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PREFACE

. This dissertation deals with real Banach spaces and linear maps
from one to another. ALl mappings are continuous unless specified
otherwise. It 18 the purpose of this paper to give various ch&rac-
terizations of the Dunford-Pettis property as well as some of the
applications of this property. Two tables are provided in Chapter II
of some of the most common Banach spaces and whether each space has the
Dunford-?ettis'property. Since the conaept oflthe Dunford-Pettis
property has been involved in a recent flurry of activity by some of
the leading students of functional analysis, it is my hope that
students in analysis with interest in the Dunford-Pettis property will
- find this dissertation of benefit.

The desiredvaudiencé for this papef 1s the student who has
completed a six hour course in functional analysis. The reader shduld
have an understanding of Chapters II,'IV, V and VI of Dunford- |
Schwartz's (11) book, since it will be referred to often. The notation
and terminology in thls paper will rather closely follow that in (11).
The references used in the form (11, IV.3.7) will refer to number 1l
in the bibliography while IV i the chapter number, 3‘is the section
and 7 is the theorem number in section 3.

Chapter I 1s concerned with the relatlonships among the following
operators: unconditionally converging, comﬁletely continuous, weakl&
'compact, compact and weak Cauchy. Some of the characterizations of the

Dunford-Pettis property will be given in terms of these operators.
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Chupter IL combtains basic theorems perteining to the Dunfords
Pettis property. 5Some of the permansnce properties of the Dinford.
Pettis property are also examined. It is determined whethef or not
the most common Bmnech spaces studied in an introductory course of
functional analysié have the Dunford-Pettis property. Some general -
izations sre considered of the Banach @@&ce C(S),y where S is a compact
Bausdorff space, and Ll(u}o These generalizetions aré involved in
various open guestions involvimng the Dumford-Pettis property.

Chapter 111 deals with some properties that sre similar to the
Donford-Pettis property. A& very brief treatment i& glven to the
Dieudonné, ¥, and weak Cauchy V properties, and some of their appli-
cations will be applied In the study of linear operators omn Banach
spaceg. There are two tables at thé end of thig chapter that give
some sufficient conditions on & Bamach gpace to determine whether it
will possess the Dunford-Pettls property.

Finally, Chapter IV conteins s summery and & list of some open
questions involving the Dunford-Pettis property. A generalization of
the ides of the Dunford-Pettis property is considered in this chaptero
A table of Runach spaces is provided and it is determined whether these
gpaces hzve varlous properties. Also included iﬁ the open questions
are gome partial resulis.

I wish to express my appreciation to &ll who heve helped me im the
preparation and writing of this dissertation. Particular gratitude is
due to Dr. Joe Howard, my dissertation advisor, who not only made
valusble suggestions concerning this paper, but is &lso responsible for
my interest in this tople. & specigl thanks also goes to Dr. E. K.

Mclachlan, Dr. John Jobe, Dr. Robert Alcistore snd Dr. Vermon Troxel

iv



for serving as members of my advisory committee.
Finally, 1 express my appreclation to my wife, Phyllis, and two
gong, Charles and David, for their patience and understanding through-

out my graduste wofko
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- CHAPTER I
OPERATORS AND TH% DUNFORD-PETTIS PROPERTY

In addition to the most common operators, compact and weakly
compact, several other operators have been studied in recent yesrs.

Lacy and Whitley {(31) studied the completely continudus operators;
Howerd (22} studied the weak Cauchy operators and both Pelczynski (36)
and Howard (24) studied the\unconditionally converging operators.

The purpose of this chapter is to define five dlfferent types of
operators and to exhibit & Venn diasgram that will describe thelr
interrelation. These operators will then be used in giving scme of
the characterizations of the Dunford-Pettls property. With these
objectives in mind, we shall proceed in giving the necessary definitions

and facts for defining these operators.

Definition 1.1 Let X be a Banach space (B-space). A series

L x, in ¥ is unconditionally convergent (u.c.) if for each subseries

i
of T X, s there exists an element x im X such that the subseries

converges to x, the convergence being relstive to the topology on X.

Each of the following condltions is proved eguivalent to
Definition 1.1 in (35).

(&) A series T x, 1in X is subseries convergent relative to the

i
weak topology on X.

Let 8 = { z X, ¢ 1 belongs to F and F & finite set }g



(b} The week closure of S is compact in the weak topology for X.

DeTinition L.2 Let X be a B-gpace. A series I Xy of elements

in X is weakly unconditionslly cbnvergent (weuoc.) if for every
continuous linear functional, x' in the conjugete space of X, X', the

gFeries Elx'(xj)l is finite.
Operators

In this section of Chapter I the different operators will be

defined and the relationship given in Figure 1 will be developed.

Definition 1.3 Let X and Y be B-gpaces. A linear operator T

from X to Y is unconditionslly converging (u.c. operstor) if T maps

every w.u.c. serleg in X into a u.c. series in Y.

Definition 1.4 Let X and Y be B-spaces. A linear operator T from

X to Y is completely continuous (c.c. operator) if T meps weak Cauchy

Bequences 1n X into norm convergent sequences 1in Y.

Definition 1.5 Let X and Y be B-spaceg and S the closed unit

sphere in X. A linear operator T from X to Y is a compact operator
(cpt. operator) if the strong closure of T(S) is compact in the strong

topology for Y.

A useful charscterization of a compact operator is that 1t takes
bounded sequences into sequences which have a convergent subsequence.
It will also be noticed that if X 1s & reflexive space, then the c.c.
and cpt. operators sgree. Since much of the early work in functionsl
anslysis was done in the setting of a Hilbert space, which 1s reflexive,

no distinction was made between these two operstors. ILater it will be



ghown that the cisegs of completely contlinuous and compact operators do

not agree in genersl for Banach spéaces.

Definition 1.6 Let X and Y be B-spaces and S the closed unit

sphere in X. A linear operator T from X to Y is weakly compact (w.c.
operator) if the weak closure of T(S) is compact in the weak topology

of Y,

The Eberlein-Smulian Theorem glves & very useful characterization
of weakly compact operators, which is as follows: & llnear operator is
weakly compact if and only if it meps bounded sets into weakly
sequentially compact sets.

The last operator to be defined wes originated and studied by

Howard (22).

Definition 1.7 Let X and ¥ be B-spaceg. A linear operator T

from X to Y is weak Ceuchy (w.Cy. operator) if T maps bounded sequences

of X into seguences in Y which have & week Cauchy subseguence.

The following theorems and examples will enable us to see how the

above defined operators are related to each other.
Theorem 108 Every compasct operator is also weakly compact.

Proof. Let T be a compact operstor from X to Y and S the closed

unit sphere in X. The strong closure of T(S) i1s compact in the norm
topology. From the duality between X and X' the closed convex sets in
the weak &and norm topology are thé same, The norm topology being
stronger than the weak topology implies that the weak closure of T(8) is

compact in the weak topology. Therefore, T 1s & weakly compact operator.



Not every vweakly compact operator is & compact operator. Let X be
& infinite dimensional reflexive B:space and T the identity on X. Since
X is infinite dimensioneal, the closed unit sphere, S, is not compect
(7, page 40). Since X is reflexive, it follows that S is weakly compact
(47, XITI.4.1). Therefore, T is & weakly compact operator which is not

a compact operator.

Definition 1.9 A B-space X is almost reflexive if every bounded

gequence in X contains a weak Cauchy subseguence.

The above definition 18 & generslization of a reflexive space. Let
X be a reflexive space and (xn) & bounded sequence in X, the sequence
(xn) is weskly segquentially compsct (11, IX.3.28). Therefore, X is
almost reflexive. The B-space of null sequences, €y s i3 not reflexive,
but ¢ is almost reflexive (31).

It should be noted thet by the Eberlein-Smullian Theorem, a weakly

complete space which is almost reflexive ig reflexive.

Theorem L.1C Every weakly compact operator is a weak Cauchy

operator.

gzpofo Let T be & weskly compact operstor from X to Y and (xn)
a bounded sequence in X. The hypothesis implies that (Txn) is weakly
sequentially compact in Y. The sequence (Txn) hes & subsequence which
is weakly convergent to a point in Y and thus, is & weak Cauchy sub-

sequence of (Txn)o Therefore, T is a wesak Cauchy operstor.

The converse of the previous theorem is false. Let T be the
identity on the B-gpace of null seguences, Cye Let S be the closed

unit sphere in o Since c, is not reflexive, it follows that S is



not weskly compact. Therefore, T is not a weskly compact operator. It
fcllowg thet T is & wesk Cauchy operator from the fact that C, is

'almost reerxiveu

Theorem l.ll ZEvery compact operator is completely continuous.

Proof. Let T be a compact operator from X to Y. Let (xn) be a

weak Cauchy sequence in X. Let {(m) and (k} be subseguences of the
indices of (xn)a The sequence (xm - xk) converges weakly to zero
from (16, page 138). Since T is compact and weskly continuous, it
follows that T(xm - xk) is norm convergent to zero. Hence, (Txn)

is a Cauchy sequence in Y snd, therefore, a norm convergent sequence.

From the following example, it can be aeen that the converse of
the above thecrem is false. Let T be the identity map on the B-space
of all absolutely comvergent sequences, £. Any map with domain or
range § is completely continuous (3L)., Since ¢ is infinite dimensional,
the clozed unit sphere in ¢ is not compact. Therefore, T is a
completely continwous operator, but not a compsct operator.

‘The following theorem gives a very useful chsracterization of a
u.co. operator. This theorem ensbles uc to represent some of the known

results in functional amalysis 1. terms of uw.c. operators.

Theorem 1.12 The linear map T from X to ¥ is & u.c. operator if

and only if T hes no bounded lnversge on & subspace E of X which is

linearly homeomorphic to oo

Proof. Assume T is not & w.c. operator. Thus, T has a bounded

inverse on & subspece isomorphic to o by (37)-

Conversely, let T be & u.c. operator and assume T has a bounded



Conversely, let T be & u.c. operstor and assume T has a bounded
inverse on & subapace E, that 1s izomorphic to Cy Let ¥ X, be &
w.u.c. series in E, then it is aleo & w.u.c. serles in X. Bince T 1s

)ol - Twl

& u.c. operator, L Tx = 1z & u.c. series in ™E). But (T E

'E
is bounded end therefore continucus. Also, T'%(E x ) =%L ln is a
u.c. series since continuous maps presérve w.u.c. and u.c. series.
Therefore in E, every w.u.c. serles is a u.c. serles. Thus, E has no
subspace isomorphic to c_ by (5). This is a contradiction since E is

itself isomorphic to Cye Therefore, T has no beunded inverse on a

subspace isomorphle to coa

The above charscterization for w.c. operators will be useful in
showing that every completely contimuous operator is also & u.c.

operator.

Theorem 1.13 If T 18 e completely continuous operator from X to Y,

then T iIs also a u.c. operator.

Proof. Assume T is not & w.c. operator. Thus by Theorem 1.12,

T has & bounded inverse on & subspace E of X, that is isomorphic to
Coe Let Ays Kpyeno be elements of E which correspond to the unit

bese vectors of ¢ under this isomorphism. For eny f im (co)' = A,
then f(a) =% t

with t belonging to £ and t, = f(ek) vhere the

Bk k
ek's are the unit buse vectors of c (b7, page 91). Hence,
(f(ek)) = (tk) and since t is in £, we have (xn) converges weakly to
zero.

By hypothegls and continuity of T the sejuence (Txn) converges
in norm to O = T(O)e Now TL 1s continuous on T(E); therefore, the

sequence (T"I(Txn)) = (xn) converges in norm to zero. Hence, the



unit base vectors of c, converge to zero in norm. This iz &
contradlction since the unit base vectors of c, do not converge to

zero in norm. Therefore, T itz & u.c. operator.

In order to show that the converse of the above theorem is not

“true ﬁe'shallwneed'the“following two theorems.

Theorem 1.1% Let X be an almost reflexive B-space and T & map

from X to the B-space Y. If T is completely continuous, then T is

compact.

Proof. Let § be the closed unit sphere in X. Let (yn) be a

sequence in T(S). Hence, there exists a sequende (xn) in 8 such that
Txn = Yo Since X is almost reflexive, there is a weak Cauchy sub.
segquence of (xn)m From the fact that T is completely continuous and

Y is a B-space, we have (yn) has a convergent subsequence. Hence, T(S)

is compact and T 15 & compact operator.

Using Theorems 1.1l and 1.l4 it 1s seen that the completely

continuoug and compact operators agree on almost reflexive B-spaces.

Theorem 1.1% Every weskly compact operator is an unconditionally

converging operator.

Proof. Let T be & weakly compect operator from X to Y. Let I Xy

be & w.u.c., series. For any x' in X' we have that the set
{ z x"(xi) : 1 belongs to a finite subset of the indices }
is bounded. Hence, the set
H= { E.xi ¢ 1 belongs to & finite subset of indlices }

is weskiy bounded. Hence, H is bounded in the norm topology by (28,



vage 409)., Since T is a weskly compsct operator, the wesk closure of
T{(S) is compmct in the wesk topology. From the equivaslent condition
() in Pefinition 1.1l it follows that I Tz, 18 & u.c. series in Y.

Therefore, T is & uw.c. operator.

.. Now we can readily give an example of & u.c. operator-that ig not
completely continuous. Let X be an infinite dimensionsl reflexiﬁe B:
space and T be the identity on X. Thus, T is weakly compact since the
closed unit sphere is compact in the weak topology. From Theorem 1.l15
we have T 18 & u.c. operator., Now we need to show T is not completely
continuous. Suppose T iz completely continuous. Then by Theorem 1.1k
T is a compact operator. This implies that the closed unit sphere of X
is compact and X must be 8 finite dimensional B-space. This is &

contradiction, 8o T is not completely continuous.

1.21 N.Co

1.17 CoCo

Figure 1. Interrelation of Five Operators



In order to gshow that the Venn dlagram is drswn correctly, 1t 1s
necessary to find operators that will satiafy the specific properties
of each region of Figure 1. It will now be shown thet the set of
compact oper&tors~{3‘non;void; Let X ‘be & Banach space, 2z a fixed
vector in X and f a continuous linear functional on X. DPefine the map
T of X into X as follows T(x) = f(x)z. The linearity of T follows
from the linearity of f. Let S be a bounded set in X. Let (Txn) be a
sequence in T(S). Since S was assumed to be bounded, there exists some
M such that |xn| < M for every n. Hence, If(xn)l'f |f||xn| < |f| M
for every n and it is seen that (f(xn)) is a uniformly bounded
sequence of real numbers. By the Bolzano-Welerstrass Theorem, there is
a convergent subsequence of (f(xn)), ssy (f(xnk)). Let a be the
limit of this convergent subsequence. Therefore, (Txnk) = (f(xnk)z)
converges to & z and a convergent subsequence of (Txn) hes been
exhibited. The linear operator is & compact operator and, thus, the
set of compact operators is non-void.

The following numbered examples will indlcate that the corre-

sponding numbered regions of the Venn diagram in Figure 1l are non-void.

Example 1.16 There exists an operator which is weakly compact but

not completely continuous. Such an example was given after the proof

of Theorem 1.15.

Example 1.17 There exists an operator which is completely

contimious but not weak Cauchy. Consider the identity map T on the
B-space, L. Since any map with domain or range £ is completely
continuous, it follows from Theorem l.l3 that T is & u.c, operator. The

space £ 1s not almost reflexive, otherwise it would contradict Theorem
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1.1%., Thus the identity on 4 is not a weak Cauchy operator.

¥xample L.18 There exists a T that is completely continuous and

weak Cauchy but npt we@kly cqmpact. Let (&;) be in 4 &nd define
T((an)) = (»5 ak)a Thus, T maps £ into ¢ . Since ¢ is almost
reflexive, i:nfollows that T is weak Cauchy. Also, T is completely
continuous since £ is the domain of T. Let e, be the unit base vectors
in L. Thus, (T(en)) 1s a weak Cauchy sequence in c_ since (igl ti)
18 convergent (47, pege 91). But since not &ll the %, can be ie:o, ve
have that (T(en)) does not have a weak limit in c_. Hence, T is not

a weakly compact operator.

