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CHAPTER I 

INTRODUCTION 

1. 1 General Discussion 

The behavior of reinforced concrete structures subjected to 

various types of loads has been studied extensively during the past few 

decades. In spite of many efforts, no basic analytical approach has 

been developed to determine accurately the stress distribution in the 

concrete and the steel. This is ma inly due to the fact that the constitu­

tive relations for concrete depend on a number of factors such as the 

size and shape of the structure, the size, the material properties and 

the composition of the aggregate, and the rate and duration of loading. 

Furthermore, the tensile strength of concrete is much lower than its 

compressive strength. Therefore, additional difficulties arise from 

the continuing change in structural configuration caused by cracks in 

the concrete. 

It is even more difficult to express the many different geometric 

shapes of the stress-strain curves for steel in analytical form. Here 

the manufacturing process and the choice of alloys have the most signi­

ficant influence on the material properties. Finally, time-dependent 

effects on concrete strains, steel relaxation and complicated laws of 

interaction between concrete and reinforcements render a closed-form 

solution practically impossible. It is, therefore, necessary to utilize 

empirical laws obtained from extensive test data. 
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Present methods of analysis or design are based on assumptions 

which allow the application of the fundamental principles of continuum 

mechanics and empirical or simplified constitutive equations. Two 

different approaches are commonly used in the design of reinforced 

concrete structures. Both methods assume a perfect bond between 

steel and concrete and neglect the tensile resistance of concrete. The 

first assumption allows the use of the classical Na vier-Bernoulli stipu­

lation for planes perpendicular to the member axis. According to this 

assumption, these planes remain plane and perpendicular to the cen­

troidal axis during the entire load history. Experiments on reinforced 

concrete beams have confirmed that the assumed strain distribution 

actually deviates very little from the real strain condition, provided 

that good bonding exists. 

The main difference in the two methods lies in the choice of 

stress-strain relations. The "Working Stress Method" ( 1) utilizes 

linear material laws. Since concrete behaves elastically only as long 

as the maximum compressive stress is less than about half the ultimate 

strength, this approach has failed to give correct pictures of the stress 

distribution at high loads. 

The "Ultimate Strength Method 11 ( 1 ), on the other hand, is based 

upon stress conditions just before failure occurs. It may appear 

essential to use realistic constitutive relations at these high stress 

levels. However, this is not the case because the geometric shape of 

the stress distribution has little effect on the location and magnitude of 

the resultant compressive force in the concrete. The real stress 

situation is therefore usually approximated by an equivalent rectangular 

or trapezoidal stress block. 
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Although both methods are of chief importance in design, neither 

one is of much help in studies of the nonlinear behavior of reinforced 

concrete beams. Such investigations are extremely involved due to 

previously stated reasons. Any reliable approach must therefore re­

sort to numerical methods. With the introduction of the finite element 

technique to be discussed subsequently, such an analysis procedure has 

been established for the solution of complex problems of continuum 

mechanics. The application of this method results in a large system 

of linear, simultaneous equations which can be solved very efficiently 

on digital computers. Nonlinear problems introduce no new difficulties, 

since they can be treated either by iteration or as a sequence of 

consecutive linear problems. 

1. 2 Purpose and Scope of This Study 

The purpose of this study is to develop a reliable tool for the 

analytical study of reinforced concrete members through their entire 

elastic, inelastic, and ultimate ranges. 

The main emphasis is placed on the behavior in the inelastic 

range. Consequently, the problem approach is based upon nonlinear 

constitutive relations for steel, concrete, and bond. Nonlinearities 

introduced through the change in geometry are not included since the 

beams are assumed to have failed long before large displacements 

develop. Also, time dependent effects on concrete strains (such as 

creep and relaxation of reinforcements) are neglected. The loading 

history is restricted to monotonically increasing static loads. 
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After each load increment, the stress and strain distributions 

will be calculated. The arrangement of steel components is kept 

flexible in order to allow the study of various types of reinforcements. 

1. 3 Historical and Literature Review 

The successful application of matrix analysis methods to 

materially nonlinear framed structures by Wilson (2) in 1960, and 

Goldberg and Richard (3) in 1963 demonstrated the feasibility of the 

finite element method for the solution of nonlinear problems. Wilson 

subsequently extended the incremental load procedure to a class of 

two-dimensional, nonlinear structures (4) in 1963. In the same report 

an iterative technique similar to the Newton-Raphson Method was 

applied to in-plane loaded thin plates with bilinear constitutive 

relations. 

Argyris ( 5') and Denke ( 6 ), in 1964, adapted the matrix force 

method to elasto-plastic problems. Comprehensive presentations of 

the elasto-plastic displacement method were given by Pope (7) in 1965 

for plane stress and plane strain states and byArgyris (8, 9) for three­

dimensional states of stress. Both publications distinguish clearly.be­

tween the two basic incremental procedures referred to as "Initial 

Strain Method" and "Tangent Modulus Method." 

The "Initial Strain Method" was developed in matrix form by 

A rgyris ( 8, 9 ). It involves approximating the change in plastic strain 

during each load increment. These plastic strains are then used as 

initial strains to reevaluate the stress distribution. Therefore, this 

procedure requires iterations in each loading step. 
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The 11Tangent Modulus Technique 11 makes use of incremental 

stiffness matrices which are derived from well-known incremental 

stress-strain relations. For strain-hardening material, the stiffness 

matrices must be modified after each load increase. A partial stiff­

ness method for elasto-plastic problems based on the "Tangent Modu­

lus Approach11 was first proposed by Marcal (10) in 1965 and later 

modified for use in the finite element method by Marcal and King (11). 

, These papers state the necessary equations in matrix form and suggest 

the sequence of steps suitable for digital computation. 

In his classical treatise, Zienkiewicz ( 12) presents an excellent 

summary of these fundamental matrix methods and also presents 

Wilson's "Direct Iterative Approach" as a third basic technique. The 

amount of research conducted in the area of nonlinear analysis by 

finite elements has increased rapidly since these initial efforts. There­

fore, only the most significant publications pertinent to this study will 

be mentioned. In general, recent investigations have only refined the 

earlier formulations of the elasto-plastic problem. 

Felippa's paper (13) can be considered as one of the early 

attempts to introduce refinements into the matrix methods for linear 

and nonlinear analysis of two-dimensional structures. Other planar 

problems were solved by Akyuz (14) and Akyuz and Merwin (15). 

Special attention was given in these publications to the computational 

difficulties arising from the repeated solution of simultaneous equa­

tions. A half-step method related to the Runge-Kutta procedure was 

applied to improve the accuracy. The comparative study by Marcal 

( 16) in 1968 revealed that the Initial Strain Method fails for the case of 

elastic-perfectly-plastic material. Otherwise, the two incremental 



techniques were found to provide very similar results. Another con­

tribution to the topic was presented by Mar cal ( 17) in 1969. At the 
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same time, Yamada ( 18) gave a general review of Japanese develop­

ments in the field of elasto-plastic matrix analysis. His paper contains 

an incremental stress-strain matrix for anisotropic materials and 

shows several practical applications of the step-by-step approach. 

A variation of the Initial Strain Method based on known stress 

functions was proposed by Yamada et al. ( 19) in 1968. However, be­

cause the publication of their paper was delayed until 1969, it appears 

that Zienkiewicz, Valliappan and King ( 20) should earn full credit for 

the development of the so-called "Initial Stress Method." This new 

technique makes use of the fact that plastic strain increments prescribe 

uniquely the stress system, even in the case of an ideally plastic 

material. With this in mind, Zienkiewicz et al. were able to retain 

the advantages of the Initial Strain Method for which the matrix of 

elastic constants remains unchanged during the loading history. Prob­

ably the most comprehensive survey concerning nonlinear structural 

analysis techniques was made by Oden ( 21) in 1969. The main solution 

methods for both geometrically and materially nonlinear structures 

are discussed and presented in tensor form. Furthermore, the incre­

mental stiffness approach first suggested by Pope (7) is generalized. 

The paper also includes an extensive list of selected references. 

Despite the fact that finite element methods are highly suited for 

stress analyses, relatively few studies have adopted these techniques 

to investigate the behavior of concrete structures. Rashid ( 22) re­

ported in 1966 the results of a two-dimensional finite element scheme 

used to analyze a prestressed concrete pressure vessel. In order to 
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obtain a realistic model of this composite, heterogeneous, axisymmet­

ric structure, three kinematically dissimilar elements were introduced 

to simulate the concrete, reinforcements and the steel liner. The 

program was later modified by R9ishid (23) to include cracks in the 

concrete and the effects of plastic deformation in the steel components. 

As a special feature, Rashid proposed to treat the influence of a crack 

as a mechanism that changes the qehavior of continuous elements from 

isotropic to orthotropic. 
)' ' 

An alternative approach, suggested in 1967 by Scordelis and Ngo 

(24), introduced complete crack patterns by separating interelement 

boundaries. This study also included the simulation of bonds between 

reinforcement and concrete. Finally, the disadvantage of two-dimen­

sional approximations has been overcome through the implementation 

of the "SAFE-3D" computer program, developed by Cornell et al. (25). 

This program was used by Corum and Krishnamurthy ( 26) to investigate 

a series of models of prestressed reactor vessels. It us~s tetrahedral 

concrete elements, uniaxial bars, and triangular membrane steel 

components. As expected, the three-dimensional model provided much 

better results. However, a significant increase in computer time 

resulted from use of three-dimensional elements. Quite a different 

approach was taken by Cervenka ( 27) in his study entitled "Inelastic 

Finite Element Analysis of Reinforced Concrete Panels under In-Plane 

Loading. n No individual reinforcement bars were considered. Instead, 

the total steel area was distributed over the quadrilateral element. 

The cracked state then could be visualized as a planar lattice structure. 
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1. 4 Problem Approach 

The solution method used herein is a combined iterative and step­

by-step procedure based upon the matrix displacement method. The 

structure is analyzed as a plane stress problem. For each load incre­

ment, repeated elastic solutions are performed until the displacements 

meet a specified tolerance. 

The mathematical model consists of an assemblage of triangular 

concrete plate elements, steel bar elements and bond links. The dis­

placement fields are assumed to be linear for all three parts. The 

elastic constants (i.e., modulus of elasticity, Poisson's ratio, etc.) 

which are needed in the derivation of the elemental stiffness matrices 

are extrapolated from the pertinent uniaxial stress-strain curves. 

For all elements, these functions are approximated by piecewise 

linear polygons. The appropriate values of the material constants are 

found by entering the stress-strain diagram at the corresponding values 

of the principal strains. 

A standard Gauss Elimination procedure is used to solve the 

equilibrium equations. Two computer programs were written to imple­

ment the method. Both provide stresses and strains in each element 

and the nodal displacements at all specified load levels. 

A comparative study was made with the solutions presented by 

Scordelis for a simply supported beam ( 24). A second, more realistic 

problem was investigated to show the feasibility of the method to study 

crack propagation. 



CHAPTER II 

FINITE ELEMENT PROPERTIES 

2. 1 General 

The finite element analysis of a continuum consists of three funda­

mental steps. First, the real structure is replaced by a suitable mathe­

matical model. This is usually accomplished by dividing the original 

continuum into an assemblage of discrete elements. A 11 elements are 

assumed to be interconnected at a discrete number of nodal points situ­

ated at the intersections of their fictitious boundaries. The second step 

is the formulation of the finite element characteristics. 

In the matrix displacement approach, the material properties are 

described in the form of the elemental stiffness matrices. In recent 

years extensive research has been done in order to improve the various 

derivation procedures. Methods based upon energy theorems and re­

lated variational principles have been found to be the most satisfactory 

techniques. The foundation for such derivations is the assumption that 

an energy functional derived for the continuous system is equal to the 

same functional determined from the finite element model. The element 

properties can then be obtained by minimizing the functional through 

well-known variational methods. 

Once the element properties of all the elements have been de­

fined, the discrete system can be analyzed as a conventional structur-al 

9 
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problem. Hence, the last phase consists of a standard analysis of a 

structural system by means of suitable computer programs. In this 

chapter, the first two steps ( i. e., the structural idealization and the 

evaluation of element characteristics) will be discussed. The mathe-

matical models for concrete, steel reinforcements, and bond between 

the two materials are developed in section 2. 4. The derivation of the 

solution procedure for linearly elastic problems and the necessary 

modifications for the nonlinear case will be presented in Chapter III. 

2. 2 Structural Idealization 

In general, a reinforced concrete member must be considered as 

a three-dimensional, nonhomogeneous, nonisotropic, composite struc-

ture. · The difficulties encountered in the solution of such structural 

systems h?,ve already been described in section 1. 1. Clearly, a series 

of assumptions must be introduced in any solution procedure. The 

choice of suppositions is go_verned by the type of structure under con­

sideration, the character of the results desired, and the numerical 

method utilized. In the case of reinforced concrete beams, simplifica­

• 
tions concerning the type of structure are the most critical group. In 

order to obtain a reliable approximation, the model must include all 

physical constituents of the real composite structure. In addition, 

special attention should be given to the simulation of the interaction be-

tween the parts. A list of the necessary assumptions for the construe-

tion ofa relevant model is set forth below. 



2. 2.1 General Assumptions 

The following stipulations may be regarded as preparatory re­

quirements for a possible application of the finite element method. 

Real Structure 

a. Three-dimensional; 

b. Nonhomogeneous components; 

c. Nonisotropic components; 

Assumed Structure 

a. Two-dimensional (of the plane 

stress type); 

b. Homogeneous components; 

c. Isotropic or orthotropic com­

ponents; 

d. Random change in structural d. Cracking predicted by princi-

configuration due to crack- pal tensile stresses in the 

ing; concrete; 

e. Continuous bond between con- e. Discrete attachment between 

crete and steel reinforce- steel and concrete via bond 

ments; bond-slip; links; 

f. Influence of time-dependent f. Neglected. 

effects such as creep and 

relaxation. 

11 

The next set of assumptions concerns the selection of the finite elements 

and their individual properties. 

Figure 1 shows a typical, singly-reinforced concrete beam under 

an arbitrary static, in-plane loading condition. The finite element 

idealization relevant to this study is displayed in Figure 2 in an 

exaggerated view. 

Three kinematically and geometrically dissimilar elements have 

been chosen as basic components of the model. The entire concrete 



•V 1p. P W(x) 

~I l 5
#

9 I r 
611 4 (Cl) 611 15 @ 12" . 4 (Cl) 6 11 6" ----i • .. .. • .. ~ 

20' 

Figure 1. Example of a Singly Reinforced Concrete Beam 

lY 

....... 
N) 



CONCRETE 
PANEL 

STEEL-­
ELEMENT 
(STIRRUP) 

Pi 

x 

MAIN STEEL REINFORCEMENT 

+ REGULAR CONCRETE NODE 

o ADDITIONAL STEEL NODE 

!:::. CONSTRAINT 

© TWO ADDITIONAL STEEL NODES 

Figure 2. Finite Element Assemblage of a Singly Reinforced Beam 

I-' 
w 

,I! 



14 

body is divided into flat, triangular panels. Combined with the steel 

segments (represented by "two-force" members), they constitute the 

material part of the composite structure. The complicated phenomenon 

of bond interaction between concrete and steel is simulated by a dimen­

sionless connecting device, called a linkage element. According to 

Scordelis ( 24), these bond links can be conceptually thought of as linear 

springs. Both steel reinforcements and the connecting elements have 

been extracted in Figure 4 for illustrative purposes. In the real 

assemblage, the nodes of the steel bars and the connecting springs 

originally occupy the same geometrical position as their corresponding 

concrete joints. Therefore, these nodes have the same global coor­

dinates. However, topologically they must be treated as separate joints. 

2.2.2 Concrete Elements 

The concrete body can be subdivided in a number of ways. The 

most commonly used configurations are triangular, rectangular, and 

quadrilateral meshes. Rectangular elements provide slightly better 

results. However, triangular panels are preferred for problems with 

irregular boundaries. In early publications the stiffness matrices were 

derived by the so-called direct approach (28). Recently, descriptions 

of a number of refined elements have been published as a result of the 

implementation of variational techniques. An excellent summary may 

be found in Reference 29. In this study, the traditional, constant­

strain, triangular panel (Figure 3a) has been adopted for two reasons. 

First, it is desirable to decrease the size of elements in the vicinity of 

large stress gradients. A gradual change in size can easily be accom­

plished in the case of triangular panels. The second criterion for 
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selecting constant-strain elements is reflected by the fact that yielding 

takes place throughout the whole element. Elements with nonuniform 

stress distributions are subject to local yielding which results in addi­

tional complications in determining the state of stress. 

2. 2. 3 Steel Elements 

The reinforcement occupies a relatively small volume compared 

to that of the concrete. It is therefore justifiable to idealize the steel 

tendons by simple two-force members (Figure 3b). The triangular 

model used by Scordelis was abandoned mainly because the very small 

vertical reinforcements would require a large number of additional 

elements or extremely slender triangles which are known to behave 

unsatisfactorily ( 30 ). 

2. 2.4 Bond Links 

To account for bond slip, the steel must be attached to the con­

crete by a special connection mechanism. The bond link (Figure 3c) 

is designed to allow for relative displacements between the steel bars 

and the concrete panels. As pointed out earlier, these elements are 

dimensionless because only their mechanical properties are of impor­

tance. Nevertheless, additional nodes must be provided to permit 

relative displacements between adjacent concrete and steel joints. 

2.2.5 Displacement Functions 

After the shape of an element has been chosen, all geometric 

relations can be established. The next logical step is to decide upon a 

suitable displacement function representing the deformation of the 
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element. It should be noted that the degree of approximation which can 

be achieved depends very heavily on the element shape and the chosen 

deflection pattern. To ensure convergence, the assumed displacement 

function should resemble the real displacement distribution. According 

to Zienkiewicz ( 12 ), good deflection functions are obligated to satisfy 

the following five requirements: 

1. Internal and interelement compatibility; 

2. Linear dependence on nodal displacements; 

3. Inclusion of rigid body displacements; 

4. Uniform strain state; 

5. Independence of the external frame of reference. 

For all three elements utilized in this study, these criteria are satisfied 

by assumed linear displacement functions of the form 

ux = c 1 x + c 2y + c 3 
for concrete panels ( 2. 1) 

Uy = c4x + c 5y + c 6 

for steel and bond elements ( 2. 2) 

It can easily be shown that the assumed displacements vary 

linearly along the edges of the concrete panels and that they depend 

only on the displacement of the two vertices on that particular edge ( 31). 

This ensures displacement compatibility along the common boundary 

of two triangular elements. 

The assumed linear deflection pattern for the "two-force" steel 

bars results not only in a compatible but also in an exact strain distri­

bution, since the elements are one-dimensional. 

On the basis of these chosen deformation functions, the kinematic 

relations (i.e., the strain-displacement equations) are derivable 
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through ordinary differentiation. To complete the preparations for the 

development of the stiffness matrices, the material laws for each ele-

ment will be reviewed in the next section. 

2. 3 Constitutive Relations 

2.3.1 General 

The behavior of a material is characterized in the way it deforms 

under an imposed stress condition. It is therefore customary to ex-

press the material laws in the form of stress-strain curves. Two 

typical plots for a uniaxial, stress condition of nominal stress versus 

conventional strain for mild steel and c~mcrete are shown in Figure 5. 

Both curves illustrate the complex, nonlinear character of the constitu-

ti ve relations. Actually, the material characteristics can become even 

more complicated if the effects of time and temperature upon the rate 

of change of strains are included. It is therefore necessary to replace 

these empirical curves by mathematically defined expressions. The 

selection of an idealized stress-strain relationship depends upon 

several factors such as the nature of the problem, the kind of material, 

the type of load, desired accuracy, etc. 

The most commonly used expression is the simple idealization 

known as Hooke's Law. In matrix form, 

{a}= [n]{e} ( 2. 3) 

The { e} is the vector of total strains, { a} designates the stress vector, 

and [DJ is a square matrix containing the elastic constants. This 

linear relationship is, of course, very popular in engineering practice; 

however, its restriction to linearly elastic behavior must be remem-
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bered. In an investigation concerning the nonlinear behavior, the entire 

stress-strain curve will be needed for the evaluation of the element 

characteristics. Analytical inelastic theories require that the constitu­

tive relations may be replaced by reasonably simple continuous func­

tions. The Ramberg-Osgood Law and the Bi-Linear Law are typical 

examples of such expressions (32). If more accurate idealizations are 

desired, the possibility of using a curve-fitting scheme always exists. 

In a numerical procedure, on the other hand, empirical data may be 

used directly in table-form. Values between discrete data points are 

easily calculated by means of suitable interpolation formulas. The 

approach adopted in this study is based upon linear interpolation; i. e. , 

the stress-strain curves are replaced by a polygon (Figure 6). 

After the idealized constitutive relations have been established, 

the elastic constants are available at any load level. Since the matrix 

[n J contains "elastic constants" only, its derivation appears to be a 

straightforward procedure. This is true for the elastic interval. How­

ever, the evaluation of [n J in the inelastic range presents some diffi­

culties because of the biaxial state of stress in the concrete. 

By methods well known from strength of materials, the biaxial 

state of stress can be reduced to two principal stresses acting at right 

angles to each other on an appropriately oriented elementary cube. 

Either, or both, of the principal stresses can be tension or compres-

sion. 

In most cases only the uniaxial stress-strain relation of concrete 

is known from simple tests. To predict the elastic constants for a 

structure under a combined stress situation, it is necessary to relate 

the material properties to the uniaxial test parameters. Six different 
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quantities (i.e., maximum principal stress, maximum shearing stress, 

maximum strain, total strain energy, strain energy of distortion, and 

octahedral shearing stress) are available to compare the multiaxial 

state of stress with a,tensile specimen. When the specimen starts to 

yield ( or fracture), all six quantities reach their limiting values simul-

taneously. In members under biaxial or triaxial states of stress, the 

limits usually do not occur at the same time. Since the type of failure 

.of a concrete member is dependent upon many variables (i.e., state of 

stress, shape and size of structure, type and duration of loading, etc.), 

it is extremely difficult to choose the proper failure criterion. In spite 

of extensive and continuing research, no reliable theory for: the selec-

tion of the proper failure mode has yet emerged. The highly nonhomo-

geneous na.~ure of concrete and the phenomenon of microcracking are 

possible reasons for the insufficient reliability of these theories. The 

most commonly used criteria are the Maximum-Tension-Stress, the 

Mohr, and the Octahedral Shear Stress theories ( 33 ). 

2. 3. 2 Proposed Idealization of Stress-Strain Characteristics 

Concrete. In order to arrive at the proper [n J matrix for con­

crete, this study used the following approach. Consider an element 

( shown in Figure 7) under an arbitrary strain condition E and E . u v 
From the stress-strain curve, Figure 8, it appears that two different 

Young's moduli, E and E , can be associated with the strains E and 
u v u 

E , respectively. The material behavior is obviously different in v 

these two directions; in other words, the structure may be thought of 

as anisotropic. It should be noted that this anisotropy is different from 

the term used in the theory of elasticity. There, an anisotropic body 
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is defined as a continuum with different values for E in at least two 

distinct directions. However, the elastic constants at each point in the 

structure are the same for one particular direction. Here, the behavior 

is assumed to change with the state of stress or strain at a point. If 

c and c are known, the corresponding values for the moduli of 
u v 

elasticity can be determined from the uniaxial stress-strain curve. 

The constitutive relations for an anisotropic body are, in general, 

of the form 

(2. 3a) 

where [n g] is a symmetric matrix containing six independent, non­

zero constants. For the principal axes of anisotropy, they reduce to 

four independent coefficients. The material is then referred to as 

"orthotropic" with respect to the axes u and v. Once again, the stan-

dard definition of orthotropy does not apply to the structures considered 

in this study. 

