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The rhizosphere is populated by a numerous and diverse array of rhizobacteria, and many impact productivity in largely un-
known ways. Here we characterize the rhizobacterial community in a wheat variety categorized according to shoot biomass
using 16S rRNA pyrosequencing abundance data. Plants were grown in homogenized field soil under greenhouse conditions,
and DNA was extracted and pyrosequenced, resulting in 29,007 quality sequences. Operational taxonomic units (OTUs) that
were significantly associated with biomass productivity were identified using an exact test adjusted for the false-discovery rate.
The productivity deviation expressed as a percentage of the total mean square for regression (PMSR) was determined for each
OTU. Out of 719 OTUs, 42 showed significant positive associations and 39 showed significant negative associations (q value,
<0.05). OTUs with the greatest net positive associations, by genus, were as follows: Duganella, OTU 43 and OTU 3; Janthinobac-
terium, OTU 278; Pseudomonas, OTU 588; and Cellvibrio, OTU 1847. Those with negative associations were as follows: Bacteria,
OTU 273; Chryseobacterium, OTU 508; Proteobacteria, OTU 249; and Enterobacter, OTU 357. Shoot biomass productivity was
strongly correlated with the balance between the overall abundances of positive- and negative-productivity-associated OTUs.
High-productivity rhizospheres contained 9.2 significant positives for every negatively associated rhizobacterium, while low-
productivity rhizospheres showed 2.3 significant negatives for every positively associated rhizobacterium. Overall rhizobacterial
community diversity as measured by the Chao1, Shannon, and Simpson indexes was nonlinearly related to productivity, closely
fitting a wavelike cubic equation. We conclude that shoot biomass productivity is strongly related to the ratio of positive- to neg-
ative-productivity-associated rhizobacteria in the rhizosphere. This study identifies significant OTUs composing the productive
and unproductive rhizobacterial communities.

The rhizosphere was defined by Hiltner as the region between
the root and the soil under the influence of the plant (16).

Plant productivity is greatly impacted by the plant-microbe inter-
actions within the rhizosphere (47) with both beneficial and det-
rimental aspects. Despite over a hundred years of research, we still
have difficulty in positively identifying rhizobacteria and rhizo-
bacterial community parameters associated with plant productiv-
ity. The plant provides an estimated 21% of its net photosynthetic
products (5) to sustain the microbial community in what is clearly
a mutually beneficial relationship. The microbial community pro-
vides multiple functions, including increased nutrient availability
(8), protection against pathogens (34), improvement of soil phys-
ical structure (2), and provision of plant growth-promoting sub-
stances (9). Detrimental relationships within the rhizosphere, in-
cluding pathogens and deleterious rhizobacteria (DRB) (43) that
reduce plant growth without showing obvious disease symptoms,
also exist. Today, this interface is known as one of the most eco-
logically complex and important interfaces in nature, consisting of
tens of thousands to a million genomes within a single gram of
rhizosphere soil (33). The inherent complexity of the rhizosphere
has been an obstacle for its characterization and in understanding
its role in providing productivity functions for the plant. Here we
seek to develop a better approach to identify specific rhizobacterial
operational taxonomic units (OTUs) within the community and
systemwide parameters that are associated with wheat productiv-
ity.

Past investigations to connect rhizobacteria to productivity
have involved three generalized approaches, the first two being
dependent on cultural technique. The problems with the use of
cultural techniques are well understood when assessing whole rhi-

zobacterial community response: cultural techniques sample only
a small portion of the rhizobacterial community and ignore the
substantial interaction effect associated with community func-
tion. The first generalized approach involves the isolation of hun-
dreds to thousands of rhizobacteria through cultural means,
screening them for plant growth promotion potential using a va-
riety of plant growth assays. This approach is commonly used
today and has resulted in the isolation of many plant growth-
promoting organisms and biocontrol agents (40). The second
functional approach involves the identification of functional
characteristics that are thought to be connected to plant growth
promotion using various functional assays. Characteristics in-
clude production of antibiotics, evaluation for rhizosphere com-
petence for general community combining ability, production of
siderophores to chelate nutrients such as iron, provision of nitro-
gen by nonsymbiotic rhizobacteria, production of hormones such
as auxin or cytokinin that regulate growth and cell division, and
release of compounds that improve soil properties, to name a few
(40, 49). This approach often is dependent on cultural technique
to functionally screen bacterial isolates and, at times, has difficulty
correlating the functional assay results to plant productivity re-
sponse.
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The final approach, the metagenomic approach, seeks to ex-
amine and characterize part of or the entire rhizosphere combined
genome in order to understand its contribution to productivity.
Other molecular approaches examine phylogenetic community
structure using the 16S rRNA gene, a gene that is most often used
for prokaryotic identification. The metagenomic/molecular ap-
proach is very attractive in that such approaches do not rely on
cultural technique and use a wide range of powerful high-
throughput advanced technologies and bioinformatic analytical
tools to characterize the community in great depth. However, the
information gleaned from these approaches must also be func-
tionally connected to plant productivity response in a meaningful
way, a requirement which in the past has been only partially ful-
filled, if at all. Here we use high-throughput 454 pyrosequencing
to characterize the abundance of specific rhizobacterial OTUs and
correlate rhizobacterial abundance with wheat productivity.

In our experience, growing large numbers of wheat plants in
homogenized soil, under similar care and environment, resulted
in a large differential in wheat biomass. We chose to take advan-
tage of this differential to characterize the rhizobacterial commu-
nity using 16S rRNA pyrosequencing sequence data reflecting rhi-
zobacterial abundance in plants categorized according to shoot
biomass productivity. We then correlated the abundance of each
rhizobacterial OTU (operational transcriptional unit) with shoot
biomass productivity using a novel statistical approach. We hy-
pothesized that the reason for this differential in wheat plant bio-
mass was associated with the development of the rhizobacterial
community during vegetative growth. This paper is meant to
demonstrate this approach, in considerable depth. All in all, we
identified 42 positive- and 39 negative-productivity-associated
rhizobacteria significantly associated with shoot biomass produc-
tivity. Furthermore, the significant positive- and negative-pro-
ductivity-associated rhizobacteria, the overall rhizobacterial
community diversity, and the balance between positive- and neg-
ative-productivity-associated rhizobacteria were shown to be
highly associated with shoot biomass productivity.

