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PRE1ACI 

'l'h11 di11ertation deal• with real El&nach 1pace1 and linear ma.pi 

from one to another. All mappince are continuous unle11 1pec1r1ed 

otherwise. It is the pµrpoae of thi1 paper to give various charac

ter1zation1 of the Dunford-Pettis property aa well aa some of the 

applioat1on1 or th11 property. Two table, are provided in Chapter II 

or some of the moat common Banach spaces and. whether ea.ch epace ha1 the 

Dun:t'o:rd-Pett:1,· property. Since the concept ot the Du.nford.-Pett11 

property ha.I been involved in a recent flurry ot activity by eome of 

the lea.ding 1tud.ent1 of functional anal:,111, it 11 111.hope that 

students in analy11s with interest in the Dunford·Pett1s property will 

find this cl111ertation ot benefit. 

The desired audience for th11 paper is the student who has 

completed a six hour course in functional analysis. 'l'Jle reader should 

have an understanding of Chapters II, IV, V and VI of Dunford

Schwartz's (11) book, since it vill be referred to often. The notation 

and terminology in this paper will rather closely :follow that in (11). 

The references used in the form (11, tv.3.7) will refer to number 11 

in the bibliography while IV is the chapter number, 3 is the section 

and 7 is the theorem number in section 3. 

Chapter I is concerned with the relatio~hips among the following 

operators: unconditionally cortverging, completely continuous, weakly 

compact, compact and weak Cauch.v. Some of the characterizations of the 

Dunford-Pettis property will be. given in terms of the.se operators. 
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Chapter I! cotrtft.ifiis 'bi?i.t:k th~O!l'{!IIS. ,;,erta.i·rd:,ng to tbe Dunford

Pettis property. Some of the permanence properties o~ the Ddnford

Pettis property are aJ.SlO examined..o It :.ta determined whether or not 

the most common &1.mach. ~pace$ ~tudied in ~n introductory course of 

functional a.nalysia have the Dunford-Pettis property~ Some gener11l

ization5 are con~idered of the :&ma.ch ~pace C(S), where S is a compact 

Hausdorff 6pace 3 &nd 1i_{µ). These generalization~ are involved in 

various open queBtio:ns involving the Dunford-Pettis property. 

Chapter III deals with some propertiea:i the.t are similar to the 

Danford-Pettis propertyo A very brief treatment i~ given to the 

Dieudonne, v, and weak Cauchy V properties: and ~ome of their appli.= 

cations will be applied in the ~tudy of lin51" operator$ on Ba.Mch 

spaces. There s,irie two tables at the end of this chapter that give 

some ~-u:fficient condition~ on a Bamtcb space to determine whether it 

will po~se~s the D.llnford=Pettis property. 

Finally_~ Ch.~pter. IV conte,ins a summary e.nd s li~t of aome open 

questiollll.5 i.nvolv!ng the l).mford-Fettis property" A generalization of 

the idea of the Du!Krt'ord.=Petti~ property i~ con~idered in this chapte:ro 

A table of Bei.l1:ilach ~p$.cee, is provided and it i&; determined whether these 

wpace~ have v~l"iou..ri propertie~ q AJ.~o included in the open questioM 

are some pa:rti~l ~~~ult$o 

I wish to expreH my app:red~.tion to all who have helped me in the 

preparation and writing of' this dissertation. Particular gratitude is 

due to D.ro Joe ffo~~:rd, my dissert&tion advisor~ who not only made 

valuable ~ugge6tionli! concerning this. paperJ but is al~o re~ponsible for 

my intere~t in this topic~ A special thanks alsso goe~ to D:ro E,, IC, 

Mctachlan, Dr o John ,Jobe, Dr o Robert Alciatore snd Dr q Vernon Troxel 
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.for serving as members of my advisory committee. 

Finally, I expreeia my appreciation to my wife, Phyllis, and two 

sons, Charlea and I>e.:ldd_, for their pa,tience and under~tanding through

out my graduate work. 
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· CHAPTER I 

' OPERATORS AND THE DUNFORD-PE'lTIS PROPERTY 

In addition to the most common operator$, compact and weakly 

compact, several other opera.tors have been ~tudied :in recent years. 

Lacy and Whitley (31) studied the completely continuous operators; 

}loward (22) studiedt the weak Cauchy operators and both Pelczynski (36) 

a.nd Howard (24) studied the uncondi tiona,lly converging operators. 

The pu:rpo~e of this chapter is to de.fili'Ae five different type8 of 

opera.tor~ and to exhibit a Venn diae;ram that will defiicribe their 

interrelation. TheSJe operators will then be used in giving some of 

the characterization~ of the Dunford-Pettis property. With these 

obJectives in mind, we !ilhall proceed in giving the necessary definitiomi 

11,nd :facts for defining these operators. 

!:;~~:1.:~~-, Ll: Let X be a Banach space (B~~pace)~ A series 

I: x1 in X i© ll!nconditiooolly convergent (u.c.) if for each subseries 

of :E x1 , tbie:t·e exbt~ sn,1 elcement x in X such that the subseries 

<.'t>nverges to x., the convergence being relative to the topology on X. 

Each of the following conditions is proved eq_tdvalent to 

Definition lol in (35). 

(a) A ~eries I: x1 in X is subaeries convergent relative to the 

weak topology on x. 

Let S :: { I: x1 i belongs to F and F 8.. finite set }· 
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(b) The veak closure of S is compact in the wesk topology for x. 

Definition 1.2 Let X be a B .. space. A series E xi o;f elements 

in X 1.s weakly unconditionally convergent (w.uoc.) if for every 

continuous linear functional, x' in the conJugate space of x, X', the 

s:eries Ejx' (x:1) I is finite. 

Operators 

In this section of Chapter I the different operators will be 

defined a.nd the relationship given in Figure l will be. deveioped. 

Definition l~) Let X and Y be B-spaces. A linear operator T 

from X to l is unconditionally converging (u.c. operator) if T maps 

every w.u.c. series in X into a u.c. series in Y~ 

2 

Definition 1.4 Let X and Y be B-spaces. A linear operator T from 

X to Y is completely continuous ( c .c ~ operator) if T maps weak Cauchy 

sequences in X into norm convergent sequences in J. 

Definition 1.5 Let X and Y be B-spacea and S the closed unit 

sphere in x. A linear operator T from X to Y is a compact operator 

{cpt. operator) if the strong closure of T(S) is compact in the strong 

t,opology for I.. 

A useful cha,ra.cterization of a compact operator is that it takes 

bounded sequences into sequences which have a convergent subsequence. 

It will also be noticed that if X is a re.flexi,ve space, then the c .c. 

and cpt. operator11, agree. Since much of the ea.rly work in functional 

analysiS> wa1?J done in the setting of a Hilbert s;ps.ce, which is reflexive, 

no distinction was made between these two operators. Later it will be 



itih~n thiilt the cl:ll!~i!Z of completely continuoua 1.1nd. com1t1,ct operators do 

not agree in general for :ainach spaces. 

Definition 1.6 Let X and Y be B-spacee and S the closed unit 

sphere in x. A linear operator T from X to Y is weakly comps.ct (w.c. 

operator) if the weak closure of T(S) is compact in the weak topology 

of Y. 

The Eberlein-Smulian Theorem gives a very useful characterization 

of weakly com,pact operators, which is as :follows: a linear operator is 

weakly compact if and only if it maps bounded sets into weakly 

sequentia1ly compact sets. 

The la.st operator to be defined was originated a.nd studied by 

Howard (22). 

Definition 1.7 Let X and Y be B-spaces. A linear operator T 
<WO\>«e xrm 

from X to Y is weak Ca;'Olcby ( w. Cy. operl(l!.tor) i:f' T maps bounded sequences 

of X into ~eoJuences in Y which h$ve a weak C~uchy subsequence. 

The following theorems a.nd examples will enable us to see how the 

ab~~e defi~ed operato~~ are related to each other. 

Theorrem L8 Every compact operator is also weakly compacto 

Proof. Let T be~ compact operator from X to Y and S the closed 

unit ~phere in Xo The ~trong closure of T(S) is compact in the norm 

topology. From the duality between X and X' the closed convex sets in 

the weaik and norm topology are the same~ The norm topology being 

stronger than the weak topology implies that the weak closure of T{S) is 

comps.ct in the weak topology~ Therefore, T is a weakly compact operator. 
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Not every weakly compact operator is a compact operator. Let X be 

a infinite dimensional reflexive B-space and T the identity on x. Since 

Xis infinite dimensional, the closed unit sphere, S, is not compact 

(7, page 40). Since X is reflexive, it follows that S is weakly compact 

(47, XIII,4.l). 'lherefore, Tis a weakly compact operator which is not 

a compact opera.tor. 

Definition 1.9 AB-space Xia almost reflexive if every bounded 

sequence in X contains a weak Cauchy subsequence. 

The a.bove definition is a generalization of a reflexive space. Let 

X be a reflexive space and (x) a bounded sequence in X, the sequence 
n 

(xn) is we&kly sequentially compact (11, II.3.28). Therefore, Xis 

almost reflexive,, The B-space of null sequences, c0 , is not reflexive, 

but c0 is al.most reflexive (31)~ 

It should be noted that by the Eberlein...Smulian Theorem, a wealtly 

complete space which is almost reflexive is reflexive. 

Theorem l olO Every weakly compact opera.tor is a weak Cauchy 

operator. 

Proot'.. Let T be fl!, we!!kly compact operator from X to Y and (x ) 
-- n 

a bounded sequence in x. The hypothesis :!.mplie~ that (Tx0 ) is weakly 

sequentia,lly compact in Y ~ The sequence (Txn) hae a subsequence which 

is weakly convergent to a point in Y and thus, is a weak Cauchy sub

sequence of (Txn)e 'l'herefore, Tis a weak Cauchy operator. 

The converse of the previous theorem is false. Let T be the 

identity on the B-space of null sequences, c. Let S be the closed 
0 

unit sphere inc • Since c is not reflexive. it follows that Sis 
0 0 ' 



not weakly compa,ct. Therefore, T ii not a1 we!'!!kly compact operator· It 

follOWf{j th~t T ii=;. ~ i1e~k Cauchy operat(.l:r from the fact that c0 is 

'· almost reflexive. 

Theorem l~ll Every compact operator is completely continuous. 

Proof. Let T be a compact opera.tor from X to Y. Let (x) be a 
n 

weak Cauchy sequence in x. Let (m) and (k) be subsequences of' the 

indices of {x ) • The sequence (x - x. ) converges weak).y to zero n m .1t 

from {16, page 130)" Since T is compact and weakly continuous, it 

follows that T(xm - '1t) is no1'm convergent to zero., Hence, (Txn) 

15 a Ce,uchy sequence in Y and, therefore., e. norm convergent sequence. 

F'I'OOi the following exa,mple, it can be seen th&t the converse of 

the above theorem 1~ fi11ltH!0 Let T be the identity map on the B-space 

of all absolutely convergent sequences, t. Any map with domain or 

5 

range t i~ completely continuous (31). Since I, is in:finite dimensional, 

the cloaed unit sphere ~n tis not compact. Therefore, Tis a 

completely contimJOU$ opera.tor, but not a com,pei.ct operator. 

The :followi,ng tlleorem gives a very useful ch~racterization of a 

uwc. oper$,tor o Thi~ theorem em..bles u.c to represent some of the known 

Theorem 1.12 The linear map T from X to Y 1~ a u.c. operator if 

and only if' T has no bounded inverse or.:, a i>ubepace E of X which is 

linearly homeomorphic to c0 • 

Proof'. AHume T 1$ not ai. u. co operai,tor 0 Tb.us, T hal5 & bounded 

inverse on a ~ubspace 18omorphic to c by (37). 
0 

Conversely, let T beau.co operator a~d assume T ha~ a bounded 



Conversely, let T be & u.c. operator and assume T ha~ a bounded 

inverse on ~. isubapace E, that i!!1l i~omorphic to c0 • Let I: x be a n 

w.u.c. S(eries in E, then it is all!o e. w.u.c. Sl!!!ries in x. Since T irs 

& u.c. oper~tor,. E Txn, :ta a u.c. aeries in T(E). But {Tjlil)-1 ~ T-~ 

is bounded ,and ther'.f?:for~ :ec.m:tinuous:. Ala.o, T-El(!: x ) = t x .· is a n n 

u.c. series since continuous maps preserve w.u.c. and u.c. series. 

'l'herefore in E, every w.u.c. series is a tt.c. series. Thus, E has no 

subspace isomorphic to c0 by (5). Tb.is is a contradiction since Eis 

itself isomorphic to c0 • Therefore, T hae no bounded inverse on a 

subspace isomorphic to c0 • 

The above chsrs,cterization t:or u.c. opermtors will be useful in 

showing that every completely continuous operator is also a u.c. 

operator. 

6 

Tp.isorem 1.1; If Tis a completely continuous operator from X to T, 

then T is also a u..c ., operator. 

Proof. Assume 'l' i~ not a u.c. operator. Thus by Theorem 1.12, 

T hsis e;, bouncled invell"se on a subspace E of X, that is isomorphic to 

c0 • Let x1, x2, ••• be elements of i which correspond to the unit 

base vectors of c0 under this isomorphism. For sny fin (c )' = t, 
0 

then f(a) ,.. E \:'°'"k with t belolllging to t snd tk == f(ek) where the 

~·s are the unit base vectors of c0 (47, page 91). Hence, 

(f(ek)) = (tk) and since tis int, we have (xn) converges weakly to 

zero. 

By hypothesis and continuity of T the sequence (Txn) converges 

in norm to O = T(O). Now T-l is continuous on T(E); therefore, the 

sequence (T-1(Txn)) ~ (xn) converges in norm to zero. Hence, the 



unit ba&;;e viector~ of c converge to zero in norm. This h a 
0 

contr~diction ~ince the unit b&se vectors of c0 do not converge to 

zero in norm. Therefore, T 1$ a u.c. operator. 

Ia order to ~how that the converiie of the above theorem is not 

·true w·e shall need the···following two theorems. 

Theorem 1.14 Let X be an almost ref'lexive B-space and Ta map 

from X to the B=space Y. If Tis completely continuous, then Tis 

compact. 

Proof. Let S be the closed unit sphere in Xti Let (y ) be a 
n 

sequence in T(S). Hence, there exists a sequence (x) in S such that n 

'l'x = y. Since Xi~ &lmoat reflexive, there is a weak Cauchy sub-
n n 

sequence of (xn). Fro11m the fact that T is completely continuous and 

Y is a B-space, we have (y) has a convergent subsequence. Hence, T(S) n 

is compact and Ti~ a compact operator. 

Using Theoriems 1.11 and 1.14 it is seen that the completely 

continuous and co~~ct operators agree on s.lmost reflexive B-spaces. 

'.lbeors l.l.5 Every we&kly compact opera.tor is an uncondi t1onally 

converging ope:rBi.tor. 

Proof Q Let T be e. weakly compact opera.tor from X to Y. Let E x1 

be a w.u.c. ~erieso For any x' in X! we h~ve that the set 

{ t x~(x1 ) i i belongs to a finite subset of the indices} 

is bounded, Hence, the set 

H = { E x1 : i belongs to a finite subset of indices} 

is weakly bounded. Hence, H is bounded in the nom topology by (28, 

7 



page 409). Since '1' b: a. wea,kly compaict operator, the We£l,k closure of 

T(S) i~ comp!ltct in the wes.k topology. From the equiv~lent condition 

(b) in Definition 1.1 it follO{iS that E 'b.:1 i~ ~ u.c. $erie~ in Y. 

Therefore, Ti~~ u.c. operator. 

8 

, . Now we can readily give an example of a u.c. operator that h not 

completely continuous. Let X be an infinite dimensional reflexive B

space a.nd T be the identity on X. Thus, T is weakly compact since the 

closed unit sphere is compact in the weak topology. From 'I'heorem 1.15 

we· rutve T is a u .c. oper~.tor. Now we need to show T is not completely 

contimmu~" Suppose T 1~ compl.etely continuous. Then by Theorem 1.14 

Tis~ compact oper~tor. This implies that the closed unit sphere of X 

is compact Bind X llll!USt be a. finite dimensioml B-apace. This is a, 

contradiction, so Tis not completely continuous. 

1.21 u.c. 

Figure l~ Interrelation of Five Operators 
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In order to show that the Venn diagram is drawn corre~tly, it is 

necessary to find operators that will satisfy the specific properties 

of, each region of Figure 1. It will now·be -ab:OWll ·that !h~ &et of 
- . 

c011pact operators ·is· non-void. Let X· ·be a Bs.na.ch space., z a fixed 

veetor in X and fa continuous linear :functional on x. J)efine the map 

T of X into X as follows T(x) = f(x)z. 'l!le linearity of T follows 

from. the linearity of f. Let S be a bounded set in X. Let (Txn) be a 

sequence in T(S). Since S was assumed to be bounded., there exists some 

M such that lxnl < M for every n. Hence, 1:rcxn)I -~ 1r11xnl ~ 1:r1 M 

for every n and it is seen that (f(xn)) is a uniformly bounded 

sequence of real numbers. By the Balzano-Weierstrass Theorem., there is 

a convergent subsequence of (f(xn))., say (f(xnk)). Let a be the 

limit of this convergent subsequence. Therefore., (Txnk) = (:f'(xnk)z) 

converges to a z and a convergent subsequence of (Tx) bas been 
n 

exhibited. ~e linear operator is a compact operator and., thus, the 

set of compact operators is non-void. 

The following numbered examples will indicate that the eorre-

sponding numbered regions of the Venn diagram in Figure !l are non-void. 

Example 1.16 There exists an operator which is weakly compact but 

not completely continuous o Such an example was given after the proof' 

of Theorem Ll5. 