Example 1,19 There exlstes an operator that is weakly compact and

cdmpletely continuous but not compact. Let T be the injection of £ into
22. Let (ei) be the unit base vectors in L. Assume T is compact. Thus,
T(ei) = (ei) is seguentially compact. But for i different from J,

|ei - ejﬂ = Jé in La. Hence, there 18 no subsequence of (ei) that is
convergent, which contradicts (ei) belng sequentially compact. There-
fore, T is not compact. Since the domain of T is £, it follows that T
is completely comntinuous. Since 22 is reflexive it follows that T is &

weakly compact operator.

Exaemple 1.20 There exlsts an operator that is weak Cauchy and u.c.

but not weakly compact nor completely continuous. Let X = £, then
there exists & separable space E such that E'* is the direct sum of

J(E) and £, where J is the natural embedding of E into E'', from Theorem
1 of (25). Let T be the identity map on E'. Since E'' is separable,
then E' is separable. To shoﬁ that E' has no subspace isomorphic to ¢y

assume E' has a subspace isomorphic to e If & conjJugate B-space
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contains a subspace isomorphic to Cy? then E' contains a subspace
isomorphic to the B-space of bounded sequences, ze, by Theorem 4 of (5).
Since ta is not separable, we have E' is not separablé, which is a ,
contradiction. Hence, T 1s a u.c. éperator. Since E'' is separable,
then E' is almost reflexive and, thus, T is a weak Cauchy operator.

From the fact that E'' is the direct.aum of J(E) and L, we have that E

is not reflexive. Thus, E' 18 not reflexive and T is not weakly compact.
The mapping T is not completely continuous since an assumption other-

wise would contradict Theorem 1.1h4.

Example 1,21 There exists an operator that is u.c. but not weak

Cauchy nor completely cqntinuous. Let T be the identity map on X, that
is the direct sum of E' and f. Since E' and # are separable, then X is
separable. Hence, X' is a separable conjugate space and contains no
subgpace 1somorphic to ey From Theorem 1.12 T is a u.c. operator. For
any bounded sequence (an) and (bn) in E' and £ respectively, the
seguence (an ® bn) is bounded in X. If X is almost reflexive, then E'
and £ are almost reflexive. Since £ iz not almost reflexive, it follows
that X is not almost reflexive. Hence, T is not weak Cauchy. Also, T
is not completely continuous slnce wesk Cauchy sequences do not

correspond to Cauchy seguences in E'.

Example 1.22 There exists an operator T that is weak Cauchy but
not u.c. Let T be the identity on the B-gpace cye Since <, is almost
reflexive, T 18 weak Csuchy. From Theorem 1,12 it follows that T is

not a u.c. operator.

Before defining the Dunford-Pettis property and proving some

characterizations of 1t, we shall need the following preliminaries.
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Grothendieck {16) introduced four types of limited sets. Only
two of these types will be used in characterizing the Dunford-Pettis
property; the others are glven here for completeness ahd future

reference.

Pefinition 1.23 Let X be a B-gpace and X' its conjugate space.

(a) Let A' be a subset of X'. The set A® iz w-limited in X' if
lim sup | x' (x ) | =0
n A' n
for every geguence (xn) in X which is weskly convergent to O.
(b) Let A be & subset of X. The set A is w-limited in X if
lim sup | x? (x) | =0
n A
for every seguence (x;) in X* vwhich is weakly convergent to zero.
(¢) Let A® be a subset of X'. The set A’ is w.u.c.-limited if
1im sup x' (xn) =0
n A’
for every w.u.c. series z X, in X.
~—
(a) Let A be & subset of X. The set A 1&g w.u.c.-limited if
1im sup x' (x) =0
n
n A

for every w.u.c. serieg T x; in X',

The ldes of 2 limited zet can be used to characterize a completely
continuons operator. This characterization will be useful in studylng

the Dunford-Pettis property.

Theorem 1,24 Let T be a map from X to Y and T' be its adjoint

map.
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() T ie completely continuous if and only if T' maps bounded
gete into w-limited asets in X'.
(b) T' i1& completely continuous if and only if T mape bounded

gets into w-limited sets in Y.

Proof. 8ince the proof of both parts of this theorem are similar,

only a proof of part (a) will be given. Assume T is completely
contimious. Let A' be a bounded set in Y' and (xn) a sequence in X
that 1s weskly convergent to zero. Since T is completely continuous,
the geguence (Txn) iz norm convergent to zero. Thus, for y' in A'
1!11m SX? fy* (zx) | =0,

but since y*(Tx ) - T'y'(x ), 1t follovs that T'(A') 1s a w-limited
set in X'.

Assume T' maps bounded sets into w-limited sets in X'. Let (xn)‘
. be & weak Cauchy seguence in X, From the charscterization given by
Grothendieck (16) for weak Cauchy seguences, we have for any subge-
quences (k) and (m) of the seguence (n) of indices, the sequence
(xk - xm) converges weakly to zero. Let y' be in Y'; thus, by

hypothesis
1im sup | y'(T(xk - xm)) | = 1jm sup | i"y'(xk - xm) | = o.

Therefore, (T(xk - xm)) ie & Csuchy sequence in Y and Y iz a B-space.

Thus, (Txn) is norm convergent and T is completely continuous.



1h
Punford-Pettls Property

In 1953, Grothendieck (16) defined the concept of the Dunford-
Pettis property. The Dunford-Pettis property affords a sort of
"axiometization" of relatively deep characteristics of weakly compact
operators acting on spaces of continuous or integrable functions (see
Theorems 2.2 and 2.23). The basic notions for the following charac-

terizations are to be found in (38), (22) and (23).

Definition 1.25 A B-space X has the Dunford-Pettis (D. P.)

property if for every B-gpace Y and every weakly compact operator T
from X to Y, T maps weak Cauchy seguences of X into Cauchy sequences

in the norm topology of Y.

Theorem 1.26 Let X be a B-space. The following conditions are

eguivalent.

(a) The space X has the D. P. property.

(b) For every B-space Y, 1f T 1is a weakly compact operator from
X to Y, then 1lim |Txn| = 0 for every sequence (xn) in X
that converges weekly to zero.

(¢) The condition (b) is satisfied for Y = cye

(d) For every seguence (xn) in X that converges weakly to zero
and for every sequence (x;) in X' that converges weakly to
zero, then 1lim x;(xn) = Q.

(e) If (xn) and (x;) are weak Cauchy seguences in X and X'
respectively, then the 1lim x&xn exists.

(f) Given any B-space Y, every weakly compect operator T from
X to Y is gls0 & completely continuous operator.

(g) Given any B-space Y, then every week Cauchy operator T' from
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Y' to X' 1& such that T is completely.continuous.
(h) Every weekly sequentially compact set in X' is w;limited in X"
(1) Every weakly sequentially compact set in X is W-limited in X.
(J) For every B-space Y, every weakly compact operstor T from Y

to X is such that T' is completely continuous.

Proof., Since the proof 1s lengthy, we shall sketch the plen of

attack. We shall estsblish the following implications:
h—>fda—J—o1—e—b—oc—d—g—h
Now to execute our plan.

(h) implies (f). Let Y be a B-space and T & weakly compact
operator from X to Y. Thus by & theorem of Gantmacher (11, VI.4.8) the
conjugate map T' from Y' to X' 1s weakly compsct. Let H be & bounded
set in Y'. Since T' is weakly compact, T'(H) is weakly sequentially
compact in X'. Hence, T'(H) is w-limited in X' and Theorem 1L.24
implies that T is completely continuous.

(£f) implies (a). This implication follows directly from the
definition of completely continuous.

(a) implies (J). Let Y be a B-space and T a weak Cauchy operator
from Y to X. The conjugate map T' from X' to Y' will now be shown to
be completely continuous. It will suffice to show that 1lim [T'x;[ = 0,
for every seguence (x;) in X' which convergees weakly to zero (16, page
138),

Let (x;) be & seguence in X' that converges weakly to zero and
1im sup |T'(x;)| = t vwhere t iz & non-negative real number. The
Hahn-Banzch Theorem implies that there exists a segquence (yn) in Y such
that |y | =2 and T'(x!) = |2'x!|. Define x = T(y ) for each n.

Since T is weak Cauchy, we may assume without loss of generality (for
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otherwise we could replace this sequence by & subsequence) that’(xn) is

& weak Czuchy seguence. Thus,
1] = L] = y [ e | § | e | =
im sup x'x = lim sup xn(Tyn) lim sup T'x)y = lim sup |t xnl t,

Now to show that t must be zero. Let (m) be a subsequence of the
indices of (x;) guch that ]x&xn| < t/2. Such a subsequence (m) will

exlst since X, is wesk Csuchy. Thus,

* = x' -x_ ) +x'x .
n Xm = *m (xm n) mn

Since (xn) 1s & weak Cauchy sequence, then (xm - xn) converges weakly
to zero (16, page 138). Hence,

t = 1im sup |xéx‘ < lim sup |x;(xm - xn)l + 1lim sup |x;xn| < t/2.

Therefore, t = 0 &and T' 1s completely continuous.

(3) implies (1). Let A be & weakly sequentially compact set im X.
Consider the B-space A4(A), which is the set of all scalar-valued
functions whose norm, given by |x| =T { |x(a)] : 2eA and x(a) # 0 },
is finite. Let { e, t &€ A } be the collection of characteristic
functions of the singleton set {2}, Thus for each & in A, L is in
L(A), Define T from £(A) toX by T( T x(a)eﬁ ) = X x(&)Tea. The
linear operator T ig weakly compact since A le¢ weakly seguentially
compact (7, page 54). Therefore, T is a completely continuous
operator., Let (x;) be & seguence in X' that converges weakly to zero.

Hence,
im sup {T'x'(2)] = 1im sup [x'(a)] = O,
n n
n A n A

Therefore, A is W-limited in X.
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(i) implies (e). Let x  and x! be weak Cauchy sequences in X and
X', respectively. Let e denote the n-th unit base vector in o

Define T from co to X as follows:

Te = X
n n

Thus, the conjugate map, T', from X' to £ is completely continuous (31).

Hence, for each x' in X'

1 1 - ] - \
T'x (en) = X (Ten) = X'x

Thus, for each n, T‘xﬁ = xﬁx Since T' is completely continuous it

n
follows that (T'xn) = (xﬁxn) is a norm-convergent sequence in £.
Therefore, lim xﬁxn exists.,

(e) implies (b). Let Y be a B-space and T a weakly compact
operator from X to Y. Let (xn) be & sequence that converges weakly to
zero and lim sup |Txn| = t where t is a non-negative real number.

The Hahn-Banach Theorem implies that there exists a sequence (yﬁ) in Y
such that |y£| = 1 and yﬁ(Txn) = ITxn|. Define x) = T'y] . By a

theorem of Gantmacher, T' is weakly compect. Theorem 1.10 implies that
T' is & wesak Cauchy operator. Hence without loss of generality we mayv

assume that (xﬂ) is a weak Cauchy sequence (for otherwise we could

replace this sequence by a subsequence). Thus,
i X = ! = ' = i =
lim sup xnxn lim sup Tynxn lim sup ynTxn lim sup ITxn| t .

It will now be shown that t must be zero. There exist subsequences

(yk) and (y&) of (xn) and (xﬁ), respectively, such that

lim Iyi(yk)l =
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8ince the seguence (xn) converges weakly to zero, there exists a sub-
gseguence (zm) of the sequence (yk) such that |z;(z‘)| <t/2 . Thus,

we can write

v vy v .
2z, = (zm yk) 2+ Yy 2y

Since (x;) is a weak Cauchy sequence, (z& - yi) is a sequence that

.converges weekly to zero. Hence,
t = Um|z'z | < 1lim sup |(z; - ¥p) z,| + 1lim suwp |yizm| < t/2.

Therefore, t = 0 and 1lim |Tx | = O.

(b) implies (c). Since c  is a B-space, condition (c) 18 a
gspecisl case of condition‘(b).

(¢) implies (d). Let (x;) be an arbitrary sequence in the
conjugate space X' that converges weakly to zero. Let J be the natural
embedding mep of X into X''. For any x'*' in J(X), we have x"'x) = x'x
and the seguence (x;x) converges to zero. Define g map T from X to c°
as T(x) = (xéx), This mapping is linear. Since (xa) is pointwise
bounded and for each n, X is a cdntinuous linear functional on X, it
follows that (x;) is eguicontinuous from (47, XI.2.3). This means that
the [x;} is uniformly bounded. Hence, T is a continuous linear map.

The following will show that T' 1s weakly compact. Let e; denote the
n-th unit base vector in £ = cg. For T' the adjoint operator of T,
LIPS x x! .
T e, e T x, for all x in X

Let bal(e;) represent the balanced hull of the sequence (e;),

Egi(e;) the closed balanced hull of the sequence (e;),
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and conv(;;f(e;‘)) the convex hull of the set E(ex'z) .

Let 8 be the closed unit spnere in L. FPor x in8, x = I t,e} vhere

the {-norm of x is less than or egual to one, thus |t1| <1 for all i.

Let
n
a = E t .
n 1 i
Thus,
1 5 —
— I t,e ie a sequence of elements in conv (bal (e')) .
Y i1 } . n
Hence,

——‘;—tf- x ig 1n the conv (bal (e;)) =H where lima =a.
Terefore, af —é- x) = x 1s in H, Since 8 is a closed balanced convex

set, we have 8§ = H. Hence,

7'(8) © 7' (conv (bal (e'))) = conv (bal (x))

and b-_;i(xl'l) 1s weakly compact by (47, page 177). The Krien-Smulian
Theorem (11, V.6.4k) implies T'(S) 1s weakly compact in X'. Thus, 7'
is & weakly compact operator, By a theorem of Gantmacher T 15 a weakly
compact operator. Let (xm) be an arbitrary sequence in X that is

weakly convergent to zero. Thus by hypothesis,
lim | l'xm| = limsuplx;xm| a 0.

) = 0,
Therefore, lim L 0

(d) implies (g). Let Y be a B-space and T' be a weak Cauchy

operator from Y' to X'. Now to show that T is completely continuocus,
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it will suffice to show that for every sequence (xn) in X that converges
weakly to zero, then 1lim |1xn| = 0., Let 1lim sup |!znl = t wvhere t

is a non-negative real number. The Hahn-Banach Theorem implies there
exiats a sequence (y;) in Y' such that |y;| = i and y;(rxn) = ]Txnl.
Define x® = T'(y;). The remainder of the argument is similar to that
used in (e) implies (b) to show fhut t must be zero.

(g) implies (h), First it will be noticed that if Y is a B-space
and T a weakly compact operator from X to Y, then T' is a veakly
compact opérator (11, VI.4.8). From Theorem 1.10 it follows that T' is
also a weak Cauchy operator.

Let X' be a weakly sequentially compact set in X'. Let B(K') be
the B-space of all bounded scalar-valued functions oh K' with the sup-
norm. Define T from X to B(K') bi (k') = X"(x). Since K' 15 weakly
sequentially compact, T is weskly compact by (46).. From the above
observation it follows that T' 18 a weak Cauchy operator. Therefore,

T is completely continuous. Let (xn) be 8 sequence in X that
converges weskly to zero, then (Txn) 18 norm-convergent to zero.
Hence,

1im sup |1xn(k')| = 1im sup |k'(x)| = 0 .

n X' n K

Therefore, XK' is w-limited in X',



CHAPTER II
PROPERTIES OF THE DUNFORD-PETTIS PROPERTY

The objective of this chapter is to investigate the basic prop-
erties of the Dunford-Pettis property. It is shown that isomorphisms,
finite topological direct sums, and complemented subspaces are among
the permanence properties of the Dunford-Pettis property. Among the
non-permanence properties are subspaces, guotient spaces, inductive and
projective limit spaces. Some generalizations of the C(8) and Li(“)
gpaces are considered. At the end of this chapter there are two tables
showing whether some of the common Banach spaces possess the Dunford-
Pettis property.

The first theorem in this chapter will deal with a class of

B-spaces that do not possess the D. P. property.

Theorem 2.1 N¢ infinlite dimensional reflexive B-space possesses

the D. P. property.

2{22{; vLet X be a Infinite dimensional reflexive B-space. Let
T be the identity map on X. 8Since X is reflexive, it follows that T is
weakly compact. BSuppose T 1s conpletely’continuoua. From Theorem 1.1k
we have T is compact. Therefore, X is finite dimensional which is a
contradiction. Hence, T is not completely continuous and X does not

possess the D. P. property.
It would now seem proper to ask if there exist any B-spaces, other

2
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than finite dimensionsl ones, that poasess the D. P. property. The
next theorem that reliegs heavily on measure theory will show that B-

spaces that possess the D. P. property are guite numerous.

