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ABSTRACT  

In order to optimize the design and operation of a ground source heat pump system, the modeling of the Borehole Heat Exchanger (BHE) and its coupling 

to the heat pump operation becomes crucial. This becomes key for those systems with on/off operation, where it is important to model the short-term response 

of the BHE accurately. Furthermore, the modeling of the local variation of the ground temperature near the BHE will be highly influenced by ground 

thermal properties and the operation of the system. In this context, the novel B2G dynamic model was developed and experimentally validated in previous 

works for a single U BHE and adapted to a novel coaxial spiral configuration. In order to consider the influence of the soil surrounding the BHE, two 

ground nodes were initially defined and their position (penetration radii) was calculated for a specific type of soil and operating conditions. This paper 

presents an upgrade of the B2G model, with a descripton of penetration radii calculation. For this purpose, a comparison between the B2G model and the 

Infinite Cylindrical Source model was carried out to find the penetration radii that reproduce the ground thermal response with a higher accuracy under the 

corresponding soil thermal properties and operating conditions. 

INTRODUCTION 

During the last years, the concern about the global warming and the environmental pollution has lead to the 

research and widespread of renewable energy sources, together with an increase in the efficiency of the energy systems, 

with the aim of reducing the carbon emissions and reduce the global pollution. In the sector of heating and cooling in 

buildings, the Ground Source Heat Pump (GSHP) systems represent an efficient alternative to conventional systems 

(Rees 2016). In these systems, the ground is used in order to provide heat to the system (heat source) or to store the 

heat injected by the system (heat sink). This heat exchange with the system is performed by the use of a Borehole Heat 

Exchanger (BHE) field. Inside the BHE, the flowing fluid is heated up or cooled down because of the temperature 

difference between the surrounding ground and the fluid. In order to assist in the design of the BHEs and the optimal 

control of GSHP systems, an accurate dynamic model is a helpful tool, being able to reproduce the thermodynamic 

behavior of the BHE itself and then, couple the BHE model to the rest of the components inside an integrated system 

model. However, in order to reproduce the BHE behavior accurately, it is important to model not only the long-term 

response of the BHE and the surrounding ground, but also the short-term. This is especially important in systems with 

an on/off operation, where the accurate reproduction of the short-term response of the BHE becomes crucial. For this 



 

 

purpose, the temperature variation of the nearer surrounding ground must be well predicted, and it will depend not only 

on the heat injected or extracted, but also on the ground thermal properties and the operating conditions of the BHE. 

In this framework, several BHE models have been developed along the years. Some of them are focused on the 

prediction of the ground temperature variation under different assumptions, for example, the commonly used analytical 

models Infinite Line Source (ILS), Infinite Cylindrical Source (ICS) or Finite Line Source (FLS) based on the work 

carried out by Carslaw and Jaeger (1959). On the other hand, there exist several models with a higher level of detail, 

able to reproduce also the behavior inside the borehole in terms of water temperature. The analytical models usually 

include some assumptions and simplifications in order to reduce the computational cost, but also reducing the precision. 

However, they are easier to couple with other simulation programs (Yang, et al. 2010). Among these models, several of 

them use a thermal network based on thermal resistances and capacitances in order to model the heat transfer between 

the borehole and the surrounding ground (Eskilson and Claesson 1988; Yang, et al. 2012; Bauer, et al. 2011; Pasquier 

and Marcotte 2012; Lamarche, et al. 2010). Furthermore, some short-term analytical solutions have been developed, for 

example the one developed by Li and Lai (2012). However it can be used in time scales higher than one hour (to several 

years), not in vey short-term scales (in the range of minutes) in order to reproduce the dynamic behavior of an on/off 

GSHP. On the other hand, there exist several numerical models (Al-Khoury 2012) with a higher level of flexibility and 

more accuracy, but also with a higher computational cost, being difficult to couple them with other energy analysis 

programs. Furthermore, some other computer programs are used in the design and simulation of GSHP systems and 

the BHE, for example: GLHEPRO, EED, EnergyPlus or TRNSYS (Yang, et al. 2010). Regarding the thermal response 

of the ground and the amount of soil that is affected by the heat injection during a specific time period, it is usually 

addressed by adding a number of radial ground nodes and discretizing the soil mass in small radial steps until the far-

field radius, where the effect of the heat injection vanishes. This far-field radius calculation has been addressed by several 

authors, for example, Hart and Couvillion (1986) defined it as 𝑟∞ = 4√𝛼𝑡, which depends on the ground thermal 

diffusivity (𝛼) and the injection period (𝑡). The addition of ground nodes inevitably leads to an increase in the complexity 

of the model and therefore, an increase in the computational cost. In this context, the novel B2G dynamic model was 

developed and experimentally validated in previous works for a single U BHE (Ruiz-Calvo, et al. 2015). In order to 

reduce the computational cost, the simpler 2D thermal network that reproduces the fluid temperature evolution with a 

high accuracy was used and only the portion of the surrounding ground affected by the heat injection period was 

considered. This model was adapted to a novel coaxial spiral BHE configuration designed by GEOTHEX® 

