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PART ONE 

THE RELATIONSHIP OF THE PYRIDINE NUCLEOTIDE CYCLE 

TO RICININE BIOSYNTHESIS IN RICINUS COMMUNIS L. 



CHAPTER I 

lNTRODUCTION 

A biogenetic relationship between the pyridine nucleotide cycle 

and certain pyridine alkaloids was suggested by Leete and Leitz in 1956 

(1). Waller and Gholson later conducted the first definitive experi~ 

ments which indicated that the pyridinium moiety of nicotinamide adenine 

dinucleotide (NAD) and other compounds of the pyridine nucleotide cycle 

were precursors of the alkaloid ricinine (3). Other results supported 

this relationship for nicotine in tobacco plants (4). In a more recent 

paper, data concerning the level of incorporation of label from quino

linic acid into ricinine in the presence and absence of excess exogenous 

NAD led the authors to postulate that the pathways of biosynthesis of 

ricinine and NAD were independent and that.ricinine biosynthesis was 

separate and independent of the cycle (5), 

The experiments described herein were designed to help clarify the 

relationship of the pyridine nucleotide cycle to ricinine biosynthesis 

by inhibiting the cycle with certain compounds and then observing the 

effect on ricinine biosynthesis. The objective of this research was to 

determine whether or not.the pyridine nucleotide cycle was an obligatory 

pathway in the biosynthesis of ricinine, 



CHAPTER II 

LITERATURE REVIEW 

A. Structure and Properties 

Ricinine, N-methyl-4-methoxy-3-cyano-2-pyridone, was first discov

ered in castor bean seeds by Tuson (6), in 1864, and its structure 

elucidated by Maqueune and Philippe in 1904 (7). Ricinine was shown to 

be optically inactive (8), to melt at 201.5°c (corrected) and to sublime 

at 170-180°/20 mm. It is sparingly soluble in water, alcohol, chloro~ 

form and pyridine and insoluble in ether. 

Skursky et al. (9) have reported ultraviolet absorption maxima in 

water at 307 and 255 nm of highly purified ricinine with molar extinc

tion coefficients of 8.77 x 103 and 4.29 x 103 liters ~1 cm-1, respec

tively. 

B. Biosynthesis of Ricinine 

Ricinine biosynthesis,in the castor bean plant was first studied 

using radioisotopes by Dubeck and Kirkwood (10). They fed L-methionine

methy1-14c, choline-methy1-14c and sodium formate-14c to germinating 

castor seeds and found that only the carbon-14 labeled methyl group of 

methionine was incorporated into the methyl groups of ricinine to a 

significant level. 

Waller and Henderson (11) found that succinic acid or a related 

four-carbon dicarboxylic acid from the citric acid cycle was a direct 



4 

precursor of ricinine. This four-carbon dicarboxylic acid was incorpor

ated so that one of the carboxyl groups became thenitrile group of 

ricinine and the methylene groups became carbons 2 and 3 of the pyridine 

ring of ricinine, while the other carboxyl group was lost through de

carboxylation. Using succinic acid-l,4-l4c, Waller and Henderson also 

found 85% of the label in the nitrile group and 15% in the a-pyridone ring 

of ric:i.n:i.ne. Juby and Marion (12), using sµccinic acid-2,3-14c, found 38.9% 

of the label in carbon 2, 38.3% in carbon 3 and 20.8% in the nitrile 

carbon. 

Glycero1-14c was shown to be incorporated into the pyridine ring of 

ricinine (11,12,13,14). Glycerol was shown to serve as a source of 

carbon atoms 4, 5 and 6 of ricinine (14). Using glycerol-l,3-14c and 

glycerol-2-14c, it was shown that no randomization of label occurred upon 

incorporation into ricinine (14). Chandler has shown that 3-phospho

glyceraldehyde and fructpse-1-6-diphosphate were converted to quinolinic 

acid to a greater extent than glycerol, indicating that 3-phosphoglycer

aldehyde combines directly with aspartic acid to form quinolinic acid 

(15). Suzuki and Gholson have recently shown that in the presence of a 

triose phosphate isomerase inhibitor only dihydroxyacetone-phosphate was 

converted to quinolinic acid (16), 

1. The Pyridine Nucleotide Cycle and Its Relationship to Ricinine Bio

synthesis 

Leete and Leitz (1) first suggested that ricinine might be formed 

from NAD or related substituted pyridine compounds. 

Nicotinic acid-7-14c was shown to be incorporated into ricinine (1, 

17,18), with the label appearing in the nitrile group. Nicotinamide-7-

l4c and lSN~amide labeled nicotinamide also were incorporated into the 
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nitrile group (19). Ring-labeled nicotinamide-3H was also incorporated 

into ricinine (19). Quinolinic acid-2,3,7,8-14c was found to be incor

porated into ricinine at a rate equal to or better than either nicotinic 

acid~7-14c or nicotinamide-7-14c (3,20) and it has also been shown that 

quinolinic acid can be converted to nicotinic acid mononucleotide in 

vitro in plants (20), as well as microorganisms (21,22) and animals (23, 

24). This was further proof that quinolinic acid served.as a key inter

mediate in the formation of pyridine compounds in plants. The discovery 

that the pyridine moiety entered the NAD biosynthesis pathway de~ as 

nicotinic acid monortucleotide, which was formed from quinolinic acid and 

5-phosphoribosyl pyrophosphate (25,26,27), provided the basis for the 

formulation by Waller et·al. (1) of the pyridine nucleotide cycle as 

shown. in Figure 1. In.this scheme quinolinic acid was converted to 

nicotinic.acid mononucleotide by quinolinic acid decarboxylase; nicotinic 

acid mononucleotide was then converted to desamido-NAD by nicotinic acid 

mononucleotide adenyl transferase; desamido-NAD was converted to NAD by 

NAD synthetase; NAD was converted to nicotinamide by NAD glycohydrolase; 

nicotinamide was converted to nicotinic acid by nicotinamide deamidase 

and nicotinic acid was converted to nicotinic acid mononucleotide by 

nicotinic acid phosphoribosyl transferase (28). Keller et al. (29), 

using perfusion techniques in rat liver, have shown that in vivo, nico

tinamide was converted to nicotinamide mononucleotide which was conver

ted to NAD which was converted back to nicotinamide. Figure 2 illustra

tes this nicotinamide to NAD shunt. It has been postulated that this 

shunt exists in plants (30). 

Several studies (1,2,3) have been conducted which indicated that 

the pyridine nucleotide cycle served an.obligatory role in the 
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biosynthesis of ricinine in the castor bean plant from.quinolinic acid. 

Hi].es and Byerrum, howevet', have suggested that,the b:losynthesis of 

ricinine from quinolinic acid occurs by a separate pathway, independent 

of the cycle (S). This conclusion was based on evidence indicating an 

increase in incorporation of label into ricinine from labeled quinolinic, 

acid in the presence of e~cess exogenous NAD. However, this conclusion. 

can be valid only if one assumes NAD is an obligatory intermediate in 

the-biosynthesis of ricinine from quinolinic.acid and t~at e~ogenous 

NAD can be transported across the cellular membrane intact. Figure 3 

describes their postulated schemes· for NAD and ricinine biasynthesis. 

Another explanation of their results is that ricinine was.biosynthesized 

from an.intermediate before NAD in the cycle, such as desamido-NAD or, 

more likely, nicotinic acid mononucleotide, However, the labeling ex

periments of Waller an<;l Henderson (19) indicated that the amide nitro

gen of nicotinamide was incorporated directly into the nitrile:group of 

nitrogen. If ricinine were to arise from nicotinic acid mononucleotide, 

a direct.incorporation of the amide nitrogen af nicotin4mide into 

ricinine would not be e~pected, but rather an incorporation from a ni

trogen pool such as ammonia or glutamate, Such seemingly.conflicting 

results have cast·little light on the mystery of ricinine biosynthesis 

in relation to the cycle. 

2. Pyridine Nucleotide Cycle Inhibitors 

Several compounds have been found to inhibit the pyridine nucleo

tide cycle in animals at various\points. · Alazopeptin and. 6-diazo-5-oxo

norleucine, (DON), two potent glutamine antagonists and azaserine, a 

less potent glutamine antagonist, have been.shown to inhibit the pyridine 
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nucleotide cycle (31,38,40). Two other azo-compounds, azaleucine and 

azauracil, were also considered as possible inhibitors. 

10 

Azaserine has been shown to be a glutamine antagonist (31) and has 

been shown by several workers to inhibit the NAD synthetase reaction .in 

which desamido-NAD is converted to NAD with glutamine or ammonia as the 

nitrogen donor in liver (32-36), as well as in brain (37). Addition of 

excess nicotinamide just before adding azaserine or DON seemed to 

counteract this inhibition (35), however addition of glutamine after 

addition of azaserine or DON did not counteract this inhibition (35). 

This probably was because azaserine and DON are irreversible inhibitors 

(31,38). DON has been shown to be.forty times more potent a glutamine 

antagonist than azaserine (31). This might explain the lack of any 

significant accumulation of desamido-NAD in the presence of azaserine 

(35,39), yet a definite accumulation was noted in the presence of DON 

in mouse liver and mouse tumor cells (39). Another explanation for 

this result could be that in mouse liver an enzyme was present which 

destroyed azaserine but not DON (40,41). DON also inhibited the re

action of phosphoribosyl pyrophosphate plus glutamine yielding glutamate 

plus 5-phosphoribosyl amine (42), which was catalyzed by phosphoribosyl 

pyrophate amido transferase. DON probably acted as a glutamine antagon

ist in this case also. 

Alazopeptin has also been shown to cause inhibition of NAD synthe

sis in mouse liver and mouse tumor cells (39). It.was shown to be about 

as potent an inhibitor as DON and since its structure is similar to that 

of DON it probably inhibited at the NAD synthetase reaction as does DON. 

4-Azaleucine, an amino acid found in cultures of Streptomyces 

neocaliberis, has a structure similar to that of glutamine, DON and 
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azaserine (42,43). It has not been previously tested as an inhibitor 

of the pyridine nucleotide cycle. 

12 

Figure 4 shows the structures of these inhibitors compared with 

glutamine. The similarity of all these structures lends support to the 

postulation that each acts as a glutamine antagonist (32,42,45). 

6-Azauracil, an analogue of uracil was found to inhibit erotic.acid 

biosynthesis and the conversion of uracil to uridine diphosphoglucose 

(46). 

Ricininic acid, or 0-demethyl ricinine, was shown to inhibit t4e 

conversion of nicotinic acid to ricinine (48). 

• 



CHAPTER III 

EXPERIMENTAL METHODS 

A. Materials and Chemicals Used 

1. Plants 

Series A and Series B experiments were conducteq using castor bean 

plants of the Cimarron variety were grown in port clay loam soil at the 

Agronomy farm of Oklahoma State University in Stillwater, during the 

summer of 1971, while Series C experiments.were conducted using plants 

grown in vermiculite-soil mixtures in the horticulture greenhouse. The 

plants varied in weight from 75 to 200 grams. Table I shows the planting 

Experiments 

Series A 

Series A 

Series B 

Series B 

Series c 

TABLE I 

PHYSIOLOGICAL.STAGE OF THE CASTOR BEAN PLANTS 
USED IN RICININE BIOSYNTHESIS EXPERIMENTS 

Planting Dates Plant Age Physiological State 

May 1, 1971 8 weeks non-flowering 

May 1, 1971 11 weeks flowers, no seeds 

May 15, 1971 13 weeks flowers, immature seeds 

May 15, 1971 16 weeks immature, few mature seeds 

July 15, 1971 9 weeks non-flowering 



dates, plant age at the beginning of the experiment and physiological 

state of development. 

2. Inhibitors 

14 

DL-4-azaleucine, azaserine and azauracil were purchased from Cal

biochem, Los Angeles, California, while ricininic acid was obtained from 

General Biochemicals, Chagrin Falls, Ohio and alazopeptin.was obtained 

as a gift from Lederle Laboratories, Pearl River, New York*. Ricinine 

and ethionine were obtained from General Biochemicals, Chagrin Falls, 

Ohio. 

3. Radioactive Compounds 

Quinolinic acid-6-14c (specific activity of 43.7 mCi/nnnole) was 

purchased from Nuclear-Chicago Corporation, Arlington Heights, Illinois. 

It was subjected to paper chromatography using lM ammonium acetate: 95% 

ethanol (3 : 7, v/v) as a solvent system, and the radioactivity located 

using a Nuclear Chicago Actigraph III Model 1002 47T Chromatogram Scan

ner. The results indicated a radiochemical purity in excess of 99%. 

Nicotinamide adenine dinucleotide phosphat~-carbony1-1 4c (specific 

activity of 26.2 mCi/mmole) was purchased from Nuclear Chicago Corpora

tion, subjected to the same paper chromatography system and found to be 

greater than 99% radiochemically pure. 

4. Chemical Reagents 

Solvents and chemical reagents were of analytical reagent grade 

unless otherwise noted. Non-radioactive pyridine nucleotide cycle 

reference compounds were purchased from Sigma Chemical Company, St. Louis, 

*Courtesy of Dr. E. L. Patterson 
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Missouri, Biochemical Research Company, Los Angeles, California, _Nutri

tional Biochemicals Corporation, Cleveland, Ohio, or Merck and Company, 

Rahway, New Jersey. 

Dowex 1 x 8 Cl"'" form, 200-400 mesh was-purchased from J, T. Baker 

Chemical Company, Phillipsburg, New Jersey. BioRad AG l x 4 c1- form, 

200-400 mesh was pµrchased from Calbiochem, Los Angeles, California. 

Both were converted to the formate form by washing successively with 

several volumes of deionized H20, 2N HCl, H20, 2N NaOH, H2o, 6N HCOOH 

and finally deionized water,until the pH was approximately neutral. 

B, Methods 

1. _ Administration of Inhibitors and Labeled Compounds 

Inhibitors were injected into the hollow internodular stem section 

of the castor bean plant using a micro syringe. The labeled compounds 

(1 µCi) were administer~d into the ste~ by the same technique, 1.0 + 0.5 

hours after the injection of the.inhibitors. The plants.were allowed to 

metabolize for varying time periods up to 20 hours. 

2, · Isolation of Metabolites 

Each_castor bean plant was cut into small pieces with scissors, 

placed in a Waring blender with 300 ml of 80% methanol at 50-60°C and 

homogenized to a coarse slurry. The extract was filt~red through a 

sintered glass funnel (coarse porosity) under vacuum and the.residue 

extracted several more times until it was nearly colorless.· The residue 

was dried, ground, weighed and stored in vials and analyzed for radio

activity by wet combustion and gas counting using a Cary Model 31 Vi

brating Reed Electrometer. The combined 80% methanol extracts were 

evaporated to dryness using a rotary evaporator and taken up in 150 ml 
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of deionized water, This water phase was extracted with diethyl ether 

three times; the diethyl ether phase was dried on a steam plate, 90-100° 

C, weighed, stored in vials and checked for radioactivity. The aqueous 

phase was evaporated to near dryness on a rotary evaporator, and then 

taken up in 10 ml of deionized water and stored in a 10 ml volumetric 

flask at 2-5oc. Aliquots, usually 2 ml, were,then subjected to thin

layer chromatography on silica gel HF in chloroform: methanol (5 : 1, 

v/v) along with authentic ricinine for identification purposes. The 

ricinine was removed by elution with methanol, while the remainder of 

the silica gel.from the plate was extracted five times with 50% meth~ 

anol. · Absorbance readings at 255 and 307 nm were taken of the ricinine 

solution and the specific activity determined by liquid scintillation 

spectrometry. This ricinine solution was dried, weighed and stored in 

vials at 2-5°c. The 50% methanol extract of the remainder of the 

silica gel was evaporated to near dryness using a rotary evaporator, 

taken up in a minimal amount of deionized water and analyzed on either 

a Dowex 1 x 8 or BioRad 1 x 4 formate column. This procedure is out

lined in the flow diagram shown in Figure 5. 

3. Chromatography 

Anion Exchange Column Chromatography (33,34,47): Analysis of the 

ricinine-free aqueous phase extract was achieved by placing an aliquot 

on a Dowex 1 x 8 formate or BioRad AG 1 x 4 formate column, 1.4 x 42 cm. 

The compounds were eluted using a formic acid concentration gradient, 

which began with 200 ml of deionized water in the mixing chamber, an4 

into which 150 ml of deionized water, 150 ml of .05 M HCOOH, 300 ml of 

0.5 M HCOOH and 400 ml of 3N HCOOH, were successively introduced. Two 

fraction collectors, one a.National Instrument Laboratories, Inc. 
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photoelectric drop counter and the other aninstrumentation Specialties 

Company, Inc. volumetric.fraction collector, were used to collect six 

ml fractions at the rate of 80 ml per hour. ']aes,e fractions were used 

for the measurement of radioactivity and ultraviolet absorption at 260 run. 

Reference compounds were also subjected to column chromatography on 

Dowex 1 x 8 formate and BioRad AG 1 x 4 formate columns to deter~ine 

their elution positions. 