· For the principal axes of anisotropy, the constitutive equations 

become 

1 cr = (v E c + E c ) 
V 1 - V VVU UV V U V V 

UV 

(2.4) 

cr = G c 
UV UV UV 

Under the assumption that the structure behaves locally as an ortho-

tropic structure, one can assume that the principal axes of stress and 

strain coincide. Furthermore, these axes (1 and 2 in Figure 7) are 

taken as principal axes of anisotropy. With E 1, v 21 being the material 

constants in the direction of the first principal axis and E 2, v 12 being 



the values for the second, Equation ( 2. 4) now reduces to 

( 2. 5) 

Once the principal strains have been calculated, the corresponding 

maximum stresses may be evaluated directly as 

where 

El 

[ nJ = 1 - \J\2\)21 \J12E2 

0 0 

( 2. 6) 

0 

0 ( 2. 7) 

0 

It must be kept in mind that such an approach is contingent upon the 
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assumption that the principal axes exist. The conditions for the exis-

tence of principal directions are stated in Reference 34. Since the 

computer solution does not calculate the stresses in any other but the 

principal directions, no stress transformations are performed. Thus, 

the transformation of elastic constants for new coordinate systems can 

be omitted, and transformation of coordinate systems is performed 

on the entire element stiffness matrix. 

Finally, it should be noted that Equation ( 2. 5) is subject to an 

additional condition. The four material constants, E 1, E 2, \J12 and 'v 21 , 

are not independent. The additional relation may be obtained by com-

parison of the total work done on a differential element for two different 
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loading sequences. The resulting supplementary equation relates the 

Poisson's ratios to the moduli of elasticity as follows: 

( 2. 8) 

Substituting Equation (2. 8) into Equation (2. 5) yields the constitutive 

laws 

El 
O" 1 = - (cl+ \!21c2) 1 \)12 \)21 

E 
O" = 1 ('J E' + nc 2) ( 2. 9) 2 1 - \)12\)21 21 l 

0"12 = 0 

where 

E2 
(2.10) n== -

El 

In matrix form 

0"1 1 \! 21 0 E' 1 

El 
\! 12 0"2 = 

l - \)12 'J 21 
n 0 E' 2 (2.11) 

0 0 0 0 0 

or { O"} [naJ { c} 

Steel and Bond Links. Since in this study the steel elements will 

be considered as two-force members only, the uniaxial stress-strain 

curve may be used directly to determine the material properties. It 

should be mentioned that any other element would require more 

sophisticated tools for the evaluation of the material constants. A 
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proper yield criterion and plastic stress-strain relations, such as the 

Prandtl-Reuss equations (32) would have to be adopted. 

Here the incremental stress b.a in the longitudinal direction is 
x 

calculated by 

b.a = E b.E: 
x s x 

(2.12) 

The appropriate modulus of elasticity is read from the uniaxial stress-

strain curve for steel at the location of the total strain E: • In the case 
x 

of an elastic-perfectly-plastic material, the incremental stresses will 

become zero beyond the yield stress. However, the total stress a is 
x 

still available from the stress-strain curve. 

A similar situation exists for the bond links. A gain, the uniaxial 

stress-strain relations provide the material constant Eb directly. The 

same approach as used for steel members yields the stress increments 

b.rb and the total bond stress rb at any load level. 

b.rb = Ebb.r (2.13) 

b. denotes the relative displacement between a steel and the corres­
r 

ponding concrete node. Figure 9 displays some possible stress-rela-

tive displacement curves (from Reference ( 35 )). 

2. 4 Development of Element Stiffness Matrices 

2.4.1 General 

A number of alternative methods are available for the calculation 

of element stiffness matrices. The variational approach based on the 

principle of minimum potential energy is adopted here. Since these 

methods are well established, a comprehensive repetition of the 
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procedure is omitted. References ( 31) and ( 36) contain excellent intro-

ductions to the variational treatment of the energy methods. 

2.4.2 Matrix Formulation for the Plane Stress Case 

The first step in determining the properties of the idealized ele­

ment is to assume that the interior displacements { u} at any point are 

expressible in terms of the nodal displacements { u} by a set of equa­

tions given as 

{u} = [a] {u} (2. 14) 

[a J is a rectangular matrix which is a function of the coordinates of 

the point under consideration. For discrete element systems, the 

matrix [a J is an approximate expression. The total strain distribution 

{ e} ( { e} may include initial strains { c 0}) within a particular element 

is obtained by differentiating Equation (2. 14) which leads to the matrix 

equation 

(2. 15) 

This expression replaces the kinematic relations used in the ordinary 

theory of elasticity. 

Under the assumption that a unique matrix [b J exists, the 

stresses may be determined from any conceivable constitutive relation-

ship of the form 

(2. 16) 

By substitution of Equation ( 2. 15) into Equation ( 2. 16) 

(2. 17) 
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{CJ}, of course, represents the three stress components, CJ , CJ , CJ 
x y xy 

and [n J is a square matrix containing the elasticity constants, E, G, 

\J, etc. 

It is now possible to express the total energy functional in matrix 

form 

where 

f = prescribed body forces b,n 

n = element index 

p = prescribed surface tractions 
n 

V = volume of element n 
n 

S = portion of element surface over which the 
CJ, n 

surface tractions Pn are prescribed. 

(2.18) 

Substituting Equations (2.15) and (2.17) into Equation (2.18) 

yields the required expression for n. 

(2. 19) 
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Application of the principle of minimum potential energy 

60 = 0 ( 2. 20) 

to Equation ( 2. 19) will result in the desired stiffness matrix [ K J 

[K J = JJJ [bnJ [nnJ [bnJ dV (2. 21) 

and three equivalent force vectors due to initial strain conditions, pre­

scribed body forces and surface tractions ( 29 ). 

Consideration will now be given to the three specific elements as 

shown in Figure 3. If the strain-displacement transformation matrix 

[bn] and the matrix of elastic constants [nnJ are known, the stiffness 

matrix [ Kn] can be determined by evaluation of expre~sion ( 2. 21 ). 

2.4.3 Triangular Concrete Panels 

It is possible in this case to obtain the stiffness matrix [Kn] 

directly in terms of global coordinates x and y. The assumed displace-

ment function will be taken as 

( 2. 22) 

The six arbitrary constants, c 1, ... c6, result from six boundary 

conditions involving the three vertices of the triangle, Figure 10. Upon 

substitution of the vertex coordinates into Equation ( 2. 22), the displace-

ment functions are obtained as follows: 

+ [-Y3/x - X3) + x3l(y- Y3)] U3 

+ [Y 21 (x - xl) - x21 (y - Y 1 >] U 5 

( 2. 23a) 
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where 

and 

A 
n 

x .. = lJ 

y .. = lJ 

34 

(2. 23b) 

( 2. 24) 

x. - x. 
l. J 

(2. 25) 
y. - y. 

1 J 

Thus, matrix [bn] is a function of the vertex coordinates only and 

therefore is unique. The strain-displacement transformation matrix 

is obtained by differentiating Equation ( 2. 23 ). Hence, 

( 2. 27) 

The assumption of linear displacement functions results, in this 

particular case, in a constant strain field. The compatibility equations 
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are therefore satisfied within each element. Furthermore, displace-

ments along the interelement boundaries are linear functions of the 

corresponding vertices and are identical for adjacent edges. 

Since the elements under consideration are of unit thickness, the 

expression ( 2. 21) reduces to 

( 2, 28) 

the integration being carried over the area of the triangle. Both ma­

trices, [bnJ and [nnJ, are independent of the integration parameters 

and can be taken out of the integral sign. The integration then simply 

reduces to a matrix product of the form 

(2.29) 

where A d:enotes the area of the triangle 1, 2, 3. 

The resulting stiffness matrices for different matrices [n nJ are 

tabulated in Appendix A. 

2.4.4 Steel Bars 

The derivation of [ Kn] for the linear steel elements ts consider­

ably less involved. Only one displacement function in the direction of 

the member axis is needed. It has been mentioned before that the 

assumption of linear functions of the form 

- xl - -
uxl = Ul + L (U3 - U 1) (2.30) 

will provide the exact strain distribution. U 1 designates the displace-

ments in local coordinates, Figure 11. 

Upon differentiation of Equation ( 2. 30 ), the longitudinal strain 

E becomes 
xl 
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(2. 31) 

u1 
€ i[-: 0 1 0 U2 xl 

= 
€ 

-1 0 1 U3 Y1 

(2.32) 

U4 

and therefore, 

0 1 :] (2. 33) 
-1 0 

For one-dimensional elements, [ns] reduces to one term, Es. The 

stiffness matrix then, after integrating over the length, can be written 

as 

1 0 

[ J AE 
K = __..§ 

s L 

0 0 

-1 0 

0 0 

-1 

0 

1 

0 

0 

0 

0 

0 

(2.34) 

Young's modulus, naturally, must be chosen according to the prevailing 

strain condition in the member. 

Although the stiffness matrix could be stated in the datum coor-

dinate system directly, it is more convenient to develop the relations 

in local coordinates first and subsequently rotate the entire matrix 

into the global axes. According to Reference (2), the appropriate 

transformation is expressed by the matrix equation 



37 

( 2. 35) 

where [ T J is an orthogonal matrix which relates the nodal displace­

ments { u} in the global system to the local deflections { U} in the 

following manner. () denotes the angle between the local and global 

x-axis (Figure 11). 

{u}=[TJ{u} (2. 36) 

cos() sine I 0 0 

[T J - sine cos() I 0 0 
= 

0 0 cos() sine 
( 2. 37) 

0 0 I -sine cose 

2.4.5 Bond Links 

Finally, the derivation of the bond link stiffness matrix follows 

closely the procedure set forth in section 2. 4. 4. Consider a linkage 

element oriented at an arbitrary angle () relative to the global axes 

x and y, Figure 12. Let the springs in the x 1 and y 1 directions have 

stiffness coefficients k1 and k2. Hence, the stress- strain relations 

in matrix notation simply become 

( 2. 38) 

(2. 39) 

where E and E are the relative displacements between the adjacent 
xl x2 

steel and concrete nodes. It can easily be verified that the strain-
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displacement relations 

= u 3 (2.40) 

= u 4 

yield a [bb] matrix identical to Equation ( 2. 33 ). Because of the concep­

tual similarity between the steel and bond elements, the remaining 

steps are analogous to those in section 2. 4. 4 and need not be repeated. 

Scordelis has found in his study of reinforced concrete beams 

( 24) that this type of bond mechanism simulates the interaction between 

concrete and steel quite accurately. It should be mentioned that the 

linkage element neglects frictional bond, local stress concentrations 

along the ribs of deformed bars and dowel action. 

Research has shown that the redistribution of compressive 

stresses at the ribs of bars may cause small tensile stresses in the 

concrete ( 37 ). However, for all standard deformed bars the concrete 

is capable of sustaining these local disturbances. Therefore, these 

effects are neglected in the design. Frictional bond may be significant, 

especially near cracks; but it is again neglected since the coefficient of 

friction is extremely difficult to predict. 

Dowel action is usually significant in the corners of bent or 

curved reinforcements. This study considers straight bars only. 

Therefore, a bond link which does not account for this effect is justified. 

2.4.6 Cracked Concrete Element 

It is well known that the tensile strength of concrete is only a 

fraction of its compressive strength. This rather unpleasant property 

leads to cleavage failure (tension cracking) at relatively small loads. 
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At any load larger than that which causes the concrete to crack, the 

reinforcements are called upon to resist the entire tensile force. This 

type of behavior plays an important role in the nonlinear analysis of 

reinforced concrete. 

In the solution procedure presented here, the influence of a crack 

on a continuous triangular concrete element is treated in a similar way 

as proposed by Rashid ( 23) in 1968. The element is cut in the direction 

perpendicular to the principal tensile stress cr1. In this new state the 

element no longer has any stiffness normal to the crack surface 

( Figure 13 ). 

Consequently, the concrete may be considered as a uniaxial 

stress condition parallel to the second principal axis. This assumption 

results in the following stress-strain relationship: 

(j 1 0 0 0 El 

(J"2 = 0 E2 0 €2 (2.41) 

0 0 0 0 0 

or, in matrix formulation, 

{a} = [n er J { E} (2,42) 

The stiffness matrix in local (principal) coordinates may now be de­

rived on the basis of Equation (2. 29). Hence, 

(2.43) 

For the assembly of the total stiffness matrix, the local matrix (Equa­

tion (2. 19)) must be expressed in terms of global coordinates. Ordi­

narily, this is accomplished by a matrix triple product of the following 

form: 
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(2.44) 

where 

cos¢ sin¢ 

-sin¢ cos¢ 

[R] = 
I cos¢ 

I -sin¢ 

sin¢ 

cos¢ I 
cos¢ sin¢ 

I -sin¢ cos¢ 

It should be noted at this point that similar transformations must be 

performed on all anisotropic, uncracked elements, whose material 

characteristics follow Equation ( 2. 11 ). 



CHAPTER III 

MATRIX ITERATIVE PROCEDURES 

3. 1 Review of Iterative Procedures for Problems with Nonlinear 
Material Properties 

3 .1.1 General 

Nonlinear structures are usually classified according to the cause 

of nonlinear behavior. Since all solution procedures in solid mechanics 

involve equilibrium, kinematic and constitutive equations, nonlineari-

ties may arise from either of these three sets of fundamental relations. 

In case of large displacements, the geometric configuration of the 

assembly may change sufficiently under load to influence the equili-

brium relations. Large deflections also cause nonlinear terms in the 

kinematic relations. It appears then that nonlinearities may be due to 

either the geometry or the material properties or both. Thus, the• 

following three categories contain all possible sources of nonlinear 

conditions: 

1. Geometric nonlinearity caused by nonlinear kinematic rela-

tions. 

2. Material nonlinearity which arises from complex material 

laws. 

3. Combined geometric and material nonlinearity. 

The matrix analysis methods developed for linear structures can be 

extended to include the above mentioned complications, Because of 

4~ 
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the presence of nonlinear terms, the solution to the governing matrix 

equations can no longer be obtained explicitly. Consequently, the use 

of iterative procedures is inevitable. Most of the early applications 

handle nonlinearities by calculating corrections to linear solutions, A 

common method used in the solution of geometrically nonlinear systems 

is due to Turner et al. ( 38 ). The structure is solved as a sequence of 

elastic problems in which corrective stiffness matrices are generated 

to update the geometry. A comprehensive review of such methods and 

subsequently developed procedures can be found in Oden's paper on 

nonlinear structural analysis ( 21 ). 

Similar iterative schemes have also been adopted in the study of 

inelastic structures. Among the earliest applications were investiga­

tions concerning thermal effects and creep ( 39, 5 ). The most signifi­

cant developments are connected with research on elasto-plastic prob­

lems. Basically, four methods have emerged from such investigations: 

1. Direct iterative approach; 

2. Initial strain approach; 

3. Variable elasticity approach; 

4. Initial stress approach. 

The key to these different methods is the formulation of the matrix of 

elastic constants [n l Since the coefficients of these matrices are 

functions of the state of stress or strain, they must be re-evaluated 

after each cycle. In the case of a uniaxial state of stress, the modulus 

of elasticity may be read from the stress-strain curve directly. More 

generally, under multiaxial stress conditions, the elastic constants 

will depend on the stress or strain invariants. It is reasonable to 

assume that the effective stress a eff is equal to the value of the second 
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invariant J 2 of the stress deviator tensor. Similarly, the effective 

strain eeff corresponds to the second strain deviator invariant r2, 

where: 

J = l {( a - a >2 + ( a - a >2 + ( a - a )2 
2 6 x y y z z x 

2 2 2} +6(a +a +a ) xy yz zx ( 3. 1) 

( 3. 2) 

Or, in terms of principal values, 

( 3. 3) 

(3.4) 

The effective or equivalent stress is introduced for convenience as 

( 3. 5) 

It is closely re lated to the frequently used octahedral shear stress 

( 3. 6) 

through the following relationship: 

( 3. 7) 

Most authors prefer to use either one of these quantities in place of 

the rather abstract term J 2: 

1 

a eff = ( 3J 2) 2 ( 3. 8) 

1 

(2 2 'T = 3 J2) oct ( 3. 9) 
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The convenience of the above definitions and the corresponding strain 

terms becomes apparent in the formulation of yield criteria. For 

example, the von Mises condition relates the second stress invariant 

of the multi-dimensional state of stress to the uniaxial case as follows: 

where <J is the uniaxial tensile or compressive stress. Thus, the 
0 

three-dimensional situation may be expressed in terms of one para-

meter, <J0 , only. Furthermore, if a unique relationship between <J 
0 

and E exists, one is able to determine the material constants for the 
0 

three-dimensional continuum at any load level from the uniaxial stress-

strain curve: 

(J = f(E ) 
0 0 

(3. 11) 

3.1.2 Direct Iterative Approach 

The direct iterative technique is based upon repeated elastic 

solutions, where for each cycle the full load is applied. Initially, all 

elements are assigned a modulus of elasticity, E , and a Poisson's 
0 

ratio, v0 , corresponding to zero stress. Subsequently, the elastic 

constants are redefined for each new solution. They depend on the 

state of stress ( or strain) reached in the previous step. According to 

Zienkiewicz ( 12), an adequate solution requires three to four iterations. 

Unfortunately, this simple method has several disadvantages. It 

is, for example, impossible to include an unloading cycle in a problem, 

Clearly, during a load decrease the plastic strains should remain con-

stant. Since the procedure is entirely based upon total effective 
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strains, a reduction in load may cause a change in plastic deformation. 

Furthermore, it is difficult to obtain reasonable, consistent represen-

tations of the equivalent Poisson's ratio. 

Gallagher et al. ( 39 ), and A rgyris ( 8) realized that both difficul-

ties can be avoided by incremental procedures. These step-by-step 

methods have the additional advantage that they permit the use of incre-

mental stress-strain characteristics such as the Prandtl-Reuss equa-

tions. 

3.1.3 Initial Strain Approach 

The procedure here consists of applying the load in small incre-

ments. For any such load interval the incremental stresses and strains 

are computed. Total stresses and strains may be obtained by adding 

the current incremental values to the total stresses ( or strains) reached 

during the previous step. Clearly, the evaluation of the elastic strain 

increments is straightforward. However, the change in plastic strain 

depends on both the initial and final stress condition and cannot be 

determined directly. 

The total incremental strain { .6.e} in any interval may, in general, 

consist of elastic, plastic, thermal and creep strain increments. 

Throughout this study the latter two contributions will be neglected. 

Hence, the total strain increments reduce to 

(3. 12) 

If the plastic strain increments are known, they may be treated as 

initial strains {.6.E }. similar to those caused by temperature o, p 

changes. Consequently, the stress increments can be determined 

through a standard elastic analysis. 
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(3. 13) 

The difficulites involved in establishing the plastic strain increments 

depend on the degree of sophistication desired. Any plastic constitutive 

relation may be implied, including time or temperature dependent 

material characteristics. One of the most commonly used set of equa-

tions, the Prandtl-Reuss flow rule, will be elaborated as an example. 

In matrix notation they take on the form 

( 3. 14) 

where C is a function of the effective stress and the effective plastic p 

strain increment, .6.E~ff. 

(3. 15) 

The matrix [DOJ -1 
contains 'V = 0. 5; thus, for the three.-dimensional 

case 

1 -. 5 

- . 5 1 

[D J-1=..! -.5 -.5 

o E 

0 

and 

-. 5 I 

- . 5 I 

c 
p 

1 

1. 5 

0 

(3. 16) 

1. 5 

1.5 

(3. 17) 
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To obtain the effective incremental plastic strain, A rgyris ( 8) suggested 

two different methods. First, the so-called direct incremental 

approach makes use of results obtained in the preceding step. Assume 

that upon completion of increment i-1, the total and incremental 

stresses and strains are available. The values of AE~ff and er eff are 

readily determined from Equations ( 3. 15) and ( 3. 5 ), respectively. 

The modulus of elasticity, E , and Poisson's ratio, v , for the zero 
0 0 

stress condition are used throughout the entire solution. With E 0 and 

v known, the constitutive equations needed for the formulation of the 
0 

stiffness matrices are defined as 

(3. 18) 

This procedure may be improved by performing, for each load step, 

an initial elastic solution and a series of subsequent iterations. The 

increments of stresses and strains of the current cycle are used to 

obtain a new estimate of the plastic strain increment for the next itera-

tion. According to Argyris (8), this iterative-incremental method 

usually converges after five iterations. 

It should be mentioned that both methods require special pre-

caution when unloading occurs. During a load decrease, the structure 

must behave in a purely elastic fashion which may be accomplished by 

specifying the factor C as zero. Likewise, upon reloading, C must 
p p 

remain zero until the current a eff is found to exceed the highest effec-

tive stress achieved during the previous increment. 

3.1.4 Variable Elasticity Approach 

For elastic-perfectly plastic and ideally plastic material, the 

methods of sections 3. 1. 3 and 3. 1. 4 break down. This is due to the 



50 

fact that large plastic strain increments may result even from very 

small load augmentations. Pope suggested a method in 1965 (7) which 

adjusts the stress-strain relationship in every load increment to take 

into account plastic deformations. The works of Marcal and King ( 11 ), 

A kyuz and Merwin ( 15) fall into the same category. 

For the elastic strain increment the expression remains as 

(3. 19) 

However, the Prandtl-Reuss equations (which express the plastic 

strain increments in terms of actual accumulated stresses {a}) must 

be replaced by a relationship of the form 

( 3. 20) 

To derive [npJ- 1, let H' denote the slope of the effective stress­

effective plastic strain function, which, again, will be assumed to be 

available through experiments. The strain-hardening criterion in dis-

crete form then becomes 

(3. 21) 

By differentiating the von Mises yield condition, a second expression 

for Llaeff may be obtained as follows: 

where 

£l (]' : _3_. { (]' I £l (]' + (]' i £l (]' + (]' 1 £l (]' } 
eff 2 a eff x x y y z z 

3 { } + -- a Ll a + a 8 a + a 8 a 
a eff xy xy yz yz zx zx 

a'= .!.(2a - a - a) x 3 x y z 
( cyclic sub­
stitution) 

The above term can now be written in matrix form as 

(3. 22) 

( 3. 23) 
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( 3. 24) 

and substituted into Equation ( 3. 21). 

( 3. 25) 

Upon substitution of Equation ( 3. 25) into the Prandtl-R euss relations 

(3. 14), one arrives at the desired incremental stress-strain rule. 

= ( 3. 26) 

or 

( 3. 27) 

Hence, [np J depends upon the current state of stress {a} and the 

strain-hardening history through the parameter H'. Combined with 

the elastic constitutive relations, the total strain increments become 

and the corresponding change in stress is 

This particular method is known to converge very rapidly. Further­

more, unloading can be treated by simply inserting an elastic [n J 
matrix in the increment following a.n unloading interval. From a com-

putational point of view, the variable elasticity approach has one disad-

vantage; at each solution step, the stiffness of the structure is changed. 

Thus, for every iteration the whole structural stiffness matrix must be 

reassembled, which naturally results in excessive computer time. 
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3 .1. 5 Initial Stress Method 

The most recent method of elasto-plastic analysis was introduced 

by Zienkiewicz et al. ( 20) as an alternative approach to the "variable 

elasticity" procedure. This "initial stress" method makes use of the 

fact that the total strain increments uniquely define the corresponding 

stress situation throughout the entire load history. This holds true for 

any type of stress-strain relationship including those for ideally plastic 

structures. Therefore, it seems more reasonable to treat the stress 

increments as initial values rather than the strains. The change in 

stress derived from the corresponding strain increment will, in 

general, be incorrect. Consequently, the initial stress approach must 

again rely on an iteration scheme. 

Once more, the first step in each load increment consists of 

solving the problem elastically. Both the strain increments { .6.E e} and 

the associated change in stress { .6.cre} are computed. Since the calcu­

lated values for { .6.cr e} deviate from the true stress increments { .6.cr}, 

the equilibrium conditions are violated. In order to maintain equili-

brium, a set of "body forces" equal and opposite to the initial stress 

system { .6.crb} must be introduced. 

(3. 30) 

Kn the computation, the unknown, true stress increments are replaced 

by approximative values { .6.cr} determined from the second iteration 

cycle. 

Before proceeding to the second solution step, each element is 

examined for its type of behavior. For this purpose the calculated 

stress increments are added to the total stresses { er 0 } reached during 
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the preceding increment to establish the current stresses {a}. 

T,hese values and the corresponding strain-hardening parameter k are 

substituted into a suitable yield criterion, F ( {a} , k). The resulting 

numerical value determines whether the element exhibits elastic or 

plastic behavior. From the theory of plasticity, it is known that for a 

strain-hardening material, the following four cases may be distinguish-

ed: 

a. F< 0 elastic behavior 

b. F= 0 and .6.F < 0 unloading, elastic behavior 
(3. 32) 

c. F= 0 and .6.F = 0 neutral loading, plastic behavior 

d. F= 0 and .6.F > 0 loading, plastic behavior 

where 

(3. 33) 

Zienkiewicz states the same conditions in a more computer-oriented 

form (29). 

