100, 11, TSTRB(100, 2$)$
DIMENSION UB(1300), KA(10)

EQUIVALENCE (KA(1),K1), (KA(2),K2),(KA(3),K3),(KA(4),K4) EQUIVALENCE (KA(5),K5),(KA(6),KG), (KA(7),K7), (KA(8), KB) EQUIVALENCE (KAl9).K9), (KA(10),KLO)

READ(5,8000) NPROB
8000 FORMAT(I5)
KPROB $=0$
IF (NPROB.GT.O) GOTO 100
000 WRITEI6,9000) NPROB
 1 NUMBER DF PRDBLEMS SPECIFIED $=1$.I5I
C
C
C
EACH NE PROBLEM STARTS AT STATEMENT NO. 100
INITIALIZE MAIN PRUBLEM PAKAMETERS
100 CONTINUE
KPROB $=$ KPROB + 1
Call initl
ICHECK $=0$
CALL READIN(ICHECK)
c CALL OUTPUT

\mathbf{c}
\mathbf{c}
\mathbf{c}

each new load increment starts at statement no. 200
2co continue
$\begin{array}{ll}11 \\ \text { DO } \\ 210 & 0 \\ \text { L }\end{array}=1$, NUMTOF
210 U(L) $=$ ZERO
C
C
C
each iterat ion cycle starts at statement no. 300
300 continue
$\begin{array}{ll}\text { CONTINUE } \\ \text { IT } & =\text { IT } \\ \text { IS } & =0 \\ \text { IS } & =0\end{array}$
LS $=$
KSHIFT $=0$
ISWICH $=1$
$305 \mathrm{IA}^{2}=1, \mathrm{~N}$
B(IA) x ZERO
DO $305 J A=1, M A$
$305 \mathrm{~A}(1 \mathrm{~A}, \mathrm{JA})=$ 2ERO
310 UB(KU) $=$ TU(KU) + U(KU)
REWIND 1
RENIND 1
REWIND 2
c Setup blocks of the main st iffness matkix each block setup starts at statement nu. 400 400 Cuntinue

NUMBLK $=$ NUMBLK +1
process one element at the time
MTYP $=1$

$J 1=J_{1}=\mathrm{JTOP}(1,1)$
$J 2=J T O P(1,2)$
$\mathrm{J}_{3}=\mathrm{JTOP}(1,3)$
$\mathrm{J4}=\mathrm{JTOP}\{1 ; 48$
$15=\mathrm{S}=\mathrm{NODV}$
$K 2=2 * J C N(J 1,2)$
$k 1=k 2-1$
IFCKL - KSHIFTI - NNI 430,430,420
420 1 $\div \frac{1}{-1}$
430 K4 $=2 *$ JCNL (J2,2)
$K_{3}=K_{4}-1$
$K_{6}=2^{*} J \operatorname{SCNL}(J 3,2)$
$K_{6}=2 * J C N L(J 3,2)$
$K 5=K_{6}-1$
$K B=2 * J C M(14,2)$
$K 7=K 8-1$
$K 10=2 * J C N L(J 5,2)$
$k 9=K 10-1$
c
CALL STIFF(1,MTYP, J, 1, J1, J2, J5, 1, 2, 5) J=」+
CALL ST IFF $(2$, MTYP, $J, L, J 2, J 3, J 5,2,3,5)$
CALL STIFF(2, MTYP, J,I $\left., J 5, J 3, \mathrm{~J}_{4}, 5,3,4\right)$
CALL STIFF(2,MTYP, J, I, J1, J5, J4, 1, 5, 4)
c
c
c
c
Chose proper vkv - value
470 IFINREINF.EQ.OI GOTO 475
ASSEMBLY OF RECTANGULAR ELEMENT STIFFNESS MATRIX
FORM BLOCKS OF MAIN STIFFNESS MATRIX
fORM BLOCKS OF MAIN STIFFNESS MATRIX
SIZE OF WORKING AREA IS MA*NH
ONE BLOCK IS HALF OF THE WORKING aREA
475 DO $480 \mathrm{KI}=1,10$
IINA $=K A(K I)-K S H I F T$
KINA $=K A(K I)-K_{1}+1$
$00480 \mathrm{KJ}=1,10$
JS $=K A(K J)$
IFIJS.LT.KIMAI GOTO
IF(JS.LT.KINA) GOTO 480
JINA $=$ KA(KJ) $-K A(K I)+~$
A(IINA,JINA) $=A(I I N A, J I N A)+S(K I, K J)$
480 CONTINUE
IF(GVV.EQ.O.O).AND.(I.EU.11) VKV = DVKV*A(1,1)
END OF LOOP fOR ELEMENT PRUCESSING WITHIN UNE BLUCK check if the element belongs to the current bluck

IF(I.LT .NREL) GUTO 410

```
    490 CONTINUE
        IF I NREINF .EQ. O ) GU IO 560
C
    00 500 IR = 1,10
    500 S(IR,JR) = \,0,
    500 S(IR,JR) =0.0
        MTYP IS = 1, MUMBAR
        MTYP =2
        ISWICH =1
        IS1:= ITOP(IS,3)
        1S2 = 1TOP(IS,4)
        K1 =k2-1
        K4 = 2*ITOPIIS
    K3 = K4-1
    IF ( IS2 -LT. (ISI + NOD2) ) ISWICH = 2
C
    ChECK If bar belongs to current block
    IF(IKI.LE.KSHIFT).OR.(K1.GT.(KSHIFT ANNII) GOTO 541
    CALL STIFFKISWICH,MTYP,IS,IS,IS1,IS2,IS2,1,1,1)
C
535 DO 540 KI = 1,4
    IINA = KA(KI) -KSHIFT
    00 540 KJ = 1,4
    JS =KA(KJJ)-KLI+1
    IF(JS.LT.KINA) GOTO 540
    A(IINA,JINA) = A(IINA,JINA) + S(KI,KJ)
    540 CONTINUE
    541 ILINK = ILINK +1
        GOTO (545.548.550) . ILINK
C CHECK IF LINK beLONGS to current block
    CHECK IF LINK BELONGS TO CURRENT
    545 KL1= 2*JCNL(IS1,2)-1
        IFI(KLI.LE.KSHIFT).OR.{KLI.GT.(KSHIFT+NNI)) GOTO 548
c BOND LINK fOR START NODE OF STEEL BAR
    546 K44 = K4 
        k4 =k2
        k3}=\mp@subsup{k}{1}{\prime
        K1 = K111 +
        MV=1S
c bond link for end noue of steel bar
548 If I IS .NE. Numbar I go to 550
```

$K 2=2 * J C N L$ (1S2.2)
IFIKI.LE.KSHIFT.OR.KL.GT.(KSHIFT+NNI) GOTU 550
$K 4=K 44$
$K 3=K 33$
IV $=15+$
549 CONTINUE
II =2*IS $-15 \mathrm{HICH}+1$
EPI $=$ TEPSBIII. 11
MTYP $=3$
CALL STIFF I ISWICH, MIYP, IV, IS, IS, IS, IS, 1, 1, 11
GOTO 535
PROCESS LOADS AND BJUNDARY CONOITIUNS FOR EACH BLOCK PUT CONCENTRATED LOADS FROM ARRAY XLOAD INTO B

560 DO 580 IL $=1$, NLOAD
$J L=2 * J C N L I I C O A O(I L I, 2)-K S H I F T$
IF(()JL-1).GT.NN).OR. (IJL-1).LE.01) GOTO 570
570 E(JL-1) = XLOAD(1L, 1)

580 CONTINUE
PROCESS BOUNDARY CUNUITIONS
MDDIFY EQUATIONS FOR SPECIFIED UISPLACEMENTS AT BOUNDARY MODIFICATIONS FOR STEEL BUUNDARY CONDITIONS INCLUDEU

00600 IB $=1$, NBCS
IFIIBOUND(IBI-LE.O) GOTO 590
$\mathrm{JB}=2 * J C N L(I B O U N O(18), 2)-K S H I F T$
IF(() JB-1).GT.NH).OR. ((JB-1).LE.0)) GOTO 600
CALL MODIFYI(JB-1); XBOUND(IB, 1)
IFIJCNLIIBUUND(IBI, 1 . EQ.O) GOTO 800
IF($(1 J B+1)$.GT. NH).OR. ($(J \mathrm{JB}+1)$. LE. OJ) GOTO 600
CALL MODIFY(IJB+1), XBOUND(IB,1)
GOTO $\mathbf{J O N}=-1$
JG = 2*JCNL (JBN, 2) - KSHIFT
IF(IJB.GT.NH).OR.IJB.LE.O1) GOTO 600
IFRJCNU IFY(JB, XBOUND(IB,2)
IFI(IJB+2).GT.NH).OR. $1(J B+2) \cdot L E .011$ GOTO 600
CALL MODIFY($(\mathrm{JB}+2)$, XBOUND $(1 \mathrm{~B}, 2)$)
CONTINUE
hrite block on tape 2 and shift lower part into upper part KRITE(2) (B(N),(AlN,M),MI,MBANDI,N=1,NN)
$\mathrm{D}_{\mathrm{K}}=610 \mathrm{~N}=1, \mathrm{NN}$
$K=\Lambda+N N$
$B(N)=B(K)$
$B(K)=0.0$
DO $610 \mathrm{M}=1$, MBAND
$A(N, M)=A(K, H$
$A(K, M)=0.0$
610
KSHIFT $=$ KSHIFT $+N N$

```
C CHECK FOR LAST BLOCK
    COMPLETE LOADS AND BoUndary CGNDITIONS in last bluck
    IF I \(=\) NREL , INCREASE NUMHLK AND I BY 1
    IF(I - NREL) 400,620,630
    20 IF( 2 *JCNL(JTOP(1,3),2) 1.LE.KSHIFT) GOTO 630
    NUMBLK \(=\) NUMBLK +1
    \({ }_{\text {GOTC }} \mathbf{5 6 0}=\)
C
C
C
630 CONTINUE
CALL bansol
    KU \(=0\)
NIN \(=\) NN +1
    NIN \(=\) NN +1
00
040 NB \(=1\), NUMBLK
    \(K U=K U+1\)
040
calculate strains, principal strains, stresses and principal str.
    00670 I = 1, NREL
    \(J=4 * 1-3\)
    J1 \(=\mathrm{Jtop}(1,1)\)
    \(J 2=J T O P(1,2)\)
    \(J 3=J T O P(1,3)\)
    \(J 4=\) JTOP \(11 ; 4\) )
    J5 = \(\mathrm{JL}+\) NOD
    CALL STRES
    I, J, Jl, J2, JS, HTYP)
    CALL STRESS(1,J, J2, J3, J5,MTYP
    \(J=\downarrow+2\)
    \(J=J+1\)
    IF(NREINF.EQ.O) GOTO 690
    MIYP \(=2\)
    DO \(680 \mathrm{~J}=1\), NUMBAR
    JS2 \(=1\) TOP \((J .4)\)
680
    CALL STRESS(J,J,JS1,JS2,JS2,MTYP)
    DETERMINE I TERATION PROCEDURE
    SEARCH FOR LAKGEST ERRDR IN DISplacements
690 IFI(NINCR.EQ.O).OR.(KINCR.EQ.1)) GOTO 720
    LFIIT.EQ.1) GOTO 300
    DIFF \(=2 E\)
\(L T O L=1\)
    DO \(700 \mathrm{~L}=1\), NUMTDF
    DIFFL \(=\) DABSi(TUIL) \(+U(L))-U B(L)\)
    [F(DIFFL.LE.DIFF) GOTO 700
    IFF \(=\) DIFFL
TOL \(=L^{2}\)
    LTOL \(=\llcorner\)
```

```
C - this subroutine initiglizes mll arkayS used in the program
pARAMETERS USED:
```



```
MPLICIT REAL* \(B\) (A-H, O-Z
COMMON SI 10,10 , VKH,VKY
COMMON DXX, DYY, E1, E2,CNU,CNULZ,CNU21,EP1,EP2,SNU,PI
COMMON NN, NH: MA, NOOV, NODH, NUMNOD, NREL, NT EL, NUMAAK, MAXNDF, HBAND
COMMON NINCR, KINCR, NCLR VC O NC URVS, NZC, NZS I ISCALE, NDF, I AUT O
COMMON NUMDF, NUMIDF,NIT, IT, NCURVB,NZE,NOD 2

\title{
COMMON/ELEN / X(6501,y(650),THETA(1152,2),U(1300),TU(1300)
}
```