RICINUS COMMUNIS PLANTS 

80% methanol extraction 
filtration 

evaporated under.vacuum 
to.near dryness 
dissolved in 150 ml H2o 

HzO SOLUTION 

ETHER PHASE (dried and weighed) HzO PHASE 

RESIDU:E 
(dried and 
weighed) 

evaporated under 
vacuum to 10 ml 

CONCENTRATED HzO PHASE 

. I °TLC 
I 

POLAR COMPOUNDS 

Dowex 1 x 8 formate 
or BioRad AP 1 x 4 
forma t;.e cqiumn chro
matography 

PYRIDINE NUCLEOTIDE 
CYCLE INTERMEDIATES 

I 
RICININE 

(dried and weigh
ed) 

Figure.5. Isolation Procedure for Ricinine and the Pyridine Nucleotide 
Cycle Intermediates. 
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Paper Chromatography: The fraction from the Dowex 1 x 8 formate 

and BioRad AG 1 x 4 formate columns containing radioactive peaks were 

combined and dried by 1yophilization. The residue was dissolved in 

either methanol or µeionized water, t~en spotted on Whatman No. 3 paper 

strips along with standard compounds and chromatographed in 1 M ammonium 

acetate: 95% ethanol (3 7, v/v), or isobutyric acid: ammonta: water, 

(66 : 1.7 : 33, v/v/v). 

4 ... t]ltrav:lolet Spectrophotometry 

All ultraviolet spectra or absorbance.readings made on individual 

samples were obtained on either a Beckman DB recording spectrophotometer 

or a Hitachi-Perkin Elmer 124 Double Beam Spectrophotometer. 

5. Measurement of Radioactivity 

Each of the six ml fractions from the Dowex 1 x 8 formate or BioRad 

AG 1 x 4 formate columns were.analyzed for radioactivity by placing 2 ml 

from each fraction with 10 ml of Bray''.s scintillation solution (49), and 

counting on a.Model 3320 Packard Tri-Carb Scintillation Spectrophoto

meter. The gain was set at 16.5% and the windows at 25 to 1000. Bray's 

solution was prepared with 4 grams of 2,5-diphenyloxazole (PPO), 0.2 

grams of p-bis-2-(5-phenyloxazolyl)benzene (POPOP), 60 grams of n.aptha

lene, 20 ml of ethylene glycol, 100 ml of methanol and the proper volume 

of p-dioxane for 1 liter of solution. 

The counting efficiency of 10 ml of Bray's solut~on with 2 ml of 

formic acid from 1. 0 to 2, 0 M added was approximately 70%, while the . 

counting efficiency between 0.0 and 1.0 M formic acid was approximately 

72%. The effect of formic acid concentration on counting efficiency is 

shown in Figure 6. Corrections for formic,acid quenching were made us

ing Figure 6. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

A. Administration of Inhibitors and Labeled Compounds 

Administration of the inhibitors, azauracil and ricininic acid, was 

difficult since both were sparingly soluble in water and/or methanol. 

The solubility of these compounds never exceeded 5 mg/ml in either 

methanol, water, or mixtures of these solvents. Quantities in excess of 

1 ml were injected into the plants to obtain the appropriate amounts of 

inhibitor. The amounts of inhibitor injected and the times allowed for 

metabolism for each of the experiments are shown in Table IV. Azaserine 

and azaleucine were very soluble in water and quantities less than 100 

µ1 were injected into the plants. Only a small amount of alazopeptin 

was obtained so only one experiment was conducted with this -inhibitor.· 

All of the inhibitors were injected approximately one hour before the 

labeled precursor were administered. 

Ten µ1 of a solution containing one µCi/µl of quinolinic acid-6-14c 

(specific activity of 43.7 µCi/µmole), were injected into each plant. 

This quinolinic acid-6-14c was analyzed on Dowex 1 x 8 column chromatog

raphy before administration to the plants. A single symmetrical radio

active peak was observed. 

No noticeable physical effects due to the inhibitors were noted 

with the exception of azaleucine. Injection of large quantities of 

azaleucine caused a slight weakening of the stem structure indicated by 
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a partial collapse at the stem at the point of injection. No wilting or 

discoloration was observed. 

Several experiments were conducted with NADP-carbony1-14c as the 

precursor and azaserine and azaleucine as the.inhibitors. One µCi of 

NADP-carbony1~14c (spe~ific activity of 20 µCi/µmole) was injected into 

the plants one hqur after inject.ion of the inhibitors. 

B. Isolation and Identification of Metabolites 

The isolation procedure shown in Figure 6 had as one of its last 

steps a thin-layer chromatographic.analysis in which ricinine was 

separated from the polar pyridine nucleotide cycle intermediates by 

development in chloroform.: methanol (5 : 1, v/v). Figure 7 shqws a, 

radio chromatographic scan of one of these.developed thin-layer plates. 

Peak A, at the origin, contains the various pyridine nucleotide cycle 

intermediates while peak B was shown to be ricinine. Since the compounds 

present in peak A could not be readily separated by paper or thin-layer 

chromatography, they were subjected to anion exchange chromatography on 

a Dowex 1 x 8 formate column as previously described. 

Figure 8 shows a plot of absorbance at 260 nm (A260) and radio

activity versus tube number for Dowex 1 x 8 column chromatography of 

quinolinic acid-6-14c injected control plant, after removal of the 

ricinine by the previously described thin-layer chromatography. Eight 

major radioactive peaks were observed. This general elution pattern.was 

observed for all control plants. 

Tubes representing each peak were pooled, lyophilized to dryness 

and identified by paper chromatography and thin-layer chromatography 

with authentic samples, as well as comparison of elution volumes.on 
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Dowex 1 x 8 formate columns of authentic and unknown samples and finally 

by comparison of ultraviolet spectra of authentic and unknown samples. 

Based on the criteria previously mentioned, the following radioactive 

peaks, II, III, IV, V, VA, VI and VII were tentatively identified as a 

mixture of N-methyl nicotinic acid and N-methyl nicotinamide, nicotin

amide, ricinine, NAD, nicotinic acid, desamido NAD and quinolinic acid, 

respectively, The possibility of minor contributions from compounds 

other than the one assigned to the radioactive peaks cannot be excluded, 

and minor radioactive peaks were not identified because of low concen

trations and insufficient radioactivity. Table II shows the Rf values 

of the various metabolites from both paper- and thin-:-layer chromato

graphic systems.· Figure 9 shows the elution pattern of several reference 

compounds from a Dowex 1 x 8 formate column. 

c. Quinolinic Acid-6-14c As a Precursor 

1. Inhibitor Effects on Ricinine Biosynthesis 

Thebiosynthesis of ricinine as well as the pyridine nucleotide 

cycle intermediates in higher plants have been studied by measuring the. 

incorporation of labeled precursors into these compounds. It has been 

postulated that ricinine was biosynthesized both from pyridine nucleo

tide cycle intermediates (2) or by a pathway operating independently-of 

the cycle from quinolinic acid (5). 

To help clarify this situation, experiments were undertaken in 

which labeled quinolinic acid was fed to castor plants previously fed 

with compounds known or suspected to be pyridine nucleotide cycle in

hibitors. These compounds, described previously, were ricininic acid, 

azauracil, alazopeptin, azaserine and azaleucine. Also large amounts of 
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ricinine and ethionine were injectec;l. into castor bean plants in an 

attempt to block the synthesis of ricinine at the la~ter stages of.bio-

synthesis and to observe any effects on the.pyridine nucleotide cycle. 

I! 

TABLE II 

Rp VALUES FROM PAPER CHROMATOGRAPHY OF THE METABOLITES 
OF QUINOLINIC ACID-6-14c IN RICINUS· COMMUNIS L. 

Compound Solvent 1 Solvent 2 

(N-methyl nicotinic acid) 
• 71 .80 

(N-methyl nicotinamide) 

III (nicotinamide) • 77 • 85 

IV (ricinine) .88 

V (NAD) .22 .35 

VA (nicotinic acid) .57 • 71 

VI (desamido-NAD) .18 .39 

VII (quinolinic acid) .42 .32 

solvent 1: lM ammonium acetate: 95% ethanol (3: 7, v/v) 

solvent 2: isobutyric acid: ammonia: water (66: 1.7 : 33, v/v/v). 

Two preliminary experiments (Series A) were undertaken in which 

these inhibitors were tested as to their effect on the biosynthesis of 

ricinine and of the pyridine nucleotide cycle intermediates. Quinolinic 

acid-6-14c (1 µCi) was used as a precursor in these experiments. Four 

plants were inject~d with only.quinolinic acid-6-14c, two plants with 
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ricininic acid (10 mg/100 gm) followed by one µCi of quinolinic acid-

6-14c, two plants with alazopeptin (15 mg/100 gm) followed by.one µCi 

of quinolinic ac;ld-6-14c, three plants with azauracil (20 mg/100 gm) 

followed by 1 µCi of quinolinic acid-6-14c, three plants with azaleucine 

(20 mg/100 gm) followed by 1 µCi of quinolinic acid-6-14c, and three 

plants with azaserine (20 mg/100 gm) followed hy 1 µCi of quinolinic 

acid-6-14c. 

Three more groups of e~eriments were undertaken after observation. 

of the results of the preliminary experiments. In the first of these 

experiments (Series B) the concentration of the inhibitors.was increased 

to 45 mg/100 gm and the time the plants were allowed to metabolize in 

the presence of the quinolinic acid-6-14c and inhibitors was-varied. 

Duplicate control plants, azaleucine-treated plants and azaserine

treated plants were allowed to metabolize for four-, eleven- and twenty

hour periods before analysis. The results from the 4-hour experiments 

were extremely variable and inconclusive and so were not used. The 

eleven- and twenty-hour experiments produced more significant results.· 

In the second of the Series B experiments two plants were treated only 

with quinolinic acid-6-14c, two plants with quinolinic acid-6-14c plus 

azaserine (75 mg/100 gm) and quinolinic acid-6-14c plus azaleucine (75 

mg/gm). 

In the third group of experiments duplicate young non~flowering 

plants.were injected with 1 µCi of quinolinic acid-6-14c, with 1 µCi of 

quinolinic acid-6-14c plus 1 mg/gm of unlabeled ricinine or with 1 µCi 

of quinolinic acid-6-14c plus 40 mg/100 gm of ethionine. 

In all experiments ricinine was isolated from each plant by thin

layer chromatography and was quantitatively analyzed and its 
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incorporation of radioactivity determined directly,while the 1pyridine. 

nucleotide cycle intermediates.were.isolated by Dowe~ 1 x 8 formate 

column chromatography and also quantitatively analyzed fo~ :i,ncqrporation 

of radioactivity.· Ta~le III shows the effects of inhibitors on t~e 

amount of ricinine in the plant and the incorporation of label into ri

cinine.from quinolinic acid-6-14c. 

In the preliminary experiments, (Series A), the amount.of ricinine 

in the plants remained approximately the same.· This was to be expected 

since there is a very high concentration of ricinine in the plants 

(about 1 mg/gm fresh weight) and even a reduced biosynthetic r~te would 

not.affect the net amount of·ricinine in the plant since the turnover 

of ricinine is relatively.slow. The% incorporation of.label from quin

olinic.acid-:-6-14c into ricinine varied somewhat, however, the:only 

really significant change occurred in the alazopeptin-tre~ted plants 

where the incorporation into ricinine was about one-half that of the 

control plants. These results are shown in the Series A section of 

Table III. Unfortunately, not-enough alazopeptin was available to con

tinue the~e experiments so no further experimentation using alazopeptin 

was not done. The insolubilities of ricininic acid and azauracil in 

both. methanol. and water prevented further experimentation using higher 

dosages, so only azaserine and azaleucine were used in the Series Bex

perim~nts. 

In the,Series B experiments, the amount of ricinine present in the 

plants was again essentially unchanged, however, the effects of the 

inhibitors on the incorporation of label into ricinine w~s marked, es

pecially in the case of· azaleucine. The results. shown in Table III 

indicated that in the eleven..-hour experiments, azaserine caused a 



TABLE III 

EFFECTS OF INHIBITORS ON THE 
BIOSYNTHESIS OF RICININE 
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One µCi sf quinolinic ac!d-6-14c (spe~ific activity of 43.7 µGi/ 
µmole) was.administered as a precursor. 

Inhibitors Duration· 
Ri.cinine Isotope. 

Exp. tlonc. Cone, Incorp. Sp~ Act •.. Dilution 

...!a... hours ~ % mµCi 
100gm ' 100-gm µmole 

Series A 

Control ' - 11 3.6 35,4 1.14 · 32;988 
Ricininic Acid 10 11 3.4 42.5 1.32 26,638 
Azauracil. 20 11 3.6 36.6 1.22 35;812 
Alazopeptin. 15 11 3.9 19.9 1~53 2a.4s3 
Azaleucine 20 11 3.7 38.1 1.64 · 25,179 
Azaserine 20 11 3.7 35.6 1.57 29,832 

Series B 

Gontrol-11 - 11 2.6 25,6 l.27 34,409 
Azaserine-11 45 11 2.6 20. 6 0.79 55,564 
Azaleucine-11 45 11 1.9 6.5 0.18 99,993 

Control-20 - 20 2.5 20.8 0.82 52,914 
Azaserine-:20 75 20 2.? 16.0 0.74 59,011 
Azaleucine-20 75 20 2.4 4.6 0.19 223,369 

Control - 20 3.4 35.5 4.26 10,288 
Ricinine 100 20 5,4 5.7 0.56 7S,035 
Ethionine 40 20 4.1 8.6 0.96 45,521 
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reduction in the incorporation of label into ricinine of about 20%. In 

the 20-hour experiments the reduction of label incorporation into rici

nine by azaserine was about 23% 

In the 11-hour experiments, azaleucine caused a massive 75% re

duction of incorporation of label from quinolinic acid-6-14c into 

ricinine, and in the 20-hour.experiments, the reduction was about 80%. 

This indicated a sharp decrease in the biosynthesis of ricinine from 

quinolinic acid. 

In all cases of decreased incorporation into ricinine a reduc

tion in specific activity and an.increase in the isotope dilution veri

fied the results. 

In the ricinine overloading and ethionine inhibition experiments 

large decreases in incorporation of label into ricinine from quinolinic 

acid-6-14c were noted. These amounted to an 84% decrease and a 76% de

crease, respectively. The specific activity of ricinine was reduced. 

considerably and the isotope dilution values verify these results. 

2. Inhibitor Effects on the Pyridine Nucleotide Cycle 

Dowex 1 x 8 formate column chromatography was used to separate the 

pyridine nucleotide cycle intermediates. Plots of absorbance at 260 nm 

and total radioactivity versus fraction number yielded elution patterns 

similar to that shown in Figure 10, however, there were some noticeable 

differences in the incorporation of radioactivity into some of the py

ridine nucleotide cycle intermediates in the presence of these inhib

itors. Table IV shows the distribution of radioactivity in the pyridine 

nucleotide cycle intermediates from quinolinic acid-6- 14c in the pres

ence and absence of inhibitors. 
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TABLE IV 

EFFECTS OF INHIBITORS ON THE DISTRIBUTION 
OF RADIOACTIVITY IN PYRIDINE NUCLEOTIDE 

CYCLE INTERMEDIATES 

One µCi of quinolinic acid-6-14c (specific activity of 43.7 
µCi/µmole) was administered as a prec:;ursor. 
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II = mixture of N-methyl nicotinic acid an.d ?{-methyl nicotinamide 
qes NAD = nicotinic acid adenine dinucleotide 

NAD = nicotinamide adenine dinucleotide 
QA• quinolinic acid 

N-Amide = nicotinamide 
N-Acid = nicotinic.acid 

Distribution of Radioactivity 
Inhibitor Cone. 

QA des-NAD NAD N-Amide N-Acid II 

__3_ % % % % % % 
lOOgm 

Series A 

Control - 11.3 1.0 1,7 0.6 1.1 12.2 
Ricininic. Acid 10 8.6 0.7 0.5 0.5 0.5 12.1 
Azaura.cil 20 7.7 1.4 1.9 1.1 0.9 16.4 
Alazopeptin 15 15.9 LS 1.4 1.1 1.1 20.8 
Azaleucine 20 10.1 ,0.8 1.2 2.0 0.7 17.7 
Azasei-ine 20 11. 2 ,1.1 2.0 1.6 LS 15.6 

Series B 

Control-11 - 19.5 2.0 1.0 2.2 1.0 2.8 
Azaserine-11 45 38.3 6.2 2.0 4.0 1,3 9.1 
Azaleucine-11 45 38.2 1.4 0.8 4.2 0.7 4.4 

Control-20 - 14.1 2.7 0.8 1.6 0.6 4.7 
Azaserine-20 75 22.9 3.3 1.1 5.3 1. 3 7,1 
Azaleucine-20 75 37.0 2.6 0.4 1.2 0.7 5.1 

Control. - 7.7 0.7 0.8 2.6 1.0 4.3 
Ricinine 100 14.3 0.4 0.3 10.6 3.3 8.0 
Ethionine 40 20.1 0.7 0.7 13.8 2.2 7.4 



33 

In the Series A experiments most of the data were not significant, 

however, in the case of alazopeptin-treated plants a 41% increase in the 

amount of label remaining in unreacted quinolinic acid was noted. This 

was an indication of a partial blockage of the cycle with respect to 

the control plants. Some. increase in the amount of label present in 

desamido-NAD was observed, indicating that the.cycle inhibition was 

occurring at the amidation of desamido-NAD to NAD, catalyzed by NAD 

synthetase. These data were quite variable and this increase in label 

in desamido-NAD may or may not be significant. The other inhibitors 

produced no significant changes in the pattern of label incorporation 

into the cycle intermediates in this set of experiments. 

