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ABSTRACT  

This case study discusses the field performance of a district central ground source heat pump (GSHP) system installed at Ball State University (BSU) in 

Muncie, IN., USA. This district GSHP system replaces the existing central steam plant and water-cooled chiller plants and designed to serve 47 major 

buildings in BSU. The field performance of the GSHP system was analyzed based on measured data from August 2015 through July 2016, 

construction drawings, maintenance records, personal communications, and construction costs. It was compared with the performance of a baseline 

scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source 

energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. This paper presents the results of the analysis, the lessons 

learned, and recommendations for improvement in the operation of this district central GSHP system. 

INTRODUCTION 

High initial costs and a lack of public awareness about ground source heat pump (GSHP) technology are the 

two major barriers preventing rapid deployment of this energy-saving technology in the United States (Hughes 2008). 

To tackle these barriers, 26 GSHP projects were competitively selected by the US Department of Energy in 2009 and 

awarded grants funded by the American Recovery and Reinvestment Act to demonstrate the benefits of GSHP 

systems and innovative technologies for cost reduction and/or performance improvement.  A district central GSHP 

system that ultimately would replace the existing coal-fired steam boilers and conventional water-cooled chillers on 

the campus of Ball State University (BSU) in Muncie, IN was one of the 26 selected demonstration projects. This case 

study evaluates the performance of the demonstrated district central GSHP system based on measured performance 

data, utility bills, and other relevant information. The evaluated performance metrics include the energy efficiency of 

the overall GSHP system, electricity usage of all major equipment of the GSHP system, and the achieved benefits 

(e.g., energy and cost savings) compared with a new conventional HVAC system. This case study also identifies 

opportunities for improving the operational efficiency of the system. 

SITE DESCRIPTION 

Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam 

plant with 4 coal-fired and 3 natural gas-fired steam boilers.  Cooling was provided by 5 water-cooled centrifugal 

chillers at the District Energy Station South (DESS). Faced with the need to eliminate the coal-fired boilers and aging 

chillers, BSU considered several options, including circulating fluidized bed coal boilers and improved stack controls. 



 

 

Finally, a geothermal system with heat recovery (HR) chillers was selected to meet the simultaneous heating and 

cooling needs in the campus. Although the district GSHP system has a cost premium compared to other options, it 

has higher energy savings potential. It was one of major reasons for the final selection. 

The implementation of the GSHP system was taken in two phases. Phase 1 included constructing a 

geothermal field with 1,803 vertical boreholes, as well as a new District Energy Station at the North side of the campus 

(referred as DESN). This energy station includes two new 2,500 ton two-stage HR chillers connected to the phase 1 

geothermal fields (Figure 1). These chillers can simultaneously produce chilled water (at 42°F or 5.6°C) and hot water 

up to 150°F (65.6°C). In Phase 2, the existing conventional chillers in DESS were replaced with other two 2,500 ton 

(8,750 kW_clg) two-stage HR chillers. These chillers are connected to the phase 2 geothermal fields at the south end of 

the campus. This case study focuses on evaluating the field performance of the GSHP system implemented in phase 1.  

Buildings in the BSU campus were retrofitted and connected to the district GSHP system gradually over several years. 

As more buildings were connected to the GSHP system, the heating and cooling loads imposed on DESN increased 

from year to year. Control and operation of the GSHP systems has been adjusted by the facility operators to improve 

the performance of the GSHP system. 

 

Figure 1. Ball State University campus map showing the energy stations, chilled water and hot water loops, and 

geothermal borehole fields in Phase 1 and Phase 2 of the district central GSHP system. As shown in this map is the 

buildings connected to the GSHP system in 2012.  

GSHP System Description  



The district GHP system implemented in phase 1 includes two geothermal borehole fields, two HR chillers, 

three water loops, and a new campus-wide control and monitoring system. All the chillers and pumps are installed in a 

new building (DESN). Chilled water and hot water are produced by the HP chillers and distributed to buildings in the 

campus through a chilled water (CHW) loop and a hot water (HW) loop. As of May 2106, 47 buildings are connected 

to the CHW loop and 30 buildings are connected to the HW loop. Note that there were only 20 buildings connected 

to the HW loop in 2012. Expansion of the HW loop to serve more buildings is still ongoing.  