Example 1.17 There exists an operator which is completely 

continuous but :n.ot weak Cauchy. Consider the identity map T on the 

B~space., J,. Since any map with dcmain or range tis completely 

continuous., it follows from Theorem 1.13 that Tis a u.c. operator. The 

space t is not almost reflexive, otherwise it would contradict i'heorem 



1.14. Thus the identity on t ia not a. weak Cauchy operator. 

Example l •. 18 There e:.det~ a T tha.t ifl completely continuous and 
_,,.. tt·.t ......... !9#· 

weak Cauchy but n()t ',ieakly compact. Let (s.0 ) be tn t e.nd cl.efin:e 
(IO 

T((an)) = ( E ak). Thus, T me.ps J, into c0 • Since c0 is almost 
k=n 

reflexive, it follows that T is weak Cauchy. Also, T is completely 

10 

continuous since tis the domain of T. Let e be the unit base vectors 
n 

in t .. Thus, (T(en)) is a weak Cauchy sequence in c0 since 

is convergent (47, page 91). But since not all the tk can be zero, we 

have that (T(en)) does not have a weak limit in c0 • Hence, Tis not 

a weakly compact operator. 

Example 1.19 There exists an operator that is weakly compact and -~ 
completely continuous but not compact. Let T be the inJection oft into 

t 2 • Let (e1 ) be the unit base vectors in t. Assume Tis compact. Thus, 

T(e1 ) = (e1 ) is sequenti.ally coQact. But for i different from J, 

je1 .. , eJj = J'2 in .t2 • Hence, there is no subsequence of (e1 ) that is 

convergent, which contradicts (ei) being sequentially compact. There

fore, Tis not compact~ Since the domain of Tis t, it follows that T 

is completely co~t1nuous. Since t 2 is reflexive it follows that Tis a 

weakly compact opera.tore 

Example 1~20 There exists an operator that is weak Cauchy and UoC• 

but not weakly comps.ct nor completely continuous~ Let. X = .t, then 

there exists a sep~rable space E such that E'' is the direct sum of 

J(E) and t, where J is the natural embedding of E into E'', from Theorem 

l of (25). Let T be the identity map on E'. Since E'' is separable, 

then E' is separable. To show that E' has no subspace isomorphic to c0 , 

assume E' has a subspace isomorphic to c • If a conJugate B-space 
0 



contains a subspace isomorphic to c, then E' contains a subspace 
0 

11 

isomorphic to the B-space of bounded sequences, t, by Theorem 4 of (5). 
Cit 

Since t is not separable, we have E' is not separable, which is a 
Cl) 

contradictiono Hence, Tis a u.c. operator. Since E'' is separable, 

then E' is almost reflexive and, thus, Tis a weak Cauchy operator. 

From the fact that E'' is the direct sum of J(E) and t, we have that E 

is not reflexive. Thus, E' is not reflexive and T is not weakly compact. 

The mapping Tis not completely continuous since an assumption other

wise would contradict Theorem 1.14. 

Exantple 1.21 Th.ere exists an operator that is uoc. but not weak 

Cauchy nor completely continuous. Let T be the identity map on X, that 

is the direct eum of E' and t. Since E' and .t are separable, then X is 

separable.. Hence, X' is a separable conJugate space and contains no 

subspace isomorphic to c0 • From '.l'heorem 1.12 Tis a u.c. operator. For 

any bounded sequence (a) and (b) in E' and J respectively, the 
n n 

sequence (a I b ) is bounded in X. 
n n If X is almost reflexive, then E' 

and.tare almost reflexive~ Since tis not almost reflexive, it follows 

that X is not almost reflexive. Hence, T is not weak Caucby. Also, T 

is not completely continuous since weak Cauchy sequences do not 

correspond to Cauchy sequences in E'~ 

Example lo22 There exists an operator T that is weak Cauchy but 

not u.c~ Let T be the identity on the B-space c e Since c is almost 
0 0 

reflexive, T is weak Cauchy. From Theorem 1 .. 12 it :follows that T is 

not a u.c. operator~ 

Before defining the Dunford-Pettis ~roperty and proving some 

characterizations of it, we shall need the following preliminaries. 



G:rothen:dieck (16) introduced four ty~s of .limited ,Qets. Only 

two of these typ·es will ·be used in chara-cterizing the Iunford-Pettis 

property; the others are given here for completeness and future 

reference. 

Definition 1.23 Let X be a B-apace and X' its conJugate space. 

(a} Let A' be a sub1Set of X'. The set A' is w-limited 1» X' if 

lim sup I x' (x0 ) I = 0 
n A' 

for every ~equence (x} in X which is weakly convergent to O. n 

(b) Let A be a subset of X. The set A is w-limited in X 1:t' 

lim sup Ix~ (x) f = O 
n A 

for every :aequence {x') in X' which is weakly convergent to zero. 
n 

(c) Let A' be a subset of x•. The set A' is w.u.c.-limited if 

lim sup x' (x) = 0 
n A' 11 

for every w.u.c. ser1ea Ex in x. 
n 

(d) Let A be a sub~et of x. r--/ 
The set A is w.u.c.-limited if 

for every w.u.c~ serie~ 

lim sup x' (x) = O 
n A n 

Ex' n 
in X'. 

12 

The idea of~ limited ~et can be used to characterize a completely 

continuou~ o~~rator. This characterization will be useful in studying 

the Dunford-Pettis property. 

Theorem L24 Let T be a map from X to Y and T' be its adJoint 

mp. 



(a) 'f is completely continuous if and only if T' maps bounded 

sets into w-limited aeta in X' 4 

(b) T' is completely continuous if and only if T m&ps bounded 

sets into w-limited sets in Y. 

Proof. Since the proof ot both parts ot this theorem are similar, 

only a proof of part (a) will be givenv Assume Tis completely 

continuous. Let A' be a bounded set in Y' and (x) a sequence in X 
n 

that is weakly convergent to zero. Since Tis completely continuous, 

the sequence (Txn) 18 norm convergent to zero. Thus, tor y' in A' 

lim sup I y' (T x) I• o, 
n A' n 

but since y'(Txn) • T'y'(x11 ), it follows that T'(A') is aw-limited 

set in x• ~ 

Assume 'l!' maps bounded sets into w-limi ted sets in X' • I.et (xn) 

be a weak Cauchy sequence in X ~ From the characterization given by 

Grothendieck (16) for weak Cauchy sequences, we have tor any sub~e

quences (k.) end (mi) o-£ the sequence ( n) of indices, the seauence 

(xk - xm) converges weii-kly to zero. Let y' be in Y'; thus, by 

hypothesb 

Therefore, (T(',c, - xm)) is a Cauchy aequence in Y and Y is a B-space. 

Thus, ( Txn) ifl norm convergent and T is completely continuous. 
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»u.nford-Pettis Property 

In 1953, Grothendieck (16) defined the concept ot the ])ullford-

Petti6 property. The Dunford-Pettis property affords a sort of 

"axiomatization" of relatively deep characteristics ot weakly compact 

operators acting on spaces of continuous or integrable tunctione (see 

Theorems 2.2 and 2.23). The basic notions for the following charac-

terizations are to be found in (38), (22) and (23). 

Definition 1.25 AB-space X bas the ])unford-Pettis (B. P.) 

property if for every B-space Y and every weakly compact operator T 

f'rom X to Y, ! maps weak Cauchy seq'U,ences of X into Cauchy sequences 

in the norm topology of Y. 

Theorem 1.26 Let X be a B-space. The following conditions are 

equivalent. 

{a) The space X has the ». P. property. 

(b) For every B-apace Y, if 'r is a. weakly compact operator fro111 

X to Y, then lim ITxnl = 0 for every sequence (xn) in X 

that converges weakly to zero. 

{c) The condition (b) is satisfied for Ya c • 
0 

(d) For every Eequence (x) in X that converges weakly to zero 
n 

and for every sequence (x') in X' that converges weakly to 
n 

zero, then lim x'(x) • o. n n 

(e) If (x) and (x') are weak Cauchy sequences in X and X' n n 

respectively, then the lim x'x exists. 
nn 

(f') Given any :B-space Y, every weakly compact operator 1' f'rom 

X to Y 16 also a completely continuous operator. 

(e;) Given any B-epace Y, then every weak Cauchy operator T' from 
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Y' to X' ia such that Tis completely continuous. 

(h) Every weakly sequentially compact set in X' is w-limited in x•. 

(1) Every weakly sequentially coo.1pact set in X is w-limited in x. 

(J) For every B-space Y, every weakly compact operator T from Y 

to Xis such that T' is completely continuous. 

Proof. Since the proof is lengthy, we shall sketch the plan of 

attack. We shall esta,blish the following implications: 

Now to execute our plan. 

(h) implie1 (f). Let Y be a B-space and Ta weakly compact 

operator from X to Y. Thus by a theorem of Gantma.cher (11, VI.4.8) the 

conJug~te msp T' from Y' to x• is weakly compact. Let H be a bounded 

set in Y'. Since T' 1e weakly compact, T' (H) is weakly sequentially 

compact in X'. Hence, T'(H) is w-limited in X' and Theorem 1.24 

implies th&t Ti~ completely continuous. 

(f) implies (a). This implication follows directly from the 

definition of completely continuous. 

(a) implies (J). Let Y be a B-space and Ta weak Cauchy operator 

from Y to x. The conJuge,te map '1'' from X' to Y' will now be shown to 

be completely continuous, It will suffice to show that lim. f T'x~f • o, 

for every sequence (x') in X' which converges weakly to zero (16, page 
n 

13b). 

Let (x') be a ae~uence in X' that converges weakly to zero and n 

lim sup I T' ( x~) I • t where t is a non-negative real number. The 

Hahn-Banach Theorem implies that there exists a sequence (yn) in Y such 

that I y I • l and '1'' (x') • l T'x' l · Define x • T(y ) for each n. n n n n n 

Since Ti~ weak Cauchy, we may assume without loss of generality (for 
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otherwise w~ could replace this sequence by a subsequence) that (x11 ) 11 

~ 'life&k Cauchy sequence. Tb.us, 

lim sup x'x = lim sup x'(Ty:) • lim sup T'x'y • lim sup fT'x'I • t. n 11 n n n n n 

low to show that t muat be zero. Let (•) be a subsequence ot the 

indices ot (x~) such that fx~xnf < t/2. Such a subsequence (m) will 

exist since xn is weak Cauchy. Thus, 

Since (xn) iii!! a weak Cauchy 1eq,uence, then (xm - x11 ) converges weakly 

to zero (16, page 1:,8). Hence, 

ta lim sup lx;xl ~ 11111 sup lx~(x111 - xn)I + 1111 sup lx~xnl < t/2. 

Therefore, t • O and T' is completely continuous. 

( J) implies ( i). Let A be a weakly sequentially compact set in X. 

ConBider the B-~pa;ce J(A), which 1& the set of all scalar-valued 

functions whose norm, given by lxl • I: ( lx{a)I : acA and x(a) /, 0 ) , 

is finite. Let {ea: a« A} be the collection of characteristic 

fW2ctione of the singleton i,et {a). Thus for each a in A, ea is in 

t(A)q Define T from t(A) to X by !( I: x(a)e ) • I: x(a)!e. a a The 

linear opere.tor '! irs! weakly comp&ct since A is wn.kly sequentially 

compact (7, page 54). Therefore, 1'' is a completely continuou 

operator. Let (x~) be a, sequence in X' that converges weakly to zero. 

Hence, 

lim rsup I T1 x~(a )I 
n A 

Therefore, A is v'-limited in x. 

• lim sup fx~(a)I • o. 
n A 



( i) implies (e). Let xn attd x~ be weak Cauchy sequences :i.n X and 

X', respectively. Let en denote then-th unit base vector in c0 • 

Define T from c0 to X as follows: 

Te = x 
n n 
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Thus, the conjugate map, T', fran. X' tot is completely continuous (31). 

Hence, for each x' in X' 

T'x'(e) = x'(Te) = x'x n n n 

Thus, for each n, T'x' = x'x n n n Since T' is completely continuous it 

follows that (T'x) = (x'x) is a norm-convergent sequence int. n n n 

Therefore, lim x'x exists. 
n n 

(e) implies (b). Let Y be a !-space and Ta weakly compact 

operator from X to Y. Let (xn) be a sequence that converges weakly to 

zero and lim sup ITxnl = t where tis a non-negative real number. 

The Hahn-Banach Theorem implies that there exists a sequence (y') in Y' 
n 

such that IY~I = 1 and Y' (Tx > = I Tx 1. n n n 
Define x I = T' y' . 

n n 
By a 

theorem of Gantmacher, T' is weakly compact. Theorem 1.10 implies that 

T' is a weak Cauchy operator. Hence without loss of generality we may 

assume that (x') is a weak Cauchy sequence (for otherwise we could 
n 

replace this sequence by a subsequence). Thus, 

lim sup x'x = lim sup Ty'x = lim sup y'Tx = lim sup ITx I= t. nn nn n n n 

It will now be shown that t must be zero. There exist subsequences 

(yk) and (yk) of (xn) and (x~), respectively, such that 



Since the 15eq_uen.ce (~n) converges weakly to zero, there exists a sub

s~uence (z11 ) ot the sequence (yk) s110- that lz~(z.)f < t/2 • Dlus, 

we can writ~ 

Since (x~) is a weak Cauchy sequence, (z; - yk) 1• a sequence that 

converges weakly to zero. Hence, 

< t/2. ·-
Therefore, t • O and lim fTx111 • O. 

(b) implies (c). Since o0 ia a B-space, condition (c) is a 

special cue of cond1t1on (b). 

(c) implies (d). Let (x') be an arbitrary sequence :f.n the n . 

conJugate space X' that converges wea.kl.y to zero. Let J be the natural 

embeddi~ mp ·of X into X''. J'or aay x' • in J(X), we have x' 'x' • x'x D D 

and the sequence (x~x) converges to zero. Define a mp '.r :f'roa X to o0 

as T(x) • (x;x). 'l'h:ls mappiQg is lbu;Ja.r. Since (x~) 1a pointwise 

bounded and for eacll n, x8 is a continuous linear functional on X, it 

follows ths.t (x') is equicontinuows fre>lll (47, xx.2.3). This •••• that n 

the {x;} is uniformly bounded. Hence, Tis a coQ.tinuoua linear •P• 

'.Uh~ following will show that T' is weakly compact. Let e; denote the 

·n-th unit ba.se vector in t • c'. For T' the adJoint operator of T, 
0 

Let 

T' e' • e T • x' 
D D D 

for all x in X • 

bal(e•) 
D 

'bal(e~) 

represent the balanced h~ll of the sequence 

the closed balanced hull ot the sequence 

(e~), 

(e~), 



a.nd conv{l:>al(e')) n . the convex hull of the set 
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bal(e~) • 

Let S 'be the closed unit splere in t. Por x in S, x • I: ti e1 where 

the J-norm ot x 1$ less tl'lB.n or equal to one, th111J · lt1f ~ l for all 1. 

Let 

Thus, 

a • n 

-l D 
- I: tiei 

an l 
ia a secg,uence of elements in coav ()al (e~)). 

Hence, 

l -x a 

'lberefore, 

ie 1.n the where 

l a( ii"" x) • x is in H, Since Sis a closed balanced convex 

set, we have S "" H. Hence, 

T' (S) C: T' (conv (be.l (e~))) • ;;;; {bal (x~)) 

a~d bs.l(x~) is weakly coapact by (47, page 177). The Krien-Snlian 

Theorem {ll, v.6.4) implies T'(S) :I.a weakly compact in X'. Thus, ! 1 

is a weakly compact operator, Jy a theor• of '8-nt•cher T is a weakly 

compact opera.tor. Let (x111 ) 1De an arbitrary sequence in X tbat is 

weakly convergent to zero. Thus by hypothesia, 

l,i11 I '1' x11 I • liBJ sup Ix~ x111 I • Q • 

i'heretore, 11• x~ xn • O. 

{d) implies {g). Let Y oe a 1 .. apace and '1'' 'be a weak Cauc'.by 

operator from Y' to x•. •ow to show that T ia completely continuous, 
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it will suffice to show that for every sequence (xn) in X that converges 

weakly to zero, then lim I Txn1 • O. Let 11• sup I !xnl • t where t 

is a non-negative real number. '!'he Hahn-Banach Theorem implies there 

exists a sequence {y') in Y' such that IY'I • l and y'(Tx) • ITx I· n n n · n n 

Define x' • T' (y' ) • The remainder of the argument is aiailar to tliat n n 
used in (e) illlJ)lies (b) to show that t must be zero. 

(g) 111plies (h), First it will be noticed that if Y is a :B-space 

and T a weakly compact Qperator froa X to Y, then T' is a weakly 

compact operator (11, VI.4.8). From 'l'heorem 1.10 it follows that T' is 

also a weak Cauchy operator. 

Let JC' be a weakly sequentially c011pact set in X'. Let i(JC') be 

the B-space ot all bounded scalar-valued functions on JC' with the sup-

norm. Define T from X to B(IC') by Tx(k') • k'(x). Since JC' is weakly 

sequentially compact, 'l' is wee,kl.y coapact by ( 46). From the above 

observation it follows that T' is a weak Cauchy operator. Therefore, 

T is completely continuous. Let (xn) be a sequence in X that 

converges weakly to zero, then (T:x.11 ) is norm-convergent to zero. 

Hence, 

lim sup,~ (k')f 
D JC' D 

• lim sup lk'(x)f • O • 
n JC' 

Therefore, JC' is w-limited in x•. 



CHAPH:R II 

The objective ot this chapter is to investigate the basic prop

erties of the Dunford-Pettis property. It is shown that isomorphisms, 

finite topological direct suas, and complemented subspaces are among 

the permanence properties o:f' the Dunford-Pettis property. Among the 

non-permanence properties are subspaces, quotient spaces, inductive and 

proJective limit spaces. Some generalizations of the C(S} and 1i (~} 
spaces are considered. At the end of this chapter there are two tables 

showing whether so1ne of the c01111on Banach spaces possess the Dunf'ord

Pettis property. 

The first theorem in this chapter will deal with a class of 

B-spaces that do not possess the D. P. property. 

Theorem 2.1 No in:finite dimensional renexive B-space possesses 

the D. P. property. 