(http://www.geothex.nl/). This BHE has been developed and optimized in the framework of a HORIZON 2020 

European Project, GEOTeCH (European Commision 2015). The adaptation to the coaxial spiral BHE was previously 

presented in the IGSHPA 2017 conference (Cazorla-Marin, et al. 2017a), where a validation of the model with 

experimental data from a TRT (Witte 2012) was carried out. In order to account for the influence of the thermal 

properties of the ground and the operating conditions of the system in the soil surrounding the BHE wall, two different 

penetration diameters were initially defined as an input in the model (now referred as penetration radii). They were 

determined calculating the distance at which the heat transfer rate in the ground was negligible by using the ICS model 

for the specific type of soil and different injection times, for example, 15 hours for the second ground node (mid-term) 

and 3 hours for the first ground node (short-term). The results showed that the B2G approach applied to this 

configuration produced a model that could accurately predict the behaviour of the BHE, obtaining a Root Mean Square 

Error (RMSE) of 0.095 K (in the case with no enhanced convective heat transfer). In this work, an upgrade of the B2G 

model with three ground nodes is presented. The simulation in TRNSYS with the same TRT data produces a RMSE of 

0.088 K, lower than the previous work. In order to make the use of the B2G model more general, it should be able to 

reproduce the effect of any type of soil and system operating conditions. Therefore, their influence in the determination 

of the corresponding penetration radii needs to be addressed and modelled. This paper presents an upgrade of the B2G 

model where the determination of the ground nodes location is described. For this purpose, the B2G model was 

compared to the ICS model, and the penetration radii that minimize the difference between the results of the two 

models is calculated by using an optimization algorithm implemented in MATLAB®. The future objective of this 



methodology is to obtain polynomial correllations where the penetration radii could be determined as a function of the 

soil thermal properties, BHE geometry and operating conditions (heat injection period). These correlations would be 

further implemented inside the B2G model for its widespread use. 

B2G BHE MODEL 

U-tube B2G model 

The B2G dynamic model was originally developed in order to reproduce the short-term behaviour of a single U-

tube BHE in terms of the water temperature evolution throughout the pipe. For this purpose, a thermal network 

approach is used, together with a vertical discretization of the borehole. In order to reduce the computational cost, a 

simple 2D thermal network was used and only the portion of the surrounding ground affected by the heat 

injection/extraction was considered, so that it is possible to reproduce the water temperature evolution with a high 

accuracy. The thermal network consists of five nodes, connected by six thermal resistances, where each node represents 

one part of the BHE: downward and upward fluid, two grout sections and the surrounding ground. The thermal 

properties of the fluid, grout and ground are considered: thermal capacitance (representing the thermal inertia) and 

conductivity, as well as the BHE geometry. On the other hand, the thermal resistances represent the convective and 

conductive heat transfer between nodes. Concerning the fluid nodes, the advection is taken into account, but the axial 

conduction is neglected. The entire model consists of a 5C6R-n model (five thermal capacitances, six thermal resistances 

and n vertical divisions of the BHE), which is a system of ordinary differential equations that is solved by standard 

numerical procedures. The U-tube B2G model was implemented in TRNSYS and was presented and experimentally 

validated against different conditions in (Ruiz-Calvo, et al. 2015) and (De Rosa, et al. 2015). 