Geothermal Borehole Fields. Two geothermal borehole fields were constructed during Phase 1 as shown in 

Figure 1. One borehole field includes 1,230 bores and the other has 573 bores. Each bore is 400 ft (122 m) deep and 

the bores are spaced by 15 ft (4.6 m) between centers. Two 1-inch diameter high density polyethylene (HDPE) U-

shape loops filled with water are inserted into each bore, which is then grouted with a mixture of sand, bentonite, and 

water. All the HDPE pipes are routed into DESN through 5 major circuits that are buried 5 ft (1.5 m). under the 

ground. An in-situ ground thermal conductivity test was performed in a borehole at the site. The test result indicated 

that the effective ground thermal conductivity at the test site is about 1.68 Btu-hr-1-ft-1-F-1 (2.9 W-m-1-K-1), and the 

undisturbed ground temperature is about 56°F (13.3°C). 

Heat Recovery Chillers. Two 2,500-ton (8,750 kW_clg) HR chillers (CH #1 and CH #2) are installed in 
DESN. Figure 2 shows the schematic of the two HR chillers with the associated control valves and pumps. During 
typical operation, CH #1 is run to produce both HW and CHW. If the HW load is smaller than the available heating 
capacity, then the HW return temperature starts to rise above the desired set point. The HW return is then directed to 
the geothermal field (referred as ground loop hereinafter), and water retuning from ground loop is directed back to 
the condenser of the chiller. This is achieved by opening valves CV-LFW-01 and CV-LFW-03, which connect the 
ground loop to the condenser side of the chiller. Then control valves CV-CW-01 and CV-CW-03 (for chiller #1 or 
CV-CW-05 and CV-CW-07 for chiller #2) modulate in opposite directions to control the HW return temperature 
(back to the condenser side of the chiller) at the desired temperature (the set point was 106°F or 41.1°C).  As the 
second stage of control, the circulation pumps for the ground loop are staged to maintain HW return temperature at 
the desired set point. On the other hand, when cooling load is too small, resulting the CHW return temperature drops 
below a set point, valves CV-LFW-02 and CV-LFW-04 are opened to allow some returned CHW going through the 
ground loop and then mixing with other returned CHW. These valves are cycled ON and OFF to increase the CHW 
return temperature.   

Besides, there are other four chillers in the South Plant (DESS)—two HR chillers (CH #3, and CH #4) are connected 
to the phase 2 geothermal borehole fields; and two conventional centrifugal chillers (CH #5, and CH#6) are 
connected to a cooling tower. The six chillers in DESN and DESS are staged to meet the cooling demands in the 
campus. The two chillers in DESN are used at first stage1. When the cooling demand is larger than the capacity of 
CH #1 and CH #2, other chillers will be added on following the sequence of CH#3, CH#4, CH#5 and CH#6.  

Pumps. There are three sets of pumps in DESN and each is used for the ground loop, CHW loop, and HW 

loop, respectively. In addition, the condenser and evaporator sides of each chiller, as well as the cooling tower, have 

their own dedicated (primary) pumps. Three 350 HP pumps are connected parallelly to distribute CHW throughout 

the campus, and similarly, three 300 HP pumps are used to distribute HW. When the HW or CHW produced by the 

chiller excesses the demand, it is circulated through the geothermal borehole field with three in parallelly connected 

pumps (250 HP each). The dedicated pumps used in condenser and evaporator sides of each chiller, as well as the 

cooling tower, all have 125 HP power. Each building has its own internal water loops and (tertiary) pumps to extract 

CHW and CW from the main campus-wide CHW and CW loop and return it back to the main loop. The tertiary 

pumps are controlled to maintain a pre-defined temperature difference across the building’s internal water loop. 

                                                           
1 Measured data showed that there was not any occasion that both CH#1 and CH#2 were operated at the same time. While 

CH #1 ran most time, CH #2 only ran sporadically. 



 

 

 

 

Figure 2. The schematic of the central GSHP system in DESN shown in BSU’s Building Energy Management system 

(red dots indicating measured data) 

Brief explanation of the acronyms used in the above schematic is given in following table: 

CV Control valve  CW Condenser water 

FCHW  Chilled water flow rate  FHW  Hot water flow rate  

FGW Ground loop flow rate TCHWR  Chilled water return temperature 

TCHWS  Chilled water supply temperature THWR  Hot water return temperature 

THWS  Hot water supply temperature TGWR  Ground loop return temperature 

TGWS  Ground loop supply temperature SPDCHWP single speed chilled water pump 

SPDHWP single speed hot water pump SPDGWP single speed ground loop pump  

 

Supplemental Heat Rejection. A fluid cooler (a wet cooling tower – not shown in Figure 2) was added to the 

ground loop in the spring of 2015 to reduce the excessively high ground loop temperatures experienced in the first a 

few years of operation. 

