Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2.3.5.6-tetragermacvclohexane dichloromethane disolvate

Monika L. Amadoruge,^a Arnold L. Rheingold^b and Charles S. Weinert^a*

^aDepartment of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA, and ^bDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92092-0303, USA Correspondence e-mail: weinert@chem.okstate.edu

Received 31 July 2009; accepted 12 August 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.006 Å; R factor = 0.039; wR factor = 0.128; data-to-parameter ratio = 16.3.

The title compound, C₅₆H₅₆Ge₄O₂·2CH₂Cl₂ or Tol₈Ge₄O₂·- $2CH_2Cl_2$ (Tol = p-CH₃C₆H₄), was obtained serendipitously during the attempted synthesis of a branched oligogermane from Tol₃GeNMe₂ and PhGeH₃. The molecule contains an inversion center in the middle of the Ge_4O_2 ring which is in a chair conformation. The Ge-Ge bond distance is 2.4418 (5) Å and the Ge–O bond distances are 1.790 (2) and 1.785 (2) Å. The torsion angles within the Ge_4O_2 ring are -56.7(1) and $56.1(1)^{\circ}$ for the Ge-Ge-O-Ge angles and $-43.9 (1)^{\circ}$ for the O-Ge-Ge-O angle.

Related literature

The related phenyl-substituted derivative Ph₈Ge₄O₂ (Dräger & Häberle, 1985) is essentially isostructural with the title compound.

CH₃ CH₂ H₃(H₂C ĊH 2 CH₂Cl₂

Experimental

Crystal data

β

$C_{56}H_{56}Ge_4O_2 \cdot 2CH_2Cl_2$	$\gamma = 109.069 \ (1)^{\circ}$
$M_r = 1221.22$	$V = 1356.8 (2) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 10.781 (1) Å	Mo $K\alpha$ radiation
b = 11.905 (1) Å	$\mu = 2.43 \text{ mm}^{-1}$
c = 12.295 (1) Å	T = 123 K
$\alpha = 110.941 \ (1)^{\circ}$	$0.33 \times 0.33 \times 0.24$
$\beta = 94.766 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.471, \ T_{\max} = 0.558$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.128$ S = 1.045003 reflections

5003 independent reflections 4484 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

12912 measured reflections

mm

307 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.69 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Funding for this work by a CAREER grant from the US National Science Foundation (CHE-0844758) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2875).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dräger, M. & Häberle, K. (1985). J. Organomet. Chem. 280, 183-196. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o2186 [doi:10.1107/S1600536809032012]

2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6-tetragermacyclohexane dichloromethane disolvate

M. L. Amadoruge, A. L. Rheingold and C. S. Weinert

Comment

The molecular structure of (1) is shown in Fig. 1. The molecule adopts approximate $C_{2\ h}$ symmetry and has an inversion center located in the center of the Ge₄O₂ ring. The six- membered ring adopts a chair-like conformation analagous to that of its carbon-containing congener, 1,4-dioxane. The crystal structure of (1) can be compared to the essentially isostructural perphenyl-substituted derivative Ph₈Ge₄O₂ (2) (Dräger *et al.*, 1985). The Ge-O distances of 1.790 (2) and 1.785 (2) Å in (1), are the same within experimental error as those in (2) (1.786 (1) and 1.781 (2) Å). The Ge - Ge single bond distance in (1) is 2.4418 (5) Å and is slightly shorter than that in (2) (2.448 (1) Å). The Ge1-C21 bond distance of 1.953 (3) Å is elongated relative to the remaining three Ge - C_{*ipso*} bonds, which are all the same within experimental error. The Ge - C_{*ipso*} bonds are nearly identical to those in the phenyl-substituted derivative (2).