Proof. Let X be a intim.te dimensional reflexive B-space. Let 

T be the identity map on x. Since Xis reflexive, it follows that Tis 

weakly compact. Suppose T is co,n.pletely continuous. Fran 'l'heorem 1.14 

we have Tis compact. Therefore, Xis finite dimensional which is a 

contradiction. Hence, Tis not completely continuous and X does not 

possess the». P. property. 

It would now seem proper to ask it there exist any B-spaces, other 
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than :finite d:1,menaional ones, that possess the D. P. property. 'rbe 

next theorem that relies heavily on measure theory will show that B-

spaces that possess the D. P. property are quite numeroua. 

'Dleorena 2.2 Let S be a compact Hausdorff space, then the B-space 

ot all continuoua scalar-valued functions on s, C(S), poaae1ae1 the». 

P. property. 

Proof. Let Y be a B~space and Ta weakly compact operator :from 

C(S) to Y. Let (tn) be a weak Cauchy sequence in C(S). Let g belong 

to the conJugate space of C(S); thus, (g·(tn)) is a Cauchy sequence o:f 

scalars and sup 11(:f )f is finite. '!he •~.P It I is finite from n a n n 
(11, II.3.20). Define tor each s in S f(s) • l1m frA(s). The limit 

function t is bounded and aeasurable on· S. Using the representation 

theorem of Dunford and Schwartz (11, VI.7.,), it follows that there 

exists a vector measure~ defined on the Borel sets of S such that 

rt. Jr"'· 
D S D 

It follows that 

lim T tn • T t 

and (Tfn) is a convergent sequence in Y trom the dominated COflvergence 

theorem (11, rv.10.10). Therefore, C(S) has the D. P. property. 

In the study of B-spaces the conJugate space plays an important 

role, Two natural questions at this point would be that if X' has the 

D. P. property, then does X possess the D, P. property and vice versa. 

Our next theorem will answer the first question positively, but the 

second part is an open question. 
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Theorem 2.3 If the sp&ce X', the conJugate space ot a B-space X, 

'has the D. P. property, then the apace X has the :D. P. property. 

Proof. Let (x) and (x') be sequences in X and X', respectively, n n 

that converge weakly to zero, Let J be the natural embedding of X into 

X'' • Thus, 

zero. Since 

J(xn) • ~n is a sequenGe in X'' that converges wealtly to 

~ (x') • x' (x ) and X' has the D. P. property, this n n n u 

implies that lim x'(x) • o. Then from Theorem 1.26 part (d), X 
n n 

possesses the». P. property. 

Some Permanence Properties 

If the D. P. property happened to be a hereditary property, then 

there would be some very nice results. As one might gather from 

Theorem 2.1, this is not the case (see remarks after Theorem 2.7). What 

conditions are needed on a linear subspace in order to ensure that it 

will have the D. P. property? In order to answer this question we need 

the following definition. 

Definition 2.4 Let X be a B-space, La linear subspace of X and 

Man algebraic complement of L relative to x. The map (a,b) ~a+ b 

is a continuous algebraic isomorphism of L x M onto x. If the map 

has a continuous inverse, then Land Mare said to be topological 

complements of each other relative to X. 

For a B-space X the.t is the algebraic direct sum of closed sub-

spaces Land M, the &ubspaces are topological complements of each other 

relative to X (12, page 66). Even for a B-space X there will in 

general exist in X closed linear subspaces L that admit, relative to 

X, no topological complement. JCothe (29, page 424) has proven that c0 
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is a closed subspace oft.that has no topological complement. 

Theorem 2.5 If X possesses the D. P. property and His a linear 

subspace of X admitting a topological complement relative to X, then H 

possesses the». P. property. 

Proof. The hypothesis on H implies there exists a continuous 

projection P of X onto H. Let Y be a I-space and Ta weakly compact 

operator from H to Y. Thus TP is a weakly compact opera.tor from X to Y 

by (11, VI.4.5). Hence !Pis completely continuous. Since T agrees 

with the restriction of TP to H, it follows that Tie completely 

continuous and H has the D. P. property. 

The following definition is included in this paper to avoid any 

possible contusion that might arise when the statement is made that two 

B-spaces are isomorphic. 

Definition 2.6 An isomorphism between two B-spaces is a linear 

homeomorphism. An isometric isomorphism between two B-spaces X and Y is 

an isomorphisa U between X and Y such that I u x I = I x I . 

With the above definitions we are now able to prove that the D. P. 

property is preserved under isomorphisms. 

'l'heorem 2.7 Let X and Y be isomorphic B-spaces. If X has the D. 

P. property, then so does Y. 

Proof. Let U be an isomorphism trom X to Y. Let W be a B-space 

and Ta weakly compact operator from Y tow. 

TU is a weakly comps.ct operator from X to W. 

Since U ia continuous, 

Let (y ) be a weak Cauchy 
n 

sequence in Y. Thus, there exists a sequence (x) in X such that 
n 
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U(x) a y. For each fin X', fU-l is in Y' and it follows that (x) 
n n 11 

is a weak Cauchy sequence in x. Hence, TU is completely continuous and 

TU(x) • T(y) is norm convergent. Therefore, Y has the D. P. property. n n . 

Let X be an infinite dimensional reflexive B-space. From the 

universality property of the B-space C(S), there exists a. compact 

Hausdorff space S such that Xis isometrically isomorphic to a linear 

subspa.ce W of C(S). Fro• Theorems 2.1 and 2.7 it is easily seen that 

the 1). P. property is not hereditary. 

Definition 2.e Let X and Y be B-apaces over the same field of 

sca.lars. Let W • X CD Y be the algebraic direct sum of X and Y. Let 

W have either ot the norms 

I (x,y) I • max ( lxl, IYf ) 

I (x,y) I .. ( lxf P + fYIP )1/p 

or 

l ~ p < .;,,, 

and W becomes a B-space. The space W obtained in this manner is called 

the direct sum of the two B-spaces X and Y. 

The extension to any finite number of summands is immediate. '!he 

direct BWII of a denumerable number of B-spaces can be made into a 

Frechet space, but in general not into a B-space. Also, one can define 

the direct sum of an arbitrary family of linear topological spaces, but 

it is ordinarily not a metric space even if the swnmanda are. Either of 

the norms is equivalent to the product topology on W, as pointed out in 

(11, page 89). Also, ve have the property 

(XI Y )' • X' t Y' • 
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Theorem 2. 9 Let x1 and x2 be B-spaces and X be the direct sua of 

x1 and x2 • Let ! be a continuous linear map from X to a B-,pace w. 

The map T ~s weakly compact if and only i:f' T1 ( which is the restriction 

of T to x1 ) and T2 ( the restriction of T to x2 ) are both weakly compact. 

Proof. If Tis a weakly compact operator, then so is its restric

tion to x1 and similarly to x2• 

Assume T1 anq. T2 are weakly compact operators. Let A be the closed 

unit sphere in X and Pi be the proJection of X onto Xi (i • 1, 2). 

Thus, P1(A) (1 • l, 2) ts bounded and convex. Hence, T1P1(A) (1 • 1, 

2) is convex and conditionally weakly compact since Ti (i • l, 2) is 

weakly compact. With the closure (cl) being taken in the weak topology 

we have 

is weakly compact by (11, page 415). Therefore, T is a weakly compact 

operator. 

Theorem 2 .10 Let x1 and x2 be :I-spaces and X be the direct sWD 

of x1 and x2 • Let T be a continuous lineal;' map from X to a B-epace Y. 

Let Ti be the restriction of T to Xi (1 • l, 2). 'fl:len, Tis completely 

continuous if and only it both ! 1 and T2 are completely continuous Q 

Proof. Assume Tis completely continuous. Clearly, T1 and T2 are 

also completely continuous$ 

· Assume T1 and T2 are completely contin~ous. Let (:xn) be a weak 

Cauchy sequence in X. I.et P 1 (1 • l, 2) be the proJection of X onto 

Xi. , Each Pi will preaerve weak Cauchy sequences, thus P1 (x0 ) is a weak 

Cauchy sequence in x1 • Since Ti (1 • l, 2) 1e a completely continuous 
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is a Cauchy sequence in x. Therefore, Tis completely continuous. 

With the above characterizations of weakly compact and completely 

continuous operators we are able to prove the following very useful. 

theorem. 

'l'b.eorem 2.11 Let x1 and x2 be B-spaces and X be the direct sum of 

x1 and x2 • '!'be space X will have the D. P. property if and only if x1 

and x2 have the D. P. property. 

Proof. Assume x1 and x2 have the D. P. property. Let W be a :a. 

space and Ta weakly compact operator from X tow. Let Pi be the 

proJection of X onto Xi (i • 1, 2). Since X and each x1 are B-spaces 

&nd each P1 is a linear continuous map, Pi is also weakly continuous. 

Let (z ) be a sequence in X that converges weakly to zero, thus 
n 

P1· (z ) • P1(x + y) = x 
n n n n 

and 

converge weakly to zero. Hence, 

Since T1 and T2 are weakly compact and x1 and x2 have the». P. 

property, it follows that T1 (xn) and T2(yn) are norm convergent to zero. 

Thus, T(z ) is also norm convergent to zero and Tis completely 
n 

continuous. Therefore, X has the». P. property. 



AHume x1 and x2 have the ». P. property. Let T be a weakly 

compact operator on x. By Theorem 2.9 it follows that T1 and T2 are 

weakly compact operators. Since x1 and x2 have property V, then '1'1 

and T2 are completely continuous. From Theorem 2.10, Tis completely 

continuous. '1.'herefore, X has the D. P. property. 

In the study of the permanence properties of the D. P. property, 
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it has been seen that the D. P. property is preserved under complemented 

subspaces, isomorphisms and finite direct sums. In the field of 

:functional analysis the quotient spaces, inductive limit spa.ces and 

proJective limit spaces are familar tools. The question arises whether 

the D. P. property is preserved under the formation of these spaces. 

Example 2.12 If a B-space X has the B. P. property, then a 

quotient space of X will not necessarily have the D. P. property. 

Since t 2 is an in:finite dim,nsional reflexive space that is also 

separable, there exists a closed sub~pace Bott such that t 2 is 

isomorphic to the quotient space ot t by N (29, page 280). The space 

t has the D. P. property. The space t/N does not have the D. P. 

property since t 2 is reflexive and the». P. property is preserved 

under isomorphisms. 

The inductive limits space will now be defined. Then the question 

of whether it is a permanence property of the D. P. property will be 

examined. A more complete discussion of these spaces can be found in 

(i9, page 219) and (40, page 76). 

Definition 2.13 Let x7 be a collection of locally convex spaces 

and X be a vector space. Let T be a collection of linear maps from ., 
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X into X such tb&.t UT (X ) spau X. Let B lDe the collection of all .· ., 7 ., 

convex and balanced subsets U of X such that tor each -,, ,-1 (u) 111 a . . . 7 

neighborhood in x7; thu, B is a base for the linear topology on X 

which makes all the T continuous. 1he convex space X wita·this ., 
topology 11 called the inductive limit of the locally convex spaces x., 

by the mappings T7• 

An extreme case ot an inductive limit space is the quotient space. 

For it X • Y/M and T is the canonical. mapping of Y onto X, the 

quotient topology is the finest linear topology ma.king T continuous. 

From Example 2.12 it is seen that the inductive limit space is not a 

per11anence property of the D. P. property. 

Definition 2.14 Let X be a vector space and X a collection ot ------~--~.-- . ., 
locally convex spaces~ Let T be a collection ot linear mappings ot X ., 
.into x., such that 1f x. 11 1a X and x is non-zero, then there exists 

some 7 such that T (x) I, o. Let V be a base of convex and balanced ., 7 

neighborhoods in x.,, the finite intersections of the eets ,;1 cv.,) 
where v is in V for111B a base B of convex and balanced neighborhood& ., ., . 

tor x. This topology is the coarsest topology on X compatible with the 

algebraic structure under which all thie T are continuous. ihe locally ., 
convex space X with this toPology is the proJective limit of the convex 

spaces x7 by the •ppinge '1'1 

One example of a proJective limit is the weak topology on any 

weakly convex space X, obtained 'by taking tor the collectioa ot '1'7 the 

set of all continuous linee.r functionals on x. 

E,ca,mple 2.15 An example of a proJective limit is the induced 

topology on a vector subspace II of a convex space X; it is the 
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coarsest topology making the identity mapping ot Minto X continuous. 

Let M be a reflexive space. Thus, Mis isometric to a subspace of C(S) 

where Sis a compact .Hausdorff apace, (47, page 241). The space C(S) 

has the D. P. property. But Mis the proJective limit space of C(S) 

under the identity map on M. The space M does not have the». P. 

property. Therefore, the proJective limit is not a permanence 

property of the». P. property. 

Abstract L- and M-Spaces 

We shall now consider two classes of B-spaces, that will include 

. most of the familar B-epaces found in an introductory course in 

functional analysis. Such B-spaces have some very nice properties. The 

first ot these will be the abstract M-space. Such spaces were intro-

duced and studied axiomatically by G. Jirkhoff (6). Kakutani has given 

some representation theoreme for both the abstract L- and M-spaces. 

The following definition of an abstract M-space is given by kakutani 

(26). 

Definition 2.16 A B-space Xis called an abstract M-space if 

there is defined a relation x ~ y (or equivalently, y ~ x) for some 

pairs of elements x, y in X and if it sa.tisfies the following 

conditions for x, y, z, w in X and t a real scalar. 

(a) 

(b) 

(c) 

x :: y 

x >y 

x >y 

and 

and 

and 

y~x im.plies x. y. 

y >z implies x > z. 

t >O implies tx > ty, 

(d) x > y implies x + z ~ y + z. 

(e) To any pair ot elements x, yin X, there exists a me.ximum 

z • :it v y such that z > x, z > y and v > z for any w -
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with w > x and w > y. - -
(f) To any pair of eleaents x, yin X, there exists a minimum 

(g) 

w • x A y such tba t w ! x, w ~ y and z < w for any z 

with z < x and z < y. 

x > y n - n' 
x > y. 

xn converges to x and y11 converges toy implies 

(h) x I\ y • 0 implies f x + Y f • I x - Y I • 
( i) x ~ 0 and y ~ 0 iapli es . I x V Y I • max ( I x I , I Y f ) • 

'?he aforementioned conditions (a)-(i)i mean that X is a linear l•ttice. 

Definition 2.17 If there exists a non-negative element e such 

that fel = 1 and for &DY' x such tbat !xi~ l implies x ~ e, then 

e is called a unit element. 

Let us now consider some ex~les of abstract M-spaces. One must 

notice that the existence of a unit element is not assumed in an 

abstract M-space, 

The foremost example of abstract M .. spaces will be given by the 

space C(H) of all bounded continuous real-valued functioll8 x(h) defined 

on a Hausdorff space H where the norm is given by 

lxl • sup { x(h): his in H }· 

!be order is defined as 

x~y if and only if 

x(h) ~ y(h) for any h in H. 

Also, if we take an arbitrary set A and consider A as a discrete 

topological space, then the space C(A) is nothing more than ,CA) of all 



bounded real-valued function x(ll) defined on A (with the sue norm and 

partial ordering as in the ~se of C(H)). 

Consider the subspace M(A, tJ,) of M(A) consisting of all 

bounded measurable ;real-valued functions x(a) defined on A (where 

measurab1U.ty 11 with re1pect to a ••sure I' defined on A); this is 

also an example of an abstract M-space. If sets in A ot measure gero 

are neglected, then the apace H(A, tJ,) is aga1,n an example of an 

abstract M-apace. The nor• tor l(A, Iii,) is 

lxf • ess. ••P { x(a): a is in A}· 

The order is given by 

u· and only if 

x(a) ~ :r(a) almost everywhere on A. 

We must remember tbat two functions whlch differ from each other only 

on a set of Qleasure zer0 arecouidered to be the same element of 

l(A, ~). 

Among the ~lea given above we find they all have a unit, 

namely the constant function OJle. The following example will afford us 

with an abstract M-space that does not have a unit element. Consider a 

special subspace of C(B), where • is a Hausdorff space. If we consider 
·, 

only those :functions x(t) of C(H) that vani11h at a given point h0 in H, 

then the apace C(H, h0 ) of all such functions with the norm and partial 

ordering the same as 0(1) will be an abstract M~apace. Consider the 

space Cl(H, 0) where H is t~e closed interval between O and 1. This 

apace does not have a unit element. 

Siace O(S), where Sis a coi6)act Bauadorff space, has the D. P. 
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property, we see (viewing Theorem 2.7) that it is important to be a''>le 

to recognize spaces that are isomorphic to C(S). K'altutan1 (26) proved 

the following theor~. 

Theorem 2.18 For any abstract M-apace X with a 'lll1it, there exists 

a compact Hausdorff space S euca that Xis isometrically isomorphic to 

·the real B-spaoe e ( S ) • 

Prom thia theorem we notice that any abstract M-space will possess 

the». :P. property. Por example, the abstract M-space, .t., has a unit 

and the appropriate 8 of Tneorem 2.18 is the Stone-Cech compactitication 

ot the positive integers. 

11.lch of the motivation :f'or the study of abstract L-spaces was 

derived from the application of the theory ot Hermitiu operators on a 

Hilbert space. Kakutani (27) gives the following definition tor an 

abstract L-space. 

Definition 2.19 AB.apace Xis an abstract L-space if there is 

defined a relation x > y ( or equivalently y < x) for some pa,".tn· of - -
elemeats x, y in X and i:f' it satisfies the following conditions for 

x, y, z,w in X and ta real scalar. 

(a) 

(b) 

x~y and y > x implies x • Y• -
x > y and y > z implies x > z. -
x~y and t>O ( c) implies tx > ty. 

(d) x ! y implies x + z > y + z. 