DATA ANAYLSIS RESULTS 

Ground Loop Temperatures 

Error! Reference source not found. shows the monthly average supply and return temperatures of the 

geothermal borehole field (ground loop temperatures) and monthly average outdoor air temperature from August 2015 

through July 2016. As shown in this figure, the difference between the monthly average supply and return 

temperatures during summer and winter ranged within 5-7ºF (3-4ºC) and 2-4ºF (1-2ºC), respectively. The ground loop 

temperatures in this period is lower than that one year ago (see Error! Reference source not found.). For example, 



the monthly average ground loop supply temperature during 2014-2015 was 89 to 101°F (32 to 38°C), while it ranged 

from 82 to 95°F (28 to 35°F) in 2015-2016. The decrease of the ground loop supply temperature is thought to be due 

to following reasons: (1) supplemental heat rejection through the fluid cooler, which was added to the ground loop in 

April 20152; and (2) more heating load in 2015-2016 as more buildings were connected to the campus-wide HW loop 

(see discussion in Heating and Cooling Outputs). The high ground loop temperature led to high heating efficiency of 

the HR chiller in winter but resulted in poor cooling efficiency in summer. Low heating loads and the sub-optimal 

operation of the HR chillers are thought to be the main reason of the high ground loop temperature. While the central 

GSHP system provided chilled water to most buildings in the campus, it took several phases to retrofit the existing 

heating systems in these buildings. As a result, the current heating load is lower than that when all the heating systems 

are retrofitted. 

 

  

Figure 3. Monthly ground loop supply and return water 

temperatures at DESN and the outdoor air temperature 

(August 2015 through July 2016) 

Figure 4. Monthly ground loop supply and return water 

temperatures at DESN and the outdoor air temperature 

(Previous year: August 2014 through July 2015) 

Heating and Cooling Outputs 
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(a) (b) 

Figure 5 (a) shows the average daily heating and cooling energy provided by the GSHP system in DESN to 

the campus-wide CHW and HW loops. Each data point in this figure is the average of daily heating or cooling outputs 

                                                           
2 Performance data of the fluid cooler were not measured, and the impact of the fluid cooer cannot be quantified.  



 

 

when the associated daily average outdoor air temperature is within a specific 5°F (2.8°C) bin (e.g., from 40-45ºF or 4-

7ºC). The year-round cooling demands are due to high internal heat gains, which are typical in university buildings. The 

year-round heating demands are due to domestic hot water (DHW) preheating and reheating needs in variable air 

volume (VAV) HVAC systems, which are used in many buildings in the campus. Further investigation (Fig. 5b) reveals 

that the new GSHP system in DESN provided most HW to the campus in the summer of 2016 while it was the 

existing boilers in DESS that provided most HW in the summer of 2015. It resulted in an increase in the average daily 

heating loads when OA temperature was higher than 20°C as shown in Fig. 5(a). The total heating and cooling energy 

provided by the HR chillers in DESN was 149,738 MMBtu (157,988 GJ) and 140,032 MMBtu (147,747 GJ), 

respectively. During the same period in previous years (August 2014 through July 2015), the total heating and cooling 

energy was 79,124 MMBtu (83,483 GJ) and 108,065 MMBtu (114,019 GJ), respectively. It shows that there was a 

significant increase (i.e., about 89%) in heating demand in 2015-2016.  
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(a) (b) 

Figure 5. Heating and cooling outputs: (a)average daily at various outdoor air temperatures; and (b) monthly total 

While the heating and cooling demands were balanced in 2015-2016, it was not the case for the heat extracted 

from and rejected to the ground. The annual heat rejection to and extraction from the ground were 71,684 MMBtu 

(75,633 GJ) and 16,120 MMBtu (17,008 GJ), respectively. The heat rejection to the ground is only about 52% of the 

total cooling outputs, and the heat extracted from the ground is only about 11% of the total heating output. Based on 

the heat balance of the chiller, the heat recovered from the condenser of the chiller (Q_HR) can be calculated with 

following Equation (1).  