COMMLN ELEM1 / JTOP $(288,4)$,THICK (288)
COMMON/TYP / ITYPE(1152),ISTYPE(50), IBTYPE(100), KOIR
COMMCN/ MODULC/ SEC(10,2),EC(9),XNUC(9), TOL
COMMON/MODULS/ SESI20,2),ES(191;XNUS(19)
COMMON/MOOULB/ SEB $(10,2), E 8(9)$
COMMONLCADS / XLOADI 20.21,XBOUNOC 20.2)
COMMON/LOADS1/ ALOAD 20,21 ;ABOUND 20,2$)$
COmhonloads 21 ILOAD(201. IBOUND 201 , NLOAD. NBC
COMMON/REINF $/$ SAREA 501 , JCNL $(650,21$, ITOP (50,6$)$, NREINF, IS1, IS 2
CDMMON/CUNSTR/ STR(1152,31,STRP(1152,21,EPS(1152,3),EPR(1152,2)
OMMON CONST1/ TSTR11152,31,TEPS11152,31

```



DO \(10 \mathrm{I}=1\), MUMNOD

10

DO \(201=1\), MREL
\(=0.0\)
- THickil

DO 20 J \(=1,{ }^{20} 4\) i. inUMIDF \(^{4}=\) \(=0\)
TU(I) \(=0.0\)
DO \(501 \neq 1\), MTEL
:0.0
Do \(40 \mathrm{~J}=1,3\)
EPS(I,J) TEPS(I;J) \(\operatorname{TSTR}(I, J)\)
\(\operatorname{STR}(I, J)\)
\(0050 \mathrm{~J}=1,2\) THETAII, J
EPK \(I, J)\)
50 \(\begin{array}{ll} & =0.0 \\ \text { STRP(I,J) } & =0.0 \\ & =0.0\end{array}\) DO \(60 \mathrm{I}=1, \mathrm{NH}\) 060 J
 ISTYPEIII IBTYPEII)

TYPE(I+MUMBAR) SAREA(I) STRS (I) TESPS(II \(\operatorname{TSTRS}(1,1)\)
\(\operatorname{TSTRS}(1,2)\)
\({ }_{80}{ }^{0}\)
0 ITOP(1) numbo \(=2\) *Mumbar
DO \(70 \mathrm{I}=1\), NUMBD EPSB(I,J) \(=0.0\) \(\begin{array}{ll}\text { STRB(I, J) } & =0.0 \\ \text { TEPSB(I, J) } & =0.0 \\ \text { TSTRB(I, J) } & =0.0\end{array}\)
7000 TSTRB(I, J) \({ }^{\text {ILOAOC( }} 1^{1, M L O A B}=0\) \(90 J=1,2\) ALOADI 1,31 \(\begin{aligned} & \text { XLOAOC(I, J) }=0.0 \\ & 100 I=1, M B C S\end{aligned}=0.0\)
DO \(100 \mathrm{~J}=1,2=0\) \(\begin{array}{ll}\text { XBOUND }(1, J) & =0.0 \\ \text { ABOUND(I;J) } & =0.0\end{array}\) DO 110 I \(=1.9\) \(110 I=1\) ECII)
XNUC(1)
```

 D0 120 I = 1,10
 20 SEB(I,J)
 SEC(I.J)
 130 I = 1.19
 ES(I)
 OO 140 I = = 1,20
 DC 140 J=1,20
 c
SES(I,S)=0.0
RE TURN
END
C
sugroutine readin reads all input infornation and does all
- necesSary autonatic numbering prucesSes
C :
IMPLICIT REAL*B(A-H,O-2)
COMMON DXX,DYY,E1,E2,CNU,CNU12,CNUL1,EP1,EP2,SNU,PI
COMMON NN,NH,NA,NODV, NODH, NUMNOD, NREL ; NTEL, NUMBAR,MAXNDF, MBAND
COMMON NINCR,KINCR,NCURVC,NCURUS,NZC,NZS,ISCALE,NDF,IAUTO
COMHON NINCR,KINCR,NCUR VC,NCURVS,NLC,NZS,I
COMMON/ELEM / X(650),Y(650),THETA(1152,2),U(1300),TU(1300)
COMHON/ELEM1 / JTOP (288,4), THICK(288)
COMMCN/MODULC/ SEC(10,2),EC(9),XNUC(9),TOL
COMMON/MODLKS/ SES(20,2),ES(191,XNUS(19)
COMMMN/MODULS/ SES(20,2),ES(191
COMMON/MODULE/ SEB(10,21,EB(9)
COMMON/LOADS / XLOAD(20,2),XBOUND(20,2
COMMONLOAOS2/ ILOAD(20), IBOUND(201,NLOAD,NBCS
COMMON/REINF / SAREAI 50),JCNL(650,2),ITOP(50,6),NREINF,IS1,IS
DATA D20/1.00-20/, ZERD/D.0D 00/ . LABELI/'X!/ , LABEL2/'Y'/
DATA IEQUI/'EQUI',
c

```
\(=0.0\)
\(=0.0\)
\(=0.0\)
\(=0.0\)
\(=0.0\)

Subroutine readinitheck)
- Sugroutine readin reads all input infornat ion and does all - NeCessar y automatic numbering prucesses

MPLICIT REAL* \(\#\) (A-H, O-2)
COMMAN OXX, DYY,E1,E2,CNU,CNU12, CNUZ1,EP1,EP2,SNU,PI
COMMON NINCR,KINCR, NCURVC, NCURVS, NZC, NZS, ISCALE, NDF, IAUTO COMMON NUMDF, NUHTDF,NIT, IT,NCUR VB,NZB,NODZ

COMMON/ELEM / X(6501,Y(650), THETA(1152,21,U(1300),TU(1300) COMHON ELEM1 \()\) JTOP (288:4), THICK (288)

COMMON/MODLLS/ SES(20,2),ES(191,XNUS(19)
COMMON/LOADS \(/\) XLOAD \((20,21\), XBO


DATA IEqUI/'EQUI';
C
3000 FORMAT(18A4)
b01c format 415 )
8020 FORMAT(515)
8030 FORMATIS \(5,2012.4\) )
8040 FORMAT(15,012.4)
8050 FORMAT \(15,012.4,012.6)\)
8050 FORMAT \(15,012.4 ; 012\)
FORMATS \(15,012.6)\)
8070 FDRAAT(15,2012.4)
8080 FORMAT( \(15,4 \mathrm{X}, \mathrm{Al}, \mathrm{DL} 2.4)\)
8090 FURMAT( \(215,012.4,215\)
8100 FORMAT(5x,D12
110 FORMAT (A4)


IORCED CONCRETE STRUCTRELII ANALYSIS OFI/' * PLANE STRESS REINF


\section*{9030 FORMAT (//)}

READ(5,8000) (NAMEEI), \(1=1,181\) WRITE(6,9000) (NAME(I), I=1,18)
C READ NODAL I NF ORMATION
READ (5,8010) NNV, NNH, KT OP, NREINF
IFINREINF.LT.OI CALL PRERIl6
noov \(=1\) ABS (NNV)
NOOH = IABS (NNH)
NELV \(=\) NOOV -1
NELH = NODH -
IF (KTOP.EQ.1) GOTO 30
NREL = NELV*NELH
ATEL = 4*NREL
NUMNOD \(=\) NODV*NODH + NRE
NOD2 = 2*NODV - 1
INDIVIDUEL INPUT OF TOPOLOGY
10 DO \(10 \mathrm{~N}=1\), NREL
REAO(5,8020) [P,(JTOP (IP,J) , J=1,4)
O READ 15,8030 , NUMNOD
READ(S,8030) K,X(K),Y(K) READ (5,80
GOTO 220
\(C\)
\(C\)
\(C\) automatic processing of ngoal arrangements
30 READ (5, 8040) JJ, OTEMP IF (NNV) 40,2000,60 EQUAL SPACING

40 DD \(=\) DTEAP/NELV \(D D D^{2}=D D / 2.0\) OU \(50 \mathrm{~N}=1\), NELV
\(Y(N)=(N-1) * D D\)
\(50 \mathrm{Y}(\mathrm{NODV}+\mathrm{N})=\mathrm{Y}(\mathrm{NI}+\mathrm{DDD}\) Y(NODV) \(=\) NELV*DD goto 90
\(c\)
\(C\)
\(60 \mathrm{~L}=1\)
\(L=1\)
\(D=0.0\)
DO \(801=1\), NELV
READ 15,80401 J, DYTEMP
\(K=\) J-JJ
DD
\(=\) (OYTEMP - DTEMPI/K
DD \(=\) COYTEMP
DO
LK
LK
V(L) \(=\mathrm{D}\)
L \(=L+1\)
\(D=D+D D\)
DTEMP = UYTEMP
\(80 \underset{Y(L)}{J J}=\)
NODV \(=\mathrm{J}\)
```

 NELV = NODV -1
 NOO2 = 2*NODV - }
 Y(LV + NODV) = 0.5*(Y(LV+1) - Y(LV)) + Y(LV)
 90 READ(5, 8040) MM, DTEMP
 D=0.
 IF(NNH) 100,2010,130
 l
COOD = D/2.0
NI=
DU 120 N=1,NELH
X(NI) = (N - 1)*D
OD 110 NV = 1,NELV
X(NI + NV) = X(NI)
110 X(NI + NV + NELV) = X(NI) + DDUD
120 NI =NL + 2*NODV - I
X(NI) = X(NI-1) + DODOD
X(NI + NV) = X(NI)
goto 170
C 130 KSTART =1
KEND = NOOV
READ(5,8040) H,OXTEMP

```

```

 DD = IDXIEMP - DTEMPI/K
 OC = OD/2.0
 OO 150 LK = l,K
 140 X(L) = D
 IF(LK.EQ.1) GOTO 145
 OO 142 KS = 1,NELY
 142 X(KSTART - KSI = XIKSTART) - DC
145 KSTART = KSTART + NOO2
150 D = O + DD
NOO4 = NOD2 - 1
KD I KENC - NOD2
MD 155 KS = 1,NOD4
\ XIKEND -KS)=
160 MM = M M M = X(KEND) = (KEND - 1)
NODH = MM
170 NELH = MM - 1
NREL ` NELV*NELH
NUMNOD = NODV*NDDH + NREL
NOD2 = 2*NODV - 1
NSTART = O
180 DO 190 K = 1,NELV

```

MK \(=\) NSTART \(+{ }^{+}{ }^{\text {NKK }}=\mathrm{NK}+\mathrm{NOD}_{2}\)
NKK \(=\) NK + NOD2
JTOP \((1,1)=N K\)
\(\operatorname{JTOP}(1,2)=N K+1\)
JTOP \((1,3)=N K K+\)
190 II = I
IFII.GT.NR
NSTART \(=\) NSTART + NOD2
GUTO 160
C CHECK NUMBERING
2000 IPRER \(=2\)
999 CALL PRER1
999 CALL PRERIUIPRERI
IPRER \(=1\)
GOTC 999
2020 \({ }_{\text {LPRER }}{ }^{\text {G9 }} 8\)
GOTO 999
CONTINUE
CONTI NUE
NOO \(3=\) NOD \(2+1\)
NOO \(3=\) NOD \(2+1\)
00210 KNS \(=\) NOD 3, NUMNDD
O Y(KNS) \(=\) Y(KNS - NOD2)
220 CONTINUE
c read stress - strain lams
READ (5, 8010) NTH, NCURVC, NCURVS, NCUR VB
\(\begin{array}{ll}\text { READ } & \text { 5,8010) } \\ \text { NTHPNCUR } \\ \text { IF (NTH.EQ.O) } & \text { GOTO } 240\end{array}\)
READ (5, BO40) NT, THIC
IF(NT.GT.0) GOTO 211
21 \(\begin{aligned} & 0021 \\ & \operatorname{THICK}(N)\end{aligned}=1\) PNREL
THICK \(N\) ) \(=\) THIC
GOTO 240
IFINT.EQ.1) GOTO 212
DO \(230 \mathrm{~N}=2\) NTH
230 READ ( 5,8040 ) NT, THICK (NT) GOTO 240
212 THICK(1) \(=\) THIC
240 CONTINUE
concrete
DO \(250 \mathrm{~N}=1\), NCURVC
250 READ(5, 8050\() K, \operatorname{SEC}(K, 2), \operatorname{SEC}(K, 2)\)
250 IF( \((S E C(N, 1) . E Q .0 .0)\).AND.ISEC(N,2).EQ.0.01) NZC \(=N\) NNC \(=\) NCURVC - 1
DO \(260 \mathrm{~N}=1, N N C\)
EC(N) = (SECC(N+1,1)-SEC(N,1)H/ISECIN+1,2)-SECIN,2H)
\(260 \operatorname{READ}(5,80601 \mathrm{~K}\), XNUC (K)
IFINREINF.EQ.O) GOTO 490
C
\(\mathbf{C}\)
C STEE
\(00270 \mathrm{~N}=1\), NCURVS
READ(5, 8050) K, SES(K,1),SES(K,2)
270 IF( \((S E S(N, 1) \cdot E Q .0 .01 . A N D \cdot(S E S(N, 2) . E G .0 .01) \mathrm{NZS}=\mathrm{N}\) NNS \(=\) NCURVS -1

\(280 \operatorname{READ}(5,8060) \mathrm{K}\), XMUS (K)

\section*{BOND}

DO \(290 \mathrm{~N}=1\), NCURVB
290 READ(5,8050) K, SEB(K,1),SEB(K,2) NNB \(=\) NCURVB - 1
 READ (5,8100) VKV
read information about reinforcement
NUMBAR \(=0\)
DO 350 NJC \(\neq 1\), NUMNOD
DO 450 NR \(=1\), NREINF
READ(5,8090) NBAR,NO,RAREA,NBEG,NEND
IF (NEND - NBEG) \(\mathbf{3 7 0 , 3 6 0 , 3 8 0}\)
360 KPRER1 \(=3\)
CALL PRERI (KPRER1)
NBEG \(=\) NEND NEND \(=\) NNBEG KPRERZ \(=5\)
CALL PRER2(KPRER 21
3 80 IF(DABS (RAREA) 1 T 0201 RAREA \(=\) ZERO
390 KPRER \(=\) ( \(390,400,410\)
CALL PRERI (KPRER1)
400 RAREA \(=\) NBAR \(*(0.25 * P I *(N O * 0.125) * 1\) NO \(* 0.125)\)
CHECK WHETHER HORILONTAL OR VERTICAL BAR
410 KENO \(=\) NBEG + NOQ2
410 KENO \(=\) NBEG + NOD2
IFINEND.GE.KENDI GOTO 430
C 420 VERTICAL BAR
420 NUMBAR \(=\) NUMBAR +1
ITOP (NUMBAR, 1\()=\) NBAR
ITOP(NUMBAR, 1 ) \(=\) NBAR
ITOP (NUMBAR, \(21=\) ND
(TOP(NUMBAR,3) \(=\) NBEG
1 TOP (NUMBAR, 4) \(=\) NBEG +1
JCNL (NBEGRI) \(=1\)
SAREA(NUMBAR) \(=\) RAREA
NBEG \(=\) NBEG +1
IF ((NBEG+1) - NEND) \(420,420,450\)
C 430
HORIZONTAL BAR \(=\) NUMBAR
NUMBAR \(=\) NUMBAR +1
ITOP \((N U M B A R, 1)=\) NBAR
ITOP(NUMAR, 1\()=\) NBAR
ITOP (NUMBAR, \(21=\) NO
ITOP(NUMBAR,3) \(=\) NBEG
ITCP (NUMBAR; 41 = KEND
JCNL (NBEG,2) \(=\)
SAREA(NLMBAR)=1 RAREA
SAREACNUMBAR
KEND \(=\) NSEG + NODZ
IF (NENO.GEEKEND) GUTO 430
IF ((INEND+NOD2)-KEND).EQ.O1 GOTD 450
KPRER1 \(=5\)

\section*{CALL PRERI(KPRERI)}

GOTO 430
CONTINUE
DU \(460 \mathrm{~N}=1\), NUMNOD

generate cumulative node list
\(\operatorname{JCNL}(1,2)=1\)
70 \(\operatorname{JCNL}(N, 2)=\operatorname{JCNL}(N-1,2)+\operatorname{JCNL}(N-1,1)+1\)
DO 480 IS \(=1\), NUMBAR
IBCND \(=1\)
TS1 \(=1\) TOP \((15,3)\)
\(I S 2=\operatorname{ITOP}(1 S, 4)\)
KS1 \(=J\) JNL \((1 S 1 ; 2)\)
\(K S 2=J C N L(1 S 2,2)\)
IF( (JCNLIISL,1).EQ. 2).AND. (ITOP (IS,4) .LT.(ITOP(IS,3) + NOO21)
1 IBCND \(=2\)
If((JCMLISS2.1).EG.21.ANO.(ITOP(IS,4).LT.(ITOP(IS, 3) + NOU2I))
IJBOND \(=2\)
ITOP (ISF5)
\(480 \operatorname{ITOP}(I S, 6)=K S 2+J B C N D\)
490 CONT INUE
read tolerance
READ (5,8100) TOL
READ LOADING INFORMAT ION AND BUUNDARY CONDIIIJNS
READI 5, BOLOI NLOAD,NECS,NINCR,NIT
READ (5, BOTO) 1 ILOAD(N), XLOAD(N,1), XLOAD(N,2)
\(A L O A D(N, 1)=X L O A D(N, 11\)
\(310 \begin{aligned} & \operatorname{ALCAD(N,2)}=\mathrm{XLOAD} \\ & 00320 \mathrm{~N}\end{aligned}=1\), NBCS
DEA \(320 \mathrm{~N}=1\), NBCS
READ 5,8080 ) NIBNO, IB TYP, VALUE
IF (IBTYP.NE. LABELI; GUTO 315
IBOUND (N) \(=\) NIBND
xboundor.l) = value

5 IF(IBTYP.NE.LABEL2) CALL PRER1(9) IZOUND(N) \(=-\) NIBNO
18 ABOUND(N,1) \(=X B O U N D(N\),
\(c^{320}\)
DETERMINE BANDWIDTH
MBAND \(=0\)
MBAND \(=0\)
\(N K=0\)
\(\begin{array}{ll}N K \\ 00 & 510 \\ 00 & \mathrm{~N}=1 \text {, NELH }\end{array}\)
NK \(=N K K=1\),NELV

5C0 IF(
\(5 C O\) IF (JDGT MBANDI MBAND \(x\)

JD \(=\) JCNL \(J\) JTOP \((N K, 4), 2)-J C N L(J T O P(N K, 2), 2)\)
510 I
MBAND \(=\) IJTMAND) MBAND \(=\) Jo
MBAND \(=2\) *MBANO +2
NUMTDF \(=\) - 2*JCNL ( JTOP \((\) NREL, 3), 2)
READ (5,8110) ICHECK
WRITE 16.90101
IF (CHECK.EQ.IEQUI) WRITE(S,9020)
WRITE(6,9030)
RENOR
END
subroutine dutput
```