Clearly, no further iteration is required if, after the beginning 

elastic cycle, the first or second condition is satisfied throughout the 

entire structure. Otherwise, the solution is continued by computing 

new stress increments { .6.a}. 

{ .6.cr} = [n ep] { .6.E e} (3.34) 

where [n epJ, the matrix of material constants, is a rather involved 

expression. Its coefficients are dependent upon the yield condition, the 

strain-hardening parameter and the stress-strain curve. In the case 

of elasto-perfectly-plastic material, the matrix still exists since the 



slope of the stress-strain curve H' ap~ears as a single term in the 

numerator (20). 
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All subsequent iterations must now be based on augmented load 

conditions (initial, externally applied load increments plus equilibrat-­

ing nodal forces). For the ith solution cycle, they are 

( 3. 35) 

where 

( 3. 36) 

3. 2 Proposed Iteration Procedure 

The method presented here is based upon an iterative, incremen-

tal load approach. For each load increment, the whole structure is 

repeatedly solved as an elastic problem until closure. Consider an 

arbitrary concrete element during load increment i. Assume that at 

the end of the previous step the principal strains { ep, i-l} and stresses 

{ ap, i-l} have been established. Based upon these values the element 

may be in any one of the following conditions: 

a. Type 1: Elastic, isotropic; 

b. Type 2: Elastic, anisotropic; 

c. Type 3: Inelastic, anisotropic; 

d. Type 4: Cracked. 

The four cases can be visualized diagrammatically in Figures 14 and 15. 

In the present computer program, principal strains { ei_ 1} are 

used to determine the relevant material constants. After the proper 

modulus of elasticity, Ei' and .Poisson's ratio, \11, have been found for 
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each element, the [n J matrices are generated. To recapitulate, the 

appropriate equation shall be summarized below: 

Type 1: 

1 '\) 0 

E [n J - 1 '\) 1 0 
- (1-v 2) 

0 0 
1-v -2 

Types 2 and 3: 

'\)12 0 

n 0 

0 0 0 

(for principal axes) 

Type 4: 

b O O 

1 0 

0 0 0 

(for principal axes) 

The elemental stiffness matrices r k.J follow immediately as 
L 1 

or, for cases 2, 3, and 4, 

(3.37) 

(3.38) 

( 3. 39) 

(3.40) 

(3. 41) 

Next, the total stiffness matrix is assembled and solved for the incre­

mental displacements {~.u}. The discussion of the procedure used will 
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be postponed until Chapter IV. The incremental strains are now 

evaluated as 

(3.42) 

and added to the total strains { ei_ 1} of the preceding step to give the 

new total strains 

(3.43) 

These values constitute a new strain situation with a corresponding 

new set of principal strains {e .· .} . The material properties of the 
P, i. 

following iteration cycle are again extrapolated from the stress-strain 

curve. The iteration is stopped after a specified tolerance is reached. 

Before proceeding to the next increment, all total stress and strain 

values are updated and stored. Similar treatment is imposed upon the 

reinforcements and bond links. However, the procedure here is much 

less involved since the matrix [n J reduces to a single term E 1. 



CHAPTER IV 

COMPUTER PROGRAM 

4. 1 General 

The iteration procedure described in Chapter III has been pro-

grammed for solution on a digital computer. Two programs, NARCOS-

1 and NARCOS-2,1 were written for the IBM 360-65 model operated by 

the Oklahoma State University Computer Center. The standard ASA 

FORTRAN language was used. 

Both programs generate all necessary mesh data from a minimum 

of input information. NARCOS-1 was based on the element arrange-

ment used by Scordelis (24). This first version had to be abandoned at 

an early stage because of unsatisfactory results. A convergence study 

revealed that the symmetric mesh of NARCOS-2 converges much more 

rapidly, Figure 16. 

4. 2 Computer Idealization of the Beam 

The finite element representation of the beam is arranged into 

rectangles. Each rectangular unit is subdivided into four triangular 

elements of equal area. The corners are numbered in a clockwise 

direction, Figure 17. To ensure small band widths, the joint numbers 

1NARCOS is the abbreviation for "Numerical Analysis of Rein­
forced Concrete Structures." 
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Figure 17. Example of Nodal Arrangements 
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are arranged in the direction of the least number of nodes. Reinforce­

ments can be connected at the corner joints of the rectangles only. In­

clined reinforcing (such as shear reinforcements under 45° wrt. beam 

axis) is not allowed. The program connects all steel nodes by means 

of bond links automatically. As mentioned earlier, this requires a 

revision of the nodal list. A 11 input information must be specified in 

terms of the original nodal arrangement, Figure 17a. At the end of 

the data input, the program generates a cumulative nodal list which 

includes the additional steel nodes, Figure 17b. 

4. 3 Flow Chart 

Figure 18 shows a summary flow chart of the program NARCOS-

2, using symbols shown in Figure 19. The detailed listing is given in 

Appendix B. 

4. 4 Solution of Equilibrium Equations 

With the nodal arrangement discussed above, the stiffness matrix 

for the finite element assembly will be banded. This type of matrix 

lends itself well to direct solution by Gauss elimination. Since the 

matrix is symmetric, only the upper half of the band is stored in a 

rectangular array. The assembly and solution of this array is done 

blockwise, Figure 20. The first step consists of a forward elimination. 

Each reduced block is stored on a disk. With the last reduced block 

still in core, the backward elimination is performed in reverse order. 

Although several load vectors may be included in this procedure, only 

one loading case is considered in the present program. 
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The solution of the stiffness matrix is done in subroutine BANSOL. 

A detailed description of the standard Gauss procedure shall be omitted. 

Complete information on this method may be found in Reference 40. 

4. 5 Input List 

The input data are arranged in tabular form. Topological and 

geometrical properties make up the first block. The second block of 

information consists of the material properties. Block 3 contains the 

list of reinforcements. Loads and boundary conditions are specified in 

the last block. Each table is identified by a block header card as shown 

in Figure 21. The specific format of each type of data statement is 

given in Appendix C. In the following the general input sequence will 

be described in detail: 

1. Number of problems: The first card must specify the number 

of problems to be solved. 

2. Problem title: One alphanumeric card initializes and identi­

fies a new problem. 

3. Control card for first block: Topology and geometry. NAR­

COS-2 offers three modes for the input of geometric and topological 

properties. The mode is specified, together with the number of nodes 

in the horizontal and vertical direction and the number of reinforce­

ments, on the first control card. 

Mode 1. Equal spacing: 

Under this mode all rectangular elements 

are of equal size. The program divides the 

length and depth of the beam into a speci­

fied number of intervals, respectively. 
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The geometry may in this case be given 

by the coordinates of the upper right 

corner (for example, node 32 in Figure 

17b). 

Mode 2. Unequal spacing: 

This input option allows for the varia­

tion of the element size in horizontal and/ 

or vertical direction. Example 1 of 

Appendix D demonstrates this input mode. 

Mode 3. Individual input: 

Mode 3 requires the declaration of the 

geometry and topology (i.e., node and 

element numbers) for each triangular 

element. This option was included to 

make the program available for irregular 

shapes. 
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4. Joint coordinates: Data giving the location of either the cor­

ner node (mode 1) or of nodes which specify the interval length of un­

equally spaced elements (mode 2) follow the first header card. Input 

under mode 2 may best be explained by means of Example 1 in Appendix 

D. The coordinates of the interval points (1, 3, 9) in y-direction 

( cards 4 to 6) are given first. The number of the joints must corres­

pond to the actual node number (Figure 32). The computer divides the 

intervals into the correct number of equal segments. 

5. Control card for second block: Material properties. This 

data statement initializes the input list of the stress-strain characteris­

tics and specifies the number of elements with irregular thickness. 
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6. Element thickness: The program assumes a unit thickness 

over the entire continuum. However, specification of other than unit 

thicknesses of the rectangular elements is permitted. 

7. Material properties: The stress-strain curves for concrete, 

steel and bond are given by a set of points on the curve. For steel, the 

maximum number of stations is not to exceed 20. The stress-strain 

characteristics for concrete and bond are given by a maximum of ten 

points. The point, stress equal to zero and strain equal to zero, must 

also be specified ( if the curve passes through the origin). Following 

the input of the stress-strain graphs, the Poisson's ratios for each re-

gion between two points on the curves must be declared. The input of 

Poisson's ratios is required for concrete and steel only. The last card 

in this block contains the bond link stiffness, K . This coefficient ex­
v 

presses the strain-relative displacement characteristic of the linkage 

element perpendicular to the reinforcement. If the numerical value is 

omitted {blank card), the program assumes a number which is 106 times 

the value of the first coefficient on the diagonal of the main stiffness 

matrix. 

8. Reinforcement information: There is no special header card 

for this table, since the number of reinforcement cards was given in 

the control statement for the first block. Each reinforcement input 

specifies one or more bars. The cross-sectional area may be given 

directly or in the standard form as bar number according to the ACI 

Code. The position of reinforcements is specified by the number of 

the start and end node. The computer automatically divides the bar into 

two-force members of the same length as the corresponding rectangular 

concrete elements and assigns the proper bond links. 
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9. Tolerance: The number on this card declares the percentage 

error tolerated on the largest displacement. 

10. Control card of last block: Loading and boundary conditions. 

The number of loads, boundary conditions, increments and iterations 

are specified. If the number of increments is equal to zero, the pro­

gram performs an elastic solution without iterations. Automatic scal­

ing is done if the parameter NINCR is equal to 1. In this case, the load 

is taken as total load. During the first cycle, the problem is solved 

elastically and all results are scaled until the element strains in the 

extreme element correspond to the yield values. The loads are adjusted 

accordingly. The difference of the total given load and the load at yield 

is divided into 20 increments. 

11. Loading information: One card per joint load, i. e. , x- or 

y- component or both, must be supplied. 

12. Boundary conditions: Only one specific boundary condition 

may be stated on one card. The direction is identified in alphanumeric 

form (x or y). Prescribed displacements may be introduced by simply 

adding the numerical value of the induced delfection after the direction 

parameters, x and y. 

To complete this section, a few additional remarks concerning 

the data input seem necessary. It should be mentioned that the entire 

input for a particular problem must be consistent with regard to dimen­

sions. The program does not allow for mixed units. 

When no reinforcements are specified, several portions of the 

input sequence are skipped. In this case, the user must omit stress­

strain curves for steel and bond, "perpendicular" bond stiffness, and 

reinforcement cards. 
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For problems with fixed boundary nodes, it is not necessary to 

restate these boundary conditions for each load increment. If the pro­

gram encounters a blank card after the input of a load increment, the 

reading of boundary conditions is suppressed. The conditions of the 

first (initial) load step are assumed to apply throughout the entire 

loading history. 

A special feature has been introduced in the program in the form 

of a CHECK EQUILIBRIUM card. If such a card is included at the end 

of the first set of boundary conditions, the program checks the equili­

brium for each vertical strip of elements. The shear equilibrium and 

bending stress equilibrium (including forces in steel tendons) are 

checked. The average shear and normal stresses for each rectangular 

unit and the residual force on the cross section is output at the end of 

each load increment. 

4. 6 Output Information 

The complete list of input data is printed in tabular form. The 

calculated topological and geometrical properties refer to the updated 

cumulative nodal list. Results are provided after each successfully 

completed load increment. The results consist of a complete list of 

nodal displacements and stresses and strains in all elements. Several 

supplementary messages are included to clarify the large output. In 

addition, two "print error" subroutines report the most common input 

mistakes. A few are automatically corrected. The corrections made 

are recorded as nonfatal error messages. Sample output is included 

in Appendix D. 



CHAPTER V 

NUMERICAL RESULTS 

5. 1 General 

Three singly reinforced concrete beams were solved with NAR­

COS-2. A 11 examples were chosen to be simply supported and acted 

upon by concentrated loads as shown in Figures 22, 23, 27 and 30. 

Because of the symmetric loading, boundary and geometric con­

ditions, the solution could be performed for half beams only. The out­

put consisted of stresses in the concrete and reinforcements together 

with the principal stresses and their directions for each triangular ele­

ment. Bond forces as well as the relative displacements between steel 

and concrete nodes were printed. Several indicators, such as the con­

dition of the concrete elements ( e. g. , cracked) and equilibrium checks, 

were included in the listing to facilitate the interpretation of the exten­

sive computer output. Selected results will be discussed in the follow­

ing sections. 

5. 2 Example Problem 1: Scordelis' Beam A-1 

Several purely elastic problems were considered to serve as a 

check on the computational procedure and the program development, 

Existing programs for the analysis of in-plane loaded plates were 

primarily used for this purpose. 
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Next, Scordelis' beam A-1 was solved with NARCOS-2. The re-

sults reported in his paper ( 24) could be considered as a general guide 

only because of several differences in the problem setup. First, arti-

ficial cracks were introduced in beam A-1 at the beginning of the load-

ing process. The procedure here was ,to let cracks develop in the 

direction perpendicular to the principal tensile stresses when the 

maximum allowable tensile stress was reached. Second, Scordelis did 

not allow for any tensile resistance in the concrete. In this study, the 

modulus of rupture was assumed to be 300 psi. As a result of this, the 

beam under investigation showed a higher loading capacity before 

cracking took place. Thus, Scordelis' initial load of 1000 pounds had 

to be modified to P = 7000 pounds. Cracking was initiated at a load 
0 

level of 7200 pounds. Several cracks developed simultaneously at the 

bottom edge of the beam. Obviously, this type of crack pattern was to 

be expected with the moment being constant between the support and 

the point of application of the load (support at midspan). Subsequently, 

the load was increased by 200 pound increments up to 8800 pounds. 

The cracks continued to develop in the same direction ( i. e., perpen-

dicular to the edge) and additional cracks occurred along th.e bottom 

edge. The stress patterns, including the bond forces and crack propa-

gation, are shown for different load levels in Figures 24 through 26. 

Figure 22 contains the information about the stress- strain characteris-

tics used. Poisson's ratios of 0. 3 for the reinforcements and of 0. 15 

for the concrete were chosen to be constant throughout the entire load 

history. The values for the bond stiffness corresponded to those given 

by Scordelis (Kh = 2. 2 x 106 psi). 
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As mentioned earlier, the introduction of new nodes for the rein-

forcement required the renumbering of all nodes. To illustrate the 

difference between the intitial mesh and modified nodal arrangement, 

the two numbering systems are shown in 1 Appendix D accompanied by 

the listing of the data input statements. 

5. 3 Example Problem 2: Simple Beam Loaded at Midspan 

A simply supported beam acted upon by a concentrated load at 

midspan was chosen to study the cr!:tck propagation in the concrete, 

Figure 27. This type of structure and load configuration seemed par-

ticularly suited for such an investigation, because relatively large 

cracks should be expected to develop near the center of the beam. An 

initial load of P == 1500 pounds was applied. The cracks appeared dur-

ing the first load increment of ..6.P = 100 lbs (i.e., at P = 1600 lbs). 

The cracking moment obtained from the simple beam theory was found 

to correspond to a load of P = 1564 lbs. 
c 

Figures 28 and 29 illustrate the crack pattern at different load 

levels. The cracked elements have been identified by shading. Small 

vertical cracks first appear in the bottom elements of the beam. Dur-

ing the next few load increments, new cracks occur in the elements 

above those which have already cracked. In addition, small vertical 

cracks appear along the bottom edge farther away from the load. For 

higher load levels, the cracked elements tend to group in the vicinity 

of the center of the beam. Near the bottom edge the cracks remain 

practically vertical. However, Figure 29 clearly indicates that the 

directions of the cracks in the higher elements begin to point toward 

the load. Local disturbances in the crack pattern may be observed in 
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the neighborhood of the supports, especially the two triangular elements, 

six and seven, exhibit no cracks at all but experience relatively high 

compressive stresses in the x-direction. This irregularity may be 

caused by the vertical load at node four (the total concentrated load has 

been distributed over the nodes at the supports). Also, the steel rein-

forcement is fixed in the x-direction at support joint three. Thus, the 

applied vertical load at joint four must be transferred to the steel 

through the two concrete elements in question, causing high compres-

sive stresses in these elements. 

Several other elements at the bottom edge of the beam did not 

crack because of local stress redistributions. Element 124, for 

example, is obviously situated between two cracks. There the tensile 

stresses seem to have decreased enough in order not to cause cracking. 

Farther out in the beam the crack distribution becomes more regular 

with uncracked elements occurring more frequently. 

5. 4 Example Problem 3: Simple Beam Loaded Symmetrically by 
Two Concentrated Loads 

A third, simple beam problem was solved to study the nonlinear 

stress distribution in the compressive zone of the concrete beam after 

cracking has taken place. The same structural model as in Problem 2 

was loaded symmetrically by two concentrated loads at 30 inches from 

midspan, Figure 30. 

Cracks developed again at the bottom edge and continued to ex-

tend vertically. The stress-distribution for only one load level will be 

reported to demonstrate the stress distribution in the compression 

zone. Due to the small number of relatively large elements in this 

problem, the stress distribution must be regarded as a crude approxi-
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mation. However, the results clearly show the nonlinear character of 

the concrete stress block above the neutral axis, Figure 31. 
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Figure 31. Example Problem 3: Crack Pattern and Stress Distribution at P = 10, 000 Lbs. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6. 1 Summary 

The feasibility of the finite element method in the investigation of 

reinforced concrete beams composed of Hookean material has been es­

tabllshed by Scordelis ( 24). The objective of this thesis was to evaluate 

the potential of the finite element approach in the study of the nonlinear 

behavior of reinforced concrete beams under static loads and to provide 

a tool for the investigation of such structures. 

The actual situation was approximated by a structural model of 

the plane stress type using a finite number of triangular, constant­

strain, concrete elements, Hnear steel bars, and a mechanism to 

simulate the interaction between the two materials. In selecting the 

proper material constants for the concrete elements, the principal 

stresses were used to determine whether an element behaves isotropic­

ally, anisotropically or develops a crack. A 11 material characteristics 

were replaced by piecewise linear stress-strain curves. The finite 

element approach was implemented in the form of a combined step-by­

step, iterative procedure. Three example problems were solved on a 

digital computer. 
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6. 2 Conclusions and Recommendations 

The proposed finite element, step-by-step, iterative procedure 

is a feasible method to analyze reinforced, concrete beams. The 

simulation of the inelastic behavior by quasi-anisotropic, finite ele­

ments has shown satisfactory results. Likewise, the bond link models 

appear to approximate the bond slip phenomenon quite accurately. Two 

major difficulties had to be overcome in connection with the computer 

solution. First, the introduction of additional steel nodes presented 

some assembly problems. The use of a cumulative nodal list for the 

assemblage of such mathematical models proved to be extremely help­

ful. This technique allows the introduction of any number of additional 

nodes within any basic nodal configuration. Second, some difficulties 

were experienced with the bond link stiffness coefficients. To suppress 

relative displacements between steel and concrete nodes perpendicular 

to the steel bars, large numerical values for the vertical stiffness co­

efficients had to be used. These values must be selected with great 

caution. Extremely large numbers may cause completely erroneous 

solutions. 

The convergence of the iterative process has been found to be 

slow for large load increments. On the other hand, too many small 

increments will result in excessive computer time. It would be advan­

tageous to employ the solution procedure proposed by Z ienkiew icz ( 20) 

which does not require the assemblage of the structural stiffness 

matrix for each iteration. 

The present method may be recommended for extension to include 

time dependent effects such as creep or initial stress conditions result­

ing from temperature or prestressing forces. The method could be 
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modified for three-dimensional assemblies. However, the need for 

larger digital machines becomes even more apparent for such models. 

There is considerable doubt that the method could be used for 

dynamic loading conditions. Additlonal iteration cycles would probably 

increase the computer time tremendously. In addition, the program 

would have to be modified to include the possibility of unloading condi­

tions. 
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A. 1 Isotropic Stiffness Matrix for Triangular Concrete Panels 

Using the numbering system shown in Figure 10 and the strain-

displacement transformation matrix from Equation ( 2. 32), the following 

stiffness matrix results from Equation (2. 35). For convenience, the 

matrix is separated into two component matrices ( Equations (A. 1) and 

(A. 2)): [ Ks] represents the stiffness due to shear and [ KJ contains 

terms due to normal stresses only. 

A. 2 Anisotropic Stiffness Matrix for Triangular Concrete Panels 

The stiffness matrix (Equation (A. 3) below) is in terms of local 

coordinates, the axes being u and v, Figure 7. Again,, the nodes are 

numbered in clockwise directions. The matrix becomes much less 

complex for the principal axes, since G vanishes. 

A. 3 Stiffness Matrix of Steel Bars 

Linear bar stiffness matrices are conveniently given in global 

coordinates directly, i.e., after the transformation (Equation 2. 41) 

has been performed. 

- -2 
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2 
c c c x y y 
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c = sinO 
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A. 4 Bond Link Stiffness Matrix 
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(A. 7) 

(A. 8) 

Similar to the "two-force" members, the bond link matrices are 

given in the datum system directly . 

.,... 
c 2k + s 2k 

-
x 1 x 2 
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2 2 
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A. 5 Cracked Concrete Element 
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PROGR.UI NARCOS 
NONLINEAR ANALYSIS Jf kEINFORCED CONCRETE STRLCTURES 

LANGUAGE USED 
DIGIT AL MACHINE 
PROGRAMMER 

FORTRAN IV 
ISM .360-65 
ALEXANOER J. LAS~KER 
JUNE 30, 1971 DATE Of COMPLETION 

DESCRIPTION Of PROGRAM 

THIS PROGRAM SOLVES REINFORCED CONCRETE STRuCTURES Of THE 
• PLANE STRESS T'l'PE. THE F.INI re ELEMENT METHOD IS USED IN AN 
• ITERATIVE PROCEDURE. AT EACH LOAD STEP THE PROBLEM JS SOLVEU 
• AS AN ELASTIC PROBLEM. DETAILED INFORMATION CAN BE FOUND IN: 
• NONLINEAR ANALYSIS UF REINFORCED CONCRETE BEAMS UNDER STATIC 
• LOADS. PH.O. DISSERTATION BY A.J. LASSKER, USU, AUGUST 1971. 