Coaxial B2G model 

The single U-tube BHE model was adapted to a standard coaxial configuration as well as to a spiral coaxial 

configuration. The main difference between them is that, in the spiral coaxial BHE, the fluid flowing through the outer 

pipe follows a helical path. This is modeled using an equivalent section in the outer pipe, that is, the equivalent hydraulic 

diameter corresponding to the helical channel is determined in order to calculate the hydraulic and thermodynamic 

properties. The adaptation of the B2G model to the standard coaxial configuration was previously presented in (Cazorla-

Marin, et al. 2017b). On the other hand, the adaptation to the spiral coaxial configuration was presented in (Cazorla-

Marin, et al. 2017a), where a more detailed explanation of the  model and the calculation of the different parameters can 

be found, this description is also applicable to the standard coaxial configuration. In order to adapt the B2G model to 

the coaxial configurations, the thermal network was modified to a simpler linear thermal network with five thermal 

capacitances and four thermal resistances. Furthermore, the vertical heat conduction between grout and ground nodes 

is considered by the use of vertical thermal resistances (𝑅𝑣𝑏, 𝑅𝑣𝑔1 and 𝑅𝑣𝑔2). The five thermal capacitances represent 

the fluid in the inner pipe (𝑇𝑖), the fluid in the outer pipe (𝑇𝑜), the grout (𝑇𝑏), the closer surrounding ground (𝑇𝑔1), 

which represents the ground affected by a short period of heat injection/extraction and a further ground section (𝑇𝑔2), 

representing the ground affected by a larger period of heat injection/extraction. The convective and conductive heat 

transfer between nodes was calculated using radial thermal resistances between nodes (𝑅𝑖𝑜, 𝑅𝑜𝑏 , 𝑅𝑏𝑔1 and 𝑅𝑔1𝑔2). As 

it can be observed, in the coaxial model, two ground nodes are used instead of only one. In this way, it is possible to 

obtain a better prediction of the ground temperature evolution during all the heat injection/extraction period, therefore, 

a better accuracy in the prediction of the fluid temperature.  In the last version of the coaxial model, another ground 

node has been added, representing the undisturbed ground (𝑇𝑢𝑔), where the temperature is constant. Therefore, it is 

possible to take into account the heat transfer between the second ground node and the undisturbed ground, represented 

by a thermal resistance (𝑅𝑔2𝑢𝑔), as it is presented in (Cazorla-Marin, et al. 2018). Figure 1 a) shows the linear thermal 

network for the spiral coaxial model, while the vertical discretization of the borehole is shown in Figure 1 b). 



 

 

 

Figure 1 Thermal network of the coaxial configuration model: a) borehole layout (spiral coaxial); b) vertical 

discretization. 

OPTIMAL LOCATION OF THE GROUND NODES 

The position of the ground nodes is defined by three penetration radii. The calculation of these penetration radii 

is not straitghforward, as it will influence in the calculation of the ground temperature and thus, in the water temperature 

calculation. For example, for the first ground node, the higher the value of the penetration radius, the bigger the amount 

of ground that the model will consider, therefore, the bigger the heat capacity of this ground section. If the heat capacity 

is bigger, the temperature of this node will vary slowlier, and it will influence in the short-term evolution of the water 

temperature. Analogously, the same will occur with the second ground node. However, the position of the undisturbed 

ground node will only have an influence in the heat transfer between the second ground node and the undisturbed 

ground node (increasing or decreasing the thermal resitance), as it only represents a temperature boundary, with no 

temperature variation. In previous works, in order to calculate the radius of the undisturbed ground node (𝑅𝑢𝑔𝑝), the 

heat flux in the ground was calculated for the whole heat injection period in the radial direction, and the distance where 

the heat flux was negligible for this period was used to set the undisturbed ground node distance. For this purpose, the 

equation of the Infinite Cylindrical Source (ICS) (Carslaw and Jaeger 1959) model was used. Regarding the other ground 

nodes, their position was calculated for a shorter period of heat injection (for example, 1 hour for the first ground node 

and 5 hours for the second ground node). In this work, a new methodology is proposed, in which a comparison between 

the B2G model and the ICS model is carried out in order to calculate the penetration radii that reproduce with the 

highest accuracy the temperature variation of the ground nodes and the heat transfer along the ground. In this 

comparison, a constant heat flux on the borehole wall during all the heat injection period is assumed, and the ground 

temperature variation is calculated for the ground nodes position and the heat transfer rate between them, for each time 

step. The ground nodes position (penetration radii 𝑅𝑔𝑝1, 𝑅𝑔𝑝2 and 𝑅𝑢𝑔; corresponding to the ground nodes 𝑇𝑔1, 𝑇𝑔2 

and 𝑇𝑢𝑔, respectively) will be optimized, so the difference between the results calculated by the two models is minimum. 