\#THIS SUBROUTINE PRINTS ALL INITIAL INFORMATION IN TABULAR FORM

```
-

IMPLICIT REAL*8(A-H, \(\mathrm{O}-\mathrm{Z})\)
COMMON S \(110,101, \mathrm{VKH}, \mathrm{VKY}\)
COMMON DXX,DYY,E1,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI
COMMON NN, NH, MA, NODN, NODH, NUMNOD, NREL , NT EL, NUMBAK, MAXNDF, MBAND
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC, NZS,ISCALE, NOF, IAUTO
COMAON NUMDF, NUMTDF, NIT, IT,NC UR VH,NZË, NOO2
COMMONTELEA / X(650),Y(650),THETA(1152,2),U(1300),TU(1300)
COMMON/ELEM1 / JTOP \(\{288,41\), THICK(288)
COMMON MODULC/ SEC(i0,2),ECC(9),XNUC(9),TOL
COMMON/MODULS/ SES(20,2), ES(19),XNUS(19)
COMMONMODULB/ SEBC
COMMON/LOADS / XLOAD( 20,2\(), \times 80\) NDI \(<0,21\)
COMMON/LOADS1/ ALOAD 20,2\(), A B O U N D(20,21\)
COMMON LOADS2/ ILOAD ( 20), IBOUND ( 20 ), NLOAD,NBCS
c
9000 FORMAT \(/ / 1 X, 42(1 H * 1 / 43 \mathrm{H} *\) COORDINATES OF NODES
1/, 1X,421 1H*), /1
9025 FORMATI \(1 x, 15,6 x, 1\) PD \(12.4,5 \times, 5 x, 1 P D 12,4,5 x\), STEEL
9030 FORHAT \((1 \mathrm{HL}, 42(1 \mathrm{H} *) / 43 \mathrm{H}\) * TOPOLOGICAL PROPERTIES OF ELEMENTS *
9040 FORMAT(: ELEMENT NO NODE A NODE B NODE C NODE D NODE M 1 THICKNESS',/1
9050 FORHAT(1HL, \(/ 1)\)
9060 FORMAT (18, 4X, \(15,414 \mathrm{X}, 151,5 \mathrm{X}, 1 \mathrm{PO} 12,41\)
9070 FORMATI/I,' NO REINFORCEMENT IN THIS PRUBLEM'I
9080 FORMAT(1H1,42(1H*)/43H * ARRANGEMENT OF REINFDRCEMENT
9090 FORMAT(: BAR NUMBER NO JF BARS TYPE OF BARS TOTAL AKEA
9100 F FROM JOINT TO JOINT,, 11

9110 FORMATI///,1X,'CALCULATED BANOWIDTH: MBAND \(=1,141\)
9120 format (1H1,42 (1H*)/43H * STRESS - StRAIN LAWS
17,1X, 42(1H*),1)
9130 FORMAT(',' CONCRETE:AI5,' PGINTS GIVEN',II
9140 FORMAT('POINT SIGMA IN PSI EPSILON IN IN/INN E-HUDUL
 1- ANO 1, 121
```

9160 FORMATI1X,13,5X,1PD12.5,8X,1PO12.5,%
180 FOKMATI,' STEEL;,3X,15; POINTS G(VEN';/1
9190 FORMATI/ / ,0 NUMBER OF (TERATIONS =1,14,5X,"TOLERANCE = ',1PDI2.5)
200 FOKMAT (1H1,42(1H*)/43H * LOADING INFORMATION
1/,1X,42(1H*),1)
210 format'IX,'loadS fur increment NO',I5,f%
920 FORMAT I' NODE NO INGREMENT, NOM,IS,N

```

```

 230 FORMAT(1H1,42(1H*)/43H * BOUNDARY CONDITIONS IN LBS* %)
 240 FORMATIIX,'PRESCRIBED DISPLACEMENTS FOR INCREMENT NO',I5,%)
 9250 FORMATG:NODE NO X-DISPL',7X,' Y-DISPL IN INCHES',N
 9255 FORMAT (1X,15;8X,1PD12.5;4X,1PD12.51
 9260 FDRMAT(1X,I5,8X,1PDI2.5)
 920 FORMATI/I/,IX,'ELASTIC SOLUTION ONLYEI
 9200 fORMATI//|,1X,"AUTOMATIC SCALING',/,IX,0GIVEN LOADS AND DISPL. ARE
 l ASSUMED AS TOTAL VALUESO:
 290 FORMAT(///,IX.'INDIVIDUAL LOAD AND DISPL. INPUT',/,IX,IPRUGRAM REA
 IDS',15.1 INCREMENTS*)
 C
WRITE(Q,9000)
KP =0
IPAGE = 36
DO 1O NC = 1, NUMNOD
IFIKP.NE.IPAGE) GOTO 5
KP = = %
IPAGE (6,9050
WRITE(6,9050)
5 KP = KP + %
WRITE(6,9020) JCNL(NC,2), X(NC),Y(NC)
IF(JCNL(NC,1).EQ.O) GOTO 10
KC = JCNL(NC,2) +
WRITE(6,90251 KC, K(NCI,Y(NC)
KP = KP + 1
1F(JCNL(NC,1).EQ.1) GOTO 10
KC = KC + + 1 , KC,X(NC),Y(NC)
KP = KP + 1
10
print topological quantities
WRITE(6,9030)
WRITEG6
IPAGE = 45
00 30 IP = 1,NREL
IFIKP.NE.IPAGEI GOTO 20
KP=0
WRITE 6,9050)
MRITE (6,9040)
0 KP = KP + 1
30 WRITE(6,9060) IP,(JCNL(JTOP(IP,J),2),J=1,4),JCNL((JTGP(IP,1)+NOOV)

```

\section*{1,2), Thick(IP)}

PRINT REINFORCEMENT INFORMATION
IFINREINF.NE.OI GOTO 40
WRITE16,9070
40 WRIT WRITE16,9080
WRITES 6,9090
DO 50 IR \(=1\), NUMBAR
50 WRITEI6,9100) IR,ITOP(IR,11, ITUPIIR,21, SAREAGIR1,
1ITOP(IR,5),1TOP(IR,6
0 CUNT INUE \(\qquad\)
print canstitutive laws far concrete and steel
WRITE ( 0,9120 )
WRITE(6,9130) NCURVC
WRITE(6,9140)
NCURV = NC URVC - 1
DO 70 NC \(=1\), NCURV
DO \(70 N C=1\)
\(N E=N C+1\)
70 WRITE(6,9150) NC, SEC(NC, 1), SEC(NC, 21, EC(NC) , XNUC(NC), NC, NE WRITE(6,9160) NE, SEC(NE,1),SEC(NE,21
URITE \((6,9120)\)
WRITE(6,9170) NCURVS
WRITE \((6,9140)\)
NCURV = NCURVS - 1
DO 80 NS \(=1\)
NE \(=N S+1\)
80 WRITE(6,9150) NS,SES(NS, 11,SES(NS,2),ES(NS), XNUS(NS), NS, NE WRITE(6,9160) NE,SES(NE,1),SES(NE,2)
WR ITE (6,9120)
WRITE 6,9180 ) NCURVA
WRITE (6,9140)
NCURV \(=\) NCLRVB - 1
DO 85 N \(=1\), NCURV
\(N E=N B+1\)
85 WRITE(6,9145) NB, SEB(NB,1), SEB(NB,2), EB(NB) ,NB, NE
145 WRITE (, 9160 ) NE, SEB (NE, 1), SEB (NE; 2 )
 1,5x,12, AND ', 12) IF(VKV.EQ.O.0) GOTO 86

FORMAT(//,IX,'SPECIFIED DOWEL ACTION STIFFNESS KY = ', ,lPDI2.5)
6 GRITE(6,9165) print iteration and tolerance values

90 WRITEI6,9190) NIT,TOL
IF (NINCK - I) \(91,92,93\)
91 WRITE(6,9270)
GOTC 95
WRITE \(6, ~\)
GOTO 95

93 HRITE(6,9290) NINCR
print luading infurmation
95 WRITE( 6,9200 )
WRITE(6,9210) KINCR
WRITE(6,9220)
WRLTEIG 100 IL 1 , NLOAD
(

WRI TE (6,923D)
WRITE( 0,9240 ) KINCR
HRITE(6,9250)
\(0011018=1\), NBCS
NIBND \(=\) IBOUNO(IB)
IF (NIBND.LE.OI GOTO 105
CTO 110
MIBND
\(=-N I B N D\)
LRITE(6,9265) JCNL(NI BND,2) , XBOUND(1B,2)
110 CUNTINUE
RETURN
RETUR
END
SUBROUTINE STIFFIISWICH,MTYP,J,I,JJI,JJ2,JJ3,K1,K2,K31

- THIS SUBROUTINE CALCULATES ALL ISOTROP IC AND ANISOTRUPIC - AND BONO LINKS.

PARAMETERS AND ARRAYS:
\(S(8,8)=\) STIFFNESS MATRIX
SS \((8,8)=\) AUXILIARY STIFFNESS MATRIX
ST(8,8) = AUXILIARY STIFFNESS MATRIX
ROT \((\theta, \theta)=\) ROTAT IONAL TRANSFORHATION MATRIX

IMPLICIT REAL* \(8(A-H, 0-21\)
REAL*B NUA, NUB, NUAB, NUAB2, OSQRT, DCOS,DSIN
COMACN S \((10,10)\), VKH, VKY
COMMON DXX,DYY,E1,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI
COMMON NN,NH, MA, NODV, NO OH, NUMNOD, NREL, NTEL, NUMBAR,MAXNUF, MBANO
COMMON NUMDF,NUMTDF, NIT, IT, NCURVS, NZC, NZS, ISCALE, NDF, IAUTO
COMMON/ELEM / X(650),Y(050),THETA(1152,2).U(1300),TU(1300)
COMMON/ELEMI / JTOP(288,4), THICK(208)
COMMON/TYP ITYPE(1152), ISTYPE(50), IBTYPE(100), KUIR
COMMON/MODULC/ SEC(10,2),EC(9),XNUC(9),TOL
COMMCN/ MODULS/ SES(20,2),ES(191,XNUS(191
COMMGN/MODULB/ SEB(10,2),EB(9)
COMMON/REINF / SAREAI 501 ,JCNL \((650,2)\),1TOP( 50,6\()\), NREINF,1SI,ISL DIMENSION ROT (10,10), SS (10,10), ST(10,10)
DATA ZERO/0.0D+00/, ROT/100*0.00+00/ , D180/180.00+00/
\(\begin{aligned} 008 L & =1,3 \\ 009 & =1,3 \\ 90 D L, M) & =2 E R O\end{aligned}\)

- BBIL,M) \(=\) ZERO

IFININCR.EQ. 11 GOTO 19
CALL TYPEIJ;MTYP
9 CONTINUE
10 IFIISWICH.NE.11 GOTO MTYP 30
DO \(20 L=1,10\)
DO \(20 M=1,10\)
\(S(L, M 1=0\)
\(20 \mathrm{~S}(\mathrm{~L}, \mathrm{M})=0.0\)
\(3 \mathrm{CTYP} \underset{\text { IFIIYP.GT.1) GOTO } 35}{ }\)
\(\times 32=x(J 33)-x(J J 2)\)
\({ }_{x 31}=X(J J 3)-X(J J 1)\)
\(X 21=X(J J 2)=X(J J 1)\)
\(Y 32=Y(J J 3)=Y(J J 2)\)
\(Y 32=Y(J J 3)-Y(J J 2)\)
\(Y 31=Y(J J 3)-Y(J J 1)\)
\(Y 31=Y(J J 3)-Y(J J 1)\)
\(Y 21=Y(J J 2)-Y(J J 1)\)
GOTO 38
35 UMEGA \(=\) THETA1 J, 11*P \(1 / 0180\) OMEGAL \(=\) DCOS(OMEGA)
OMEGAZ \(=\) DSIN(OMEGA)
CHII \(=\) OMEGA1*X(JJ1) + DHEGA2*Y(JJ1)
EHAL \(=-\) OMEGA2*X(JJ1) + OHEGAL*Y(JJ1)
CHI \(2=\) OMEGAl*X(JJ2)
ETA2 \(=\) - OMEGA2*X(JJ 2\()+\) OMEGA2* \(Y(J J 2)\)
CHI \(3=\) OMEGAL*X(JJ3) + OMEGAL*Y(JJ3
ETA \(3=\) - OMEGA2*X(JJ3) + OMEGA1*Y(JJ3
\(\times 32=\) CHI3 - CHI2
\(\mathrm{Y} 32=\) ETA3-ETA2
\(\times 31=\mathrm{CHI}-\mathrm{CHI}\)
Y31 \(=\) ETA3 - ETA1
\(\times 21=\) CHIL - CHIL
\(Y 21=E T A 2-E T A\)
\(K J 2=2 * K 1\)
38
\(k J 2=2 * K 1\)
\(K J 1=\)

\(K J 3=K J 4-1\)
\(K J 6=2 * K 3\)
\(K J 5=K . J 6-1\)
\(A 1=0.5 *(\times 32 * \times 21-\times 21 * Y 32)\)
\(A R=1.0 /(2.0 * A 1)\)
\(88(1, K J 1)=A R * Y 32\)
\(B B(1, K J 3)=-A R * Y 31\)
\(B B(1, K J 5)=A R * Y 21\)
\(\operatorname{BB}(2 ; K J 2)=-A R * \times 32\)
\(B B(2, K J 4)=A R * \times 31\)
\(B 8(2, K J 6)=-A R * \times 21\)
\(\mathrm{BB}(3 ; K J 1)=\mathrm{BB}(2 ; \mathrm{KJ2})\)
\(8 B(3, K J 3)=B 8(2, K J 4)\)
\(8 B(3, K J 4)=8 B(1, K J 3)\)
\(B B(3, K J 5)=8 B(2, K J 6)\)
\(B B(3, K J 6)=8 B(1, K J 5)\)
```