Theorem 2.2 Let § be a compact Hausdorff space, then the B-space

of all continuous scalar-valued functions on 8, C(8), possesses the D.

P. properiy.

Proof. Let Y be a B-space and T a weakly compact operator from

c(8) to Y. Let (fn) be a weak Cauchy sequence in C(8). Let g beleng
to the conjugate space of C(8); thus, (g(fn)) is a Cauchy seguence of
scalars and sup |g(f )| 18 finite. Te sup |f | 1is finite from

n n n n
(11, II.3.20). Define for each 8 in 8 f(s) = lim fn(s). The limit
function £ is bounded and measurable on §. Using the representation
theorem of Dunford and Schwartz (11, VI.7.3), it follows that there

exists a vector measure § defined on the Borel sets of § such that
Tf = f f ds .
n g B
It followa that
lim T fn = T¢f

and (Tfn) is a convergent sequence in Y from the dominated convergence

theorem (11, IV.10.10). Therefore, C(8) has the D. P. property.

In the study of B-spaces the conjugate space pleys an important
role. Two natural questions at this point would be that if X' has the
D. P. property, then does X possess the D. P. property and vice versa.
Our next theorem will answer the first question positively, but the

second part is an open question.
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Theorem 2.3 If the space X', the conjugate space of a B-space X,

has the D. P. property, then the space X has the D. P. property.

Proof, Let (xn) and (x;) be sequences in X and X', respectively,
that converge weakly to zero, lLet J be the natural embedding of X into
X''. Thus, J(xn) - Qn iz a sequence in X'' that converges weakly ﬁo
zero. Since Qh(x;) - x;(xn) and X' has the D. P. property, this
implies that 1lim xé(xn) = 0. Then from Theorem 1.26 part (d), X

possesses the D. P. property.
Some Permanence Properties

If the D. P. property happened to be & hereditary property, then
there would be some very nice results. As one might gather from
Theorem 2.1, this is not the case (see remerks after Theorem 2.7). What
conditions are needed on a linear subspace in order to ensﬁre that 1t
will have the D. P. property? In order to answer this question we need

the following definition.

Definition 2.4 Let X be a B-space, L a linear subspace of X and

M an algebraic complement of I relative to X. The map (a,b) > a + b
ia a continuous algebraic 1somprphism of LxM onto X. If the map
has & continuous inverse, then L and M are said to be topological

complements of each other relative to X.-

For a B-space X thst is the algebraic direct sum of closed sub-
spaces L and M, the subspaces &re topologicel complements of each other
relative to X (12, page 66). Even for & B-space X there will in
general exiat{ in X closed linear subspaces L that admit, relative to

X, no topological complement. Kothe (29, page 42h) has proven that cy
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is a closed subspace of z..that has no topological complement.

Theorem 2.5 If X possesses the D. P. property and H 18 a linear
subspace of X admitting s topologicel complement relstive to X, then H

possesses the D. P. property.

‘22225; The hypothesis on H implies there exists a continuous
projection P of X onto H. Let Y be a B-space and T & weakly compact
operator from H to Y. Thus TP 18 & ueakly compect operator from X to Y
by (11, VI.k.5). Hence TP is completely continuous. 8ince T agrees
with the restriction of TP to H, it follows that T iz completely

continuous and H has the D. P. property.

" The following definition is included in this paper to avoid any
possible confusion that might arise when the statement 18 made that two

B-spaces are isomorphic.

Definition 2.6 An isomorphiem between two B-spaces is a linear

homeomorphism. An isometric isomorphism between two B-spaces X and Y is

an isomorphism U between X and Y such thet | Ux | = | x| .

With the above definitions we are now able to prove that the D. P.

property 1s preserved undér isomorphisms,

Theorem 2.7 Let X and Y be isomorphic B-spaces. If X has the D.

P, property, then so does Y.

Proof. Let U be an isomorphism from X to Y. Let W be a B-space

and T a weakly compact operator from Y to W. Since ¥ is continuous,
TV is & weakly compact operator from X to W. Let (yn) be a week Cauchy

sequence in Y. Thus, there exists a sequence (xn) in X such that
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U(xn) = yn. For each f in X', fU-l

is in Y' and it follows that (xn)
is a weak Cauchy sequence in X. Hence, TU is completely continuous and

TU(xn) a T(yn) 18 norm convergent. Therefore, Y has the D. P. property.

Let X be an infinite dimensional reflexive B-spece. From the
universality property of the B-space C(8), there exists a compact
Heusdorff space 8 such that X is isometrically isomorphic to a linear
| subspace W of C(8). From Theorems 2.1 and 2.7 it is easily seen that

the D. P. property 1s not hereditary.

Pefinition 2.8 Iet X and Y be B-spaces over the same field of

scalars. Let W =X 0 Y be the algebralc direct sum of X and Y. Let

W have either of the norms
| (x,¥) | = max ( |x]|, |¥]| ) or
| Gox) | = CIx|®+ [y|® P 1<p<a

and W becomes a B-apace. The space W obtalned in this manner is called

the direct sum of the two B-spaces X and Y.

The extension to any finite number of summends is immediate. The
direct sum of & denumerable number of B-spaces canr be made into a
Frechet space, but in general not into a B-space. Also, omre cen define
the direct sum of an arbitrary family of linear topological spaces, but
it is ordinarily not a metric space even if the summands are. Either of
the norms is egquivalent to the product topology on W, a8 pointed out in

(11, page 89). Also, we have the property

(X90Y) = X'0O0Y .
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Theorem 2.9 ILet Xl and x2 be B-spaces'and X be the direct sum of

X, and X Let T be & continuous linear map from X to & B-space W.

1l 2°
The map T is weakly compact if and only if Tl (which 1is the restriction

of T to Xl) and T, (the restriction of T to Xa) are both weakly compact.

Proof. If T is a weakly compact operator, then 8o is its restric-

tion to X, and similarly to X

1 2°
Assume Tl and Té are weskly compact operetors. Let A be the closed
unit sphere in X and P, be the projection of X onto X, (1 =1, 2).

Thus, Pi(A) (1 = 1, 2) 1s bounded and convex. Hence, TiPi(A) (1 =1,
2) is convex and conditionally weakly compact since Ti (1 =1, 2) 1s
weskly compact. With the closure (cl) being taken in the weak topology

we have
cl (T(a)) = c1 (TlPl(A) + TaPa(A)) = cl ('l‘lPl(A)) +cl ('1‘21’2(.1\))

is weakly compact by (11, page %15). Therefore, T is a weakly compact

operator.

Theorem 2.10 Let xl a.nd.x2 be B-spaces and X be the direct sum

of Xl and Xa. Let T be a contimuous linear map from X to & B-gpace Y.

Let Ti be the restriction of T to X

1 (1 =1, 2). Then, T is completely

continuous if and only 1if both Tl and Té are completely continuocus.

Proof. Assume T is completely continuous. Clearly, Ti and T2 are

also completely continuous,

' Assume Ti and Ta are completely continmuous. Let (xn) be a weak

Cauchy seguence in X. Let Pi (1 = 1, 2) be the projection of X onto

}f{i.a ;E&ch'Pi will preserve weak Cauchy segquences, thus Pi(xn) is a wesk

Cauchy seguence in X Since Ti (1 =1, 2) i a completely continuous

i.
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But

operator, TiPi(xﬁié\is a Cauchy sequence in Xi.

Tx, = T, P (xn) + T, P, (xn)

is a Cauchy seguence in X. Therefore, T 1s completely continuous.
With the above characterizations of weakly compact and completely
continuous operators we are able to prove the following very useful

theorem.

2 be B-speces and X be the direct sum of

The space X will have the D. P. property if and only 1f X

Theorem 2.11 Let xl and X

Xl end X2. 1

, have the D. P. property.

and X2

Proof. Assume xl and X, have the D. P, property. Let W be a B-

2
gspace and T a weskly compﬁct operator from X to W. Let Pi be the

projection of X omto X, (1 =1, 2). 8ince X and each X, are B-spaces
and each P& iz a linear continuous map, Pi 18 algo weakly continuous.

Let (zn) be a sequence in X that converges weakly to zero, thus

Pi(zn) = Pl(xn + yn) = X

and Pz(zn) a Pé(xn + yn) = ¥,

converge weakly to zero., Hence,
T(z) = T, B (2)+T, B ().

Since Tl’and Té are wveakly compact and Xl and x2 have the P. P.
property, it follows that Tl(xn) and Ta(yn) are norm convergent to zero.
Thus, T(zn) 18 also norm convergent to zero and T 1s completely

continuous, Therefore, X has the D. P. property.
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Assume Xl and X, have the D. P, property. Let T be & weakly

2
compact operstor on X, By Theorem 2.9 it follows that Ti and T2 are
weskly compact operators. Since Xl and x2 have property V, then T1
and T2 are completely continuous. From Theorem 2.10, T 1s completely

continuous. Therefore, X has the D. P. property.

In the study of the permanence properties of the D. P. property,
it has been seen that the D. P. property is preserved under complemented
subspaces, isomorphisms and finite direct sums. In the fleld of
functionzl analysis the quotient spaces, inductive limit spaces and
projective 1imit spaces are familar tools. The guestion arises whether

the D. P. property is preserved under the formation of these spaces.

Example 2.12 If a B-space X has the D. P. property, then a

quotient space of X will not necessarily have the D. P. property.
Since L2 1s an infinite dimensional reflexive space that is also
separable, there exists a closedvsubspace N of £ such that Le is
isomorphic to the guotient spaée of £ by N (29, page 280). The space
L has the D. P. property. The space 4/N does not have the D. P.
property since La ia reflexive and the b. P. property 1s preserved
under isomorphisms.

The inductive limits space will now be defined. Then the question
of whether it 18 & permanence property of the D. P. property will be
examined. A more complete discussion of these spaces can be found in

(29, page 219) and (40, page 76).

Definition 2.13 Let x7 be a collection of locally convex spaces

&nd X be a vector space. Let T7 be a collection of linear maps from
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X, into X such that u'r7(x7) spans X. Let B be the collection of all
convex and balanced subsets'u of X such that for each 75 T;l(U) iz a
neighborhood in Xy; thus, B 18 a base for the linesr topologj on X
which mzkes all the T7 continuous. The convex space X with thie
topology 1s called the 1pductive limit of the locally convex spaces X7
by the msppings T7,

An extreme csse of an Inductive limit space 18 the quotient space.
For if X = Y/M and T is the canonical niapping of Y onto X, the
quotient topology is the finest linear topology making T continuous.
From Example 2.12 1t is seen that the inductive 1limit space i& not a

permanence property of the D. P. property.

Definition 2flh Let X be a vector space and.X% a collection of
locally convex spaces, Let T7 be a collection of linear mappings of X
;nto X7 such that if x is in X and x is non-zéro, then there exists
some y such that 27(1) # 0. Let V7 be a base of convex and balanced
neighborhoods in X, the finite intersections of the sets T;l(v7)
where v7 is in V7 forms a bagse B of cgﬂvex and bzlanced nelghborhoods
for X. Thiz topology is the coarsest topology on X compatible with the
algebralec structure under which all the T7 are continuous. The locally
convex space X with this topology is the proJective limit of the convex

8p&aces X7 by the meppings T7.

One example of & proJective limit is the weak topology omn &ny
vweakly convex space X, obtained by taking for the collection of T7 the

set of all continuous linear functiongls on X.

Example 2.15 An example of a projective limit is the induced

topology on & vector subspece M of a convex space X; 1t is the
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coprsest topology making the identity mapping of H into X continuous.
Let M be & reflexive space. Thus, M is isometric to a subspace of C(8)
where 8 is a compact Hausdorff space, (47, page 2kl). The space C(8)
has the D. P. propérty. But M is the projective limit space of C(8)
under the ldentity map on M. The sﬁace M does not have the D. P.
property. .Therefore, the projective limit is not a peimanence

property of the D. P. property.
Abstract L- and M-Spaces

We shall now consider two claéses of B-spaces,.that will include
.-most of the familar B-spaces foundvin an introductory course in
functional anslysis. Such B-spaces have some very nice properties. The
first of these will be the abstract M-space. Such spaces were intro-
duced and studied axiomatically by €. Birkhoff (6). Kakutani has given
some representation theorems for both the abstract L- eand M-spaces.

The following definitibn of an abstract M-space 1z given by Kakutani
(26).

Definition 2.16 A B-space X is called an abstract M-space it

there 1s defined & relation x >y (or equivalently, y < x) for some
pairs of elements x, ¥y in X and if 1t satisfies the following
conditions for x, y, z, w in X and t & real scalar.

(a) x >y and y >x implies x =y.

(b)) x >y snd y >z implies x > z.

(e¢) x >y and t >0 implies tx > ty,

(a) x>y implies x +2z >y + z.

(e) To any pair of elements x, y in X, there exists a maximum

2 =xVYy 8such that 2z >x, 2 >y and w >z for any w
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with w_>_x and w_>_y.

(f) To any pair of elements x, y in X, there exists a minimum
W =x AYy such that wf_lx, wfy and sz for any z
with =2 5 X and 2z f Y-

(g) X, > ¥, x comverges to x and y converges to y implies
xIE Y.

(h) xAy=0 implies |x+y | =] x-¥]|.

(1) x>0 and y >0 implies :| xVvy| =mx(|x|], |¥] ).

The aforementioned conditions (a)-(1) mean that X 18 a linear lattice.

Definition 2.17 If there exists & non-negative element e such

that |e| = 1 and for any x such that |[x| <1 implies x < e, then

e 15 called a unit element.

Let us now consider some examples of abstract M-spaces. One must
notice that the existence of a unit element is not assumed in an
abstract M-spece,

The foremost example of abstract M-spaces will be given by the
space C(H) of all bounded continuous real-valued functions x(h) defined

on & Hausdorff space H wﬁere the norm is given by
|x| = sup { x(h) : his in H },
The order is defined as
x 3 y if and only 1if
x(h) > y(n) for any h in H.

Also, if we teke an arblitrary set A and consider A as a discrete

topological space, then the space C(A) is nothing more than M(A) of all
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bounded real-valued functions x(h) defined on A (wvith the same norm and
partial ordering as in the case of C(H)).

Consider the subspace M(A, y) of M(A) consisting of all
bounded measursble real-vélued.functions x(a) defined on A (where
measurability is with respect to & measure y defined on A); this 13
also an example of an abstract M-space. If sets in A of measure zero
are neglected, then the space N(A, u) is again an example of an

abstract M-space. The norm for N(A, p) is
|x| = ess. sup { x(a) : & 18 in A }. '
The order is given by

x>y if and only if

x(a) > y(a) almost everywhere on A.

We must remember that two functions which differ from each other only
on & get of measure zero are considered to be the same element of
N(A, p).

Among the examples given above we find they all have a unit,
namely the constant functicn one. The following example will afford us
with an absﬁr&ct M-space that does not have & unit element. Consider a
special subspace of C(H), where H 18 a Hausdorff space. If we consider
only those functions x(t) of C(H) that vanis; at & given point h_ in H,
then the space C(H, ho) of all such functions with the norm and partial
ordering the same as C(H) will be an abstract M-space. (onsider the
space C(H, 0) where H 18 the closed interval between O and 1. This
space does not have & unit element.

Since C(5), where 8 is a compact Hausdorff space, has the D. P.
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property, we see (viewing Theorem 2.7) that it is important to be able
to recognize spaces that are isomorphic to €(8). Xakutani (26) proved

" the following theorem.

Theorem 2.18 For any abstract M-space X with & unit, there exists

a compact Hausdorff space 8 such that X is isometrically isomorphic to

the real B-space C(8).

From this theorem we notice that any abstract M-space will possess
the D, P. property. For example, the abstract M-space, {_ , has a unit
and the appropriate 8 of Theorem 2.18 1s the Stone-Cech compactification
of the positive integers.

Much of the motivation for the study of abatract L-spaces was
derived from the applications of the theory of Hermitian operators on a
Hilbert space. 'thutani (27) gives the following definition for an

ebatract L-space.

Definition 2.19 A B-space X 18 an abstract L-space 1f there is

defined a relation x >y (or equivalently y < x) for some pairs of
elements x, y in X and 1if 1t satisflies the following conditions for
X, ¥, 2,¥w In X and t a real scalar.