For this purpose, the B2G thermal network has been adapted in order to consider a constant heat flux on the borehole 

wall instead of the fluid through the BHE tubes. Therefore, a node on this surface is considered (𝑇𝑏), and a constant 

heat flux (𝑞0) is imposed. Figure 2 shows the thermal network corresponding to this problem. The ground nodes 𝑇𝑔1 

and 𝑇𝑔2 are located, each one, at the average distance between the two concentric circumferences that form each annulus 

region. These positions are defined by the radii 𝑟𝑔1 and 𝑟𝑔2, respectively. 

𝑟𝑔1 =
𝑅𝑔𝑝1 + 𝑟𝑏

2
; 𝑟𝑔2 =

𝑅𝑔𝑝2 + 𝑅𝑔𝑝1

2
 (1) 

Where 𝑟𝑏 represents the borehole wall radius. On the other hand, 𝑞1 represents the heat transfer between the 

ground nodes 𝑇𝑔1 and 𝑇𝑔2, while 𝑞2 represents the heat transfer between 𝑇𝑔2 and 𝑇𝑢𝑔. 



 

Figure 2 Thermal network used for the calculation of the penetration radii 

The main parameters used in the models are the borehole radius (𝑟𝑏), the ground thermal conductivity (𝜆), the 

ground volumetric heat capacity (𝑐𝑣) and the heat flux (𝑞0). The main inputs are the three penetration radii (𝑅𝑔𝑝1, 𝑅𝑔𝑝2 

and 𝑅𝑢𝑔). The initial ground temperature is assumed to be zero, as only the temperature variation is calculated. 

B2G model 

In the B2G model, the temperature of the ground nodes 𝑇𝑔1 and 𝑇𝑔2 is calculated using the main BHE parameters 

and penetration radii. First, the thermal capacitances (𝐶) of the two ground nodes are calculated (eq. 2), together with 

the 𝑈𝐴 values, which represent the thermal resistance between ground nodes (eq. 3). 

𝐶𝑔1 = 𝜋 (𝑅𝑔𝑝1
2 − 𝑟𝑏

2) 𝑐𝑣 ; 𝐶𝑔2 = 𝜋 (𝑅𝑔𝑝2
2 − 𝑅𝑔𝑝1

2 ) 𝑐𝑣  (2) 

𝑈𝐴𝑏𝑔1 =
2 𝜋 𝜆

ln(𝑟𝑔1/𝑟𝑏)
       ;        𝑈𝐴𝑔1𝑔2 =

2 𝜋 𝜆

ln(𝑟𝑔2/𝑟𝑔1)
       ;        𝑈𝐴𝑔2𝑢𝑔 =

2 𝜋 𝜆

ln(𝑅𝑢𝑔/𝑟𝑔2)
 (3) 

Second, the ground nodes temperatures (𝑇𝑔1 and 𝑇𝑔2) are calculated using the energy balance equations. The 

undisturbed ground temperature is defined as zero (𝑇𝑢𝑔 = 0). 

𝐶𝑔1

𝜕𝑇𝑔1(𝑡)

𝜕𝑡
= 𝑞0 + 𝑈𝐴𝑔1𝑔2  (𝑇𝑔2(𝑡) − 𝑇𝑔1(𝑡)) (4) 

𝐶𝑔2

𝜕𝑇𝑔2(𝑡)

𝜕𝑡
= 𝑈𝐴𝑔1𝑔2  (𝑇𝑔1(𝑡) − 𝑇𝑔2(𝑡)) + 𝑈𝐴𝑔2𝑢𝑔  (𝑇𝑢𝑔(𝑡) − 𝑇𝑔2(𝑡)) (5) 

Finally, the heat transfer rate between ground nodes is calculated (𝑞1 and 𝑞2) using the equations 6 and 7. 

𝑞1
𝐵2𝐺(𝑡) = 𝑈𝐴𝑔1𝑔2 ((𝑇𝑔1

𝐵2𝐺(𝑡) − 𝑇𝑔2
𝐵2𝐺(𝑡)) (6) 

𝑞2
𝐵2𝐺(𝑡) = 𝑈𝐴𝑔2𝑢𝑔 ((𝑇𝑔2

𝐵2𝐺(𝑡) − 𝑇𝑢𝑔
𝐵2𝐺(𝑡)) (7) 

Infinite Cylindrical Source model 

The Infinite Cylindrical Source (ICS) model calculates the heat transfer in the region bounded internally by a 



 

 

circular cylinder and constant heat flux in its surface. In this case, the internal circular cylinder would correspond to the 

borehole wall, with radius 𝑟𝑏, and the constant heat flux through its surface would be 𝑞0. The solution for the calculation 

of the ground temperature along the radial distance was provided by Carslaw and Jaeger (Carslaw and Jaeger 1959). This 

solution is presented in equation (8), where the initial ground temperature is zero, and 𝛼 represents the thermal 

diffusivity of the ground (𝛼 = 𝜆/𝑐𝑣  ). 