The Ge1-O1-Ge2ⁱ [symmetry code: (i) -x, -y, -z+1] angle of 126.7 (1) ° in (1) is the same, within experimental error, as that in (2) (126.9 (1) °), while the Ge1-Ge2-O1ⁱ angle of 106.20 (8) ° is slightly smaller than that in (2) (106.7 (1)°). However, the Ge2-Ge1-O1 angle in (1) of 104.82 (8) °, is significantly smaller than that in (2) (106.7 (1) °). The torsion angles within the Ge₄O₂ ring in (1) are significantly different than those in (2). The Ge1-Ge2-O1ⁱ-Ge1ⁱ, Ge2ⁱ-O1-Ge1-Ge2, and O1-Ge1-Ge2-O1ⁱ torsion angles are -56.7 (1), -56.1 (1), and 43.9 (1) ° (respectively), while the corresponding torsion angles in (2) are -53.1 (1), -53.1 (1), and 41.9 (1) °.

Part of the crystal structure is shown in Fig. 2. One germanium atom of two of the four symmetry related molecules shown lies within the selected unit cell, while a germanium atom and an oxygen atom in the remaining two molecules lie within this unit cell. The distances between the centroids of the Ge4O2 rings are 10.78 (1) Å parallel to the a axis and 111.91 (1) Å parallel to the b axis.

Experimental

The title compound (1) was unexpectedly obtained during the attempted preparation of $(Tol_3Ge)3GePh (Tol = pCH_3C_6H_4)$ from Tol_3GeNMe₂ and PhGeH₃. The crude reaction mixture was recrystallized from dichloromethane which yielded a three X-ray quality crystals, all of which were determined to be compound (1).

Refinement

All hydrogen atoms were placed in calculated positions using a riding- model. Their positions were constrained realtive to their parent atom using the appropriate HFIX instruction in SHELXL97 (Sheldrick, 2008).

Figures

Fig. 1. The molecular structure of (1), with displacement ellipsoids drawn at the 50% probability level. Primed atoms are related by the symmetry operator (-x, -y, -z+1).

2,2,3,3,5,5,6,6-Octa-p-tolyl-1,4-dioxa-2,3,5,6- tetragermacyclohexane dichloromethane disolvate