MATERIALS AND METHODS
Plant growth and bacterial extraction. A total of 96 wheat (Triticum
aestivum cv. Grandin) plants were grown singly in a controlled green-
house in large 2.8-liter Treepots (Stuewe & Sons) filled with homogenized
Easpur loam soil with a prehistory of wheat production. No fertilizer was
added, to force the plants to depend on the native rhizosphere microflora
for productivity functions. At planting, the soil contained 30, 87, and 352
kg/ha of N, P, and K, respectively, and 2.12% organic matter. After 8 weeks
of growth, shoots were cut, the roots were gently removed, and the shoots
were weighed. Shoot biomass productivity was chosen because the shoot
is the source of much of the organic nutrition that feeds the rhizosphere
microbial food web and should be correlated with rhizosphere productiv-
ity functions. Loose soil was removed from the root by three consistent
shakes, the root and shoot were weighed, and the root with clinging soil
was blended three times at high speed (24,000 rpm) in eight volumes
(wt/vol) of 0.1% sodium pyrophosphate for 1 min, with a 1-min icing
between grindings. To minimize temporal artifacts, the rhizosphere sam-
ple was processed and placed on ice within 10 min of removal of root from
the soil. From each rhizosphere a 1-ml aliquot of soil extract (250 mg of
rhizosphere soil/root) was frozen at �80°C. Wheat plants were classified
into five evenly spaced categories from low to high according to their
corresponding shoot fresh weights, with seven plants per category. Seven
1-ml aliquots from each of the seven plants in each biomass category were
combined into a single bulk extract prior to DNA extraction. Five replicate
DNA extracts were extracted from each bulk extract by bead beating using

the Mo Bio Power Soil extraction kit (Mo Bio, Carlsbad, CA) according to
the manufacturer’s directions. Replicate DNA extracts were combined to
form the final bulk DNA extract. Prior to pyrosequencing, DNA quality
(260 nm/280 nm absorbance ratio � 1.80) and quantity (�30 ng/�l) were
determined for each DNA extract by nanodrop spectrophotometry
(Thermo Scientific, Rockford, IL). Pyrosequencing was performed by the
Research and Testing Laboratories (Lubbock, TX) using the (bTEFAP)
FLX 454 titanium pyrosequencing procedure, 100 ng of DNA, and the 27F
and 533R 16S rRNA gene universal PCR primers (11). Pyrosequencing
was chosen due to its ability to return massive amounts of community
sequence data in a cost-effective manner with significant phylogenetic
resolution.

Sequence processing. Quality sequences were evaluated and retained
using both the in-house procedure of the Research and Testing Labora-
tories and the RDP II pyrosequencing pipeline. Alignment and clustering
were performed using the RDP II pyrosequencing pipeline, defining each
OTU at a level of 1% dissimilarity (6). Here we correlate the abundance of
specific OTUs with biomass productivity based on the numbers of 16S
rRNA gene sequences in each category. A basic assumption of this analy-
sis, and of all 16S rRNA sequencing work, is that the numbers of sequences
are proportional to the numbers of organisms. The validity of the assump-
tion is complicated by the multigenic copy number typical of many bac-
teria, from 1 to 15 (1). However, comparisons among bacteria that are
defined at the subspecies level do not show significant copy number vari-
ance (22). Thus, in this study, all sequences were aligned and clustered at
1% dissimilarity. The numbers of sequences for each OTU in each bio-
mass category were determined in a Microsoft Excel spreadsheet. A rep-
resentative sequence from each OTU was selected using the dereplication
function resident in the RDP II pipeline and was phylogenetically classi-
fied by the RDP II Bayesian Classifier (45). Clustering of the OTUs based
on their response to productivity was performed using the SYSTAT ver-
sion 10.2 (Systat Software, Inc., Chicago, IL) hierarchal classification
function using Ward’s distance and chi-square linkage methods. Cluster-
ing was meant to group those OTUs according to their association with
productivity. No statistically based inference is suggested by the groupings
of OTUs.

Correlation analysis. Correlation analysis within each OTU was
based on the numbers of sequences across productivity categories for
those OTUs containing six or more sequences. An exact test based on a
log-linear model was utilized to compute a P value for each OTU (24).
Exact analysis is more common in the physical or social sciences than in
biology, although an increasing number of researchers are using this sta-
tistical approach, especially when confronted with a small sample size,
because modeling assumptions of standard approaches are difficult to
verify in this setting. An exact test is valid without making any distribution
assumptions concerning the base population. Though any number of
models could be considered, such as a linear or polynomial-type model, a
log-linear model is common in categorical data analysis of count data
because it ensures positive predictive values. False-discovery-rate-ad-
justed P values, also called q values, were computed using the QVALUE
software in R (41) and used to determine which OTUs were significantly
associated with productivity (defined by q values of �0.05).

To determine the amount of copy number variability attributable to
productivity, the root mean squared regression statistic (RMSR) was com-
puted via

RMSR � �1 ⁄ 4 �
i � 1

5

(yi
^ � y�)2�1⁄2

where y^i � exp �b
^

o � b
^

1Xi� is the expected number of genes in the ith
biomass category assuming a log-linear relationship between productivity
and abundance exists, xi is the shoot biomass (g) of the ith productivity

group, and y� � bo
^

is the expected number of genes in the ith biomass
category assuming no relationship between biomass and abundance exists
(b1 � 0). Hence, we would expect yi

^ to be near y� thereby yielding a small
RMSR when the abundance of an OTU is not related to productivity, and
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we expect a large RMSR value otherwise. Least-squares estimates of coef-
ficients were obtained using the glm function in R. It should be noted that,
since least-squares estimators were used, the RMSR value does not depend
on any distributional assumptions for the data but does depend on the
assumption that the relationship between productivity and OTUs, if it
exists, is log-linear. The percent RMSR contribution for the jth OTU
among the n OTUs that were declared to be positively related to produc-
tivity (q value, �0.05, B1 � 0) was computed by

PMSRj � 100� RMSRj

�
k � 1

n

RMSRk
�

The RMSRj is the RMSR (productivity-associated deviation) for the jth
OTU, and hence the PMSRj is the proportion of productivity-associated
deviation for the jth OTU among the total positive-productivity-associ-
ated deviation. An analogous statistic was computed for OTUs that were
negatively related to productivity.