PROBLEM PARAMETERS USED IN THIS PROGRAM 

• NN • BLOCK LENGTH 
• IIA • BLOCK WIDTH 
• NH • LENGTH OF WORKING AREA 
• NREL = NUMBER OF RECTANGULAR ELEMENTS 
• NTEL • NUMBER OF TRIANGULAR ELEMENTS 
• NODV • N<HIBER OF NODES VERTICALLY 
• NODH • NUMBER OF NUOES HOiUZONTALLY 
• NOF • NUMBER OF DEGREES OF FREEDOM AT ONf NOOE 

• XINUHNODJ 
• YI NUMNOD I 
• THETAINTELI 
• JTOPINREL,41 

• THICKINRELI 
• lTYPEINTELI 
• SECll0,21 

• ESl91 
• XNUCl91 
• EPSINTEL,31 
• EPRINTEL,21 
• STklNTEL,31 

STRPINTEL,21 
• NLOAD • NUMBER 
, NBC S • NUH8ER 
, XLOADINLOAD,31 

XBOUNDINBCS,31 
• UI NUMNOO*NDF l 

TU I NUHNOO*N DF I 
WI NUHNUO*NDF I 
UII NUMNOO*flDF I 

= X - COORDINATES 
• Y - COORDINATES 
• ANQ.E OF PRINCIPAL AXES 
z TOPOLOGY OF CONCRETE ELEMENTS 

CONTAINS NODE NUMBERS IN CLOCKWISE DIRECTION 
• THICKNESS OF RECTANGULAR ELEHETS 
• TYPE OF BEHAVIOR OF CONCRETE ELEMENTS 
• STRESS - STRAIN VECTOR FOR CONCRETE 

CONTAINS STRESSES IN COLUMN 1 
COt.JAINS STRAINS IN COLUMN 2 

• MODULI OF ELASTICITY FOii. CO,-.CRETE 
• POioSON 1 S RATIOS FUR CONCRETE 
• STRAINS FOR TRIANGULAR ELEMENTS 
• PRINCIPAL STKAINS FOR TRIANGULAR ELEMENTS 
• STRESSES IN TRIANGULAR ELEMENTS 
• PRINCIPAL STRESSES FOR TRIANGULAR ELEMENTS 

OF LOADING CAROS 
OF BOUNDARY CONDITIONS SPECIFIED I X,Y DIR.I 
= LOADING VECTOR 

CONTAINS NODE NUMBER IN CULUMN 1 
CONTAINS X -· COMPONENT IN COLUMN 2 
CONTAINS Y - COMl'ONENT IN COLUMr, 3 
PRESCkioED DISPLACEMENT VECTOR 

= NUOAL DI SPLACENENTS FUR A LUAO INCREMENI 
TOTAL NUDAI. DISPLACEMENTS 
AUXILIARY DISPLACEMENT V£~TOR 
AUXILIAKY TOTAL DISPLACEMENTS AT dEGINNING OF 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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• ITOPCNUMBAR,41 

• ISTYPECNUMBARJ 
SESI 20,21 
ES 1191 
XNUSl191 
SAREAINUHBARI 

• ESPS CNUHBARI 
, STRSINUMBARI 

• AINH,HAI 
• Bl NHI 

A NE Ii LOAD I NCREIIENT 

z TOPOLOGY OF REINFORCEMENT OARS 
CONTAINS NOOE NUMBERS FCR REINl'ORCEMENTS 

• T'I' PE Of dEHAV IOR Of STE a ELEM EN TS 
= STRESS - STRAIN VECTUR FOR STEcL 
• MODULI Of ELASTICITY FOR STEEL 
• P01SSUN 1 S RATIUS FOR STEEL 

STEEL AREA 
= STRAINS IN STEEL REINFORCEMENTS 
• STRESSES IN STEEL REINFORCEMENTS 

• WORK ING AREA FOR MAIN STIFFNESS MA TRIX 
• CORRESPUNOING WORKING SPACE FOR LOADS 

CURRENT SIZE OF PROGRAM 

• NN • 54 
• NH = 108 
• M • 54 
, IIUHNOO • 620 
• hREL = 288 
• NTEL • 1152 
, IIUIIBAR • 50 
• MAXhDF • 1300 

IHBAND IS MAX. 541 

• STRESS - STRAIN CURVE GIVEN BY NU MORE THAN 10 POINTS 
MODULI OF ELASTICITY GI VEN BY NO HORE THAN 9 POINTS 

, POISSON'S RATIOS GI VEN BV NO MURE THAN 9 POINTS 
• NUIIBER. OF LOADS GIVEN IS LESS THAN 5 
• NUMBER OF BOUNDARY CONDITIONS GIVEN IS LESS THAN 5 

.....•.•.•...•..•....•.....•.•.....•..................•................. 
IMPLICIT REAL*BIA-H,O-Zl 
REAL•& OATAN2,0S1N,OCOS,DABS 
COIIIION sno, 101 , YKH, VKV 
COIIIION DXX,OYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN ,NH, HA, NODV, NODH ,NUIINOD, NREL, NJ EL, NUMBAR, H AXNOF, 11 BAND 
COMMON NINCR,KINCR,NC~ VC ,NCUltVS,NlC ,NZS ,1 SCALE, NDF, IAUTO 
COMMON NUHOF,NUHTOF,NIT,IT,NCURVB,NZB,NOU2 

COMMON/ELEM I Xl6501,Yl6501,THETAl1152,21,Ull300l,TUl13001 
COIIHON/ELEMl I JTOPl288,41,THICKC211tll 
COMMON/POOL I AllOS,51+1 ,BllOBl,NUHBLK 
COIIHON/TYP I ITYPElll52l,ISTYPE(501,16TYPEllOOl,KDIR 
COMMON/HUDULC/ SECl10,2J,ECl9J,XNUCl91,TOL 
COHMON/HOOULB/ SEBll0,21 ,EBl91 
COHMON/MOOULS/ SESl20,2J,ESll~l,XNUSl191 
COMHON/LOAOS I XLOAOI 20,21,XBOUNDI 20 ,21 
COMHON/LOADSl/ ALOADI ~0,21 ,ABOUND( 20,21 
COHIION/LOADS2/ ILOAOI 201,IBOUNDI 201,NLOAD,NIICS 
COHHON/REINF I SAREAI 501,JCNLlb50,21,ITOPI 50,bl,NREINf,ISl,ISZ 
COMMON/CONS TR/ STRI H52,3l, STRPI 1152 ,21 ,EPSl1152 ,31 ,EPRlll52 ,21 
COMIION/CONSTl/ TSTRl1152,3l,TEPS11l52,3l 
COHMON/STLSTR/ ESPSI 501,STRSI 501,TE~PSI 501,TSTRSI 50,21 
COMMON/BONO I EPSBll00,21,STRBll00,21,TEPSdll00,21,TSTRBll00,£1 
DATA OVKV/1.DD+Oo/ , .ZERU/0.00+00/ 
DIMENSION UBl13001,KAl101 

....... 
0 
....... 
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EQUIVALENCE ( KA 111 ,Kll , ( KA 121,K21 1 (KAUI ,K3 I• (KAl4 I ,K41 
EQUIV AL ENCE IKA( 51,K51, I KA I 61,K61 • ( KAI 71 ,K 71 ,1 KA( ijl ,Kai 
EQUIVALENCE IKAl91,K91, IKAl101,Kl01 

C READ NUMBER OF PROdLEMS 
c 

c 

REAOl5,BOOOI NPROB 
8000 FORMAT(l51 

KPR06 • 0 
IFINPROB.GT.01 GOTO 100 
WRlTE16,90001 NPROd 

9000 FORMATl1Hl,1X, 1 NUHBER OF PROBLEMS HUST BE GREATER THAN ZERO•,/,lX, 
l'NUHBER OF PROBLEMS SPECIFIED• 1 ,151 

CALL EX lT 

C EACH NEW PROBLEM STARTS AT STATEMENT NO. 100 
C INITIAL llE MAIN PROBLEM P.\RAMETERS 
c 

100 CONTINUE 
KPROB • KPROB + 1 

c 
CALL lNITL 

c 
lCliECK • 0 
CALL RE.\DINIICHECKI 

c 
CALL OUTPUT 

c 
C EACH NEW LO.\O INCREMENT STARTS .\T STATEMENT NO. 200 
c 

c 

ZCO CONTINUE 
IT • 0 
00 210 L z 1,NUHTOF 

210 UILI • ZERO 

C EACH ITERATION CYCLE STARTS AT STATEMENT NO. JOO 
c 

c 

c 

300 CONTINUE 
IT •lT+l 
l • 0 
lS • 0 
NUHBLK • 0 
KSHIFT • 0 
lSW ICH • 1 
lL • 1 
DO 305 U = 1,NH 
BIIU = ZERO 
DO 305 JA • l,HA 

305 AllA,JAI • ZERO 
DO ~10 KU• 1,NUHTDF 

310 U81KUI • TUIKUI + UIKUI 

REW IND l 
REWI NO 2 

C SETUP BLOCKS OF THE HAIN ST lfFNESS HA TRIX 
C EACH BLOCK SETUP STARTS AT STATEMENT NO, 400 
c 

400 CONTINUE 

NUKdLK z NUMBLK + 1 
c 
C PROCESS ONE ELEMENT AT THE TlHE 
c 

c 

c 

c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

MTYP • 1 
410 l • l + 1 

J • 4*1 - 3 
Jl • JTOP(l,11 
J2 • JTOPI l 1 21 
J3 • JTOPIJ,31 
J4 • JTOP( l 141 
J5 • Jl + NOOV 

K2 • 2*JCNL(Jl,21 
Kl • K2 - 1 
lFl(Kl - KSHlFTI - NNI 43014301420 

420 I • 1 - 1. 
GOTO lt90 

430 Kit• 2*JCNLIJ2,21 
K3•K4-l 
K6 = 2*JCNLIJ3,21 
K5•K6-1 
KB• 2•JCNL(J4,21 
K7 " KS - 1 
KlO • 2*JCNLIJ5,21 
K9 • KlO - 1 

CALL STIFF11,HTYP,J,1,Jl,J2,J5,1,2,51 
J • J + 1 
CALL ST IFFI 2,HTYP, J, 1,J 2,J 3,JS, 2, 3 1 51 
J z J + 1 
CALL STIFF12,HTYP,J1l1J5,J3,J4,5,3,41 
J • J + 1 
CALL STIFF12,HTYP,J,11Jl,J5,J4,1,5,41 

CHOSE PROPER VKV - VALUE 

470 IFINREINF.EQ.01 GOTO it75 

ASSEMIILY OF RECTANGULAR ELEMENT STIFFNESS MATRIX 
FORM BLOCKS OF H"1N STIFFNESS MATRIX 
SIZE OF WORKING AREA IS HA*NH 
ONE BLOCK IS HALF OF THE WORKING AREA 

4 75 00 480 KI • l, 10 
IINA • KAIKII - KSHIFT 
KINA z Ko\ I Kil - Kl + 1 
00 480 KJ • 1, 10 
JS • KAIKJI - Kl+ 1 
IFI JS,LT.KINAI GOTO 480 
JINA• KACKJI - KAIKII + l 
4IIINA,JINAI • AIIINA,JlNAI + SIKl,KJI 

4 80 CON Tl NUE 
IFIIVKV.EQ.0,0I.AND.(I.Eiol.111 VKV = OVKV*ACl,11 

END OF LOOP FOR ELEMENT PRuCESSING WITHIN UNE BLUCK 
CHECK IF THE ELEMENT bELONGS TO THE CURRENT BLOCK 

IFCI .LT .NREL I GOTO 410 ...... 
0 
NJ 



490 CONTINUE 
IF I NREINF .EQ. 0 J GU TO 560 

c . 
C ASSENBLY OF LINEAR BAR STIFFNESS MATRICES 
c 

DD 500 IR• 1,10 
DO 500 JR• 1,10 

500 SIIR,JRJ • 0,0 
DO 550 IS• 1,NUMBAR 
MTYP ,. 2 
ISWICH • 1 
ILINK'"' 0 
151 ·• ITOPI IS,31 
IS2 • ITOPIIS,41 
K2 • 2*ITOPIIS,51 
Kl • K2 - 1 
Kit • 2•ITOPIIS-,61 
K]aKlt-1 
IF I 152 oLT, I ISi + N002 I I ISWICH = 2 

c 
C CHECK IF BAR BELONGS TO CURRENT IILOCK 
c 

c 

IFIIKloLEoKSHIFTloOR.IKl.GT.IKSHIFT~NIII GOTO. 51tl 
CALL STIFFIISWICH,NTYP,IS,IS,IS1,IS2;IS2,1,1,11 

C ASSEMBLE 
c 

c 

535 00 5lt0 KI = 1,4 
IINA ·= KAIKII - KSHIFT 
KINA= KAIKIJ - Kl+ 1 
00 5lt0 KJ • 1,lt 
JS • KAIKJI - Kl+ 1 
IFIJS.LT,KINAI GOTO 540 
JINA• KAIKJI - KAIKII + 1 
AU INA,JINAJ • All lNA,J INAI + S IK 1,KJ I 

540 CONTINUE 
51tl ILINK • ILINK + 1 

GOTO 151t5,51t8,5501 t ILINK 

C CHECK IF LINK BELONGS TO CURRENT BLOCK 
C If IT DOES NOT, SKI P BOTH LINKS 
c 

51t5 Kll = 2•JCNLIIS1,21 - 1 
lfl I Kll ,LE ,KSHJFTI ,OR, I Kll, GT, CK·SHIFT+NNI 11 GOTO 548 

c 
C BOND LINK FOR START NODE OF STEEL BAR 
c 

546 Klt4 • Kit 
Kll = Kl 
Kit=· K2 
Kl • Kl 
Kl • Kll 
K2 • Kll + 1 
IV " IS 
GOTO 549 

c 
c BOND LINK FOR ENO NOUE Of STEEL BAR 
c 

548 If I IS ,NE, NUMIIAR I GO TO 550 

c 
c 
c 
c 

c 
c 
c 
c 
c 

c 

K2 • 2*JCNL US2 ,21 
Kl= K2 - 1 
IFIKloLE.KSHIFT.OR,KloGT,IKSHIFT+NNII GOTU 550. 
K4 • K44 

.Kl a Kll 

. IV • IS. + 1 
549 CONTINUE 

ll '"' 2 • IS - I SWICH + 1 
EPl = TEPSBlll,11 
MTYP • 3 
CALL STIFF I ISWICH, MTYP, IV, IS, IS, IS, IS, 1, 1, 11 
QJTO 535 

550 CONTINUE 

560 

570 

580 

PROCESS LOADS AND BOUNDARY CONOITIUNS FOR EACH BLOCK 
PUT CONCENTRATED LOADS FRON ARRAY XLOAD INTO B 

DO 580 IL• 1,NLOAD 
JL • 2*JCNLIILOADl1 LI ,21 - KSHIFT 
lflllJL-U.GT.NNl,OR,IIJL-U.LE,011 GOTO 570 
BIJL-11 • XLOADllL, 11 
IFIIJL,GT,NNl,OR,IJL,LE,011 GOTO 580 
BIJLI • XLOAO(IL,21 
COhTINUE 

PROCESS BOUNDARY CUNUITIONS 
MODIFY EQUATIONS FOR SPECIFIED UISPLACENENTS AT BOUNDARY 
MODIFICATIONS FOR STEEL BOUNDARY CONDITIONS INCLUDED 

00 600 IB •• 1,NBCS 
IFI IBOUNDI IBl,LE,01 GOTO 590 
JB = l•JCNLIIBWNOI IBI, 21 - KSHIFT 
IFIIIJB-11,GT,NHl,OR~ICJB~lloLE,011 GOTO 600 
CALL MOOIFYIIJB-11,XBOUNOIIB,111 
IFIJCNLIIBOUNDCIBl,11,EQ,OI GOTO &00 
IFIIIJB+ll,GT.,NHl,OR,IIJB+ll,LE,011 GOTO 600 
CALL MODIFYl(JB+ll,XBOUNDIIB,111 
GOTO 600 . 

590 JIIN • -IBOUNDIIBI 
Ja • 2•JCNLIJBN,2J - KSHIFT 
IFICJB,GT,NHI.ORolJB,LE,011 GOTO &00 
CALL IIODIFYIJB,XBOUNOIIB,211 
IFCJCNLIJBN;lJ,EQ,OJ QJTO 600 
IFCIIJB+21,GT,NHl,OR.CIJB+21,LE,OII GOTO bOO 
CALL NOOIFYIIJ8+21,XBOUNDIIB,211 

600 CONllNUE 

C WRITE IILOCK ON TAPE 2 ANO SHIFT LOWER PART INTO UPPER PART 
c 

c 

WRITEl2J IIIINl,IAIN,111,11=1,MBANOl,N-1,NNI 
DO 610 N • 1,NN 
K • II + NN 
BINI .• BIKI 
BIKI • OoO 
00 610 H • 1,MBANO 
AIN ,111 • Al K,HI 

&10 AIK,HI • 0,0 
KSHIFT = KSHIFT + NN 

\ 

~ 

0 
c,.:, 



C CHECK FOR LAST IILOCK 
C COMPLETE LOADS ANO BOUNDARY CONDITIONS IN LAST SLOCK 
C IF I • NREL , INCREASE NUHIILK ANO I BY 1 
c 

c 

IFII - NRELJ 400,620,630 
620 IFll2*JCNLC JTOPI I ,31,211,LE,KSHIFT I GOTO b.30 

NUHBLK. • NUHBLK + l 
I • I + l 
GOTO 560 

C SOLVE SYSTEM OF EQUATIONS IILOCKWISE BY GAUSS ELIMINATION 
c 

c 

c 

c 

630 CONTINUE 

CALL BANSOL 

KU • 0 
NIN• NN + 
OD 640 NBU • 1,NUMBLK 
00 6'-0 NMU • NIN, NH 
KU *KU+ 1 

640 UIKUJ • AINMU,NBUI 

C CALCULATE STRAINS, PRINCIPAL STRAINS, STRESSES ANO PRINCIPAL STR, 
c 

00 670 I • 1, NREL 
J • 4*1 - 3 
Jl * JTOPll,11 
J2 z JTOPCI,21 
J3 • JTOPCI,31 
J4 • JTOPI 1,41 
J5 • Jl + NOOV 
MTYP • l 
CALL STRESSCl,J,Jl,J2,J5,HTYPI 
J • J + l 
CALL STRE SSII ,J,J2,J3 ,J5 ,MTYPI 
J • J + l 
CALL STRESSII,J,J5,J3,J4,MTYPI 
J • J .. 1 

670 CALL STRESS fl,J,Jl,J5,J4,MTYPI 
IFINRElNF,EQ,01 GOTO 690 
MTYP • 2 
00 680 J • 1,NUM8AR 
JSl • ITOPCJ,31 
JSZ • ITDPCJ-,41 

680 CALL STRESSIJ,J,JS1,JS2,JS2,MTYPI 
c 
C DETERMINE ITERATION PROCEDURE 
C SEARCH FOR LAii.GEST ERROR IN DISPLACEMENTS 
c 

690 IFIININCR,EQ,01,0R,IKINCR,EQ,lll GOTO 720 
IF I IT, EQ,11 GOTO 300 
OIFF = ZERO 
LTOL ,. l 
00 700 L"' 1,NUMTDF 
OIFFl • OABSIITUILI + UILII - U8CLII 
lFIOIFfl,LE,OIFFJ GOTO 700 
OIFF • OIFFl 
LTOL z L 

100 car.Tl "IUE 
OTOL z OABSITOL*ITUILTOLI + UILTOLIII 
WRITEl6,90201 OTOL,LTOI. 

9020 FORMATl/,1X, 1 TOLERANCE • 1 ,1P012,4,' AT OISPLACEMENT',151 
IFIOIFF,LE,OTOLI GOTO 720 

710 IFCIT,LT,NITI GOTO 300 
•RITElb,91001 NIT,DIFF,DTOL 

9100 FORMATC/,lX,'ERROR IN ITERATION NO ',13,' IS BIGGER THAN TOLERANCE 
1 1 ,/,lX,'ERROR • ',1P012,5,3X, 1 TDLERANCE • ',lPD12,5,/,1X,'NUMBEK O 
2F ITERATIONS. INCREASED BY 5 •,II 

NIT • NIT + 5 
lFCt;U ,LT ,151 GOTO 300 
WRI TEl6,92001 , 

9200 FORHATl///1/,lX,'SOLUTION STOPPEO BECAUSE NIT EXEEOS 15'1 
CALL EXIT 

c 
C CALCULATE TOT Al STRAINS, STRESSES AND DI SPLACEHENTS 
c 

c 

c 

720 00 800 KU• 1,NUMTOF 
800 TUIKUI z TU(KUJ + UIKUI 

DO 810 KE a 1,NTEL 
00 810 JE z 1 , 3 
TEPSIKE,JEJ = TEPS(KE,JEJ + EPSCKE,JEI 

810 TSTRIKE,JEI = TSTRCKE,JEI + STIUKE,JEI 
IFINREINF,EQ,01 GOTO 8020 
00 815 KS• 1,NUMBAR 
TESPSIKSJ • TESPSIKSI + ESPSIKSI 

815 TSTRSIKS,11 * TSTRSIKS, 11 + STRSIKSI 
NBll •.2 • I NUHBAR + l I 
00 816 JS • 1,2 
00 816 KS • 1, NBll 
TEPS81KS ,JSJ • TcPS81KS ,JSI + EPSBIKS,JS I 

816 TSTR81KS,JSI • TSTRBIKS,JSI + STRBIKS,JSI 
8020 CALL RESOUTC ICHECKJ 

JFININCR,EQ,01 GOTO 850 
JFCNINCR,GT,11 GOTO 830 
lFIISCALEI 830,820,830 

C SCALE LOADS ANO PRESCRIBED DISPLACEMENTS 
c 

c 

820 I SCALE • 1 
CALL SCALE 
GOTO 200 

C PROCESS NEW LOAD INCREMENT 
c 

c 
c 
c 

830 IF(NINCR - KINCRI 460,850,840 
8'-0 CALL SCALE2 

GOTO 200 
850 WRITE16,90101 KPROB 

9010 FORMATl//,lX,'ENO OF PR08LEH',151 
JFI KPROll,L T ,NPROIII GOTO 100 

460 CALL EX IT 
ENO 
SUBROUTINE I NITL 

I-' 
0 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

THIS SUBROUTINE INITIALllES ALL ARRAYS USED IN THE: PROGRAM 
DO LOQP$ ARE MORE EFFl~IENT THAN DATA STATEMENTS 

PARAMETERS USED: 

MUHNOO = 
MREL 
MTEL 
MUM BAR 
HLOAD 
MBCS 

NUMNOO 
NREL 
NTEL 
NUMBAR 
NLOADR 
NBCS 

...•................................................................... 
IMPLICIT REAL*BIA-H,0-ll 

COMMON S(l0,101,VKH,VKV 
COMMON DXX,DYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN,NH,MA,NOOV, NODH,NUMNOD,NREL ,NT EL,NUMBAk,MAXNDF ,MBANO 
COMMON NINCR,KINCR,NCIRVC,NCURVS,NZC,NZS,ISCALE,NDF,IAUTO. 
COMMON NUMOF,NUMTOF,NIT,IT,NCURVB,NZB,NOD2 

COMMON/ELEM I XC65Dl,YC6501,THETAC1152,21,UC1JOOl,TUl13001 
COMMON/ELEMl I JTOPC288,41, TiHCKI 2881 
COMMON/POOL I AC108,541 ,811081,NUMBLK 
COMMON/TYP I ITYPEC11521,ISTYPEC501,IBTYPEC1001,KOIR 
COMMON/MODULC/ SECC10,21,ECC91,XNUCl91,TOL 
COMMON/MODULS/ SESl20,21,ESl191,XNUSC191 
COHMON/MODULB/ SEBl10,21,EBl91 
COMMON/LOADS I XLDADI 20,21,XBOUNDI 20,21 
COMMON/LOADSl/ ALOADI 20,21,ABOUNOI 20,21 
COMMON/LOADSZ/ llDADI 201,IBOUNDI 201,NLOAO,NBCS 
COMMDN/REINF / SAREAI 501,JCNLl&S0,21,ITOPI 50,6l,NRE:INF,1Sl,IS2 
COilMON/CONSTR/ STRI 1152,31 ,STRPC 1152,21, EPSl1152 ,31 ,EPRll 152 ,.2 I 
CONMDN/CONSTl/ TSTRl1152,31,TEPSl1152,31 
COHHON/STLSTR/ ESPSI 501,STRSC 501,TESPSI 501,TSTkSC 50,21 
COMMON/BONO I EPSBllOO,Zl,STRBCl00,21,TEPSBCl00,21,TSTRBCI00,21 

Pl 
NOF 
MUMTDN 
MUM NOD 
MREL 
MTEL 
MUM BAR 
MLOAO 
MBCS 

KINCR 
I SCALE 
IAUTO 
ITYPES 
KTYP 
ITYP 

MA 
NN 
NH 
NUMTDF 

3. 1415926535898 
2 

650 
650 
288 

= 4 * MREL 
50 
20 
20 

1 
0 
0 
1 
1 
1 

54 
54 
NN + NN 
MUMTDN*NDF 

DO 10 I z 1,MUMNOO 
JCNLI 1, 11 
JCNLC 1,21 
XIII 

10 YI II 
. 00 20 I • 1,MREL 

THICKll I 
DO 20 J • 1,4 

20 JTOPll,J I 
DO 30 I• 1,NUMTDI' 

TUU I 
30 UCII 

00 50 I ,. 1 ,HTEL 
ITYPEC II 

Do· 40 J • 1,3 
EPSC I ,JI 
TEPSCl;JI 
TSTRII ,JI 

40 STRC I ,JI 
DO 50 J • 1, 2 

THETA II ,JI 
EPRCI ,JI 

50 STRP(l,JI 
D0601*1,NH 

Bill 
00 60 J • 1,MA 

6C All ,JI 
00 80 I • 1,MUMBAR 

ISTYPEC II 
IBTYPEI II 
IBTYPEU+MUMBARI 

SAREAIII 
ESP SC II 
STRS 111 
TESPSCII 
TSTRSll, 11 
TSTRS 11, 21 

DO 80 J • 1,6 
80 ITOPll,JI 

NJMBO • 2*MUM8AR 
DO 70 f • 1,NUMBD 
00 70 J • 1,2 

EPSBII, JI 
STRBll ,JI 
TEPSBl 1,J I 

70 TSTRBII ,.JI 
DO 90 I• 1,MLOAO 

ILOADIII 
00 90 J • 1,2 

ALOADll ,JI 
90 XLOADCl,JI 

DO 100 I• 1,MBCS 
IBOUNDC 11 

DO 100 ·J = 1,2 
XBOUNDC I , JI 

100 ABOUNOCl,JI 
DO 110 I = 1,9 

ECC 11 
110 XNUCC II 

0 
I 
o.o 
0. Cl 

1.0 

0 

o. 0 
o.o 
1 

o. 0 
o.o 
o.o 
o. 0 

o.o 
o. 0 
o.o 

o.o 
o.o 
1 
1 
1 
o.o 

· o. 0 
o.o 
o.o 
o. 0 
o.o 
0 

o.o 
o.o 
o.o 
o.o 
0 

o.o 
o.o 
0 

o.o 
o.o 
o •. o 
o.o 

...... 
0 
01 



c 

c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

\_ 

001201~1,10 
00 120 J • 1,2 
SEBI I ,JI z o. 0 

120 SEC( 1,·JI . o. 0 
DO 130 1 • 1,19 

E SI 11 a o.o 
130 XNUSII I . o.o 

00 l'oO I • 1 ,20 
DO lt,O J • 1,2 

l'oO SESI 1,J I . o. 0 

RETURN 
ENO 
SUBROUTINE READINIICHECKI 

..............................•...•..•...•..•.........•............... 
• SUBROUTINE READIN READS ALL INPUT INFORMATION AND DOES ALL 
• NECESSARY AUTOMATIC NUHBERING PROCESSES 