In the Series B experiments, the inhibition of the cycle as well as 

of ricinine biosynthesis, was marked. Figure 10 shows a plot of Az6o 

and radioactivity versus tube number for Dowex 1 x 8 chromatography of 

an 80% MeOH extract of an azaserine-treated plant. In the 11 hour ex

periments, azaserine-treated plants showed a marked 3-fold increase in 

incorporation of label into desamido-NAD indicating a definite inhibi

tion of the NAD synthetase catalyzed amidation of desamido-NAD to NAD. 

Further proof of the inhibition of the cycle was shown in the data on 

the amount of label remaining in unreacted quinolinic acid. A 2-fold 

increase in the label remaining in quinolinic acid in the 11-hour 

azaserine-treated plants was observed. This indicated a definite in

hibition of the cycle perhaps at the quinolinic acid decarboxylase

catalyzed conversion of quinolinic acid to nicotinic acid mononucleotidei 

In the 20-hour experiments with azaserine-treated plants this inhibition 

was again present but not quite as marked. A 23% increase in the 

label incorporation into desamido-NAD compared to the controls was noted 
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and a 63% increase in the amount.of label remaining in quinolinic acid 

was observed. Again thi~ indicated a definite inhibition of the cycle. 

The effects of azaserine on the other cycle intermediates was somewhat 

variable, however, a definite increase in.the amount of label in peak 

II, (3-fold and 2~fold, respectively) which ,contains N-methyl nicotinic 

acid and N-methyl nicotinamide, was observed. This could be.due to an 

inhibition of the demethylation reactions whic9 convert these storage 

compounds to nicotinamide and nicotinic acid, respectively, or it could 

be that the peak incorporation of label from quinolinic acid into these 

compounds was more closely approached by the .azaserine inhibited plants 

at the times of analysis than by the control plants, perhaps because the 

highest incorporation levels were reached by the control plants before 

analysis and at the time of analysis a great portion of the label had 

been further metabolized. In the case of nicotinamide a 2- to 3-fold 

increase in label incorporation was observed in both the eleven-hour 

and twenty-hour azaserine-treated plants compared with the value for'the 

control plants. This increase could be due to an inhibition of the 

deamidation of nicotinamide to.nicotinic acid, catalyzed by nicotinamide 

deamidase. Since.azaserine has been shown to be an inhibitor of the 

amidation of desamido-NAD to NAD, it may also inhibit the deamidation 

of nicotinamide to nicotinic acid. 

Figure 11 shows a.plot of Az6o and radioactivity versus tube num

ber for Dowex 1 x 8 formate column chromatography of an 80% methanol 

extract of a plant treated with azaleucine. In the Series B experiments, 

azaleucine caused decreases in incorporation of label from quinolinic 

acid-6-14c into the cycle intermediates and large amounts of label re

mained in unreacted quinolinic acid. Nicotinamide and peak II were the 
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only cycle intermediates which incorporated more radioactivity than the 

controls. In.the eleven-hour experiments a 2-fold increase in the 

amount of unreacted labeled quinolinic acid was observed. This was prob

ably due to an inhibition of quinolinic acid decarboxylase, which 

slowed down the entrance of labeled quinolinic acid into the cycle, A 

general reduction in.the amount of label found in most of the cycle 

intermediates was also noted, probably due to the reduction in amount of 

labeled quinolinic acid entering the cycle, In the 20-hour experiments 

the same type of results were observed •. A 2. 5-fold increase in the 

amount of label remaining in quinolinic acid was seen, again probably 

due to an inhibition of quinolinic acid decarboxylase. Again there was 

a reduction in the amount of label incorporated into the cycle inter

mediates with the exception of peak II and nicotinamide which increased. 

In both the 11- and 20-hour experiments azaserine to some extent 

and azaleucine to a greater extent; inhibited both ricinine biosynthesis 

and the pyridine nucleotide cycle. This indicates a connection or re

lationship between ricinine biosynthesis and the pyridine nucleotide 

cycle. 

Figures 12, 13 and 14 show plots of radioactivity and A260 versus 

tube number for Dowex 1 x 8 column chromatography of 80% methanol ex~ 

tracts of control plants, ricinine-treated plants and ethionine-treated 

plants respectively. In the ricinine overloading and ethionine inhibi

tion experiments the amount of label remaining in quinolinic acid in

creased 2- to 3-fold indicating an.inhibition of the operation of the 

cycle. A 2- to 4-fold increase in the radioactivity found in nicotina

mide in the presence of both,excess ricinine and ethionine as well as 

a 2-fold increase in incorporation of radioactivity into peak II was 
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observed. A 2- to 3-fold increase in the radioactivity found in nico

tinic acid was also found, however the other cycle intermediates 

incorporated about as much radioactivity as was found in the controls. 

These data indicated that either a 2-fold excess of ricinine or a 40 

mg/100 gm concentration of e.~hionine caused a definite inhibition in the 

incorporation of label from quinolinic acid~6- 14c into ricinine, 6-fold 

and 4-fold, respectively. The increase in the amount of label remain~ 

ing in quinolinic acid, 2-fold and 3-fold respectively, also indicatecl. 

an inhibition of the pyridine nucleotide cycle and again linked the 

cJcle to ricinine biosynthesis. 

Wet combustion and gas counting was used to determine the amount of 

label left in the residue of the plant extract. With these data a 

total radioactivity determination was achieved. Table V shows the amount 

of label in the residue of the plants from the various experiments and 

the total radioactivity values. 

The total radioactivity varied as shown in Table V; however, in all 

cases greater than 50% of the administered label was recovered. In.only 

one case, the 11-hour azaserine experiments, did the total label closely 

approach 100% recovery (96,1%). This was due mostly to a large amount 

of the label found in the extract (83.5%), however, the amount of label 

in the residue was also rather high (18.5%), No definite pattern in 

the amounts of label present in the residue seem evident,. except for a 

2- to 3-fold increase in the label present in the residue from the ll

hour azaserine- and azaleucine-treated plants. This was not found in 

the 20-hour azaserine-treated plants but in the azaleucine-treated 

plants at this same time period about a 2-fold increase was noted. In 

the ricinine overloading and ethionine inhibition experiments a 4-fold 
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TABLE V 

TOTAL RADIOACTIVITY ANALYSIS 

Inhibitor Radio~t;i vi ty 

Experiment Cone. :E::xtract Residue· lt:her Extract Total 

mgtl•fffl gm % % % % 

Series A 

Control - 53.3 6.5 '"l' 59.8 
Ricininic Acid 10 65.4 8.8 0.7 64.9 
Azauracil 20 66.0 8.4 0.2 74.6 
Alazopeptin 15 61. 7 9.6 0.5 71.8 
Azaleucine 20 70.6 6.7 0.3 77 .6 
Azaserine 20 68.6 10.6 0.3 79.5 

Series B 

Control-11 - 54.1 7.2 0.6 61.9 
Azaserine-11 45 77. 5 18.5 0.1 96.1 
Azaleucine-11 45 56.2 16.1 0.3 72.6 

Control-20 - 45.3 7.6 0.5 53.4 
Azaserine-20 75 57.0 7.9 0.6 65.5 
Azaleucine-20 75 51.6 12.0 0.6 64.2 

Series c 

Control - 52.6 2.8 0.9 56.3 
Ricinine 100 42.6 11.8 0.6 55.0 
Ethionine 40 53.5 7.3 0.6 61.4 
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and 3-fold increase in residue label compared to control value.s was 

found, respectively. The re a·so ns for this increase are not clear, 

however, a reasonable explanation could be that inhibition of ricinine 

and the pyridine nucleotide cycle caused an increase in label incorpor

ation into either metabolites or precursors,or both, of ricinine and 

the pyridine nucleotide cycle. intermediates, which are insoluble or 

bound. 

The ether extracts of the.various plants extracted contained less 

than 1% of the administered label and indicated that no metabolism of 

pyridinium compounds resulting in the formation of ether soluble prod

ucts occurred. 

Although the results of these experiments have indicated an inter

dependency of operation between ricinine biosynthesis and the pyridine 

nucleotide cycle, the details concerning the order of intermediates in 

ricinine biosynthesis have not been elucidated. The conflicting evi

dence concerning which pyridine nucleotide cycle i~termediate is the 

most immediate precursor of ricinine may best be explained by a more 

complicated relationship between the cycle intermediates and ricinine 

biosynthesis. Such a relationship is expressed by a metabolic grid, 

which is defined as a series of parallel reactions in which analagous 

transformations occur, but at different rates; thus a compound may be 

transformed to a product by several different parallel pathways (49). 

A similar type of metabolic grid was proposed by Waller and Nowacki.con

cerning the conversion pathways of quinolizidine alkaloids (50). The 

metabolic grid shown in Figure 15 shows a series of possible inter

relationships which help explain the known results. Quinolinic acid. 

(Al) has been shown. to be converted directly to nicotinic.acid 



Cl 

C2 
Figure 15. Proposed Metabolic Grid for 

Ricinine Biosynthesis. 
Al= Quinolinic ~cid 
A2 = Nicotinic ac;i..d mono

nucleotide 
A3 = Nicotinic acid 

adenine dinucleotide 
A4 = Nicotinamide adenine 

dinucleotide 
AS= Nicotinamide 
A6 = Nicotinic acid 

I 

A7 = Nicotinamide mono-
nucleotide 

Bl= N-demethyl ricinine 
B2 = Ricinine 
Cl= N-~ethyl nicotinic 

acid 

82 

C2 = N~methyl nicotinamide 
--· Pyridine Nucleotide Cycle 
---- Postulated Reactions 
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mononucleotide (A2) and also converted indirec;:tly to ricinine (B2), 

through the cycle (2). It .has been postulated that quinolinic acid can 

also be converted to ricinine independent of the cycle (5). However, 

the results previously presented have shown that inhibition of the 

cycle was acc;:ompanied by inhibition of the biosynthesis of ricinine, 

thus the main pathway for ricinine formation was probably through the 

cycle. All of the cycle intermediates were.proven to be precursors of 

ricinine but the incorporation of radioactivity from these intermediates 

into ricinine and isotope dilution values for these conversions were 

similar and did not indicate which of.these intermediates was the most. 

immediate precursor (2). The proposed metabolic grid, shown in Figure 

15, explains these results by postulating that all of these intermedi

ates may.be incorporated into the oiosynthetic pathway of ricinine dir

ectly, This would explain the similarity of radioisotope incorporation 

and isotope dilution data of all of these intermediates. The results 

of Hiles and Byerrum (5) which indicated that a large excess (10-fold) 

of NAD added to castor bean plants caused an increase in the incorpora~ 

tion of label into ricinine from quinolinic acid-14c rather than the 

expected decrease, do not have to be interpreted as proof of a separate 

route of ricinine biosynthesis independent of the cycle, but can be 

explained by the metabolic grid concept. If NaMN (A2) and desNAD (A3) 

can enter the biosynthetic,pathway of ricinine without,cpnversion to 

NAD (A4) then blockage of the.cycle by excess NAD wpuld not necessarily 

block synthesis of ricinine from QA (Al) but could cause an increase 

due to an increase in the amount of QA (Al) diverted to ricinine (B2). 

In terms of the metabolic grid, if the pathway QA (Al) to NaMN (A2) to 

desNAD (A3) to NAD (A4) were blocked at the desNAD to NAD (A3 to A4) 
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step, then label from QA (Al) would be diverted into the alternate 

pathways QA (Al) to NaMN (A2) to NDR (Bl) to ricinine (B2) and QA (Al) 

to NaMN (A2) to desNAD (A3) to NDR (Bl) to ricinine (B2). De~pite evi

dence to the contrary the possibility remains that QA (Al) could be 

incorporated into ricinine (B2) without going through the cycle, but, 

this pathway is certainly not necessafy to explain the data of Hiles and 

Byerrum. The NMN (A7) shuttle in which NAD (A4) can either be conver~ 

ted directly to Nam (AS) or shuttled through NMN (A7) and then to Nam 

(AS) was postulated to be present in barley (30) and may be present in 

Ricinus communis. Previous work has indicated that the carbon-14 to 

nitrogen-15 ratio in the nitrile group of ricinine remained the same as 

the ratio in the carboxamide group of the administered nicotinamide 

(19). This indicated that nicotinamide was converted to ricinine with

out any deamidation occurring. This metabolic grid also accounts for 

these data. The metabolic grid concept permits more than one, in fact 

probably all, cycle intermediates to enter the ricinine biosynthetic 

pathway, and inhibition of the cycle at one point may slow but will not 

stop the conversion of QA to ricinine. The exception to this may be 

the QA to NaMN conversion, which, if blocked, could cause a drastic 

decrease in QA conversion to ricinine, provided that there is no path

way from QA to ricinine independent of the cycle. The results with 

the inhibitor azaleucine indicated that there was probably littie 

liklihood of the .existence of an independent pathway, thus it may be 

concluded that total inhibition of QA decarboxylase should cause total. 

inhibition of incorporation of labeled quinolinic,acid into ricinine. 
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D. NADP-Carbony1-14c as a Precursor 

The procedure for the NADP-carbonyl-14c experiments was the same as 

described previously. Duplicate control plants were injected with 1 µCi 

of NADP-carbony1-14c; duplicate plants were injected first with 45 mg/ 

100 gm of azaserine or azaleucine then, one hour later, one µCi of NADP

carbony1-14c, The plants were allowed to metabolize for 20 hours and 

were then analyzed by methods described previously. These results from 

this experiment indicated that there was little effect of the inhibitors 

on either ricinine biosynthesis or the pyridine nucleotide cycle. Table 

VI shows the effect of inhibitors on the biosynthesis of ricinine from 

NADP-carbony1-14c. The effect was negligible since the incorporation 

into ricinine varied only from 7.6% in the controls to 9.3% in the aza

serine-treated plants to 6.5% in the azaleucine-treated plants. The 

amount of ricinine in the plants remained constant. There seemed to be 

no noticeable effect of the inhibitors upon the incorporation of label 

from NADP-carbony1-14c into ricinine. Specific activities and isotope 

dilution values for ricinine were also very similar and verified the 

incorporation data. Table VII shows the effect of inhibitors on the 

distribution of radioactivity in the pyridine nucleotide cycle inter

mediates. The radioactivity present in nicotinic acid (VA), des-NAD (VI) 

and unreacted NADP was expressed as one value because of a lack of 

separation of these components on Dowex 1 x 8 formate column chromatog

raphy. There were no large differences in label incorporation into 

the cycle intermediates with respect to control and inhibitor-treated 

plants. However, in the azaleucine-treated plants there was a small 

reduction in the amount of label incorporated into peak II. This 

amounted to a 32% decrease, however, the data in these experiments were 



TABLE VI 

INHIBITOR EFFECTS ON·THE·BIOSYNTHESIS 
OF RiCININE FROM NADP-CARBONYt-14c 

47 

One µCi of NADP-aarbony1~14c (specific activity of 26.2 µCi/µmole) 
was.administered as a precursor, 

Inhibitors· 
Duration 

Ricinine Isot9pe 
E'xperiment Con·c. Cone. In~orp. Sp. Act. Dilution 

..B.... hours µmoles/~m % mµCi 
lOOgm µmole 

I 

Contrciil - 20 4.0 7.8 0.3($ 55,556 

Azaserine 75 20 3.6 9.3 0.44 45,455 

Azaleucine 75 20 3.8 6.5 0.35 57,143 



TABLE VII·. 

INHIBITOR EFFECTS ON THE DISTRIBUTION OF 
RADIOACTIVITY IN THE PYRIDINE NUCLEOrIDE 

CYCLE FROM NADP-CARBONYL-14c 

48 

One µCi of NADP-carbony1-14c (specific activity of 26.~ µCi/µmole) 
was administered as a precursor. 

II• a mixture of N-methyl nicotinic acid and N-rnethyl nicotina
mide 

VA= nicotinic acid 
VI= des•NAD 

N-Amide = nicotinamide 

Inhibitors 

Control 

Azaserine 75 

Azaleucine . 75 

32.7 

36.1 

22.3 

Dist;ributic>n of, Radioactivity 
VA+ Vt +·NADP 

% 

3.8 6.0 13.2 

3.8 2.2 7.5 

6.2 5.8 4.9 
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more variable than the:data for the quinolinic.acid~6-14c because of the 

smaller number of plants subjected to the same conditions. A 2- to 3-

fold decrease in the peak containing nicotinic.acid, desamido-NAD and 

NADP was found.in the azaleucine-treated plants, hue no da~a on the 

amounts of label in each of these three:components was obtained. In the 

azaserine-tr~ated plants; a 3-fold reduction in the.label inc~rporated 

into NAD was found. Since azaserine blocks the desNAD to~~ step in 

the cycle and since labeled NADP is converted directly to labeled NAD 

by the action of phosphatases present in the plant, one might expect an 

increase in the .label present in NAD, inste~d of the decrease found. 