(e) !o any pair o:f' elements x, y in X, there exists a maximum 

z • x Vy such that z ~x, 

with w > x and w > y. 

z > y and w > z for any w -



(f) To any pair ot elements x and y, there exists a minimum 

(g) 

w • x A y such that w ! x, w ~ y and z < w :for e.ny- z 

wi t:n z ~ x and z ~ y. 

xn ~ Yn, 

x > y 

x converges to x and Y. converges to y implies 
n . n 

(h) x > O and y > O implies x + Y • Ix I + I YI • 

( i) x /\ y • 0 implies J x + Y f • f x - Y I • 

Such B~spaces were introduced axiomatically by G. Birkhotf (6) as 

abstractions from the concrete B-spaces of Lebesque integrable 

functions on a measure space. 

Defi~ition 2.20 An abstract L-space has a unit it there exists an 

element e for which x > O implies x A e > O • 

Since many of the familiar :B..spaces that are studied in a course 

in functional analysis are abstract L-spaces, it might be profitable 

to consider some examples ot these spaces. 

For an example ot an abstract L-space, consider a set H w:mere a 

collp!letely additive measure ia defined. !he totality of all real-

valued measurable tunctions x(h) that are absolutely integrable on H 

constitutes a B-space L(H) with 

f xi . J t x<a> I dh 
H 

as its norm. The order is g~ven by 

x > y , it. and only if 

x(h) ~ y(h) almost everywhere on H. 
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Two elements x, y in L(H) are equal if' a,nd only if' 

x(h) "" y(h) almost everywhere on H. 

Also, the constant !unction x(h) = l serves as a. unit. Hence, L(H) 

is an a,bstract L-space with unit. 

!he following B-spaces given by Dunford and Schwartz (11, IV) are 

also examples of abstract L-spaces: rca(S, E), ba(S, E), NBV(I), 

and BW(I). We shall give the order for the first space, rca(S, E). 

Let 

I 1.1, I • total variation of !Ji (E) .. 

sup {1.1,(E) : E is a subset of S} - inf (p.(E) : E is a subset of S} 

for all Borel sets E of s. The partial or~ering is given by 

µ. ~ v if and only if 

µ.(E) ~ .,,(E) for any Borel set E a subset of s. 

Tb.us, rca(S, E) becomes an abstract L-space. 

As iileen in our :first example, l,(.H) is an abstract L-space. 

Kakutani (27) addreHed his paper to the converse problem, i.e. is it 

possible to repre8ent any abstract L-spaoe by a concrete abstract L

space o.f the :form L(H). He was able to give a positive answer to this 

question~ We ~hall only state his results here. 

Theorem 2a2l Given an abstract L-apace with a unit, there exists 

a totally disconnected compact topological space Sand a countably 

additive measure µ. defined on the :Borel :f'ield t o:f' S such that the 

&b$tract L-~pace is isometrically isomorphic to the real B-space 



i'he following theorem, also due to Kakutani, shows a relatiouhip 

between thee !'3J.b~tr~ct L-spe.ces and the ablf.tract M-spacea. 

1.'heorem 2 .22 '?he conJugate space of an abstract M-space is an 

abstract L-sp&ce. The conJugate of an abstract L-space ia am abstract 

M-apace with unit. 

We sre now in a position to give a partial result to the open 

question that is the converse of Theorem 2.3. This result will be very 

useful in compiling the tables at the end of this chapter. 

Theorem 2.23 If Xis an abstract 1-space, then X' has the D. P. 

property~ 

Proof. Let X be an abstract L-5pace; thus, X' is an abstract M

space with uait by Theorem 2,,22. Using Theorem 2.18 we have X is 

isometrically isomorphic to C(S) for some compact Hausdorff space, s. 

It then follow~ from Theorems 2.2 and 2.7 that x• has the JI). P. 

property. 

Some Generalizations of C{S) and L:i_{~) 

There are Gevers.l way! of generalizing the space C(S) where S is 

a compact H~uS:dorf:f ap~ce. E>ne such method b seen by letting S lie a 

locally compact Hausdorff space, and let CO (S) be the B-space of 

continuous rsci1J,lar-valured :functions t on S that tend to zero at intini ty 

( in t.he $Jense that the set 

{ s e B lfCs>I > €} 
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ie relatively compact in S for each E > O}. The norm on C0 (S} is given 

by 

ltf • B~p { lt(s)I : a c S}. 

One will notice that for a compact Hausdorff apace S that C0 (S) and 

C(S} agree. The probability density tunctions of statistics belong to 

C0 (R) where R is the real nwabers. The question now arises does C0 (s), 

for Sa locally compact Hausdorff space, have the D. P. property. 

Edward.I! (12, page 637) has shown that this space has the D. P. property. 

A generalization of C(S) where Sis a. com.pact Hausdorf:t space wtll 

now bre given. Let X be a I-space and S a compact Hausdorff space. The 

space C(S, X) is the ~et of all X valued continuous functioilS on S. 

Thus, C(S, X) with the sup-norm is a B-apace. This space has been 

iitudied by Sws.rtz (45), Batt and Berg (4), and Pelczynski (36). 

Theorem 2.a4 Let S be a compact Hausdorff space and X a ~-space. 

If c(s, X) has the l). P. property, then X has the D. P. property. 

P:roo:f'. Let Y be a B-space and T a weakly compact opera.tor from 

X to YQ Fix as in Sand pick a fin C(S) such that f(s) a 1 and 

fff = 1. Define the map U from C(S, X) to X by 

Ug • ,:(s) tor all gin c(s, x). 

It follows from the Uniform :Bounded.Dees Principle that U is a continuous 

operator~ Thus, TU b: a weakly compact operator (11, VI.4.5). The 

space C(S, X) having the D. P. property implies that the operator 

TU is a completely continuous operator. Let V be a map frOID the reals 
x 

R into X defined by V (a)= ax. Tbue, V f is in c(s, x). If (x) x x n 



i~ a wesk Cauchy m1equence, then (V f) is a weak Cauchy sequence. 
xn 

Thi$ follows since 

= = 

Hence, if x c X, then ':I'x • TU(V f} and T is completely continuous. 
x 

Therefore, X has the D. P. property. 

The converse ot the above theorem is an important open question. 

Grothendieck (17) established that the space C(S, X) is isomorphic to 

the weak tens.or product ot C(S) and x. 'rhus, if one could solve this 

opem problem, it would help in solving the open problem involving tensor 

product~ of spa.ces that have the ». P. property. 

Dobrakov (10) ~nd Alexander and Swartz (1) have considered this 

problem. '?heir attention has been directed at the following space. 

Let S be & loc&lly compact Hausdorff space and X a B-space. Let 

C0 (S, X) denote the B-spa.ce of all X valued continuous functions on S 

tending to zero at infinity with the usual sup-norm. 

~for® con$1dering :Dobrakov'a partial result on this open problem, 

there i~ a need to d~velop some notation. A non-void clas$ Hof suD-

21ets of S bi ce,ll~d a IB!emi-trfbe on 8-ring if H i11 closed under set 

difference, finite unions, and countable intersections. A non-void 

class Hof subset~ of Sis called a tribe or o-ring if H ia closed 

under set dif'ference and countable unions. Let X and Y be 13-spaces and 

L(X, Y) denote the B-~pace or all bounded linear operators from X to Y. 

Let B0 be the semi-tribe generated by the compact subsets of S that are 

G6 sets and define m from B0 to L(X, Y), which is an operator valued 
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mea8ure countably additive in the norm topology in L(X, Y), i.e. for 

every x in X m{ • )x is a countably additive vector measure. Denote by 

G{B0 ) the o-ring or tribe generated by B0 • A B0 -simple function on S 

~1th v&lues in Xis & function of the form 

k 
f • t x1cE for x1 in X, E1 in B0 and E1 n EJ =+for i ~ J. 

1•1 1 

Here, CE denotes the characteristic function of the set E ins. The 

integral of a B0 -simple function on an E in G(B0 ) ia defined as 

ff dm • ~ x1 m (En 11 ) . 
E 1:al 

Denote by F the ~et of all B0 -simple functions on S with values in x. 
Pora function f from S to X and a set A a subset of S, define 

· I f I A .. sup { I f ( x ) I : x in A } • 

Define on G(B) the non-negative set function~' called the semio 

w.ria.tion of the measure m, by the equality 

~(E) • ili,Up { IJ f dm I : tin F, f:rfE ~ 1} for E in G(B0 ). 

E 

The function m 1~ a monotone and countably subadditive set function on 

G(B0 ) (8, page 53). For every function fin F and every set E in 

G(B ) we have 
0 

(8, page 109). 

Denote by F tlle closure of F in the norm I • f S in the B-space of all 

bounded X valued functions on Sand Q(s) = sup {'Q(E): E in B0 } is 

finite. Thus, the integral defined on 1 can be extended to Fas 

follow~o For fin F and for a set E in G(B0 ) define 



Also, 

J f .dm • lim J fn dm 
E E . 

where fn is in F e.nd ltn - :rt 8 .._, O. 

C (S, X) is a subset of F. A wide class of bounded linear 
0 

operator5 T from CO (S, X) into Y can be represented in the form 

for a measure m (9). 

'ff. J:rdm 
s 
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Dobrakov (10) has proved the basic theorems on representation of 

bounded linear operators on C0 (S, X) in the form of an integral with 

respect to a Baire operator valued measure. It is also poin~ed out 

that the dual space of C0 (S, X) is isometrically isomorphic to the 

space cabv(G(B ), X') of countably additive X' valued vector measures 
0 

with bounded variations. 

With theee preliminaries we now give Dobrakov's partial resu1t to 

the difficult problem, which is as follows: If X has the». P. 

property, does the space C0 (S, X) also have the D. P. property? 

Theorem 2.25 a) If S is a discrete topological space and X has 

the D. P. property, then C (S, X) has the D. P. property. 
0 

b) If weak and norm convergence of sequences coincide in X, then 

for any loceilly compact Hausdorff topological spaces, C0 (S, X) has 

~he D. P. property. 

Proof. Let (fn) be a weak Cauchy sequence; thus, there exists a 

M such that 

M for all 11. 

Let T be a weakly compact operator from C0 (S, X) into an arbitrary 
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B-space Y. The operator T can be represented in the form 

where mis a. Baire operator valued measure on G(B0 ) with ;{s) • J'l'f 

whose values are weakly compact operators from L(X, .Y) and its semi

variation g is continuous on G(B0 ) (10). Using this representation 

we extend the operator T from C (S, X) to F without increasing its 
0 

norm. Let e > O, define for each n, 

> E 
---}· 

6(1 + fTf) 

Thue, ea.ch An is a compact subset of Sand each An is also a 08 set 

(20, page 221). Since G(B) is a a-ring it follows that . 0 

A = U A 
l n 

belongs to G(B0 ) • 

Let CB denote the characteristic function on B. Thus, 

If I I Tl 
n S-A 

< 

fn CS-A ~(S) < 

< 
6(1 + f Tl) 

S-A 

E 

6 
for every n. 

a.) Assume that S is a discrete topological space and X has the 

D. P. property. Hence, A must be a countable set, {a1 , a2, .... } in S. 

The semivariation being continuous on G(B0 ) implies that for any 

decreasing sequence of aets En such the.teach En belongs to G(B0 ) and 

n En = t , lim ;(En) = Oq Consider Bn = {an+l' an+2, ••• } , Bn 

belongs to G(B) and n B = i; hence, there exists a K such that for o n T 
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and for every n, 'then 

6 

Fo:r. every i ~ 1 1 2 1 0 ... ,K thie e.~u~nce (fn(i1.1 )) i~ weak Cti-,uchy (lO)e 

Since m({$1 J) j,~ a v<erutly compact 01Ger8l,tor on L(X,, Y) and X ha~ the 

D. P. property, there e:d&1it~ a N such tb~t for any nJJ p greter tha.n N 

. I (:r = f. ) dm I 
AR !l p 

=--I{ 

E < -·-. 
6 

Therefore for e > 0 choo~e Q "" max (N, IC) fl1llld we hs;ve 

IJ(f "' f. )am. 
ii p s 

+ J (f - f )am 
n p 

S-A 

J. (f .,, f .. ,,)dml + II (f - t )dml + J. (f - :f )dml < .....!... " 
A=BK n P BK Il p Sa.A n p - 2 

smd CO (S, X) M,6 the D~ P v prope:rty o 

b) Ast11Ullmle wieisk and norm convergence of aequ.ences coincide in X ,, 

T'i."til&t~ f m(En ~ m.(E) :f'or every set E in G(B0 ) (8, page 52)~ There 

~:.d.;;tt~ !:ii, f'inite non~,nege,tive count~bly additive measure J\. on G(B ) wUh 
0 

). (E) ~ lm(E)f 

lim fm(E)f = 0 
l\ (E)-0 

and 



by (ll~ tv.10.5)., If ~. (N') • O for N in G(B,/, then im(l)j • O c.nd, 

·:..he:riei'o:re, ~(N) \\Ill 0, Sui,,poae 

H.m ~{E) # 0 
~ (JJ1] 1°""0 

f "'' 'Ii:' i ,~c·a' or .i:, n v . J, 
0 

Then, threre exhtt~ ~.n E > 0 ~nd "~" $,<;1)(1,Ut~nce o:f ~ete: ~ in G(B0 ), k = l, 

:!po .. 21 with l (~) < -1 k ~1J1d ~(A11i) > ~ , Put 
2 

@<I 

.B .., n B 
k=l k 

Since 1l h Si finite :non-neg>!!1tive counte.bly a.ddi.tive mioo.!llure on G(B0 ), 

A (B) = o. Mh:n(;;l ~(B) ~ w'(28k) = ~(\; ~· B) > <t for ~uff'iciently large 

k 15 ituaipliced by th~ monotonici.ty $i1Dd continuity of'~ on G(B0 ), ·t~hich 

&1 8 > 0 ~\\l11.ich th,ltt A (E) < 8 -:for E in Gr ( B0 ), which iim];li~~ 

~(E) < ~/6M • Since the JSe;liU<ence (f~) iij ,,e~Jt Cauchy in C0 (S;i X), for 

re.t'tch xi iiru x~ ::M'lld eflbch po:hllt s lll S there il:l! a i"'initre limit 

~ ..-... ~:~=--·-· ..... _ 
6(1 + S(s)) 



it follo~a thiil1t for' n, p ~ q then ITf • Tt' I < f,, 
n P -

Therefore, 

C (S, X) has the D. P. property for an.y locally compa,ct Hausdorff 
0 

other than tho~e used in the previou&l: theorem. If X iit i6!ometrically 

:lt~omor·iphic to aomre C (T) \\'here T is loctl'.lly compact J) then 
0 

C0 (S, C0 (T)) ie: iaomo.rphic to C0 (S x T) (17). Since S x T 1~ 
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locally compact, si:s pointed out e,91:rlier C0 (S x T) will iossesf! the D. 

P. proJpier~y ~nd ao will C0 (S, X). 

Ale:ica;nd~r ~md SwBlrtii (1) mwe .,.l~o obt~ined parti~l reiult~ on thh 

open problem, T'ndr method doe~ not involve the u~e of integration 

theory. Let S bee the one~point compflctification o:f the podti.ve 

integerl!lio The Si}[;)li11<c:<e C(S, X) idll denote the i=~Pcil,Ce of ~J.l X valued 

convergent @eqp.1encett 'l,l'ith the sup norm,, 

Before giving their p~irtial rei!l'u.l t :1 t will be Yllece1u1.,-ry to develop 2om.e 

The f'ir&i;t thing to be don.re is to give si. ch!Si.racteri:z.eition of 

completely contim.i.otui o:per1& tori! on C (S, X)" Fo:ies &iond Singer (13) 

beive :piroved thst; !ll. bouinded liniear oper~.tor T on C (S, :X) into a B-~pace 

Y heu.'i a u.ni<fi'Mle rep>reg;entation,, Ure:ing duei,lity notl!'!1tion, tb.1~ 



m~pe X into Y are bounded line&r opera.tore and the series t< y' , T x > 
n n 

having the pr~erty t fy'Tnl 1~ finite. 

~~or~ 2 .2§_ Let X a.lrl\d l' be B-$19)1llice~. The l:h11ear tli':Ulli>@~lil\Ce o'f fbl".}11 

camr)Pl~t@ly ciontin1!1.om1~ op~ni.1tor$1 in L(X, Y) i® clo~@d iil'.l. th~ Ililorm 

topology ot L(X, Y). 

~ Liet !'~ b~ ~ ~eqluren~~ of ic:otml))let~ly continuou~ O))e:rll;l1toini 

:ifiJ.-OOiilil X to Y ~uch th~t T coimvrerg@s to T lYhi!rce ! bielong~ to L(X, Y), 
n 

Let (xn) be ~ wre~~ ~,uchy @er®,uace in X; thu~, there n:iwt~ im, K ~uch 

tlwtt Rx I< K :for &ll n. Let ~ > 0 bie given. Since t' e;onverge~ 
I ~ - n 

to T, thi~ immpli~~ there exi~t~ ~ B ~uch t~t 

(!! 
< - 0 

3K 

~ch Tn being complet~ly continuou~ iMYplie~ th~t the s~u~nce (Tiifn) 

i~ norm convergent and there exi~t~ an M ~uch ttw.t f0r ~ll n, M > M 

!-rxlll = ~iiaij ~ ij (! = Tli)xn! + ! (TJW a, T)xmij + :~(xn = xm)~ 

~ 

f (T=TN)xn! + ~(~=T)xml + !;.(xn-xm)! ~ IT=TNijijx0 ~ + ifu-T~ lxm; 

IT = Tl~ ijxn! ,~. ~!N - Tl ~x~! + f < c 

+--

Therefort1ll, (Txn) i~ ~ norlllill convlerger:i.t @;~raence ei,nd T 1$3 co~letel;r 

continuou.~. 

l'CYtN ~. cMr$1cterb:ation of completely continuoufi o~erSlltors can be 
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given u.11ng :ro111s a.nd Singer' 1 representation theorem. 