....•......•....•........................•.............•.............. 
IMPLICIT REAL*8IA-H,O-ll 

COMMON S(l0,101,VKH,VKY 
COMMON DXX,DYY,El,E2,CNU,CNUl2,CNU~l,EPl,EP2,SNU,PI 
COMMON NN,NH,HA,NOOV,NOOH,NUHNOD,NREL,NTEL,NUMBAR,MAXNOF,MdAND 
COMMON NINCR,KlNCR,NCURVC,NCURYS,NZC,NZS,ISCALE,NOF,IAUTO 
COMMON NUMOF,NUMTDf,NIT,IT,NCURVB,NZB,NOD2 

COMMON/ELEM I Xl6501,Y(6501,THETAl1152,21,Ull3001,TUl13001 
COMHON/ELEMl I JTOP(288,iol, THICK! 2661 
COMMGN/MOOULC/ SECl10,21,EC191,XNUC(91,TOL 
COMMON/MOOULS/ SE:SI 20,21,ESI 191 ,XNUSl191 
COMMON/MOOULB/ SEBl10,21,EB(91 
COMMON/LOADS I XLOADI 20,21,XBOUNDI 20,21 
COMMON/LOADSl/ ALOAD( 20,21,ABOUND( 20,21 
COMMON/LOADS2/ !LOAD( 201,lilOUND( 201,NLOAD,NBCS 
COMMON/REINf I SAREAI 50l ,JCNLl650,21,ITOP( 50,61,NREINF,1Sl,IS2 
DATA 020/1.00-20/, ZER0/0.0D 00/, LABELl/'X'/, LABEL2/'Y 1 / 

DATA IEQUI/' EQUI'/ 
DIMENSION NAHEI 181 

8000 fORMATllBA41 
801Ci FORMA Tl 4151 
8020 FORMAT( 5151 
8030 FORMATl15,2012.'ol 
8040 FORMATIIS,012.'ol 
8050 FORMAT 115 ,012.4 1 012 .61 
8060 FORMATll5 1 012.61 
8070 FORHATl15,2Dl2.41 
8080 FORMAT(15,4X,Al,012.41 
8090 FORMAT(215,Dl2.4,2151 
8100 FORMATl5X,Dl2o5l 
8110 FORMATIA'ol 
9000 FORMAT(lHl,//,1X,7911H*l,/,2H *,77X,1H*,/,lX,lH*,3X,l8A4,2X,1H*,I, 

l2H •,77X,1H*,/,2H •,7BllH*l,//l 
9010 FORMATl//,lX,'* FINITE ELEMENT ANALYSIS Of'/'* PLANE STRESS RE:!Nf 

lORCED CONCRETE STRUCTURES' II 
9020 FORMAT(lX,'* PROGRAM CHECKS EQUILIBRIUM'/1 

9030 FORMAT II I I 
c 

c 

READ15,80001 INAMElll ,l•l,181 
WRITElo,90001 (NAME( 11, 1•1, 181 

C READ NODAL INFORMATION 
c 

c 

REA015,80101 NNV,NNH,KTOP,NREINf 
IFINREINF.LT.01 CALL PRERll61 
IIIOOV • IABS (NNV I 
IIIODH • IABSINNHI 
NELV • NOOY - 1 
NELH • NODH - l 
lf(KTOP.EQ.ll GOTO 30 
NREL • NELY*NELH 
I\T EL • 4*NREL 
NUMNOO • NOOV*NODH + NREL 
N002 • 2*NOOV - 1 

C INDIYIOUEL INPUT OF TOPOLOGr 
c 

00 10 N = 1,NREL 
10 READ15,8020l IP,IJTOPIIP,JI ,Jal,iol 

DO ZO N • 1,NUMNOD 
ZD REAO(S,8030 I K,XIKl,V IK I 

READIS,80101 MBANO 
GOTO 220 

c 
C AUTOMATIC PROCESSING OF NODAL ARRANGEMENTS -
c 

c 

JO REA015,BO',OI JJ,DTEHP 
lflNNVI io0,2000,60 

C EQUAL SPACING 
c 

c 

40 OD• DTEHP/NELY 
ODO z DD/2 .O 
DO 50 N s l ,NE LV 
YINI • IN - ll*DO 

50 Y(NODV + NI • V(NJ + DOD 
YINOOYI • NELV*DD 
GOTO 90 

C lflEQUAL SPACING 
c 

60 L • l 
D z O. 0 
DO 80 I • 1,NELV 
READIS,80401 J,OVTEMP 
K z J - JJ 
DD • IOVTEMP - OTEHPI/K 
DO 70 LK • l,K 
VI LI • D 
L a '- + 1 

70 D • 0 + DD 
DTEHP z UVTEHP 

80 JJ s J 
VI LI = 0 
NOOV = JJ ...... 

0 
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c 
c 
c 

c 
c 

c 

NELV z NODV - 1 
NOD2 a 2*NODV - 1 
DO 85 LV • l,NELV 

85 Y(LV + NODVI • o.5•1V(lV+ll - Y(LVJI + YILVl 
90 READ15,80401 MM, DTEMP 

O a O. 
IFINNHI 100,2010,130 

EQUAL SPACING 

100 Dz DTEMP/NELH 
DODD s D/Z .O 
I'd a 1 
00 120 N z 1,NELH 
XINIJ = IN - ll*D 

UNEIIUAl SPAC 11'«; 
DO 110 NV = 1,NELV 
XINI + NVJ z XINII 

110 XINI +NV+ NELVI = XINIJ + DDuU 
120 NI z NI + Z*NOOV - 1 

XINIJ = XINl-11 + ODDO 
DO 125 NV a 1,NELV 

125 XINI + NVI • X(NII 
GOTO 170 

UO KSTART = l 
KENO = NOOV 
00 160 I s 1,NELH 
READ15,80lt01 M,OXTEMP 
K = II - "MM . 
DD a IDXTEM~ - DTEMPI/K 
DC = 00/Z.D 
00 150 LK • 1,K 
00 lltO l = KSTART,KEND 

140 XIU = il 
lFILK.EQ.11 GOTO 1'+5 
DO lltZ'KS z 1,NELV 

142 XIKSTART - KSI z XIKSTARTI - DC 
145 KSTART = KSTART + NOD2 

KENO z KSTART + NELV 
150 D = D + DD 

N004 = NOD2 - 1 
KO= KENO - NODZ 
DO 155 KS= 1,NOD4 

155 X(KEND - KSl = XIKO - KSl + OD 
OTEMP =· OXTEMP 

160 MM a M 
XIKENOI = XIKEND - 11 
NODH = MM 
NElH = MM - 1 

170 NREL = NElV*NELH 
NT El = 4* NREL 
NUMNOO = NODV*NODH + NREL 
NOOZ = 2*NOOV - l 
NUMDF = NUMNOD*NDF 
NSTART = 0 
I z 1 

lEO DO 190 K z 1,NELV 

190 

MK • NSTART + K 
Nl<K = NK + NOOZ 
JTOPll,ll a NK 
JTOPll,Zl a NK + 
JTOPll,31 z·NKK + 1 
JTOP I 1,itl a NKK 
I a I + 1 
IFII.GT.NRELI GOTO ZOO 
NSTART z NSTART + NOD2 
GOTO 160 

c 
2000 

9~9 
2010 

CHECK NUMBER ING 
IPRER a Z 
CALL PRERllIPRERI 
IPRER • 1 

c 
c 
c 

c 

2020 

200 

210 
220 

GOTO 999 
IPRER z 6 
GOTO 999 
CONTINUE 
NOD3 • NOD2 + l 
00 210 KNS = NOD 3, NUMNO D 
YIKNSJ z YIKNS - NOD21 
CONTINUE 

READ STRESS - STRAIN LAWS 

READ15,6010l NTH,NCURVC,NCURVS,NCURVB 
IFINTH.EQ.Ol GOTO 240 
READIS,80401 NT,THIC 
IF INT .GT .O l GOTO Z 11 
00 Zl Na 1,NREL 

Zl THICKINI • THIC 
GOTO 2'+0 

211 IFINT.EQ.ll GOTO 212 
DO 230 N = 2,NTH 

2l0 READ15,8040l NT,THICKINTI 
GOTO 240 

212 THICKlll a THIC 
240 CONTINUE 

C CONCRETE 
c 

c 

DO 250 N s l,NCURVC 
REA015,60501 K,SECIK,ll,SEC(K,21 

250 IFIISECIN,ll.EQ.O.OJ.AND.ISECIN,21.EQ.O.DJJ NZC = N 
NNC = NCURVC - l 
DO 260 N • 1,NNC 
ECINl = ISECIN+l,ll - SECIN,lll/lSECIN+l,21 - SECIN,Zll 

260 READIS,60601 K,XNUCIKI 
IFINREINF.EQ.Ol GOTO 490 

C STEEL 
c 

DO 270 N = l,NCURVS 
READ15,8050l K,SESIK,ll ,SESIK,21 

270 IFIISESIN,ll.EQ.O.OI.AND.ISESIN,2J.EQ.O.OIJ NZS = N 
t;NS • NCURVS - l 
DO 280 N = 1,NNS 
ES(Nl = CSESIN+l,ll - SESCN,111/CSESIN+l,Zl - SESCN,211 

280 READ(S ,60601 K,XNUS (Kl 
I-' 
0 
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c 
C BONO 
c 

c 

00 290 N = 1,NCURV8 
READ15,8050l K,SEtllK,ll ,SEBIK,21 

290 IFIISE81N,ll.EQ.O.OI.ANO.ISE81N,21.EQ.O.Oll NZB z N 
NNB z NCURVB - l 
00 300 Na l,NNB 

300 EBINl = ISEBIN+l,U - SEBIN,lll/lSEBIN+l,21 - SEBIN,211 
REA015,Bl001 VKV 

C READ INFORMATION ABOUT REINFORCEMENT 
c 

NUMBAR a O 
DO 350 NJC = l,NUMNOO 

350 JCNLINJC,21 a O 
DO 450 NR z 1,NREINF 
REAOIS,80901 NBAR,NO,RAREA,NBEG,NEND 
IFINEND - NBEGI 370,360,380 

360 KPRER l = 3 
CALL PRERllKPRERll 

370 NN8EG = NBEG' 
N8EG = NENO 
NEND = NNBEG 
KPKER2 a 5 
CALL PRER21KPRER21 

380 IFIDABSIRAREAI.LT.0201 RAREA = ZERO 
IFIRAREAI 390,'>00,410 

390 KPRER l z 4 
CALL PRERllKPRERll 

400 RAREA = NBAR*I0.25*Pl*IN!l*0.125l*IN0*0.12511 
C CHECK WHETHER HORIZONTAL OR VERTICAL BAR 

410 KENO= NBEG + N002 
IFINENO.GE.KENOI GOTO 430 

C VERT lCAL BAR 
420 NUMBAR = NUMBAR + l 

!TOP I NUMBAR, 11 = NBAR· 
ITOPINUMBAR,21 a NO 
ITOPINUMBAR,31 = NBEG 
lTOPINUMBAR,41 = NBEG + 
JCNLINBEG,11 = l 
JChLINBEG + 1,11 = l 
SAREAINUMBARI = RAREA 
NBEG = NBEG + l 
IFIINBEG+ll - NENOI 420,420,'>50 

C HORIZONTAL BAR 
430 NUMBAR = NUMBAR + l 

ITOPINUMBAR,11 = NBAR 
ITOPINUMBAR,21 = NO 
ITOPINUMBAR,31 = NBEG 
lTOPINUMBAR,41 = KENO 
JCNLINBEG,21 = l 
JCNLIKENO ,21 = l 
SAREAINUMBARI = RAREA 
NBEG = KENO 
KENO= NBEG + N002 
IFINEND.GE.KENOI GUTO 430 
IFIIINENO+N0021 - KENOI.EQ.01 GOTO '>50 
KPRERl = 5 

CALL PRERllKPRERll 
GOTO 430 

'>50 CONTINUE 
Ou 460 N z 1,NUMNOD 

460 JCNLIN, 11 • ·JCNUN,11 + JCNLIN,21 
c 
C GENERATE CUMULATIVE NOOE LIST 
c 

c 

c 

JCNL'1,2l = l 
DU 470 N • 2,NUMNOD 

470 JCNLIN,21 z JCNLIN-1,21 + JCNLIN-1,11 + l 
00 480 IS• 1,NUM8AR 
!BONO• l 
JBONO • l 
ISl • ITOPIIS,31 
IS2 • ITOPIIS,41 
KSl a· JCNLI ISl,21 
KS2 = JCNLI IS2 ,21 
IFIIJCNLIISl,ll.EQ.21·.ANO.IITOPIIS,41.LT.IITOPI IS,31 + N002lll 

11.BCNO • 2 
IFIIJChLIISZ,ll.EQ.21.ANO.( ITDPIIS,41.LT .I ITOPI IS,.3.1 + NOU21 II 

lJBONO = 2 
ITOPIIS,51 = KSl + IBONO 

480 ITOPIIS,61 • KS2 + JBOND 

490 CONTINUE 

C READ TOLERANCE 
c 

REAOIS,81001 TOL 
c 
C REAO LOADING INFORMATION AND l!OUNDARY CONDITIONS 
c 

c 

REAOIS,80101 NLOAD,NBCS,NINCR,NIT 
00 310 N • 1,NLDAD 
READIS,80701 ILOAOINI ,XLOAOIN,11,XLOAOIN,21 
ALOAOIN, U • XLOAOI N, 11 

310 ~LOAO(N,21 • XLOAO(N,2) 
00 320 N = 1,NBCS 
REAOIS,80801 NIBNO,ltlTYP,VALUE 
IF(IBTYP.NE.LABELll GOTO 315 
IBOUNOINI = NIBNO 
X80UNDIN,11 = VALUE 
GOTO 318 

315 IFIIBTYP.NE.LABEL21 CALL PRERll91 
ldOUNOINI = -NIBNO 
XBOUNOIN,21 z VALUE 

318 ABOUNDIN,11 = XBOUNOIN,11 
320 ABOUNDIN,21 z XBOUNOIN,21 

C DETERMINE BANDWIDTH 
c 

MBAND = 0 
NK = 0 
OU ~ilO N z 1,NELH 
DO 500 K = 1,NELV 
NK=NK+l 
JO= JCNLIJTOP(NK,31,21 - JCNLIJTOPINK,11,21 

5CO IFIJO.GT.MBANDI MBAND = JO 
I-' 
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c 
c. 
c 
c 
c 

c 

JD• JC"4LIJTOPINK,41,21 - JCNLIJTDPINK,21,21 
510 IFIJD.GT.MBANDI MBANO z JD 

MBAND = 2*MBAND + 2 
IFIMBAND.GT.MAI GOTO 2020 
NUMTDF • 2*JCNLIJTOPINREL,31,21 
REAOIS,81101 {CHECK 
WRITE16,90101 . 
IFI ICHECK.EQ.IEQUII WRITEl&,90201 
WR IT E 16 ,9030 I 
RETURN 
END 
SUBROUTINE OUTPUT 

• THI~ SUBROUTINE PRINTS ALL INITIAL INFORMATION IN TABULAR FORM 

IMPLICIT REAL*SIA-H,O-ZI 
COMMON S(l0,101,VKH,VKV 
COMMON DXX,DYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN,NH,MA,NODV,NODH,NUHNOD,NREL,NTEL,NUHdAR,MAXNDF,MBAND 
COMMON NINCR,KINCR,NCLl<VC,NCURVS,NlC,NlS,ISCALE,NDF,IAUTO 
COMMON NUMDF,NUMTDF,NIT,IT,NCURVU,NlB,N002 

COMMON/ELEM I Xl650l,Yl&501,THETAl1152,21,Ull3001,TUl1300J 
COMMON/ELEMl I JTDP(288,41,THICKIZB81 
COMHON/ MODULCI SEClio,z l, EC (9 l,XNUCl9 l, T DL 
COMMON/MODULS/ SESl20,21,ESl191,XNUSl191 
COHMONIMOOULB/ SEBl10,2l,EB19l 
CDMMON/LOAOS I XLDAOI 20,21,XBDUNDI £0,21 
COMMON/LOAOSl/ ALOADI 20,21,ABOUNDI 20,21 
COH~ON/LOAOS2/ lLOADI 201,IBOUNDI 201,NLOAD,NBCS 
CDHMON/REINF I SAREAI 501,JCNLlbS0,21,ITOPI 50,bl,NREINF,ISl,iSZ 

c 
9000 FORMATl/lX,421lH*ll43H * COORDINATES OF NODES *• 

11, lX,421 lH*l ,/1 
9010 FORMAT!' NODE NO x-COORDINATE Y-CDORDINATE• ,II 
9020 FORMATllX,15,b)(,lPOl2.4,5X,lPDl2.41 
9025 FORMATl1X,15,6X,1PD12,4,5X,1PD12.4,5X,'STEEL1 1 
9030 FORMATUH1,421lH*l/43H * TOPOLOGICAL PROPERTIES OF ELEMENTS *• 

1/,1X,'>21lH*l ,ll ' 
9040 FORMAT{• ELEMENT NO NODE A NOOE B NODE C NOOc O NODE M 

l THICKNESS' 1 / I 
9050 FOR HA Tl lHl, I II 
9060 fORMATll8,4X,15,414)(,151,5X,lPDl2.41 
9070 FORMAT(///,' NO REINFORCEMENT IN THIS PROBLEM') 
9080 FDRHATI lHl, 42( 1H*l /43H * ARRANGE HE NT Of REINFORCEMENT *• 

l/,1X,4211H*l,/1 
9090 FORMAT(' BAR NUHBER ND OF BARS TYPE OF BARS TOTAL AKEA 

1 FROM JOINT TO JDINT 1 ,/I -
9100 FORMAT(lX,16,llX,13,llX,'N0',13,bX,lPOl2.4,5X,14,5X,141 
9110 FORMAT(///,lX,'CALCULATEO BANDWIDTH: MBAND = ',141 
9120 FDRMATl1Hl,4211H*l/43H * STRESS - STRAIN LAWS *• 

1/ ,lX ,42 llH*l ,/ 1 
9130 fORMATI/,' CONCRETE:• ,15,' PGlNTS GIVEN' ,II 
9140 FORMAT( 1 POINT SIGMA IN PSI EPSILON IN IN/INN E-HUOUL 

l NU-VALUE BETWEEN POINTS',/ I 
9150 FORMATllX,13,5X,lPDl2.5,8X,lPDli.5,/,50X,lPD1~.5,2X,OPDl2.5,5X,1~, 

l' ANO •, 121 

c 

9160 FDRMATllX,13,5X,lPDl2.5,8X,lPDl2.5,/l 
9170 FORMATII,' STEEL:',3X,15,' POINTS GlVEN',/1 
9180 FORMAT II,' BONO:' ,4X,15,• POINTS GIVEN',/ l 
9190 FORMAT!///,' NUMBER OF ITERATIONS • 1 ,l'o,5X,'TOLERANCE = ',lPDl2.51 
9200 FORMATl1Hl,'>211H*ll43H • LOADING INFORMATION *• 

l/,1X,'>211H*l,/I 
9210 FORMAT( 1)(, 'LOADS FOR INCREMENT NO' 1 15 ,II 
92·20 FORMAT ,. NOOE NO x-LOAD', lOX, 'Y-LOAO IN LBS• I I 
9230 FORMATllHl ,'>21lH*ll43H * BOU"4DARY CONDIT IONS *• 

l/,1X,'>211H*l,/I 
92'>0 FDRMATllX,'PRESCRIBED DISPLACEMENTS FOR INCREMENT N0•,15,ll 
9250 FORMAT!• NODE ND X-DISPL' ,7X,' Y-DISPL IN INCHES' ,/1 
9255 FDRMATllX,15;8X,1P012.5,4X,lPDl2.51 
9260 FORMATllX,15,8)(,lPDlZ.51 
9265 FORMAT( l)(,15,24X, lPD 12. 51 
9270 FORMATl///,lX,'ELASTIC SOLUTION ONLY') 
9lBO FORMAT(///,1X, 1 AUTOMATIC SCALING',/,1)(,'GIVEN LOADS ANO DISPL. ARE 

l ASSUMED AS TOTAL VALUES' I 
9290 FORMATl//1,lX,'lNDIVIWAL LOAD AND DISPL. lNPUT',/,lX,•PRLlGRAM REA 

ios•,1s, • INCREMENTS'I 

C PRINT NOOAL INFORMATION 
c 

c 

WRITEl~,90001 
liRITEl6 ,90101 
KP a O 
!PAGE = 36 
DO 10 NC• l,NUMNOD 
IFIKP.NE.IPAGEI GOTO 5 
KP a O 
IPAGE • 55 
wR I TE I&, 90501 
WRITEl6,90101 

5 KP = KP + l 
WRITEl6,90201 JCNLINC,21,XINCl,YINCI 
lFIJCNL INC, 11.EQ.O I GOTO 10 
KC= JCNLINC,21 + 1 
WR lTEl6, 90251 KC,)(( NC I, YINCI 
KP = KP + l 
If I JCNLI NC, 11. EQ.ll GOTO 10 
KC = KC + l 
WRlTEl6,90251 KC,XINCl,YINCI 
KP=KP+l 

10 CONTINUE 

C PRINT TOPOLOGICAL QUANTITIES 
c 

WRITEl6,90301 
WRI TEI 6,90401 
KP = 0 
lPAGE = 45 
DO 30 IP= 1,NREL 
IFIKP.NE.IPAGEI GOTO 20 
KP= 0 
!PAGE= 55 
WR IT El 6, 9050 I 
wRITElb,90401 

20 KP = KP + l 
30 WRITE I &,90&0 I IP, I JCNL( J TOP I IP, J 1,21 ,J= 1,41, JCNLI I J TOPI IP, 11 +NODVI 

f-o 
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c 
c 
c 

c 

1,21,THlCKI lPl 

PRINT REINFORCEMENT INFORMATION 

IF INREINF.NE.01 GOTO 40 
WRITE 16 1 90701 
GOTO 60 

40 WRITEl6,90801 
WR l TEI 6, 90901 
00 50 IR= l,NUHBAR 

50 WRITEl6,9l001 lR,ITOPllR,ll,!TUPIIR,21,SAREAllRI, 
llTOPIIR,51,ITOPIIR,61 

60 CONTINUE 
WRITEl6,9ll01 MBANO 

C PRINT CONSTITUTIVE LAWS FOR CONCRETE AND STEEL 
c 

WRITEl6 1 91ZOI 
WRlTEl6,91301 NCURVC 
WRITE 16 ,9HOI 
NCURV = NCURVC - l 
DO 70 NC= l,NCURV 
NE=NC+l 

70 WRITE16,9l501 NC,SECINC,ll,SECINC,21,ECINCl,XNUCINCl,NC,NE 
WRIT El 6,9160 I NE,SECINE, 11, SECINE, 21 
IFINREINF.EQ.01 GOTO 90 
WR! TE I 6, 91201 
WRITEl6,91701 NCURVS 
WRITE 16 ,9l'oOI 
NCURV = NCURVS - l 
00 80 NS = 1,NClJRV 
NE = NS + l 

80 WRITEl6,9l501 NS,SESINS,11,SESINS,21,ESINSl,XNUSINSl,NS,NE 
WRITE 16 ,9160 I NE,SES I NE, 11, SES IN E, 21 
i11RlTEl6,9l201 
WRITEl6,9l801 NCURVB 
WRITE 16 ,91"0 I 
NCURV = NCURVB - l 
00 85 NB =. 1,NCURV 
NE=NB+l 

85 WRITEl6,9l'o51 NB,SEB(NB,11,SEBINB,21,EBINBI ,NB,NE 
WRITE16,91601 NE,SEBINE,11,SEBINE,21 

9145 fURMATllX,I3,5X,lPU12.5,oX,lPD12.5,/,'o8X,'BONO STIFFNESS ',1P012.5 
1,sx,12,• AND ',121 

IFIVKV.EQ.0.01 GOTO 86 
WRITEl6,9l551 VKV 

9155 FORHATl//,lX,'SPEClflED UOWEL ACTION STIFFNESS KV= ',lPDlZ.51 
GOTO 90 

66 WRITE16,91651 . 
9165 FORMATl//,lX, 'DOWEL ACTION STIFFNESS CHOSEN 45 liO**lOl•Sl'l,ll 11 

c 
C PRINT ITERATION AND TOLERANCE VALUES 
c 

90 WRlTEl6,9190l NIT,TOL 
lFININCR - ll 91,92,93 

91 WRITEl6,92701 
GOTO 95 

92 WRlTEl6,9280l 
GOTO 95 

c· 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

93 WR! TEI 6,92901 Nl'NCR 

PRl~T LOADING INFORMATION 

95 WRITE I 6, 92001 
wRlTEl6,92101 KINCR 
WIUTEl6,92201 
00 100 IL = l,NLOAU 

100 WRlTEl6,92551 JCNLl lLOAOIILl,21 , XLOAOI lL, ll , XLOADIIL,21 

PRINT BOUNDARY CONOI HONS 

WR! TEl6,92301 
WRlTE16,92401 KlNCR 
WRITEl6,9250l 
00 110 16 = l ,NBCS 
NlBNO = IBOUNDI 181 
lFINIBNO.LE.O I GOTO 105 
WRITEl6,92601 JCNLINlBND,21 , XBOUNDIIB,ll 
GOTO llO 

105 h!BNO = -NIBNO 
WRITEl6,92651 JCNLINIBND,21 , XilOUNOIIB,21 

110 CONTINUE 
RETURN 
ENO 
SUBROUTINE STIFF(ISWICH,HTYP,J,1,JJl,JJ2,JJ3,Kl,K2,K31 

• THIS SUBROUTINE CALCULATES ALL ISOTROPIC AND ANISOTRU'P'ic 
STIFFNESS MATRICES FOR THE CONCRETE PANELS, STEEL BARS AND 
ANO BuNO LINKS. 