However, in a long term experiment (20 hours) such as thi~, label was 

probably shunted out of the cycle into the storage forms, N-methyl 

nicotinic acid, and N-methyl.nicotinamide and ricinine; consequently 

label would not be cycled back into NAD through the cycle due to block

age by azaserine. Other than these changes, the inhibitors see~ed to 

have little effect on the ·cycle or on ricinine biosynthesis. 
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PART TWO 

BIOCHEMISTRY OF METHYLCYCLOPENTANE MONOTERPENOIDS 



CHAPTER V 

IN:TRODUCTION 

The biosynthesis of the methylcyclopentane ring syste~ in higher 

plants has been the subject of a number of studies using various carbon-:-

14 labeled precursars. including acetate, mevalonate, geranylpy;rophosphate .. 

and carbon d,ioxi.de. H;owever, the:part of the biosynthetic route. lea<;ling 

to cyclization of either the five- or.six-memberedring ia unknown. 

Of_pa;rt;cular interest in-this-study were the methylcyclopentane 

monoterpenoid feline attractants, which are nepetalactone, produced.by 

Nepeta cataria, actinidine, iridomyrmecin and isoiridomyrmecin, produced 

by Act:ini.c;lia.polygama and actinidine and two actinidine-like alkaloic;ls 

produced by Valeriana officinalis~ The biosynthesis of nepetalactone, 

iridomyrmecin, isoiridomyrmecin.and actinidine have been postulated to 

involve iridc;,diol (nepetadiol), iridodial or perhaps a pyropha~p.he-rylated 
f . 

intermediate (65i,73). 

The main .pbje.ctives of this research were: (a) to develop a rapid 

and ef fiai_ent synthesis of carbon-14 labeled ir;l.d~diol (nepetadiol) and 

carbon-14 labeled dihydronepetalactone. and (b) to test these compcmn4s 

as possible precursors of nepet;alactone and epinepetalactone in Nepeti:i, 

ca:5.ji;ria, in order to gain some insight into the !ll8tabolbm of these 

compounds. · 

The synthesis of 14c-labeled nepetadiol and l4c-labeled dihydro-

nepetalactone was undertaken and upon completion the metabolism of these 

compounds in Nepeta cataria was investigated. 

"'I. 



CHAPTER VI 

LITERATURE REVIEW 

A. Structure and Occurrence 

1. Simple .. Iridoids 

According to their structure some;80 natural products have beell 

classified as methylcyclopentane monoterpenoids (simple.iridoids), true 

iridoids or seco-iridoids (1). Of particular interest were the simple

iridoids or methylcyclopentane monoterpenoids, All have two methyl 

groups, one in position 4, the other in position 8. Figure 1 shows the 

structures of a number of these i+idoids (1), 

Iridodiol (II), a group of isomeric dialcohols, were isolated from 

the galls of Actinidia polygama and synthesized by Sakan, et.al. (2) .. 

They were also synthesized and separated by gas chromatography by 

Regnier,~ al. (15). 

Iridodial (III), a dialdehydeisolated from insects such as the 

Australian ants species, Iridomyrmex detectus and Iridomyrmex conifer 

(3), was also isolated from several .Dolichoderus and other Iridomyrmex 

species (4) and Tapinomia nigerrimum (5). Cavill, et al. determined 

the structure of iridodia:J. (3) while Clark,~ al. synthesized iridodial 

from.citronellal (6). 

The dialdehyde, dolichodial (IV), was isolated from Dolichoderus 

acanthoclinea clarki and related species by Cavill, et al. (4), who 

also determined its structure. Anisomorphal, an epimer of dolichodial, 
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was isolated from Anisomorpha buprestoides (7) and synthesized by Cavill 

and Whitfield in.1964 (8). 

Nepetalactone (V) was first isolated from the steam-volatile oil of 

Nepeta cataria L. by McElvain, et al. (9), It was shown to be the cis-

trans isomer, and in.much greater abundance in Nepeta cataria L, than 

the trans-cis isomer, which was designated as epinepetalactone (VI).or 

isonepetalactone (10,11.12,13). Nepetalactone was also isolated.from 

Nepeta hindostana, Nepeta citriodora and Nepeta mussini (14,15) while 

epinepetalactone (trans-cis) was found in Nepeta cataria, Nepeta 

citriodora.and Nepeta mussini (15,19). McGurk later found that cis-cis 

nepetalactone was the major isomer present in N. mussini rather than 

the trans-cis isomer (13), however, he found no cis-cis nepetalactone 

in N. cataria. The configuration of nepetalactone was determined by 

Bates, et al. (11), while Sakan, ~ al. were able to synthesize DL-

nepetalactone (17) and Trave et al. and McGurk synthesized the nepetal-

actone stereoisomers (13,18), 

Dihydronepetalactone (VII), isodihydronepetalactone (VIII) and neo-

nepetalactone (IX) were isolated from the leaves and galls of Actinidia 

polygama (12). VII and VIII were also found in Nepeta cataria (12). 

Isodihydronepetalactone (VIII) was found in the secretions from the anal 

glands of Iridomyrmex nitidus (20). The structures of these compounds 

were determined by Sakan, et al. (13) and were later synthesized by 

Wolinsky and Nelson (21), 

Neomatatabiol (X) and isoneomatatabiol (XI) were isolated from 

Actinidia polygama by Hyeon, et al. (22). Neomatatabiol was shown to 

be derived from dihydronepetalactone by reduction; isoneomatatabiol was 

shown to be derived from isodihydronepetalactone by reduction, 
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Myodesertine (XII) was isolated from Myoporum deserti, by Sutherland 

and Park (23). 

Iridomyrmecin (XIII) and isoiridomyrmecin (XIV) were isolated from 

the leaves and galls of Actinidia polygama by Sakan, et al, (24) and 

designated matatabilactone. These isomers were separated and identified 

by Murai (25), Iridomyrmecin was isolated from the ant, Iridomyrmex 

humilis (3,26). Isoiridomyrmecin was found in various colonies of 

Dolichoderus and, Iridomyrmex species, where it accompanied iridodial 

and dolichodial (4). It was also found in the secretion of the anal 

glands of Iridomyrmex nitidus (20), Minato (26) determined the absolute 

configuration, Clark, et al, (6) synthesized isoiridomyrmecin, from --
citronella! via iridodial, 

2. Monoterpenoid Alkaloids 

The following compounds may be considered as nitrogen derivatives 

of 1,2-dimethyl-3-isopropyl-cyclopentane (1). The similarity of the 

structures of iridoids and the methylcyclopentane monoterpene alkaloids 

suggest a common biogenetic relationship, especially since they have 

been found in the same botanical families (1), Figure 2 shows the struc-

tures o·f the methylcyclopentane monoterpenoid alkaloids. 

Alkaloid RW47 (XVII) was isolated by A~thur, et al. from Rauwolfia 

verticillata Bail., where it coexists with several indole alkaloids (28). 

It was shown to be monoterpenoid in origin and related to the actinidine 

group (28). It was shown to be a q9 alkaloid and thus classified as a 

degenerate monoterpenoid. 

Actinidine (XVIII) was isolated by Sakan, et al. from Actinidia 

polygama (24). It was synthesized by Sakan, et al. (29) and its absolute 

structure elucidated by Sakan, et al. (30). Actinidine has also been 
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isolated from Valeriana officinalis by Gross, et al. (31) and also by 

Johnson, et al. (32). 8-Methoxyactinidine (XX) was isolated from 

Valeriana officinalis by Franck (33) while boschniakin (XXIV) was isola

ted from Bosschniakia rossica by Sakat, et al. (34). Plantagonin (XXIII) 

and indicain (XXII) were isolated from Plantago indica L., Pedicularis 

olgae Rgl. and f_. dolichorrhiza S. (35-41), while 4-noractinidine (XXI) 

was isolated from Tecoma stans by Dickinson and Jones (42). Venoterpin 

(XX) has been isolated from Rawolfia verticillata Bail. by Arthur, et al. 

(42,43), and from Alstonia venenata by Roy, et al. (45) and by Hart,~ 

al. (46), while the Jasminum-alkaloid (XXVI) was isolated from a new 

Jasminum species by Hart, et al. (46). 

Tecostidine, (XIX) tecostanine (XXVII) and tecomanine (XXV!II) have 

been isolated from Tecoma stans Juss. and their structures elucidated by 

Hammouda, et al, (47-50). 

Skytanthine (XXIX) has been isolated from Skytanthus actus Meyen by 

three independent groups (51-53) and its structure established by 

Djerassi, et al., using catalytic dehydrogenation yielding actinidine 

(51). Skytanthine exists in three isomeric forms (54). Hydroxyskytan

thines I (XXX), hydroxyskytanthine II (XXI) and dehydroskytanthine (XXXII) 

were also isolated from this plant (54,55). 

Two quarternary substituted alkaloids (XXXIII, XXXIV) were isolated 

from Valeriana officinalis L. by Torsell and Wahlberg (56,57). The 

quarternary substituent was shown by these authors to be a p-hydroxy

phenethyl group. 

B. Biological Activity 

Unlike most monoterpenoids, the methylcyclopentane monoterpenoids 

are physiologically active in a number of organisms. Their varied and 
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somewhat exotic biological activities have caused a surge of interest in 

these compounds. 

Nepetalactone has been known for years to be a powerful feline 

attractant. Todd has postulated that nepetalactone imitates a feline 

pheromone which cuases courtship displays (58). Evidence to support 

this hypothesis was as follows: 

1. The catnip responses and courtship were very similar. 

2. Field observations indicated that catnip-like displays occur 

at sites known to have been marked by the urine of tomcats. 

3. Catnip-like activity was found in ether extracts of tomcat 

urine. 

4. Cross fatigue of the catnip response and the courtship dis

play appeared to occur. 

5. The "central neural substrate" of the catnip response and 

courtship behavior appeared to be intimately related. 

6. Mounting activity of two male snow leopards was provided 

by catnip responses of two females. 

7. There was no correlation between the distribution of plants 

having catnip-like activity and that of cats which were 

sensitive to them. 

8. There was a striking difference in response to catnip be

tween lions and tigers which may be due to the unknown 

mechanism which reproductively isolated these two species 

in nature (but not in captivity). 

Nepetalactone has also been shown to be an insect repellant (59). 

The lactones iridomyrmecin, dihydronepetalactone, isodihydronepetalactone 

and neonepetalactone also have feline attracting capabilities (12). 
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Neomatobiol from Actinidia polygama was shown to attract the adult male 

lacewing (Chrysopa septempunctata) (22), while iridodiols isolated from 

this plant also had a similar biological activity (2). The antibiotic 

activity of iridomyrmecin was determined (26), and D-(+)-isoiridomyrmecin. 

was shown to inhibit the.growth of Rhizopus, Pennicillum and Aspergillus, 

but not Staphylococcus or Pseudomonas (60). Other results have indicat

ed that. the iridomyrmecins have canine attracting capabilities and are 

involved in arthropod defense (61,62). Iridodial was found to be in~ 

valved in arthropod defense also (61). 

The skytanthine alkaloids were found to possess feline attracting 

capabilities, the ability to stimulate the learning capacity of rats 

(63,64) and to act as an antidiabetic (62). 

Actinidine was demonstrated to be a potent feline attractnat (2, 

24,30), while tecomanine and tecostanine were found to have antidiabetic 

effects (65). 

C. Biosynthesis 

The biosynthesis of the iridoids has been studied more frequently 

in recent years since they have provided a structural link between ter

penes and alkaloids, two previously divergent classes of natural products 

(66). 

One of the earlies reports on the biosynthesis of a methylcyclo

pentane monoterpenoid was on skytanthine (XXVII) (66,67,68), and a 

later report indicated that the N-methyl group of skytanthine originated 

from L-methionine (69). Mevalonate-2-14c was also used as a precursor 

and label appeared in carbons 3,4,7 and 9 indicating a definite iso

prenoid origin (69). It.was found that randomization of label between 



carbons 3 and 8 did not occur in 3 year old E.· actus plants but did 

occur in 1 year old plants (69). It was postulated that this phenomenon 

was controlled by different levels of inhibitors and/or enzymes in the 

young and old plants (69). 

Using mevalonic acid-z-14c as a precursor, it was determined that 

a limited randomization of the carbon-14 found in carbons 3 and 8 and 

also 6 and 9 of nepetalactone_occurred (V) (70). 

Actinidine (XVIII), isolated from Actinidia polygama, was shown to 

be isoprenoid in origin (71). This finding was also of interest in the 

field of alkaloid chemistry, since it represented the third pathway for 

the biosynthesis of pyridine alkaloids in plants (66). Mevalonic acid

z-14c, acetate-2-14c and geranyl pyrophosphate-1-14c were all incorpor

ated into actinidine with mevalonic acid-z-14c showing the highest in

corporation (71). 

DL-Mevalonolactone-2-14c was shown to be incorporated into 

dolichodial (IV) in Anisomorpha buprestoides and into nepetalactone (V) 

in Nepeta cataria (72). 

Iridodial (III) was postulated to be the precursor of iridomyrmecin 

(XIII) in Dolichoderus and Iridomyrmex (4). It.has been suggested (73) 

that citronellol, its aldehyde and iridodial could be biosynthetic in

termediates between geraniol and loganin (XVI). 

Verbenalin (XV), a methylcyclopentane monoterpenoid glucoside, was 

shown to incorporate label from mevalonic acid-2-14c in young Verbena 

officinalis plants with randomization of label-occurring between carbons 

3 and 8 (75). Horodysky, et al. (76) showed that little randomization 

of label occurred in XV produced by mature, flowering y_. officinalis 

plants. Further studies indicated that rando~ization of label between 



carbons 3 and 8 occurs in young y. officinalis plants, decreased in 

intermediate aged plants and ceased in mature plants (76). 
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Some recent results have indicated that the main alkaloid (XXXIII) 

found in Valeriana officinalis, which is cqmposed of an actinidin~ seg

ment and a p-hydroxy phenethyl side chain, is derived from mevalonic 

acid and from tyrosine, respectively. Actinidine (XVIII) was also iso

lated from this plant and its origin is isoprenoid (31). 

Several biogenetic schemes have been postulated concern,ing the 

methylcyclopentane monoterpen0ids, however, only the most recent propos

al, which incorporates the most recent biosynthetic data, will be dis

cussed (66,74). This proposal is shown in Figure 3. Geranyl pyrophos

phate (XXXV), because of its biological reactivity and its widespread 

occurrence was considered to be a likely intermediate for the stepwise 

cyclization, to the proposed methylcyclopentane aldehydropyrophosphate 

(XXXIX), which was postulated to be the key biological intermediate in 

this scheme (66,74). From XXXIX, transamination to XXXX could occur, 

followed by cyclization to XLI, By dehydration of XLI, the dihydro

actinidines (XLIIa, XLIIb, XLIIc) could be formed and direct oxidation . 

could form actinidine (XVIII) or by oxidation and hydroxylation tecosti

dine (XIX) could be formed. From the dihydroactinidines, s~ytanthine 

(XXIX) (3 isomers), hydroxy skytanthine (XXXI), tecomanine (XXVIII), 

dehydroskytanthine (XXXII) and tecostamine (XXVII) could be formed by 

various hydroxylations, reductions and methylations (66,74). 

From XXXIX, reduction to XLV could occur and removal of pyrophos

phate could result in XLVI which could be oxidized to iridodial (III) 

or reduced to iridodiol (II) thrqugh the semialdehyde XLVI. From XLVI, 

III and XLVII, cyclization and oxidation could form iridomyrmecin (XIII), 
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nepetalactone (V) and dihydronepetalactone (VII), respectively (66, 

74). 

This hypothesis provides for the formation of almost all methyl 

cyclopentane monoterpenoids which vary at-carbons 4a and 7a (66,74). 

Other biogenet:Lc schemes and similar pertinent information can be 

found in references 1, 77 and 78. 
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CHAPTER VII 

EXPERIMENTAL METHODS 

A. Materials and Chemicals Used 

1. Plants 

Nepeta cataria L. plants were grown in vermiculite-soil mixtures 

in the horticulture greenhouse at Oklahoma State University in the fall 

of 1971. The plants were propagated from cuttings and were approximately 

eight to twelve weeks old when the experiments were initiated. 

Valeriana officinalis and Actinidia polygama Miq. plants were 

grown in vermiculite-soil mixtures in the horticulture greenhouse. V. 

officinalis roots were obtained as a gift from Dr. C, F. Van Sumere, 

Laboratorium voor Plantenbiochemie, Gent, Belgium. !::_. polygama plants 

were originally obtained from Japan and propagated by cuttings. 