This work developed an approach to partition the productivity devi-
ation via the RMSR statistic based upon well-established techniques for
describing the viability of data with respect to some model. Specifically,
the total variability for an OTU can be broken down into variability at-
tributable to productivity (SSR) and variability not attributable to pro-
ductivity (SSE) via

SST � �
i � 1

5

(yi � y�)2 � �
i � 1

5

(yi � yi
^)2 � �

i � 1

5

(yi
^ � y�)2 � SSE � SSR

Dividing the left- and right-hand sides of the equation by 4 yields the
mean squared error and mean squared regression, which can be thought
of as the average variabilities not attributable and attributable to produc-
tivity, respectively. Taking the square root of the MSR yields the RMSR
and can be thought of as the amount of average deviation attributable to
productivity. The PMSRj is then the proportion of (positive- or negative-)
productivity-associated deviation among those OTUs that were deter-
mined to be (positively or negatively) associated with productivity.

Aggregate positive and negative OTUs and shoot biomass. The total
number of sequences for OTUs with PMSRs of �0.1% was determined for
each biomass category and correlated with biomass productivity based on
either an exponential (y � aebx), a linear (y � ax � b), a logarithmic [y �
aln(x) � b], or a power series (y � axb) model associated with the Excel
spreadsheet trendline analysis function, where a and b represent least-
squares coefficients. The sigmoidal modeling was obtained from the
Graphpad PRIZM v5 software (GraphPad Software Inc., La Jolla CA)
using a three-parameter logistic equation:

y � a �
(b � a)

1 � 10logEC50 � x

where a equals the lower-bound plateau, b equals the upper-bound pla-
teau, and EC50 equals the x value at 50% of the y value. Once the aggregate
numbers of sequences for positive- and negative-productivity-associated
OTUs were determined, then the balance between positive and negative
rhizobacteria was determined as the ratio between positive and negative
OTUs for each biomass category. The ratio was then plotted against values
for biomass categories, and linear and nonlinear correlation analysis was
performed as indicated above.

Community diversity analysis. Community diversity was measured
with 95% confidence intervals by the Chao1, Shannon (eH), and Simpson
(1/D) indexes using EstimateS (7a) (Chao1) and PAST (Shannon and
Simpson) software diversity functions (15) based on a total of 4,725 ran-
domly chosen sequences from each biomass category. The results were
expressed as a percentage of the maximum in order to fit the data in a
single figure (see Fig. 6) for comparison purposes, with the actual values
listed in the accompanying table insert.

RESULTS

Wheat plants were grown under defined greenhouse conditions in
homogenized field soil with a prehistory of wheat production.

Plants were harvested, and shoot fresh weight measurements were
determined. Plants exhibited a wide range of shoot biomasses,
from 0.45 to 4.06 g fresh weight/plant. Rhizospheres were com-
bined and evenly classified into five separate categories according
to their shoot biomasses. Under the above-described conditions,
substantial single-plant variation was observed, with a 9-fold dif-
ference in shoot fresh weight between smallest and largest plants
and a 3.4-fold difference between the averages of the lowest and
highest biomass categories. Rhizobacterial DNA was extracted
from each biomass category, and the 16S rRNA gene was se-
quenced using 454 Titanium pyrosequencing, yielding a total of
29,007 quality sequences. Each OTU with six or more sequences
was analyzed by the exact test to determine the significance of the
relationship adjusted for the false-discovery rate. Specific OTUs
were identified after dereplication with the RDP II Bayesian Clas-
sifier using a conservative confidence threshold of 50% to delin-
eate the taxonomic classification (45), with the result that most
OTUs were matched to the genus level but some were matched
only at much higher taxonomic levels, such as domain (Bacteria)
or phylum. The degree of percent productivity-associated devia-
tion (PMSR) was determined for each OTU as a measure of its
approximate contribution to productivity in both positive and
negative associations.

The relationship between biomass productivity and sequence
abundance can be graphically visualized for eight representative
OTUs (Fig. 1). Close examination revealed a large upward trend
with increasing biomass and downward trend with decreasing
biomass for positive and negative associations, respectively. Fur-
thermore, many of the significant relationships for both positive
and negative associations appeared to exhibit pronounced non-
linear responses with shoot biomass productivity, including Cell-
vibrio OTU 1847, Rhizobium OTU 1697, and Lysobacter OTU 597
for positive associations and Enterobacter OTU 357 and Chryseo-
bacterium OTU 508 for negative associations. Some OTUs, in-
cluding both Enterobacter 357 and Chryseobacterium 508, showed
exclusive association in one category, in this case the low-biomass
category.

Of the 719 OTUs statistically analyzed, 42 showed significant
positive associations with biomass productivity. The significant
OTUs were hierarchically clustered based on productivity re-
sponse so that close proximity in the diagram reflects similar shoot
productivity responses with the positive associations represented
in Fig. 2 and the negative associations in Fig. 3. The five most
significant OTUs, based on highest percent contribution as deter-
mined by the PMSR statistic in parentheses, were two Duganella
OTUs, 3 and 43 (7.01% and 1.97%), Janthinobacterium 278
(2.44%), Pseudomonas 588 (1.51%), and Cellvibrio 1847 (1.44%),
all accounting for 14.4% of the positive productivity deviation.
Furthermore, the top five sequences comprised 73% of the total
number of sequences presented in Fig. 2 and 4.3% of all 29,007
sequences represented in this study. Overall, the significant
positive-productivity-associated rhizobacteria contributed 37% to
the overall positive productivity deviation. Examining higher tax-
onomic relationships, 31 out of 42 significant positive OTUs were
classified as Proteobacteria, with 10 as Alphaproteobacteria and 9 as
Gammaproteobacteria. Proteobacteria represented 31% of the total
productivity deviations, with Betaproteobacteria providing 12.6%,
Gammaproteobacteria 8.2%, and Alphaproteobacteria 6.1%.

For positive associations, a total of 15 clusters were identified
by hierarchal clustering with distances less than 1.0, and the total
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percent contribution of each cluster was determined. Two clusters
showed the greatest productivity percent contribution. Cluster O,
comprised of Duganella 43 and Duganella 3, contributed 8.98%
toward productivity deviation, while Cluster N, comprised of Jan-
thinobacterium 278, Alphaproteobacteria 2220, and Polygoniaceae
1123, provided 3.73% toward the productivity deviation. Other
contributing clusters included H and I, with H including Pseu-
domonas 588 and I including Lysobacter 597 as their most promi-
nent members.