Crystal data	
$C_{56}H_{56}Ge_4O_2{\cdot}2CH_2Cl_2$	Z = 1
$M_r = 1221.22$	$F_{000} = 620$
Triclinic, PT	$D_{\rm x} = 1.495 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.781 (1) Å	Cell parameters from 3385 reflections
b = 11.905 (1) Å	$\theta = 2.4 - 25.5^{\circ}$
c = 12.295 (1) Å	$\mu = 2.43 \text{ mm}^{-1}$
$\alpha = 110.941 \ (1)^{\circ}$	T = 123 K
$\beta = 94.766 \ (1)^{\circ}$	Block, colorless
$\gamma = 109.069 \ (1)^{\circ}$	$0.33\times0.33\times0.24~mm$
$V = 1356.8 (2) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	5003 independent reflections
Radiation source: fine-focus sealed tube	4484 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
<i>T</i> = 123 K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -12 \rightarrow 13$
$T_{\min} = 0.471, \ T_{\max} = 0.558$	$k = -14 \rightarrow 14$
12912 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_o^2) + (0.085P)^2 + 1.7P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.010$
5003 reflections	$\Delta \rho_{max} = 0.69 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{\rm min} = -0.69 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ge1	-0.13908 (3)	-0.12172 (3)	0.54987 (3)	0.01478 (13)
Ge2	0.05411 (3)	-0.15168 (3)	0.47168 (3)	0.01465 (13)
Cl1	-0.42422 (12)	-0.66017 (13)	0.12064 (10)	0.0504 (3)
Cl2	-0.34737 (13)	-0.62602 (13)	0.36550 (12)	0.0487 (3)
01	-0.0976 (2)	0.0503 (2)	0.6079 (2)	0.0176 (5)
C11	-0.3071 (3)	-0.2118 (3)	0.4277 (3)	0.0159 (7)
C12	-0.4291 (4)	-0.2575 (3)	0.4579 (3)	0.0186 (7)
H12A	-0.4300	-0.2533	0.5365	0.022*
C13	-0.5499 (4)	-0.3096 (3)	0.3745 (3)	0.0202 (7)
H13A	-0.6325	-0.3394	0.3973	0.024*
C14	-0.5521 (4)	-0.3189 (3)	0.2584 (3)	0.0207 (7)
C15	-0.4299 (4)	-0.2780 (3)	0.2270 (3)	0.0216 (8)
H15A	-0.4297	-0.2860	0.1473	0.026*
C16	-0.3080 (4)	-0.2255 (3)	0.3089 (3)	0.0179 (7)
H16A	-0.2255	-0.1990	0.2850	0.022*
C17	-0.6840 (4)	-0.3656 (4)	0.1715 (4)	0.0301 (9)
H17A	-0.6664	-0.3662	0.0944	0.045*
H17B	-0.7309	-0.3071	0.2029	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17C	-0.7403	-0.4539	0.1606	0.045*
C21	-0.1694 (3)	-0.1603 (3)	0.6886 (3)	0.0171 (7)
C22	-0.2246 (4)	-0.2883 (4)	0.6779 (3)	0.0227 (8)
H22A	-0.2491	-0.3583	0.6014	0.027*
C23	-0.2442 (4)	-0.3144 (4)	0.7784 (3)	0.0259 (8)
H23A	-0.2830	-0.4021	0.7695	0.031*
C24	-0.2076 (4)	-0.2135 (4)	0.8919 (3)	0.0240 (8)
C25	-0.1539 (4)	-0.0865 (4)	0.9010 (3)	0.0238 (8)
H25A	-0.1294	-0.0162	0.9773	0.029*
C26	-0.1353 (4)	-0.0601 (4)	0.8020 (3)	0.0214 (7)
H26A	-0.0987	0.0278	0.8110	0.026*
C27	-0.2218 (5)	-0.2411 (5)	1.0016 (4)	0.0352 (10)
H27A	-0.1859	-0.1589	1.0729	0.053*
H27B	-0.1715	-0.2951	1.0064	0.053*
H27C	-0.3171	-0.2873	0.9967	0.053*
C31	0.2103 (3)	-0.1027 (3)	0.5950 (3)	0.0161 (7)
C32	0.3365 (4)	-0.0790 (3)	0.5677 (3)	0.0204 (7)
H32A	0.3441	-0.0910	0.4882	0.024*
C33	0.4503 (4)	-0.0386 (4)	0.6537 (3)	0.0215 (7)
H33A	0.5353	-0.0224	0.6327	0.026*
C34	0.4436 (4)	-0.0209 (3)	0.7708 (3)	0.0203 (7)
C35	0.3173 (4)	-0.0456 (4)	0.7987 (3)	0.0220 (8)
H35A	0.3103	-0.0356	0.8778	0.026*
C36	0.2015 (4)	-0.0846 (4)	0.7134 (3)	0.0215 (8)
H36A	0.1168	-0.0990	0.7348	0.026*
C37	0.5681 (4)	0.0202 (4)	0.8630 (4)	0.0298 (9)
H37A	0.5444	0.0278	0.9398	0.045*
H37B	0.6327	0.1046	0.8715	0.045*
H37C	0.6087	-0.0449	0.8379	0.045*
C41	0.0141 (3)	-0.3236 (3)	0.3480 (3)	0.0168 (7)
C42	-0.0299 (4)	-0.3508 (3)	0.2284 (3)	0.0192 (7)
H42A	-0.0363	-0.2836	0.2066	0.023*
C43	-0.0646 (4)	-0.4758 (4)	0.1403 (3)	0.0207 (7)
H43A	-0.0940	-0.4926	0.0590	0.025*
C44	-0.0568 (3)	-0.5761 (3)	0.1697 (3)	0.0223 (8)
C45	-0.0114 (4)	-0.5482 (4)	0.2895 (3)	0.0234 (8)
H45A	-0.0049	-0.6155	0.3111	0.028*
C46	0.0242 (4)	-0.4241 (3)	0.3776 (3)	0.0196 (7)
H46A	0.0557	-0.4070	0.4586	0.023*
C47	-0.0987 (4)	-0.7119 (4)	0.0750 (4)	0.0312 (9)
H47A	-0.1281	-0.7134	-0.0032	0.047*
H47B	-0.1731	-0.7716	0.0926	0.047*
H47C	-0.0222	-0.7393	0.0741	0.047*
C51	-0.3605 (4)	-0.5477 (4)	0.2705 (4)	0.0302 (9)
H51A	-0.2705	-0.4833	0.2789	0.036*
H51B	-0.4207	-0.5003	0.2944	0.036*