2. Radioactive Compounds 

Barium carbonate-14c (specific activity of 50.2 mCi/mmole) was 
.,· : 

purchased from Amersham/Searle Corporation, Arlington Heights, Illinois, 

It was used without further purification. 

3. Chemical Reagents 

Solvents and chemical reagents were of analytical reagent grade 

unless otherwise specified. 

Silica gel G and silica gel HF were purchased from Brinkmann In-

struments, Westbury, New York. Commercially prepared analytical and 
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preparative silica gel HF plates were purchased from Brinkmann Instru

ments, Westbury, New York and Analtech, Inc., Newark, Delaware. 

Palladium on charcoal, a hydrogenation catalyst, was purchased 

from Matheson, Coleman and Bell, Norwood, Ohio. Lithium aluminum hydride 

was-purchased from Kand K Laboratories, Hollywood, California. 

Gas chromatography column packing material was purchased from 

Analabs, Inc., Hamden, Connecticut. 

B. Methods 

1. Preparation of Nepetalactone-c-14c 

14co2 Incorporation Into Nepetalactone: Nepetalactone-G-14c was 

prepared by allowing young Nepeta cataria plants to photosynthesize in 

the presence of 1 mCi of 14co2 for 36 hours. Figure 4 shows a diagram 

of the photosynthetic chamber used in this preparatiol}. Two Nepeta 

cataria plants were placed in the chamber, and the top replaced and 

sealed with high vacuum grease. One millicurie (2.3 mg) of Ba14co3 was 

then placed in the sidearm tube and the tube.placed in the 29/42 joint 

and sealed with vacuum grease. The vacuum pump was turned on and a 

considerable portion of the atmosphere was removed. Stopcock A was 

then closed and 2 ml of 6 X H2so4 was injected with a syringe through 

the serum cap and onto the Ba14co3• A bunsen burner was then used to 

complete the liberation of 14co2 from the Ba14co3 , leaving Baso4 in the 

sidearm. Air was allowed to flow back into the partially evacuated 

chamber until the pressure on the inside was just slightly less than 

atmospheric pressure. A bank of Gro-Lux fluorescent.lights were used 

to provide a light source and the plants were allowed to photosynthe

size. At the end of 36 hours, the vacuum pump was turned on, stopcock 
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A opened, and the system was evacuated through the NaOH traps to trap 

any remaining 14co2 as Naco 3• 
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Isolation and Purification of Nepetalactone-G-14c: The plants were 

removed and cut into small pieces with scissors and homogenized in a 

Waring blender with 500 ml of deionized water. This homogenate was 

steam distilled and 500 ml of steam distillate collected. The steam 

distillate was saturated with NaCl and extracted 4 times with 200 ml of 

diethyl ether each time. The combined ether extract was dried over 

anhydrous Na2so4 and reduced under N2 to near dryness. The concentra

ted ether extr~ct was then streaked on two preparative thin layer plates 

and developed in hexane: acetone : ethanol (40 : 10 : 4, v/v/v). The 

nepetalactone bands were scraped from the,plates, eluted from the 

silica gel HF with diethyl ether, filtered, dried, weigheo and stored 

in a vial in 2 ml of ether. 

2. Hydrogenation of Nepetalactone-G-14c 

Amounts of nepetalactone-G-14c from 50 mg to 420 mg were subjected 

to catalytic hydrogenation to produce dihydronepetalactone-G-14c. The 

labeled nepetalactone was placed in a thick-walled (3 mm) glass hydro

genation vessel with 25 to 175 mg of palladium on charcoal (10%) and 

30 ml of dry ethanol. The vessel was then wrapped in a heating tape 

and placed on a Parr Pressure Reaction Apparatus. The system was 

flushed with hydrogen gas repeatedly and then pressurized at.4.5 at

mospheres. The heating tape rheostat was adjusted so that the tempera

ture remained between 45oc and 60°C. The shaker was turned on and the 

reaction allowed to proceed for 36 hours. The resulting reaction mix

ture was analyzed by thin-layer and gas chromatography, mass spectro

metry and liquid scintillation counting. 
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3. Lithium Aluminum Hydride Reduction of Dihydronepetalactone-G-14c 

Amounts of purified dihydronepetalactone-G-14c from 25 to 350 mg 

were dissolved in 2 to 3 ml of diethyl ether. From 50 to 250 mg of 

powdered LiAlH4 was placed in a 50 ml two-necked micro distillation 

flask along with 15 to 25 ml of ~ry diethyl ether.or dry tetrahydro

furan and a micro magnetic stirring bar. A reflux apparatus was set up 

using a micro condenser and a micro heating mantle. A magnetic stirrer 

was placed under the heating mantle to stir the reaction mixture. The 

ether solution containing the dihydronepetalactone-G-14c was added drop

wise to the stirred LiAlH4 mixture either by a pasteur pipette or by a 

small separatory funnel. Upon completion of the slow dropwise addition 

of the reactant, the flask was sealed, and refluxed with stirring for 

three to five hours. Upon completion the mixture was removed from the 

flask and the excess LiAlH4 converted to LiAl(OH) 4 with O.OlN HCl. The 

resulting reaction mixture was filtered through a fritted glass funnel 

(coarse porosity) and the filtrate dried over anhydrous Na2so4 and then 

the solution filtered through a fritted glass funnel (fine porosity) 

and washed with ethanol. The filtrate was then evaporated, using a 

rotary evaporator, to dryness. The reduction product, nepetadiol-G-14c 

was only slightly soluble in ether, and so was taken up in 1 to 2 ml 

of ethanol. This concentrated solution was subjected to analytical, 

and preparative gas chromatography, mass spectrometry and liquid scin

tillation counting. 

4. Metabolic Studies 

Administration of Labeled Compounds: Nepetadiol-G-14c and dihydro

nepetalactone-G-14c were administered into the plant stems by injection 

using a microsyringe. 
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Isolation of Metabolites From Plants Administered Labeled Compounds: 

N. cataria plants which had been injected with either nepetadiol-c-14c 

or dihydronepetalactone-c-14c were steam distilled and the crude oil 

isolated and analyzed by gas chromatography and mass spectrometry. A 

number of major components were purified by preparative gas chromatog

raphy. The purified metabolites were analyzed by liquid scintillation 

spectrometry and their amounts estimated by analytical gas chromatography 

using previously determined relative response factors for nepetalactone 

and dihydronepetalactone. The residues from the steam distillations 

of these plants were treated with 2N HCl at 1oooc for 2 hours, then 

steam distilled again and the analysis procedures repeated. The remain

ing residue was analyzed by wet combustion and gas counting. In 

nepetadiol-G-14c biosynthesis experiment I, a methanol extraction was 

conducted on the initial steam distillation residue. This extract was 

analyzed by thin-layer chromatography as well as gas chromatography and 

mass spectrometry. 

5. Isolation of Actinidine from Actinidia Polygama Miq. 

Actinidine was isolated from Actinidia polygama plants by homogen

izing the plant material in a Waring blender in 200 ml of .01 N NaOH, 

then thoroughly steam distilling this homogenate until 400 to 700 ml of 

distillate was collected. This distillate was saturated with NaCl, 

adjusted to pH= 10 with NaOH and extracted with diethyl ether 4 times. 

The ether extract was dried over anhydrous sodium sulfate, filtered 

through a coarse fritted glass filter, evaporated to dryness, weighed 

and stored at -1ooc. This crude oil sample was then subjected to thin

layer chromatography in hexane : acetone : diethylamine (4 : 1 1, 

v/v/v). The alkaloid was detected using Dragendorff's reagent. It was 



scraped, eluted in ether, dried, weighed, taken back up in ether and 

analyzed on a 15% Carbowax 20 M column as previously described. Ga~ 

chromatography-mass spectrometry was used to positively identify this 

alkaloid. 

6. Isolation of Actinidine from Valeriana Officinalis 

73 

The alkaloid was isolated from dried roots of Valerian~ officin~lis 

by a series of extractions. The roots were first extracted with diethyl 

ether, the residue then extracted 3 times with chloroform: methanol 

(5 : 2, v/v), This extract was then filtered, concentrated on a rotary 

evaporator, taken up in diethyl ether and extracted 5 times with 1/3 

volume.of 10% HCl, This extract was neutralized, extracted with 

chloroform: methanol (3 : 2, v/v) and concerttrated, Column chro~atog

raphy first on silicic acid, then on neutral alumina according to the 

method of Torssell and Wahlberg (57), yielded a purified alkaloid frac

tion. 

Thin-layer chromatography or the purified alkaloid fraction, or of 

the chloroform: methanol extract on silica gel HF in chloroform: meth-

anal (5 

ide (45 

1, v/v), or in ethyl acetate: isopropanol : ammonium hydrox-

36 : 20, v/v/v) yielded several Dragendorff's positive spots. 

Preparative thin-layer chromatography of the band with the highest Rf 

value in hexane: acetone : diethylamine (40 10 : 4, v/v/v) yielded a 

purified alkaloid fraction, Mass spectrometry on the previously des

cribed instrument and co-chromatography on the previously described gas 

chromatography equipment were used to identify this alkaloid. A 10 foot 

column packed with 15% Carbowax 20 M was used. The column temperature 

was held at 1S0°c, the injector temperature at 225°c and the.flow rate 

was 80 ml/min of helium. 
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7. Chromatography and Instrumental Analysis 

Thin-Layer Chromatography: The reaction mixtures of all reduction 

reactions were purified by thin-layer chromatography on Silica Gel HF 

plates, both analytical and preparative, The developing solvent used 

was hexane : acetone : ethanol (40 : 10: 4, v/v/v). The bands of in

terest were scrpaed from the plates, eluted with either ether or methanol 

and concentrated under nitrogen.for further study. The radioactivity 

on the chromatograms was located with a Nuclear Chicago 4n Actigraph III 

chromatogram scanner, 

Gas Liquid Chromatography (GLC): Gas liquid chromatographic analy

ses were performed on a modified Barber-Colman Model 5000 gas chromato

graph equipped with a hydrogen flame ionization detector (79). The 

column packings used were 20% Apiezon Lon Anakrom ABS, 60-80 mesh or 

15% Carbowax 20 Mon Anakrom ABS. Columns used were all 1/4 inch 

silanized glass, however, their lengths varied from 8 to 12 feet as in

dicated. 

Mass Spectrometry: Low resolution mass spectra were obtained on 

a prototype of the LKB-9000 combination gas chromatograph-mass spectro

meter, which was constructed in the laboratory of Dr. Ragnar Ryhage, 

Karolinska Institutet, Stockholm, Sweden, as described by Waller (79). 

The spectra were obtained on the compounds as they emerged from the gas 

chromatograph using either Apiezon Lor Carbowax 20 M columns, under 

the following conditions: ionization voltage of 20 or 70 eV, 3.5 kV 

accelerating voltage, 20 or 60 µamp trap current, 1.7 kV electron multi

plier voltage, source temperature of 310°c, separator temperature of 

250°c, helium flow rate of 20-30 ml/min and a column temperature of 

160°c. A recording of the total ionization current obtained from the 
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collector plate in the analyzer tube served as the gas chromatographic 

tracing. The vertical slask marks along the tracings indicate the points 

at which mass spectra were taken. Spectra were counted and the peak 

heights measured manually. These data were introduced into the IBM 

360/65 computer which was used to drive a Cal Comp Model 565 Plotter, 

which plotted the spectra. 

Measurement of Radioactivity: The measurement of the radioactivity 

present in the purified samples was achieved by adding quadruplicate 

aliquots to scintillation vials containing 10 ml of toluene-ethanol 

scintillation solution and counting in a Model 3320 Packard Tri-Garb 

Scintillation Spectrometer described previously. Counting efficiency 

was determined using triplicate radioactive standards containing 1173 dpm 

of acetate-2- 14c. 



CHAPTER VIII 

RESULTS AND DISCUSSION 

A. Preparation of Labeled Precursors 

1. Preparation of Nepetalactone-G-14c 

The preparation of nepetalactone~G-14c was achieved ~y allowing 

Nepeta cataria L. plants to photosynthesize in the presence of 14co2 then 

isolating the nepetalactone as describ~d previously. The results of 

several preparations are shown in Table I. The specific activity of.the 

nepetalactone~G-14c, which was purified by thin-layer chromatography, 

varied from 11,653 dpm/mg to 29,634 dpm/mg. These preparations of 

nepetalactone-G-14c were not further purified, but were reduced and then 

purified by thin-layer chromatography followed by parparative gas chro

matography. Figure 5 shows the mass spectrum of nepetalactone-G-14c, 

from experiment IV. This spectru~ was similar to that of standard 

nepetalactone, which was published by Regnier,~ al. (15). The molec

ular ion,~ 166 was very intense as was the ion at m/~ 81 (~-85). 

Intense ions were also found at IE/~ 151 (~-15), !!!_I~ 138 (~-28), !!!_/~ 

123 (M+-43), !!!_/~ 109, !!!_I~ 67, !!!_(~ 55 and F:_/~ 41. Metastable ions were 

found at.!!!_/~ 114.7 verifying the!!!_/~ 166 tom/~ 138 transition, Yll~ 

109.6 verifying the!!!_/~ 138 to!!!_/~ 123 transition and m/~ 37.4 verifying 

the m/e 81 tom/~ SS transition. 

7h 
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TABLE I 

PREPARATION OF NEPETALACTONE-G-14c 

Exp. Plant Weight Crude Oil Nepetalactone-G- 14c 
No. Wt. Radioactiv- wt. Radioactiv- Specific 

ity ity Activity 

gm mg dpm mg dpm dpm/mg · 

I 550 425 5,520,000 366 4,272,000 11,653 

II 500 400 4,120,000 202 3,000,000 14,851 

III 260 270 3,675,000 150 2,708,823 18,059 

IV 330 228 5,820,000 164 4,860,000 29,634 

v 305 196 2,388,306 121 1,449,000 11,975 
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2. Recuction of Nepetalactone-G-14c to Dihydronepetalactone-G~14c 

The reduction of nepetalactone to dihydronepetalactone was achieved 

in this laboratory by Regnier, et al. (14) previously, using bot~ ilat

inum oxide and palladium on strontium carbonate as catalysts; howeyer, 

an easier and more rapid reduction was achieved by using palladium on 

charcoal. A series of reductions of unlabeled nepetalactone with vary

ing conditions were undertaken and the conditions shown in Figure 6 

were found to yield dihydronepetalactone rapidly and efficiently. Table 

II shows the yield of (l.ihydronepetalactone from a series of hydrogena

tions of unlabeled nepetalactone. The percent yields varied from 80.2% 

to 97.4%. The dihydronepetalactone was purified from the reaction mix

ture by thin-layer chromatography, 

Since this reaction worked well, preparation of dihydronepetalactone

G-14c was undertaken. The same reaction conditions were used. Table 

III shows the results of several of these preparations. The yields var

ied from 80.0% to 94.6%, and the specific activities of the TLC purified 

dihydronepetalactone remained very similar to the specific activities 

of the respective nepetalactone samples, however, the preparative GLC 

purified dihydronepetalactone samples contained sufficient quantities of 

liquid phase (Apiezon 1) from the column to cause slight decreases in 

their specific activities. These samples were analyzed by analytical 

gas chromatography and shown to consist of one symmetrical peak. Table 

IV shows the retention times of isolated nepetalactone-G-14c along with 

the retention times of standard unlabeled samples of these compounds. 

The retention times tentatively identified these compounds. Mass spec

trometry was used to confirm these identifications. Figure 7 shows 

the mass spectra of standard and preparative GLC purified 
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Figure 6. Reduction of Nepetalactone to Dihydronepetalact~ne. 

TABLE II 

NEPET,A.LACTONE HYDROGENATION RESULTS 

Exp. No. Nepetalactc;,ne , Dihydronepetalactone Yield 

mg mg % 

I 250 232 92.8 

Il; 420 409 97.4 

III 250 219 87.6 

IV 200 170 85.0 

v 529 424 80.2 

The dihydronepetalactone,was purified by thin-layer chromatE>''
graphy as.described previously. 

80 
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TABLE III 

PREPARATION AND PURIFICATION OF 
DIHYDRONEPETALACTONE"-G-14c 

81 

Exp. TLC Purified Nepeta-
lactone-c-14c 

TLC Purified Dihydro-
ne~etalactone-c-14c 

GLC Prepared Pihydro 
No. nepetalactone-G-14c 

Sp. Act. 

dpm/mg 

I 9,300 

II 18,059 

III 29,634 

IV 29,634 

v -

Wt. Sp. Act. Wt. Yield 

mg dpm/mg mg % 

86 7,900 81 94.6 

150 14,959 118 80.0 

63 27,500 56 88.9 

115 28,077 104 90,4 

- 11,325 41 -

TABLE IV 

GAS CHROMATOGRAPHIC ANALYSIS OF THE 
PURIFIED PREPARATIONS 

Sp. Act. 

dppt/mg 

-

-

18~400 

-

6;191 

Column: 10 ft., 1/4 silanized glass column packed with 20% 
Apiezon Lon Anakrom ABS (60-80 mesh). 