PARAMETERS ANO ARRAYS: 
SIB,81 = STIFFNESS MATRIX 

• SSIS,81 = AUXILIARY STIFFNESS MATRIX 
STIB,81 = AUXILIARY STIFFNESS MATRIX 

• ROTIS,81 = ROTATIONAL TRANSFORMATION MATRIX 

IMPLICIT REAL*SIA-H,0-ll 
REAL*8 NUA,NUB,NUAB,NUAB2,DSQRT,DCOS,DSIN 
COMMON Sll0,101,VKH,VKV 
COMMON OXX, DYY, El, E2 ,C:.NU,L;NU12 ,CNU2 l ,E Pl ,EP2 ,SNU, Pl 
COMMON NN,NH,MA,NODV,NOOH,NUMNUO,NREL,NTEL,NUMBAR,MAXNOF,MSANU 
COMMUN NINCR,KINCR,NCURVC,NCURVS ,NlC,NZS, ISCALE,NOF, IAUTO 
COMMON NUHOF,NUMTOF,NIT,IT,NCURVB,NlB,N002 

COMMON/ELEM I Xl6501,Y(6501,THETAlll52,2l,Ull3001,TUl13001 
COMMON/.ELEMl I JTOPl288,4l, THICKl.1.881 
COMMON/TYP I I TYP!:11152 I, ISTYPEl50 I, IBTYPEI 1001,KOIR 
COMMON/HODULC/ SECl10,21,EC:.l91,XNUCl91 ,TOL 
COMMON/MOOULS/ SESl20,21,ESl191,XNUSl191 
COl!l!ON/l!OOULB/ SEBI 10 ,21 ,EBl9 I 
COMMON/REINF I SAREAI 501,JCNLl650,21 ,!TOPI 50,61,NREINF,ISl,lSt 
Dll!Ei'<SION ROTll0,101 , SSll0,101 , STll0,101 
DIMENSION Hll0,31,8813 1 101,0DIJ,31 
DATA ZER0/0.00+00/, ROT/100*0.0D+OO/ , 0180/180.00+00/ 

i-, 

i-, 
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c 

00 8 L z 1, 3 
DO 9 M = 1,3 
OOIL,MI = ZERO 
00 8 M = 1, 10 

8 BBIL,MI = ZERO 
IFO.INCR.EQ.11 GOTO 19 
CALL TYPEIJ,MTYPI 

19 CONTINUE 
GOTO I 10,200,2301 , MTYP 

10 IFI ISW ICH.NE.11 GOTO 30 
00 20 L = 1,10 
00 2014 = 1,10 

20 SIL ,Ml z O .o 
3C ITYP = ITYPEI JI 

If( ITYP .GT .11 GOTO 35 
X32 = XIJJ31 - XIJJ21 
XJl • X(JJ31 - XIJJll 
X2l = X(JJ21 - X(JJll 
Y32 = YIJJ31 - YIJJ21 
Y3l = Y(JJJI - YIJJll 
Y2l = Y(JJ21 - Y(JJll 
GOTO 38 

35 OMEGA= THETAIJ,ll*Pl/0180 
OMEGAl = OCOSIOMEGAI 
OMEGA2 = OSINIOMEGAI 
CHil = OMEGAl*XIJJ 11 + OMEGA2*YI JJ 11 
ETAl = -OMEGA2*XIJJ11 + OMEGAl*YIJJll 
CH12 = OMEGA1*X(JJ21 + OMEGA2*YI JJ21 
ETA2 = -OMEGA2*XIJJ21 + OMEGA1*YIJJ21 
CHl3 = OMEGAl*XIJJ31 + OMEGA2*YIJJ31 
ETA 3 = -OMEGA2*XI JJ31 + OMEGAl*YI JJ31 
X32 = CHl3 - CHIZ 
Y32 = ETA3 - ETA2 
X31 = CHl3 - CHll 
Y3l = ET A3 - ETAl 
X21 = CHIZ - CHll 
V21 • ETA2 - ETA 1 

38 KJ2 = 2*Kl 
KJl = KJ2 -
KJ4 = 2*K2 
KJ3 = KJ4 -
KJo = 2*K3 
KJ5 = KJ6 - l 
Al= o.5•1X32*Y21 - X2l*Y321 
AR= 1.0/12.0*All 
8611,KJll = AR*Y32 
881l,KJ31 = -AR*Y3l 
BBi l,KJ 51 = AR*Y2l 
8B12,KJ21 = -AR*X32 
8B12,KJ41 = AR*X3l 
BB12,KJ61 = -AR*X21 
BB13,KJll = BB12,KJ21 
BB13,KJ21 • 8811,KJlJ 
BB13,KJ31 = BB12,KJ41 
B813,KJ41 = 8Bll,KJ31 
BBi 3,KJ 51 = BBi 2,KJ61 
BB13,KJ61 = b&ll,KJ5 I 

lFIITYP.GT.11 GOTO 100 

c 
C ELASTIC STIFFNESS 
c 

c 

CN = El*THICKlll/11.0 - CNU*CNUI 
OD( 1,11 = CN*Al 
0011,21 = CN*CNU*Al 
0012,11 = 0011,21 
0012,21 = 0011,11 
0013,31 = CN•0.5*11.0 - CNUl*Al 

C BBT*OO*BB 
c 

c 

5C002'L=l,10 
00 2 14 z 1, 3 
HIL,MI = 0.0 
00 2 K = 1 ,3 

2 HIL,141 = HIL,MI + BBIK,Ll*DOIK,141 
lFllTYP.GT.11 GOTO 4 
00 3 L = 1,10 
D03M=l,10 
00 3 K = 1,3 

3 SIL,MI = SI L,MI + HIL,Kl*BlllK,MI 
RETURN 

4 00 5 L = 1,10 
005M=l,l0 
SSIL,141 = ZERO 
D05,K=l,3 

5 SSIL,MI = SSIL,MI + HIL,Kl*BlllK,141 

C ROTATE ANISOTROPIC OR CRACKED STIFFNESS MATRIX 
c 

c 

00 150 L = 1,10,2 
ROTIL,LI = OMEGAl 
ROTIL,L+ll = OMEGA2 
ROTIL+l,LI =-OMEGA2 

150 ROTIL+l,L+ll = OMEGAl 
00 170 L = 1,10 
00 170 14 = 1,10 
STIL,MI = O.O 
00 160 LM = 1,10 

11>0 STIL,141 = STIL,MI + ROTILM,Ll*SSILM,MI 
110 CONTINUE 

DO 190 L = 1,10 
DO 190 M = 1,10 
STEMP = O. 0 
00 180 LM = 1,10 

180 STEMP= STEMP+ STIL,LMl*ROTILM,MI 
190 SIL,MI = SIL,MI + STEMP -

RETURN 

C CRACKED ELEMENT 
c 

l 00 CONT lNUE 
c 
C ANISOTROPIC OR CRACKED ELEMENT STIFFNESS MA TRIX 
c 

CA = 1.0/11.0 - CNU12*CNU2ll*THlCKlll 
0011, 11 = El*CA 
0011,21 = El*CA*CNU12 

1--6 
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c 

0012,11 z 0011,21 
0012,21 • E2*CA 
0013,31• OSQRTIIE1/ll.O+CNU1211*1EL/ll.O+CNU2lll/4.0l*THICKIII 
IFIITYPEIJI.EQ.41 0013,31 = ZERO 
GO TO 50 

C THIS PART OF STIFF CALCULATES THE MEMBER STIFFNESS HATRI X 
C FOR THE REINFORCEMENT BARS 
c 

c 

200 XX• XIJJ21 - XIJJll 
VY• Y(JJ21 - Y(JJll 
XLS •OSQRTIXX*XX + YY*YYI 
ex = XX/XLS 
CY = VY/XLS 
C • El*SAREAIJI/XLS 
CX2 = CX*CX 
CY2 = C V*C Y 
CXY • CX*CY 

SI 1, 11 = C*CXZ 
Sll,21 = C*CXV 
s11 ,31 = -su .. 11 
SI 1,41 = -SI 1,21 
512,21 • C*CYZ 
512,31 = Sll,41 
512,41 = -S12,21 
SU,31 = Sll,11 
513,41 z Sll,21 
S14,41 = 512,21 

210 DO 220 IR• 1,4 
00 220 JR • 1,4 

220 SIJR,IRI = SIIR,JRI 
RETURN 

c 
C STIFFNESS OF BONO LINKS 
C 1 SW! CH = l HORIZONTAL 
C ISWICH = 2 VERTICAL 
c 

230 00 240 IB = 1,4 
DO 240 JB = 1,4 

240 SIIB,JBI = O.O 
IFIISWICH.EQ.11 GOTO 250 

C VERTICAL STEEL BAR 
CO a OoO 
SI = l. 0 
GOTO 260 

C HORIZONTAL STEEL BAR 
250 co = 1.0 

SI,= o.o 
260 C2 = CO*CO 

S2 = Si*SI 
SC = SJ*CO 
Sil ,11 = VKH*C2 + VKV*S2 
SI 1,21 = VKH*SC - VKV*SC 
Sll,31 = -Sll,11 
Sil ,41 = -Sil ,21 
SI 2, 21 = VKH*S2 + VK V*C2 
512,31 = S(l,41 
512,41 = -512,21 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

S13,31 • 
SI 3,41 • 
S14,41 • 
GOTO 210 

ENO 

S 11,11 
SI 1,21 
Sl2,21 

SUBROUTINE TYPEIJ,MTYPI 

• THIS SUBROUTINE CALCULATES THE PROPER MODULI OF ELASTICITY 
ANO ASSIGNS, THE PARAMETER !TYPE TO THE ELEMENTS 

• !TYPE • l ISOTROPIC, EL AST IC 
!TYPE= 2 ANISUTROPIC, ELASTIC 

• ITYPE • 3 ANISOTROPIC, PLASTIC-

IMPLICIT REAL*BIA-H,G-ll 
COMMON Sll0,101,VKH,VKV 
COMMON DXX,OYY,El,~2,CNU,CNU12,CMJ21,EP1,EP2,SNU,PI 
COMMON NN,NH,HA ,NOOV ,NUOH ,NUHNOO ,NREL ,NT EL ,NUMBAR,MAXNOF, Mt>ANO 
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC,NZS,ISCALE,NOF,IAUTO 
COMMON NUIIOF,NUMTOF,NIT,IT,NCURVB,NZB,NOC2 
COMMON/TYP I ITYPE(ll521,ISTYPEl501,IBTYPEl1001,KOIR 
COHHON/HOOULC/ SECll0,21,ECl91,XNUCl91,TOL 
COHMON/HOOULS/ SESl20,21,ESC191,XNUSl191 
COMHON/HODULB/ SEBl10,21,EBC91 
COMMON/CONS TR/ STRll 152 ,31 ,STRP I 1152, 2 I, EPS ( 1152, 31, EPR ( 1152, 21 
COMMON/STLSTR/ ESPSI 501,STRSC 501,TESPSI 501,TSTRSI 50,21 
COMMON/ BONO I EPS 6( 100, 21, ST kB I 100, 21, TEP SBI 100, 21, T STk6 ( 100,21 
DATA 010/1.00-10/, 020/1.00-20/ , lER0/0.00+00/ 

9000 FORMAT(//,lX,'CONCRETE ELEMENT N0. 1 ,161 
9010 FORMATl//,lX,'STEEL ELEMENT NO.•,ibl 

C NINCR = 1 CALLS FOR AUTOMATIC SCALING 
C TYPE MUST REMAIN UNCHANGED IITVPEIJI • 11 FOR PROPER SCALING 
c 

KPRER = 0 
IF(MTYP - 21 10,120,210 

c 
C DETERMINE TYPE Uf CONCRETE: ELEMENTS 
c 

10 K = l 
11 = NZC 
12 = NZC 
EPl a EPRIJ,11. 
EP2 • EPRIJ,21 
GO TO 30 

20 K = 2 
EPl = EP2 
11 = 12 

30 IF ( EP 1 .GE. 0. 0000 l Gu TO 70 
12 = NZC - 1 

50 If I EPl .GE. SEC112,21 I GO TO bO 
12 = 12 - 1 
1Ftl2.GE.11 GOTO 50 

f--' 
f--' 
N) 



c 

KPRER" l 
lZ "' l 

60 lf(K-11 65,Z0,100 
65 WR[TEl6,2000l J, HTYP 

2000 FORMAT I I I STOP AT .J =•, 15, 1 MTYP •', 13 I 
STOP . 

70 12 "' NZC 
IFIEPl.LToSECllZ+l,211 GOTO 90 

C CRACKEO ELEMENT 
c 

ITYPEIJ I = 4 
El " ZERO 
CNUlZ '" ZERO 
IZ • NZC 
CNUZl • ZERO 

IFIEP2oLT.O.ODOOI GOTO 75 
IFIEP2oLT.SECINCURVC,Zll GOTO 78 
WRI JEl6,73101 

7310 FORHATI I DOU8L Y CRACKED ELEMl:NT, PROGRAM ST0.PS 1 l 
CALL EXIT 

c EPZ NEGA Tl VE· 
75 IZ • NZC - l 
76 IFIEP2.GE.SECl12,Zll GOTO 78 

12~12-1 
lfll2.GEoll GOTO 76 
KPRER z l 
12 = 1 

78 E2 "' ECI 121 
GOTO 110 

90 IFIK.EQ.11 GOTO 20 
100 E2 = ECI 121 

El "ECllll 
IFIE l.L T .E21 GOTO 101 

C ASSIGN NU12 
CNU12,. XNUC(Jll 
CNU21 = E2/El*CNU12 
GOTO 106 

C ASSIGN NU21 

.C 

101 CNU2l•XNUCll21 
CNU12 = El/ E2*CNU21 

106 ITYPEIJI • 3 
JFllll.LT.INZC-111.0R.llloGE.INZC+llll GOTO 110 
1Flll2oLT.INZC-llloORoll2.GE.INZC+llll GOTO 110 
ITYPEIJ I ,. 1 
lflll1.EQ.NZCI.AND.l l2.EQ.1l.DRol2.EQ.NZC-lll GO TO 110 ·. 
lfllll.EQ.NZC-ll.AND.(12.EQ.U.OR.12.EQ.NZCII GO TO 110 
ITYPEIJ I • 2 

110 CONTINUE 
CNU = CNU12 
lflKPRER.EQ.01 RETURN 
WRITEl6 1 9000 I J 
CALL PRER21KPRERI 
RETURN 

C DETERMINE TYPE Of STl:EL ELEMENTS 
c 

120 ll = NZS 
EPl = TESPSI JI 

c 

IF I EPl .GE. 0.0000 I GO TO 160 
11 = NZS - 1 

140 If I EPi .GE. SESI 11, 21 I GO TO 190 
11"11-1 
IFlll.GE.11 GOTO 140 
KPRER • l 
11 " 1 
GO TO 190 

160 ll " NZS 
170 IF I EPl oLE. SESlll+l,21 I GO TO 190 

11•11+1 
lfllloLE.(NCURVS-111 GOTO 170 
KPRER • 2 
11 " NCURVS -

190 El " ESllll 
SNU • XNUSll ll 
ISTYPE(Jl • Z 
If I ( 11 .EQ. NZS I .OR. I 11 .EQ. I NZS-11 I I ISTYPEIJI 
IF I KPRER .EQ. 0 I RETURN 
WRITEl6,90101 J 
CALL PRERZIKPRERI 
RETURN 

C DETERMINE TYPE Of BOND ELEMENTS 
c 

c 

210 ll = NZB 
IF I EPl .Ge. OoODOO I GO TO 250 
11 " NZB - 1 

230 If I EPl .GE. SE8111,21 I GO TO 280 
ll•ll-1 
Ifill - 11 270,230,230 

250 11 = NZB 
26C If I EPl oLE. SEBlll+l,21 I GO TO 280 

11 = 11 ·+ 1 
lfllloLE.INCURVB-111 GOTO Z60 

C BONO LINK BREAKES DOWN, ASSIGN ZERO STIFFNESS 
C IN DIRECTION OF -FAILURE c . 

c 

Z70 VKH • ZEltO 
IBTYPEI JI = l 
RETURN 

C ACTING BONO LINK VKH = STIFFNESS PARALLEL TO BAR 
C VKV = STIFFNESS PERPENDICULAR TO BAR, 
C ASSIGNED FOR ALL LINKS IN HAIN 
c 

c 

280 VKH = EBllll 
IBTYP.EIJI = Z 
IF I CU. EQ. INZB-111.0Ro I U .EQ .NZBII lBTYPEIJ I 
RETURN 
ENC 
SUBROUTINE BANSOL 

C SUBROUTINE BANSOL SOLVES BANDED MATRICES BY THE GAUSS ELIMINATION 
C PROCEDURE. THE BANOMATRIX IS STORED DIRECTLY IN A RECTANGULAR 
C ARRAY ANO TREATED BLOCKWISE. 
c 

IMPLICIT REAL*81A-H 1 0-Zl 
I-' 
I-' 
t,:) 



c 

c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

·COMMON S 110 ,10 l,VKH,VKV 
COMMON OXX,DYY,El,EZ,CNU,CNU12,CNU21,EP1,EP2,SNU,Pl 
COMMON NN,NH,MA,NOOV,NilOH,NUMNUO,NREL,NTEL,NiJMBAk,MAXNOf,MBANO 
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC,NZS,ISCALE,NOf,IAUTO 
COMMON NUHllf ,NUIITOF ,NIT ,IT, NCURVB,NZihND02 
COMMON/POOL I AC108,51tl,lll 1081,NUMSLK 
Nil • 0 
NL • NN + 

REWIND 1 
REWIND 2 

GOTO 2 

SHIFT LOWER PART aF 8 ANO A INTO UPPER PART 
CLEAR LOWER PART 

l NS • NB + l 
00 3 N • l ,NN 
NM • NN + N 
BlNI • BINMI 
BlNMI = O.O 
OD 3M"' 1,MBANO 
AlN,MI • AINM,MI 

3 AINM,MI • O.O 
IFINUM8LK - NBI 2,it,2 

READ LOADS ANO STIFFNESS INTO LOWER PART Of A ANO B 

2 REAOIZI I BINl,lAIN,MI, M=l,MBANDI, N*NL,NHI 
lflNBI it,l,it 

REDUCE UPPER PART 

It CONTINUE 
DO 5 N • 1,NN 
IFIAIN,111 6,5,6 

6 BINI• BINI/AIN,11 
DO 1 L • 2,MBAND 
lFIAIN,LII 8,7,8 

8 Q • AIN,LI/AIN,11 
J•N+L-1 
J "' 0 

-oo 9 K .. L,MBAND 
J • J + 1 

9 All,JI • All,JI - Q*AIN,KI 
8111 •Bill~ AIN,Ll•BINI 
AIN,LI • Q 

1 CONTINUE 
5 CONTINUE 

JFINUMBLK - NBI 10,11,10 

IIIRITE LOADS AND STIFFNESS ON TAPE· NUMBER 1 

10 liRlTElll IBINl,CAIN,MI, M=Z,MBANOI, N=l,NNI 
GOTO 1 

BACKSUBSTITUTIDN STARTS lilTH LAST BLOCK STILL IN CORE 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 
c 

11 CONTINUE 
DO 12 M • 1,NN 
Iii • NN + 1 - M 
OD 13 K • 2 ,MBAND 
L•N+K-·l 

13 BINI• BINI - AIN,Kl*BILI 
NM• N + NN 
BINNI• BINI 

12 AINM,NBI • BlNI 
NS• NS - l 
IFCNBI llt,15,14 

BACKSPACE TAPE ONE RECORD AND READ NEW BLOCK 

lit BACKSPACE 1 
READCll IBINl,IAIN,MI, M•Z,MBANOI, N•l,NNI 
BACKSPACE 1 
GOTO 11 

15 RETURN 
END 
SUBROUTINE MODIFYII,USTARI 

THIS $UBROUTINE MOOIFIES THE MAIN STIFFNESS MATRIX 
FD.R PRESCRIBED OJSPLACfMENTS U( 11 • USTAR 
THE ELEMENTS Of THE I-TH ROW AND COLUMN ARE SET EQUAL TO ZERO 
THE ELEMfNT IN THE DIAGONAL IS SET EQUAL TO loO 

PARAl4ETfRS: I • POS n IDH Of DISPLACEMENT RELATIVE TO llLaCKSl;b 
USTAR • VALUE OF THE DI SPLACEl4ENT 

IMPLICIT REAU8U-H,O-ll 
COMMON Sll0,101,VKH,VKV 
COMMON DXX,DYY,El,E2,CNU,CNU12,CNU21,EP1,EPZ,SNU,PI 
COMMON NN,NH,MA,NOOV,NOOH,NUMNOD,NREL,NTEL,NUMSAR,MAXNDF,MBANO 
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC,NZS,ISCALE,NDF,IAUTO 
COMMON NUMDF,NUMTOF,NIT,IT,NCURVB,NZB,NODZ 
COMMON/POOL I All08,541,Bll08_HNUMBLK 