Atomic displacement parameters	$(Å^2)$
Alomic displacement parameters	(A)

Ge2—C31

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gel	0.0139 (2)	0.0158 (2)	0.0129 (2)	0.00301 (15)	0.00181 (15)	0.00655 (15)
Ge2	0.0143 (2)	0.0151 (2)	0.0125 (2)	0.00354 (16)	0.00122 (15)	0.00574 (15)
Cl1	0.0304 (6)	0.0638 (8)	0.0307 (6)	0.0060 (6)	0.0030 (5)	0.0020 (5)
Cl2	0.0510(7)	0.0538 (7)	0.0555 (7)	0.0164 (6)	0.0221 (6)	0.0391 (6)
01	0.0207 (13)	0.0147 (12)	0.0147 (12)	0.0039 (10)	0.0037 (10)	0.0058 (9)
C11	0.0143 (17)	0.0165 (16)	0.0146 (16)	0.0039 (13)	0.0026 (13)	0.0058 (13)
C12	0.0185 (18)	0.0235 (18)	0.0146 (16)	0.0067 (15)	0.0077 (14)	0.0089 (14)
C13	0.0158 (17)	0.0209 (18)	0.0232 (18)	0.0033 (14)	0.0070 (14)	0.0111 (15)
C14	0.0187 (18)	0.0153 (17)	0.0240 (18)	0.0022 (14)	-0.0007 (15)	0.0085 (14)
C15	0.0235 (19)	0.0221 (18)	0.0168 (17)	0.0052 (15)	0.0025 (15)	0.0090 (15)
C16	0.0161 (17)	0.0196 (17)	0.0170 (17)	0.0037 (14)	0.0051 (14)	0.0090 (14)
C17	0.018 (2)	0.036 (2)	0.033 (2)	0.0020 (17)	-0.0019 (17)	0.0200 (18)
C21	0.0119 (16)	0.0227 (18)	0.0175 (17)	0.0044 (14)	0.0029 (13)	0.0112 (14)
C22	0.026 (2)	0.0223 (18)	0.0194 (18)	0.0079 (16)	0.0033 (15)	0.0092 (15)
C23	0.027 (2)	0.025 (2)	0.031 (2)	0.0073 (16)	0.0075 (17)	0.0185 (17)
C24	0.0197 (19)	0.036 (2)	0.0212 (18)	0.0120 (17)	0.0053 (15)	0.0158 (17)
C25	0.023 (2)	0.030 (2)	0.0165 (17)	0.0112 (16)	0.0039 (15)	0.0070 (15)
C26	0.0202 (19)	0.0221 (18)	0.0193 (18)	0.0043 (15)	0.0043 (14)	0.0091 (15)
C27	0.035 (2)	0.052 (3)	0.028 (2)	0.018 (2)	0.0097 (18)	0.025 (2)
C31	0.0153 (17)	0.0155 (16)	0.0166 (17)	0.0063 (14)	0.0034 (13)	0.0053 (13)
C32	0.0214 (19)	0.0222 (18)	0.0169 (17)	0.0076 (15)	0.0050 (14)	0.0079 (14)
C33	0.0175 (18)	0.0218 (18)	0.0262 (19)	0.0053 (15)	0.0059 (15)	0.0127 (15)
C34	0.0183 (18)	0.0168 (17)	0.0217 (18)	0.0039 (14)	-0.0023 (14)	0.0073 (14)
C35	0.0220 (19)	0.0275 (19)	0.0163 (17)	0.0077 (16)	0.0022 (14)	0.0109 (15)
C36	0.0194 (19)	0.0264 (19)	0.0185 (18)	0.0058 (15)	0.0054 (15)	0.0111 (15)
C37	0.021 (2)	0.035 (2)	0.028 (2)	0.0066 (17)	-0.0039 (16)	0.0133 (18)
C41	0.0137 (17)	0.0174 (17)	0.0168 (17)	0.0045 (14)	0.0044 (13)	0.0053 (14)
C42	0.0178 (18)	0.0204 (17)	0.0186 (17)	0.0042 (14)	0.0004 (14)	0.0107 (14)
C43	0.0148 (17)	0.0275 (19)	0.0150 (17)	0.0065 (15)	0.0020 (14)	0.0052 (14)
C44	0.0112 (17)	0.0187 (18)	0.029 (2)	0.0027 (14)	0.0038 (15)	0.0036 (15)
C45	0.024 (2)	0.0192 (18)	0.028 (2)	0.0064 (15)	0.0054 (16)	0.0123 (16)
C46	0.0174 (18)	0.0219 (18)	0.0175 (17)	0.0054 (15)	0.0012 (14)	0.0085 (14)
C47	0.025 (2)	0.022 (2)	0.035 (2)	0.0076 (17)	0.0021 (17)	0.0014 (17)
C51	0.034 (2)	0.022 (2)	0.029 (2)	0.0070 (17)	0.0054 (18)	0.0082 (16)
	(8 0)					
Geometric par	rameters (A, ²)					
Ge1—O1		1.790 (2)	C26–	-H26A	0.95	0
Ge1—C21		1.945 (3)	C27–	–H27A	0.97	9
Ge1-C11		1.953 (3)	C27–	–H27B	0.98	0
Ge1—Ge2		2.4418 (5)	C27–	-H27C	0.97	9
Ge2—O1 ⁱ		1.785 (2)	C32–	-H32A	0.95	1
Ge2—C41		1.944 (3)	C33–	-H33A	0.95	0