(a) =x >y and y >x implies x =y.

(v) x>y and y >z implies x > z.

(e) x >y and t >0 implies tx > ty.

(a) x >y implies x +2z >y + z.

(e) To any pair of elements x, y‘ in X, there exists a maximum

z=xVy such that z >x, 2>y and v >z for any w

with w >x and w >y.



(f) To any pair of elements x and Yy, there exists a minimum
w=xAy such that v<x, w<y and z <w for any z
with =z f x and 2z f‘y. ' |

(g) x >y, s X, converges to x and y, converges to y implies
x 2 Yy .

(h) x>0 and y >0 1mpiies | x+y| = x| + |¥] -

(1) xAy=0 implies | x+y | = | x-y].

Such B-spaces were introduced axiomatically by G. Birkhoff (6) as
abstractions from the concrete B-spaces of Lebesque integrable

functions on a measure space.

Definition 2.20 An abstract L-space has a unit if there exists an

element e for vhich x > 0 .inpiiea xANe>0,

Sinée many of the familiar B-spaces that are studied in & course
in functional anelysis are abstract L.-spaces, it might be profitable
to consider some examples of these spaces.

For an example of an abstract L-gpace, consider a set H where a
completely additive measure is defined. The totality of &ll real-
valued measurable functions i(h) that are absolutely integrable on H

constitutes a B-space L(H) with
x| = [ | x|
H _
&3 its norm. The order is given by
x>y -if and only if

x(h)‘z y(h) almost everywhere on H,
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Two elementg %, y in L(H) are equal if and only if
x(h) = y(h) almost everywhere on H.

Also, the constant function x(h) = 1 serves as & unit. Hence, L(H)
is &n abstract L-space with unit. |

The following B-spaces given by Dunford and Schwartz (11, IV) are
algo exemples of abstract L-spaces: rca(S, £), ba(S, £), NBV(I),
and BY(I). We shall give the order for the first spgce, rea(s, T).

Let
|s] = total varietion of u(E) =
sup {u(E) : E is a subset of 8} - inf [u(E) : E 1s a subset of 8}
for all Borel gets E of 8. The partial ordering is given by
B2y if and only if
p(E) > u(E) for any Borel set E a subset of 8.

Thus, rca(S, L) becomes an abstract L-space.

As seen in our first example, L(H) is an abstract L-space.
Kakutani (27) addressed his paper to the converse problem, i.e. 1s 1t
posgible to represent any abstract L-space by a concrete abstract L-
space of the form L(H). He waa able to give a positive answer to this

guestion. We ghall only state his results here.

Theorem 2.21 @Given an abstract L-space with a unit, there exists

a totally disconnected compect topological space 8 and a countably
additive measure p defined on the Borel field £ of 8 auch that the

ebgtract L-gpace is isometrically isomorphic to the real B-space
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The following theorem, also due to Kakutani, ehows & relationship

between the sbetract L-spsces and the abstract M-zpaces.

Theorem 2.22 The conjugate apace of an sbstract M-gpace is an

abstract L-gspsce. The conj)ugate of an abstract L.space 1s an abstract

M-zpace with unit.

We are now in & position to give a partial result to the open
guestion that 1z the converse of Theorem 2.3. This result will be very

ugeful in compiling the tables at the end of this chapter.

Theorem 2.2% If X iz an abastract L-space, then X' has the D. P.

property.

Proof. Let X be an abstract L-space; thus, X' is an abstract M-

space with unit by Theorem 2.22. Using Theorem 2.18 we have X 1is
isometrically isomorphic to C(8) for some compact Heusdorff space, S.
It then follows from Theorems 2.2 snd 2.7 thet X' has the D. P.

property.
Some Generalizations of C(8) and Ll(u.)

There are seversl wayz of generalizing the space C(S) where S is
a compact Hausdorff space. One such method iz eeen by letting S be a
locslly compact Hausdorff space, and let co(s) be the B-space of
continuoue gcalar-valued functions £ on 8 that tend to zero at infinity

(in the sense that the set

{ seB: |f(e)] > }
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is relatively compact in 8 for each € > 0). The norm on GO(B) is given

by
|£] = Bup{lf(a)l ree8 ).

One will notice that for a compact Hausdorff spece B that CO(S) and
¢(8) sgree. The probability density functions of statistics belong to
CO(R) where R 1s the real numbers. The question now arizes does co(s),
for S & locally compact Hausdorff space, hgve the D. P. property.
Edwards (12, pege 637) has shown that this space has the D. P. property.
'A generslization of C(8) where 8 is & compact Hauzdorff space will
now be given. Let X be a B-space and § a compact Hausdorff space. The
spsce C(8, X) is the set of all X valued continuous functions on S.
Thus, C(S, X) with the sup-norm 1s a B-spece. This space has been

gtudied by Swartz (45), Batt end Berg (4), and Pelezynski (36).

Theorem 2.24 Let S8 be a compact Hausdorff space and X a B-space.

If ¢(S8, X) has the D. P. property, then X has the D. P. property.

Proof. Let Y be a B-spmce and T a weskly compact operator from

XtoY. Fixa s in 8 and pick a £ in C(8) such that f(s) =1 and

{£] = 1. Befine the map U from C(8, X) to X by
Ug = g(s) for 211 g in C(8, X).

It follows from the Uniform Boundedneas Principle that ¥ is a continuous
operator. Thus, ™ is & weakly compact operator (11, VI.4.5). The
space C(S, X) having the B. P. property implies that the operator
™ is & completely continuous operator. Let v% be & map from the reals

R into X defined by V*(a) = ax. Thus, V £ is in c(s, x). If (xn)



ie & weak Cauchy seguence, then (V% f) 1s & weak Cauchy seguence.
n _
This follows since

v £-V ¢
Xn xm

fl vo- v,
xn m

sup { |ax_ ~-ax | : a 18 in the unit dlek of R} < |x - x
n m = "n

Hence, if x € X, then Tx = TU(V*f) end T is completely continuous.

Therefore, X has the D. P. property.

The converse of the above theorem is an important open question.
Grothendieck (17) established that the space C(S, X) 1is isomorphic to
the wesk tensor product of C(8) and X. Thus, if one could solve this
open problem, it would help in solving the open problem involving tensor
products of spaces that have the D. P. property.

Dobrakov (10) and Alexander and Swartz (1) have considered this
problem. Thelr attention has been directed at the following aspace.

Let 8 be & locally compact Hausdorff space and X & B-space. Let
CO(S, X) denote the B-zpace of all X valued continuous functionz on S
tending to zero at infinity wlth the usual sup-norm.

Before considering Dobrakov's partial result on this open problem,
there 1z & need to develop some notation. A nom-voild class H of sub-
gets of 8 iz celled & semi-tribe on d-ring if H is closed under set
difference, finite unioriz, and countable intefgections. A non-void
class H of subsets of 8 is called & tribe or o-ring if H 18 closed
under set difference and countable unions. Let X end Y be B-spaces and
L(X, Y) dencte the B-space of a&ll bounded linesr operators from X to Y.
Let Bo be the semi-tribe generated by the compact subsets of § that are

6, sets and define m from B_ to L(X, Y), which iz an operator valued
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mezgure countebly additive in the norm topology in L(X, Y), i.e. for
every x in X m(*)x is a countably additive vector measure. Denote by
G(Bo) the o-ring or tribe generated by B, . A B -simple function on 8§

with values in X 1&g & function of the form

k .
f = ifl xicEi for x, in X, E, in B  and E, N E, = $ for 1 £ J.
Here, GE denotes the characteristic function of the set E in 8. The

integral of a B -simple function on an E in G(Bo) i8 defined as

k
ffam =L xm(ENE ).
E 1=l

Denote by F the set of all Bo-aimple functions on 8 with values in X.

Por & function f from 8 to X and a set A a subget of §, define
'|f|A = sup { |f(x)| t xin A } .

Define on G(Bo) the non-negative set function ﬁ, called the seml-

varlation of the measure m, by the egquality

2(E) = sup {

Ifdm' : £1n F, |f]p <1} for E 1n 6(B,).
E

The function m 15 & monotone and countably subadditive set function on
G(Bo) (8, page 53). For every function f in F and every set E in

G(Bo) we have
i J;f dm l < ||y 6(E) (8, rage 109).

Denote by F the closure of F in the norm |'|s in the B-gpace of gll
bounded X valued functions on 8 and f(S) = sup {Q(E) :Ein B} 1s
finite. Thus, the iIntegral defined on F can be extended to F as

follows., For f in F and for a set E in G(Bo) define
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£ fdm = lim £ £, dm vhere f is in F and |f - f]g- 0.

Aiso, C_(S, X) 1s & subset of F. A wide class of bounded linear

cperators T from CO(S, X) 1into Y can be represented in the form
chffdm
3]

for s measure m (9).

Dobrekov (lO) hags proved the basic theorems on representation of
bounded linear operators on co(s, X) 1in the form of an integral with
respect to & Baire operator valued measure. It is slso pointed out
thet the dusl space of CO(S, X) 1s isometrically isomorphic to the
space cabv(G(Bo), X') of countably additive X' valued vector measures
with bounded variations.

With these preliminsries we now give Dobrakov's partial result to
the difficult problem, which 1s as follows: If X has the D. P,

property, does the apace CO(S, X) &lso have the D. P. property?

Theorem 2.25 2) If S is & discrete topological space and X has

the D. P. property, then CO(S, X) hsas the D. P. property.
b) If weak and norm convergence of seguences coincide in X, then
for any locally compact Hausdorff topological space S, CO(S,.X) has

the D, P. property.

Proof. Let (fn) be a weak Cmuchy seguence; thus, there exists a

s e

M such that

< M for all n.

T
A

Let T be a weakly compact operator from GO(S, X) into an arbitrary
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B-space Y. The operator T can be represented in the form
Tfnjfdm
S

where m is & Baire operator valued measure on G(Bo) with m(8) = |7|
vhose values are weakly comp#ct operators from L(X,AY) and ite semi.
variation fi is continuous on G(B)) (10). Using this representation
we extend the operator T from CO(S, X) to F without increasing its

norm. Let ¢ > 0, define for each n,

A = {se8:|f(s)] > 6(1i]'r|) } -

Thue, esch An is & compact subset of $§ and each An is also a GB set
(20, page 221). Since G(Bo) is a g-ring it follows that
@

A = U An belongs to G(Bo) .
h

Let C_ denote the characteristic function on B. Thus,

B
A
if CS_Ad.ms < |l mB) < qfl. T
8-A S-A
]fnl T} < e |7] < £ for every n.
S.A To6(+|T]) T 6

a) Assume that S 1s a discrete topological space and X has the
D. P. property. Hence, A must be a countable set, {al, 8,5, 4..} in 8.
The semivariation being continuous on G(Bo) implies that for any
decrenging sequence of gets En such that each En belongs to G(Bo) and
NE =$, ln ﬁ(En) = 0. Comsider B_ = {an+1, 8,0 } , B
belengs to G(Bo) gnd N Bn = @ 3 hence, there exlsts s K such thet for
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By = { agy Bgapr v - - }
and for every n;, then

f foam | < S
B 6

For every 1 = 1, 2,..,.,K the seguence (fn(@i)) is wesk Cauchy (10).
Since m({ai}) is & weskly compact operator on L{X, Y) and X hag the
D. B, property, there existas a N such that for any n, p greater than N

we have

- ] < £,
.[ (£, fp)dm ;

A-By

Therefore for € > O choose @ = max (N, K) snd we have

p
Ufn - Ufp = J (:f‘n - fp) dm

J.(f,_mf’w)dm < T (£ - f )am] + Jl(f“ - £ )am| + f(f - £ )dm
Sn pe onB n © n B Sc-An P

K By

4

j(f‘nmf)dm + Jq(fn-»'f)dm < .,
B, P g-4 P -

Hence, U transforms & wesk Cauchy seguence into & norm Cauchy seguence

f (£, ~ £ )am
AaBK

and CO(S, X} hes the D, P. property.

b) Assume wesk and norm convergence of seguences coincide in X,
Thus, |m(E)} fz?l(E) for every set E in G(BO) (8, page 52). There
exists & finite non-negetive countably additive measure A on G(B 0) with

the properties:
A(E) « lm(E)‘ end

lim |m(E})] = O for B in G(‘BO)
A (E)}0
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vy (11, IV.10.3). If A(N) « O for N in &(B,), then [a(R)| = O enq,

sherefore, m(K) = 0. Suppose

1im #(E) # © for E in 6(8,).
A (]E)’O -
Then, there exists an ¢ > 0 and & sequence of sets Ak in @(Bo), k=1,

2000, vith M4 ) < .%:K and %E(AM >e . Put
- & @
B = il;ﬂkAi and B = klek .

Since A iz a finite non-negative countably additive messzure on G(BO),
A(B) = 0. wWnile A(B)>@m) - %(Bk - B) > e for sufficlently lerge
k is Implied by the monotonicity end contimuity of ® on G(BO), which
iz & contradiction. Therefore, A has the deéired'pr@pertieﬁn Choose
& ® >0 guch that A(E) <8 for E in @(B@)y which implies
f{E) < ¢/6M . Since the seguence (fm> is wesk Csuchy in C’D(Sj %), for
each % in ¥’ snd each point & in S there iz a finite limit

1im x’fn(ﬁ)

n - 6
{10). Bince the weak and the etrong convergences of seguences coincide
in ¥, for esch poipnt & in 8 there exists 2 limit lim fn(g) = (s
in X, Be Xgoroff's Thecrem for the messure A there is & zet F in
G(B@) with A{F) €< ® such that on A-F the seguence (fn) converges

uniformly to the function f£. Choose g such that for n, p >¢ it is

£ o f < €

. gAwF = 6(1 + B(8))

Then from the ineguality

- - o rg - = «a\iﬂu =
T ‘it’fp < {i'F(fn fp))dm + £(fn fp)dm + ; for n, pP=1,2,...
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it follows that for », p >q then ﬂTfn - Tfpﬂ < ¢. Therefore,
G@(S, X) has the D, P. property for any locally compact Hausdorff

EPECE.

The affirmative angwer to the open problem can be glven for spaces
other tham those used in the previous theorem. If X 1s lzometrically
isomorphic {0 some CO(T) where T is loc&l}y compact, then
CO(S, CO(T)) is isomorphic to CO(S x T) (17), Since 8 x T 1is
loczlly compect, as pointed out e&}lier GO(S x T) will possess the D.
P. property and so will CO(S, X)e '

Alexander and Swartz (1) heve aleo cbisined partial results om this
open problem. Their method does not involve the use of Integration
theory. Let 8 be the one-point compectification of the positive
integers. The space C(8, X) will dencte the B-space of sll X alued

convergent seguenceg with the sup norm,
| () ] = sup { %]+ 1=1,2, .. } .

Before giving thelr partial result 1t will be necessary to develop some
notation.

The first thing to be done ig to give a characterization of
completely comtinuous operators on C{S, X). Folas and Singer (13)
have proved that & bounded linear operstor T on C(S, X) into a B-gpace
Y has a unigue representation. Using duslity notation, this

representation ig as follows:
“© »” ) s - - ? ~ ~ ; ] ~.
Ly, Tx > <y*, Tb(lim xn),; + ¥ <y*, T %, >

where x = (xn) ie in C(S, X}, y* in Y’, T meps X into ¥'°, and T
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mape X into Y are bounded linear operstors and the series E<Iy', Tnxn3>

having the property I Iy'Tnl is finite.

Theorem 2.26 Let X and Y be B-gpaces. The linear subspace of all

completely contimuous operators im L{X, Y) ie closed im the norm

topology of L{X, Y)-

Proof. Let Tﬁ be & seguence of completely c@ntﬁnuou@ operators
from X to Y such that T converges to T where ¥ belongs %o L(X, Y).
Let (xn) be & weak Cauchy seguence in X; thus, there exists & K such
that gxnl <X for all n. Let ¢ >0 be given. Since T converges
to T, thls Implies there exists & N such that

€
3K

.y
Bach T, being completely continucus implies that the sequence (Tnxn)

is norm convergent and there exists an M such that for all n, w > ¥

{mplies
gi‘}m(xnm )| < _..%.m @
True for n, @ zM[
Tr, = x| < (T - Eh)xn + (TN - T)xm + Tk(xn - xm)
e‘(TmTN)Xn + (T |+ Tm(xmaxmy fa'rarﬂ x|+ 5T 1 i
ETmTH x & T - B Ix, +_% < g.