Out of the 719 OTUs, 39 significant negative-productivity-as-
sociated rhizobacteria were identified in Fig. 3, ranging from 4.4%
for Bacteria OTU 273 to 0.42% for Aquimonas OTU 2136. The five
most significant negative associations based on the largest produc-
tivity deviation were outlined in bold, including Bacteria 273

(4.4%), Chryseobacterium 508 (4.1%), Proteobacteria 249 (3.9%),
Enterobacter 357 (2.6%), and Bacteria 1022 (2.0%). Overall, 17%
of the total negative-productivity-associated deviation came from
these five OTUs. Thirteen clusters defined by a distance of less
than 1.0 were evident. The clusters with the greatest sum total
negative productivity deviation were cluster B at 6.8%, which in-
cluded Chryseobacterium 508 (4.1%), and cluster I at 6.1%, which
included Bacteria 273 (4.4%). Other clusters of negatively impact-
ing productivity-associated rhizobacteria included F (5.4%) and
K (5.2%).

Since root tissue was extracted along with rhizosphere soil, the
presence of root plastid sequences was expected. A total of 9.6% of
all sequences were represented by Streptophyta, or root plastids,
comprising 59 OTUs defined at 1% dissimilarity. Out of the 59
OTUs, 30 showed significant increases with decreasing shoot bio-
mass (Fig. 4). The shape of the productivity response curve was
closely modeled by a nonlinear power series model with a dra-
matic increase in Streptophyta sequences in the lowest biomass
category. Streptophyta sequences significantly correlated to pro-
ductivity comprised 87% of the total Streptophyta sequences.
Streptophyta OTUs with the greatest numbers of sequences in-
cluded Streptophyta 42, 84, and 48, with 883, 457, and 333 se-
quences, respectively.

The relationship between productivity-associated taxonomic
groups and shoot biomass productivity was examined, and the
results are presented in Table 1. Many OTUs defined at 1% dis-
similarity and classified by the RDP II Bayesian Classifier were
represented multiple times; for example, Duganella was repre-
sented by 25 positive OTUs and 14 negative associations. A total of
127 taxonomic groups were represented and ranked according to
their net percent contribution base on their aggregate PMSR sta-
tistic of �0.1%, with 68 showing a net positive association, 56
showing a net negative association and 3 evenly balanced. The net
contribution for a given taxonomic group was calculated as the
difference of the sum total of all positive and negative OTUs, with
the top 10 positive and negative groups indicated in Table 1. Dug-
anella, Rhizobium, Acidobacteria Gp6, Janthinobacterium, and
Cellvibrio showed the greatest cumulative positive contribution,
with 18% of the total. Bacillus, Actinomycetales, Cellvibrio, and
Acidobacteria Gp6 were balanced heavily toward numbers of pos-
itive associations, with Bacillus showing all positive associations.
Those with the greatest number of positive-productivity-associ-
ated OTUs included Duganella and Acidobacteria Gp6. The great-
est cumulative negative contributions for taxonomic groups were
from those classified as Proteobacteria and Bacteria followed by
Chryseobacterium, Enterobacter, and Cyanobacteria, all totaling
�27.2% productivity deviation. Proteobacteria and Xanthomon-
adaceae showed the strongest negative tendencies. Overall, the
positive-productivity-associated rhizobacteria accounted for
93.8% of the positive deviation and the negative-productivity-
associated rhizobacteria accounted for 95.9% of the negative de-
viation, with the net deviation tilted to the negative by 2.1%.

The productivity balance between aggregate positive and neg-
ative OTUs summed across shoot biomass categories was exam-
ined and presented in Fig. 5. The total number of sequences in
each category was summed up for all positive OTUs, with a PMSR
greater than 0.1% termed total OTUs. The same was done sepa-
rately for negative OTUs. In addition, the total number of se-
quences in each category was summed up for OTUs with a signif-
icant positive and negative relationship as determined by the exact

FIG 1 Composite graphs of four representative positive (left panels) and neg-
ative (right panel) OTU associations with shoot biomass productivity. The
OTU taxonomic identification with sequence number is indicated at the top of
each chart.
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test (q value, �0.05), termed total significant OTUs. From these
data, the balance between the aggregate positive and negative or-
ganisms was determined as represented as the P/N ratio (posi-
tive-/negative-productivity-associated rhizobacterial ratio) for
total overall and significant OTUs in Fig. 5 as defined above. Cor-
relation analysis was performed using both linear and nonlinear
models to find the best fit as determined by the R2 values, and these
are presented in the table in Fig. 5.

Of the 719 total OTUs in this study, 268 (37% of the total)
showed positive PMSR while 238 (33% of total) showed negative
PMSR of 0.1% or greater, and the remaining 213 OTUs (30%) had
a neutral effect. In all cases, both positive and negative, and for
total and significant OTUs as well as for the P/N ratio, the data fit
nonlinear curves. In particular, the sigmoidal model showed the
best fit in four out of six categories according to the R2 values,
ranging from 0.607 to 1.000. The other two categories showed a

FIG 2 Clustering of 42 significant (q value, �0.05) positively associated OTUs, with the top five in bold type. Individual percent OTU contributions as measured
by the PMSR statistic, cluster membership, percent contribution for each cluster, and number of sequences per OTU for each cluster are indicated. Cluster
membership is also indicated by the letter symbol at the cluster branch. Total overall contributions of significant positive associations are indicated at the bottom
of the figure.
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slightly better fit to the power series model than to the sigmoidal
model. The linear slope was significantly different (P value,
�0.05) from zero in all cases with the exception of the significant-
negative-association aggregate OTUs (data not shown). The clos-
est fit was from the total P/N ratio, which very closely matched
sigmoidal, power series, and linear relationships with the R2 rang-
ing from 0.986 to 1.000. Based on total OTUs, there were 3.5
positive to 1 negative total OTUs in high-biomass plants and 2.3
negative OTUs for every positive in low-biomass plants. Based on
significant OTUs, there were 9.2 significant OTUs for every 1 neg-
ative OTU in high-biomass plants and 2.3 negative OTUs for every
positive OTU in low-biomass plants.

Rhizobacterial community diversity as determined by three
diversity indicators is presented in Fig. 6 based on overall com-

munity diversity analysis in each category using Chao1, Shan-
non, and Simpson indexes. All three indicators showed a non-
linear wavelike response to increasing productivity from low to
high. The lowest diversity was found in the lowest biomass
categories, and the highest tended to be in the highest biomass
category, with the exception of Chao1, which had a signifi-
cantly higher diversity in the medium category. The Simpson
index showed the greatest nonlinear wavelike oscillation, fol-
lowed by Shannon and Chao1.