Theorem 2 ~27 Let S be the one-point compactificati.on of the 

po~itive integer~ &Itnd Y & :B-~pace.. A bounded lintel!llr open;tor T :from 

C(S, X) into Yi~ completely continuou~ if ~nd only if u~ing the Foia~ 

and Singer repre~entation £or T 

~cb T 1~ completely continuou~ for J a O, l, 2, 
J 

•• 0 

b) the eerie$ E TJ i& ~uch that E TJxJ converge~ for each 

~equence (xJ) in X, lxJf ~ 1 ~ 

Proof. A@!l@:Uliile Tis a completely continuou~ oper~tor. For J > l 

denote PJ the bounded linear operator from X into C(S, X) defined by 

CD 

PJ(x) • (&nJ x)n=l 

where 611J i~ the Kronecker delta function. Let (x.1) be a sequence in 

X ~uch th~t fxJI ~ l ~nd define 

~hich b~long~ to C(S, X), The aual ot C(S, X) can be identified 

"J'ith the t1tpIM1e .t(X') o:f ~ll ab@.iolutely $UmBJ.ble X' Val!luecl sequencre:i 

~o that if x• ~ (x') 1~ in C(S, X)', then n 

D 

I: <xj, XJ > 
J=-1 

converges to E <xj, xJ > (13) and (10). Hence, (::&n) iii ~ wreak Cauchy 

~ ~.u.ence in C ( S, X) and, thus, by hypothesi8 

('!' z ) • 
n 

is norm convergent where xJ bl identif'ied vith the e~uence of all :zero1 
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except in the J-th po•ition. Tb.erefore (b) is 1atistiede 

For J ~l and x c X we have "J!PJx • TJx, which is c011:pletely 

continuous since T is completely continuous.. In order to show that ! 0 

irs co11.Pletely continuouia, consider the continuous linear operator Q. 

from X into C(S, X) defined by Qx • (x, x, x, •~*)• From the Foias 

and Singer representation we have 

A A A. .A 
:rrom condition (b) we have T0 (11m x .. ) • Tx - y where y • t T x • ... n n 

'fhere::tore, ! 0 {11m xn) is in Y and T0 belongs to L{X, Y). In fact 

for x 6 X, 

The series E !Jx converges uniforlll.y for all lxf < l (3). That is 

to say that T is the limit in the norm topology on L{X, Y) of the 
0 

sequence of completely continuous operator~ 

{'m 
n 

- E T ) 
J=l J 

rau~, T is completely continuous since the completely continuous 
0 

operator$ ~re closed in the norm topology of L(X, Y). 

Assume con di tionl&l ( & ) and (b) are true. :for eS1ch n, let Xn be 8), 

map from c(s, X) into Y defined by 

n 
5 x • T (lim x ) + E ! 1.x 1 

n o n J•l"., 

J'rom condition (b) and the Foias and Singer representation 1 t tollow11 

that ! (lim x) belong~ to Y. Condition (a) i-,11es that each S is a o n n 

completely continuou~ operatoro !he aerie~ t TJxJ converges 



uniformly in Y tor al.l fxJf ~ l and Sn converges to Tin the norm 

topology of L(C(S, X), Y) by condition (b) and (}). Bow since the 
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completely continuous O])erators are closed in the norm topology or 

L(C(S, X), Y), it tollowa that! 11 a completely continuou~ operator. 

The following theorem is another partial re~ult to the open 

~uestion po~ed earlier~ This proof does not involve the u~e of 

integrfttion theory. 

'J.'h.eorem 2.28 Let S be the one-point eanpactification of the 

positive integer~. If X has the». P0 property, then C(S, X) bas the 

D,, P. property. 

Proof~ Let T be~ weakly compact opere.tor :from C(S, X) into Y. 

Let T be -written in the Foiu and Singer repre:sients.tion. Each TJ is 

we&kly comp~ct for J • O, 1, 2, ~n• and the aeries E TJ 1~ such that 

E TJxJ converges for ee,ch ~equence (xJ) in X, lxJf ~ l (3). From 

the hypothe~ie it tollo~s that each TJ i~ co11Pletely continuou~ for 

Theorem 2.27 implie~ that '? b a completely 

continuo~ operSJ,tor e Therefore, C (S, X) bail¥ the D. P. property. 

We &tball now coooider generalizt£t1oll$ of the \ (tl), l ~ p ~ m , 

apace~~ Limden~tr~~~ ~nd Pelc~yn~ki (33) introduced a B-~pace, ~(p) 

whoa;e finite-dimensional 11ubs:paces are clo~e to the finite-dimenaional 

11ubepaces ot \ (!,i,). In order to ll&lte thb more preci1H we shall need 

the following definitions. 

J>efinition 2.29 Let X and Y 'be :B-spac:ea. Let L(X, Y) be the B-

space of all -operators from X into Y with the u~ual operator norm. 'lb.e 
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distance d(X, Y) 'bet.ween the J .. spaoes X at.nd Y 15 defined aa 

d(X, Y) • inf { JtJ JT .. 1J : ':r in L(X, Y) } ~ 

If no ~uch T exists, Le. X a.nd Y are not 11omorphic, d(X, Y) ie taken 

to be• • 

It should be mentioned that d is not a, metric. Also, two B-spacea 

:I a,nd Y are "near" if' d(X, Y) is close to L 

Definition 2.;50 A » ... space X ii, a g(p, ~ )-apace 1 ~ p ~ • , 

l ~ ). < = , provided that f'or every finite-dimensional subspace B of X 

there is a finite-dimensional subspace E of X containing B such that 

d(E, tn) < A where n ai dim E. A B-ipace X 1e; a g(p )-~pace, l <_ p <_ oo, 
p -

it' there exisits a A > l such that X 1a: a g(p, A )-space. 

The 9(p )-space is & generalization of a L1/r.a, )-space. Let X be a 

L (µ.)-space for 1 < p < •. Let [X1} be a decomposition of the 
p -

mea1ure space X into n dis Joint mea~urable seta of finite measure. Let 

B be the lina~r sns.n of' the characteriitic functiona5 on thia n r.-

decomposition. Since the simple functiorw are dense in X, 

(I) 

X = U B 
n::l n 

Since Xis separable, it follows that Xia a S3(p)-ijpace for any A 

greater than l (,34). 

Let X be an si,b:atract M-apace. From 7beorem 2.21 the dual X' of X 

is isometric to an abstract L-space; thus, X' is is;ometric to L:i.(1:1,) :for 

some measure µ.. The SJJ;ll!ll,Ce X ia a 9(•, A )-space for any A grea,ter than 

l {34 ). Therefore, X ia a fl(co )-spa,ce. In particular, C(S) where S ts 

a comps.ct Hausdorff space, is a n(• )-aipe.ceo 
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Among the propert1ee that the 9(p )-apa.ce1 po1se11, one is tha,t they 

are reflexive for l < p < •. Also, the conjugate of a 9(1)-space is 

a g(CID )-space and vice-versa. It will now be shown that e.ny 9(1 )-space 

has the D. P. property. 

Theorem 2.31 If X is a g(l)-spa.ce, then X has the JI). P. :property. 

Proo£. There ex1eta a 1i_(~)-space Zand operator8 T from X to Z 

and P from Z to X'' ~uch that PT is the canonical embedding of X' in 

X'' (33). Let H be the canonical embedding of X' into X'''• Consider 

the operators 

H P'' T' 
X' ~ X''' ~ Z' --t X' 

i J' 

x• 

1':lue, J'H is the identity operator on X' and (PT)'H • T'P'H • J'H. 

Thu~, z• = image (P') • ker (T') and T'P' = I on x•, which implies 

that T' ia onto and P' is one-to-one. Hence, P'H(X') is a comple-

mented subspa,ce of Z' and X' is isomorphic to P'H(X' ). From Theorems 

2.23 and 2q5 it follows that X' has the D. P. property. Therefore, X 

baa the D~ P. property by Theorem 2.;. 

From the fact that the conJugate of any il(G» )-space is a 9(1 )-space 

and above theorem, we see that any Sl(w )-space will also possess the 

D. P. property. 

The following theorem will give a sufficient condition in terms 

of the g(l)- and 9(w)-spaces to ensure a spQce does not have the D. P. 

property. 

Theorem 2.32 If Xis & 13-space that is isomorphic to a subspace 
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o:f' a 9(1)-space and also isomorphic to a quotient space of a B(co)-space, 

then X does not possess the J:), P. property. 

Proof. Let Y be a 9(1)-apace such that Xis isomorphic to a sub

space of Y. Since X 1! isomorphic to a quotient apa.ce o:r a 9(ao )-space, 

there exists an operator from a 9(•)-epace Z onto x. Coneider the 

operator T ai.s an opers,tor from Z into Y. Hence, there exists an 

operator U from a Hilbert space H onto X (33). Let W be the orthogona.l 

complement of the kernel of u. Thus, Xis isomorphic to H/W. There-

fore, X is a reflexive space and by Theorem 2·.1 X does not possess 

the D. P. property. 

It will be necessary at this point to define the tensor product 

of two B-spacee. A more complete study of this subJect can be found 

in Schaefer (42), Day 7, or Robertson and Robertson ( 40). The first 

definition will be that of the tensor product of two linea.r spaces. 

Definition 2.33 Let X and Y be linear spaces over the same field. 

Let B(X, Y) be the linear space of all bilinear maps on X x Y • For 

each pair (x, y) in Xx Y, the mapping U (f) = f(x, y) is a 
xy 

linear map on ,B(X, Y) and hence an element of the algebreic dua,l 

B(X, Y)'. The mapping (i\o)(x, y) ,.,. Uxy ia a bilinear map from X x Y 

into B(X, Y)'. The linear hull of ~(Xx Y) in B(X, Y)' ·is the 

tensor product of X and Y which is denoted by X ® Y. 

It is a. common pra.ctice to denote the element tJ in X ® Y by x,y 

x ~ y, thua each element x ® y is g finite sum t A1 (x1 ® yi) • 

If X and Y are locally convex spa,ces, then there are numerous ways 

to induce a topology in X ® Y relative to the given topologies in 
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original spaces and to the tensor prod~ct structure. A good diecusaion 

on this can be found in (7), (43) or (42). 

Definition 2.34 Let X and Y be B-spaces. 
A 

Let X ® Y be the 

completion of the algebraic tensor product or X and Y with the norm 

where the inf is ta.ken over the set of all expressions 

equivalent to 
n 
t xi® Y1 • 

1=1 

'Phe B-space x$ Y is the proJective tensor product of X and Y. 

~ 
Let X; Y be the completion of the algebraic tensor product of X 

and Y with the norm 

n n 
E xi® y1 = sup { E f(x1 )g(y1 ): f e X', g e Y', !fl~ l, Isl~ l}. 

i=l i=l 
~ 

The B-space X ® Y is the weak tensor product of X and Y. 

There is a relationship between the space C(S, X) and the weak 

tensor product of C(S) and x. Grothendieck (17) showed that these 

spaces were isomorphic. 

Grothend.ieck'a (16) paper, which considered a closs of (L)-spaces 

and (C)-spaces, takes on more interest when it is noted that Stegall and 

Retherford (44) have ,,roved the (L)-spacee are equivalent to the 9(1 )-

spaces. This cheracterization will now be given J:or completeness, but 

the proof will be omitted. 

Theorem 2.35 AB-space is a ij(l)-space if and only if for every 

"' apace F and closed aubspace G of F the natural inJection of G ® X into 

"' F ® X ia an isomorphism. 



53 

With the above characterization we can now give a class of B-spaces 

that will have the D. P. property. The proJective tensor product of any 

two of them will also possess. the». P. property. 

Theorem 2.36 If X and Y are 9(1)-spaces, then· the projective 
. 

tensor product of X and Y has the D. P. property. 

Proof. Let Ebe an arbitrary B-space and Fa closed subspace of 

E. 
,... 

Since Xis a 9(1)-space, the natural injection of F@ X into 

E ~ X is an isomorphism. Thus r i X is a closed subspace of E ~ X 

(44). Since Y is a 9(1)-space we have that the injection (F;x)"® Y 

into A " (E © X) ® Y is an isomorphism. Since the injection of 
A A A A 

(F ® X) ® Y into (E ® X) ® Y is the same as the injection of 

A "'°' A ""' " F ® (X ® Y) into E ® (X ® Y), X ® Y is a 9(1)-space. Therefore, 

"" X ® Y has the D. P. property. 

Any l(•)-spa.ce will possess the D. P. property since its conJugate 

is a 9(1)-space. The weak tensor product of two 9(•)-epaces is a.gain a 

9(•)-space (2l)e Thus, we have the following theorem. 

Theorem 2.37 If X and Y are 9(•)-spaces, then the weak tensor 

product of X and Y has the D. P., property. 

Using the fact that C(S, X) is isomorphic to the weak tensor 

product of C(S) and X we have the following. 

Theorem 2.:,8 If Xis a 9(•)-space, then, for any com.pact Hausdorff' 

space S, C(S, X) has the D. P. property. 

To conclude this chapter, a table of fam1lar B-spaces will be given 

and whether these spaces possess the». P. property. In the construction 



of the following two tables the references will justify the conclusions 

on whether the spa.ce has the t>. P. property. All spaces, except the 

la.st two in Table I and the last three in Table II are discussed in 

(11, IV). It should be mentioned that any finite dimensional B-space 

will possess the D. P. property, but these will not be included in the 

tables. 
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TAl3LE I 

SOME BQACH SPACF.8 WITH THE DUNFORD-PETTIS PBOPERff 

Space Reference 

"1 Theorem 2.23, 2.3 

.t. Theorem a.23, 2.3 

c Theorem 2.3, c' • .tl 

co ibeorem 2. 3, c• • .t 
O l 

bv IV.13.11, Tb.eorem 2.10, 2.7 

bv IV.13.11, Theorem 2.7 
0 

bs IV el3.13, Theorem 2.7 

cs rv.13.12, Theorem 2.3 

B(S, t) IV.6.18, Theorem 2.2 

B(S) IV.6.18, Theorem 2.2 

C(S) Theorem 2.2 

ba{S, I:) theorem 2.23 

rca{s, I:) Theorem 2.23 

~ (S, r;, fl) Theorem 2 .. 23, 2.3 

L {S, t, fl) 
IIO 

v.8.11, Theorem 2,7 

BV(I) Theorem 2. 23, 2o3 

lm(I) Theorem 2. 23, 2~3 

AC(I) rv.12.3 

AP Iv.7.6, IV.6.18, Tb.eorem.2.2 

c11 (o) {12, page 640) 

C (S) 
0 

(12, page 637) 



TABLE II 

SOME BANACH SPACES THAT DO NOT rossms fflE 

DUN.FORD-PETTIS PROPERTY 

Space Reference 

tp (l<p<m) Theorem 2.1 

Lp(S, t, ~) (1 < p < ~) Theorem 2.1 

Hilbert 8ipace Theorem 2.1 

E (defined on page 10) Th<eorem 3.29 

Theorem 3.29 

E ff Theorem 2.11 



CHAPTER III 

APPLICATIOIS OF THE DtJNFQRD-PETTIS PROPERTI 

AD SOME SDllLU PROPEftTig 

The purpose of Chapter III will be to give a brief introduction 

to the Dieudonne, V pr~perty and the weak Cauchy V property for B

spaces. The relationship between the properties V, Dieudonn, and 

Dunford-Pettis, will be given. These different properties will be used 

to ex~ine the conditions under which certain classes of operators en a 

I space will agree. TQ.ere are two tables at the end of this chapter 

that give sOD.e sufficient conditions on a B space to determine whether 

it w:l.lJ,. possess the D. P. property. 

Dieudonne Property 

For spaces of continuous functions, Grethendieck (16) isolated a 

p:ro:pe:1rty sirrnilsir t~ the D. P. property aad subjected it to a si11.ilar 

praces~ of ~xio~tization. He na~ed this the Dieudonne property. We 

shall frame gur de:t'inttion et this property on the basis of Theorem 3.3, 

but there will be need. for the following tne0rem. 

TheQ!"E;!._,l,_d_ Let X and Y be »-spaces an.d G a collection of bounded 

subsets of' JL Let B: be the linear subspace of X'' generated by the 

weak star (O'(X'', X')) closure in X'' of sets A in G and Ta 

continuous linear ~P from X into Y. Assume X c H. The following 

conditions are equivalent: 
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(a) For each A in G, T(A) is a set whose closure in the wea·k 

topology of Y is compact. 

(b) T' '(H) e:; J(Y), where J is the natural em.bedding of Y into 

I' I. 

Proof. Assume condition (a) is true. Let A belong to G; thus, 

-the weak closure of T(A) is compact in the weak topoloSY of Y. Let A 

be the a(H, X') closure of A. Also '?'' is continuous tor a{X' ', X') 

and a(Y' ', Y'). Let J1 and Jy be the natural iabedding maps of X and 

Y respectively. Thus, 

T' ' (JX ( A ) ) • Jy ( T ( A ) ) C Jy ( T { A ) ) 

or 

T' I ( A ) c: T ( A ) 

Hence, T''(A) is contained in the a(Y'', Y') closure of T(A). Since 

T(A) is conditionally com.pact in the weak topelegy on Y, it follows that 

T' 1 (A) is contained in the a(Y, Y') closure of T(A). The a{X, X') 

closure of T''(A) is s subset af a conditionally compact set and, 

therefore, T''(.A) is conditionally compact in the a{Y, Y') topolegy 

ef Y. Since 

we have 

H = u A, 
A e G 

T0 1 (H) e U T" (A) c: Y 
A e G 

Assume (b) is true. As we have noticed, T'' is eontinuaus for 

a(X' 1 , X') and a(Y' •, Y' ). Let A be a bounded set in C. Let A0 



be the polar of A. Hence, A c: AO O n H, but AO O is the convex 

balanced a(X'', X') closure of A, which is bounded, and, therefore, 

AO O is a(X' ', X') compact (47, page 240). Hence, AO O is 
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o(X, X') com.pact and the weak closure of A is also a(X, X') compact. 

Thus by hypothesis, T(A) • T' '(A) aad we have that the weak closure of 

T(A) is compact in the weak topology on Y (11, I,5,7). 