Therefore, (Txn) is & norm convergent seguence and T is completely

continuous.

Now a charscterizetion of completely continuoug operators ca&n be
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given using Poias and Singer’s representation theorem.

Theorem 2,27 Let S be the one-point compactification of the

pogitive integers and Y & B-space., A bounded linear operator T from
C(S, X) into Y is completely continuous if and only if using the Foias
and 8inger representation for T

&) each T, is completely continuous for J =0, 1, 2, <.

J

b) the series I ‘.r‘1 is such that I TJXJ converges for each

sequence (xJ) in X, |xJ| <1.

Proof. Aseume T is & completely continucus opermtor. For J >1

denote P 3 the bounded linear operator from X into C(S, X) defined by

) pel

Pyix) = (8,

where & , is the Kronecker delta function. Let (xJ) be & seguence in

J
X such that |x Ji <1 and define
n
Z = le PJ x 3
which belongs to C(8, X). The dusl of C(S, X) can be identified
with the space £{X') of all sbsolutely summable X' valued seguences

50 that if %' = (x;a) iz in €(8, X)', then

n
Lx'y 2z > = L <x, x_ >
n =1 9 J
converges to I <x3, % > (13) end (10). Hence, (zn) ie & weak Cauchy

gequence in C(S, X) sand, thus, by hypothesis

n
(T 2,) = (;:3;‘11‘:J xJ)

ie norm convergent where x, iz identified with the seguence of all zeros

J
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except in the J-th position. Therefore (b) is satisfied.

For J 3'1 end x € X we have TPJx = !Jx, which 18 completely
continuous since T ia completely continuous. In order to show that To
is completely continuous, consider the continuous lineer operator Q

from X into C(8, X) defined by Qx = (x, x, X, «..). From the Foias

and Singer representation we have

£0G') = r(mx)G') + TEx (') .

A A A A
From condition (b) we have To(lim xn) = Tx -~y vhere y=Z Tx .

Therefore, To(lim xn) is in Y and T_ belongs to L(X, ¥). In fact

for x ¢ X,
TO(X) = mx - E Tnx L)

The series I TJx converges uniformly for all |x| <1 (3). That is
to say that T is the limit in the norm topology on L(X, Y) of the
seguence of completely continuous operstors

n

(e - E'rJ) .

J=1
Thus, T@ is completely continuous since the completely continuous
operators are closed in the norm topology of L{X, Y).

Assume conditions (a) and (b) are true. For emch n, let X bea

mep from C(8, X) intc Y defined by

n
Snx = To(lim xn) + JElTJxJ

where x = (xn) .
From condition (b) and the Foias mnd Singer representation it follows
that To(lim xn) belongs to Y. Condition (&) implies that each 8 isa

completely continuous operator. The series Z TJxJ converges



uniformly in Y for all ]xJ| <1 and 8 converges to T in the norm
topology of L{C(8, X), Y) by condition (b) end (3). Now since the
completely continuous operators are closed Im the norm topology of

L{c(8, X), Y), it follous that T is = completely continuocus operator.

The following theorem 1s snother partisl result to the open
question posed earlier. This proof does not involve the uze of

integration theory.

Theorem 2.28 Let 8 be the one-point compactification of the

positive integers. If X has the D. P. property, then C(S, X) hss the

D. P, property-

Proof. Let T be & weamkly compact operstor from C(S, X) 1into Y.

Let T be written in the Foias and Singer representation. Bach TJ is

veakly compact for j = O, 1, 2, .., &and the series I TJ is such that

pX TJxJ converges for emch geguence (xJ) in X, liI <1 (3). From

the hypothesls it follows that esch T, iz completely continuous for

J
J=0,1, 2, 5.0 o Theorem 2.27 implies that T is & completely

continuous operator. Therefore, C{(8, X) has the D. P. property.

We shall now conmgider generalizations of the Lp(u), l1<p<e=,
spaces. Lindenstrzss and Pelczynski (33) introduced & B-space, g(p)
whoge finlte-dimensionsl subspaces are close to the finite-dimenzional
subgpaces of Ip(w)o In order to meke thiz more precise we shsll need

the following definitions.

Definition 2.29 ILet X and Y be B-spaces. Let L(X, Y) be the B-

gpace of all operators from X into Y with the ususl operator norm. The
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distance d(X, Y) betveen the B-spasces X &nd Y 1s defined as
ax, ¥) = tme {7 |17 1 7 1n L(x, n}.

If no such T exists, 1.e. X &and Y are not isomorphic, d(X, Y) is tzken

to he @ .,

It should be mentioned that d is not = metric. Also, two B-spaces

X and Y are "near” if d(X, Y) is close to 1.

Definition 2.30 A B-space X 1s & @(p, A )-space 1 <p<w,

1<2a < o, provided that for every finlte-dimensional subspace B of X
there 13 a finite-dimensionsl subspace E of X containing B such that
a(E, zg) <) wvhere n = dim E. A B-space X is & g(p)-epace, 1 <p <=,

if there existz & A >1 such that X 1s & g(p, 1 )-space.

The 8(p)-space is & generalizationvof e Lp(u)-sp&ce. Let X be &
Lp(u)-space for 1 S p<e ., Let {Xi} be & decomposition of the
meagure space X into n disjoint measurable sete of finite measure. Let
Bn be the linear span of the charascterlgtic functicns on thiz

decomposition. Since the simple functione are dense in X,

@
X = UB s
N=1 n

Since X iz geparable, it follows that X 1z a @8(p)-space for any A
greater than 1 (34).

Let X be an sbstract M-agpace. From Theorem 2.2) the dual X' of X
is lgometric to an abstract L-gpace; thus, X' is izometric to Ll(u) for
some messure p. The space X 18 & 8(w, 1 )-apace for any XA greater than
1 (3%). Therefore, X ig & 8(»)-space. In particular, C(S) where 8 1s

& compact Hausdorff space, is a @(=)-space.
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Among the properties that the 9(p)-spaces possess, one is that they
are reflexive for 1 <p <e , Also, the conjugate of & B(1)-space is
a g(»)-space and vice-versa. It will now be shown that any 9(1)-space

has the D. P. property.

Theorem 2.31 If X is a @(1)-space, then X has the P. P. property.

Proof. There exists a Ii(u)-space Z and operators T from X to Z

and P from Z to X'' such that PP ig the canonicsl embedding of X' in
X'* (33). Let H be the canonical embedding of X' into X'''. Consider
the operstors

H Pt 7'
x' ___.}x"' ___)Z' -—-)X'

v

Thus, J'H is the identity operator on X' and (PT)'H = T'P'H = J'H .
Thus, 2' = imege (P') @ ker (') and T'P' = I on X', which implies
that T' is onto and P' is one-to-one. Hence, P'H(X') is a comple-
mented subspace of Z' snd X' is isomorphic to P'H(X'). From Theorems
2.2% and 2.5 it follows that X' has the D. P. property. Therefqre, X
hes the D. P. property by Theorem 2.3.

From the fact that the conjugete of any 8(»)-space 1z a 8(1)-space
and above theorem, we see that any Q(=)-space will also possess the
D. P. property.

The followling theorem will give a gufficient condition in terms
of the g(1)- and 9(»)-spaces to ensure a space does not have the D. P.

property.

Theorem 2.32 If X is & B-spsce that 1s isomorphic to a subspace
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of & 8(1)-space and also isomorphic to & quotient space of a 8(=)-space,

then X does not possesa the D. P. property.

Proof. Let Y be s 8(1)-space guch that X is lsomorphic to & sub-

spsce of Y. Since X is lsomorphic to a quotient space of a {(x)-space,
there exists an operator from a Q(G)-ap&ce Z onto X. Consider the
operator T a8 an operator from Z into Y. Hence, there exists an
operator U from a Hilbert space H onto X (33). Let W be the orthogonal
complement of the kernel of U. Thus, X is isomorphic to H/W. There-
fore, X is & refléxive space and by Theorem 2.1 X does not possess

the D. P. property.

It will be necessary at this polnt to define the tensor product
of two B-spaces. A more complete study of this sublJect can be found
in Schaefer (42), Day 7, or Robertson and Robertson (40). The first

definition will be that of the tensor product of two linesr spaces.

Definition 2.%3 Let X and Y be llnear spaces over the same field.

Let B(X, Y) be the linear space of 21)l bilinear meps on X x Y . For
each pair (x, y) in X x Y, the mapping U&y(f) = f(x, y) is e
linear map on RB(X, Y) and hence an element of the slgebraic dusl

»B(x, Y)'. The mapping e(x, ¥y) = ny is & bilinear map from X x Y
into B(X, Y)". The linear hull of (X x ¥) in B(X, Y)' is the

tensor product of X and Y which is denoted by X ® Y.

It is a common practice to denote the element U% v in X® ¥ by
~y
x®y , thus each element x® y is & finite sum 2 li(xi ® yi) .
If X and Y are locally convex spaces, then there are numerous ways

to induce & topology in X ® Y relative to the given topologies in
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original spaces and to the tensor product structure. A good discusaion

on this can be found in (7), (43) or (42).

Definition 2.3% Let X and Y be B-spaces. Let X® Y be the

completion of the algebraic tensor product of X and Y with the norm

I }

where the inf is taken over the set of all expresaions

m
= inf z

n
x, @y
i i kel

X
i=l X

m n

kf.lxk ® ¥y equivalent to X, @Yy -

z
i=1
The B-space X @ Y 1is the projective tensor product of X and Y.

A
Let X® Y be the completion of the algebraic tensor product of X

and Y with the norm
n n
Tx, ®y,| =suwp{Z fix)ely,): fex',geY, |f] <1, lgl <1t
i i i i : - —
i=1 {1
N
The B-space X ® Y 1is the weak tensor product of X and Y.

There is & relationship between the space C(S, X) and the wesk
tensor product of C(S) and X. Grothendieck (17) showed that these
gpaceg were isomorphic.

Grothendieck's (18) paper, which considered a cloes of (L)-speces
and (C)-spaces, takegs on more interest when it is noted that Stegall and
Retherford (Ub4) have sroved the (L)-spaces are eguivalent to the @(1)-

gpaces. This charascterization will now be given for completeness, but

the proof will be omitted.

Theorem 2.35 A B-space is & 8(1)-space if and only if for every

gpace F and closed subspace G of F the natural injection of G g X 1into

F@ X is an isomorphism.
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With the above charscterization we can now give a class of B-spaces
that will have the D. P. property. The projective tensor product of any

two of them will also possess. the D. P. property.

Theorem 2.3 If X and Y are 8(1)-spaces, then the projective

tensor product of X end Y has the D. P. property.

Proof. Let E be an arbitrary B-space &nd F a closed subspace of

E. Since X is a 2(1)-space, the natural injection of F® X 1into

3>

E @X is an lsomorphism. Thus F @X is a closed subspace of E® X
(k) FSince Y is a @(1)-space we have that the injection (Fa X) @ Y
into (E®@ X)® Y is an isomorphism. Since the injection of
(FRX)®Y into (E®@X)® Y 1is the same as the injection of

F® (X®Y) into E 6 (x 3 Y), X 3 Y is s 9(1)-space. Therefore,

X@ Y has the D. P. property.

Any $(®)-space will possess the D. P. property since its conjugate
is & £(1)-space. The weak tensor product of two Q(®)-spaces is again a

g(=)-space (21). Thus, we have the following theorem.

Theorem 2.37 If X and Y are @(®)-spaces, then the weak tensor

product of X and Y hag the DP. P, property.

Using the fact that C(S, X) 1s isomorphic to the weak tensor

product of C(S) and X we have the following.

Theorem 2.38 If X is a 8(«)-space, then, for any compact Hausdorff

gpace S, C€(8, X) has the D. P. property.

To conclude this chapter, a table of femilar B-spaces will be given

and whether these speces possess the D. P. property. In the construction
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of the following two tables the references will Justify the conclusions
on whether the spesce has the D. P, property. All spaces, except the
last two in Table I and the last three in Table II are discussed in
(11, IV). It should be mentioned that any finite dimensional B-space
will possess the D. P. property, but these will not be included in the

tebles.



TABLE T

SOME BANACH SPACES WITH THE DUNFORD-PETTIS PROPERTY

Bpace Reference
L Theorem 2.2%, 2.3
L° Theorem 2.23%, 2.3
e Theorem 2.3, c' = zl
¢, Theorem 2.3, c; = zl
bv IVv.13%.11, Theorem 2.10, 2.7
bvo IV.1%5.11, Theorem 2.7
bs IV.13.13, Theorem 2.7
cs IV.13%.12, Theorem 2.3
B(S, I) IV.6.18, Theorem 2.2
B(S) IV.6.18, Theorem 2.2
c(s) Theorem 2.2
ba(S, %) Theorem 2.23
rea(s, £) Theorem 2.23%
Ll(s, T, ) Theorem 2.23, 2.3
Lb(s, T, u) v.8511, Theorem 2,7
Bv(I) Theorem 2.23, 2.3
NBV(I) Theorem 2.23, 2.3
Ac(I) IV.12,3
AP 1V.7.6, IV.6.16, Theorem 2.2
c" () (12, page 640)

o (8)

(12, pege 637)
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TABLE II
SOME BANACH SPACES THAT DO NOT POSSESS THE

DUNFORD-PETTIS PROPERTY

Space Reference
£p (1 <p<e=) Theorem 2.1
Lp(s, Z,u) (A<p<e) Theorem 2.1
Hilbert space Theorem 2.1
E (defined on page 10) Theorem %.29
E? Theorem 3.29

E® Theorem 2.11




CHAPIER III

APPLICATIONS OF THE DUNFORD -FETTIS PROPERTY

AND SOME SIMILAR PROPERTIES

The purpose ¢f Chapter III will be to give a brief introductien
to the Dieudonn€, V property amd the weak Cauchy V property for B-
spaceg. The relationship between the properties V, Dieudonn€ and
DBunford-Pettis, will be given. These different properties will be used
to exsmine the conditions under which certein classes of operators oen a
B space will agree., There are two tables at the end of this chapter
that give some sufficient conditions on a B space to determine whether

it will possess the D. P. property.
Dieudonn& Property

FPor spaces of continuous functions, Grothendieck (16) isclated a
property similar to the B. P. preoperty and subjected it to a similar
process of axiometization., He named this the Dieudonné property. We
shell frame our definition of this property on the bazis of Theorem 3.3,

but there will be need for the following theorem.

Theorem 3.1 Let X and ¥ be B-spaces and G a collection of bounded
subsets of X. Let K be the linear subspace of X'' generated by the
weak star (o{X'', X')) closure in X'*' of sets A in Gend T a
continuous linear map from X into ¥. Assume X < H. The following

conditions are eguivalent:

57
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(a) For each A in 6, T(A) is a set whose closure in the weak
topology of Y is compact.
(b} T''(d) © J(Y¥), where J is the natural embedding of Y into

Y"I

Proof. Assume condition (a) is true. Let A belong te G; thus,
the weak closure of T{A) is compact in the weak topology of Y. Let A
be the o(H, X') closure of A. Also T'' is continuous for o(X'', X')
and o(Y'', Y'). Let J, and J, be the natural imbedding maps of X and

X Y
Y respectively, Thus,

(g (A)) = L (T(A)) € 5 (T(A))

or

T"(;) c T(A)

Hence, T''(A) 1s contained in the o(¥'', Y') closure of T(A). Since
T{A)} is conditionslly compact in the weak topology on Y, it follows that
T''(4) is contained in the o(Y, ¥') closure of T(A). The o(X, X')
closure of Tﬂ“(§§ is & subset of a conditionally compsct set and,
therefore, T''(A) is conditionally compact in the o(Y, Y') topology

of Y. 8ince

we have
pofry ¢ \UJ @) ¥
b e G

Assume {b) is true. As we have noticed, T'' is continuous for

o(X'", ') and o(¥'', Y'). Let A be a bounded set in @. Let A°
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be the polar of A, Hence, A <A’ A H, but A°® 1is the convex
balanced o(X'', X') closure of A, which is bounded, and, therefore,
A°°% is o(X'', X') compact (47, pege 240). Hence, A° ° 1is

o(X, X') compact and the weak closure of A is also o(X, X') compact.