 

Q_HR =  Q_clg + Q_clg/COP – Q_rej_GL      (1) 

where, Q_HR is the heat recovered from the condenser of the chiller when it produces chilled water; Q_clg is the 

cooling output of the chiller; COP is the chiller cooling efficiency expressed as Coefficient of Performance3; and 

Q_rej_GL is the heat rejected to the ground loop 

 

The calculated annual Q_HR is 116,635 MMBtu (123,061 GJ), which is about 78% of the annual heating 

output to the HW loop. While it is an expected benefit of the HR chiller, it may not be the optimal operation for the 

                                                           
3 According to the HR chillers’ catalog data, when it produces both 42°F (5.6°C) chilled water (from evaporator) and 125°F 

(51.7°C) hot water (from condenser), the cooling COP is 2.9. 

 



GSHP system. Since a large portion of the heating output is from the recovered heat at the condenser, the GSHP 

system did not extract much heat from the ground. As a result, the heat rejected to and extracted from the ground is 

significantly unbalanced even with the relatively balanced heating and cooling demands from the buildings. The 

significantly unbalanced thermal load of the ground is one of the reasons for the high ground loop temperature. 

Power Consumption 

Chillers’ power consumption was measured continuously starting in August 2015. To verify the quality of the 

measured power consumption and other performance data of the chillers, the measured monthly chiller power 

consumption was compared with that calculated with other measured performance data using a heat balance equation 

(equations 2 and 3), and the analysis shows a close match between the calculated and the measured monthly chiller 

power consumption. It indicates good quality of the measured performance data. 

WCH1  = (Q_CW_1 - Q_CHW_1)             (2) 

WCH2 = (Q_CW_2 - Q_CHW_2)             (3) 

where, WCH1 and WCH2 are the monthly power consumptions (in kWh) of chiller #1 and #2, respectively; Q_CW_1 

and Q_CW_2 are the monthly condensing heat (in kWh) of chiller #1 and #2, respectively; and Q_CHW_1 and 

Q_CHW_2 are the monthly cooling outputs (in kWh) at the evaporator of chiller #1 and #2, respectively. 

 
Figure 6. Monthly chiller power and pump consumption 

Figure 6 shows the monthly chiller and pumping power consumption. The contribution of pumping power 

(excluding the tertiary pumps in each building) to the total GSHP system power consumption ranges from 8% to 18% 

at different months. On an annual basis, the pumping energy was 12.6% of the total power consumption of the district 

GSHP system at DESN.  

Energy Efficiency 

According to the HR chillers’ catalog data, when it produces both 42°F (5.6°C) chilled water (from evaporator) 

and 125°F hot water (from condenser), they use 1.2 kW of power per each ton (3.5 kW) of cooling supplied, which is 



 

 

equivalent to a cooling COP of 2.9. With this efficiency, for each ton of cooling produced, there are 1.34 tons (4.7 kW) 

of heating available. The HR chiller could operate very efficiently (i.e., with an effective COP as high as 6.83) if both 

the produced chilled and hot water were fully used to satisfy the cooling and heating demands of the campus. 

However, if the produced CHW and HW are not fully used, and the surplus heating or cooling energy is thus dumped 

to the ground (as discussed before), the ECOP of the HR chiller is lower than the COP of conventional chiller or heat 

pump. Figure 7 shows ECOP of the HR chiller vs. the ratio of the daily HW demand (the heating output to the HW 

loop) to the daily CHW demand (the cooling output to the CHW loop).  Each data point in this figure is the average of 

ECOPs within a 0.2 bin of the HW/CHW ratio. As shown, the minimum average daily ECOP of the HR chiller was 

about 2.5 when the HW/CHW ratio is less than 0.2 (i.e., most of the heating energy is dumped into the ground), and 

the ECOP was around 5 when the HW/CHW ratio is near 1.3 (the ratio between the heating and cooling output of the 

HR chiller). The ECOP varied between 4 and 5 when the HW/CHW ratio is higher than 1.3, which means heating 

demand is much higher than the cooling demand. Based on measured annual cooling and heating outputs and the 

measured annual power consumption of the chiller, it is calculated that the annual average ECOP of the chiller was 

4.28±0.2. Accounting for annual pumping power consumption, the annual average ECOP of the district GSHP system 

at DESN was 3.74±0.2. The ±0.2 uncertainty of ECOPs is calculated based on the accuracies of the sensors following 

the procedure described in ASHRAE Guideline 14-2014 – Measurement of Energy, Demand, and Water Savings 

(ASHRAE 2014).  