By choesing Gin Theorem 3.1 to be the set of all bounded subsets 

of X, then we have the following characterization of weakly compact 

operators. 

Corollary 3.2 Let X and Y be B-spaces and Ta continuous linear 

map from X to Y. The following are equivalent: 

(a) 'f is weakly compact. 

(b) T''(X'') is a subset of J(Y), where J is the natural 

embedding of Y into Y' '. 

Theorem 3,3 Let X be a B-spaee, Ga collection of se,uences of X, 

each of which is a(X' ', X') convergent in X' ', and B the linear sub-. 

space 0f X' ' generated by X and the limits of melll>ers of G. The 

following conditions are equivalent: 

(a) An.y continuous linear map T of X into a B-space Y that 

transforms •embers of G into weakly convergent sequences in 

Y is a weakly compact operator. 

(b) Any continuous linear map 'f of X into a B space Y such that 

T''(B) C::Y then T''(X'') C:Y. 

Proof. Assume condition (a) is true and the hypothesis of (b) is 

fulfilled. Let (x1) be a aeaber of G. By hypothesis, (x1) is 
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a(X' 1 , X') convergent in X'' to some x'' in H. Then, T(xi) = T'' (x1) 

is weakly convergent to T' '(x' ') in Y since T'' is continuous for 

a(X'',X') and a(Y'',Y'). Inallcaseswehave T''(H)c:Y. Hence, 

by Corollary 3.2 we have T(X'') c: Y. The argument is reversible to 

show that (b) implies (a). 

Now consider G to be the set of all weak Cauchy se,uences in a 

B space X Now we shall show that each weak Cauchy sequence is 

a(X' ', X') convergent in X' '. Without loss of generality let S be the 

closed unit sphere that contains the weak Cauchy se\uence (xi). Since 

the closed unit sphere D'' in X'' is the a(X'', X') closure of D and 

also D'' is bounded, then D'' is a(X' ', X') compact. Therefore, the 

weak Cauchy sequence in X is a(X' ', X') convergent in X' '. Also, if' 

(xn) is a(X'', X') convergent in X'', then (xn) is a(X, X') 

convergent in X. 

With the above theorems and discussion we are in a position to 

define the Dieudonnf property. 

Definition 3.4 AB-space X has the Dieudonnf property {D. 

property) if for every »-space Y and every continuous linear map T 

from X to Y that transforms weak Cauchy sequences to weak convergent 

se~uences in Y, then Tis a weakly compact operator. 

Froa Theorem 3. 3 we see that condition (b) is a characterizatioti' 

of the D. property. One might introduce a Dieudonne type property 

relative to any set G of directed fa•ilies satisfying the conditions 

imposed on Theorem 3.3. The smaller the set G is the stronger the 

associated Dieudonn€ property. The D. property enjoys the same 

properties as that of the D. F. property given in 'fheorems 2.5 and 



2.11. The proof of these properties is similar to the ones given for 

the D. P. property and will therefore be omitted. 

The following theorem gives sufficient conditions on a space to 

ensure that it will p0ssess the D. property. 

Theorem 3.5 If X be an almost reflexive space, then X possesses 

the D. property. 

Proof. Let Y be a B-space and Ta continuous linear map froa X 

to Y. Let (x) be a bounded sequence in X. Bow shew that (T(x )) n n 

is weakly sequentially coa_pact. Let (y) be a sequence in the set • 
(Txn). Thus, there exists a bounded set of x• such that 

- Y. m for each m. 

Since Xis almost reflexive, there exists a weak Cauchy subsequence 
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(Xit) of (xm). Thus, if (T(xk)) is weakly convergent, then it 

follows that T is weakly compact. Hence, X pessesses the D. property. 

The above theorem is a generalization of some work by Edwards 

(12, page 646) We have the following interesting corrollaries. 

Corollary 3.6 Every reflexive space has the D. property. 

Corollary 3.7 If a I-space Xis such that the bounded sets in X 

are weakly metrizable, then X possesses the D. property. 

Proof. Let X be such a B-space. Thus, X' is separable (11, 

v.5.2). Therefore, it follows that Xis almost reflexive by (31). 

Theorem 3.8 Any B-spaee X which is weakly complete and possesses 

the D. property is a reflexive space. 



Proof. Let T De the identity map on X. Thus, T sen.ds weak Cauchy 

sequences into weakly convergent sequences. Hence, Tis weakly compact. 

Since X has the D. property, Tis a weakly com.pact operator. Thus, X 

is a reflexive space. 

A consequence of this theorem is that the only abstract L spaces 

that pGssess the D. ~roperty are those that are reflexive. Thus, L 

does not have the D. property unless it is finite dilllensional. 

One final remark en the D. property. The following is an example 

of a B-space that possesses the D. property but is not al.most 

reflexive. One of the main results of Grothendieck (16) is that for 

any con;,act Hausdorff space S then C(S) has the D. property. Using 

the definition of almost reflexive end part nine of the main theorem 

in Pelczynski and Semadeni (39), it is readily seen that C( [o, lJ) 

is not almost reflexive. 

Property V 

A consequence of Theorem 1.15 is that every weakly compact linear 

operator between B spaces sends weakly unconditionally convergent 

(w.u.c.) series into an unconditionally convergent {u.c.) series. 

Palczynski (36) studied the converse of the above problem. He defined 

a property V and made a systematic study of this property. 

Definition 3.9 AB space X has property V if it satisfies one of 

the following conditions: 

(a) For every B space Y, every u.c. operator T :fraa X to Y is 

also a weakly compact operator. 



(b) For every subset K' of X' which satisfies the candi tion 

lim sup 
n x'eK' 

for every w.u.c. series 

x' (x ) = 0 n 

E xn in X, K' is weakly se~uentially 

compact in the weak star topology of X'. 

The two conditions in Definition 3.9 are pr0ved to be equivalent 

~Y Pelczynski (36). Some ef the basic properties C>f the property V 

are proved in his paper. One of the main results by Pelczynski in (36) 

is that for any compact Hausdorff space S, C(S) has property V. It is 

easily seen that every reflexive space has property V from (ll, VI.4.3). 

Weak Cauchy V Property 

Howard (22) has proven that given B-spaces X and Y with T' a weak 

Cauchy operator from. Y' to X', then Tis a u.c. operator from X to Y. 

This led him to define a property that he calls the weak Cauchy V 

property. 

Definition 3.10 AB-space X has the weak Cauchy V property if it 

satisfies one of the equivalent conditions: 

(a) Given any» space Y, every u.c. operator T from X to Y is such 

that T' is weak Cauchy frQll Y' to X'. 

(b) For every subset K' of X' satisfying the condition 

lim sup x' (x ) = 0 
n n x'e:K' 

for every w.u.c. series Ex 
n 

in X, K' has a weak Cauchy 

sequence. 

The proof that these two conditions are equivalent can be found in 



(22). Since every weakly compact operator is also a weak Cauchy 

operator, there is a possibility of a relationship between the weak 

Cauchy V property and property V. The following theorem gives a 

condition that is needed on a B-space in order to ensure the 

equivalence of the weak Cauchy V property and property V. 
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Theorem 3.11 AB-space X has property V if and only if X has the 

weak Cauchy V property and X' is weakly complete. 

Proof. Assume X has property V. Thus, X' is weakly complete 

(36). Let T be a u.c. operator on X; then, Tis weakly com.J>act, 

Since T' is also weakly com.pact, Theorem 1.10 implies that T' is weak 

Cauchy. Therefore, X has the weak Cauchy V property. 

Assume X' is weakly complete and X has the weak Cauchy V property. 

Let T be a u.c. operator on X. The weak Cauchy V property implies that 

T' is a weak Cauchy operator. For a bounded set A in Y', T'(A) is 

bounded in X' since T' is continuous. Since T' is a weak Cauchy 

operator, T'(A) has a weak Cauchy subsequence. It follows that T'(A) 

is weakly sequentially compact since X' is weakly complete. Hence, T' 

is weakly compact and so is T. Therefore, X has the property V. 

For weakly complete B-spaces we can give a characterization of the 

weak Cauchy V property in terms of its conjugate space. 

Theerem 3 .12 Let X be a weakly complete B space. Tb.en X has the 

weak Cauchy V property if and only if X' is almost reflexive. 

Proof. Assume X has the weak Cauchy V property. By Orlicz' s 

Theorem every w.u.c. series is also a u.c. series (35). Thus, every 

bounded set in X' will satisfy the condition given in Definition 3.10 



(36). Since X has the weak Cauchy V property, it f'ellews that each 

bounded set in X' has a weak Cauchy sequence. Therefore, X' is alllost 

reflexive. 

Assume X' is al.most reflexive. Since Xis weakly complete, the 

w.u.c. and u.c. series are equivalent in X Thus, the closed um.it 

sphere S' in X' is w.u.c. -limited by (5). Since X' is almest reflexive, 

it follows that X has the weak Cauchy V property. 

The weak Cauchy V along with the property V can be used to give 

sufficient conditions for a B space not to possess _the D. P. property. 

Theorem 3.13 If X is almGst reflexive and X' has property V, then 

X does not possess the D. P. property. 

Proof. Siace X' has property V, it follows that X is weakly 

con;,lete f'rGIDl propositions 4 and 6 of (36). Frail the hypothesis, Xis 

almost reflexive. From. the Eberlein-Smulian Theorem any weakly 

complete and almost reflexive space is reflexive. Therefore, X does 

not have the D. P. property by Theorem 2. l, 

Comparison of the Dieudonne, Dunford-Pettis 

and V Properties 

:Before considering some of the applicatiGns of these different 

preper,ties, we shall examine the relationship between them. 

Theorem 3.14 If Xis a B-space which bas property V, then X has 

property D. 

Proof'. It will suffice to show that any operator T that sends 

weak Cauchy se~uences into weakly convergent se~uences is a u.c. 
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operator. 

Let T be such an operator frc,m X to Y. Let Ex be a w.u.c. 
n 

series in X. Let E Tyk be a subseries of E Txn Thus, there 

exists' a w.u.c. subseries E ~ of E xn such that Txk = Tyk. 

Hence, the sequence 

n 
( E ~) 

k=l 

is weak Cauchy. From the property of T, it :follows that 

is weakly convergent in Y. Therefore, every subseries of E Txn is 

weakly convergent in Y Hence, Tis a u.c. operator. 

This is the only general relationship that exists between these 

properties. The following examples will verify this. 

Example 3.15 If X has the D. property, then X does not neces. 

sarily have the property V. Consider the space E defined in Example 

1.20. Since Eis almost reflexive, it follows from Theorem 3.5 that 

E has the D. property. Assume E has the property V. From Theorem 

3.11, E' is weakly complete. Also, E' is almost reflexive. The 

Eberlien-Smulian Theorem implies that E' is reflexive. Therefore, Eis 

reflexive, which is a contradiction. Hence, E does not have the 

property V. 

Example 3.16 If X has the D. property, then X does not 

' necessarily have the D. P. property. Consider the space t 2 . Since t 2 

is almost reflexive, Theorem 3.5 implies t 2 has the D. preperty. 

Theorem 2.1 yields that t 2 does not have the D. P. prQPerty. 
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Example 3.17 If X has the D. P. property, then X does not 

necessarily have the B. property. Consider the space L. This space has 

the D. P. property from Theorem 2. 23. From Theorem 3. 8 it follows -that 

t does not have the D. property. 

Example 3.18 If X has the property V, them X does n0t necessarily 

have the B. P. property. Let X be an infinite dimensional reflexive 

B-space. The space X has pre>perty V (11, VI.4.3). Fram Theorem 2.1, X 

does net have the D. P. property. 

Example 3.19 If X has the D. P. property, then X does not 

necessarily have property V. The space t has the D. P. property by 

Theorem 2.23. Assume t has the V property, The conjugate space of l 

is t which is not weakly complete by (11, IV 13.5), This contradicts 
GO 

Theorem 3.11, which implies that l is weakly complete. Therefore, t 
CD 

does not have the property V. 

Applications of These Properties 

Five different operators were defined in chapter one and their 

relation to each other was given in general for a B-space, Haw we plan 

on investigating what happens to these classes of operators when some 

of the properties discussed in this chapter are added to the domain QI' 

range space. Also, with the addition that a B-space has one or sane 

combination of these properties, some classic and interesting results 

are easily obtained. 

The next theorem gives conditions on the domain, X, and range, Y, 

spaces in order that all continuous operators from X to Y are exactly 

the weakly compact operators. 
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Theorem 3.20 Let X be a J-.space that possesses the D. property an'IJ 

Ya B-space that is weakly complete. If Tis a continuous linear lllBP 

f'r• X to Y, then T is weakly compact. 

Proof'. The continuity ef T implies that T transf'oras weak Cau·chy 

sequences into the SBlle type secg_uences. Frci,a the property of Y, these 

weak Cauchy sequences are weakly convergent. Thus, it :f'ollcws that T 11 

weakly compact since X has the D. preperty. 

J;f' it is known that X has both the B. and D. P. property (f'or 

example, C(S) where Sis a ccmpact lausdorf':f' space), then an even more 

remarkable statement can be made about any continu0us linear •P· The. 

fGll(l)Wing theorem. gives this result. 

Theorem 3.21 Let X, I be B-spaces such that Y is a B-space which 

is weakly complete and X pessesses both the D. and D. P. properties. If 

Tis a continuous linear :map :f'rom.X to Y, then Tis cem.pletely 

continuous. 

Proef. From Theorem 3.20, T is weakly compact. Since X has the 

D. P. property, Tis completely continuous. 

Now consider a space which possesses the D. P. and V properties. 

The following theorem gives seae equivalences between operators. 

'fheorem_3.~ Let X be a B-space which possesses the V and D. P. 

properties. Let Y be any B-space and T be any continuous linear map 

from X to Y, then the follGWing are equivalent: 

(a) Tis a u.c. operator. 

(b) Tis a weakly com.pact operator. 



( c) T is a completely continuaus operator. 

Praof. (a) implies (b). This implication follows since X has 

property V. 

(b) implies (c). Since X has the D. P. property we see that this 

ua,licatian is true. 

(c) implies (a). Using Theorem l.13 this result follows imme-

diately. 

Some examples of spaces that possess both the V and D. P. 

properties are B(S), C(S), c, c0 , t., and L.(s, E, µ). An 

interesting question nfOW arises. Is it possible for the class of u.c. 

operators to coincide with the compact operatws? The fellcwing 

theorem answers this question positively. 

Theorem 3.23 Let X be a I-space that is ai.ost reflexive and 

possesses the V and D. P. properties. If Tis a u.c. operator f'raa X 

to any I-space Y, then Tis also a com.pact operator. 

Proof. Let T be a u.c. operator. Using Theorem 3.22 we have Tis 

completel)r continuous. Now show that T is compact. Since X is almost 

reflexive, any bounded sequence in X will contain a weak Cauchy sub-

sequence (xn). Wow (xn) is weak Cauchy if and onl)r if .(,c - xm) 

converges weakly to zero for each subsequence (xm) and C,c) of (x11). 

Hence, (Txk - Txm) con.verges to zero and this is true if' and 0nly if' 

(Tx11 ) is a Cauchy sequence. By the completeness of' Y, it .:follows that 

(Txn) is convergent. Therefore, Tis a compact operator. 

Some examples c,f spaces that are almost reflexive an.d possess the 

V and D P. properties are c, c, and C(S) where Sis a cam.pact 
0 
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Hausdorff dispersed space (that is, Sis dispersed if it contains no 

non-void closed subset E which is dense in itself). 

' One can obtain results similar to those of Theorem 3.22 by using 

the weak Cauchy V property along with the D. P. property. 

Theorem 3.24 Let X be a !-space that possesses both the weak 

Cauchy V and D. P. properties. Let Y be any B-space and Ta continuous 

linear map from X to Y; then, the following are equivalent: 

(a) Tis a u.c. operator. 

(b) T' is a weak Cauchy operator. 

(c) Tis a completely continuous operator. 

Proof. (a) implies (b). From the fact that X has the weak Cauchy 

V property, this implication follows readily. 

(b) implies (c). This implicati~n follows from Theorem 1.26 part 

(g) and X possessing the D. P. property. 

(c) implies (a). Th.is is easily seen by Theorem 1.13. 

Now we sh~ll investigate the conditions under which nerm and weak 

convergence correspond in a B-space. In the next two theorems we shall 

find a cl.ass of' 11-spaces where these two types of convergence will 

agree. 

Tl1,eorem :3.:.?.5 Let X be a B-space, then the following conditions 

are equivalent: 

(a) 

(b) 

Weak and norm convergence correspond in X. 

Every operator T from X tot (the space of bounded 
0, 

sequences) is completely continuous. 

(c) Fox· every sequence (x ) that converges weakly to zero in X 
n 



and for every bounded se,uence (x') in X' 
n 

lim x' (x ) ... O • 
n n 

Proof. (a) implies (b). Let (xn) be a sequence in X that 

converges weakly to zero. Jy hypothesis, (x) is norm convergent to . n 

zero. Since T is continueus, (Tx ) is norm convergent. Theref0re, T 
n 

is completely continuous. 

(b) implies (c). Let (x•) li>e a b0unded sequence in X'. Define 
n 
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T(x) = x•(x) for x in X. By the Uni:f'ol'JI Boundedness Principle we have 
n 

x~(x) is an element int • 
GO 

By assumption, Tis completely 

continuous. Let (xm) be a sequence in X that converges weakly to 

zero. Thus, 

Hence, lim x' (x) • 0. n n 

• lim. sup 
11 n 

• 0 . 

(c) implies (a). It will suffice to show that every map T from 

X to an arbitrary I-space Y 11 completely continuous. Let (x ) lile a n 

sequence in X that converges weakly to zero. Let (y•) be a sequence 
n 

in Y' such that 

and for each n. 

Define x' = T'y' n n 

Since T' is centinucms, the sequence (x') is 'beunded and 
n 

T x n = lim 

lim I T' y' (x ) n n 

y' (T x ) n n • lim 

= 0 . 