 CN = El*THICK(II/(1.0 - CNU*CNU
    ```
    \(D D(1,1)=C N \neq A 1\)
    \(\mathrm{DO}(1,2)=C N * C N U * A\)
    \(D D(2,1)=D D(1,2\)
\(D O(2,2)=D D(1,1)\)
    DD(3,3) \(=\) CN*0.5*11.0-CNU)*A1
c BBT*DD*BB
    50 DO \(2 L=1,10\)
        \(D D_{2}{ }^{M}=1,3\)
\(H(L, M)=0.0\)
    DO \(2 \mathrm{~K}=1,3\)
    \(2 \mathrm{H}(L, M)=H(L, M)+8 B(K, L) * D O(K, H)\)
IF(ITYP.GT.1)
        IF(ITYP.GT.1) GOTO 4
        \(003 L=1,10\)
        \(003 \mathrm{H}=1,10\)
\(00 \mathrm{~K}=1,3\)
    \(3 S(L, H)=S(L, H)+H(L, K) * B H(K, M)\)
    RETURN
DD \(5 L=1,10\)
    DD \(5 \mathrm{~L}=1,10\)
DO \(5 \mathrm{M}=1,10\)
        \(D O\) S \(M=1,100\)
\(S S(L, M)=2 E R O\)
        5 SS(L, S\()=\mathrm{SS}(\mathrm{L}, \mathrm{M})+\mathrm{H}(\mathrm{L}, \mathrm{K}) * B E(K, M)\)
\(c\)
\(c\)
\(c\)
rotate anisotropic or cracked stiffeness matrix
\(\infty 150 \mathrm{~L}=1,10,2\)
        \(\begin{array}{ll}\operatorname{ROT}(L, L) & =\text { OMEGA1 } \\ \text { OTLLLL } & =\text { UMEGAZ }\end{array}\)
        ROT(L+1,L) =-OMEGAZ
    \(50 \operatorname{ROT}(L+1, L+1)=\) OMEGA1
    \(\begin{array}{ll}\text { DO } 170 L=1,10 \\ 00 & 170 \\ M & =1,10\end{array}\)
    \(S T(L, H)=0.0\)
    DO 160 LM \(=1,10\)
    \(160 S T(L, M)=S T(L, M)+R O T(L A, L) * S S(L M, M)\)
    170 CONTINUE \(=1,10\)
        \(D 0190 \mathrm{~L}=1,10\)
\(\mathrm{DO} 190 \mathrm{M}=1,10\)
        STEMP \(=0.0\)
        DO \(180 \mathrm{LM}=1,10\)
    180 STEMP \(=\) STEMP + ST (L, LM)*RÜT (LM, M)
    \(190 S(L, H)=S(L, M)+S T E M P\)
        return
\({ }_{c}^{c}\) CRacked element
100 continue
anisotropic or cracked element stiffness matrix
CA \(=1.0 / 11.0-\) CNUL2*CNU21)*THICK(I)
\(\operatorname{DO}(1,1)=E 1 * C A\)
\(\operatorname{DO}(1,2)=E 1 * C A * C N U 12\)
```

 DO(2,1)=DO(1,2)
 CD(3,31= DSQRT((E1/(1.0+CNU12)*(E2/(1.0+CNU21))/4.0)*THICK(I)
 IF(ITYPE(J).EQ.4) DO(3,3) = 2ERO
 GOTO 50
 C
this part of stiff calculates the member stiffness matrix
FDR THE REINFORCEMENT BARS
200 XX = x(JJ2) - x(JJ1)
XLS = OSQRT(XXX*XX + YY*YY
CX = XX/XLS
C= EL*SAREA\U1/XLS
Cx2 = CX*CX
Cx2 = Cx*CX
CXY = CX*CY
C S(1,1) = C*C X2
S(1,2)=C*CXY
S(1,4)=-S(1,2)
S(2,2) = C*Cr2
S(2,3)=S(1,4)
S(2,4)=-S(2,2)
S(2,3)=S(1,1)
S(4,4)=S(2,2)
210 00 220 IR =1.
00 220 JR = 1,4
S(JR,IR)=S(
StiffnesS OF bOND LINK
SWICH = 1 HORILONTAL
ISWICH = 2 VERTICAL
230 DO 240 IB = 1,4
240 D(IB,JB) = = 0.0
IFIISWICH.EQ.1) GOTO 250
C VERTICAL STEEL BAR
CO =0.0
SI = 1.0
C HORIZONTAL STEEL bAR
250 CO = 1.0
260 C2 = CO*CO
S2=CO*C0
SC=SI*CO (1, NKHCZ +VKY*S
S(1,+)=VKH*C2 *VKV*S2
S(1,3)= -S(1,1)
S(1,4)=-S(1;2)
S(2,3)= S(1,4)

```
```

S(3,3) =S(1,1)
S(3,4)=s(1,2)
goto 210

```
END
SUBROUTINE TYPE(J,MTYP)
- THI S SUBROUTINE CALCULATES THE PROPER MOCULI OF ELASTICITY
    AND ASSIGNS. THE PARAMEIER ITYPE TO THE ELEMENTS
    ITYPE \(=1\) ISOTROPIC, ELASTIC
    - ITYPE \(=2\) ANI SUTROPIC, ELASTIC
    - ITYPE \(=3\) ANISOTROPIC, PLASTIC
\(\cdot\)
IMPLICIT REAL*B(A-H,C-2)
COMMON S \((10,10), V K H, V K V\)
COMMON DXX,OYY,E1,E2,CNU,CNULZ , CNW21,EP1,EP2,SNU,PI
CDMMON NN, NH, MA, NODV, NJOH, NUMNUD, NREL, NT EL, NUMBAR, MAXNDF, MDAND
    COMMON NINCR,K INCR, NCURVC,NCURVS,NZC, NZS, ISCALE, NDF, IAUTO
    COMMMN NUMDF, NUMTDF, NIT, IT, NCURVB, NZE, NOOL
    COMMON/TYP / ITYPE(1152),ISTYPE(501,IBTYPE(100), KDIR
    COMMON/HODULC/ SEC(10,2),EC(9), XNUC 191 ,TOL
    COMMON/MODULS/ SES(20.2),ES(19),XNUS(19)
    COMRON/MODULB/ SEB(10,2), EB(9)
    COMAONCONSTR/ STR(1152,3),STRP(1152,21,EPS (1152,3),EPR(1152,2
    COMMON/STLSTR/ ESPSi 501, STRSi 501, TESPSI 50), TSTRSi 50,21
    COMMON/ BOND, EPSB( 100,21, STKB 100,21 , TEPSB 100,21 , TSTKB \((100,2)\)
(2TA D10/1.00-10/. D20/1.00-20/ , ZERG/0.00+00/
9000 FORMAT ( \(/ 1,1 \times,{ }^{\circ}\) CONCRETE ELEMENT NO. 9,16 ;
c 9010 FORMATI \(/ 1,1 \mathrm{XX}, \mathrm{S}\) SEEL ELEMENT NO. \(\%, 16\) )
    NINCR \(=1\) CALLS for automatic scaling
    TYPE MUST REMAIN UNCHANGED (ITYPEIJ) \(=11\) FOR PROPER SCALING
    KPRER = O
    IF (MTYP - 2) 10,120,210
\(c\)
\(c\)
\(c\)
determine type of concrete elements
\(10 \mathrm{~K}=1\)
    \(K=1\)
\(11=\) NZC
\(12=\) NZC
    \(12=N 2 C\)
\(I 2=N R C\)
\(E P 1=E P R(J, 1)\)
    \(E P 1=E P R(J, 1)\)
\(E P 2=E P R(J, 2)\)
    GOOTO
K
K
\(=2\)
\(\begin{aligned} K_{E P 1} & =2 \\ & =E P 2\end{aligned}\)
\(K P_{1}=E P_{2}\)
\(11=12\)
30 IF IEP1 .GE 0.0000 ) GU TO 70

    IFII2.GE.11 GOTO 50
```

 KPRER=1
 \0 12 = = l
 2000 FORMAT (2000) J, STOP MTYJ =4, 15, (MTYP =', 13)
 STOP
 70 12= =N2C
 IF(EP1.LT.SEC(12+1,2)) GOTO 90
 C CRACKED ELEMENT
ITYPE(J)=4
EL = LERO
CNU12 = ZERO
12 = NZC LNU21 = ZERO
FFIEP2.LT.O.ODOO) GOTO 75
IF(EP2.LT.SEC(NCURVC,2)) GOTO 78
URITE(6,7310)
7310 fORHAT(' DOUBLY CRACKED ELEMENT, PROGRAM STOPS')
CALL EXIT
75 EP2 NEGATIVE
76 IF(EP2.GE.SEC(12,21) GOTO 78
I2 =12-1) GOIO }7
KPRER =1
12=1
78 E2= EC(12
90 IFIK.EQ.l) GDTO 20
100 E2 = EC(I2)
IFIEL.LT.E2I GOTO 101
ASSIGN NU12
CNU12 = XNUC(11)
CNU21 = E2/EI*CNUL2
GOTO 106
C ASSIGN NU21
O1 CNU2l=XNUC(12)
06 ITYPE(J) = 3
IF((11.LT.(NZC-1)).OR.(II.GE.(NZC+1)1) GOTO 110
F(12.LT.(NLC-1)).OR.(12.GE.(NZC+1))) GOTO 110