Thus by hypothesis, T(A) = T''(A) eand we have that the weak closure of

T(A) is compact in the weak topology om Y (11, I.5.7).

By choosing G in Theorem 3.1 te be the set of all bounded subsets
of X, then we have the following characterization of weakly compact

operators.

Corollary 3.2 ILet X and Y be B-spaces and T a continuous linear

mep from X to Y. The following are equivalent:
(a) T is weakly compact,
(®) T'*(X'') 1is a subset of J(Y), where J is the natural

embedding of Y into Y''.

Theorem 3.3 Let X be a B-space, G a collection of sequences of X,
each of which is o(X'', X') convergent in X'', and H the linear sub-
space of X'' generated by X and the limits of members of G. The
following conditions are equivalent:

(a) Any continuous lineasr map T of X into a B-space Y that

transforms members of G into weakly convergent sequences in
Y is a weakly compact operator.
(v) Any continuous linear map T of X into a B space Y such that

T'(H) €Y then T''(X'') €Y.

Proof. Assume condition (a) is true and the hypothesis of (b) is

fulfilled. Let (xi) be a member of G. By hypothesis, (xi) is
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o(X'', X') convergent in X'' to some x'' in H. Then, T(xi) = T"(xi)
is weakly convergent to T''(x'') in Y since T'' is continuous for
o(X'', X') and o(Y'', Y'). In all cases we have T''(H) € Y. Hence,
by Corollary 3.2 we have T(X'') € Y. The argument is reversible to

ghow that (b) implies (a).

Now consider @ to be the set of all weak Cauchy sequences in a
B space X Now we shall show that each weak Cauchy sequence is
o(X'', X') convergent in X''. Without loss of generality let S be the
closed unit sphere that conteins the weak Cauchy sequence (xi). Since
the closed unit sphere D'' in X'' is the G(X", X') closure of D and
also D'' is bounded, then D'' is o(X'', X') compact. Therefore, the
weak Cauchy sequence in X is o(X'', X') convergent in X''. Also, if
(xn) is o(X'', X') convergent in X'', then (xn) is o(X, X')
convergent in X,

With the above theorems and discussion we are in a position to

define the Dieudonn€ property.

Definition 3.4 A B-space X has the Dieudonn€ property (D.

property) if for every B-space Y and every continuous linear map T
from X to Y that transforms weak Cauchy sequences to weak convergent

sequences in Y, then T 1s a weakly compact operator.

.
7

{’
From Theorem 3.3 we see that condition (b) is a characterization

of the D. property. One might introduce a Dieudonn& type property
relative to any set G of directed_fanilies satisfying the conditions
imposed on Theefem 3.3. The smaller the set G is the stronger the
associated Dieudonnf property. The D. property enjoys the same

properties as that of the D. P, property given in Theorems 2.5 and
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2.11., The proof of these properties is similar to the ones given for
the D. P. property and will therefore be omitted,
The following theorem gives sufficient conditions on a space to

ensure that it will possess the D. property.

Theorem 3.5 If X be an almost reflexive space, then X possesses

the D. property.

Proof. lLet Y be a B-space and T a continuous linear map from X
to Y. Let (xn) be a bounded sequence in X. Now show that (T(xn))
is weakly sequentially compact. Let (yh) be a sequence in the set

(Txn). Thus, there exists a bounded set of x such that

T ( X, ) = y for each m .

Since X is almost reflexive, there exists a weak Cauchy subsequence
(xk) of (xm). Thus, if (T(xk)) is weakly convergent, then it

follows that T is weakly compact. Hence, X possesses the D. propefty.

The above theorem is a generalization of some work by Edwards

(12, pege 646) We have the following interesting corrollaries.

Corollary 3.6 Every reflexive space has the D. property.

Corollary 3.7 If a B-space X is such that the bounded sets in X

are weakly metrizaeble, then X possesses the D. property.

Proof. Let X be such a B-space. Thus, X' is separable (11,

v.5.2). Therefore, it follows that X is almost reflexive by (31).

Theorem 3.8 Any B-space X which is weakly complete and possesses

the D. property is a reflexive space.
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Proof, Let T be the identity map on X. Thus, T sends week Cauchy
sequences inte weakly convergent sequences. Hence, T is weakly compact.
Since X has the D. property, T is a weakly compact operator. Thus, X

is a reflexive space.

A consequence of this theorem is that the only abstract L spaces
that possess the D. property are those that are reflexive., Thus, L
does not have the D. property unless it is finite dimensional.

One final remark on the P. property. The following is an example‘
of a B-space that possesses the D. property but is net almest
reflexive. One of the main results of Grothendieck (16) is that for
any compact Hausdorff space § then C(S) has the D. property. Using
the definition of almoest reflexive and part nine of the main theorem
in Pelczynski and Semadeni (39), it is readily seen that C{ [0, 1] )

is not almost reflexive.
Property V

A consequence of Theorem 1.15 is that every weakly compact linear
operator between B spaces sends weakly uncenditionally convergent
(w.u.c.) series into an unconditionally convergent (u.c.) series.
Pelczynski (36) studied the converse of the above problem, He defined

a property V and made a systematic study of this property.

Definition 3.9 A B space X has property V if it satisfies one of

the following conditions:
(a) For every B space Y, every u.c. operator T from X to Y is

also a weakly compact operator.
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(b) For every subset K' of X' which satisfies the condition
lim sup x'(xn) = 0
n x'eK'
for every w.u.c. series I X, in X, K' is weakly sequentially

compact in the weak star topology of X',

The two conditions in Definition 3.§Nare proved te be equivalent
by Pelezynski (36). Some of the basic properties of the property V
are proved in his paper. Ome of the main results by Pelczynski in (36)
is that for any compact Hausdorff space S, C(8) has property V. It is

easily seen that every reflexive space has property V from (11, VI.%.3).
Weak Cauchy V Property

Howard (22) has proven that given B-spaces X and Y with T' a weak
Cauchy operator from Y' to X', then T is a u.c. operator frem X to Y.
This led him to defline a property that he calls the weak Cauchy V

property.

Definltion 3,10 A B-space X has the weak Cauchy V property if it

satisfies one of the equivalent conditions:
(a) @Given any B space Y, every u.c. operator T from X to Y is such
that T' is wesk Cauchy from Y' to X'.
(b) TFor every subset K' of X' satisfying the condition
lim sup x'(xn) = 0
n x'ek'
for every w.,u.c., series X X in X, K' has a weak Cauchy

seqQuence,

The proof that these two conditions are egquivalent can be found in
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(22). Since every weakly compact operator is also a weak Cauchy
operator, there is a possibility of a relationship between the weak
Cauchy V property and property V. The following theorem gives a
condition that is needed on a B-space in order to ensure the

equivalence of the weak Cauchy V property end property V.

Theorem 3.11 A B-space X has property V if and only if X has the

weak Cauchy V property and X' is weaskly complete.

Proof. Assume X has property V. Thus, X' is weakly complete
(36). Let T be a u.c. operator on X; then, T is weakly compact.
Since T' is also weakly compact, Theorem 1,10 implies that T' 1s wesk
Cauchy. Therefore, X has the weak Cauchy V property.

Assume X' is wegkly complete and X has the weak Cauchy V property.
Let T be a u.c. operator on X. The weak Cauchy V property implies that
T' is a weak Cauchy operator, For a bounded set A in Y', T'(A) is
bounded in X' since T' i3 continuous. Since T' is a weak Cauchy
operator, T'(A)} has a weak Cauchy subsequence, It follows that T'(A)
is weskly sequentially compact since X' is weakly complete. Hence, T'

is weakly compact and so 1s T. Therefore, X has the property V.

For weakly complete B-spaces we can give a characterization of the

weak Cauchy V property in terms of its conjugate space,

Theorem 3.12 Iet X be a weakly complete B space, Then X has the

weak Cauchy V property if and only if X' is almoest reflexive.

Proof. Assume X has the weak Cauchy V property. By Orlicz's

Theorem every w.u.c, series is also a u.c. series (35). Thus, every

bounded set in X' will satisfy the condition given in Definition 3.10
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(36). Since X has the weak Cauchy V property, it follows that each
bounded set in X' has a weak Cauchy sequence. Therefore, X' is almost
reflexive,

Assume X' is almost reflexive., 8ince X is weakly complete, the
v.u.c, and u.c, series are equivalent in X Thus, the closed unit
sphere S' in X' is w.u.c.-limited by (5). Since X' is almost reflexive,

it follows that X has the weak Cauchy V property.

The weak Cauchy V aleng with the property V can be uged to give

sufficient conditions for a B space not to pessess the D. P. property.

Theorem 3.13 1If X is almoest reflexive and X' has property V, then

X does not possess the D. P. property.

Proof, 8ince X' has property V, it follows that X is weakly
complete from propositions 4 and 6 of (36). From the hypothesis, X is
almost reflexive. From the Eberlein-Smulian Theorem any weakly
complete and almost reflexive space is reflexive. Therefore, X does

not have the D. P. property by Theorem 2.1,

Comparison of the Dieudonn&, Dunford-Pettis

and V Properties

Before considering seme of the applications of these different

properties, we shall examine the relationship between them.

Theorem §.1h If X is a B-space which has property V, then X has

property D.

Proof. It will suffice to show that any operator T that sends

weak Cauchy sequences into weakly convergent sequences is a u.c.
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operator.

Let T be such an operator from X to Y. Let Z xn be a w.u.c.
series in X. Let L Tyk be a subseries of I Txn . Thus, there
exists' & w.u.c, subseries I xk of » X, such that Txk = Tyk .

Hence, the sequence
n
( kfl xk)
is wesk Cauchy, PFrom the property of T, it follows that
n
(5%

is weakly convergent in Y. Therefore, every subseries of I Txn is

weakly convergent in Y Hence, T is a u.c. operator.

This is the only generel relationship that exists between these

properties. The following examples will verify this,

Example 3.15 If X has the D. property, then X does not neces-

sarily have the property V. Consider the space E defined in Example
1.20. Since E is almost reflexive, it followe from Theorem 3.5 that

E has the D. property. Assume E haes the property V. From Theorem
3.11, E' is weakly complete. Also, E' is almost reflexive. The
Eberlien—8mulian Theorem implies that E' 1s reflexive. Therefore, E is
reflexive, which is a contradiction. Hence, E does not have the

property V.

Example 3.16 If X has the D. property, then X does not

necesgarily have the D. P. ﬁroperty. Conslder the space 52. Since Le
is almost reflexive, Theorem 3.5 implies 12 has the D. property.

Theorem 2.1 yields that 12 does not have the D. P, property.
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Example 3.17 If X has the D. P. property, then X does not

necessarily have the D. property. Comnsider the space {. This space has
the D. P. property from Theorem 2.23. From Theorem 3.8 it follows that

L does not have the D. property.

Example 3.18 If X has the property V, then X does not necessarily

have the D. P. property. Let X be an infinite dimensional reflexive
B-space. The space X has property V (11, VI.4.3). From Theorem 2.1, X

does not have the D. P. property.

Exemple 3.19 If X has the D. P. property, then X does not

necessarily have property V. The space £ has the D. P. property by

Theorem 2,23, Assume { has the V property. The conjugate space of {
is 4 which is not weakly complete by (11, IV 13.5). This contradicts
Theorem 3.11, which implies that Lw is weakly complete. Therefore, {

does not have the property V.
Applications of These Properties

Five different operators were defined in chapter one and their
relation to each other was given in general for a B-space., Now we plan
on investigating what happens to these classes of operators when some
of the properties discussed in this chapter are sdded to the domain or
range space. Also, with the addition that a B-space has one or some
combination of these properties, some classic and interesting results
are easily obtained.

The next theorem gives conditions on the demain, X, and renge, Y,
spaces in order that all continuous operators from X to Y are exactly

the weakly compact operators.



68

Theorem 3.20 Let X be a B-space that possesses the D. property and

Y a B-space that is weakly complete. If T is a continuous linear map

from X to Y, then T is weskly compact.

Proof, The continuity of T implies that T transforms weak Cauchy
gequences into the same type sequences., From the property of Y, these
weak Cauchy sequences are weakly convergent, Thus, it follows thaf T 18

weakly compact since X has the D. property.

If 1t is known that X has both the D. and D. P. property (for
example, C(S) where 8 is a compact Hausdorff space), then an even more
remarkaeble statement can be made about any continuous linear map. The

following theorem gives this result,

Theorem 3.21 Let X, Y be B-spaces such that Y is a B-space which

is weakly complete and X possesses both the D. arnd D. P. properties. If
T is a continuous linear map from X to Y, then T is completely

continuous,

Proof. From Theorem 3.20, T is weakly compact. Since X has the

D. P. property, T is completely continuous.

Now consider a space which possesses the D. P. and V properties.

The following theorem gives some equivalences between operaters.

Theorem 3.22 lLet X be a B-space which poasesses the V and D. P.

properties, ILet Y be any B-space and T be any continuous linear mep
from X to Y, then the following are equivalent:
{(a) T is a u.c, operator.

(v) T is a weakly compact operator.
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(¢) T is a completely continuous operator.

Proof. (a) implies (b). This implication fellows since X has
preperty V.

(b) implies (c). Since X has the D. P. property we see that this
implication is true.

(c) implies (a). Using Theorem 1.13 this result follows imme-

distely.

Seme examples of spaces that possess both the V and D. P.

properties are B(S), C(8), ¢, ¢ 2., and L (8, £, u). An

0)
interesting question now arises. Is 1t possible for the class of u.c.
operators to coincide with the compact operators? The following

theorem answers this question pesitively.

Theorem 3,23 Let X be a B-space that 1s almost reflexive and
possesses the V and D, P. properties. If T is a u.c., operator frem X

to any B-space Y, then T is also a compact operator.

Proof. let T be a u.c. operator. Using Theorem 3.22 we have T is
completely continuous. Now show that T is compact. Since X is almost
reflexive, any bounded sequence in X will contain a weak Céuchy sub -
sequence (xn). Now (xn) is weak Ceauchy if and only if (xk - xm)
converges weakly to zero for each subsequence (xm) and (xk) of (xn).
Hence, (Txk - Txm) converges to zero and this is true if and only if
(Txn) is a Cauchy sequence. By the completeness of Y, it follows that

(Txn) is convergent. Therefore, T is a compact operator.

Some exsmples of spaces that are almost reflexive and possess the

Vand D P. properties are c_, c, and C(S) where 8 is a compact
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Hausdorff dispersed space (that is, $ is dispersed if it contains no
non-void closed subset E which is dense in itself).
\;
One can obtain results similar to those of Theorem 3.22 by using

the weak Cauchy V property along with the D. P. property.

Theorem 3.2h Let X be a B-space that possesses both the weak

Cauchy V and D. P, properties, Let Y be any B-space and T a continuous
linear map from X to Y; then, the following are equivalent:

(2) T is a u,c. operator.

(b) T' is a weak Cauchy operator.

(¢} T is a completely continuous operator.

Proof. (a) implies (b). From the fact that X has the weak Cauchy
V property, this implication follows readily.

(b) implies (c). This implication follows from Theorem 1.26 part
(g) and X possessing the D. P. property.

{c) implies (a). This is emsily seen by Theorem 1.13.

Kow we shell Investigate the conditions under which norm and weak
convergence correspond in a B-space, In the next two theorems we shall
find a class of B-spaces where these two types of convergence will

agree.

Theorem 3.25 Let X be a B-space, then the following conditions
are equivalent:
(a) Weak and norm convergence correspond in X.
(b} Every operator T from X to Lm {the space of bounded
sequences) is completely continuous.

{c) TFor every sequence (xn) that converges weakly to zero in X



and for every bounded sequence (xé) in X!
' =
Lim x! (xn) 0.

Proof. (a) implies (b). Let (xn) be a sequence in X that
converges weakly to zeré. By hypcthesis, (xn) is norm convergent to
zero. Since T is ceontinuous, (Txn) is norm convergent. Therefore, T
is completely continuous,

(b) implies (c). Let (x;) be a bounded sequence in X'. Define

T1

T(x) = xi(x) for x in X. By the Uniform Boundedness Principle we have

xﬁ(x) is en element in 4 . By assumption, T is completely
continuous. Let (xm) be a sequence in X that converges weakly to
zero., Thus,

limiTx i = 11nsup|x'(x)| = 0.

m B m n nonm

! =

Hence, lim x! (xn) 0.
(c) implies (a). It will suffice to show that every map T from

X to an arbitrary B-space Y is completely continuous, ILet (xh) be a
sequence in X that converges weakly to zero. Let (yé) be a sequence

in Y' such that

‘ = 1 and yi(Ix ) = HTan for each n.