DO 30 J • l,MBAND 
·1.·1-J+l 
IFIK.LEoOI GOTO ZO 
BIKI • BIKI - Al K,Jl*USTAR 
AtK,JI • 0.0 

ZO K • I + J - l 
IFIK.GT.NHI GOTO 30 
.BIKI • BIKI - AII;Jl•USTAR 
All ,JI • O.O 

30 CONTINUE 
AU,11 .• 1.0 
BUI • USTAR 
RETURN 
ENC 
SUSRDUTI NE SCALE 

SUBROUTINE SCALE ADJUSTS THE LOAD VECTOR ALOAD ANO THE 
PRESCRIBED OIS·PLACEMENT VECTOR AFTER THE FIRST SOLUTION STEP 
FOR NINCR • l THE LDAO INCREMENTS ARE AUTOMATICALLY CALCULATED 
ANO PLACED IN XLOAO, ALOAO CONTAINS THE CURRENT LOAD APPLIED 
If THE STRAINS ARE LESS THAN THE ELASTIC LIMIT, THE PROGRAM 

..... ..... 
~ 



C STOPS AFTER THE FIRST RUN 
C FOR NlNCR GT 1 THE PRO.RAM REMIS THI lN81VlOUAL LOAO INCREMENTS 
C AND ADDS THEM TO ALOAO . 
c 

c 
c 
c 

c 

c 
. t 
c 
c 
c 

c 

IMPLICIT REAL*8(A-H,O-l.l 
COMMON S(lO;lOl,VKH,VKV 
COMMON OXX,OYY,El ,c2 ,CNU,CNU12, CNU21, EP.1, EPZ,SNU,P 1 
COMIION NN,NH,MA,NODV,NODH,NUMNOO,NREL,NTEL,NUMBAR;MAXNDF,MBANO 
COMMON NINCR,KlNCR,NCURVC,NCURVS,Nl.C,Nl.S,ISCALE,NOF,lAUTO 
COMMON NUMOF,NUMTOF,NIT,1T,NCURVB,NZB,NOD2 
COMMON/MOOIA.C/ SECl10,Zl,ECl91,XNUCl91,TOL 
COMMON/MOOULS/ SESl20 ,21,ES ll91,XNUSl191 
COHMON/IIODULB/ SE8110,Zl ,E8(91 
COMMON/LOADS I XLOAD( Z0,2l,XBOUNOI Z0,21 
COMMON/LOADSl/ ALOADI Z0,21, ABOUNDI Z0,21 
COMMON/LOAOS2/ lLOAOI 201,lBOUNOI ZOl,NLOAD,NBCS 
COMMON/REINF I SAREAI 501,JtNLl650,21,ITOPI 50,1>1,NRE1NF,1Sl,1S2 
COMMON/CONS TR/ STRU152 ,31,STRPH 152 ,21, EPS 11152, 31, EPR 11152, ZI 
COMMON/CONS Tl/ TSTRI 1152.,31, TEPSl1H2 ,31 
COMMON/STLSTR/ ESPSI .501,STRSI 501,TESPSI 501,TSTRSI 50,21 

SEARCH FOR LARGEST STRAIN AT THE END OF THE FIRST SOLUTION 

ECMAX • O.O 
ETHAX • O.O 
DO 1 KSCALE " 1,NTEL 
lflSTRPIKSCALE,11 - ETMAXI 2,2,20 

20 ETMAX • STllPIKSCALE, 11 
IELMAX • KS CALE 

2 lflSTRPIKSCALE,21 - ECMAXI 109,1,1 
100 cCMAX • STRPIKSCALE,21 

JELMAX • KSCALE 
1 CUNTJNUE 

FIND THE PROPER SCALtNG FACTORS 
XSCALl "SECINZC+l,11/ETMAX 
XSCAL-2 • SECINlC-1,11 /ECMAX 
IIRITEll>,20001 IELMAX, STRPI IELMAX, 11 ,XSCALl,JELMAX, STRPI JELMAX,21 , 

1XSCAL2' 
2000 FORMAT I///,' SCALING INFORMATION' ,I,• ELEMENT NO•, 15,' PRINCIPAL 

1 STRESSI SPl • 1 ,lPOl2o5, 1 SCALE FACTOR= ',lPOl0.3;/, 1 ELEMENT 
2 N0 1 ,15,' PRINCIPAL STRESS: SPZ" ',lPDlZ.5,• SCALE FACTOR= •, 
31PD10.31 

If IIXSCALl .GT .1.0 I .OR.CXSCAL2.GT .1.011. GOTO 3 

LOAD YIELDS STRAINS LARGER THAN ELASTIC LIMIT 
XLOAD CONTAINS INCREMENTAL LOADS 
ALOAO CONTAINS LOAD AT LIMIT ANO SUBSEQUENT TOTAL LOADS 

XSCAL • XSCA.,U 
NINCR • Z*XSCAL 
lflXSCALloLT.XSCAL21 XSCAL" XSCALl 
DECREASE LOADS, CALCULATE INCREMENTS 
DO 5 IL • 1,NLOAD 
ALOADIIL,11 • XLOAOIIL,ll•XSCAL 
ALOADIIL,21 • XLOADl1L,2l•xSCAL 
XLOADIIL,11 • IXLOAOIJL,11 - ALOAOllL,111/NlNCR 

5 XLDADIIL,21 • IXLOADIIL,21 - ALOADIIL,211/NlNCR 
00 6 18 • 1,NBtS 
ABOUNDI 18,.1'1 • XBOUNDI lB, ll*XSCAL 

ABOUNDIIB,21 = XBOUNO(IB,21•XSCAL 
XBOUNDIIB,11 • IXBOUNOI 18,11 - ABOUNDIIB,111/NINCR 

I> XBOUNDUB,21 " IXBOUNDI IB,21 - ABWNDIIB,lll/NlNtll 
lAUTO =· 1 
GOTO 14 

C LARGEST STRAIN. IS LESS THAN ELASTIC LIMIT 
3 IFININCR - 11 B,9,10 

c IIRDNG NINCR, CHANGEO TO 
B NINCR " 1. 

KPRERZ • 3 
tALL Pll.ERl UPRERl I 

C TOTAL LOAD APPLIED DOES NOT GIVE INELASTIC BEHAVIOR 
C ELASTIC. SOLUTION ONU 

c 

9 KPRER2 • 4 
.CALL. PRER21KPRER21 

11 CONT lNUE 
STOP 

C FIRST INCREMENT IS TOO SHALL TD Y lELD INELASTIC STRAINS 
C READ NEXT lNCRE,MENT 
c 

c 
c 

10 CONTINUE 

ENTRY SCALez . 
lflKINCil..EQ.NlNtRI GOTO 11 
DO 12 IL s 1,NLOAD 
lFIIAUTO.EQ.11 GOTO 122 
ReADIS,1'0001 KLOAD,XLOADUL ,11,XLOADIIL,21 
lflKLOAO.EQ.lLDADI ILII GOTO 122 
IIRlTElf>,11001 IL . 

llCO FORMAT!• LOAD ERROR AT LOAD',151 
C.ALL EXI.T 

1000 FORMATl15,2fl2.41 
122 ALOADIIL,11 = ALOAOIIL,11 + XLOADIIL,11 

12 ALOADI lL,21 s ALOAOUL, 21 + XLDADIIL, 21 
REAOIS,19191 KBC$ 

1919 FURMATI 151 
lFIKBCS.EQ.01 GOTO 14 
DO U 18 • 1,NBCS 
lfllAUTO.EQ.11 GOTO 13J 
READ 15 ,10001 lBOUNDll BJ ,XBOUNDI 18, 1 l,XBDUNOI 18, 21 

133 ABOUNDIIB,11 = ABOUNDIIB,11 + XBOUNDIIB,l°I 
13 ABDUNDIIB,21 = ABOUNDIIB,21 + XBDUNDIIB,21 
14 CONTINUE . 

KINCR s KlNtR + 1 
WRITE 16, 5020 I 

5020 FORMAJI lHl ,421lH*ll43H • LOADING INFORMATION •, 
1/,1X,42liH•l,/I 

IIRlTElf>,52201 NINCR,KlNCR 
5220 FORMATI lX,'TOTAL NUMilER OF INCREMENTS' ,15///lX,'LDAOS fOR lNCREMEl'I 

lT NO.•, 15,/ I . 
loRITEll>,50211 

5021 FORMAT,. NODE NO X-LOAD•.1ox.•Y-LOAD IN LijS• I I 
DO b2 IL z 1,NLOAD 

62 Nill TEll>,50321 JCNLI lLDADIJLI ,21,XLOAOIIL, 11,-XLOAOUL, 21 
WRlTEll>,90101 KlNCR 

9010 FORMAT 1/// ,lX ,·'TOTAL LOADS FOR INCREMENT'• 15, /I 
~ITEi 1>,50211 

...... ...... 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

DO ·c,02 IL " 1,NL9AD 
602 Wl\lTE(6,50321 JCNLIILOADIILl,21,ALOADIIL,11,ALOADIIL,21 

IFIKBCS .EQ.01 RETURN 
WRITE 16,50301 ., 

5030 FORMATl1Hl,42(1H*l/43H * BOUNDARY CONDITIONS *• 
l/,1X,4211H*l,/I 

lolRITEl6,533ll NINCR,KINCR 
5331 FORMATClX,'TOTAL NUMBER OF INCREMENTS',15,///,lX,'OISP. FOR INCREM 

lENT NO.• ,15,/1 
WRITE( 6, 50311 

5031 FORMAT!' NOOE NO X-OISPL',7X,' Y-DISPL IN INCHES' ,/1 
DO 61 18 • 1,NBCS 

61 WRITEC6,50321 IBOUNDllBl~XBOUNOIIB,11,XBOUNDCIB,21 
5032 FORHATClX,15,8X,lPD12.5,4X,lPDl2o51 

WRITEl6,90201 KINCR 
9020 FORMATl///,lX,•TOTAL OISPL. FCM INCREMENT',15,/1 

IIRITEl6 ,50311 
DO 612 18 "loNBCS 

612 WRITEl6,50321 IBDUNDIIBl,ABOUNOIIB,11,ABOUND(IB,21 
RETURN 
END 
SUBROUTINE STRESS11,J,JJ1,JJ2,JJ3,MTYPI 

• I 
• J 
• JJl 
• JJ2 
• JJ3 

MTYP 

"NUMBER OF RECTANGULAR ELEMENT PROCESSED 
"NUMBER Of TRIANGULAR ELEMENT PROCESSED 
" NUMBER OF NODE 1 
"NUMBER OF NODE 2 
"NUMBER OF NOOE 3 
" MATERIAL TYPE " 1 FOR CONCRETE 

" 2 FOR STEEL ............•.............•.•..•...................................... 
IHPllCIT REAL*BIA-H,0-ZI 
CONNON SCl0,101,VKH,VKV 
CONNON DXX,DYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN,NH,HA, NODV, NDOH,NUMNOO, NREL, NTEL ,NUMBAR ,.HAXNDF ,MBA ND 
COMMON NINCR, Kl NCR,NCURVC,NCURVS ,NZC ,NZS, !SCALE ,NDF, !AUTO 
COMMON NUMDF,NUMTDF,NIT,IT,NCURVB,NZB,NOD2 

COMMON/ELEM I Xl6501,Yl6501,THETAlll52,21,Ull3001,TUl13001 
COMMON/ELEMl I JTOPl288,4l,THICKl2881 
COHMON/TYP I ITYPElll521,lSTYPEl501,18TYPEllOOl,KDIR 
COMHON/HODULC/ SECl10,21,ECl91,XNUC(91,TOL 
COMMON/MOOULS/ SES(20,21,ES1191,XNUSl191 
COMMON/HODULB/ SE8110,21,EB(91 
COMMON/REINF I SAREAI 50l,JCNLl650,21,ITOPI 50,61,NREINF,ISl,ISl 
COMMON/CONSTR/ STRl1152,Jl,STRPl1152,21,EPSl1152,31,EPR(ll52,21 
COMMON/CONSTl/ TSTRl1152,31,TEPSl1152,31 
COMHON/STLSTR/ ESPSI 501,STRSI 501,TESPSI 501,TSTRSI 50,21 
COMMON/BOND I EPSBllOO,ll,STR61100,21,TEPSBll00,21,TSTRBll00,21 
DATA 020/1,0D-20/, ZER0/0.0D 00/ , 010/1.00-10/ 
DIMENSION H13,61 , UUl61 , 013,31 , JCl31 
CALL TYPEIJ,MTYPI 
IFIMTYP ,NE .11 GOTO 110 
DU 10 LH z 1,3 
00 1 0 NH " 1 ,6. 

10 HIL H,MHI = 0 ,0 
00 20 LO " 1,3 

c 
c 
c 

c 
c 
c 

c 

c 
c 
c 

c 
c 
c 

c 
c 

DO 20 MD " 1,3 
20 DCLD,MDI "O.O 

ALPHA " 0,0 
BETA z 0,0 
JC( 11 " JJl· 
JCl2J • JJ2 
JCl3 I " JJ3 
CB• l,O/IIXIJJ31-XIJJ2ll*IY(JJ21-YIJJlll -

1 IXIJJ2J-XIJJlll*I Y(JJ31-YIJJ21 II 

SIGMA• D*H*U 

DO 25 K • 1,3 
JI " 2*JCNLIJCIKI ,21 
UUl2*K - 11 • UIJI - 11 

25 UUI Z*KI " UI JI I 

SET UP H - .MATRIX 

Hll,11 • C6*IYIJJ31 - YIJJ211 
Hll,31 • -CB*IYIJJ3J - YIJJlll 
Hll,51 • C6*1YIJJ21 - YIJJlll 
Hl2,21 = -CB*(XIJJJI - XIJJ211 
H12,41 • CB*IXIJJ31 - X(JJlll 
Hl2,61 z -CB*IXIJJ21 - XIJJlll 
Hl3,ll " H12,21 
Hl3 ,21 " H 11,11 
Hl3,31 • Hl2,41 
Hl3,41 • Hll,31 
H13,51 • H12,t.1 
H13,bl z Hll,51 

00 40 l • 1,3 
ETEMP • 0, 0 
0030M=l,6 

30 ETEMP" ETEHP + HIL,Ml*UUIMI 
40 EPS(J,L I z ETEHP 

CALCULATE PRINCIPAL STRAINS 

EPSX "TEPSIJ,11 + EPSIJ,11 
EPSY ·,. TEPSIJ,21 + EPSI J,21 
EPSXY" TEPSIJ,31 + EPSIJ,31 
RAD• IIEPSX - EPSYl/2,01**2 + 10,5*EPSXYl**2 
EMAX" DSQRTIRADI 
EAVfi" IEPSX + EPSYl/2.0 
EPRIJ,11 = EAVR + EMAX 
EPRIJ, 21 " EAVR - EMAX 
IFIDABSIEPSX - EPSYl,LT,0201 GOTO 50 
TAN2A "EPSXY/IEPSX - EPSYI 
ALPHA " DA TANI TAN2Al*90,0/PI 
THETAIJ,11 " ALPHA 

UPDATE TYPE 

50 CALL TYPEIJ,MTYPI 
IFIITYPEIJI.NE.11 GOTO 80 

ELASTIC , ISOTROPIC 
...... 
I-' 
O'l 



c 

c 

c 

CD • El/ll. 0 - C NU*C NUI 
DCl, l'I • CD 
DU ,21 = CD*CNU 
012,ll = Dll,21 
012,21 = CD 
013,31 = CD*0.5*11.0 - CNUI 

DD 70 L = 1,3 
STEMP • O. 0 
00 60 M • 1,3 

60 STEMP• STEMP+ DIL,Ml*EPSIJ,MI 
70 STRI J,LI = STEMP 

C PRINCIPAL STRESSES 
c 

c 

SIGX = TSTRIJ,11 + STRIJ,11 
SIGY = TSTRIJ,21 + STRIJ,21 
SIGJ<Y = TSTRIJ,31 + STRIJ,31 
RAO= IISIGX - SIGYl/2.01**2 + SIGXY**2 
SMAX = DSQRTIRADI 
SAVR = ISIGX + SIGYl/2.0 
STRPIJ,11 = SAVR + SMAX 
STRPIJ,21 = SAVR - SMAX 
IFIOABSISIGX - SIGYI.LT.0201 RETURN 
TAN28 = IS1GXY•2.0J/ISIGX - SIGYI 
BETA = DAT~TAN281*90./PI 
THETAIJ,21 ··BETA 
RETURN 

C ANISOTROPIC 
c 

c 

ao CDA = 1.0,11.0 -- CNU12•CNU2ll 
DI 1, 11 = El *CDA 
011,21 = El*CDA*CNU12 
012,11 = DI 1,21 
012,21 = E2*COA 
DO 100 L = 1,2 
STEMP = o. 0 
DO 90 H = 1 1 2 

90 STEMP = STEHP + DIL,Ml*EPRIJ,111 
100 STRPIJ,LI = STEMP 

RETURN 

C STEEL BAR STRAINS ANO STRESSES 
C BOND LINK STRAINS AND STRESSES 
c 

110 XJI = XIJJ21 - XIJJll 
YJI = YIJJ21 - YIJJll 
SL2 • XJl*XJI + YJl*YJI 
KSl = 2*ITOPIJ,51 
KS2 = 2*ITOPIJ,6l 
ESPSIJI = IXJl*IUIKS2-ll - UIKSl-111 + YJl•IUIKS21 - UIKSllll/SL2 
lFI El.LT .DZOI CALL EXIT 

C IF STEEL STRESS-STRAIN CURVE HORIZONTAL PROGRAM STOPS 
STR SI JI • E l*E SPSI JI 

c 
C DETERMINE TOTAL STEEL STRESS FROM STRESS-STIUIN CURVE 
c 

c 

NCURV = NCURVS - l 
IE = NZ S 
00 120 K • 1,NCURV 
DE = l.OD 10 
IFIUABSIEl -- ESIKIJ.LT.0101 DE = ZERO 
IFIOE.EQ.ZEROI IE= K 

120 CUNJINUE 
ED• TESPSIJI + ESPSIJI -SESIIE,21 
TSTRSIJ,21 = SESIIE,11 + EO*ISESIIE+l,ll - SESIIE,111/ 

USESIIE+l,21 - SESUE,211 

C BOND STRAINS AND STRESSES 
c 

MTYP = 3 
IFIJJ2.GE.IJJ1 + NOD211 GOTO 125 

c 
C VERTICAL BAR 
c 

c 

co • o. 00+00 
SI • l.OD+OO 
KDIR = 2 
GOTO 130 

C HORIZONTAL 8AR 
c 

c 

125 co = 1. 00+00 
SI = OoOD+OO 
KOIR = 1 

130 CONTINUE 
KLAST = 0 
K8l s 2 * JCNLCITOPIJ,31,21 
K82 = 2 • ITOPIJ,51 
L = 2 * J - KDIR + l 

140 EPSBIL,11 = - CO* UI_KBl-11 - SI • UIKBll + CO* UIKBZ-11 + 
1 SI * UIKB21 

EPSBIL,21 = Sl•UIKBl-U - CO*UIKBll - Sl*UIKBZ-11 + CO*UIK621 
EPl • TEPSBIL,11 + EPSBIL,11 
CALL TYPE IL, HTYP I 
STRBIL,11 • VKH • EPSBIL,11 
STRBIL,21 = VKV * EPSBIL,21 

C IF LAST BAR ENCOUNTERED, PROCESS ENO LINK STRESSES 
c 

c 
c 
c 
c 
c 
c 

IF I J • NE. NUMBAR I GO TO 170 
IF I KLAST .EQ. l I GO TO 170 
L = 2 * I J + 1 I - KOIR + 1 
KBl = 2 * JCNLIITOPIJ,41,21 
1<82 = 2 * !TOPI J ,&I 
KLAST = 1 
GO TO 140 

l 7C RE TURN 
ENO 
SUBROUTINE RESOUTI ICHECK I 

... SU;R~TiNE. R~SOUT. PR iNrS. ALL. RES~L TS. AFTER. EAC~. LO~~. iNc~EME~T •••••• 
RESULTS APPEAR IN TABULAR FORM 

...... 

..... 
-J 



c 

c. 
c 
c 

c 

IMPLICIT REAL•8CA-H10-ll 
COHHON Sll0,101,VKH,VKV 
COHKON OXX,OYY,El,E2 1CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN,NH1MA,NOOV 1NODH,NUHNOD,NREL 1 NTEL 1NUNilAR,MAXNOF 1 MBANO 
COKMuN NINCR,KINCR,NCURVC,NCURVS,NlC,NlS,!SCALE,NUF,IAUTO 
COKKON N\IIIDF,NUMTDF,N!T,IT,NCUR.VB,NZB,NOOZ 

I 
CDHMCN/ELEH I Xl6501 1Yl6501 1THETAlli52 121 1 U(l3001,TUl13001 
COHMON/ELEMl I JTOPl288 141,THICKl2881 
COKMON/TYP I ITYP El 11521, IS TYPE( 501, 1 llTYPEI 1001 1KOI R 
COMHON/REINF I SAREAI 501,JCNLl650,21,ITOPI 50,61,NREINf,ISl,IS< 
COHMON/CONSTR/ STRl1152,ll,STRPl1152,21 1 EPSl115Z,31,fPRlll52,21 
COHMC.N/CONSTl/ TSTRl1152,31,TEPSl1152,31 
COHHON/STLSTR/ ESPSI 501,STRSI 501,TESPSI 501,TSTKSi 50,21 
COMHON/8UNO I EPSBll00,21,STRllll00,21,TEPSlll l00,21,TSTRilll00,21 
DIMENSION SUHl31,ROWSUlll31 
DATA ZER0/0,0000/, u4/'t.OOOO/, IEQUl/'EQUl 1/ 

PRINT NODAL DISPLACEMENTS 

ILINE : 0 
l,RI TElb,,10001 

1000 FORMATI 1Hl 14211H*l/"3H • NODAi. UISPLACEHENh •, 
1/,1X,4211H•l,/I 

•RITEl6,10011 
1001 fDRHATI • NOOE NO. X-01 SPLACEMENT Y-DISPLA.;EHENT' ,11 

K • 0 
00 10 NH a 1,NUHJOF ,2 
IL INf a IL I NE + l 
K a K + 1 
WRITEl6,10021 K,TUINHl,TUINH+ll 

1002 FDRMATllX,15,8X;lPOll.5,8X,lPD12.51 
IFIILINE.NE,551 GOTO 10 
WRI TEI 6, 10031 

1003 FORMAT llHl,/11 
•RI TE lb 110011 
ILINE • 0 

10 CONTINUE 

C PRINT ITERATION INFORMATION 
c 

c 

liRITElb,72001 IT 
7200 FDRHATl/,lX,'ERROR LESS THAN TOLERANCE IN ITEKATION NO 1 ,13,/,IX,' 

lSOLUTION CONTINUES•,/1 

C PRINT STRESSES IN CONCRETE 
c 

1,RITElb ,10041 
1004 FORMAT( 1Hl,4211H*l/43H • STRESSES AND STRAINS IN CONCRETE *• 

1/,1X,4211H•l,/1 
ilRITElb,10051 

10C5 fURMATI • ELEM NO, SIGMA - X SIGMA - Y TAU - XY SI 
lGMA - l SIGMA - 2 THETAlll TYPE',/,12X, 1EPSILOIII-X 
2 EPSILON-Y GAMHA-XY EPSILUN-1 EPS ILUN-2 THETA I 
321',/I 
ltlNE•O 
OU lO NE~ 1,NTEL 
ll INE ll IN[ + l 
lfllTYPHNEl.tll.11 l,lll,, 1, 

ifR If E 16, lObO l NE, SJRP INE, 11, ST RI' I NE, 21_, THE TA I NE, ll , lTYPl:I NEI , 
lfPRINE,U ,EPRINE,21,THETAINE,11 

1060 FORHATClX,15,48X,211PD12.5,ZXl,1X,lP012.5,2X,13,/ 1 54X,lllP01£.5,£X 
11,lX,lPDlZ.51 

If( I HPEINEI.EQ.41 loRITElb ,10071 
1007 fORMATllH+,105X, 1CRALKED•I 

GOTC 16 
15 WRITE16,10061 NE,TSTR(NE,11,TSTRINt,21,TSTRINE,31,STRP(NE,ll,STRPI 

1 NE ,21, 1 HET AINE ,2 I, HYPE I Nf I, TEP.SI NE, 11, TEPSI NE, 21, TEP SI NE ,31 ,EPRI N 
2E,11,EPRINE,21, THE TAINE ,ll 