```

```

 *)
 F(II1.EQ.NLC-1).AND.(12.EQ.II.OR.12.EQ.NZCI) GO TO 110
 110 CONTINUE
 CNU = CNUL2
 FIKPRER.EQ.O) RETURN
 WRITE(6,9000) J
 CALL PRER2IKPRER
 C c determine type of steel elements
120 11 = NLS
EP1 = TESPS(N)

```
```

 CDMMON S 110,10),YKH,VKY
 COMMON DXX,OYY,E1,E2,CNU,CNU12,CNN21,EP2,EP2,SNU,P1
 M, MMBAK, MAXNOF, MBAND
 COMMGN NINCR,KINCR,NCURYC,NCURVS,NZC,NZS, ISCALE,NDF,IAUTO
 COMMON NUMDF,NUMTDF,NIT,IT,NCURVB,NZB,NOU2
 COMMON PQOL (A(1O8,54),B1108),NUMBLK
 NB}=
 C
RENIND 1
REWIND 2
Goto 2
Shift lower part of b and a into upper part
CLEAR LOWER PaRT
LNB = NB +1
DO 3 N = 1,NN
NM =NN+N
B(NM) = 0.0
DO 3H=1,MBAND
3 A(N,N) =A(NM,
3)A(NM,M) = O.0
IF(NUMBLK - NB) 2,4,2
C read loads and stiffness into lower part of a and a
2 READ(2) (B(N),(A(N,M), N=1,MBAND), N=NL,NH)
IF(NB) 4.1.4
C REDUCE UPPER PART
4 CONTINUE
DO 5 N = 1,NN
IF(ACN:LH) 6,5,6
6 B(N) = B(N)/A(N,1)
DO 7 L = 2,MBAND
BQ=A(N,L)/A(N,1)
BQ =ANN,L)/A(N,I)
J=O
DO gK=LIMBAND
9 J= J + 1
9 A(I,J) =A(I,J)-A*A(N,K)
A(N,L)=Q
7 CONTINUE
7 CONTINUE
IF(NUMBLK - NB) 10,11,10
write loadS ano stiffnesS on tape number 1
10 WRITE(1) (BIN),(AlN,H), M=2,MBANDI, N=1,NN)
GOTO 1
C
backsubstitution starts with last block still in cure

```

11 cuntinue
\(0012 M=1, N N\)
\(0013 \mathrm{~K}=2\), MBAND
\(L=N+K-1\)
\(13 B(N)=B(N)^{-A}-A(N, K) * B(L)\)
\(N M=N+N N\)
2 A(NH) \(=B(N B)=B(N)\)
\(\mathrm{NB}=\mathrm{NB}-1\)
\(\mathrm{IF}(\mathrm{NB}) 14,15,14\)
C backspace tape one record and read new block
14 BACKSPACE 1 (N), (A(N,M), M=2, MBANDI, \(N=1, N N)\) REACK(2) (B
GOTO 11
15 RETURN
END
SUBROUT INE MODIFY(I,USTARI
this suaroutine modifies the min stiffness matrix FOR PRESCRIBED DISPLACEMENTS U(I) = USTAR
THE ELEMENTS OF THE I-TH ROH AND COLUMN ARE SET EQUAL TO ZERI
the element in the diagonal is set equal to 1.0
Parameters: \(\begin{aligned} & \text { i } \\ & \text { ustar } \\ & =\text { position of oisplacement relative to blockbeg } \\ & \text { of the displacement }\end{aligned}\)
APLICIT REAL* 8 (A-H, O-Z
COMMON DXX,OYY,E1,E2, CNU,CNU12, CNU21, EP 1,EP 2, SNU,P I
COMMON NN, NH , MA, NOOV, NODH, NUMNOD, RREL, NTEL, NUMBAR, MAX NDF, MGANO
COMMON NINCR,KINCR, NCUR VC, NCURVS,NZC, NZS,I SCALE, NDF, I AUTU
COMMON NUMDF ,NUMTDF,NIT, IT, NCURVB, NZB, NOD2
COMMON/POOL/A(108,54),8i108)' NUMBLK
\(c\)
\(0030 \mathrm{~J}=1\), MBAND
IF(K.LE.O \(=1+1\)
\(B(k)=B(k)-A(K, J) * U S T A R\)
\(A(K, J)=0.0\)
\(K=I+J\)
\(20 \underset{\text { Kf(K.GT.NHI) GOTO } 30}{\mathrm{~K}=\mathrm{I}}\)
IF(K.GT.NH) GOTO 30
\(B(K)=B(K)-A(I, J) * U S T A R\)
A(I,J) \(=0.0\)
30 continue.
\(A(I ; 1)=1.0\)
BII) \(=\) USTAR
RETURN
subroutine scale
SUBROUTINE SCALE ADJUSTS THE LUAD VECTOR ALDAD ANO THE PRESCKIBED DIS.PLACEMENT VECTOR AFTER THE FIRST SOLUTIUN STEP FOR NINCR = \(i\) THE LOAD INCREMENTS ARE AUTOMATICALLY CALCULAT EO AND PLACED IN XLOAD, ALUAD CONTAINS THE CURRENT LOAD APPLIED
```

STOPS AFTER THE FIRST RUN
OR NINCR GT 1 THE program realus the inOIVIDUAL LGAD InCREmENTS
ANO ADOS THEM TO ALOAD

```
IMPLICIT REAL* 8(A-H, O-2
COMMON S \((10,10)\), VKH, VKV
COMMON DXX, OYY,E1, E2,CNU,CNU12,CNU21,EP1,EP2,SNU,P
    COMMON NN, NH, MA, NODV, NODH , NUMNOL, NREL, NTEL, NUMBAR, MAX NDF , MBAND
    COMMON NINCR, KINCR, NCURVG, NCURVS, NRE, NZS, ISCALE , NDF, IAUTO
    COMMON NUMDF, NUMTDF ,NIT, IT ; NCURVB, NZB, NOD2
    COMMON/MOLLC SECI 20,21 , ES (19), XNUS 119 '
    COMAON/MODULS/ SES (20,2),ES(19)
    COMMNNDOLLA SEB(10,2),EB(9)
    COMMON/LOADS / XLOAD 20,21 ,xBOUNDI 20.21
    COMMON/LOADS1/ ALOAD 20,2\(),\) ABOUND 20,21
COMMON/LOADS2/ ILOAD \(201,1 B O U N D(201, N L O A D, N B C S\)
    COMHONREINF / SAREA 50 ), JCNL 650,21 , ITOP ( 50,61 , NREINF, IS1, IS
    COMMGN CONSTR/ STR11152,3),STRP(1152,2),EPS(1152,31,EPR(1152,2)
    COMHON/CONSTI/ TSTR(1152,3),TEPS(1152,3)
    COMHONSSTLSTR/ ESPS (501,STRSI 50),TESPSI 501,TSTRSC 50.21
    search for largest strain at the end of the first solution
    ECMAX \(=0.0\)
ETHAX \(=0.0\)
    DO 1 KSCALE \(=1, \mathrm{NTEL}\)
    IFISTRP(KSCALE,1)-ETMAX) 2,2,20
    20
    2 IF(STRP(KSCALE,2) - ECHAX) 100.1.1
    CO ECMAX \(=\operatorname{STRP}(K S C A L E, 2)\)
    JELMAX \(=\) KSCAL
CUNTINUE
FIND THE PROPER SCALING FACTORS
FIND THE PROPER SCALING FAC
XSCAL! \(=\) SECSNZC+1.11/ETMAX
WRITE(6,2000) IELMAX,STRP(IELMAX,1),XSCAL1, JELMAX, STRP(JELMAX,2),
    12 XSCAL2
2000
    FORMATI/I/,' SCALING INFORMATION•, ,' ELEMENT NOI, I5," PRINCIPAL
    1 STRESS: SP1 = 1,1PO12.5,' SCALE FACTOR \(x\) 1.1P010.3.1.' ELEMENT
    \(2 \mathrm{NO}, 15\)
31 PDLO
in
    IF(©XSCALL.GT.1.01.OR.(XSCAL2.GT.1.01). GOTO 3
    LOAD YIELOS STRAINS LARGER THAN ELASTIC LIMIT
    XLOAD CONTAINS INCREMENTAL LOADS
aload gontains load at limit and subsequent total loads
    XSCAL \(=\) XSCALZ
    NINCR \(=2 * X S C A L\)
IF(XSCALLILTXSCAL2) XSCAL = XSCALI
    DO 5 IL \(=1\), NLOAD
    ALOAD(IL,2) \(=\) XLOAD(IL, \(11 * \times S C A\)
    xLOAD(IL,1) \(=(\operatorname{XLOAD(IL,1)}-\operatorname{ALGAD(IL,1)}) / N I N C R\)
    5 XLOAD(IL,2) \(=(X L O A D C I L, 2)-\operatorname{ALOADC}(1 L, 2) 1 / N I N C R\)
    DO 6 IB \(=1\), NaCS
    ABOUNO. \(I B, 1)=\) XBOUND(IB, 1)*XSCAL

\section*{ABOUNOL (B,2) \(=\) XBOUNO(1B,2) \(\# \times\) SCAL}

XBOUND \((18,1)=(X B O U N D(18,1)-A B O U N D(18,1)) /\) NINCR
6 XBOUNO(IB,2) \(=(X B O U N D(I B, 2)-A B O U N D(1 B, 2)\) )/NINCR GOTO 14
c largest strain. is less than elastic limit
3 IFININCR - \({ }^{11}\) 8,9,10
mRCNG NINCR, CHANGEO TO
\(8 \underset{\text { KPRER2 }}{\operatorname{NINCR}} \mathbf{1}\) CALL PRERZ (KPRERZ)
C TOTAL LOAD APPLIED dOES NOT GIVE INELASTIC behavion - ELASTIC SOLUTION ONLY
- KPRER2 \(=4\)
CALL PRER2
(KPRER2)

11 CONT IMUE
stop

\section*{FIRST INCREMENT IS TOO SMALL TO YIELD INELASTIC STRAINS
REAO NEXT INCREMENT}

10 continue

ENTRY SCALE2
IFIKINCR.EQ.NIMCR) GOTO 11
OO 12 IL E 1, NLOAD
IFIIAUTO.EQ. 1 ) GOTO 122

IFIKLOAD.EQ. ILOADIILII GOTO 122
WRITE( 6,1100\()\) IL
11CO FORMATI: LJAD ERROR AT LOAD'. 15 ) CALL EXIT
000 FORMAT(15.2F12.41
\(122 \operatorname{ALOAD(IL,1)=ALOAD(IL,1)+XLOAD(IL,1)}\) READ (5,1919) KBCS
1919 FURMAT(IS)
IFIKBCS.EG.O) GOTO 14
DO 13 IB \(=1\), NBCS
IF
\(=\) (
13 ABCUND(IB,2) \(=\) ABOUND(IB,2) +XBOUND(IB,2)
14 CONTINUE
KINCR \(=\) KINCR +1
5020 FORMATI \(1 \mathrm{HL}, 4211\) 1/,1X,42(iH*1,1)
h*)/43h * Loading information
WRITE (6,5220) NINCR,KINCR
220 FORMATIIX, 'TOTAL NUMOEER OF INCREMENTS', \(15 / / / 1 \mathrm{X}\),' LOAUS FOR INCREMEN \(1 T\) NO, \(1 ; 15,11\)

C2 WRITE(6,5032) JCNL(ILOAD(IL),2), XLOAD(IL,1),-XLOAU(IL,2)
WRITE(6,9010) KINCR
9010

602 OO 602 IL * 1,NLEAD
IFITE(6,5032) JCNL(ILOAD(IL), 21, ALOADIIL,11, ALOAD(IL,2) IFKBCS.EQ.O) RETURN WRITE 60,50301
5030 FORMAT ( \(2 \mathrm{HL}, 42(2 \mathrm{H} *) / 43 \mathrm{H}\) * BOUNDARY CONDITIONS (,1x,42(1H*), 1)
31 FORMAT (IX,'TOTAL NUMBER OF INCREMENTS',I5,///,IX,'DISP. FOK INCREM 1ENT NO.', 15,/1
1 KRITE 6,5031)
5031 format
DO 61 IB \(=1\), NBCS
X-DISPL:,7X, \(\quad\)-DISPL IN INCHES',/I
WRITE(6,5032) IBOUND(18), XBOUND (IB,11, XBOUNO(IB,2)
WRITE 6,9020 ) KINCR
9020 FORMAT (///,1X, 'TOTAL DI SPL. FGR I NCREMENT', 15,1
MRITE(6,5031)
612 WRITE(6,5032) IBQUND(IB), ABDUND (IE, 1), ABOUND(IB,2) RETUR
ENO
SUBROUTINE STRESSII,J,JJ1,JJ2,JJ3,MTYP)
```

I \quad I Number of rectangular element processed
= NuMber of rectangular elenent processed

* number of node 1
\approx NUMBER OF NODE 1
$=$ NUMBER OF NODE 2
$=$
N NABBER OF NOCE
$\begin{aligned} \text { : MTYP }=\text { MATERIAL TYPE } & =1 \text { FOR CONCRETE } \\ & =2 \text { FOR STEEL }\end{aligned}$
I = number of rectangular element processed
$\begin{aligned} \text { J } & =\text { NUMBER OF REIANGU } \\ \text { JJ1 } & \approx \text { NUMBER OF NODE } 1 \\ \text { JJ2 } & =\text { NUMBER OF NODE } 2 \\ \text { JJ3 } & =\text { NUMBER OF NODE } 3\end{aligned}$
- MTYP = MATERIAL TYPE $\begin{aligned} 1 & \text { FOR CONCRETE } \\ & =2 \text { FRR STEEL }\end{aligned}$