DISCUSSION

More than a hundred years of research suggests that the rhizomi-
crobial community plays a very significant role in plant produc-
tivity processes. Despite its importance, so much remains un-

FIG 3 Clustering of 39 significant (q value, �0.05) negatively associated OTUs, with the top five in bold type. Individual percent OTU contributions as measured
by the PMSR statistic, cluster membership, percent contribution for each cluster, and number of sequences per OTU for each cluster are indicated. Cluster
membership is also indicated by the letter symbol at the cluster branch. Total overall contributions of significant positive associations are indicated at the bottom
of the figure.
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known due to (i) the biotic and abiotic complexities and
heterogeneity associated with the rhizosphere environment, (ii)
the inability to culture the vast majority of rhizobacterial resi-
dents, (iii) the difficulty in evaluating the interorganismal interac-
tion effect associated within this complex community, and (iv) the
difficulty in extracting and characterizing the rhizosphere com-
munity in a unperturbed state or studying the rhizosphere com-
munity interactions in situ. Many previous attempts at character-

izing the rhizosphere have relied heavily on reductionism-based
approaches that sought to isolate and characterize specific seg-
ments of the rhizobacterial community or associated functional
processes in order to understand in part the rhizosphere contri-
bution to plant productivity. While these research projects have
provided valuable information on productivity processes, they are
clearly not sufficient to understand the system-wide contribution
as a whole. In contrast, the research reported here represents a
significant system-level advance in rhizobacterial community re-
search in that the research (i) used a molecularly based pyrose-
quencing technique to identify a large number of individual OTUs
from relatively unperturbed rhizosphere communities associated
with productivity without resort to cultural means, (ii) identified
both positive- and negative-productivity-associated rhizobacte-
ria, (iii) used a novel nonparametric statistical approach to iden-
tify specific OTUs associated with productivity, and (iv) identified
fundamental system-level parameters associated with the rhizo-
bacterial community productivity functions. Finally, it is ac-
knowledged that the results here represent a demonstration of the
potential of this approach using one soil system and under specific
environmental conditions and that under other conditions the
results are likely to differ. However, we are confident that contin-
ued comparative investigations using this same approach, under a
wide variety of conditions, will result in the unfolding of underly-
ing general principles concerning rhizobacterial contribution to
plant productivity. We will first discuss the specific OTUs associ-
ated with productivity followed by the community-wide aspects.

FIG 4 Relationship between root plastids (Streptophyta) and shoot biomass
productivity.

TABLE 1 Taxonomic groups with the highest positive or negative aggregate percent productivity deviation (PMSR)

Taxonomic group

Result for group

Positive Negative Total

No. of
OTUsa %PDb

No. of
OTUs %PD

No. of
OTUs %PD

Positive-productivity associated
Duganella 25 14.8 14 7.0 39 7.7
Rhizobium 12 5.0 5 2.4 17 2.6
Janthinobacterium 2 2.9 1 0.3 3 2.6
Acidobacteria Gp6 20 4.5 8 1.9 28 2.6
Cellvibrio 4 2.6 1 0.4 5 2.2
Pseudoxanthomonas 3 1.6 0 0.0 3 1.6
Lysobacter 4 2.3 2 0.8 6 1.5
Sorangium 2 1.5 0 0.0 2 1.5
Actinomycetales 5 1.6 1 0.3 6 1.3
Bacillus 5 1.2 0 0.0 5 1.2

Negative-productivity associated
Acidobacteria Gp4 12 2.4 16 3.5 28 �1.1
Flavobacterium 10 4.1 13 5.3 23 �1.1
Enterobacteriaceae 0 0.0 2 1.4 2 �1.4
Variovorax 0 0.0 1 1.7 1 �1.7
Xanthomonadaceae 2 0.7 5 2.4 7 �1.7
Cyanobacteria 0 0.0 2 1.8 2 �1.8
Enterobacter 0 0.0 2 3.0 2 �3.0
Chryseobacterium 0 0.0 2 5.1 2 �5.1
Bacteria 11 2.8 13 9.3 24 �6.5
Proteobacteria 3 0.6 18 11.3 21 �10.7

Total 268 93.8 238 95.9 506 �2.1
a Number of OTUs for a given taxonomic group.
b Percent productivity deviation associated for each taxonomic group as determined by the aggregate PMSR statistic.
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Overall, the approach identified to the strain level 42 positive-
and 39 negative-productivity-associated rhizobacteria identified
for the most part to the genus level or higher. Cluster analysis was
used to group the specific OTUs according to their response to
increasing plant productivity. Many of these genera, including
Pseudomonas, Rhizobium, Flavobacterium, and Lysobacter, etc., are
known to include plant growth promoters or biocontrol organ-
isms, while others, such as Duganella, Cellvibrio, Cystobacter, and
Luteimonas, have rarely or never been observed with these char-
acteristics. Many of these productivity-associated rhizobacteria
could be identified only at the highest phylogenetic level such as
domain or class. These poorly classified OTUs most likely repre-

sent phylogenetically novel organisms that are hard to culture and
have yet to be assigned to the current taxonomic structure.

The PMSR statistic identified the OTUs that contribute most
to the productivity deviation. The most significant positive asso-
ciations were from the genera Duganella (OTUs 3 and 43) and
Janthinobacterium (OTU 278). These two are genera that have
rarely been examined for biocontrol or plant growth promotion.
Furthermore, Duganella is taxonomically closely related to Janthi-
nobacterium, both being members of the Oxalobacteraceae family.
The large percent contribution of the two Duganella rhizobacte-
rial OTUs and one Janthinobacterium rhizobacterial OTU most
likely reflect their large numerical abundance. Both Duganella and

FIG 5 Relationships between shoot biomass productivity and aggregate OTU sequence numbers totaled for each category for the total (left panels) and
significant (right panels) OTUs and for overall positive OTUs (upper panels), negative OTUs (middle panels), and positive-to-negative OTU ratios (P/N, lower
panels). The table below the composite chart provides R2 values for linear and nonlinear models for each of the respective panels. The best-fit model is indicated
in the lower right-hand corner for each panel.
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Janthinobacterium are producers of the antibiotic violacein, a
known inhibitor of viruses, fungi, and nanoflagellates (19). Their
numerical abundance may reflect the production and activity of
these antipredatory or antiparasitic compounds, since predation
and parasitism are major known factors shaping the rhizobacterial
community (26). Furthermore, these two genera are rich in cata-
lytic enzymes, are known degraders of a wide range of organics,
and are likely participants in nutrient cycling of complex organic
compounds (30, 44). It should be noted that among the significant
OTUs Duganella OTU 2002 was associated with negative produc-
tivity and another Duganella OTU, 4025, was associated with less
positive-productivity deviation than those mentioned above.
Thus, productivity deviation can vary substantially within a given
genus as indicated with Duganella and for other genera listed in
Table 1.