𝑇𝐼𝐶𝑆(𝑟, 𝑡) = −
2𝑞0

𝜋2𝑟𝑏𝜆
 ∫ (1 − 𝑒−𝛼𝑢2𝑡)

𝐽0(𝑢𝑟) 𝑌1(𝑢𝑟𝑏) − 𝑌0(𝑢𝑟) 𝐽1(𝑢𝑟𝑏)

𝑢2[𝐽1
2(𝑢𝑟𝑏) + 𝑌1

2(𝑢𝑟𝑏)]
𝑑𝑢

∞

0

 (8) 

Therefore, the temperature in the ground nodes will be calculated by the equation (9). 

𝑇𝑔1
𝐼𝐶𝑆(𝑡) = 𝑇𝐼𝐶𝑆(𝑟𝑔1, 𝑡)         ;            𝑇𝑔2

𝐼𝐶𝑆(𝑡) = 𝑇𝐼𝐶𝑆(𝑟𝑔2, 𝑡) (9) 

Regarding the heat transfer between nodes, it is calculated using the Fourier’s law applied in the frontier between 

the ground nodes (𝑅𝑔𝑝1 and 𝑅𝑔𝑝2), using the equations (10-11), where ∆𝑟 represents a very small radial distance. 

𝑞1
𝐼𝐶𝑆(𝑡) = −2 𝜋 𝑅𝑔𝑝1 𝜆

𝑇𝑅𝑔𝑝1
𝐼𝐶𝑆 (𝑡) − 𝑇𝑅𝑔𝑝1+∆𝑟

𝐼𝐶𝑆 (𝑡)

∆𝑟
 (10) 

𝑞2
𝐼𝐶𝑆(𝑡) = −2 𝜋 𝑅𝑔𝑝2 𝜆

𝑇𝑅𝑔𝑝2
𝐼𝐶𝑆 (𝑡) − 𝑇𝑅𝑔𝑝2+∆𝑟

𝐼𝐶𝑆 (𝑡)

∆𝑟
 (11) 

Calculation and validation of penetration radii 

Both the B2G model and ICS were implemented in MATLAB and the Root Mean Square Error (RMSE) between 

the B2G results and the ICS is calculated for a set of penetration radii (𝑅𝑔𝑝1, 𝑅𝑔𝑝2 and 𝑅𝑢𝑔). Therefore, it is possible 

to find the penetration radii that minimize the RMSE between the two models by using an optimization algorithm. In 

this case, a pattern search optimization methodology was used by using the solver patternsearch, already implemented in 

the Global Optimization Toolbox in MATLAB (MathWorks 2017). For the calculation, two approaches were used: 

a) Ground nodes temperatures optimization. The ground nodes temperatures 𝑇𝑔1 and 𝑇𝑔2 are the variables 

calculated by each model. Therefore, the optimization solver calculates the set of radii that minimizes the 

RMSE between these temperatures calculated by the B2G and the ICS models. 

b) Heat transfer rates optimization. The heat transfer rates 𝑞1 and 𝑞2 are the variables to calculate. 

Therefore, the optimization solver finds the penetration radii that minimize the RMSE between the heat 

transfer rates calculated by each model. 

Once the penetration radii are calculated, they are used as inputs in the B2G model implemented in TRNSYS. 

Thus, it can be checked if this set of penetration radii are suitable to reproduce the behavior of the BHE accurately. For 

this purpose, it is employed the same methodology followed in (Cazorla-Marin, et al. 2017a), using the experimental 

data from a Thermal Response Test (TRT). So the inlet mass flow rate and fluid temperature are introduced as inputs 

in the B2G model and the outlet fluid temperature is calculated, together with the total heat transferred to the ground. 

Then, the calculated results are compared to the experimental ones by calculating the RMSE of the outlet fluid 

temperature and the percentage difference of the heat transferred to the ground. 

Case study parameters 

In this study, the spiral coaxial BHE developed by GEOTHEX® was used. The main parameters are calculated 



from a TRT carried out in Houten, The Netherlands (Witte 2012). The main parameters used in the calculation of the 

penetration radii in MATLAB are shown in Table 1. Regarding the main parameters used for the TRT simulation in 

TRNSYS, they are the same as the ones already presented in a previous work (Cazorla-Marin,  et al. 2017a). 