С35—Н35А

1.943 (3)

0.949

Cl1—C51	1.756 (4)	C36—H36A	0.950
Cl2—C51	1.758 (4)	С37—Н37А	0.979
O1—Ge2 ⁱ	1.785 (2)	С37—Н37В	0.980
C11—C12	1.386 (5)	С37—Н37С	0.980
C11—C16	1.410 (5)	C42—H42A	0.950
C12—C13	1.389 (5)	C43—H43A	0.950
C13—C14	1.389 (5)	C45—H45A	0.950
C14—C15	1.387 (5)	C46—H46A	0.950
C14—C17	1.510 (5)	C47—H47A	0.979
C15—C16	1.388 (5)	C47—H47B	0.981
C21—C26	1.393 (5)	C47—H47C	0.981
C21—C22	1.394 (5)	C12—H12A	0.951
C22—C23	1.394 (5)	C13—H13A	0.951
C23—C24	1.395 (6)	C15—H15A	0.950
C24—C25	1.390 (5)	C16—H16A	0.950
C24—C27	1.505 (5)	C17—H17A	0.980
C25—C26	1.376 (5)	C17—H17B	0.980
C31—C32	1.391 (5)	C17—H17C	0.980
C31—C36	1.410 (5)	C22—H22A	0.951
C32—C33	1.375 (5)	C23—H23A	0.950
C33—C34	1.390 (5)	C25—H25A	0.950
C34—C35	1.395 (5)	C26—H26A	0.950
C34—C37	1.500 (5)	C27—H27A	0.979
C35—C36	1.388 (5)	С27—Н27В	0.980
C41—C42	1.391 (5)	С27—Н27С	0.979
C41—C46	1.402 (5)	C32—H32A	0.951
C42—C43	1.394 (5)	С33—Н33А	0.950
C43—C44	1.391 (5)	С35—Н35А	0.949
C44—C45	1.395 (5)	C36—H36A	0.950
C44—C47	1.505 (5)	С37—Н37А	0.979
C45—C46	1.386 (5)	С37—Н37В	0.980
C12—H12A	0.951	С37—Н37С	0.980
C13—H13A	0.951	C42—H42A	0.950
C15—H15A	0.950	C43—H43A	0.950
C16—H16A	0.950	C45—H45A	0.950
C17—H17A	0.980	C46—H46A	0.950
С17—Н17В	0.980	C47—H47A	0.979
С17—Н17С	0.980	С47—Н47В	0.981
C22—H22A	0.951	C47—H47C	0.981
C23—H23A	0.950	C51—H51A	0.990
C25—H25A	0.950	C51—H51B	0.989
O1-Ge1-C21	102.6 (1)	H33A—C33—C34	119.3
O1—Ge1—C11	109.6 (1)	C34—C35—H35A	119.2
C21—Ge1—C11	109.1 (1)	H35A—C35—C36	119.2
O1—Ge1—Ge2	104.82 (8)	C31—C36—H36A	120.2
C21—Ge1—Ge2	116.8 (1)	С35—С36—Н36А	120.1
C11—Ge1—Ge2	113.1 (1)	С34—С37—Н37А	109.5
O1 ⁱ —Ge2—C41	102.3 (1)	С34—С37—Н37В	109.5