The operational efficiency of the GSHP system could have been higher if the two chillers were operated 

separately—with one chiller always producing CHW, and the other operating as a heat pump to produce HW. Given 

the relatively balanced HW and CHW loads, these separate operations would reduce the ground loop temperature 

because (1) the (heat pump) chiller would produce only the needed HW necessary to satisfy the heating demand, 

eliminating dumping of 125°F (51.7°C) HW into the ground loop; and (2) heat extraction from and heat rejection to 

the ground would be more balanced since the (heat pump) chiller would extract more heat from the ground. To satisfy 

the same heating and cooling demands, the two separately operated chillers using the ground loop as both heat source 

and heat sink would consume 17,806 MWh electricity. Compared with the electricity consumption of the as-

built/operated GSHP system (19,853 MWh), the separate operations will save 2,047 MWh electricity. However, the 

separate operations will result in an increase in ground loop pumping energy use since more heat is extracted from and 

rejected to the ground loop. The calculation result indicates that the ground loop pumping energy use will increase by 

715 MWh, so the net savings in electricity is 1,331 MWh, which is of $106,557 value given the $0.08 per kWh 

electricity rate. 

 



  
Figure 7: Average ECOP of the heat recovery chiller 

Energy Savings 

The energy savings achieved by the district GSHP system was determined by calculating the difference in 

measured energy consumptions between the GSHP system and the calculated energy consumption of a baseline 

HVAC system. The energy consumption of previous HVAC system in the campus was not sub-metered and thus can’t 

be compared against. The baseline HVAC system includes a conventional water-cooled chiller and a natural gas boiler, 

which have the minimum energy efficiency as specified in ASHRAE Standard 90.1-2013 (ASHRAE 2013). The 

baseline chiller efficiency is 0.57 kW/ton (COP = 6.1), and the boiler efficiency is 80%. It was assumed that there are 

two 2,500-ton (8,750 kW) water-cooled centrifugal chillers, four 1,000-ton (3,500 kW) cooling towers, and three 20,000 

kBtu/hr (5,860 kW) natural gas boilers. The baseline energy use was estimated using the measured cooling and heating 

outputs of the GSHP system, and a computer simulation of the centrifugal chillers and gas-fired boilers with DOE-

2/eQUEST (Hirsch 2016). Our calculation shows that the baseline HVAC system would consume 10,970 MWh 

electricity (including power consumptions of circulation pumps and a cooling tower) and 212,806 MMBtu (224,531 

GJ) natural gas, respectively, in a year to provide the same heating and cooling outputs as the GSHP system. The 

source energy factor for delivered electricity is 3.443, which is an average value for U.S. Eastern Interconnection 

according to Deru and Tocellini (2007). The same literature also provides the CO2 emission factors for delivered 

electricity (i.e., 0.74 kg of pollutant per kWh of electricity) and natural gas (including 49.1 kg per GJ from on-site 

combustion and 4.6 kg per GJ from pre-combustion).  These emission factors are used to calculate the CO2 emissions. 

The annual source energy savings achieved by the GSHP system is about 96,281 MMBtu (101,586 GJ), or a 27% 

reduction from the baseline source energy consumption. The annual energy cost savings is calculated based on the 

difference in annual energy consumption for electricity and natural gas between the simulated baseline HVAC system 

and the measured data of the district GSHP system. Assuming $0.08/kWh for electricity and $7.6/GJ for natural gas, 

the calculated annual energy cost savings is $764,200 (a 30% savings compared with the baseline). In addition, the 

GSHP system has reduced CO2 emission by about 8,494,540 lbs (3,853 ton) each year, which is a 19% reduction 

compared with the baseline system. More detailed information is presented in a technical report of this case study (Im 

et al. 2016). 

CONCLUSIONS AND LESSONS LEARNED 



 

 

• This case study indicates that the average system ECOP during the monitoring period was about 3.74, while 

the chiller ECOP is about 4.28. The monthly pumping power contribution to the total system power 

consumption ranges from 8% to 18%. 

• Compared with a baseline HVAC system with code-compliant efficiencies, the GSHP system in each year 

could avoid 101,586 GJ (a 27% saving) source energy consumption, reduce 3,853 tons (a 19% reduction) 

carbon emissions, and save $764,200 (a 30% saving) energy cost.  

• The operational efficiency of the GSHP system could have been higher if the two chillers were operated 

separately—one chiller dedicates on producing chilled water, and the other chiller operates as a heat pump to 

produce only hot water. In this case, there is no need to dump the energy of the chilled or hot water to the 

ground. In addition, it will help balance the ground loop loads since more heat will be extracted from the 

ground to satisfy the heating demand. 
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