Hence, Tis completely continuous. '.rhus, the identity on Xis 

co~letely continuous and it follows that weak and norm. convergence 

correspond in X. 

In view of this theorem we can give a condition en the c(l)njugate 

space such that the D. P. property will be equivalent to the.cor

responding o:f' the nora and weak convergence in the space. 

Theerem 3.26 Let X' be allllest reflexive. The following are 

eq_uivalent: 

(a) Weak and norm convergence correspond in X. 

(b) X has the D. P property. 

Proof. Assuae X has the D. P. property. Let T 'be the identity 

from X to X. Thus, T' is the identity fran X' te X'. The map T' is 

weak Cauchy since X' is almost reflexive. From Theorem 1.26 part (g) 

it follows that Tis can.pletely continuous. Therefore, weak and norm 

convergence correspond in X. 

The converse follows from. Theorem 3.25 and Theorem 1.26 part (d). 
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The following are some consequences of these two theorems. Given 

any B-space such that weak and norm convergence agree, this space will 

have the D. P. property. From Theorems 2 .1 and 3. 26 we can see that 

for any reflexive space the weak end norm convergence do not agree. 

Theorem 3.27 Let X be almost reflexive. The following conditions 

are eq_uivalent: 

(a) Weak and norm c0nvergence correspond on X'. 

(b) X has the D. P. property. 

(c) X' has the D. P. property. 
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Proof. (a) implies (c). This implicatic,n fellows fr• TheOTea 

(c) implies (b). This implication follows from Tbeerea 2.3. 

(b) implies (a). Let T be the identity map from. X te X. Since X 

is almost reflexive, Tis weak Cauchy. Since X has the B. P. praperty, 

T' (which is the identity frca X' to X1 ) is completely continuous. 

Therefore, weak and norm convergence correspond on X'. 

The above theorea has soae interesting corollaries. Among these is 

a result of Pelezynski given in the following corollary. Corollary 3.29 

then gives sufficient conditions to ensure that a space d0es not possess 

the D. P. property. 

Corollary 3.28 Let X be a B-space that possesses the D. P. 

property. Let A be a COllIPleaented subspace of X and suppose that the 

annihilator 

A.L. • { x' : x' € X', x' (A) = 0 } 

.J. 
is separable; weak and nC>rll convergence c0rrespond on A 

PrQof. Let P be a projeetian from X onto A. Thus, the q_uotient 

space X/A is linearly homeoaorphic with the kernel of P, ker P. 

Since the subspace ker P is complementary to A, it is cG11,Pleaented 

in X. Therefore, ker P has the]!). F. property fr• Theorem 2.5. The 
J.. 

conjugate space to X/A can be naturally identified with A • Since 
~ . .J. 

A is separable, we have that (ker P)' = A and (ker P)' is 

separa'ble. The ker P is alllleat reflexive by (31). Using Theorem 

3.27, it follows that weak and norm convergence agree on 
L 

(ker P)' = A 



Corollary 3.29 If Xis an in:t'inite dimensional I-space such that 

X and X' are both almost reflexive, then X does not have the D. P. 

property. 

Proof. Assume X has the D. P. property. Theorem 3. 27 :implies 

that X' is weakly cQBplete. By the Eberlien-Smulian Theorem, any weakly 

complete and al.most reflexive space is reflexive. Since no infinite 
\ 

\ 

dimensional reflexive Banach space has the D. P property by Theorem 
(\ 

2.1, this implies X does n~t have the D. P. property. This is a 

contradiction. 

The Dunford-Pettis Property and Weakly 

Compactly Generated Spaces 

Some of the recent werk that has 'bees. d0ne with the D. P. property 

is by Rosenthal (41). He also used the concept of weakly cmnpactly 

generated i-spaces that was developed and studied by Lindenstrauss 

(32). 

Definition 3.30 AB-space Xis weakly compactly generated, 

denoted by W.C.G. if there exists a weakly compact subset of X whose 

linear span is dense in X. 

Among the basic properties that Lindenstrauss proved were these: 

complemented subspaces of a W.C.G. B-space are also W.C.G., and if X 

is a W.C.G. B-space and Y is isomorphic to X, then Y is a W.C.G. 

B-spaee. Further properties of W.C.G. B-spaces can be found in (32). 

Since the closed unit sphere in a reflexive space is weakly 

compact, it follows that a reflexive space is a W.C.G. space. Let X 

be a separable Banach space an~ (xn) be a countable dense subset 0f X. 
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Def1ne for each n, 

x 
n 

Thus, (yn) ll {O} is a compact set and, thus, weakly eompact. Tht::re-

fore, X :is a W.C.G. spac:e. Hence, the W.C.G, spaces are generalizations 

of the reflexive and separable Banach spaces. 

Rosenthal (41) has taken the concept of W.C.G. B-spaces and 

generalized a result given by Grothendieck. 

Theorem 3.31 Let X be a B-space that possesses the D. P. property. 

If Xis isomorphic to a subspace of a weakly compactly generated 

conjugate B-space, then week and norm convergence correspond in X. 

Proof. First, we shall observe 

(x~) in X and X', respectively, such 

that for any sequences (x) and 
n 

that (x) converges weakly to zero n 

and (x~) is weak Cauchy, then x~(x) converges to zero. Suppose not, 

thus without loss of generality (otherwise a subsequence could be used) 

assume x'(x) converges to L where Lis non-zero. 
n n 

weakly to zero, we may choose a subsequence (xnk) 

Since (x) converges 
n 

of (x) such that 
n 

Hence, (x - x k) converges weakly to zero (16). Since X has the D P. n n 

property, it follows that 

Thus, 

(x' - x' ) (x ) n nk nk converges to zero. 

converges to zero, 



which is a contradiction. 

Since the D. P. property is preserved by isomorphism (Theorem 2.7), 

we may assume there exists a I-space Y such that Y' is W.C.G. and Xis 

a subset of Y'. Let (x) be a sequence in X that converges weakly to 
n 

zero and suppose (xn) does not converge to zero. Thus without loss·of 

genere.li ty (passing to a sul>sequence if' necessary), we may assume ·ther-e 

exists a t greater than zero such that 

for all n. 

For each n, choose a yn in Y such that 

and 

This is possible since Sis a subset of' Y'. The unit ball 0f Y'' is 

weak star sequentially c0m,Pe.ct (2). Hence, there exists a subsequence 

(y) of' (y) and a y'' in Y'' such that (y) converges weak star to m n m 

y''. Thus, (ym) is a weak Cauchy sequence, Define a map T from Y to 

X' as follows: 

Ty(x) = x(y) for ally in Y and x in X. 

Since Xis a subset of Y', Tis a continuous map and (Tym) is a weak 

Cauchy sequence in X'. From our above observations we find that 

which is a contradiction. The theorem follows from the fact that a 

sequence (x) in Xis weak (norm) Cauchy if and only if for every pair 
n 

of' its subse~uences (xk) and (xm), 

converges weakly (in norm) to zero. 
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Rosenthal also used the Ill. P. property to help him generalize the 

result of Gelfand that L1 ( [O, l] ) is not isomorphic to a subspace 

of a separable conjugate space. 

'.!!!eorem 3.32 Letµ be a measure and X be a complemented subspace 

ot L1(µ). Ifµ is finite and Xis isamorphic to a cenjugate I-space, 

or more gen~rally, ifµ is arbitrary and Xis isomorphic to a subspace 

of a ~.c G. conjugate B-space, then weak Cauchy setuences in X are norm 

convergent end Xis iscmorphic tea Ct1l!JIIPlemented subspace of 

~?O,!. first consider µ finite. From Theorem 2.23 L1 (µ) has 

the D. I'. property and is also :w.c.~. since ~(fl) i.njects densely into 

t 1{µ). Its ccmpleaented subspace is also W.C.G. and possesses the D. P. 

prope:t"t;y. Thus, if' I is isot1orphic to a subspace of a W.C.G. conjugate 

sp~ce, Theorem 3.31 implies that weak Cauchy sequences converge in the 

no:t'l!lli topology Qf X. Thus by Eberlien's Theorem, Xis separable. Now 

choose ei fubapace of 1i (µ) -containing X and isom.orphic to L1 ( v) for 

SC!l!le se~rii!'ble measure v. Hence, for such a 'V, L1 ( v) is isomorphic 

to c co~pleimaenteJ. Gubspace of L1 ( [o, l] ) by (20, page 123). 

Fore. gene~sl aeasure µ, the above argument and Rosenthal's (41) 

Lemee 1.3 yi':'l'lds "tliat if' X is isomorphic to a subspace of a W.C.G. 

JS-space, then tb.t:ire exists a finite ~easure " and e subspace Z of 

11 (µ) with z irH>~_orphic to t 1 ( ") and X a subset at Z. 

The rii~~;t t.beor-em provides an elementary proof that every weakly 

COO',p~c:t; ~u:Met or L (µ), for a finite measure µ., is separable. Also 
~ 

every W .C.G. su:bapace of L (µ) will be separable. 
a:, 
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Theorem 3.33 If Xis a B-space that is W.C.G. and possesses the 

D. P. property, then every weakly compact subset of X' is separable. 

Proof. First we shall observe that if K is a weakly compact 

subset of the !-space X and Tis a map frCllll X' to C(K) defined by 

Tx' (k) = x' (k) for all x' in X' and k' in K, 

then it follows that Tis weakly c0mpact from (ll, page 490). 

Now let K be a weekly ccmpact subset of X'. From the above 

observation and letting X • X' and t map X'' to C(K) as above, we have 

?J is a weakly compact operator from X to C(K) where J is the natural 

imbedding of X into X''· Since Xis W.C.G., let G be a weakly compact 

su\set of X that generates X. Since X possesses the D. P. property, 

TJ(G) is a compact subset of C(K) and, thus, a separable subset. The 

subspace TJ(X) of C(K) is separable since G generates X. Let A be the 

s:mallest closed subalgebra of C(K) which contains TJ(G) and the 

constants, then A is also separable. Lets and k be distinct points 

of K. Since a compact Hausdorff space is normal, it follows from 

Urysohn's Lemm.a that TJ(X) separates the points of K; hence, so does 

A. The Stone-Weierstrass Theorem implies that A is equal te C(K). 

Thus, K is metrizable in its weak topology by (11, v.5.1). Therefore, 

K is separable. 

The above theorem has the following corollary. This corollary 

will provide a sufficient condition for a B-space not to posses the 

D. P. property. 

Corollary 3,34 If Xis a B-space such that X' is weakly CC!)lll!)actly 
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generated and non-separable, then X does net possess the D. P. preperty. 

Proof'. Assume X has the D. P. pre:,erty. Since X' is weakly 

compactly generated, the closed unit sphere in X'' is weak-star 

sequentially compact (2). Let (xn) be a bounded sequence in X; thus, 

(~) is a bounded se,uence in X''. Bence, there exists a subsequence n 

of (~ ) which is weak-star convergent, say (~m). Therefore, (x ) will n m 
be a subsequence of (xn) that is weak Cauchy in X. Thus, it is seen 

that X is almost reflexive. From Theorem 3.27 it f'ollc,ws that weak and 

norm convergence correspond in X'. The space X', that is W.C.G., is 

also compactly generated and is, therefore, separable. This is a 

contradiction and it follows that X does not have the D. P. property. 

It might be mentioned that the Dieudonne and n. F. property have 

been very helpful in the study 0f vector-valued Radon measures. The 

interested reader can find a discussion of this along with more 

references on the subject in (12). 

The following two tables represent a collection of sufficient 

conditions to determine whether a B-space possesses the D. P. praperty. 

These conditions are a result 0f' the research done on this thesis and 

are given in tabular fora for easy reference. 



TABLE III 

Sil'P'ICIENT CODITIOIS FOR A IAIACH SPACE X TO 
HAVE ffl DWIFORD-PETTIS !'ROPERT!' 

(a) The conjugate spa.ce of' X, X', hes the Dunford-Pettis preperty. 
(Theorem 2.3) 

(b) The weak and norm convergence correspond in X. (Theerem. 3.25) 

(c) The week and norm convergence correspond in X'. (Theorems 3.25, 
2.3) 

(d) The space X bom.orphic to ·e. C(S) space where S is a cGmpact 
Hausdorff space. (Theorems 2.2, 2.7) 

(e) The space X is isomorphic to an abstract L-space. (Theorems 2.23, 
2.7) 

(f) The space X is an abstract M--space with unit. (Theorem 2.18) 

(g) E.'very w~Jakly .:,equ~ntially compact set in X' is w-limi ted in X'. 
f "'"•1r,:,,; ·' .. ,.,, 1 ,;:){~ '; \ ..Li -lli.,J.'!a ~,·~~ ~ ..... "-,., ~ 

(h) Every weakly ~e~uentially compact set in X is w-limi ted in X. 
(Thet,!:·r~tl L 

(i) The spitce X is a 9{1)-space. (Theorem 2.31) 

(j) The space X is a ij(=)-space. (Theorem 2.3) 

(k) The space C(S. X), Sis a compact Hausdorff space, has the D. P. 
property. ('I'heorem 2 .24) 



TABLE IV 

SUFFICIENT COIDITIOIS FOR A BAKACH SPACE X NOT 
TO POSSFSS TIE Dtno'ORD-PETTIS PROPERTY 

(a) The space X be isCl>llorphic to any infinite dimensional reflexive 
B-space. (Theorems 2.l, 2.7) 

(b) The space X isGlllorphic ta a subspace of a weakly compactly 
generated conjugate I-space such that weak and norm convergence 
do not correspond in X. (Theorem 3.31) 
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{c) The space X' is almost reflexive and weak aud norm convergence do 
not correspond in X. {Theorem 3.26) 

{d) The space X and X' are almost reflexive. {Corollary 3.29) 

{e) The space X' is weakly compactly generated and non-separable. 
(Corollary 3.34) 

{f) The space X' has property V and X' is separable. {Theorem 3.13) 

(g) The space Xis weakly complete and has property D. (Theorems 3.8, 
2.1) 

(h) The space X' has property V and Xis almost reflexive. {Theorem 
3.13) 

{i) The space Xis isomorphic to a subspace of a 9(1)-space and also 
isC>morphic to a quotient space of a 9{m)-space. {Theorem 2.32) 



CHAPTER IV 

SUMNARY AD SOD OPEi QUESTIORS 

The main purpose of this thesis is to give seme characterizatiens 

of the Dunford-Pettis property and exB!lline some of its applications in 

the field ef functional analysis. Some 0f these characterizations are 

given in terms of operators. There are two main results given in 

Chapter I. One is the Venn diagram, which demonstrates the inter

relations among the compact, weakly ccr,m_paet, weak Cauchy, completely 

continuous, and unconditionally converging operators. The other is 

given by Theorem 1.26, which consists of the characterizations of the 

Dunford-Pettis property. 

Some of the very basic properties of the Dunford-Pettis property 

are given in Chapter II. It is pointed out that some of the permanence 

properties of the Dunford-Pettis property consist of isomorphism, 

C()]l,}>lemented subspaces, and finite topological direct sums. Among the 

non-permanence properties are subspaces, quotient spaces, inductive and 

projective limit spaces. Tables I and II are given at the end of 

Chapter II and show whether smae of the cmnmon B-spaces encountered 

in an introductory course in functional analysis have the Du:m.ford

Pettis property. 

In Chapter III properties similar to the Dunford-Pettis property 

are defined. The relationship between the property Y, Dieudonn~ and 

Dunford-Pettis preperties is exhibited in this chapter. These different 



properties are used to help investigate when certain classes of 

operators on !-spaces will agree. It is shown that f(!)I' a certain class 

of B-spaces the Dunford-Pettis property can be used to characterize 

the property that weak and norm convergence correspond. Table III at 

the end ot Chapter III is a collectien of sufficient conditions to 

determine that a B-space will possess the Dunford-Pettis property. 

Table IV is a collection of sufficient conditions to determine that a 

I-space will not possess the Dunford-Pettis property. 

Four well-known operators have been mentioned in this paper, 

namely, compact (cpt.), weakly cOJ1pact (w.c.), cE>Jnpletely continuous 

(c.c.), and unconditionally converging (u.c.) operators. This paper 

contains a study of the interrelationships among these operators and 

their use in giving characterizations of the Dunford-Pettis property. 

These operatcn-s have received much censideration in the past f'ew years 

since many pr0perties of a B-space can be described in terms of them. 

Pelczynski (36) and Grothendieck (16) have shown that the property 

V and the Dunford-Pettis property have seen very helpful in the field 

of functional analysis. The following is an extension of the concept 

of property V and Dunford-Pettis property. 

Definition 4.1 AB-space X has the P(a,b) property if for every 

B-space Y every a-type operator tram. X to Y is also ab-type operator. 

The Dunford-Pettis property and property V can be represented in 

terms of this new terminology by P(w.c., c.c.) and P(u.c., w.c.), 

respectively. It will be noticed that the reflexive spaces have the 

P(c.c., w.c.), which is in a sense the converse of the Dunford-Pettis 

property. 
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Froa Chapter I it is seen that the following relationships always 

hold for operators. 

cpt. 

/~ 
w.c. c.c. 

~/ 
u.c. 

With these implications, one can easily construct the following: 

P(u.c., cpt.) 

/ '\ 
P(u.c., w.c.) P(u.c., c.c.) P(w.c., cpt) P(c.c., cpt.) 

J 
P(w.c., c.c.) 

! 
P(w.c., c.c.) 

j 
P(c.c., w.c.) 

t 
P(c.c., w.c.) 

Grothendieck (16) studied ma·ny properties of lim.i ted sets and 

pointed out that many of these properties can be stated ia terms of 

the Mackey topology on the conjugate space. If it is possible to get 

a connection between the P(a, b) property and limited sets, then it 

seems possible that some of the problems that are encountered in using 

limited sets could possible be overccae by using operators. Similarly, 

some problems involving the Mackey topology on the conjugate space 

could be viewed in terms of operators. Howard (23) and Grothendeick 

(16) have studied limited sets and as a result of their studies we are 

able to relate operators to limited sets. Given next will be results 

from their studies. 