```
    IMPLICIT REAL * 8 ( \(\left.A-\mathrm{H}_{2}, \mathrm{O}-2\right)\)
    COMMON S(10,10), VKH,VKV COMAON DXX,OYY,E1,EZ,CNU,CNU12, CNU21,EP 1,EP2,SNU,PI
    COMMON NN, NH, MA, NOON, NODH, NUMNOO, NREL, NTEL, NUMBAR, MAXNOF, MBAND
    COMMON NINCR, KINCR, NCURVC, NCURVS, NZC, NZS, ISCALE, NDF, IAUTO
    COMMON NUMDF; NUMT DF, NIT, IT, NCURVE,NZB, NOD2
    COMMON/ELEM \& X(650),Y(65́O),THETA(1152,2).U(1300), TU(1300)
    COMANNELEM1, JTOP1288,4), THICK(288),
COMMON/TYP
ITYPEII52), ISTYPE(50), IBTYPE(100), KDIR
    COMMON/TYP \(/\) ITYPEII152), ISTYPE(50), IBTYPE(100),KDIR
    COMMON/MODULC/ SEC(10,2),EC(9),XNUC (9);TOL
COMMON MODULS/ SES \((20,2), E S(19), X N U S(19)\)
    COMMON/MODULB/ SEB(10,2),EB(9)
    COMMON/REINF (SAREAC 50), JCNL ( 650,21 , ITOP ( 50,6 ), NREINF, ISI, IS
    COMMON/CONSTRS STR(1152,3),STRP(1152,21,EPS(1152,3),EPR(1152,2)
    COMMON/CONST1/ TSTR1152,31,TEPS(1152,3)
    COMMON/STLSTR/ ESPS( 50),STRS( 50), TESPS( 50), TSTRSI 50,2)
    DATA 020/1.00-201, 2ERO/0.00 00/, 010/1.0D-10/
    DIMENS ION H(3,6), UU(6), D(3,3), JC(3)
    CALL TYPE (J,MTYP)
    FIMTYP .NE.1) GOTO 110
    DO LH \(=1,3\)
    \(\begin{aligned} 10 \mathrm{H}\left(L \mathrm{H}_{2} \mathrm{MH}\right) & =0.0 \\ \mathrm{DO} 20 L D & =1,3\end{aligned}\)

IMPLICIT REAL*B (A-H,O-Z)
COMMON S(IO;1O),VKH;VKV
COMMON DXX,OYY,E1,E2,CNU,CNU12, CNU2 1,EP 1,EP2, SNU,PI
COMMON NINCR KINCR, NCURVC NCURVS NZC NLS ISCALE, NOF, IAUTO
COMmON NUMDF, NUMTDF,NIT, IT,NCURVE,NZB,NOD2

COMMON/MODULC/ SEC(10,2),EC(9),XNUC (9),TOL
COMMON/MODULES SEB(10,2),EB(9)
OMMONRENSTR STRIL152,
COMMON/CONSTI/ TSTRIII52,3i, TEPS(1152,3)
COMMON/STLSTR/ ESPS( 50),STRS( 50), TESPS( 50), TSTRSI 50,2)
DATA 020/1.00-201 , 2ERO/0.00 00/ , 010/1.0D-10/
CALL TYPE(J,MTYP) 110
\(10 L H=1,3\)
\(\begin{array}{ll}\text { DO } 20 L D & =1,3\end{array}\)
    \(\infty 020 M D=1.3\)
\(O(L D, M O)=0.0\)
    ALPHA \(=0.0\)
        BETA \(=0.0\)
        \(J C(1)=J J 1\)
        \(\begin{array}{ll}\mathrm{JC}(2) & =\mathrm{JJ} 2 \\ \mathrm{JC}(3) & =\mathrm{JJ} 3\end{array}\)
        \(C B=1.0 /((x(J J 3)-x(J J 2)) *(r(J J 2)-r(J J 1))-\)
    1 (x(JJ2)-X(JJI))*ir(JJ3)-Y(JJ2) \()\)
    SIGMA \(=D * H * U\)
    DO \(25 \mathrm{~K}=1,3\)
    \(J I=2 * J C N L(J C(K), 2)\)
    \(25 \operatorname{UU(2*K} \operatorname{UW}=1)=U(2 * K)\)

DO \(20 \mathrm{MD}=1.3\)
MLPHA \(=0.0\)
BETA \(=0.0\)
\(\operatorname{JC}(1)=J J 2\).
\(J C(2)=J J 2\)
\(J C(3)=J / 3\)

SIGMA \(=D * H * U\)
\(J I=2 * J C N L(J C(K), 2)\)
25 UU(2*K, \(=1)=U(J I-1\)
    SET UP H - Matrix
    \(H(1,1)=C B *(Y(J J 3)-Y(J J 2))\)
\(H(1,3)=C B *(J J 3)-Y(J J 1)\)
    \(H(1 ; 3)=-C B *(Y(J J 3)=Y(J J 1))\)
    \(H(1,5)=C B *(Y(J J 2)-Y(J J 1))\)
    \(H(2,2)=-C B *(x(J J 3)=x(J J 2))\)
    \(H(2,4)=C B *(X(J J 3)-X(J J 1))\)
    \(H(2,6)=-C B *(x(J J 2)-X(J J 1))\)
    \(H(3,1)=H(2,2)\)
    \(H(3,2)=H(1,2)\)
\(H(3,3)=H(2,4)\)
\(H(3,4)=H(2,3)\)
    \(H(3,3)=H(2,4)\)
    \(H(3,4)=H(1,3)\)
    \(H(3,5)=H(2,6)\)
\(H(3,6)=H(1,5)\)
    0040
ETEMP \(=0.0 .3\)
    D \(30 \mathrm{~m}=1\).
    DO \(30 \mathrm{M}=1,6\)
30 ETEMP \(=\) ETEMP
40 EPS( \((J+L)=E T E M P(L, M) * U U(M)\)
Calculate principal strains
    \(\operatorname{EPSX}=T E P S(J, 1)+E P S(J, 1)\)
\(E P S Y=T E P S(J, 2)+E P S(J, 2 i\)
    EPSY \(=\) TEPS \((J, 2)+\) EPSS J, 21

    EMAX = DSGRT(RAD)
    EAVK \(=(E P S X+E P S Y) / 2.0\)
    EPR(J.1) \(=\) EAVR + EMAX
    EPR(J.2) \(=\) EAVR - EMAX
IF(OABS(EPSX - EPSY).LT.D20) GOTO 50
    TAN2A \(=\) EPSXY/(EPSX-EPSY)
ALPHA \(=\) OATAN(TAN2A) \(\# 90.0 /\) I
    THETAIJ.1) \(=\) ALPHA
C upoate type
50 CALL TYPEIJ.MTYP)
IFIITYPE(J).NE.1) GOTO 80
\(\stackrel{c}{c}\)
set up h - matrix
\(H(1,1)=C B *(Y(J J 3)-Y(J J 2))\)
\(H(1,3)=-C B *(Y(J J 3)-Y(J J 1)\)
\(H(1,5)=C B *(Y(J J 2)-Y(J J 1))\)
\(H(2,2)=-C B *(X(J J 3)-X(J J 2))\)
\(H(2,4)=C B *(X(J J 3)-X(J J 1))\)
\(H(3,1)=H(2,2)\)
\(H(3,3)=H(2,4)\)
\(H(3,5)=H(2,6)\)
\(H(3,6)=H(1,5)\)
0040
ETEMP \(=0.0 .3\)
30 ETEMP = ETEMP
\(\operatorname{EPSX}=\operatorname{TEPS}(J, 1)+E P S(J, 1)\)
\(E P S Y=\operatorname{TEPS}(J, 2)+E P S(J, 2 i\)
EPSXY \(=\operatorname{TEPS}(J, 3)+\operatorname{EPS}(J, 3)\)
\(R A D\)
(IEPSX \(-E P S Y) / 2.0) * * 2+(0.5 * E P S X Y) * * 2\)
EMAX \(=\) DSURT(RAD)
EPR (J,1) \(=\) EAVR EPSYR 2.0
IF(OABS(EPSX - EPSY).LT .D20) GOTO 50
TAN2A \(=\) EPSXY/(EPSX - EPSY
ALPHA \(=\) DATAN \((T A N 2 A) * 90.0 / P I\)
THETAIJ.1) \(=\) ALPHA
upoate type
50 CALL TYPE(J.MTYP)
ELASTIC, I SOTROPIC
```

c
CD =E1/(1.0 - CN(U*CNU)
D(1,1)=CD
O(1,2)=CD*CN
D(2,1)=0(1,2)
D(2,2)=CD
C
DO 70 L = 1,3
STEMP =0.0

```

```

c
C P
SIGX = TSTR(N,1) + STR(J,1)
SIGY = TSTR(J,2) + STR(,2)
SIGXY = TSTR(J.3) SIGYSTR(JI3) +SIGXY**2
SMAX = OSQRT(RAD)
SAVR = ISIGX + SIGYI/2.0
SIRP(J,1) = SAVR + SHAX
STRP(J,2) = SAVR - SHAX
IFIDABSISIGX - SIGYI.LT,D2O1 RETURN
TAN2B= (SIGXY*2.0 I/(SIGX-SIGY)
TAN2B = ISIGXY*2.0)/(SIGX
THETA(J,2)=-BETA
RETURN
C
80 COA = 1.0/11.0 - CNU12*CNU211
COA =1.0/11.0
D(1,2) = E1*CDA*CNN12
0(2,1)=0(1,21
O(2,2)=E2*CDA
DTEMP = 0.0
STEAP % NO.O
90 STEHP = STEMP + D(L,M)*EPR(J,M)
100 STRP(S,L) = STEMP
RETURN
110 XJI = X(JJ2) - X(JJ))
YJI = Y(JJ21-Y(JJ1)
SL2 = XJI*xJI + YJI*YJI
KS1 = 2*ITOP(J,5)
ESPS(J)=(XJI*(U(KS2-1) - U(KS1-1)) + YJI*(U(KS2) - U(KSL)))/SL2
IF(EL.LT.D2D) CALL EXIT
C IF STEEL STRESS-STRAIN CURVE HORIZUNTAL PROGRAM STOPS
C determine total steel stress from stress-strain curve

```

NCURV \(=\) MCURVS - 1
DU \(120 \mathrm{~K}=1\), NCUR
CE \(=1.0010\)

20 Cuntinue

1(SES(IE+1,2) - SES(IE,2))
\(c\)
\(c\)
MTYP \(=3\)
IF (JJ2.GE.(JJI + NOD2I) GOTO 125
\(c\)
\(c\)
\(c\)
ERTICAL BAR
\(C O=0.00+00\)
\(S_{1}=1.00+00\)
\(K O I R=2\)
GOTO 130
\(C\)
\(C\) HORIZONTAL BAR
\(25 C O=1.00+00\)
SI \(=0.00+00\)
KDIR \(=1\)
130 CO
KLAST \(=0\)
KBL \(=2 * J C N L(1 T O P(J, 3), 2)\)


EPSB(L,2) SI * UIKB2)
EPI = TEPSB(L.1) SI*
CALL TYPE 1 L HTYP


IF ( J . NE. Numbar ) Go to 170

KB1 = 2 *JCNL(ITOP(J,4),2)

KLAST \(=1\)
GO TO 140
7C RETUR
SUBRIUTINE RESOUT(ICHECK)
- SUBROUT INE RESOUT PRINTA ALL RESULTS AFTER EACH LOAD INCREMENT RESULTS APPEAR IN TABULAR FORM
RESUITS APPEAR IN PACH LOAD INCREMENT

IMPLICIT REAL*B(A-H,O-L)
COMACN S(10,10),VKH,VKV
COMHON DXX, DYY,E1,E2,CNU,CNUL2,GNUZ1,EP1, EP2 ISNU, PI
COMMON NN, NH, HA, NODV, NODH, NLWNNOD, NKEL, NTEL, NUMAAK, MAXNOF, HBANO COMMIN NINCR, KINCR, NCURVC, NCURVS, NZC, NRS, IS CALE, NOF, IAUTO

COMMON/ELEM1 / JTOP (288,4), THICK(288)
COMMCN/TYP

COMAON/CONSTR/ STR(1152,31,STRP(1152,2),EPS(1152,31,EPR11152,2) COMACN/CONSTIS TSTRII152,3i,TEPS(1152,3)
COMMON/STLSTR/ ESPS( 50), STRS( 50), TESPS ( 50),TSTRS ( 50,2)
 DIMENSI UN SUN(3), ROWSUM(3)
\(c\)
\(c\)
\(c\)
PRINT NODAL DISPLACEMENTS
ILINE \(=0\)
1000 FORMAT(IH1,42(1K*)/43H * NUDAL OISPLACEMENTS 1/,1X,42(1H\#),1
WRITE(6,1001)
1001 FORMAT(' NUDE NO. \(K=0\)
\(D 010 \mathrm{NA}=1\), NUMTDF 2
ILINE
\(K=1\)
1002) K , TU(NH): TU(NM+1)

1002 FORMAT (1X, 15,8X, 1PD12.5, BX, 1PDLZ.5
IFIILINE.NE.55) GOTO 10
MRITE (6, 10031
1003 MRI TE (6.1001)
10 CONTINUE

7200 FRITHATI, 7200 ! IT ISOLUTION CONTINUES:! 11
C Print stresses in concrete
004 MRITE(6,1004)
4 FORMAT(1H1,42(1H*)/43H * STRESSES AND STRAINS IN CONCRETE * \(1 / 1 \times, 42\left(1 H^{*}\right), 11\)