Other significant positive-productivity-associated rhizobacte-
ria include Pseudomonas OTU 588, a member of one of the most
widely distributed genera colonizing a broad range of biological
niches under a wide range of environments. In particular, pseu-
domonads have been widely associated with both plant growth
promotion and pathogenesis, possess a wide diversity of metabolic
capability, produce antibiotics such as, 2,4-diacetylphloroglucinol
(DAPG), and have been used as biocontrol agents. The DAPG
antibiotic has been shown to reduce root fungal infection in wheat

(35). In this study, five Pseudomonas OTUs showed positive asso-
ciations and three showed negative associations, for a net positive
productivity response of 1.2% (data not shown). Another posi-
tive-productivity-associated rhizobacterium is Cellvibrio OTU
1847, which is a member of a genus known for its cellulose and
complex carbohydrate degradation potential (23) and for this
purpose has been investigated for biofuel production (13). This
genus occurs in wheat fields (31) and may be associated with my-
corrhizal networks facilitating AMF spore germination (36).

In 1982 Suslow identified a class of bacteria termed deleterious
rhizobacteria (DRB) that reduced growth without showing obvi-
ous disease symptoms (28). DRBs, also called minor pathogens,
impact plant productivity significantly by reducing growth in
some way not related to obvious disease symptoms. Research
progress on identifying and functionally characterizing DRBs has
been slow. As with research on growth promoters, identification
of DRBs depended primarily on the use of cultural technique.
Results from this study indicated that 39 OTUs were negatively
associated with productivity. Those most negatively associated
with productivity were Bacteria OTU 273, Proteobacteria OTU
249, Chryseobacterium OTU 508, Enterobacter OTU 357, and Bac-
teria OTU 1022. The fact that three out of five of the greatest
negative associations were taxonomically undetermined at the
highest level of taxonomic classification indicates that the taxon-
omy of DRBs is not well developed. Little can be said concerning
the functional attributes of these taxonomically undetermined
members. However, members of the Chryseobacterium and Pseu-
domonas genera are associated with the wheat disease take-all.
Other members of the Chryseobacterium genus are known sapro-
phytes (4), plant growth promoters, and biocontrol agents (10).
Members of the genera Enterobacter and Pseudomonas have pre-
viously been identified as DRBs (39, 43).

A previous work (25) using both cultural and molecularly
based techniques demonstrated that both chryseobacteria and
pseudomonads increase in abundance under the influence of the
wheat disease take-all. Our work is consistent with theirs in that
Chryseobacterium (OTUs 508 and 1325) and Pseudomonas (OTU
2279) are found to be more abundant under low-productivity
conditions. The low-productivity conditions in this study may be
analogous to the fungus-infected conditions in the McSpadden
Gardener and Weller study (25). Furthermore, in our work the
Chryseobacterium OTUs and the single Pseudomonas OTU were
tightly clustered together, indicating that they had similar re-
sponses to negative productivity, which may indicate that there
were some inherent interactions between the two OTUs. This
would be consistent with the suggestion of McSpadden Gardener
and Weller that the rise in Chryseobacterium may actually support
the suppression of take-all-causing fungi by DAPG-producing
pseudomonads. Nonetheless, sequence analyses of Chryseobacte-
rium spp. and Pseudomonas spp. in this study and those from the
McSpadden Gardener and Weller study show sizeable divergence,
indicating that they are likely to be different organisms (data not
shown).

In our analysis, specific OTUs were represented multiple times,
indicating that some taxonomic groups may be more highly asso-
ciated with productivity than others. Of these multiple associa-
tions, most showed both positive and negative contributions to
productivity, while some showed exclusive association with either
positive or negative contributions. By summing up the productiv-
ity deviations for both positive and negative associations and sub-

FIG 6 Relationship between microbial diversity and wheat shoot productivity
expressed as a percentage of maximum values for each diversity index. Abso-
lute values for the Chao1, Shannon, and Simpson indexes are provided in the
table below the figure. Letters to the right of the data in the table represents
statistical significance. Differing letters indicate that the value lies outside the
95% confidence interval.
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tracting the positive from the negative, it was possible to identify
those taxonomic groups that showed the greatest net contribution
to the productivity deviation. Our analysis identified Duganella,
Rhizobium, Janthinobacterium, Acidobacteria Gp6, and Cellvibrio
as the five taxonomic groups that showed the most net positive
association in our plant growth system (Table 1). These groups
may represent phylogenetic hotspots which over time have co-
evolved in wheat to provide productivity functions. Duganella,
Janthinobacterium, and Cellvibrio have already been discussed
above. However, Acidobacteria originates from a phylum that has
been newly identified, mostly characterized through molecular
means, with few cultural representatives. Research supports the
idea that acidobacteria are very abundant in soils, comprising 10
to 50% of the organisms (46). They are very versatile heterotrophs
feeding on simple and complex organic compounds in a way that
makes them important contributors to the carbon cycle. These
appear to be long-lived, slow-growing types that are well adapted
to low nutrient environments such as in the bulk soil (20, 46) and
in this case where nitrogen fertility was not provided. Further-
more, acidobacteria have been shown to be part of disease-sup-
pressive soils (38). In this study, Acidobacteria subdivision 6 rep-
resented a very dominant positive OTU, with 29 showing positive
associations and 12 showing negative associations, resulting in a
net negative contribution of 2.8% of the total productivity devia-
tion, the second highest next to Duganella.