1006 FORMATllX,15,4X,311P012.5,2Xl 12X,21lPD12.5 1lXl 1 1X,4POl2.5,2X,13,/, 
llX ,5X 1'tX ,3 U PD12 ,5, 2X I, ZX, .l 111'012 .5, 2X I, lX, lPliU 051 

16 lfl!LINE.NE,281 GOTO 20 
•RlfElb, 10031 
"RI TEl6 ,10051 
!LINE : 0 

ZO CUld lNUE 
IF I !,REI NF. EQ.01 GOTO 50 

c 
C PRINT STEEL AND BOND STRAINS AND STRESSES 
c 

WRI TEI 6, 90701 
9070 FORHATl1Hl,4211H•l,/43H * Sl'RESSES f. STRAINS IN REINFORCfKENTS • 

1,/,1X,4211H•J,/I 
WRITl:16,90801 

9080 FORKATI' BAR NO. EPSILOI, SIGMA CALC, S!t;MA DtP 
llC TEO' ,5X, 1 TYPE' II 

00 30 18 • 1,NUHBAR 
30 WRITEl6 190901 IB,TESPSIIBl,TSTRSIIB,11,TSTRSIIB,21,ISTYPEIIBI 

9090 FORMA Tl 15, 5X, 1P0l2o 5 0 6X 1 1P012. 5 ,5X 11P012 .5 ,lOX ,J31 
.. RITfl6,9lOOI 

9100 fDRHATllHl ,4211H•l ,/'t3H • BONO STRESSES • 
1,/, 43H • IN OIREC TIUN Of GlOllAL AXES • ,/, 1 X, 4211 H• I, /1 

WRITElb,91101 
UO 40 l • 1, NUHBAR 
K • 2 • L 
WRITEl6,111201 IJOPIL,51, TEPSBIK,ll, TEPSBIK,21, TSTRBIK,11, 

l TSTRBIK,21,IBTYPEIKI 
IF I IIHYPEILI .EQ, 3 I WRITECb,90301 

'tO CtJNTI NUf, 
K : 2 • I NUHBAR + l I 
WRITE(b,91201 ITOPINUH!!Ak,bl, TEPSBIK,11, TEPSl!IK,21, TSTRBIK,11, 

1 TSTRBIK,21,IBTYPEIKI 
If I IBTYPEINUHBAR+ll ,U1. 3 I loRITEl6,90301 

9110 FORMAT(' l INK NO, Al NOOE REl, X-OISP. REL. Y-LIISP. X -
lFORCf Y - FORC': 1 ,3X,' TYPE'IJ 

9120 FORMAT I llX, 15, ~X, '• f 1P012, 5, 3X I 1121 
9030 FORl1ATllH+,99X,'fAILEU'I 

5C IH IC.HtCK.NE.IE'1UI I kHlJK!'; 
c 
C STAII!. EQUILIBRIUM Ct<lCK 

' WRITECt.,91301 
91 .>O FOR HAT I lHl ,4211H*l,!43H 

1,/,1X,4211H*l ,IJ 
WRITE(6,91J51 

91'> fUf<ilAl (lx,• RHT, El>~ 
lRce •n 
KP~ 0 

• EIJllll 16RllJM CHECK fUK t4LH CULUMN • 

AV. •-FURU AV~ Y FUKl..f AV .SHEAR rJ 

,__. 
,_. 
00 



c 

NHOR • NOOH - 1 
NVER a NOO\I - 1 
IPAGE • 48/1 NVER+3 I 

9160 FORNATllHl,lX,' RECT. ELEM. AV. X-FORCE AV. Y-FORCE AV.SHEA 
1 R FORCE' I l 

IEL • 0 
00 80 K a 1,NHOR 
DO 55 KK • 1,3 

55 ROWSUN(KKJ • ZERO 
00 70 KROW • l,NVER 
00 60 KK • 1,3 

60 SUMIKKI • ZERO 
IEL • IEL + 1 
ITEL • 4*1EL - 3 
00 65 L • 1, 4 
00 66 LL• 1,3 

66 SUMILLI a SUNILLJ + TSTR(ITEL,LLl 
65 ITEL• ITEL+ 1 

DO 67 LL• 1,3 
SUNILLI • SUHILLl*IY(KROW+ll - Y(KROWll*THICKIIELl/04 

67 ROWSUN(LLI • ROWSUMILLI + SUMILLI 
70 WRITE(6,9l401 IEL,ISUMILLl,LL=l,31 

WRITE(6,91501 K,IROWSUMILLl,LL=l,31 
IF(KP.LT.IPAGEJ GOTO 80 
KP • 0 
IPAGE • 54/INVER+3l 
WRITE(6 ,9160 J 

80 KP • KP + 1 
9140 FORMATII6,9X,3(2X,1P012.5JI 
9150 FORMATl/ 1 ROW',I5,4X,3(2X,1P012.51,' RESIDUAL FORCES'/l 

REHIRN 
ENO 
SUBROUTINE PRERl(JJ 

C THIS SOUBROUTINE DECLARES ALL FATAL ERRORS 
C PROGRAM STOPS AFTER ERROR MESSAGE IS PklNTED 
c 
c 

c 

IMPLICIT REAl*81A-H,O-Zl 
COMMON S(l0,101,VKH,VKV 
COMMON OXX,OYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,PI 
COMMON NN,NH,MA,NOOV,NOOH,NUNNOD,NREL,NTEL,NUNBAR1HAXNDF,MBANO 
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC,NZS,ISCALE,NUF,IAUTO 
COMMON NUMOF,NUMTOF,NIT,IT,NCuRVB,NlB,NOOZ 

GOTOll,2,3,4,5,6,7,8,91 , ~ 
PR INT 11 

11 FORNATl///,iX,llHFATAL ERROR,//,1X,3SHNUN8ER OF NUDES HORIZONTAL 
11 S ZEROI 

GOTO 99 
2 PRINT 12 

12 FORMAT(///,lX,llHFATAL ERROR,//1X,33HNUHBER OF NODES VERTICAL IS 
lZEROI , 

GOTO 99 
3 PR INT 13 

13 FORMATl///,lX,llHFATAL ERROR,//lX,'NBEG IS E~UAL TU ~END'I 
GOTO 99 

4 PRINT 14 
14 FORHATl///,lX,llHFATAL ERROR,//U, •STEEL AREA NEl>ATIVE 11 

c 

GOTO 99 
5 PRINT 15 

15 FORMAT(///,lX,llHFATAL ERROR,//lX,'INCORRECT ENONODE'I 
GOTO 99 

6 PRINT 16 
16 FORMATl///,lX,llHFATAL ERRUR,//lX,'NUMBER OF Rl:INFORCEMENTS SPECIF 

lIEO IS NEGATIVE') 
GOTO 99 

7 PR INT 17 
17 FORMATl///,lX,llHFATAL ERROR,//lX,'STATEMENT 1 BEFORE STATEMENT 40 

14 JS FALSE , CALL ON PROGRAMMER•! 
GOTO 99 

8 PRINT 18 , MBAND 
18 FORMATl///,lX,llHFATAL ERROR,//lX,'BANOWIDTH EXEEOED MBAND •',14,' 

1 CALL PROGRAMMER') 
GOTO 99 

9 PRINT 19 
19 FORMAT(///,lX,llHFATAL ERROR,//,lX, 'BOUNDARY CONDITIONS ARE INCO~R 

lECTLY LABELEO•J 
99 CALL EX IT 

RETURN 
ENO 
SUBROUTINE PRERZ(JJ 

C THIS SUBROUTINE PRINTS NONFATAL ERROR MESSAGES 
C THE PROGRAM CONTINUES AFTER ASSIGNING A VALUE TO THE VARIABLE 
C WHICH JS OUT OF RANGE 
c 

IMPLICIT REAL*BIA-H,O-ZI 
COMMON Sll0,101,VKH,VKV 
COMMON OXX,OYY,El,E2,CNU,CNU12,CNU21,EP1,EP2,SNU,Pl 
COMMON NN,NH,MA,NOOV,NOOH,NUMNOO,NREL,NTEL,NUMBAR,HAXNDF,MBANO 
COMMON NINCR,KINCR,NCURVC,NCURVS,NZC,NZS,ISCALE,NDF,IAUTO 
COMMON NUMOF,NUNTOF,NIT,IT,NCURVB,NZB,NOOZ 
COMNON/NOOULC/ S ECll0,2 J,ECI 9 J,XNUC 191, TOL 
COMMON/MOOULS/ SES 120 ,2 J ,ES 119 J ,XHJS 1191 
CONHON/HOOULB/ SEB(l0,2l,EB(9J 
PRINT 99 

S9 FOR NA Tl II 
PRINT 100 

100 FORMATllX,'*** SUBROUTINE PRER2 ',l4X,'***',/, 
llX,'*** NONFATAL ERROR, SOLUTION CONTINUES ***' I 
GOTOll,2,3,4,SJ , J 

1 PRINT 101,El ,E2 
101 FORHATl/,lX,'*** EMOOUL OUT OF RANGE, LAST VALUES',19X,'***',T40,' 

lEl =',1P012.4,/,T40,'E2 =•,lPOll.41 
GOTO 999 

2 PRINT 101,El,E2 
GOTO 999 

3 PRINT 103 
103 FORMAT(//,lX,'*** NUMBER OF INCREMENTS SPECIFIED IS LESS ***' ,I, 

llX, '*** THAN ONE, ROGRAH ASSUMES NINCR a lo ***'I 
GOTO 999 

4 PRINT 104 
104 fDRMATl/,lX,'*** TOTAL LOAD APPLIED DOES NOT GIVE RISE•,9X,'***'I, 

llX, '*** TO INELASTIC l!EHAVI OR, SOLUT!ON ELASTIC ONLY ***' I 
GOTO 999 

5 PRl NT 105 
105 FORMATl//,lX,'*** NUHSER OF START NOOE GREATER THAN NUMBER***',/, 

I-' 
I-' 
co 
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APPENDIX C 

INPUT SEQUENCE FOR N.ARCOS-2 
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1. Number of Problems: 

one card: (15) 

1 5 

~ NPROBI 

NPROB = number of problems 

2. Problem Identification Card: 

one card: ( 18A4) 

1 72 

~ NAME 

NAME = problem title 

3. First Control Card: 

one card: ( 415) 

1 5 6 10 11 15 16 20 

~ NNV NNH 
I I 

KTOP NREINF 

NNV = number of nodes vertically 

NNV > 0: unequal spacing 

NNV < 0: equal spacing 

NNH = number of nodes horizontally 

NNH > 0: unequal spacing 

NNH < 0: equal spacing 

KTOP = input mode parameter 

KTOP = 1: automatic mesh generation 

KTOP = 2: individual input 

NREINF = number of reinforcements 
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4. Coordinate Data Cards: 

min. two cards: (15, D12.4) 

< 1 5 6 17 

~ I I 
J DTEMP 

J = node number 

DTEMP = x- or y-coordinate of nodes 

for NNV < 0 or NNH < 0: one card, respectively 

for NNV > 0: NNV cards 

for NNH > 0: NNH cards 

5. Second Control Card: 

one card: ( 415) 

1 5 6 10 11 15 16 20 

(I NTH 
I I I I 

NCURVC NCURVS NCURVB 

NTH = number of elements with irregular thickness 

NCURVC = number of points on concrete curve 

NCURVS = number of points on steel curve 

NCURVB = number of points on bond curve 

for NTH = 0- all elements are of unit thickness 

6 0 Thickness (Optional): 

NTH cards: (15, D12.4) 

1 5 6 17 

NT THICK 

NT = element number (rectangle) 

NT = 0: all elements are changed to new thickness 

NT > O; supply NTH cards 
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7. Stress-Strain Data: 

NCURVB cards: (15, Dl 2.4, Dl 2.6) 

1 5 6 17 18 29 

(I I I I 
I STRESS STRAIN 

I = number of point on curve 

STRESS = stress at point I 

STRAIN = strain at point I 

8. Poisson's ratios: 

(NCURVB - 1) cards: (15, D12.6) 

1 5 6 17 

(1 I I 
I NUB 

I = interval {between two points given under 7) 

NUB = Poisson's ratio 

Blocks 7 and 8 are repeated for steel and bond if the parameter 

NREINF is greater than zero. 

9. Bond Stiffness {Optional): 

one card: (5X, D12.5) 

5 17 

VKV 

VKV = bond stiffness in direction perpendicular to reinforcement 

This card must be omitted if NREINF = O. If a blank card is 

supplied, VKV is chosen as mentioned in Chapter IV. 

10. Reinforcement (Optional): 

NREINF cards: ( 215, Dl 2.4, 215) 



11. 
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1 56 1011 22 23 27 28 32 

~ NEAR 
I I 

N<J) RA REA 
I I 

NBEG NEND 

NEAR = number of bars 

N<J) = bar number (A CI Code) 

RAREA = total cross-sectional area 

NBEG = start node 

NEND = end node 

When standard bars (A CI Code) are selected, the total cross-

sectional area is computed automatically. In this case, the 

parameter RAREA must be omitted. If RAREA is specified, 

the parameters NBAR and N<J) may be omitted. 

Tolerance: 

one card: (5X, D12. 5) 

1 5 6 17 
(I I I 

TOL 

TOL = tolerance 

12. Third Control Card: 

one card: ( 415) 

1 56 1011 1516 20 

(l NLOAD I NBCS I NINCR I NIT 

NLOAD = number of loads 

NBCS = number of boundary conditions 

NINCR = number of increments 

NINCR = 0: elastic solution 

NINCR = 1: automatic scaling 



126 

NIN CR > 1: specified increments 

NIT = number of iterations 

13. Loading Data: 

NLOAD cards: (15, 2D12.4) 

1 5 6 17 18 9 

I x y 

I = joint number 

X = X- component of load at I 

Y = Y - component of load at I 

14. Boundary Conditions: 

NBCS cards: (15, 4X, A 1, D12.4) 

5 6 9 10 11 22 
I I 

I * VALUE 

I = restrained node 

* = X: X-restraint 

* = Y: Y-restraint 

VA LUE = value of prescribed displacement 

15. Equilibrium Check: 

one card: (A 4) 

1 4 

p 

P = alphanumeric parameter 

P = EQUI.: initializes checking procedure 

A blank card is required if no checking is requested. 



16. Remarks: 

a. For NINCR > 1 group 13 is repeated NINCR-1 times. 

b. If during the increments 2, 3, ... , etc., the boundary 

conditions remain the same, one blank card may be sup­

plied instead of the whole block 14. 

c. If the EQUI card is inserted, the checks are done for all 

increments. 

127 



APPENDIX D 

SAMPLE INPUT AND OUTPUT 
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9 

8 

7 

6 

5 

4 

3 

2 

26 43 60 77 94 Ill 

11134151 
-25-42 
161331~ 

-24-41 
15 I 32149 

i--23-40 
14 I 31 I 48 

i--22-39 
13 I 30147 

-21-38 
12 129146 
-20-37 
11128145 

-19-36 
10121144 

18 '35 52 

a.) ORIGINAL 

10 28 46 

18 36 

9 27--45 

8 
17 I 35 I 

26-44 

16 1 34 I 
7 25-43 

6 
,s 133 I 

24-42 

14 1 32 I 
5 23-41 

13 I 31 I 
4 22-40 

3 39 

2t<----~-------+--
20 38 

II 29 

19 37 

' I 

128 145 

bl MO.DIFIED TO INCLUDE STEEL NODES 

__;4:..;;.6.=..0 __ 4;..;,78=--~ 495 

468 486 

-459-477 494 

1467 1485 
-458--476 493 

1466 1484 
-457-475 492 

1465 1483 
-456-474- 49 I 

1464 1482 
-455-47 490 

1463 I 481 
-454-472 489 

480 

_ _J_ __ __._ __ _.J 48 7 
451 469 

Figure 32. Nodal Arrangement of Scordelis' Beam A-1 
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SIMPLE 
3 
1 
3 
9 

BEAM, SCORDELIS CHECK PROBLEM9 1 REINF., 468 NODES, 864 TRIANG. 
-28 1 1 

468 
1 

5.0 
22.0 
81.0 

4 5 
12.0 

1 -4000.0 
2 -3000.0 
3 o.o 
4 300.0 
1 0.15 
2 0.15 
3 0.15 
1 -40000.0 
2 -30000.0 
3 
4 
5 
1 
2 
3 
4 
1 
2 
3 

2 

o.o. 
30000.0 
40000.0 
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444 
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6 -8.33333 
7 -4.16667 

1 -16.66667 
2 -33.33333 
3 -33.33.333 
4 -33.33333 
5 -33.33333 
6 -33.33333 
7 -16.66667 

1 -83.33333 
2 -166.66667 
3 -166.66667 
4 -166.66667 
5 -166.66667 
6 -166.66667 
7 -83.33333 

1 -83.33333 
2 -166.66667 
3 -166.66667 
4 -166.66667 
5 -166.66667 
6 -166.66667 
7 -83.33333 
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BEAM APPROXIMATION ,637 NODES WITH STEEL, PMAX = 
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7 5 3 
a.o 

-3000.0 
-2980.0 
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.15 

.15 

.15 
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-50000.0 
-47000.0 
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50000.0 
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.333333 
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ELEM NO. S(GMA - X S lGMA - Y r AU - XY SIGMA - l SIGMA - 2 THETA( 11 TYPE 
EPSlLON-X EPSlLON-Y GAMMA-XV El'S I LD!ll-1 El'S ILON-2 THETAl21 

253 -4.035330 02 -8.927560 00 -3.031600 01 -6.612090 00 -4. 058490 02 4. 367650 00 
-1.340650-0ft 1. 720080-05 -2.324230-05 10808840-05 -1 .349520-0't 4. 367650 00 

25 .. -'t.6"3960 02 -8.699070 01 -8. 125030 01 -7.024190 01 -4. 811450 02 l .16"770 01 1 
-1.504490-04 -5 • 777090-06 -6.229190-05 6."32870-07 -1. 568700-0't 1. 164770 01 

255 -3.512290 02 -2.146090 02 -8.278620 01 -1.755890 02 -3.902 .. 90 02 2. 523630 01 
-l.063460-04 -5.397"90-05 -6. 3469 .. 0-05 -3.901710-05 -1.213040-04 2.523630 01 

256 -2. 903660 02 -1. 365460 02 -3.185190 01 -1.302110 02 -2.967010 02 1. 12't8 30 01 
-8.9961"0-05 -3. 099700-05 -2. 441980-05 -2.856870-05 -9.238970-05 1. l2't830 0 l 

257 2.984160 02 9.148620-02 1.502050 01 2.991700 02 -6.628830~01 2. 875130 00 
9. 9't6 730-05 -1. 't89030-05 1.151570-05 9.975650-05 -1.517950-05 2.875130 00 

258 2.621840 02 1.078390 01 1.123520 00 2.621890 02 1.077890 01 2. 560500-01 
8.685550-05 · -9. 514560-06 8obl3630-07 8.685740-05 -9. 516480-06 2. 560500-01 

259 0,0 -4.5"7580 01 -2. 750660 00 .. 
1,008420-0't -1. 515860-05 -2.750660 00 CRACKED 

260 o.o -&.080270 01 -1.001320-01 4 
1.131870-0't -2, 026 760-05 -1.001320-01 CRACKED 

261 2. 200410 02 -4. 302 540 00 3.193750 01 2.24"990 02 -8.760560 00 7, 946350 00 
7.356210-05 -l .243620-05 2.448540-05 1. 527100-05 -1.414510-05 7,94&350 00 

262 1. 818550 02 7,893600 00 1,755430 01 1.836090 02 6.139890 00 5. 705040 00 
6,022380-05 -6. 461570-06 l, 345830-05 6.089600-05 -7.133820-06 5, 705040 00 

263 2,199&10 02 -3.937490 OD 3,104790 00 2.200040 02 -3.980530 00 7, 943140-01 
7, 351 720-05 -l.231050-05 2,3803it0-06 7,353370-05 -1 • 232 700-05 7. 943140-01 

264 2,581460 02 -1,613360 01 lo 748790 01 2. 592570 02 -1. 724't20 01 3. 633530 00 1 
8.685550-05 -1.828520-05 l,340740-05 8,728120-05 -1, 871090-05 3.633530 00 

265 1. 351470 02 -1.102960 01 3.819430 01 l.it'+5250 02 -2.040770 01 1. 379530 01 l 
4.5600'+0-05 -l.043390-05 2. 928230-05 4, 919540-05 -1.402880-05 1. 379530 01 

266 9. 278100 01 1.457200 DO 2.556550 01 9.9'+5070 01 -5. 212580 00 l,462200 01 
3.085410-05 -4.153310-06 1. 960020-05 3,3itl090-05 -6. 710060-06 1.462200 01 

_267 l.31t9150 02 -1.011740 01 1,271760 01 1, 360220 02 -1.122'+10 01 "· 973590 00 l 
4, 54 7750-05 -l.Oll820-05 9. 750170-06 4. 590170-05 -1.054240-0 5 4. 973590 00 

268 1.772810 02 -2.260410 01 2.534640 01 l.80H50 02 -2.576810 01 7.115380 00 
6.022380-05 -l,639870-05 l.943230-05 6.143660-05 -1. 761160-05 7.115380 00 

269 4,691570 01 -2.101630 01 4.261220 01 6,7H270 01 -4. l51t330 01 2. 572090 01 
l.668940-05 -9.35i210-06 3.266940-05 2.455810-05 -1, 721990-05 2.572090 01 

270 5.367150 00 -8.03b7l0 00 3 .04 7760 01 2,987100 01 -3.254060 01 3. 879910 01 
2. 190890-06 -2.94 7260-06 2, 336620-05 1.158400-05 -l.23itD .. 0-05 3,879910 01 

271 4.628590 01 -1.853970 01 1. 774830 01 s. 082700 01 -2,308080 01 1.435190 01 
1. 635560-05 -8.494210-06 1,360700-05 l.809640-05 -1,023500-05 1.435190 01 

272 8,783450 01 -3.151930 01 2,988290 01 9. 489830 01 -3.858310 01 1. 329960 01 
3.085'+10-05 -l,48~820-05 2.291020-05 3.356190-05 -1, 760590-05 'l, 329960 01 

273 -4. 016840 01 -3. 482240 01 4.4 74900 01 7.333310 OD -8.232410 01 -4. 329080 01 
-l.164840-05 -9. 599040-06 3. 430750-05 6.5606'+0-06 -2. 780800-05 --4.329080 01 

274 -8.188'+90 01 -2,019'150 01 3 ,310880 01 -5.793260 00 -9. 629110 01 -2. 351'+70 01 
-2,628500-05 -2.638910-06 2. 538340-05 2.883470-06 -3, lBOH0-05 -2.351470 Dl 

275 -4.167310 01 -2.89J560 01 2,00it760 01 -1.424990 01 -5.632870 01 -3. 616850 01 
-1. 2445 70-05 -7.551560-06 1. 536980-05 -l .'133550-0& -l ,t!06380-05 -3. 616850 01 

276 4.337720-02. -4. 352860 01 3.168770 01 1.671180 01 -6.019700 Dl 2. 774530 01 
2.t'loego-or, -1.451170-05 2 .429390-05 6.580460-06 -2.090130-05 2. 77'+530 01 

277 -1. 276350 02 -5;625690 01 4.652360 01 -3.331010 01 -1.505810 02 -2.625390 01 
-3.973200-05 -1.237060-05 3. 566810-05 -3. 574290-06 -4. 852830-05 -2 .625390 01 

278 -1. 713680 02 -3.651570 01 3 .582750 01 -2.758810 01 -1.802950 02 -1.399220 01 
-5. 529670-05 - 3. 603 540- 06 2. 746 780-05 -1.812780-07 -5 .871900-05 -1.399220 01 

279 -l.31631D 02 -4.054270 01 2.135730 01 -3.578370 01 -1.363900 02 -1. 256190 01 . ...... 
-4.184970-05 -6.932710-06 [.b3740Cl-05 -5.108430-06 -4.~67400-05 -1,256190 01 w 

2 80 -8.789750 01 -6,028390 01 3,205340 01 -3.'l!90lfl 01 -1.089910 02 -3, 33482D 01 l ~ 
-2.628500-05 -1. 569970-05 2. 45 7430-05 -7.b!3800-06 -3.437090-05 -3,334820 01 
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