$O1^{i}$ —Ge2—C31	108.8 (1)	С34—С37—Н37С	109.5
C41—Ge2—C31	110.5 (1)	Н37А—С37—Н37В	109.5
O1 ⁱ —Ge2—Ge1	106.20 (8)	Н37А—С37—Н37С	109.5
C41—Ge2—Ge1	114.5 (1)	H37B—C37—H37C	109.4
C31—Ge2—Ge1	113.7 (1)	C41—C42—H42A	119.7
$Ge^{2^{i}}$ 01 - Ge1	126.7 (1)	H42A—C42—C43	119.8
C12 - C11 - C16	1186(3)	C42—C43—H43A	119.5
C12—C11—Ge1	120.3 (2)	H43A—C43—C44	119.6
C16—C11—Ge1	121.0 (3)	C44—C45—H45A	119.4
C13—C12—C11	120.7 (3)	H45A—C45—C46	119.4
C12—C13—C14	121.1 (3)	C41—C46—H46A	119.8
C13—C14—C15	118.1 (3)	C45—C46—H46A	119.8
C13—C14—C17	120.6 (3)	C44—C47—H47A	109.5
C15—C14—C17	121.2 (3)	С44—С47—Н47В	109.4
C16—C15—C14	121.7 (3)	С44—С47—Н47С	109.5
C15—C16—C11	119.6 (3)	H47A—C47—H47B	109.5
C26—C21—C22	118.2 (3)	H47A—C47—H47C	109.5
C26—C21—Ge1	120.6 (3)	H47B—C47—H47C	109.4
C22—C21—Ge1	121.2 (3)	C11—C12—H12A	119.6
C21—C22—C23	120.5 (3)	H12A—C12—C13	119.7
C22—C23—C24	120.9 (4)	С12—С13—Н13А	119.4
C25—C24—C23	117.8 (3)	H13A—C13—C14	119.5
C25—C24—C27	121.0 (4)	C14—C15—H15A	119.1
C23—C24—C27	121.2 (4)	H15A—C15—C16	119.2
C26—C25—C24	121.5 (3)	C11—C16—H16A	120.1
C25—C26—C21	121.0 (3)	C15—C16—H16A	120.2
C32—C31—C36	118.4 (3)	C14—C17—H17A	109.4
C32—C31—Ge2	119.4 (2)	C14—C17—H17B	109.5
C36—C31—Ge2	122.2 (3)	C14—C17—H17C	109.5
C33—C32—C31	121.1 (3)	H17A—C17—H17B	109.5
C32—C33—C34	121.3 (3)	H17A—C17—H17C	109.4
C33—C34—C35	117.9 (3)	H17B—C17—H17C	109.5
C33—C34—C37	120.8 (3)	C21—C22—H22A	119.7
C35—C34—C37	121.3 (3)	H22A—C22—C23	119.8
C36—C35—C34	121.6 (3)	C22—C23—H23A	119.5
C35—C36—C31	119.7 (3)	H23A—C23—C24	119.5
C42—C41—C46	118.6 (3)	С24—С25—Н25А	119.3
C42—C41—Ge2	120.6 (3)	H25A—C25—C26	119.2
C46-C41-Ge2	120.8 (2)	С21—С26—Н26А	119.4
C41—C42—C43	120.6 (3)	С25—С26—Н26А	119.6
C44—C43—C42	120.9 (3)	С24—С27—Н27А	109.4
C43—C44—C45	118.3 (3)	С24—С27—Н27В	109.4
C43—C44—C47	120.9 (3)	С24—С27—Н27С	109.5
C45—C44—C47	120.7 (3)	H27A—C27—H27B	109.5
C46—C45—C44	121.1 (3)	H27A—C27—H27C	109.5
C45—C46—C41	120.5 (3)	H27B—C27—H27C	109.5
Cl2—C51—Cl1	111.2 (2)	C31—C32—H32A	119.4
C11—C12—H12A	119.6	H32A—C32—C33	119.5