Another genus prominent in positive productivity relationship
is Rhizobium. Rhizobium spp. are primarily known for their sym-
biotic association with legumes. However, recent work has tied
this genus to functions that affect plant growth promotion, in-
cluding disease-suppressive effects through production of antibi-
otics, iron-chelating compounds, and stimulation of induced re-
sistance in plants. In addition to disease suppression, Rhizobium is
known for P solubilization from organic sources and provision of
plant growth-promoting compounds (3). On the negative side,
taxonomic groups including Proteobacteria, Bacteria, Chryseobac-
terium, and Enterobacter represented 29.2% of the negative-pro-
ductivity-associated productivity deviation. Little can be said for
those classified to the level of Proteobacteria or Bacteria except that
these may represent novel organisms that are in need of further
classification. Both Chryseobacterium and Enterobacter have been
discussed earlier.

This work may facilitate the isolation of a number of novel
plant growth-promoting rhizobacteria not examined before.
Many PGPR or biocontrol agents have been isolated and evaluated
using screening systems that rely on the ability to culturally isolate
and evaluate the plant growth promotion potential of targeted
bacteria (14, 32). Many of these use plant growth promotion as-
says in which organisms are reintroduced into the rhizosphere
under highly artificial conditions, followed by a growth promo-
tion evaluation. In contrast, here we first used noncultural tech-
niques to identify rhizobacteria associated with biomass produc-
tivity which could then be followed up with isolation and
evaluation of targeted isolates. Furthermore, identification of
growth promoters through this noncultural approach may be
more effective in identifying rhizosphere-competent rhizobacte-
ria without the bias associated with cultural technique. The signif-
icant OTUs identified in this study could be isolated using specific
cultural conditions guided by sequence information for a given
OTU, using sequence-based hybridization probes for screening
the DNA from a rhizobacterial library, or the sequences them-

selves could be compared with sequences generated from an iso-
lated genus-specific library in silico. Genus-specific culture condi-
tions could aid in overcoming cultural constraints with many of
the identified OTUs. OTUs such as those of Duganella or Janthi-
nobacterium were found in high abundance, and these may serve
as targeted genera for PGPR isolation. Other positive-productiv-
ity-associated taxonomic groups could also serve as targets for
further analysis, such as those of Pseudoxanthomonas or selected
Rhizobium strains. Isolation of strains for use as PGPR is not the
only way to further characterize the functional contribution of
these OTUs to plant productivity, given that many taxonomic
groups contain both positive- and negative-productivity-associ-
ated rhizobacteria. Comparative whole-genome analysis among
OTUs that are closely related genetically but differ substantially in
their contributions to plant productivity could serve to uncover
genes and pathways important to plant productivity functions
(42).

Probably the most significant finding of this paper is that pro-
ductivity appears to be highly associated with the balance between
positive- and negative-productivity-associated rhizobacteria in
the rhizobacterial community. The balance between total posi-
tive- and negative-productivity-associated rhizobacteria was
quantitatively represented by the ratio of the sum total of positive
to negative sequences for each shoot biomass category. The cor-
relation of this total ratio with shoot biomass productivity closely
fit nonlinear and linear models, as indicated by the large R2 values
ranging from 0.930 to 1.000 (Fig. 5). Similar relationships were
found when the positive-to-negative ratio was determined using
statistically significant OTUs (defined by q values of �0.05) rep-
resenting 42 positive and 39 negative OTUs. This ratio was also
highly correlated to productivity, with large R2 values ranging
from 0.853 to 0.970. Thus, the rhizobacterial community in highly
productive wheat plants appears to be dominated by as many as
9.2 significant positives for every significant negative, while low-
productivity plants show a ratio of 2.3 significant negatives for
every significant positive. The very close fit with total and signifi-
cant OTUs indicated that the total positive-to-negative ratio ex-
plains a very large part of the productivity deviation. Furthermore,
the relationship between total and significant OTUs and produc-
tivity appears to have some nonlinear nature. In fact, the best
model of all those tested appeared to exhibit a slight sigmoidal
relationship. The nonlinear sigmoidal response may reflect a
dose-response mechanism associated with the positive-to-nega-
tive ratio and plant productivity. In this case it is conceivable that
the dose represents exudates derived from shoot photosynthate
and the response is the change in balance between positive- and
negative-productivity-associated organisms. However, caution
must be employed, because the current analysis does not differen-
tiate between linear and nonlinear models, leaving this question to
future investigations which would have to include many more
data points (biomass categories) to allow for a more statistically
robust analysis.

The tight balance between total and significant positive- and
negative-productivity-associated rhizobacteria and plant produc-
tivity strongly suggests that the rhizobacterial community compo-
sition is tightly coupled to plant physiological processes. This
strong coupling further suggests that the significant and total pos-
itively and negatively associated rhizobacteria could be considered
part of the overall plant system. In an analogous system that has
been much researched, gastrointestinal microflora are also tightly
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linked to their host metabolism in many ways. Theorists have
suggested that since symbiotic associations act in concert with
their host, the sum of all the parts could be considered a single
organism, or “holobiont,” and that the combined genome could
be considered the “hologenome” (37). Thus, plant productivity
appears to be not only associated with the plant genome but also
influenced strongly by the combined rhizomicrobial genomes.
The fact that rhizobacteria provide numerous productivity func-
tions argues for an important role in plant growth and develop-
ment, but it does not by itself convincingly argue for a controlling
cause-and-effect involvement. However, recent work on other ho-
logenome systems suggests that the microbial symbiont is far from
passive and that the microflora may have more of a controlling
impact than first realized (21) and very likely have a very signifi-
cant impact on the evolutionary development of the host (37).
This is also very likely true for the plant system.

The ratio of positive- to negative-productivity-associated rhi-
zobacteria mentioned above strongly supports our hypothesis that
productivity in plants is strongly connected to the development of
rhizobacterial community structure. How and when this balance
is developed needs much more study. What factors encourage a
more positive or negative balance are critical to understanding the
relationship between plant and microbe. The positive-to-negative
ratio might actually reflect the overall system-level productive ef-
ficiency of the rhizobacterial community. The strong coupling
inherent in this balance between positive and negative OTUs, in-
dicated in this work, may provide a metric that could be exploited,
through breeding, biotechnological engineering, or improved ag-
ronomic practices, to potentially enhance rhizobacterial produc-
tive efficiency. Research examining this balance under a wide
range of conditions and with a number of genotypes is necessary
to determine if this metric is open to manipulations. We believe
that development of this approach is just a beginning and that
further work is necessary involving different soils, plant varieties,
and plant cultural practices before general principles affecting rhi-
zobacterium-plant interactions can be better understood with re-
spect to both specific OTUs, positive and negative, and overall
general community response. This approach may help better de-
fine at a very fine level what constitutes healthy or productive
versus unhealthy or unproductive soil-microbe-plant systems.