85 

1. P(u.c., cpt.) is equivalent to every w.u.c.-limited set being 

sequentially compact in X'. 

2. P(u.c., w.c.) is equivalent to every w.u.c.-limited set being 

weakly sequentially compact in X'. 

3. P(u.c., c.c.) is equivalent to every w.u.c.-limited set being 

w -limited in X' • 

4. P(w.c., cpt.) is equivalent to every weakly sequentially 

compact set being se,uentially compact in X'. 

5. P{c.c., cpt.) is equivalent to every w-limited set being 

sequentially compact in X'. 

6. P(w.c., c.c.) is equivalent to every weakly sequentially 

compact set being w-limited in X'. 

7~ P(c.c., w.c.) is equivalent to every w-limited set being 

weakly sequentially cGmpact in X'. 

The P(a, b) property could be subjected to a systematic study by 

using different classes of aperators as Grothendeick (16) did the 

Dunford-Pettis property and Pelczynski (36) the pr0perty V. It will 

now be shown how some of the P(a, b) properties are related by using 

compact, weekly compact, unconditionally converging, and completely 

continuous operators. 

Theorem 4.2 If Xis a B-space and possesses the P(u.c., cpt.) 

property, then X possesses the P(w.c., cpt.) property. 

Proof. Let T be a weakly compact operator on X. From Theorem 

1,15 it is seen that Tis a u.c. operator and, thus, Tis a compact 

operator. Therefore, X has the P(w.c., cpt.) property. 



~ore!_~ J If X is an abstract M-space with unit, then X 

possesses both the P(w.c. 1 c.c.) and P(c.c., w.c.) properties. 

Pro~f •. From Theorem 2.18 Xis isometrically isomsrphic t0 e C(S) 
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space where Sis a cOllll:,pact Hausdorff space. The class of weakly cem;pact 

and completely continuous eperetor1 coincide tor this space as seen by 

Theorem 3.22. 

Theorem 4.4 If Xis a B-space and possesses the P(c.c., cpt.) 

property, then X possesses P(c.c., w.c.) property. 

Proof. Let T be a completely continuous operator on X. Since X --
has the P{c.c.~ cpt.) property, Tis a COJiJli\PBCt operator. From Theorem 

1.8, Tis als~ weakly com.pact. Therefo~e, X bas the P(c.c., w.c.) 

property. 

Tf:l!_Ol"E:_~-~4 ·2 JJ:f X is a B-space that is al.mast reflexive, then X 

has the P(c.c., cpt.) property. 

~ Let T be a completely continuous operator from X to an 

ar"!i:,itrary B-space Y. Since X is alm®st reflexive, any bounded sequence 

in X contains e weak Cauchy su'bseq_uence (x ). Now (x) is weak Cauchy n n 

if and only if' (xk - xk+l) converges weakly to zero for each sub-

sequence (xk) of (xn). Since T is completely continuous, (Txk - Txk+l) 

converges to zero for each subsequence (xk), which is equivalent to 

(Tx) being a Cauchy sequence. Since Y is complete, it follows that 
n 

(Tx) is convergent. Hence, every bounded sequence is mapped into a 
n 

sequence thet has a. convergent subsequence. Therefore, Tis a compact 

operator. 



'fheorea 4.6 If Xis a I-space which has the P(w.c., cpt.) 

property, then X possesses the P(w.c., c.c.) property. 
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Proof. Let T be a weakly c9lm\Pact operator on X. Sim.ce I has the 

P(w.c., cpt.) property., Tis a compact operator. Frfl>JD Theorem 1.11, T 

is completely continuous. TheretG>re, X has the P(w.c,, c.c.) pr0perty. 

Theorem 4.7 If Xis a B-space that possesses eoth the P(u.c., 

w.c.) and P(w.c., c.c.) properties, then X possesses the P(u.c., c.c.) 

property. 

E::oof. Let T be an unconditionally converging operator on X. 

Since X has the P(u.c., w.c.) property, Tis weakly compact. It 

follows that Tis a cODIJ)letely continuous operator frCiQI tb.e fact that 

X has the P(w.c., c.c.) property. 

'fhe.©rem 4.8 If' :X is an ablest reflexive :I-space that possesses -
the P(w.c., c.c.) property, then X' has the P(w.c • ., c.c.) property. 

~ This is a restatement of Theorem. 3.27 in the new 

terminology. 

~e0r~.)l~9 If I is an almost reflexive B-space that possesses 

beth the P(u.c., w.c.) and P(w.c., c.c.) properties, then X possesses 

the P(u.c., cpt.) property. 

Proe:f'..:.. Let 'l' be a u.c. operatGr on X. J'r01f!l Theorem 4. 7 it 

fallows tru.,t Tia cOlll;pletely continuous. Since Xis almost reflexive, 

Theorem 4.5 implies that Tis a compact operator. Therefore, X 

posseHes the P(u. c., cpt.) property. 



Theorem 4.10 If' X is aa almost reflexive I-space that possesses 

the P(w.c • ., c.c.) pre>perty, then X has the P(w.c • ., cpt.) property. 

Proof. Let T be a weakly compact operator on X. Sin.ce X has the 

P(w.c., c.c.) property, 'f is a cmr,,pletely continuous c,perator. ·From. 

'l'heGrem. 4., it tollw1 that T 11 a compact operator. 

Several examples will new be given in order t& make 'fable V more 

meaning:t'ul. These examples will provide SOJlle of the needed counter-

ex&11Ples tor the table. 

Example 4.11 The space t. is a C(S) space where Sis a cempact 

Hausdorff space. Let~ be the identity on t' • • Tb.us, Tis a u.c. 
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operator if and only if t~ has no subspace isam.orphic to c0 • Since t' 
Cl> 

is an abstract L-space, .t' is weakly complete. By Orclicz's Theorem 
CD 

it follows that every w.u.c. series is also a u.c. series. Therefore., 

t~ does not contain a subspace isomorphic to c0 (5). Bence, T is a 

u.c. operator. Since weak and norm cenvergence de not correspond on 

•• Tis not a cowmlete1 = continuous operator • .{I•' -r ~ 

Ex~'.!:!: 4.12 The Banach and Mazur Theorem states that given any 

separable »-space X, there exists an operator T that maps t onte X. Let 

X = ~ and T be a eperator from t ont0 '2· Since t 2 is reflexive, T is 

weakly compact. Hence, T' is weakly cOlll)act and bas a beunded inverse 

on '2· Thus, T' is not compact by (15). 

Example 4.13 The space Lis the conjugate of a C(S) space where 

S is a compact llausdc,rf space. Let T be the identity on t. The map 

Tis cOD!J.)letely continuous since weak and norm convergence correspond 

on t. Since tis nQt reflexive, Tis not weakly compact. From Theorem 
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1.8 it follows that Tis not compact. 

~a!!Ple 4.14 '!'he space c0 is almQst reflexive (31). '!'he space c0 

has an unconditional besis (7, page 73). It follows then that c has 
0 

the property V frOlll (36). 

~ample 4.15 Any operator with domain twill be completely 

continuous (31). 

Example 4.16 Using the operator T given in example 4.12, it is 

seen that T'' maps t~ into t 2 . Since T' is weakly com.pact, then T'' 

is weakly compact. The operator T' is not compactJ thus, T'' is not 

com.pact. The space t' has the P(w.c., c.c.) property; hence, T'' is 
CID 

also completely continuous. 

Example 4.17 Assume t~ has the P(u.c., w.c.) property. From 

Theorem 3.14 t' has the D. property. Since t' is weakly complete, it 
m m 

must be reflexive by Theorem 3.8. This is a contradiction. Therefore, 

t' does not have the P(u.c., w.c.) preperty. 
llO 

!~!!iP!e 4.18 Since tis a conjugate B space, then l is comple-

mented in its second conjugate, namely t' • Rence 1 there exists a 
CID 

continuous projection T fra!lll .t' onto /,. The range of T being t implies 
co 

that T is completely continuous (31). Assume T is weakly conq>act. The 

conjugate operator T' is also weakly compact. The operator T' bas a 

bounded inverse {14 1 page 61). Let S be the closed unit sphere int • 
CIO 1 

thus T'(S) is veakly sequentially compact. Since (T')-l is continuous, 

T1 - 1(T 1 (S)) = S is weakly sequentially compact. By the Eberlian-

Smulian Theorem 6 is compact in the weak topology. Thus, t must be 
CID 

reflexive, which implies t 1 is also reflexive, which is a contradiction. 
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Therefore, Tis not com.pact. 

~~l~ 4.19 The space B3 is not reflexive. Assume B3 has the 

P{u.co~ w.c.) pr~~erty. Froa Theorem 3.11 it follows that 13 is weakly 

cclll)lete. Since 131 is separable, B3 is almost reflexive. From the 

Eberlian-Smuliaa Theerem it f't!>llows that 13 is reflexive. Th.is implies 

that i 3 is reflexive, which is a contradiction. Therefore, :s3 does not 

possess the P(u.c., w.c,) property. A similar argument could be used 

to show that E does not possess the P(u.c., w.c.) property. 

Exam~~Q. The space ~3, is separable which implies that B3 is 

separable. AsaUlffl!.e »3 contains e subspace is0merphic to c0 . Bence, 13 
also contains a su~space isomorphic to J~ (5). Thusr B3 is not 

sepe.rablep wh:i.ch is e. contradiction. Therefore, the identity on :B3 is 

a u.c. operator. Since B3 is not reflexive, the identity is not weakly 

cQmpact. 'l'he:refot'e, JBP3 does not posseBs the P(u.c., w.c.) property. 

A similar e1rgum.ent, could be used on E 1 to show that it does not have 

the P(u.c. 9 w.c.) property. 

1?5!_iilIDP!~_4.~_Fl The spaces B3 and :e3 are both almost reflexive. 

Fram Corolbr·y 3.29 it follows that B3 does not have the P(w.c., c.c.) 

property. It lt; h~d the P(w. c" j) c. co) property thit"! would contradict 
j . 

The or ea 2. 3. Silimi hrly for the spaces E and E' • 

~amp~_';'!=·~·~,g~~. bsU'llie :13 has the P~u.c., c.c.) pro]l)erty. Let T be 

an unconditionally cenverging operator on B3. Thus Tis a completely 

continueus operetor. Since B3 is allllost reflexive, 'l'heorem 4.5 implies 

ths t T is :!s C:l".'JiiiC";f•t'IC t operator. Renee 9 n3 has the P( u. c., w. c. ) property 

which is a contradiction. Therefore$ B3 does net have the P(u.c., c.c.) 
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pr0perty. A siailar argument could be used fQI" the spaces 13 , E, ·and 

E' • 

Ex!!fle 4.23 If either X or Y is reflexive, then every operator 

frGII X te I is weekly com.pact (ll, VI.4.3). 

Example 4.24 Let T De the identity map on any in.f'inite dimensional 

reflexive space. The map T. is weakly c&llpact, •ut not cem_paat. 

Example 4.25 lor Sa dispersed apace, the space C(S) is al..m.ost 

reflexive (39). 

Example 4. 26 The B-space ..& can be identified vi th the space C (S) 
Ill) 

where Sis the Stene-Cech com:pactification of the pesitive integers. 

The cenjugate space of..& is an aastract L-space and thus Sis not 
Ill) 

dispersed (39). Therefore, S contains a non-void perfect set. The 

space~ is separable; hence, there exists a continuous linear 118P T 

such that T maps t. onto .t2 (30). This map is weakly cempact since 

J2 is reflexive. Assume.Tis a c011J)act operator. The conjugate map 

T' is also compact. The eperator T' has a 'bounded inverse (14, page;61). 

Let S be the closed unit sphere in "2, thus, T'(S) is se,uentially 

compact. linee (T')-l is continuous, (T')-l T'(S) • S is a closed 

and se,uentially c0mpact set in .t2 and is, therefore, CCllllP&Ct (11, 

I.6.13). Therefore, "2 must be finite dimensional which is a 

contradiotien. 



Tilt!l v 

lWlACI SPACES AID DE P(a, b) P.RIPER'!DS 

Space P(u.c., cpt.) P(u.c., w.c.) P(u.c., c.c.) 

C(S) 
S compact Bausdertf' lo (Ex. 4.26) Yea ('fh .. 3 .. 22) Yes (Th. 4. 7) 

(C(S)) • 
S eoDQ>act Jiausiorf'f lo (Ex. 1 .. 17) Bo (Ex .. 1.17) lo (Exo 4.ll) 

c. Yes (Th .. 4.9) Yes (Ex. 4.14) Yes (Th. 4.7) 

-'1 Bo. (Ex. l.17 Be (Ex .. 1.17) Yes (Ex. 4 .. 15) 

Jc •• (Ex. 4.a,) Yes (Th. 3.22) Yes (Th .. 4.7) 

.t' 
Cl> 

l'e (Ex .. 4.16) l'o (Ex. 4 .. 17) Bo (Ex .. 4 .. ll) 

E le ('fh. 4 .. 2) 1'0 (Ex,, 4 .. 19) le (Ex.. 4 .22) 

E' le (Ex. 1 .. 20) :lo (Ex .. 1.20) :lo (Ex. 1.20) 

»3 (ref. (13)) Be (Th. 4.2) •o (Exo 4.19) Be (Ex. 4.2a) 

B' 3 
lo (Th .. 4.2) Be (Ex. 4 .. 20) No (Ex .. 4.22) 

Reflexive :lo (Ex. li. .. 24) Yes (Ex. 4 .. 23) We (Ex .. 4.24) 

Alllest Reflexive 

C(S), S dispersed Yes (Th. 4 .. 9) Yes (Th. 3.22) Yes (Th. 4.7) 
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P(w.c., cpt.) P(c.c., cpt.) P(w.c., c.c.) P(c.c., w.c.) 

No (Ex. 4.26) No (Ex. 4.26) Yes (Th. 2.2) Yes (Th. 4.3) 

No (Ex. 4.12) Ko (Ex. 4.13) Yes (Th. 2.22) No (Ex. 1.17) · 

les (Th. 4.10 Yes (Th. 4.5) Yes (Th. 2.3) Yes (Th~ 4.5) 
J 

No (Ex. 4.12) No (Ex. 1.18) Yes (Th. 2.22) No (Ex. 4.13) 

No· (Ex. 4.26) lfo (Ex. 4.26) Yes (Th. 2.2) Yes (Th. 4.3) 

No (Ex. 4.16) No (Ex. 4.16) Yes (Th. 2.22) No (Ex. 4.19) 

No (Th. 4.6) Yes ('l'h. 4.5) No (Ex. 4.21) Yes ('l'h. 4.5) 

No (Th. 4.6) Yes (Th. 4.5) No (Ex. 4.21) Yes (Th. 4.5) 

No (Th. 4.€?) Yes (Th. 4.5) No (Ex. 4.21) Yes (Th. 4.5) 

No (Th., -tf..6) Yes {Th. 4.5) No (Ex. 4.21} Yes (Th. 4.5) 

No (Ex. 4.24) Yes (Th. 4.5) xo (Th. 2.1) Yes (Th. 4.5) 

Yes (Th. 4.5) Yes (Th. 4.5) 

Yes (Th. 4.10) Yes (Th. 4.5) Yes (Th. 2.2) Yes (Th. 4.3) 



Open Questions and Partial Results 

The remaining part of this chapter will deal with some of' the open 

1uestions that involve the D. P. property. 

(a) One Qf the outstanding open questions dealing with the B. P. 

property is the conjecture that if X has the D. P. property, then X' 

has the D. P. property. Partial results en this open question are 

given by Theorems 2.18, 2.23, 2.31 and 3.27. From these results it can 

be seen that for a possible counterexample we shell need a B-space that 

is not one of the familiar ones studied in an introductory course in 

functional analysis. 

fb) Pelc;z;ynski (38) introduces the notions of weakly COllipact 

polynomial ~nd ~ultilinear oper~tors. Be investigated conditions on 

a B-space, X, under which every weakly compact polynomial operator on 

X can !W!P weak C~uchy sequences into strong Cauchy sequences. Any 

B-spece thst has this property is said to have the polynomial Dunt'@rd

Pettis (P. D. P.) property. The conjecture wss that necessary and 

sufficient ctiilditions for I to have the P. D. P. property is that X 

possess the D. P. property. It was praved that every polynomial 

(:uiultiline:tilr) ope1°at@r w:i:th real or co~lex values defined on s space 

that posses6ed the D. P. property has the P. D. P'. property. 

The following ~re oyen questiOn$8 

(i) Does every B-space sa.tisfying the D. P. property also have 

the P. D. P. property? 

(ii) Let A and l' be B-spsces with the D. P. property. Dees the 

·p,t'ojecti-,e tensor product of' X and Y have the D. P. property? 



It follows frOlll Corollary 5 in Pelczynski's (38) w0rk that the 

pas i ti ve answer to (ii) implies a positive answer to ( i) . A partia 1 

result to ~uestion (11) is given Df Theorem 2.36. 

(c) Dobrakov (10) has posed the fallowing open question. Let S 

be a locally CG!llP&Ct Hausdorff space and X a I-space. Let C (S, X) 
0 

be the B-space of all X valued continuous functions on T tending to 

zero at infinity with the sup-n0rm. The important open question end 

at the same time very difficult one is as followsi If X has the 

Dunford-Pettis property, does C (S, X) also have this property? 
0 

Partial results to this ~uestion are given by Theorems 2.25, 2.28, 

and 2 .38. 
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(d) The last open question mentioned here deals with Theorem 3.31. 

From this theorem and the Eberlien-Smulian Theorem it fallows that if X 

satisfies all the hypothesis ef Theorem 3.31, then every weakly compact 

subset of Xis norm-cQmpact and, therefore, separable. Thus, if Xis 

assumed to be W.C.G., then X must be separable. Rosenthal (41) has 

conjectured that separabiU ty of X should follow without this 

additional a.ssurimrption. 
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