Define xé = T'yé ..

Since T' is continuous, the sequence (x&) is bounded and
liquxnﬂ = 1inﬂy;1('rxn)| = linl‘l" yx';’(-xn)‘

11mim'y;1(xn)| = lim|xl;(xn)| = 0.
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Hence, T is completely continuous. Thus, the identity on X is
completely continuous and it follows that weak and norm convergence

correspond in X.

In view of this theorem we can give a condition on the conjugate
space such that the D, P. property will be equivalent to the cor-

responding of the norm and weak convergence in the space.

Theorem 3.26 Let X' be almost reflexive., The follewing are

equivalent:
(a) Weak and norm convergence correspond in X.

(b) X bhas the D. P property.

Proof. Assume X has the D. P. property. Let T be the ldentity
from X to X. Thus, T' is the identity from X' te X', The map T' is
weak Cauchy since X' is almost reflexive. From Theorem 1.26 part (g)
it follows that T is completely continuous. Therefore, weak and norm
convergence correspond in X.

The converse follows from Theorem 3.25 and Theorem 1.26 part (d).

The following are seome consequences of these two theorems., Given
any B-space such that weak and morm convergence agree, this space will
have the D. P. property. From Theorems 2.1 and 3.26 we can see that

for any reflexive space the weak and norm convergence 4o not agree.

Theeorem 3.27 Let X be almost reflexive. The following conditions

are equivalents
(a) Weak and norm convergence correspond on X'.
(b) X has the D. P. property.

(c) X' has the D. P. property.
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Proof. (a) implies (c). This implication follows from Theorem
3.25.

(c) implies (b). This implication follows from Theorem 2.3.

(b) implies {a). Let T be the identity mep from X to X. Since X
is almost reflexive, T is weak Cauchy. Since X has the D. P, property,
T' (which is the identity from X' to X') is completely continuous.

Therefore, weak and norm convergence correspond om X',

The above theorem has some interesting corolleries. Among these is
a result of Pelczynskl given in the following corollary. Corollary 3.29
then gives sufficient conditiens to ensure that a space does not possess

the D. P. property.

Corollary 3.28 Let X be a B-gpace that possesses the D. P.

property. Let A be a complemented subspece of X and suppose that the

annihilator

1-\\'L = { x' s x' eX', x(A) =0 }

is separable; weak and norm cenvergence correspond on A

Proof. Let P be a projection from X onto A. Thus, the quotient
space X/A is linearly homeomorphic with the kermel of P, ker P.
Since the subspace ker P ig complementary to A, it is complemented
in X. Therefore, ker P has the D. P. property froem Theorem 2.5. ‘The
conjugate space to X/A can be naturally identified with Ala. Since
A'L is separable, we have that (ker P)' = A'L and (ker P)' is
separable. The ker P is almost reflexive by (31). Using Theorem
3.27, it follows that wesk and norm convergencé agree on

1
(ker P)' = A
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Corollary 3.29 If X 1s an infinite dimensional B-space such that

X and X' are both almost reflexive, then X does not have the D. P.

property.

Proof. Assume X has the D. P. property. Theorem 3.27 implies
that X' is weekly complete., By the Eberlien-Smulian Theorem, any weskly
complete and a1most_ref1§xive space 1s reflexive. Bince no infinite
dimensional reflexive Baﬁ%ch space has the D. P property by Theorem
2.1, this implies X does #gt hgve the D. P. property. This is a

contradiction,

The Dunford-Pettis Property and Weakly

Compactly Generated Spaces

Some of the recent work that has been done with the P, P. property
is by Rosenthal (41). He also used the concept of weakly compactly

generated B-spaces that was develeped and studied by Lindenstrauss

(32).

Definition 3.30 A B-space X is weakly compactly generated,

denoted by W.C.G. if there exists a weakly compact subset of X whose

linear span is dense in X.

Among the basic properties that Lindenstrauss proved were theses
complemented subspaces of a W.C.G. B-space are also W.C.G., and if X
is a W.C.G. B-space and Y is isomorphic to X, then Y is s W.C.G.
B-space, Further properties of W.C.G. B-spaces can be found in (32).

S8ince the closed unit sphere in a reflexive space is weakly
compact, it follows that & reflexive space is a W.C.G. space. Let X

be a separable Banach space and (xn) be a countable dense subset of X.
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Define for each n,

Thus, (yn) L {o} is a compact set and, thus, weskly compact., There~
fore, X is a W.C.G. space, Hence, the W.C.G, spac=s are generalizations
of the reflexive and separasble Banach spaces.

Rosenthal (41) has taken the concept of W.C.G. B-spaces and

generalized a result given by Grothendieck.

Theorem 3.31 Let X be a B-space that possesses the D. P. property.

If X is isomorphic to a subspace of a weakly compactly generated

conjugate B-space, then weak and norm convergence correspond in X,

Proof. First, we shall observe that for any sequences (xn) and
(xﬂ) in X and X', respectively, such that (xn) converges weakly to zero
and (xﬁ) is weak Cauchy, then xg(x) converges to Zero. Suppose'not,
thus without loss of generality (otherwise a subsequence could be used)
assume xﬁ(xn) converges to L where L is non-zero. Since (xn) converges

weakly to zero, we may choose a subsequence (xnk) of (xn) such that
N -
lim x} (xnk) 0

Hence, (xn -x converges weakly to zero (16). Since X has the D P,

nk)
property, it follows that

t - L \H
Thus y

X! X converges 1o zero
nk ( nk) g ° ’
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vhich is a contradiction.

Since the D. P. property is preserved by isomorphism (Theorem 2.7),
we may assume there exists a B-space Y such that Y' is W.C.G., and X is
a subset of Y¥', Let (xn) be & sequence in X that converges weakly to
zero and suppose (xn) does not converge to zero. Thus without loss -of
generality (passing to a subsequence if necessary), we may assume there

exists a t greater than zero such that
Ixnl > t for all n.

For each n, choose a Y in Y such that

[}
=

Pnl and |xn@h” > t .

This is possible since 8 is a subset of ¥'. The unit ball of Y'' is
weak star sequentially compact (2). Hence, there exists a subsequence
(ym) of (yn) and a y'' in Y'' such thet (ym) converges weak star to

y''. Thus, (ym) is a weak Cauchy sequence. Define & map T from Y to

X' as follows:
Ty(x) = x(y) for all y in Y and x in X.

Since X is a subset of Y', T is a continuous map and (Tyh) is a weak

Cauchy sequence in X'. From our above observations we find that

lm (Ty,) (x)) = lmx (v) = o,

which is a contradiction. The theorem follows from the fact that a
sequence (xn) in X is weak (norm) Cauchy if and only if for every pair

of its subsequences (xk) and (xm),

(xm - xk) converges weekly (in norm) to zero.
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Bosenvhel also used the B. P, property to help him generalize the
result of Gelfsnd that Ll( [0, 1] ) is not isomorphic tc & subspace

of & separable conjugate space.

Theorem 3.32 Let y be a measure and X be a complemented subspace

of Ll(u). If 4 is finite and X is isomorphic to a conjugate B-space,
or more generally, if p is srbitrery and X is isomerphic to a subspace
of a W.C @. conjugate B-space, then weak Cauchy sequences in X are norm
convergent and X is isomorphic to a complemented subspace of

Ll( fo, 11 3}.

Proof, First consider u finite. From Theorem 2,23 L1<u) has
the D. . preperty snd is also W.C.6. since Le(u) injects denmsely into
Ll(u)g Ite complemented subspace is also W.C.G. and possesses the D. P,
property. Thus, if ¥ is isomerphic to a subapace of a W.C.G. conjugate
space, Theorem 3,31 implies that weak Cauchy sequences converge in the
norm wopeiogy of X, Thus by Eberlien's Theorem, X is separable, Now
choose a subspace of Ll(u) conteining X and isemerphic to Ll(v) for
some separacle messure vw. Hence, for such a v, Ll(v) is isemorphic
to o complemented subspace of Ll( [0, 1]} by (20, page 123).

For e general meagure p, the sbove argument and Rosenthal's (41)
Lewma 1.3 vislds that if ¥ is isomorphic to a subspesce of a W.C.G.
B-spece, then thore exists a finite measure v and & subspace Z of

il(m) with 7 isomorphic to Ll(v) and ¥ a subset of Z.

The next thzovem provides an elementary proof that every weakly
compaet subset of L@(u), for a finite measure u, is separable., Also

every W.C.0. subspace of L _(u) will be separsble.
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Theorem 3.33 If X is a B-space that is W.C.G. and possesses the

D. P. property, then every weakly cempact subset of X' is separable.

Proof, ¥First we shall observe that if K is a weskly compact

subset of the B-space X and T is a map from X' to C(K) defined by
Tx'(k) = x'(k) for all x' in X' and k' in K,

then it follows that T is weakly cempact from (11, page 490).

Now let K be a weakly compact subset of X'. From the above
observation and letting X = X' and T map X'' to C(K) as above, we have
TJ is a weakly compact operator from X to C(K) where J is the natural
imbedding 6f X into X''., Since X is W.C.G., let G be a weskly compact
gubset of X that generates X. Simnce X possesses the D, P. property,
TJ(@) is a compact subset of C(K) and, thus, a separable subset, The
subspace TJ(X) of C(K) is separable since G generates X. Let A be the
smallest closed subalgebra of C(K) which contains TJ(G) and the
constants, then A is also separable, Let s and k be distinct peints
of K. Since a compact Hausdorff space is normal, it follows from
Urysohn's Lemma that TJ(X) separates the points of K; hence, so does
A. The Stone-Weierstrass Theorem implies that A is equal to C(K).
Thus, K is metrizable in its weak topology by (11, V.5.1). Therefore,

K is separsable,

The above theorem has the following corollary. This corellary
will provide a sufficient condition for a B-space not to posses the

D. P. property.

Corgllary 3.3% If X is a B-space such that X' is weakly compactly
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generated and non-geparable, then X does not possess the D. P. preperty.

Proof. Assume X has the D. P, property. Since X' is weakly
compactly generated, the closed unit sphere in X'' is weak-star
sequentially compact (2). Let (xn) be a bounded sequence in X3 thus,
(Qh) is a bounded sequence in X'', Hence, there exists a subsequence
of (Qﬁ) which is weak-star convergent, say (Qm). Therefore, (xm) will
be a subsequence of (xn) that is weak Cauchy in X. Thus, it is seen
that X ias almost reflexive. From Theorem 3.27 it follows that wesk and
norm convergence correspond in X', The gpace X', that is W.C.G., is
also compactly generated and is, therefore, separable. This is a

contradiction and it follows that X does not have the B, P. property.

It might be mentioned that the Dieudonné and D. P. property have
been very helpful in the study of vector-valued Radon measures. The
interegted reader can find a discussion of this aleong with more
references on the subject in (12).

The following two tebles represent a collection of sufficient
conditions toe determine whether a B-space possesses the D. P. property.
These conditions are & result of the research done on this thesis and

are given in tabular form for easy reference,



TABLE IIl

SUFFICIENT CONDITIONS FOR A BANACH SPACE X TO
HAVE THE DUNFORD-PETTIS PROPERTY

(a)

(v)

(c)

(d)

(e)

()

{(g)

(n)

(1)

(3)

()

The conjugste space of X, X', has the Dunford-Pettls property.
(Theorem 2.3)

The weak and norm convergence correspond in X, ({(Theorem 3.25)

The week and norm convergence correspond in X', (Theorems 3.25,

2.3)

The space X isomorphic to a C(8) space where S is a compact
Hausdorff space. (Theorems 2.2, 2.7)

The space ¥ is isomorphic to an ebstract L-space. (Theorems 2.23,
2.7)

The space X is an sbstract M-space with unit, (Theorem 2,18)

Every weskly sequentially compact set in X' is w-limited in X',
{Tnecoom 1.20}

Every weskly ssquentially compact set in X is W-limited im X.
( Thagrrm 1.0 }

The spuce X iz a ${1)-space. (Theorem 2.31)
The space X ig a 8(®)-space. (Theorem 2.3)

The speca C(S, X), S 1s a compact Hausdorff space, has the D. P.
property. (Theorem 2.24) :
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TABLE IV

SUFFICIENT CONDITIONS FOR A BANACH SPACE X NOT
TO POSSESS8 THE DUNFORD-PETTIS PROPERTY

(v)

(c)

(4)

(e)

(£)

(g)

(n)

(1)

The space X be isomorphic to any Infinite dimensional reflexive
B-space, (Theorems 2.1, 2.7)

The space X iseomorphic te a subspace of a weakly compactly
generated conjugate B-space such that weak and norm convergence
do not correspond in X. (Theorem 3.31)

The space X' is almost reflexive and weak and norm convergence de

. not correspond in X. (Theorem 3.26)

The space X and X' are almost reflexive. (Corollary 3.29)

The space X' is weakly compactly generated and non-geparable.
{Corollary 3.3h4)

The space X' has property V and X' is separable. (Theorem 3.13)

The space X is weakly complete and has property DP. (Theorems 3.8,
2.1)

The ;pace X' has property V and X is almost reflexive. (Theorem
3.13

The space X is isomorphic to a subspace of a £(1)-space and also
iscmorphic to a quetient space of a @(w)-space. (Theorem 2,32)




CHAPTER IV
SUMNARY AND SONE OPEN QUESTIONS

The main purpose of this thesis is to give some characterizations
of the Dunford—Pettis property and examine some of its applications in
the field of functional analysis. Some of these characterizatioms are
given in terms of operators., There are two main results given in
Chapter I. One is the Venn diegrem, which demonstrates the inter-
relations among the compact, weakly compact, weak Cauchy, completely
continuous, and unconditionally converging operators. The other is
given by Theorem 1.26, which consists of the characterizations of the
Dunford-Pettis property.

Some of the very basic properties of the Dunford-Pettis property
are given in Chapter II. It is peinted out that some of the permanence
properties ef the Dunford-Pettis property consist of isomorphism,
complemented subspaces, and finite topological direct sums. Among the
non-permanence properties are subspaces, quotient spaces, inductivé and
proJective limit spaces. Tebles I and II are given at the end of
Chapter II and show whether some of the common B-spaces encountered
in an intreductory course in functional analysis have the Dunford-
Pettis property.

In Chapter III properties similar to the Dunford-Pettis property
are defined. The relationship between the property V, Dieudonné and

Dunford-Pettis properties is exhibited in this chapter. These different

R
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properties are used to help investigate when certain classes of
operators on B-spaces will agree. It is shown that for a certain class
of B-spaces the Dunford-Pettis property can be used to characterize

the property that wesk and norm convergence correspond. Table III at
the end of Chapter III is a collection of sufficient conditions to
determine that a B-space will possess the Dunford-Pettis property.
Table IV is a collection of sufficient conditions to determine that a
B-gpace will not possess the Dunford-Pettis property.

Four well-known operators have been mentioned in this paper,
namely, compact (cpt.), weakly compact (w.c.), completely continuous
(c.c.), and unconditionally converging (u.c.) operators. This paper
contains & study of the interrelationships among these operators and
their use in giving characterizations of the Punford-Pettis property.
These operators have received much consideration in the past few years
since many properties of a B-space can be described in terms of them.
Pelczynski (36) and Grothendieck (16) have shown that the property
V and the Dunford-Pettis property have been very helpful in the field
of functioenal analysis. The following is an extension of the concept

of property V and bunford-Pettis property.

Definition 4.1 A B-space X has the P(a,b) property if for every

B-space Y every a-type operator from X to Y is also a b-type operator.

The Dunford-Pettis property and property V can be represented in
terms of this new terminology by P(w.c., c.c.) and P(u.c., w.c.),
respectively, It will be noticed that the reflexive spaces have the
P(c.c., w.c.), which is in a sense the converse of the Dunford-Pettis

property.
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From Chapter I it is seen that the following relationships always

hold for operators.

N\
N

With these implications, one can easily construct the following:

P{u.c., cpt. )

P{u.c., w.c.) P(u.c., c.c. P(w.c., cpt) P(c.c., cpt.)

P{c.c., w.c.) P(w.c., c,c.) P(w.c., c.c.) P(c.c., w.c.)