H12A—C12—C13	119.7	С32—С33—Н33А	119.3
С12—С13—Н13А	119.4	H33A—C33—C34	119.3
H13A—C13—C14	119.5	С34—С35—Н35А	119.2
C14—C15—H15A	119.1	H35A—C35—C36	119.2
C14—C15—C16	121.7	С31—С36—Н36А	120.2
H15A—C15—C16	119.2	С35—С36—Н36А	120.1
C11—C16—H16A	120.1	С34—С37—Н37А	109.5
C15—C16—H16A	120.2	С34—С37—Н37В	109.5
С14—С17—Н17А	109.4	С34—С37—Н37С	109.5
С14—С17—Н17В	109.5	Н37А—С37—Н37В	109.5
С14—С17—Н17С	109.5	Н37А—С37—Н37С	109.5
H17A—C17—H17B	109.5	H37B—C37—H37C	109.4
H17A—C17—H17C	109.4	C41—C42—H42A	119.7
H17B—C17—H17C	109.5	H42A—C42—C43	119.8
C21—C22—H22A	119.7	C42—C43—H43A	119.5
H22A—C22—C23	119.8	H43A—C43—C44	119.6
С22—С23—Н23А	119.5	C44—C45—H45A	119.4
H23A—C23—C24	119.5	H45A—C45—C46	119.4
С24—С25—Н25А	119.3	C41—C46—H46A	119.8
H25A—C25—C26	119.2	C45—C46—H46A	119.8
C21—C26—H26A	119.4	С44—С47—Н47А	109.5
С25—С26—Н26А	119.6	С44—С47—Н47В	109.4
С24—С27—Н27А	109.4	С44—С47—Н47С	109.5
С24—С27—Н27В	109.4	H47A—C47—H47B	109.5
С24—С27—Н27С	109.5	H47A—C47—H47C	109.5
H27A—C27—H27B	109.5	H47B—C47—H47C	109.4
H27A—C27—H27C	109.5	Cl1—C51—H51A	109.4
H27B—C27—H27C	109.5	Cl1—C51—H51B	109.5
C31—C32—H32A	119.4	Cl2—C51—H51A	109.4
H32A—C32—C33	119.5	Cl2—C51—H51B	109.4
С32—С33—Н33А	119.3	H51A—C51—H51B	108.0
Symmetry codes: (i) $-x$, $-y$, $-z+1$.			

Fig. 1