Conditions: Column temperature: 2oooc., Injector temperature: 
2400C., He flow rate: 70 mls/minute. 

Compound 

Nepetalactone-G-14c 

Dihydronepetalactone-c-14c 

Nepetadiol-c-14c 

Isolated 

minutes 

16.5 

25.7 

21.5 

Retention Time 

Standard 

minutes 

16.3 

25.8 

Wt •. 

mg 

-

-

29 

-

35 
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dihydronepetalactone. The spectra are almost identical. Scheme I shows 

the proposed partial fragmentation of dihydronepetalactone. The base 

peak in the mass spectrum of isolated dihydronepetalactone is~/!. 67 as 

it is in the mass spectrum of standard dihydronepetalactone. The re

mainder of the two spectra are very similar. In the mass spectrum of. 

dihydronepetalactone, the molecular ion,~ 168, can undergo loss of 

either one of two methyl groups to yield ion a, '!!!.I!. 153 or ion b, '!!!.I!. 

153. This transition is verified by a metastable ion at '!!!.I!. 139.4. The 

molecular ion may also undergo successive losses of carbon monoxide and 

a hydroxyl group to yield ion c, '!!!.I!. 123, it may lose c3H6 to yield ion 

d, '!!!.I!. 126 and it may lose a C4H7 fragment to yield ion e, '!!!.I!. 113. Ion 

a,!./!. 153 and ion b, '!!!.I!. 153 may undergo successive loss of carbon 

monoxide and CH2o to yield ion h, '!!!.I!. 95 and ion g, m/!_ 95 respectively. 

Ion c, '!!!.I!. 123 may lose C3H6 and yield ion f, '!!!.I!. 81. Ion h, '!!!.I!. 95 and 

ion g, '!!!.I!. 95 may lose c2H4 to yield ion i, '!!!.I!. 67. Ion f, '!!!.I!. 81 may 

lose a c2H2 fragment to yield ion j, m/!, 55. This transition is verified 

by a metastable ion at m/e 37.3. Ion j, '!!!.I!. 55 may also lose a methylene 

fragment to yield ion k, '!!!.I!. 41. 

3. Reduction of Dihydronepetalactone-c-14c to Nepetadiol-G-14c 

The reduction of dihydronepetalactone to nepetadiol was achieved 

previously by Re?nier, et al. (14), using lithium aluminum hydride. The 

reaction was repeated several times on unlabeled dihydronepetalactone 

until the most efficient conditions were discovered. In Figure 8, the 

reaction and reaction conditions are shown. Table V shows the yields of 

nepetadiol obtained from a series of reductions of unlabeled dihydro

nepetalactone. The yields varied from 68.0% to 92.0%~ The nepetadiol 

was purified by either thin-layer chromatography in hexane : acetone: 
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Figure 8. Reduct'ion of Dihydronepetalactone to Nepetadiol. 

TABLE V 

DIHYDRONEPETALACTONE REDUCTION RESULTS 

Exp. No. Dihydronepetalactone Nepetalactone Yield 

mg mg % 

I 200 184 92.0 

II 350 304 86.9 

III 175 161 92.0 

IV 424 366 86.3 

v 325 221 68.0 



86 

ethanol (40 : 10: 4, v/v/v), or by preparative gas chromatography using 

the column and conditions described previously. 

The preparation of nepetadiol-G-14c from dihydronepetalactone-G-14c 
i 

was undertaken using the same reaction conditions. Table VI shows the 

results of several of these preparations. Yields were 86.8% and 95.0% 

for the thin-layer purified nepetadiol-G-14c from the reductions. Pre-

parative gas chromatography allowed the loss of greater than 50% of the 

sample but resulted in~ greater purification than preparative thin-

layer chromatography. Analytical gas chromatography on the previously 

described Apiezon L column showed that the preparative gas chromate-

graphically purified nepetadiol fraction contained one, symmetrical peak. 

Mass spectrometry in conjunction with gas chromatograp~ wa..s used to 

identify nepetadiol and verify its purity. Figures .9 and 10 show the 

spectra of nepetadiol and its trifluoroacetate diester. The molecular 

weight of nepetadiol is 172 gm/mole, however, no molecular ion at JE:_/~ 

172 was seen, so the trifluoroacetate diester was prepared and mass 

spectra taken to prove the original compound was the dialcohol, nepeta-

dial. Scheme II shows the proposed partial fragmentation of nepetadiol. 

No molecular ion at m/~ 172 was found, however, this is not unusual for 

large molecular weight alcohols and dialcohols. Loss of water can 

occur to yield either ion a.', JE:_/~ 154 or ion b', m/~ 154. Loss of CH20H 

may also occur yielding either ion c', m/~ 141 or ion d', JE:_/~ 141. Ion 

a', m/~ 154 can either undergo loss of water to yield ion e', JE:_/~ 136 or 

loss of CH20H to yield ion g', m/~ 123. It may also undergo loss of one 

of two methyl groups to yield ion 1', JE:_/~ 139 and ion m', m/~ 139. Ion 

b', JE:_/~ 154 can either undergo loss of water, to yield ion e', JE:_/~ 136, 

loss of a c~2oH fragment to yield ion f', m/~ 123 and loss of a C3H70 



Exp. 
No. 

I 

II 

III 

TABU: VI 

PREPARATION AND PURIFICATION OF 
NEPETADIOL-G-14c 

TLC Purified TLC Purified 
Dihydronepetalactone-c-14c Nepetadiol-c-14c 

Sp. Act. Wt. Sp. Act. Wt. Yield 

dpm/mg mg dpm/mg mg % 

14,959 80 11, 241 76 95.0 

14,959 38 14,242 33 86.8 

28, 077 51 -- -- --

GLC Purified 
Nepetadiol-c-14c 

Sp. Act. w~. 

dpm/mg mg 

-- --

-- --

26,316 11.4 
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fragment to yield ion i', '!!}_/!:_ 95, which is verified by a metastable ion 

at'!!}_/~ 58.6. Ion b', '!!}.!!:_ 154 may also undergo loss of one of two methyl 

groups yielding ion n', '!E_I!:_ 139 or ion o' 
' '!E_/2_ 139. Ion c', '!E..12.. 141 can 

lose water to yield ion g', '!E..I~ 123, while ion d', '!!}.!~ 141 can also lose 

water to yield ion f', '!E..I~ 123. These transitions are verified by a 

metastable ion at '!E_/~ 107.3. Ion d', '!!}_/~ 141 can undergo loss of a, 

C3H7o fragment and a hydrogen to yield ion h', '!E_/~ 81, which is verified 

by a metastable ion at'!!}_/~ 46.8. Ione', m/~ 136 can lose either one of 

two methyl groups to yield ion j', '!!}_/~ 121 or ion k', '!E_/2_ 121. Ion f', 

'!E_/~ 123 can undergo loss of C2H4 yielding ion • I 
1 ' '!E_/~ 95. This transi-

tion is verified by a metastable ion at'!!}_/!:_ 73.3. Ion g', '!E_/~ 123 can 

lose a c3H5 fragment and a hydrogen to yield ion h', '!E_/~ 81 which is 

verified by a metastable ion at '!E_/~ 53.4., Ion k', '!E_/~ 121 can undergo 

loss of c2H4 to yield ion i', '!E_/~ 95. Ion h', '!E_/~ 81 can lose C2H2 to 

yield ion p', '!E_/~ 55. This transition is verified by a metastable ion 

at '!E_/~ 37.3. 

In order to conclusively prove the identity of the compound isola-

ted from the lithium aluminum hydride reduction of dihydronepetalactone 

to be nepetadiol, the compound was reacted with trifluoroacetic anhydride 

and the trifluoroacetate diester was formed. Combination gas chroma-

tography-mass spectrometry of this reaction mixture yielded one major 

peak which was identified by its mass spectrum. The mass spectrum of 

the trifluoroacetate diester of nepetadiol is shown in Figure 10 while 

Scheme III shows the proposed partial fragmentation of the trifluoro-

acetate diester of nepetadiol. No molecular ion peak at '5E_/~ 364 was 

observed; however, a peak at '!E_/~ 295 (a") was found. The peak at '!E_/~ 

295 (a") provided strong evidence that the isolated compound was 
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nepetadiol since the'§e fragment ions contain both of the esterified 

alcohol groups originating from nepetadiol. Thus the molecular ion, 

IE.I~ 364 undergoes loss of a CF3 fragment to yield ion a", IE.I~ 295 and 

ion b", IE.I~ 295. It. can also lose trifluoroacetic acid to. yield ion c", 

'!:!:_/~ 250 and ion d", IE.I~ 250. Ion c", IE.I~ 250 can lose another trifluoro-

acetic acid residue to yield ion c", IE.I~ 136, a methyl fragment to yield 

ion 1", IE.I~ 235 and ion m", IE.I~ 235, and a c2H2o2F3 fragment to form ion 

g", ml~ 123. Ion d", IE.I~ 250 can also undergo these same fragmentations 

and also can lose a c5H6o2F3 fragment yielding i", '!:!:_/~ 95. Ion c", IE.I~ 

136 can undergo loss of one of two methyl groups to form ion j", m/~ 121 

and ion k", IE.I~ 121. Ion f", mle 123 can lose c2H4 to yield ion . " 
1 ' 

"!E.I~ 95. Ion g", IE.I~ 123 can undergo loss of a c3H5 fragment and a hydro-

gen atom to form ion h", '!:!:_/ ~ 81. Ion h", IE.I~ 81 can lose C2H2 to form 

ion p", IE.I~ 55. Ion l", IE.I~ 235andion n", IE.I~ 235. can undergo loss of 

CF3COOH to yield ion j", IE.I~ 121 while ion m", IE.I~ 235 and ion o", IE.I~ 

235 can lose CF3COOH to form ion h", IE.I~ 121. Further fragmentation is 

similar to that shown in the fragmentation of nepetadiol in Scheme II. 

The previously presented data conclusively identified these synthe

sized compounds as dihydronepetalactone-G-14c and nepetadiol-G-14c so 

metabolism experiments in Nepeta cataria were undertaken. 

B. Metabolism of Carbon-14 Labeled Methylcyclopentane 
Monoterpenoids in Nepeta cataria L. 

1. Dihydronepetalactone-G-14c Metabolism 

Two experiments were undertaken in which dihydronepetalactone-G-14c 

was injected into the plant and allowed to metabolize. In experiment I, 

fourteen milligrams (250,000 dpm) of dihydronepetalactone-G-14c (specific 

activity of 18,400 dpmlmg) were administered to a healthy twelve-week 



old N. cataria plant. The plant was allowed to metabolize for 14 hours 

then the plant was weighed, homogenized in distilled water, steam dis

tilled and crude oil isolated and analyzed as described previously. In 

experiment II, 11.0 milligrams (200,000 dpm) of dihydronepetalactqne-G-

14c (specific activity of 18,400 dpm/mg) were administered to another 

B_. cataria ~lant and allowed to metabolize for 24 hours. The plant was 

analyzed in the same manner as in experiment I. Table VII shows the 

crude radioactivity distribution in these two plants. In these experi

ments. 70% to 80% of the label remained in the residue from the steam 

distillation while 20% to 25% was found in the crude oil. Further 

steam distillation produced only negligible amounts of labeled crude 

oil (approximately 2%). Analysis of the crude oil from both experiments 

was achieved using preparative and analytical gas chromatography and 

gas chromatography in .combination with mass spectrometry. In. the.gas 

chromatography analysis, cis~trans nepetalactone was used as an internal 

standard and retention values for the other components were calculated 

based on its retention time. The relative retention value of cis-trans 

nepetalactone was given the value of 1.00, The following components, 

which were identified by gas chromatography-mass spectrometry, had these 

relative retention values: trans-cis nepetalactone, 1.15; an unknown 

nepetalactone isomer (probably cis-cis) 1.21; recovered dihydronepetal

actone-G-14c, 1.70 and an unknown compound with a relative retention 

value of 1.33, which was not present in the crude oil of the untreated 

control plants. 

Preparative gas chromatography was conducted using the Apiezon L 

column· and conditions previous+y described. Four major fractions were 

collected from the crude oil. These fractions were labeled fractions 



TABLE VII 

CRUDE RADIOACTIVITY DISTRIB.UTION tN NEPETA 
CATARIA PLANTS FED CARBON-14 LABELED 

DIHYDROijEPETALACTONE 

95 

Experiment Dihydronepetalactone-c-14c Crude.Oil Residue 

I 

II 

Time Amount Radioactivity Amt. Radioactiv- Amt. Radioac-
ity tivity 

hrs mg dpm mg dpm gm dpm 

14 14.5 250,000 240 51,000 -- --
24 11.0 200,000 493 18,200 12 162, 960 

TABLE VIII 

RADIOACTIVITY DISTRIBUTION AMONG THE PREPARATIVE 
GAS CHROMATOGRAPHY FRACTIONS FROM THE 
DIHYDRONEPETALACTONE-G-14c METABOLISM 

EXPERIMENTS 

Total radioactivity and% incorporation values are about 50% 
of the actual value, since preparative gas chromatography 
allowed the loss of approximately 50% of each component. GLC 
column and conditions: column, 3/8 in., 16 ft., 20% Apiezon 
Lon Anakrom ABS. Column temperature, 210°C. Helium flow 
rate, 140 ml/min. 

Fraction 

Exp. I 

I 
II 

III 
IV 

Exp. II 

I 
II 

III 
IV 

Total Radioactivity 

dpm 

1,050 
3,548 

17,451 

1,005 
210 

5,915 
3,315 

Incorporation 

% 

0.4 
1. 4 
8.7 

0.5 
0.1 
3.0 
1. 7 



I, II, III and IV. Gas chromatography-mass spectrometry was used to 

identify the components of these fractions. Fraction II was identified 

as cis-trans nepetalactone, while fraction IV was identified as dihydro

nepetalactone. The mass spectra of these compounds have been presented 

and discussed previously. Table VIII shows the distribution of.radio

activity among the preparative GLC fractions. Incorporation of radio

activity into cis-trans nepetalactone was shown to be from 0.1 to 0.4%. 

Analysis of these fractions by combination gas chromatography-mass 

spectrometry was conducted using the Apiezon L column and conditions 

described previously. Table IX shows the combination gas chromatography

mass spectrometry analysis of these fractions from experiment II, to

gether with the amount of label in each component. These components 

were isolated by a second preparative gas chromatography purification on 

the same Apiezon L column but at a column temperature of 180°c and a 

helium flow rate of 110 ml/min. The amount of each component isolated 

WqS estimated by gas chromatography using relative response factors 

determined previously for standard nepetalactone and dihydronepetalactone. 

The specific activity of the recovered dihydronepetalactone was 19,650 

dpm/mg compared to 18,400 dpm/mg for the administered dihydronepetalac

tone;these values were essentially the same within experimental error, 

and this indicated that very little free endogenous dihydronepetalactone 

was present in the plant. 

The identity of the components of the preparative GLC fractions 

were determined by combination gas chromatography-mass spectrometry. 

Preparative gas chromatography fraction I was analyzed by combination 

gas chromatography-mass spectrometry and two components were observed. 

The larger of the. peaks (I-A) was identified by comparison of mass, 



TABLE IX 

COMPONENTS OF THE PREPARATIVE GAS CHROMATOGRAPHY 
FRACTIONS FROM DIHYPRONEPETALACTONE-G-14c 

METABOLISM EXPERIMENT II 

Fl'.action Components Radioactivity 

dpm 

I 3-hexen-1-ol 1,005 

II cis-trans nepetalactone 210 

III B trans-cis nepetalactone *396 
c unknown nepetalactone 

isomer 
D unknown monoterpenoid 1,320 

IV dihydronepetalactone 3,315 

97 

Sp. Act. 

dpm/mg 

505 

18 

8,351 

11,321 

19,650 

*trans-cis nepetalactone and the unknown nepetalactone isomer (probably 
cis-ci~could not be completely resolved by preparative gas chroma
tography so the total radioactivity value represents the total label 
in both compounds. 



spectral data with that of authentic 3-hexen-1-ol (81). The minor (10%) 

component was not identified. Table X shows a comparison of the ten 

most intense ions in the spectra of the major component of fraction I 

and of 3-hexen-1-ol, These data are identic~l in E!_I~ values and almost 

identical in order of intensity. The analysis of fraction III indicated 

three major components with some contamination with cis-trans nepetal

actone. Figure 11 shows.the recorder tracing of.the GC-MS analysis of 

fraction III, Peak III-A was identified as cis-trans nepetalactone and 

peak III-Bas trans-cis nepetalactone, The mass spectrum of peak III-C 

was very similar to that of both cis-trans nepetalactone and trans-cis 

nepetalactone and is postulated to be cis-cis nepetalactone. Peak III

D, which contained the majority of the label present in fraction III, 

had a molecular weight of 166 as do the nepetalactone isomers, however, 

its spectra differed from the spectra of the nepetalactone isomers too 

much to be another isomer. Figure 12 shows the mass spectrum of this 

compound. There are several key variations from the mass spectra of the 

nepetalactone isomers, which yield information concerning its structure. 