Rhizobacterial community diversity is a characteristic feature
of the root rhizosphere community. Ecologists have speculated
that microbial diversity provides significant redundancy essential
for environmental adaptation (48). The role of microbial diversity
in soils as it relates to productivity and ecological sustainability is
still a matter of intense discussion and research (48). It is logical to
assume that greater biomass productivity will be associated with
increased rhizobacterial diversity in the rhizosphere. In this study,
we directly examined this hypothetical assertion with our experi-
mental approach utilizing pyrosequencing data and three com-
mon diversity indexes (Chao1, Shannon, and Simpson). The three
indexes differ in their coverage of the rhizobacterial community,
with the Chao1 and Shannon indexes generally covering the rarer
OTUs and the Simpson index the more dominant OTUs (7, 18).
This three-tiered system was selected to provide a diverse range of
analysis of the rhizobacterial community rather than relying on a
single index.

Our results indicated that the relationship between diversity
and productivity was nonlinear, closely resembling a cubic wave-
like model with increasing and decreasing trends, most likely re-

flecting positive and negative impacting factors on rhizobacterial
diversity. The shape of the diversity productivity curve can be
rationalized as an interaction between positive and negative im-
pacting factors. The identities of the positive factors are unknown
at this time, but they may reflect aspects of both microbial and
plant growth processes. Factors that increase rhizobacterial diver-
sity with increasing productivity may be the result of increased
carbon exudation and increased volumetric root growth. In-
creased exudation, correlated with greater shoot biomass, could
support increased rhizobacterial diversity through the provision
of generally metabolizable carbon compounds. Increased root
growth would in effect explore a larger soil volume, incorporating
a more diverse array of rhizobacteria.

The negative impacting factor acts to reduce rhizobacterial di-
versity which may be associated with a number of selectivity
mechanisms initiated by the plant or microbial food web commu-
nities. Plants and the microbial food web have ways of selecting for
specific members of the rhizobacterial community through regu-
lation of pH, redox relationships, antibiotics, volatile chemicals,
quorum sensing inhibitors, chemotropic agents, and predations
or parasitism (17). Modeling using a third-degree polynomial re-
sults in an expression with both positive and negative coefficients.
These coefficients may actually reflect the relative importance of
both positive and negative factors on diversity and may be useful
in estimating their association with productivity. Accordingly, the
fact that the Simpson index showed the greatest modulation
would imply that dominant OTUs are more actively selected by
the plant than are rarer OTUs. Further research is necessary to
confirm whither this approach quantitatively reveals aspects of the
inner rhizosphere dynamics associated with rhizobacterial com-
munity diversity as affected by plant carbon exudation and rhizo-
bacterial selectivity by the plant. However, this diversity analysis
may provide another community-wide system parameter that
may be useful in assessing soil-microbe-plant associations with
overall soil health and productive capacity.

The pyrosequencing data from this study were based on DNA
extracted from the rhizosphere soil, including roots, and were
expected to contain plant DNA. Amplification of DNA using the
so-called universal 16S rRNA primers would be expected to am-
plify plastid DNA sequences. Approximately 9.3% of all sequences
recovered in this study but not included in the above analysis were
identified by the RDP II Bayesian Classifier as Streptophyta, or root
plastids. These were separated into 59 distinct OTUs, 30 of which
were negatively associated with productivity. Surprisingly, num-
bers of root plastid 16S rRNA sequences were dramatically greater
in the low-productivity group (Fig. 4). The reason for this is un-
known, but it may be associated with infection or colonization by
parasitic microorganisms (DRBs, fungi), especially in low-bio-
mass plants. Plastids in roots are essential for the metabolisms of
starch, amino acids, and fatty acids (29). Colonization by mycor-
rhizae has been shown to dramatically increase plastid production
and encourage plastid reorganization (12). In low-biomass plants,
increased plastid numbers may be actively stimulated and/or reg-
ulated by parasites in order to divert primary resources toward
their own growth and development.

This study focuses on the rhizobacterial community exclu-
sively and does not distinguish between endophytic bacteria and
rhizosphere bacteria, since DNA extraction was performed on the
whole root system. However, with minor adjustments, it is possi-
ble to identify both endophytic or rhizosphere bacteria associated
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with productivity. The study is based on 29,007 sequences, which
by today’s standards is somewhat small. Larger studies with 10 to
20 times the numbers of sequences are easily possible, increasing
the depth of sampling and the statistical reliability of the results.
One study suggested that as many as 29 million reads are necessary
to provide 90% coverage of the entire soil bacterial community for
the 16S rRNA gene alone (33). Nevertheless, this small study iden-
tifies the most abundant of the productivity-associated rhizobac-
teria, which most likely represent the prime rhizobacterial drivers.
Moreover, there are still recognized limitations associated with the
DNA extraction and PCR amplification processes upon which this
approach relies (27). Careful examination of rhizosphere and
DNA extraction procedures, PCR amplification parameters, and
the statistical and bioinformatic processes is necessary to further
refine and enhance this procedure. Finally, this same approach
can be used for the other microbial food web residents, including
viruses, fungi, nematodes, protozoa, and micro- and mesofauna,
in order to obtain a multitrophic view of the association with
productivity. However, compared to their bacterial counterparts,
the available PCR primers and databases for identifying these
other organisms need much more development to be of compa-
rable value. Nevertheless, even without identification the ap-
proach would still be informative given that individual OTUs are
determined by the 16S rRNA gene sequence alone. Taxonomically
unidentified OTUs would still represent unknown organisms and
could still provide sequence tags to isolate the targeted organism
or to obtain larger DNA fragments to supplement current DNA-
based information for a more refined analysis.

Lastly, and most importantly, it must be understood that the
results presented in this paper reflect the type of soil, the nutrient
conditions, and the environment under which the experiment was
conducted. Results may differ under different conditions. Only
after extensive evaluation using an array of conditions will it be
possible to identify bacteria generally associated with productivity
for a given plant species, environmental condition, and soil type.
Further research using this pyrosequencing-based approach will
greatly assist in characterizing and utilizing the productive and the
unproductive holobiont communities.
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