Grothendieck (16) studied many properties of limited sets and
pointed out that many of these properties can be stated in terms of
the Mackey topology on the conjugate space., If it is pessible to get
a connection between the P{a, b) property and limited sets, then it
seems possible that some of the problems that are encountered in using
limited sets could possible be overcome by using operators. Similarly,
some problems involving the Mackey topology on the conjugate space
could be viewed in terms of operators. Howard (23) and Grothendeick
(16) have studied limited sets and as a result of their studies we are
able to relate operators to limited sets. @Given next will be results

from their studies.
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P{u.c., cpt.) is equivalent to
sequentially compact in X'.
P(u.c., w.c.) is equivalent to
weakly sequentielly compact in
P{u.c., c.c.) is equivalent to
w-limited in X',

P(w.c., cpt.) is equivalent to
compact set being sequentially
P(c.c., cpt.) is equivalent to
sequentially compact in X'.
P{w.c., c.c.) is equivalent to
compact set being w-limited in
P(c.c., w.c.) is equivalent to

weakly sequentially cempact in
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every w.u,c,-limited set being

every w.,u.c.-limited set being
X,

every w.u.c, -limited set being

every weakly sequentially
compact in X'.

every w-limited set being

every weakly sequentially
X,
every w-limited set being

X',

The P(a, b) property could be subjected to a systematic study by

using different classes of operators as Grothendeick (16) did the

Dunford-Pettis property end Pelczynski (36) the preperty V.

It will

now be shown how some of the P{a, b) properties are related by using

compact, weakly compact, uncenditionally converging, and completely

continuous operators.

Theorem 4.2 If X is a B-space and possesses the P{u.c., cpt.)

property, then X possesses the P(w.c., cpt.) property.

Proof, Let T be a weakly compact operator on X. From Theorem

1.15 it is seen that T is a u.c. operator and, thus, T is a compact

operator.

Therefore, X has the P{w.c., cpt.) property.
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Theorem 4.3 If X is an abstract M-space with unit, then X

possesses both the P(w.c., c.c.) and P{c.c., w.c.) properties.

Proof, From Theorem 2.18 X is isometrically isomorphic to & C(8)
space where 8 is a compact Hausdorff space. The class of weakly compact
and completely continuous opereters coincide for this space as seen by

Theorem 3.22,

Theorem 4.4 If ¥ is a B-space end possesses the P(c.c., cpt.)

property, then X possesses P{c.c., w.c.) property.

Proof, Let T be a completely continucus operator on X. Since X
has the P(c.c., cpt.) property, T is a compact operator. From Theorem
1.8, T is alse weakly compact. Therefore, X has the P(c.c., w.c.)

property.

Theorem h.@_ If ¥ is a B-space that is almost reflexive, then X

has the BF(c.c., cpt.) property.

Proof, Let T be a completely continuous operator from X to an
arvitrery B-space Y. Since X is almost reflexive, any bounded sequence
in ¥ contains & weak Cauchy subsequence (xn). Now (xn) is weak Cauchy
if and only if (xk - xk+l) converges weakly to zero for each sub-
sequence (xk) of (xn), Since T is completely continuous, (Txk - Txk+1)
converges to zero for each subsequence (xk), which is eguivalent to
(Txn) being a Cauchy sequence. Since Y is complete, it follows that
(Txn) is convergent. Hence, every bounded seguence is mapped into a
sequence that has a convergent subsequence. Therefore, T is & compact

operator.
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Theorem 4.6 If X is a B-space which has the P{w.c., cpt.)

property, then X possesses the P{w.c., c.c.) property.

Proof. Let T be a weakly compact operator on X. Since X has the
P{w.c., cpt.) property., T is a compact operator. From Theorem 1.1, 7

is completely continuous. Therefore, X has the P{w.c., c.c.) property.

Theorem 4,7 If X is a B-space that possesses both the P{u.c.,
w.c.) and P{w.c., c.c.) properties, then X possesses the P(u.c., c.c.)

property.

Proof. Let T be an unconditionally converging operator on X.
Since ¥ has the P{u.c., w.c,) property, T is weakly compact. It
follews that T is a completely continuous operator from the fact that

X has the P(w.c., c.c.) property.

Thqugg;&;ﬁx If X is an slmost reflexive B-space that possesses

the P(w.c., c.c.) property, then X' has the P(w.c., c.c.) property.

Proof. 7This is a restatement of Theorem 3.27 in the new

terminclogy.

If ¥ is an almoest reflexive B-space that possesses

both the P(u.c., w.c.) and P{w.c., c.c.) properties, then X possesses

the P{u.c., cpt.) property.

Proof, fet 7 be & u.c, operator on X. Prom Theorem 4,7 it
follows that ¥ is completely continuous. Since X is almost reflexive,
Theorem 4.5 implies that T is a compact operator. Therefore, X

possesses the Flu.c., cpt.) property.
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Theorem 4.10 If X is en almost reflexive B-space that possesses

the P{w.,c., c.c.) property, then X has the P{w.c., cpt.) property.

Proof, Let T be a weakly compact operator on X. Since X has the
P{w.c., c.c,) property, T is a completely continuous operator. From

Theorem 4.5 it fellows that T is a compact operator.

Several exsmples will now be given in order to make Table V more
meaningful. These examples will provide some of the needed counter-

examples for the table.

Example k.11 The space z” is a C{8) space where S is s compact

Hausdorff space. Let T be the identity on L; . Thus, T is a u.c.
operator if and enly if z; has no subspace isemorphic te o Since z;
is an abstract L-space, ﬁ; is weakly complete. By Orclicz's Theorem
it fellows that every w.u.c. series is also a u.c. series. Therefore,
z; does not contain a subspace isemorphic to cy (5). Hence, T is a
u.c. operator. 8ince weak and norm convergence do not correspond on

z; , T is not a completely continuous operator.

Example 4,12 The Banach and Mazur Theorem states that given any

separable B-space X, there exists an operator T that maps £ onto X. Let
X = 12 end T be a operator from 4 onto 12, Since z2 is reflexive, T is
weakly compact. Hence, T' is weakly compact and has a bounded inverse

on 4,. Thus, T' is not compact by (15).

Example 4.13 The space £ is the conjugate of a C(S) space where

5 is a compact Hausderf space, Let T be the identity on £. The map
T is completely continuous since weak and norm convergence correspond

on f. Since 4 is not reflexive, T is not weakly compact. From Theorem
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1.8 it follows that T is not compact.

Example 4,14 The space c, 1s almest reflexive (31). The space e,
has an unconditional basis (7, page 73). It follows then that s has

the property V from (36).

Example 4,15 Any operator with domein £ will be completely

continuous (31).

Example 4.16 Using the operator T given in example 4.12, it is

seen that T'' maps L; into £2 . Since T' is weakly compact, then T''
is weakly ceompact. The operator T' is not compecty thua, T'' is not
compact. The space f! has the P{w.c., c.c.) property; hence, T'' is

also completely continuous.

Example 4.17 Assume #' has the P(u.c., w.c.) property. From

Theorem 3.14 z; hag the D. property. Since l; is weakly complete, it
must be reflexive by Theorem 3.8. This is a contradiction. Therefore,

%! does not have the P(u.c., w.c.) preperty.

Example 4,18 Since £ is a conjugate B space, then £ is comple-
mented in its second conjugate, namely z; . Hence, there exists a
continuous projection T from L; onto 4. 'The range of T being 4 implies
that T is completely continuous (31). Assume T is weakly compact. The
conjugate operator T' is aleo weakly compact., The operator T' has a
bounded inverse (1k, page 61). Let S be the closed unit sphere in £_ ;
thus T'{S) is weakly sequentially compact. Since (T‘)'l is continuous,
T"l(T’(S)) = 8 1is weakly sequentially compact. By the Eberlian-
Smulian Theorem 5 is compact in the weak topology. Thus, £ must be

reflexive, which implies 4 is also reflexive, which is a contradictien,

1
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Therefore, T is not compact.

Example 4.19 The space B, is not reflexive. Assume B, has the

3 3

Plu.c., w.c.) property., From Theorem 3.11 it follows that Bé is weakly

complete, Since Bg”is separable, Bé is almost reflexive. From the

Eberlian-8mulian Theorem it follows that Bé

that BB is reflexlve, which is a contradictlen. Therefore, BS does not

possess the P(u.c., w.c.) property. A similar argument could be used

is reflexive, This implies

t0 show that £ does not possess the P{u.c., w.c.) property.

Example 4,20 The space Bé' is separable which implies that Bé is

separable, Assume B! contains & subspace isomorphic to o Hence, B!

3 3

also containg a subspace isomorphic te Lm {(5). Thus, B! is not

3

separable, which i3 & contradiction. Therefore, the identity on B§ is

a u.c. operator, Simce B! is not reflexive, the identity is not weakly

3

compact. Therefore, Bé does not possess the P(u.c., w.,c.) property.

A similsr srgument® could be used on E' te show that it does not have

the P(u.c., w.c.) property.

! are both almost reflexive,

Zxapple 4,21 The spuces B, and B3

fuesmieditosi : 3

From Corollery 3.29 it follows that B_, does net have the P(w.c., c.c.)

3
property. J¢ E% had the P(w.c., c.c.) property this would contradict

Theorem 2.3. Simiiarly for the spaces E and E'.

-

Exam?%EwE1§§; Assume B3 has the P(u.c., c.c.) property. Let T be

en unconditionally cenverging operastor on B

3" Thus T is a completely
continueug operstor, Since B, is almost reflexive, Theorem 4.5 implies

3

that T is 2 compsci operater. Hence, B, has the P{u.c., w.c.) property

3
3

vhich is a coniradiction. Therefore, B, does not have the P{u,c., c.c.)
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property. A similar argument could be used for the spaces Bé , B, and

E',

Example 4,23 If either X or Y is reflexive, then every operator

from X to Y is weakly compact (11, VI.4.3).

Example 4,24 Let T be the identity map on any infinite dimensional

reflexive space. The map T 1s weskly cempsct, but not compact.

Example 4,25 For S a dispersed space, the space C(S) is almost

reflexive {39).

Example 4.26 The B-space 4 can be identified with the space c(s)

vwhere 8 is the Stene-Cech compactification of the positive integers,

The conjugate space of L@ is an abstract L-space and thus S is not
dispersed (39). Therefore, 3 contains a non-void perfect set. The
space 12 is separables hence, there exisis a continuous linear map T
such that T maps 4_ onto 4, (30). This map is weakly compact since

£2 is reflexive., Assume T is a compact operator. The conjugate map

T' is also compact. The operator T' has a bounded inverse {14, page 61)
Let 8 be the closed unit sphere in 52 , thus, T'(S) is sequentially
compact, Since (T')*l is continuous, ('r‘)-l T'(8) = § 1is a cleosed
and sequentially compact set in £2 and is, therefore, compeact (11,
1.6.13). Therefore, 4, must be finite dimensional which is a

contradictioen,



TABLE V

BANACH SPACES AND THE P(a, b) PROPERTIES

Space

P(u.c., cpt.)

P(u.e,, w.c.)

P(u.c., c.c.)

c(s)
§ compact Hausdorff

(c(s))"
5 compact Hausdorff

By {ref. (13))

Reflexive
Almost Reflexive

c(s), S dispersed

Ho (Ex. k.,26)

No (Ex. 1.17)
Yee (Th. 4.9)
Fo (EBx, 1.17
¥o (Ex., L4.26)
Fo (Ex. 4.16)
No (fh. L.2)
¥o (Ex. 1.20)
¥o (Th., 4.2)
fo (Th., 4.2)
Fo (Ex. 4.24)

oo

Yes (Th., 4.9)

Yes {Th, 3.22)

¥o (Ex. 1,17)

Yee {Ex, 4,14}

 Fo (Ex, 1.1T)

Yes (Th. 3.22)

No (Ex. 4,17)

No (BEx. 4.19)

No (Ex. 1.20)

¥o (Ex, 4.19)

Fo (Bx. 4.20)

Yes (Ex. 4.23)

Yes (Th. 3.22)

Yes (Th, bk.7)

N¥o (Ex., 4.11)

Yes {Th, 4.,7)

Yes (Bx, 4.15)

Yes {Th. 4.7)

¥o (Ex, k,11)

No {Ex, 4.22)

No (Ex. 1.20)

No (Ex. k.22)

Fo (Ex, 4.22)

No (Ex, 4.2h)

Yes (Th., L4.7)




P(w,c., cpt.)

P(c.c., cpt.)

P(w.c., c.c.)

P(c.c., w.é.)

No (Ex. 4.26)

No (Ex. h.12) .

xés (Th. k.10
ﬁo (Ex, &.12)
No (Ex. 4.26)
Fo (Ex. 4,16)
No (Th. 4.6)

No (Th. 4.6)

o (Th. 4.6)

" Fo (Th, %.6)

No (Ex. 4.,2k)

Yes (Th. 4,10)

No (Ex. 4,26)

No (Ex. %.13)
Yes (Th. 4.5)
No (Bx. 1.18)
No (Ex. 4.26)
No (Ex. h.lg)
Yes (Th. b.5)
Yes (Th. 4.5)
Yes (Th. k.5)
Yes (Th. 4.5)
Yes (Th. 4.5)
Yes (Th. L.5)

Yes (Th. L4,5)

Yes (Th., 2.2)

Yes (Th, 2.22)

 Yes (Th. 2.3)

Yes (Th. 2.22)
Yes (Th. 2.2)

Yes (Th. 2.22)

Fo (Ex. 4.21)

Ko (Ex. 4.21)

Fo (Ex. 4.21)
No (Ex. 4,21)

No (Th. 2.1)

Yes (Th. 2.2)

Yes (Th. L4.3)

No (Ex. 1.17)

Yes (Tﬁ; L.5)

No (Ex. 4.13)

Yes (Th. 4.3)

No (Ex. k.19)
Yés (Th. %.5)
Yes (Th. L4.5)
Yes (Th. k.5)
Yes (Th. 4.5)
Yes (Th. 4.5)
Yes (Th. L.5)

Yes (Th. L.3)

a3
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Open Questions and Partial Results

The remaining part of this chapter will deal with some of the open

guestions that involve the D. P. property.

(a) OCne of the outstanding open questions dealing with the D. P.
property is the conjecture that if X has the D. P. property, then X'
has the D. P. property. Partiasl results on this open question are
given by Theorems 2,18, 2.23, 2.31 and 3.27, ¥rom these results it can
be seen thaet for & possible counterexeample we shall need a B-space that
is not one of the fsmilisr ones studied in an introductery course in

functionsl snalysis.

(b) Pelezynski (38) introduces the notions of weakly compact
polynomial and multilinear operstors. He investigated conditions on
a B-space, ¥, under which every weakly compact pelynomial operator on
X can map weuk Cauchy sequences inte strong Cauchy sequences. Any
B-space that has this property is said to have the polynomial Dunford-
Pettis (P. D. P.) property. The conjecture was that necessary and
sufficient conditions for X teo have the P. D. P. property is that X
possess the B. P, property. It was proved that every polynecmial
(multilinear) wpevator with real or complex values defined on a space
that possessed the D. P. property has the P. D. P. property.

The following are open guestionsg:

(1} Does every B-space satisfying the D, P. property also have

the P. D. P. property?

{1i1) Let ¥ and Y be B-spaces with the D. P. property. Does the

projective tensor product of X and ¥ have the D. P, property?



It follows from Corollary 5 in Pelexynski's (38) work that the
positive answer to (ii) implies a positive answer to (1). A partial

result to question (ii) is given by Theorem 2.36.

(c) Dobrakov {10) has posed the following open question. Let S
be a locally compact Hauedorff space and X a B-space. Let CO(S, X)
be the B-space of all X valued continuocus functions on T tending to
Zero at infinity with the sup-norm. The importent open question and
at the same time very difficult one is as follows: If X has the
Dunford-Pettis property, does GO(S, X) also have this property?
Partial results to this questior are given by Theorems 2.25, 2.28,

and 2.38.

(d) The last open question mentioned here deals with Theorem 3.31.
From this theorem and the Eberlien-Smulian Theorem it follows that if X
satisfies all the hypothesis of Theorem 3.31, then every weakly compact
subset of ¥ is norm-compact and, therefore, separable., Thus, if X is
assumed to be W.C.@., then ¥ must be separable, Rosenthal (41) has
conjectured that separability of X should follew without this

additional assumption.
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