Scheme IV shows the postulated partial fragmentation pattern of this 

compound along with a proposed structure which fits the fragmentation 

found.in the mass spectrum shown in Figure 12, A postulated structure 

for this component is also shown in this figure. Th~ molecular ion, 

(:t-P"), E!_I~ 166 is postulated to have the structure shown. It can undergo 

loss of water to yield ion bb, E!_/~ 148, which was verified by a meta

stable ion at E!_I~ 132.0, or it may undergo loss of CH20 to form ion be, 

E!_/~ 136. It can also lose CO and a hydroxyl fragment to yield ion bd, 

E!_I~ 121, or it may lose one of two methyl fragments to yield ion be, 

E!_/~ 151 and ion bf, E!_I~ 151. This transition was confirmed by a 



TABLE X 

COMPARISON OF THE TEN MOST INTENSE 
IONS IN THE MASS SPECTRA OF I-A 

AND 3-HEXEN-1-01 

We wish to acknowledge the earlier contribution of uncerti
fied mass spectra of cis- and trans-3-hexen-l-ol by Western 
Utilization Research and Development Division, U, S. Depart-: 
ment of Agriculture, Albany, California, 

' 
Order of m/~ Values 
Intensity I-A cl:!_-j~Hexen-1-01 · t:rans-j ... Hexen-1 ... 01. 

'. 

1 41 41 41 

2 67 
:1 

67 67 

3 82 82 69 .! 

4 
.v 

82 55 55 

5 69 39 55 

6 42 27 39 

7 39 31 27 

8 31 42 31 

9 27 69 29 

10 29 29 42 

99 
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Figure 11. Total Ion Current Tracing of Fraction III of the Pre
parative GLC Purification of the Crude Oil From 
Dihydronepetalactone~G-14G Biosynthesis Experi~ 
ment I. The slash marks indicate where a mass 
spectrum was taken. The celumn and conditions 
were the same as shown in Figure 10. 
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Scheme IV.· Proposed Partial Fragmentation of Component III-D 

* =·means transition confirmed by a metastable ion. 
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metastable ion at ml!=_ 137.2. Ion bb, .~/!=.._ 148 can lose a C3H30 fragment 

forming ion bi,!!!/~ 93 which can then undergo loss of molecular hydrogen 

and rearrange to yield ion bm, '!E_/~ 91. This transition was verified by 

a metastable ion at ":E.I~ 89.0. Ion be, '!E_/!=._ 136 can lose a CHO fragment 

to yield ion bg, ml!=_ 107 or it can undergo loss of a methyl fragment to 

yield ion bn, '!E_/f=... 121 or ion bo, '!E_/~ 121. This transition was verified 

by a metastable ion at m/~ 107.6. Ion bd, '!E_/!=.._ 121 can lose C3H4 to form 

ion bj, '!E_/!=._ 81 or it can lose C3H6 to form ion bk, '!E_/~ 79. Ion be, '!E_/!=._ 

151 and ion bf, '!E_/~.151 can undergo loss of the remaining methyl group 

to yield ion bh, '!E_/f=... 136. Ion bj, m/~ 81 can lose molecular hydrogen to 

yield ion bh, '!E_/!=.._ 79 or it can lose C2H2 to form ion bp, '!E_/!=.._55. This 

transition was verified by a metastable ion at m/e 37. 3 •. Ion bk., ":E.I!=... 79 can 

undergo loss of molecular hydrogen and rearrange to form ion bl, '!E_/!=.._ 77. 

This transition was verified by a metastable ion at '!E_/~ 75.1. Ion bn, 

'!E_/!=._ 121 can lose CO to yield ion bg, ":E.I!=... 93 which can undergo loss of 

molecular hydrogen and rearrange to yield io.n bm, !!!./~ 91. This transi

tion was verified by a metastable ion at '!E_/!=.._ 89.0. 

The structure of compound (III-D) is tentatively proposed based 

on the similarity of its mass spectrum to those of the nepetalactone iso

mers. The specific activity of.III-D was quite high, 11,321 dpm/mg 

compared to.a specific activity of 18,400 dpm for the administered di

hydronepetalactone-G-14c. It.was concluded that III-Dis the nearest 

metabolite of dihydronepetalactone in either its biosynthetic or cata

bolic pathways. Compound III-Dis probably a catabolic metabolite of 

dihydronepetalactone, however, it is possible that the high concentra

tion of dihydronepetalactone administered to the !i· cataria plants could 

have caused a blockage of the biosynthetic pathway and resulted in a 
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shift in the equilibrium reaction leading to III-D. · This equilibrium 

shift could allow a reversal of the flow of· the biosynthetic pathway 

and lead to a conversion of dihydronepetalactone"."'G-14c to its immediate 

precursor. The tentative structure of III~D indicated that it is more 

likely a catabolic metabolite of dihydronepetalactone. Figure 13 shows 

the proposed conversions of dihydronepetalactone to III-D and nepetal

actone based on.radioisotopic incorporation data. 

A suggestion for further study would be to administer large doses 

of unlabeled dihydronepetalactone (30 to 50 mg); then isolate compound 

III-D by the procedure previously described, after allowing a 12 to 24 

hour period of time to elapse. Compound III-D could then be subjected 

to infrared spectrophotometry and nuclear magnetic reasonance spectrom

etry to conclusively determine its structure. 

Because of the large amount of radioactivity remaining in the res

idue of the steam distillation of the dihydronepetalactone-G- 14c treated 

plants (75 to 85%) the residue of one of these plants was steam dis

tilled again, however very little radioactive material (4500 dpm) was 

found in the steam distillate. This residue was then subjected to 

hydrolysis in 2N HCl for 2 hours at l00°c and then steam distilled a 

third time. The crude oil after acid hydrolysis contained 23,250 dpm. 

Analysis of this fraction by gas chromatography mass spectrometry yield

ed three large peaks. This analysis is shown in Figure 14. Component 

A', B' and C comprised more than 95% of the volatile material in this 

crude oil. Component A' had a molecular ion at '!E:_/!_ 154. Its spectrum 

is shown in Figure 15. It contains many of the same fragment ions as 

dihydronepetalactone and nepetalactone, except that the fragment ions 

containing the lactone ring were 14 mass units lower than the 
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corresponding ions in the mass spectra of dihydronepetalactone and 

nepetalactone. Loss of water was also found in its spectrum and these 

data led to the proposed structure and fragmentation pattern shown in 

Scheme V. The molecular ion of A' was M+ 154. It can undergo loss of 

a methyl group yielding ion cc, E:_!~ 139 or it can lose water to yield 

ion cd, E:_/~ 136 or it may lose a COOR fragment to form ion ce, E:_I~ 109. 

The last two transitions were verified by metastable ions at m/~ 120.1 

and!!:/~' 77.1 respectively. Ion cc, !E.J~ 139 can undergo loss of water 

to yield ion cf, E:_/~ 121. Ion cd, E:_/~ 136 may las~ a C2HO fragment to 

yield ion cg, E:_/~ 95. Ion ce, E:_/~ 109 can lose C2H4 to yield ion ch, 

E:_/~ 81. Ion cg, E:_/e 95 may undergo loss of c2H4 to yield ion ci, E:_/~ 

67. This transition was verified by a metastable ion at E:_/~ 47.3. Ion 

ch, E:_/~ 81 can lose C2H2 to yield ion cj, E:_/~ 55. This transition was 

verified by a metastable ion at E:_/~ 37.3. Ion ci, m/~ 67 can lose C2H2 

to yield ion ck, E:_/~ 41. This transition was verified by a metastable 

ion at m/~ 25.1. The similarity of the mass spectrum of component A' to 

the mass spectra of dihydronepetalactone and to compound III-D allowed a 

tentative structure to be proposed (Scheme V). 

Compounds B' and C' were shown by mass spectral analysis to be 

dihydro,nep.etalactone diaster-eoisomers? comprising 90% of the volatile 

fraction. Both compounds have mass spectra very similar to that of 

authentic dihydronepetalactone, which was obtained by hydrogenation of 

nepetalactone, shown in Figure 7. Compound C' was shown by comparison 

of gas chromatography retention times and mass spectra to be identical 

to dihydronepetalactone synthesized from nepetalactone, 

Compounds A', B' and C' were purified by preparative gas chromatog

raphy and their amounts of radioactivity were determined by liquid 
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scintillation spectrometry. Table XI shows the incorporation of radio

activity and specific activities for these compound. The specific 

activity of compound A' was found to be 1,003 dpm/mg, which was consid

erably less than the specific activity of administered dihydronepetal~ 

actone-G- 14c (18,400 dpm/mg). The specific activities of B' and C' were 

found to be 624 and 450 dpm/mg, respectively, Based on these data it 

was concluded that upon treatment with 2N HCl, dihydronepetalactone was 

either released from a bound non-steam-volatile form or che~ically syn

thesized from some non-steam-volatile component left in the residue. 

The 30- to 40-fold dilution of.the specific activities of B' and C' 

indicated an unlabeled pool of dihydronepetalactone was either present 

(endogenous) or formed by acid c~talysis, Acid catalysis would most 

likely result in hydrolysis of a glucosidic linkage, isomerization of 

the naturally occurring isomer of dihydronepetalactone and/or release 

of protein-bound dihydronepetalactone. Compound A' may also h~ve been 

formed or released by acid catalysis, since its specific activity was 

similar to those of B' and C'. 

The average amount of dihydronepetalactone found in the steam

volatile fraction from!!· cataria plants is about 0.002 mg/gm fresh 

weight. This can be contrasted to the concentration of nepetalactone, 

the major component of the crude oil which is 1-2 mg/gm fresh weight 

(19). The weights of the plants used in these experiments were about 

20b grams, therefore their crude oils contained about 0.4 mg of di

hydronepetalactone each. From 11 to 15 mg of labeled dihydronepetalac

tone was administered, however, more than 15 mg were isolated from the 

crude oil of the acid treated residue. Since 1-2 mg of dihydronepetal

actone was recovered by steam distillation from each of the plants used 



TABLE XI 

MAJOR COMPOUNl1S OF THE CRUDE OIL OBTAINED 
FROk.THE HCL-HYDROLYSIS OF THE RESIDUE 

RtMAINING FROM DIHYDRONEPETALACTONE~ 
G-f:4o:ti'!ABOL:ESM-( rup?... 11.i,).;,. 

Compounds Quantity Radioactivity 
Total Sp. Act. 

mg dpm dpm/mg 

A' 1.4 1,425 1,003 

B' 11.1 6,950 624 

C' 4,1 1,.850 450 
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in the biosynthesis experiments, the total recovered dihydronepetalac

tone was about 17-18 mg. Preparative gas chromatography was used to 

purify dihydronepetalactone before determination of the amount.present, 

and since.it results in the loss of approximately 50% of material, th,e 

actual total amount of dihydronepetalactone was calculated to be in ex~ 

cess of 30 mg. Th,is led to the conclusion that:there must be a.large 

amount of dihydronepetalactone stored in the.plant in a non-steam

volatile form and it was released or formed by acid treatment. 

Compound A', which was postulated to have a methylcyclopentane 

monoterpenoid structure, having only 9 carbon atoms, witha methyl group 

at position 8 missing. This compound may be classified as a degenerate 

monoterpenoid, and is likely a catabolite of dihydronepetalactone, re

leased from the plant residue by the acid treatment. The catabolism of 

nepetalactone-G-14c to 14co2 has been initially shown in this labora

tory. Thus degradation of these types of compounds could proceed through 

a degenerate monoterpenoid to COz. 

A suggestion for further study would be to steam distill N. cataria 

plants, then hydrolyze the residue with 2N HCl, repeat the steam dis

tillation step, isolate the crude oil and analyze this oil for major 

components. A comparison of this analysis to a similar one for plants 

treated with dihydronepetalactone could provide valuable data concern

ing the natural occurrence of A', B' and C', thus yielding useful in

formation on the biosynthesis of methylcyclopentane monoterpenoids in 

N. cataria. 
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2. Nepetadiol-G-14c Metabolism 

Two nepetadiol-6-14c biosynthesis experiments were conducted. In 

--experiment I, 5.7 mg (150,000 dpm) of nepetadiol-G-14c (specific activ-

ity of :a-6,316 dpm/mg) were administeted to a twelve-week old N. cataria 

plant. The plant was allowed to metabolize for 10 hours, then the plant 

was analyzed as describe~ previously. In experiment II, 12.5 mg (150,000 

dpm) of nepetadiol-G-14c (specific activity of 12,000 dpm/mg) were ad-

ministered to a sixteen-week old N, cataria plant, After 18 hours the 

plant was analyzed as before. In experi~ent I a methanol extraction 

was conducted on the plant residue following steam distillation, then, 

the residue from this extraction was treated with 2N HCl for 2 hours.at 

90-100°c and then steam distilled again. In experiment II the residue 

from the steam distillation was hydrolyzed with 2N HCl for 2 hours at 

90-l00°c, then steam distilled again. Table XII shows the distribution 

of radioactivity in the fractions from these plants, In both cases 

only a small amount of the label was.found in the initial steam-volatile 

crude oils (3,200 and 1,100 dpm, respectively). Since nepetadiol-G-14c 

was not steam-volatile, any unreacted nepet;adiol-G-14c would not be· 

found in this fraction. .In the ··me:tl;lanol ext1.action of the residue from 

experiment I, 88,889 dpm were found. The residue .. from this extract was 

found to contain 55,300 dpm, thus 98.2% of t::he,tctal radioactivity ad-

.ministered was recovered. When this .mellh~nol-extracted residue was 

treated .,wi.th 2N HCl and s.team distilled, ~ill, only a negligible a.mount 

of label (560 dpm) was obtained in the vela.tile fraction. In experiment 

II, the steam-volatile fraction obtained from the HCl-treated residue 

contained 12,400 dpm while the residue contained 128,000 dpm. This 

4wounted to a 94. 3% rec.ev-.e7:y of ··1:he .administered radio.activity. 



Exp. 

I 

II 

TABLE XII 

RADIOACTIVITY DISTRIBUTION IN NEPETA CATARIA 
PLANTS FED NEPETADIOL-G-l4c 

Crude Oil. Residue MeOH Ext.· Residue HCl Hydrolysis 

d:\)m dpm dpm dpm dpm 

3,200 118,000 88,889 55,330 560 

11,000 -- 71,520 15,100* 12,400 
' ·-· 
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Residue 

dpm 

45,000 

128,00 

150,000 dpm of nepetadiol-G-14c were injected into each plant. 

*In experiment I the methanol extraction was conducted first, then 
treated with HCl, however, in experiment II, this procedure was 
reversed, so 128,000 dpm is the amount of radioactivity present 
in the residue after HCl hydrolysis, while 15,100 dpm is the 
amount of label in the residue after methanol extraction and HCl 
hydrolysis. 
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Analysis of the crude oils from the initial steam dist:1,llation 

yielded purified cis-trans nepetalactone and trans-cis nepetalactone -- -
fractions with negligible incorporation of label, Table XIII shows the 

results of the preparative gas chromatography analysis of these crude 

oils. The incorporation into cis-trans nepetalactone was 0.08% in ex

periment I and 0.25% in experiment II, while the incorporation into 

trans-cis nepetalactone was 0.03% in experiment I and 0.12% in experi~ 

ment II. These values were small, about 25% of the comparable incor

poration values from dihydronepetalactone-G-14c, Compound III-D was 

not present in the nepetadiol-treated plants. 

The methanol extract of the steam distillation residue from exper-

iment I, containing 88,889 dpm, was analyzed by thin-layer chromatog

raphy. The results indicated almost all of the radioactivity was 

present in the lower half of the plate. This plate was divided into 

one centimeter bands and bands 2 through 5 were shown to contain 

approximately 40,000 dpm while bands 6 plus 7 also contained approxi

mately 40,000 dpm. The bands above band 7 contained no significant 

amounts of radioactivity. Analysis of bands 2, 3, 4 and 5 by gas 

chromatography-mass spectrometry yielded almost no volatile material. 

Bands 6 plus 7 contained several volatile components, Figure 16 shows 

the to.tal ion current tracing of the GC-MS analysis of TLC bands 6 plus 

7 from nepetadiol-G-14c biosynthesis experiment I. Peak I was iden-

tified as cis-trans nepetalactone, while peaks II and III were identi-

fied as dihydronepetalactone diastereoisomers. No nepetadiol was 

recovered from any of the fractions. The remainder of the methanol ex-

tract was steam distilled, however, no significant amounts of label 

were found in the steam volatile fraction while approximately 46,000 



TABLE XIII 

RADIOACTIVITY DISTRIBUTION AMONG THE PREPARATIVE 
GAS CHROMATOGRAPHY FRACTIONS FROM THE 

NEPETADIOL-G-14c METABOLISM EXPERIMENTS 

Fraction Amt. Radioactiv- Specific Activ-
ity ity 

mg dpm qpm/mg 

Exp. I 

cis-trans Nepetalactone 7.1 120 17 

trans-cis Nepetalactone 0.8 48 60 

Exp. II 

cis-trans 
~ 

Nepetalactone 4.0 248 62 

trans-cis Nepetalactone 0.2 182 82$ 
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Incorp. 