 321.1)

HINE = 0
U 20 NE \(\approx 1, N T E L\)
if (ITYPEINEI.EQ. It GU!: is

HRITE(6,1060) NE, STRP (NE, 1), STRP (ME. 21, THETAINE, 11,ITYPEINEJ, 1EPR(NE,1), EPR(NE, 2), THETA(NE, 1)
 1), 1x,1PD12.5)

IF(ITYPE(NE):EG.4) WRITE(0,1007)
FURNAT1
GOTC 16
15 WRITE (6,1006) NE, TSTR(NE, 1), TSTKINE, 21,TSTR(NE, 31, STRP(NE, 1),STRPI
 2E, 1) , EPRINE, 21 , TME TA(ME, 11

11x, \(5 x, 4 x, 3(1 P D 12.5,2 x), 2 x, 2(1 P D 12,5,2 x), 1 x, 1 P(1) ; n 5)\)
16 IFIILINE.NE. 28) GOTO 20
WRITE(6, 1003 )
WRITE(6,1005)
20 CONT INUE
20 CONI IFINE
\(c\)
\(c\) print steel and bond strains and stresses
WRITE(6,9070)
9070 FORHAT (1H1,42(1H*), 43 H * STRESSES \& STRAINS IN REINF ORCEMENTS * HRITE(6,9080):'
9080 FORMAT © BAR NO, EPS ILOA SIGMA CALC. SIGMA DEP IIC JED'.5X,' TYPE '/)
DO 30 IB \(=1\), MUMBAR
9090 FRITE( 6,9090 I IB,TESPS(IB), TSTRS(IB, 1), TSTKSIIE, 2), ISTYPEIIB) WRITE \((6,9100)\)
9100 FORHAT(1H1,42(1H*),/43H * BUND STRESSES
1,1 H3H IN DIRECTIUN DF GLOBAL AXES
WRITE \((0,9110)\)
NO \(40 \mathrm{~L}=1\), NUMBAR

1 If (IBTYPE(L) TSTRB(K,2), IBTYPE(K)
40 Cuntinitelli .EG. 3) WRITE 0,9030 )
40 CUNTINJE

WHITE(6,9120) ITSP(NUMGAK,6) TEPS
IF I IBIYPE(NUMBAR + 1) EEQ. 3 , WRLTE ( 6,9030 )
9110 fORMAT I' INKNO. AT NODE REL. X-OISP. REL. Y-UISP. \(X\) -
9120 FORHAT, Y FORCE, \(3 x\) :TYPET
9030 FORMAIIIHt,99X, 'FAILEU.4
5C ifilicheck.ne.iegul) heturn
\(c\) statal equillibriua check
9130 WRITE(t,9130)
 L, WRITE(42(1H*), 9135

\(1 R C+\cdots\)
\(k F=0\)

NHOR \(=\) NODH -1
NVER \(=\) NODV -1
NVER \(=\) NODVV -1
9160 FORMATIHI,IX,' RECT. ELEM. AV. X-FORCE AV. Y-FORCE AV.SHEA
R FORCE'
IEL \(=0\)
\(\begin{aligned} & \text { IEL }=0 \\ & \text { DO } 80 \\ & K\end{aligned}=1\), NHOR
DO \(55 \mathrm{KK}=1\)
ROWSUM KK) \(=2\) 2ERD
DO 70 KROW
DO \(60 \mathrm{KK}=1,3\)
\(60 \operatorname{SUM}(\mathrm{KK})=2 E R O\)
\(1 E L=I E L+1\)
\(I T E L=4 * I E L-3\)
DO \(65 \mathrm{~L}=1,4\)
DO \(66 \mathrm{LL}=1,3\)
66 SUN(LL) \(=\) SUM(LL) + TSTR(ITEL,LLL
65 ITEL \(=1\) ITEL +1 DO \(67 \mathrm{LL} x 1,3\)
SUM(LL) = SUMSLL)*(Y(KROW+1) - Y(KROW))*THICKIIELI/D
67 ROHSUM (LL) \(=\) ROWSUM(LL) + SUM(LL)
70 WRITE 6,9140\() ~ I E L, ~(S U M S C L) ~\)
WRITE(6,9150) K,(ROWSUM(LL),LL=1,3)
IF(KP.LT.IPAGE) GOTO 80
\(\mathrm{KP}=0\)
IPAGE
IPAGE \(=54 /(\) NVER +3\()\)
WRITE K 6 , 91601
9140 FORMAT \(16.9 \mathrm{X}, 3(2 \mathrm{X}, 1 \mathrm{PD} 12.51)\)
9150 FORMAT (/4 ROW', 15.4X,312X,1PDI2.51, R RESIDUAL FORCES' / RETURN END
SUBROUTINE PRERI(J)
THIS SOUBROUTINE OECLARES AL fatal ERRORS program stops after error message is pkinted

IMPLICIT REAL*B(A-H,O-Z)
COMMON S 110,101, VKH, VKV
COMMON NN. NH, MA, NODV, NODH, NUMNOD, NREL, NTEL, NUMBAR, MAXNDF, MBAND COMMON NINCR, KINCR, NCURVC, NCURVS, NZC, NZS, IS CALE, NDF, IAUTO COMMON NUHDF,NUMTDF:NIT,IT,NCURVB ,NLB; NOD2

GOTO(1,2,3,4,5,6,7,8,9)
11 furmat ////,ix, 11 hfatal error, //, \(1 \mathrm{X}, 35 \mathrm{~h}\) number of nudes horizuntal 115 ZERO)
\({ }^{2}\) GOIO 99
2 PRINT 12
12 formati///,1X,11HFATAL ERRUR,//1X,33HNUMBER OF NODES VERT ICAL IS GOTC 9
3 PRINT 13
13 furmat (///,1x,11hfatal error,//IX, "nbeg is equal tu nend') 4 GOTO 99
14 Format(///,1X,11hFatal error,//1x, 'Steel area negativer)

GOTO 99
15 PRINT 15 (/,1X,11HFATAL ERRUR,//1X,'IMCORRECT ENDNODE' GOTO 99
PKINT 16
16 FIRMAT (///,1X, 11 HFATAL ERRUR, //IX, \(\operatorname{CNUMBER~OF~REINFORCEMENTS~SPECIF~}\) 1 IED IS NEGATIVE'S
GOTO 99
PRINT 17
 14 IS FALSE , CALL ON PROGRAMMER'I
GOTO 99
8 PRINT 18 , MBAN
18 FURMATI///,1X,11HFATAL ERROR,//1X,'BANDWIDTH EXEEDED MBANO =., [4," \({ }^{1}\) goto 99
9 PRINT 19
19 FDRMAT //1/,1X,11 hFATAL ERROR.//,1X, 'BOUNDARY CONDITIONS ARE INGORR
1ECTLY LABELED'1
99 CALL EXI
END
SUBRDUTINE PRER2(J)
THIS SUBROUTINE PRINTS NONFATAL ERROR MESS AGES
the progran continues after assigni ng a value to the variable

IMPLICIT REAL*B(A-H,O-Z)
COMMON S \((10,10), V K H_{p}\) VKV
COMMON DXX, DYY,EE1,E2, CNU,CNU12, CNU21,EP1,EP2,SHU,PI
COMMON NN, NH, MA, NODV, NODH, NUHNOD, NREL, NTEL, NUMBAR, MAXNOF, MEAND
COMMON NINCR,KINCR, NCURVC, NCURVS, NZC, NZS, ISCALE, NOF, IAUTO
COMMON NUMDF, NUM TDF ; NIT, IT, NC URVB , NZB , NOD 2
COMMON/MODULC/ SEC(10.2),EC(9),XNUC(9),TOL
COMMON/MOOULS/ SES(20 2) ,ES(19), XNUS(19)
COMMON/MODULB/ SEB(10,2),EB(9)
PRINT 99
FORMATIN
59 FORMA TI \(/ 1\)
00 FURMAT (1X, '*** SUBROUTINE PRERZ
 GOTO \(1,2,3,4,5)\), J
1 PRINT 101,E1,E2
101 fORMATI/,1X, '*** EMODU, OUT OF RANGE, LAST VALUES',19X,'***', T40,


GRIO 999
PRINT 999
GOTO 999
3 PRINT 103
 GOTO 999
104 fORMAT(/,1X,'*** TOTAL LOAD APPLIED DOES NOT GIVE RISE',9X,'***'/, IIX, '*** TO INELASTIC BEHAVIOR, SOLUTION ELASTIC ONLY

105
105 furmati//,1x,**** number of start nole greater than number ***',/,
\(\bar{j}\)


\section*{APPENDIX C}

INPUT SEQUENCE FOR NARCOS-2
1. Number of Problems:
one card: (I5)


NPROB = number of problems
2. Problem Identification Card:
one card: (18A4)


NAME = problem title
3. First Control Card:
one card: (4I5)


NNV = number of nodes vertically
NNV \(>0\) : unequal spacing
NNV \(<0\) : equal spacing
NNH = number of nodes horizontally
NNH \(>0\) : unequal spacing
NNH \(<0\) : equal spacing
KTOP = input mode parameter
\(\mathrm{KTOP}=1:\) automatic mesh generation
KTOP = 2: individual input
NREINF = number of reinforcements
4. Coordinate Data Cards:
min. two cards: (I5, D12.4)

\(\mathrm{J}=\) node number
DTEMP \(=x\) - or \(y\)-coordinate of nodes
for \(\mathrm{NNV}<0\) or \(\mathrm{NNH}<0\) : one card, respectively
for \(N N V>0\) : NNV cards
for NNH \(>0\) : NNH cards
5. Second Control Card:
one card: (4I5)

NTH = number of elements with irregular thickness
NCURVC = number of points on concrete curve
NCURVS = number of points on steel curve
NCURVB \(=\) number of points on bond curve
for \(\mathrm{NTH}=0\)-all elements are of unit thickness
6. Thickness (Optional):

NTH cards: (I5, D12.4)

\(\mathrm{NT}=\) element number (rectangle)
\(N T=0\) : all elements are changed to new thickness
NT > 0; supply NTH cards
7. Stress-Strain Data:

NCURVB cards: (I5, D12.4, D12.6)

\(I=\) number of point on curve
STRESS = stress at point I
STRAIN = strain at point I
8. Poisson's ratios:
(NCURVB - 1) cards: (I5, D12.6)


I = interval (between two points given under 7)
NUB \(=\) Poisson's ratio
Blocks 7 and 8 are repeated for steel and bond if the parameter NREINF is greater than zero.

\section*{9. Bond Stiffness (Optiona1):}
one card: (5X, D12.5)

\(\mathrm{VKV}=\) bond stiffness in direction perpendicular to reinforcement
This card must be omitted if NREINF \(=0\). If a blank card is supplied, VKV is chosen as mentioned in Chapter IV.
10. Reinforcement (Optional):

NREINF cards: (2I5, D12.4, 2I5)


NBAR = number of bars
\(\mathrm{N} \varnothing=\) bar number (ACI Code)
RAREA \(=\) total cross-sectional area
NBEG = start node
NEND = end node
When standard bars (ACI Code) are selected, the total crosssectional area is computed automatically. In this case, the parameter RAREA must be omitted. If RAREA is specified, the parameters NBAR and \(\mathrm{N} \varnothing\) may be omitted.
11. Tolerance:
one card: (5X, D12.5)


TOL = tolerance
12. Third Control Card:
one card: (4I5)


NLOAD = number of loads
NBCS = number of boundary conditions
NINCR = number of increments
NINCR = 0: elastic solution
NINCR = 1: automatic scaling

NINCR > 1: specified increments
NIT = number of iterations
13. Loading Data:

NLOAD cards: (I5, 2D12.4)

\(I=\) joint number
\(X=X\)-component of load at \(I\)
\(Y=Y\)-component of load at \(I\)
14. Boundary Conditions:

NBCS cards: (I5, 4X, A1, D12.4)


I = restrained node
* = X: X-restraint
* \(=\mathrm{Y}: ~ \mathrm{Y}\)-restraint

VALUE = value of prescribed displacement
15. Equilibrium Check:
one card: (A4)

\(P=\) alphanumeric parameter \(P=E Q U I\) : initializes checking procedure

A blank card is required if no checking is requested.
16. Remarks:
a. For NINCR \(>1\) group 13 is repeated NINCR-1 times.
b. If during the increments 2, 3, . . . etc., the boundary conditions remain the same, one blank card may be supplied instead of the whole block 14 .
c. If the EQUI card is inserted, the checks are done for all increments.