Table 1. Main parameters for the calculation of the penetration radii 

TRT data   Model parameters  

Ground thermal conductivity 2.13 W/m·K  Heat injection period 15 h 

Ground volumetric heat capacity 2410 kJ/m3·K  Time step 3 min 

Borehole radius (𝑟𝑏) 0.044 m  Differential radial distance (∆𝑟) 0.001 m 

Average heat flux (𝑞0) 17.7 W/m  Initial point (𝑅𝑔𝑝1/𝑅𝑔𝑝2/𝑅𝑢𝑔) 0.1/0.2/0.3 

RESULTS 

The calculation of the penetration radii was carried out in MATLAB for the two approaches. The results that 

were obtained are the following: 

a) Ground nodes temperature optimization: 𝑅𝑔𝑝1=0.163 m, 𝑅𝑔𝑝2=0.362 m, 𝑅𝑢𝑔=0.593 m. 

b) Heat transfer rate optimization: 𝑅𝑔𝑝1=0.165 m, 𝑅𝑔𝑝2=0.352 m, 𝑅𝑢𝑔=0.517 m. 

It can be seen that both approaches produce quite similar results for 𝑅𝑔𝑝1 and 𝑅𝑔𝑝2. However, the ground 

temperatures approach produces a bigger undisturbed ground radius. The results obtained by each model are shown in 

Figure 3, for each optimization approach. 

 

Figure 3 Penetration radii calculation: a) Ground nodes temperature optimization; b) Heat transfer rate optimization. 

It can be seen that, for both cases, the results produced by the B2G model are quite similar to the results produced 

by the ICS model. The accuracy of these results will be validated in the next step, with the simulation of the TRT. Figure 

4 shows the comparison between the outlet temperature calculated by the B2G model implemented in TRNSYS and 

the experimental outlet temperature for the two sets of penetration radii obtained previously. 

For both optimization approaches, the calculated outlet temperature is quite similar to the experimental one, with 

a RMSE of 0.088K in the ground temperatures approach (case a), and 0.087K in the heat transfer rate approach (case 

b). Regarding the calculated heat transfer to the ground and the deviation with the experimental results, it is summarized 

in Table 2. 

Table 2. Heat transferred to the ground during the TRT 

Experimental B2G model. method a) Percentage difference  B2G model. Method b) Percentage difference 

43022.6 kJ 41864.5 kJ -2.69% 41932.2 kJ -2.53% 

 



 

 

 

Figure 4 Comparison between the experimental and calculated outlet temperature using the B2G model with the 
calculated penetration radii. a) Ground nodes temperature optimization; b) Heat transfer rate optimization. 

Taking a look at the results, it can be concluded that the ‘heat transfer optimization approach’ is slightly better. 

It should be mentioned that the calculation of the ground nodes position was also carried out with different 

values of heat injection, producing the same optimal position of the ground nodes. Therefore, it can be concluded that 

this position is independent of the heat injected and can be applied in the B2G model inside a complete ground source 

heat pump system model, where the heat load will be variable, also along the borehole depth. 

CONCLUSION 

The B2G dynamic model was presented previously as an accurate tool to reproduce the short-term behavior of 

a BHE for different configurations (U-tube, coaxial or spiral coaxial). In this work, a new methodology to calculate the 

position of the three ground nodes considered in the model is presented. For this purpose, a comparison between the 

B2G model, adapted to a constant heat flux on the borehole wall surface, and the Infinite Cylindrical Source (ICS) is 

carried out to find the position of the ground nodes that reproduce with the highest accuracy the ground thermal 

response. In order to achieve this, two approaches were considered in the calculation of the ground nodes position, 

depending on the results that are compared between models. In the case a), the values to compare are the ground nodes 

temperatures; while in the case b), the values to compare are the heat transfer rates between ground nodes. The 

calculated ground nodes positions (referred as penetration radii) are used in the B2G model implemented in TRNSYS 

to simulate a thermal response test, reproducing the dynamic thermal response of the BHE with a high accuracy 

(maximum RMSE of 0.088K and maximum 2.7% deviation in the calculation of the heat exchanged with the BHE). 

The main objective of this new methodology would be the calculation of several polynomial correlations, which would 

be implemented in the TRNSYS model, in order to determine the ground nodes positions depending on the ground 

thermal properties, the borehole geometry and the operating conditions heat injection period). 
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