% 

0.08 

0.03 

0.25 
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dpm was found in the residue. Since no radioactivity was present in.the 

volatile fraction GC-MS analysis was not done. 

In experiment II, the residue from the initial steam distillation 

was treated with 2N HCl for 2 hours at l00°c then st~am distilled. 

Analysis of t~is steam volatile fraction, (12,400 dpm) by gas· ch~oma

tography-mass spectrometry showed the, occur-t'ence' o_f. several peaks. 

Preparative gas chromatogra.pb,y was used to purify these.fraction&,!, 

wh+ch correspond to tq.ose.obtained from the steam-volatile fraction of 

the Rel-hydrolyzed residue of the dihydronepetalactone-G-14c experiments. 

Two dihydronepetalactone isomers and compound.A' were again identified, 

however, anc;,ther component (A") which cauldnot be completely resolved 

from A', was found. A" was not present in the dihydronepetalactone-G-

14c fractions. This. mixture of. A' plus A" contained most of tb,e radio

activity (7,400 dpm) originally found in the steam volatile fraction 

from the HCl-treated residue. Th~ approximate relative amounts of A' 

and A" were 75% and 25%, respectively. Table XIV shows the relative 

intensities of selected fragment ions from.the mass spectra, as well 

as a tracing of the gas chromatG>graphic separation of A' and A". Mass 

spectrum 6 corresponds to A', spectrum 8 to A" and spectrum 7 to a mix

ture of the two •. The base peak in all cases was-:E_/~ 81. The molecular 

ion was at m/~ 154 for both cc;,mpounds. Table XV shows the.transitions 

denoted in the mass spectra of A' and A" while the tentative structures 

of.A' and A" are shown below. The spectra of these two components are 

similar but.several important differences allowed the assignment of 

tentative structures. The.explanation of the mass spectrum of A' and 

the criteria for assignment of a tentative structure.have been discussed 

in the dihydronepetalactone-G-14c metabolism section. ·. The reasons for 



TABLE XIV 

RELATIVE INTENSITIES OF SELECTED FRAGMENT 
IONS FROM THE MASS SPECTRA OF 

COMPOUNDS A' AND A" 
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; 

7 (A') Relative Intensities 

(A") 8 

9 5 

t I I 
10 

TIME 
MINUTES 

(MS No. 2658) 

"f!!/~ 

154 

139 

136 

123 

121 

111 

109 

107 

95 

94 

93 

91 

82 

81 

A' (6) 

% 
7.0 

2.2 

10.2 

-

10.7 

11.9 

31.8 

8.5 

6.0 

9.8 

17.4 

10.9 

58.5 

100.0 

A' + A" (7) A" (8) 

% % 
5.7 16.2 

2.2 2.9 

9.0 15.6 

1. 7 28.4 

8.9 22.0 

15.0 4.1 

33.4 22.6 

9.0 30.2 

10.4 55.5 

9.0 46.5 

17.5 29.0 

8.1 -

58.8 27.8 

100.0 100.0 



TABLE XV 

TRANSITIONS DENOTED IN THE MASS SPECTRA OF 
PEAKS A' AND A" 

Distribution Transition Denoted Probable Neutral 
Product 

Common to A' and (154)t --+ (139)+ + 15 ·CH 
A" 

3 

(154)"!"-+- (136)t + 18 HzO 

(A') co (136)t __,. (121)+ + 15 •cH3 

(139)+ ~ (121)+ + 18 HzO 

(154)t __. (111)+ + 43 •CzH30 

(136)t--+ (95)+ 41 'CzHO 

~l!gOH 

(109)t--+ (81)+ + 28 CzH4 

(95)t --t (93)+ + 2 Hz 
(A") or 

(93)t __., (91)+ + o:;20H 2 Hz 

(109)+ ---+ (82)t + 27 'CzH3 

(12l)t __,. (94)+ + 27 ·C2H3 

A" only (154): ~ (123)+ + 31 ·cH20H 

(154)"!"-,. (95)+ + 59 C3H70 

(154): ---.(109)+ + 45 'C2H50 

A' only (154)t-,. (109)+ + 45 'COOR 

(93)+ ---t (91)+ + 2 Hz 

120 

Metastable 
Ion Observed 

89.2 

77. 2 

77. 2 

89.2 
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the assignment of these tentative structures to A" were several-fold. 

A number of common transitions were found in the mass spectra of A' and 

A", however, the transitions which were not common were more important 

in structure elucidation. In A" the transition from EY~ 154 to "!!}_/~ 123 

losing a CH20H fragment (~-31) was found, but was absent in the spec-

trum of A'. The transition,~/~ 93 to"!!}.!~ 91 was present in the mass 

spectrum of A' but not in the spectrum of.A". Formationof fragment ions 

m/e 95, m/e 109 and m/e.121 was found in both spectra, but the pathways 
-- -- -.Ji-

of formation of these ions were postulated to be different. No detailed 

fragmentation study will be presented, however, comparison of the two 

components mass spectra indicated that the assigned tentative structures 

were reasonable. The determination of the amounts of A'+ A" was 

achieved using analytical gas chromatography and the specific activity 

of this A'+ A" fraction was found to be 4545 dpm/mg. The postulated 

structures of A" were both monodehydrated forms of nepetadiol. Nepeta,

d·iol-G-14c was not recovered from any fraction in either experiment, 

however, radioactivity was found throughout the different fractions. 

Repeated analysis failed to isolate nepetadiol-G-14c. Since A' comprises 

75% of the mixture of A' plus A", the specific activity of A" could be 

higher than 4545 dpm/rog. The specific activity of the administered 

nepetadiol-G-14c in experiment II was 12,000 dpm/mg so A" could be 

derived directly from injected nepetadiol-G-14c by dehydration, perhaps 

as a result of acid treatment. It.may also be possible that A' was 

formed from nepetadiol-G-14c. 

In the methanol extract of the HCl-treated steam distillation 

residue from experiment II, 71,520 dpm were found. Analysis of this 

extract failed to yield any nepetadiol-G-14c. Further analysis failed 
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to yield any signific~nt difference from the results of the analysis of 

the methanol extract from experiment I. 

These results have indicated that nepetadiol-G-14c was converted to 

the nepetalactone isomers only to a minor extent. Compound A' was iso

lated from the plant after HCl-treatment as well as compound A" whicp 

was postulated to be a dehydrated form of nepetadiol-G- 14c. 

Further analysis of the methanol extracts was not done, however, 

sta~ies on the metabolism of.nepetadiol-G-14c in the future should in

corporate different fraction~tio~ methods, which allow nepetadiol-G-14c 

to be recovered. 

C. Occurrence of Actinidine 

l. Isolation of Act!nidine from Valeriana Officinalis 

Actinidine was found to be present in the dried roots of Valeriana 

officinalis. The alkaloid was isolated using the method of Torssell and 

Wahlberg (56) combined with gas chromatography, thin-layer chromatog

raphy and mass spectrometry. Figure 17 shows a thin-layer chromatogram 

of the chloroform: methanol (5 : 2) e~tract of dried V. officinalis 

roots. Only bands which reacted positively with Dragendorff's reagent 

are $hown on this chromatogram. The band with an Rf value of 0.90 was 

shown to be actinidine by combination gas chromatography~~ass spectrom

etry on an 8 foot, 3% OV-1 column. Figure 18 shows the recorder tracing 

of the combination gas chromatography-mass spectrometry analysis of the 

thin-layer band with an Rf of 0.90. The slash marks indicate where 

~ass spectra were taken, Peak 2 was identified as actinidine by its 

mass spectrum and by co-chromatography on a 12 foot, 15% Carbowax 20 M 

column with the column temperature held at 200°c, the injector 
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0.90: --_ .. -
(actinldine) 

. < ezzzzz.zz_z- z_zz.zz4 
,' . . . • . . . . . • .• ,., I 

0.72 
0.67 
·o.64 

.,.', 

0.60 

O.it2 
0.08 

. -. 0.03 · ... ongm _ 

Figure 17. Thin-Layer Chromatogram of the Chloroform: Methanol 
Extract of Dried Valeriana Officinalis Roots. 
Only bands which reacted positively with Dragen
dorff's reagent are shown. The chromatogram was 
developed in ethyl acetate: methanol : ammonium 
hydroxi4e (45 : 35 : 20, v/v/v). 



··a·.· .. ,,;~xlf-1·'~····G·1ass .... co1um.n • 
3 % OY..·J On Ga, Chrom Q 
· ,so 0 c- .c.0.1,Hnn·; 210 ·c_ 1nj,cto, 
He, i2 ml/min. 

TIME, MINUTES 

Figure 18, Total Ion Current Tracing of the Thin-Layer Purified 
Band of Rf= 0.90. The slash marks along the 
tracing indicate the point at which mass spectra . 
were taken.. The column, 8 feet x 1/ 4 inches, was 
packed with 3% OV-1 on Gas Chrom Q. The operation
al parameters were: column temperature of 160oc, 
injector temperature, 220°c and He flow rate of 22 
ml/min, 
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temperature held at 225°C and the.helium flow rate held at. 70 ml/min, 

With both standard actinidine and isolated ~ctinidine injected simul

taneously only one symmetrical peak resu+ted at a retention time of 13.5 

minutes. Analysis of these two samples separately yielded similar 

pea~s at 13.5 minutes. Mass spectra of the isolated compound were very 

similar to that of authentic.actinidine previously published (70). 

Figure.19 shows the mass spectrum.of isolated actinidine,. Scheme VI 

shows the proposed partial fragmentation of actinidine. The molecular 

ion was observed at !!!I!=_ 147 •. lhis ion can undergo loss of one of two 

methyl groups to form ion aa, ml!=_ 132 and ion ab, EV!=.. 132. This tran

ition was verified by a metastable ion at!!}_/!=_ 118.2, Ions aa, !!}_/!=_ 132 

and ab,!!:./!=.. 132 can undergo loss of t~e remaining methyl group to yield 

ion ac, !!}_/!=_ 117. This transition was verified by a metastable ion at 

~ !=.. 103. 7. Ion aa, !!:./ !=.. 132 and ion ab, '!!:./ !=.. 132 and ion ab, !!!I!=_ 132 may 

also undergo loss of c2H5N to form ion ad, !!!I!=.. 91 and C2H7N to yield 

ion ae, ml!=_ 89. Ion ac, !!!lf=.. 1 117 can lose C2H3N to yield ion af, !!!I!=_ 

77, while ion ad,!!}_/!}_ 91 can lose. C2H2 to form ion ag, ~!=.. 65. Ion ae, 

ml!=_ 89 can undergo loss of C2H2 to yield ion ah, !!!I!}_ 63. 

These data confirmed the identification of actinidine as a com

ponent of the dried roots of y. officinalis, and wete published recently 

(32). 

2. Variation in the Composition of the Steam-Volatile Distillate 

of Actinidia..Polygama Miq, With Respect To Time. 

Actinidine has been found to be present in the steam-volatile 

fraction of Japanese!::_. polygama plants (24) and in!::_. polygama plants 

grown at this institution (71). These plants were first grown at this 
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institution in 1965 and actinidine was always found to be one of the 

major constituents of the steam-volatile distillate. However, during 

the winter months (October through March), the plants were into dormancy 

and no actinidine was found in the distillate of these dormant plants. 

These plants could no longer grow tendrils, and the leaves became 

lirger and darker in color, however, no other physical signs of dormancy 

were observed, Production of actinidine in the plants occurred soon 

after the breaking of dormancy; however the relative amount of actini

dine was observed to decrease each summer from 1965-1968. Finally, in 

1969, the plants no longer produced detectable amounts of actinidine. 

In Figure 20 the gas-liquid chromatography tracings of the steam

volatile distillates from plants grown and harvested in Japan in 1967 

and from plants grown in Stillwater and harvested in August of 1969 are 

shown. Analysis of a similar distillate obtained from Stillwater-

grown plants in 1965 and 1966 may be found in reference (71). In the 

Japanese steam-volatile distillate tracing, the large peak at a reten

tion time of 20 minutes was shown to be actinidine by mass spectrometry. 

In the tracing of the August, 1969 steam-volatile distillate essentially 

no actinidine was present. From 1969 to the present, no actinidine 

was detected in the distillate from!::._, polygama plants. Table XVI shows 

the decrease in the amount of actinidine in the steam-volatile distil

lates of!::._, polygama plants with time. 

From these data it can be concluded that actinidine was no longer 

produced by!::._, polygama plants in significant amounts after August 1968. 

The probable cause for this change in metabolism was the change in en

vironment the plants underwent when brought to this institution from 

Japan, where they grow only above 2,000 feet. Such factors as soil 
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Figure 20. Gas Chromatography Tracing of the Steam-Volatile Fractions 
from Japanese and Locally-Grown Actinidia 22lygama 
Plants. 



TABLE XVI 

VARIATION IN THE AMOUNT OF ACT~IDINE IN THE 
STEAM-VOLATILE DISTILLATE ·FROM ACTINIDI.A. 

POLYGAMA MIQ. PLANTS WITH TIME 

Steam-Volatile Distillate 

OSU Reference Plants (71) 

Japanese Reference Plants 
No. 1 
No. 2 

OSU Plants 

OSU Plants 

OSU Plants 

OSU Plants 

OSU Plants 

OSU Plants 

++=Major Component 

- = Not Detectable 

Harvest Date Amount of Actinidine 

Summer of 1965 ++ 

April-Oct.1966 

July 1967 

August 1967 
August 1967 

August 1968 

February 1969 

August 1969 

May 1970 

July 1970 

May 1971 

++ 

++ 

++ 
++ 

++ 
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conditions, altitude, day, length, temperature and humidity may.have 

been responsible for this severe metabolic change. It·was of interest 

to note that no outward physical changes in these plants were observed 

when the production of actinidine ceased. 



CHAPTER IX 

SUMMARY 

The purpose of the research described in part I was to determine 

the relationship between the pyridine nucleotide cycle and ricinine bio

synthesis in Ricinus communis Lo The approach used in this study was to 

compare the inco~poration of radioactivity from several precursors into 

ricinine and into the pyridine nucleotide cycle intermediates in the 

absence and ptesence·of several inhibitors, some of which have been 

shown to inhibit the pyridine nucleotide cycle in animalso The purpose 

of the work in part II was to develop a rapid and easy synthesis of 

dihydronepetalactone-G- 14C and nepetadiol-G- 14c for metabolism studies 

in Nepeta cataria and to study the occurrence of actinidine in Act.inidia 

polygama Miqo and Valeriana officinalis o Modern microanalytic.al inst

ruments were used for structure determination and identification. 

The biosynthesis of ricinine from quinolinic acid through the 

pyridine nucleotide cycle was confirmedo Pyridine nucleotide cycle 

inhibitors were used to confirm the obligatory role of the pyridine 

nucleotide cycle in the biosynthesis of ricinine. A metabolic grid 

was proposed to account for the similarity in incorporation levels of 

the pyridine nucleotide cycle intermediates and quinolinic acid into 

ricinine. Quinolinic acid decarboxylase, which converts quin~linic acid 

and phosphoribosyl pyrophosphate to nicotinic acid mononucleotide, was 

postulated as the site of inhibition of azaleucine. This compound has 
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not previously been shown to be an inhibitor of the pyridine nucleotide 

cycle. Nicotinamide adenine dinucleotide synthetase, which converts 

nicotinic acid adenine dinucleotide to nicotinamide adenine dinucleotide, 

was postulated as the site of inhibition of azaseriner. This is the first 

report of the inhibition of the pyridine nucleotide cycle in plants and 

of the inhibition of alkaloid biosynthesis in plants. 

Rapid, easy synthesis procedures for dihydronepetalactone-G- 14C 

and nepetadiol-G- 14C were developed. Upon admimistration of dihydro

nepetalactone-G-14c to Nepeta cataria plants, incorporation of label 

into cis'."'trans nepetalactone, trans-cis nepetalactone and a new methyl

cyclopentane monoterpenoid found only in plants administered large doses 

of dihydronepetalactone, was shown. A structure for this unknown com

pound was postulated. Incorporation of label into another unknown com

pound, which was postulated to be a degenerate c9 methylcyclopentane 

monoterpenoid, was also shown. Incorporation of label into these com

pounds from nepetadiol-G- 14c was not found. 

Actinidine was isolated and identified as a component of Valeriana 

officinalis roots. The disappearance of actinidine, a major component 

in the steam-volatile fraction of Actinidiapolygama Miq. plants, was 

• obsei"v~··rn locally .... grown field and greenhouse.,_.-plants during the winter 

of 1968, when the plants went into dormancy. This severe metabolic 

change might be explained by the environmental changes to which the 

plants were exposed. Their native habitat is Japan where they grow at 

an elevation above 2000 feet. Cuttings from specimen plants introduced 

in Stillwater in 1965 were used in this study. 
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