APPENDIX D

SAMPLE INPUT AND OUTPUT

a) ORIGINAL

b) MODIFIED TO INCLUDE STEEL NODES

Figure 32. Nodal Arrangement of Scordelis' Beam A-1
```

SIMPLE BEAM, SCORDELIS CHECK PROBLEMG 1 REINF.. }468\mathrm{ NODES, }864\mathrm{ TRIANG.
-28 1 1
5.0
22.0
81.0
4. 5 3
-4000.0 -0.002
-3000.0 -0.001
0.0 0.0
300.0 0.0001
0.15
0.15
0.15
-40000.0 -0.002
-30000.0 -0.001
0.0 0.0
30000.0 0.001
40000.0 0.002
0.3
0.3
0.3
0.3
-2200.0 -0.001
2200.0 0.001
1.000000.12
0.05
x -7000.0
x
X
x
x
M
x
8 8 X
4 0 9 ~ Y ~
EQUILIBRIUM CHECK
145
145 -200.0
145 -200.0
145 -200.0
145 -200.0
145 -200.0
145 -200.0

```
\begin{tabular}{lr}
6 & -8.33333 \\
7 & -4.16667 \\
1 & -16.66667 \\
2 & -33.33333 \\
3 & -33.33333 \\
4 & -33.33333 \\
5 & -33.33333 \\
6 & -33.33333 \\
7 & -16.66667 \\
1 & -83.33333 \\
2 & -166.66667 \\
3 & -166.66667 \\
4 & -166.66667 \\
5 & -166.66667 \\
6 & -166.66667 \\
7 & -83.33333 \\
1 & -83.33333 \\
2 & -166.66667 \\
3 & -166.66667 \\
4 & -166.66667 \\
5 & -166.66667 \\
6 & -166.66667 \\
7 & -83.33333
\end{tabular}

1
SIMPLE BEAM APPROXIMATION , 637 NODES WITH STEEL, PMAX \(=3000\) LBS \(\begin{array}{llll}-7 & -46 & 1 & 1\end{array}\)
12.0

7 90.0
\(8.0^{5}\)
\(-3000.0 \quad-.002\)
\(-2980.0 \quad-.00175\)
\(-2760.0 \quad-.00125\)
\(-2475.0 \quad-.001\)
\(-1500.0 \quad-.0005\)
\(0.0 \quad 0.0\)
\(300.0 \quad 0.0001\)
- 15
.15
- 15
\(\cdot 15\)
- 15
. 15
\(-50000.0-.005\)
\(-47000.0 \quad-.00162\)
\(0.0 \quad 0.0\)
\(47000.0 \quad 0.00162\)
\(50000.0 \quad 0.005\)
- 333333
. 333333
- 333333
. 333333
\(-2200.0-.001\)
0.0 0.0
\(2200.0 \quad 0.001\)
\(1.000000 \cdot 12\)
\(1.0 \quad 2 \quad 574\)
\(8^{0.05} 3\)
\(-62.5\)
-125.
\(-125\).
-125 .
-125.
-I25.
\(-62.5\)
\(x\)
\(x\)
\(x\)
\(x\)
\(x\)
\(X\)
\(X\)
\(X\)
573. Y

EQUI
1
2
3
4
5
-4.16667
\(-8.33333\)
-8.33333
\(-8.33333\)
\(-8.33333\)
145
145
\(-200 \cdot 0\)
\(-200.0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ELEM NO. & \[
\begin{aligned}
& \text { SIGMA }-x \\
& \text { EPSILON- } x
\end{aligned}
\] & \[
\begin{aligned}
& \text { SIGMA }-Y \\
& \text { EPSI LON- } Y
\end{aligned}
\] & \begin{tabular}{l}
TAU - XY \\
GAMMA-XY
\end{tabular} & \[
\begin{aligned}
& \text { SIGMA }-1 \\
& \text { EPSILON-1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SIGMA }-2 \\
& \text { EPSILON-2 }
\end{aligned}
\] & \begin{tabular}{l}
THETAC11 \\
THETA(2)
\end{tabular} & TYPE & & \\
\hline 253 & -4.035330 02 & -8.927560 00 & -3.031600 01 & -6.612090 00 & \(-4.05849002\) & \[
\text { 4. } 367650 \quad 00
\] & 1 & & \\
\hline & -1.340650-04 & 1.720080-05 & -2.324230-05 & 1.80884D-05 & -1.349520-04 & \[
4.36765000
\] & & & \\
\hline 254 & -4.64396D 02 & -8.69907001
\(-5.777090-06\) & \(-8.12503 D\)
\(-6.229190-05\) & -7.024190
\(6.432870-07\) & \[
\begin{aligned}
& -4.81145002 \\
& -1.568700-04
\end{aligned}
\] & \[
1.16477001
\] & 1 & & \\
\hline 255 & -1.50449D-04 & \(-5.777090-06\)
-2.14609002 & -6.229190-05 & \(6.432870-07\)
-1.75589002 & \(-1.568700-04\)
-3.90249002 & \[
\begin{aligned}
& 1.164770 \\
& 2.523630
\end{aligned}
\] & 1 & & \\
\hline & -1.06346D-04 & -5.397490-05 & -6.34694D-05 & -3.901710-05 & -1.213040-04 & 2.52363001 & & & \\
\hline 256 & -2.903660 02 & -1.365460 02 & -3.185190 01 & -1.302110 02 & -2.967010 02 & 1.124830 01 & 1 & & \\
\hline & -8.996140-05 & -3.099700-05 & -2.441980-05 & -2.856870-05 & -9.238970-05 & 1.12483001 & & & \\
\hline 257 & 2.98416002 & 9.148620-02 & 1.50205001 & 2.99170002 & -6.628830-01 & 2.875130 00 & 1 & & \\
\hline & \(9.94673 \mathrm{D}-05\) & -1.489030-05 & 1.151570-05 & 9.975650-05 & -1.517950-05 & 2.87513000 & & & \\
\hline 258 & 2.62184002 & 1.07839001 & 1.12352000 & 2.62189002 & 1.07789001 & 2.560500-01 & 1 & & \\
\hline & \(8.685550-05\) & -9.51456D-06 & 8.613630-07 & 8.685740-05 & -9.516480-06 & 2.560500-01 & & & \\
\hline 259 & & & & 0.0 & -4.547580 01 & -2.750660 00 & 4 & & \\
\hline & & & & 1.008420-04 & -1.515860-05 & -2.750660 00 & & CRACKED & \\
\hline 260 & & & & 0.0 & -6.080270 01 & -1.001320-01 & 4 & & \\
\hline & & & & 1.131870-04 & -2.026760-05 & -1.00132D-01 & & Cracked & \\
\hline 261 & 2.20041002 & -4.302540 00 & 3.19375001 & 2.24499002 & -8.760560 00 & 7.94635000 & 1 & & \\
\hline & \(7.356210-05\) & -1.243620-05 & 2.448540-05 & 7.527100-05 & -1.41451D-05 & 7.94635000 & & & \\
\hline 262 & 1.81855002 & 7.89360000 & 1.75543001 & 1.83609002 & 6.13989000 & 5.70504000 & 1 & & \\
\hline & 6.02238D-05 & -6.461570-06 & 1.345830-05 & 6.08960D-05 & -7.133820-06 & 5.70504000 & & & \\
\hline 263 & 2.19961002 & -3.937490 00 & 3.10479000 & 2. 20004002 & -3.980530 00 & 7.943140-01. & 1 & & \\
\hline & 7.351 720-05 & -1.231050-05 & 2.380340-06 & \(7.353370-05\) & -1.232700-05 & 7.943140-01 & & & \\
\hline 264 & 2.58146002 & -1.613360 01 & 1.74879001 & 2.59257002 & -1.72442001 & 3.63353000 & 1 & & \\
\hline & \(8.685555 \mathrm{D}-05\) & -1.828520-05 & 1.340740-05 & 8.728120-05 & -1.871090-05 & 3.63353000 & & & \\
\hline 265 & 1.35147002 & -1.102960 01 & 3.81943001 & 1.44525002 & -2.040770 01 & 1.379530 01 & 1 & & \\
\hline & \(4.56004 \mathrm{D}-05\) & -1.043390-05 & 2.928230-05 & 4.919540-05 & -1.402880-05 & 1.37953001 & & & \\
\hline 266 & 9.27810001 & 1.45720000 & 2.55655001 & 9.94507001 & -5.212580 00 & 1.46220001 & 1 & & \\
\hline & 3.08541D-05 & -4.153310-06 & 1.960020-05 & 3.341090-05 & -6.712060-06 & 1.46220001 & & & \\
\hline 267 & 1.34915002 & -1.011740 01 & 1.27176001 & 1.360220 02 & -1.122410 01 & 4.97359000 & 1 & & \\
\hline & 4.547750-05 & -1.011820-05 & 9.750170-06 & \(4.590170-05\) & -1.054240-05 & 4.973590 00 & & & \\
\hline 268 & 1.77281002 & -2.260410 01 & 2.53464001 & 1.80445002 & -2.576810 01 & 7.115380 00 & 1 & & \\
\hline & \(6.02238 \mathrm{D}-05\) & -1.63987D-05 & 1.943230-05 & 6.143660-05 & -1.761160-05 & \[
\begin{aligned}
& 7.11538000 \\
& 2.57209001
\end{aligned}
\] & & & \\
\hline 269 & 4.69157001 & -2.10163 D
\(-9.351210-06\) & 4.26122001
\(3.266940-05\) & 6.74427001
\(2.455810-05\) & -4.15433001
\(-1.721990-05\) & \[
\begin{aligned}
& 2.57209001 \\
& 2.572090
\end{aligned}
\] & 1 & & \\
\hline & \(1.668994 \mathrm{O}-05\)
5.36715000 & -9.351210-06 & \(3.266940-05\)
3.04776001 & \(2.455810-05\)
2.98710001 & \(-1.721990-05\)
-3.25406001 & \[
\begin{aligned}
& 2.57209001 \\
& 3.87991001
\end{aligned}
\] & & & \\
\hline 270 & 5.36715000
\(2.190890-06\) & -8.03671000
\(-2.947260-06\) & 3.04776001
\(2.336620-05\) & 2.98710001
\(1.158400-05\) & -3.25406001
\(-1.234040-05\) & \[
\begin{aligned}
& 3.879910 \\
& 3.879910
\end{aligned}
\] & 1 & & \\
\hline 271 & 4.62859001 & -1.853970 01 & 1.77483001 & 5.08270001 & -2.308080 01 & 1.43519001 & 1 & & \\
\hline & \(1.635560-05\) & -8.494210-06 & \(1.360700-05\) & 1.809640-05 & -1.023500-05 & 1.43519001 & & & \\
\hline 272 & 8.78345001 & -3.151930 01 & 2.98829001 & 9.48983001 & -3.858310 01 & 1.32996001 & 1 & & \\
\hline & 3.08541 D-05 & -1.487820-05 & 2.291020-05 & 3.356190-05 & -1.760590-05 & 1.329960 01 & & & \\
\hline 273 & -4.01684D 01 & -3.482240 01 & 4.47490001 & 7.33331000 & -8.232410 01 & -4.329080 01 & 1 & & \\
\hline & -1.164840-05 & -9.599040-06 & 3.430750-05 & 6.560640-06 & -2.780800-05 & -4.329080 01 & & & \\
\hline 274 & -8.188490 01 & -2.019950 01 & 3.31088001 & -5.793260 00 & -9.629110 01 & \(-2.35147001\) & 1 & & \\
\hline & -2.628500-05 & -2.638910-06 & 2.538340-05 & 2.883470-06 & -3.180740-05 & -2.351470 01 & & & \\
\hline 275 & -4.167310 01 & -2.893560 01. & 2.00476001 & -1.424990 01 & -5.632870 01 & -3.616850 01 & 1 & & \\
\hline & -1.244570-05 & -7.551560-06 & 1.536980-05 & -1.933550-06 & -1.806380-05 & -3.616850 01 & & & \\
\hline 276 & 4.337720-02. & -4.352850 01 & 3.16877001 & 1.67119001 & -6.019700 D1 & 2.77453001 & 1 & & \\
\hline & 2.19089D-05 & -1.451170-05 & 2.429390-05 & 8.580460-06 & -2.090130-05 & 2.774530 01 & & & \\
\hline 277 & -1.276350 02 & -5.625690 01 & 4.65236001 & -3.331010 01 & -1.505810 02 & -2.625390 01 & 1 & & \\
\hline & -3.973200-05 & -1.237060-05 & 3.566810-05 & -3.574290-06 & -4.852830-05 & -2.625390 01 & & & \\
\hline 278 & -1.713680 02 & -3.651570 01 & 3.582750 O1 & -2.758810 01 & -1.802950 02 & -1.399220 01 & 1 & & \\
\hline & -5.529670-05 & -3.603540-06 & 2.746780-05 & -1.812780-07 & -5.871900-05 & -1.399220 01 & & & \\
\hline 279 & -1.31631002 & -4.054270 01 & 2.13573001 & -3.578370 01 & -1.363900 02 & -1.255190 01 & 1 & & \\
\hline & -4.184970-05 & -6.932710-06 & 1.637403-05 & -5.108431-06 & -4.367400-05 & \(-1.25619001\) & & & \(\omega\) \\
\hline 280 & -8.789750 01 & -6.028390 01 & 3.20534001 & \(-3.71901001\) & -1.089910 02 & -3.334820 01 & 1 & & \(\stackrel{+}{+}\) \\
\hline & -2.628500-05 & -1.569970-05 & 2.457430-05 & -7.613800-06 & -3.437090-05 & -3.334820 01 & & & \\
\hline
\end{tabular}

\section*{VITA}

\section*{Alexander Jean Lassker}

Candidate for the Degree of
Doctor of Philosophy

Thesis: NONLINEAR BEHAVIOR OF REINFORCED CONCRETE BEAMS BY THE FINITE ELEMENT METHOD

Major Field: Civil Engineering
Biographical:
Personal Data: Born in Arbon, Switzerland, May 11, 1940, son of Mr. and Mrs. Jean Paul Lassker.

Education: Graduated from Kantonsschule, Frauenfeld, Switzerland, in 1959; received the Diploma in Civil Engineering from the Swiss Federal Institute of Technology, December, 1964; enrolled at Oklahoma State University in September, 1967, and completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1972.

Professional Experience: Research assistant, Swiss Federal Institute of Technology, 1965-1967; graduate teaching assistant, Oklahoma State University, 1967-1968; Consulting Engineer at the Computing Center of Fides, Inc., Zurich, Switzerland, summer, 1968; teaching assistant, Oklahoma State University, 1968-1971; Senior Engineer with R. R. Nicolet and Associates, Consulting Engineers, Montreal, Canada, 1971.```


[^0]:    ${ }^{1}$ NARCOS is the abbreviation for "Numerical Analysis of Reinforced Concrete Structures.'

