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LINEAR FREE DIVISORS AND THE GLOBAL
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Abstract. — A complex hypersurface D in Cn is a linear free divisor (LFD)
if its module of logarithmic vector fields has a global basis of linear vector fields.
We classify all LFDs for n at most 4.

By analogy with Grothendieck’s comparison theorem, we say that the global
logarithmic comparison theorem (GLCT) holds for D if the complex of global
logarithmic differential forms computes the complex cohomology of Cn \ D. We
develop a general criterion for the GLCT for LFDs and prove that it is fulfilled
whenever the Lie algebra of linear logarithmic vector fields is reductive. For n at
most 4, we show that the GLCT holds for all LFDs.

We show that LFDs arising naturally as discriminants in quiver representation
spaces (of real Schur roots) fulfill the GLCT. As a by-product we obtain a topo-
logical proof of a theorem of V. Kac on the number of irreducible components of
such discriminants.
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Résumé. — Une hypersurface complexe de Cn est appelée un diviseur linéai-
rement libre (ou DLL) si son module de champs de vecteur logarithmiques a une
base globale formée de champs de vecteurs linéaires. Nous classifions tous les DLL
pour n au plus égal à 4.

Par analogie avec le théorème de comparaison de Grothendieck, on dit que le
théorème de comparaison logarithmique global (ou TCLG) est vrai pour D si le
complexe des formes différentielles logarithmiques globales permet de calculer la
cohomologie de Cn \ D à coefficients complexes. Nous mettons en évidence un
critère général pour qu’un DLL ait la propriété TCLG, et nous démontrons que ce
critère s’applique lorsque l’algèbre de Lie des champs de vecteurs logarithmiques
linéaires est réductive. Pour n inférieur ou égal à 4, nous montrons que le TCLG
est vrai pour tous les DLL.

Nous montrons que les DLL qui apparaissent naturellement comme discrimi-
nants dans les espaces de représentations de carquois pour des racines de Schur
réelles satisfont au TCLG. Comme corollaire nous obtenons une démonstration to-
pologique d’un résultat de V. Kac sur le nombre de composantes irréductibles de
tels discriminants.

1. Introduction

We denote by O = OCn the sheaf of holomorphic functions on Cn, by
mp ⊆ Op the maximal ideal at p ∈ Cn, by Der = DerC(O) the sheaf of
C-linear derivations of O (or holomorphic vector fields) on Cn, and by
Ω• = Ω•

Cn the complex of sheaves of holomorphic differential forms. We
shall frequently use a local or global coordinate system x = x1, . . . , xn

on Cn and then denote by ∂ = ∂1, . . . , ∂n the corresponding operators of
partial derivatives ∂i = ∂

∂xi
, i = 1, . . . , n. Note that Der =

⊕
O · ∂i is a

free O-module of rank n.
Let D ⊆ Cn be a reduced divisor. K. Saito [22] associated to D the

(coherent) sheaf of logarithmic vector fields Der(− log D) ⊆ Der and the
complex of (coherent) sheaves Ω•(log D) ⊆ Ω•(∗D) of logarithmic differ-
ential forms along D. For a (local or global) defining equation ∆ ∈ O of
the germ D, δ ∈ Der is in Der(− log D) if δ(∆) ∈ O ·∆, and ω ∈ Ω•[∆−1]
is in Ω•(log D) if ∆ · ω, ∆ · dω ∈ Ω•. Note that Der(− log D) contains the
annihilator Der(− log ∆) of ∆ defined by the condition δ(∆) = 0. Saito
showed that Der(− log D) and Ω1(log D) are reflexive and mutually dual
and introduced the following important class of divisors.

Definition 1.1. — A divisor D is called free if Der(− log D), or equiv-
alently Ω1(log D), is a locally free O-module, necessarily of rank n.

We will be concerned in this article with the following subclass of divisors.
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LINEAR FREE DIVISORS 813

Definition 1.2. — A free divisor D is called linear if Γ(Cn,Der(− log D))
admits a basis δ1, . . . , δn such that each δi has linear coefficients with re-
spect to the O-basis ∂1, . . . , ∂n of Der or equivalently each δi is homo-
geneous of degree zero with respect to the standard degree defined by
deg xi = 1 = −deg ∂i on the variables and generators of Der.

Saito’s criterion [22, Thm. 1.8.(ii)] implies the following fundamental
observation.

Lemma 1.3. — If δ1, . . . , δn is a basis of Γ(Cn,Der(− log D)) for a linear
free divisor D, then the homogeneous polynomial ∆ = det((δi(xj))i,j) ∈
C[x] of degree n is a global defining equation for D.

Note that because Der(− log D) can have no members of negative degree,
D cannot be isomorphic to the product of C with a lower dimensional
divisor. It turns out that linear free divisors are relatively abundant; the
authors believe that in the current paper and in [3], recipes are given which
allow the straightforward construction of more free divisors than have been
described in the sum of all previous papers.

Examples 1.4. —
The normal crossing divisor D = {x1 · · ·xn = 0} ⊆ Cn is a linear free
divisor where

x1∂1, . . . , xn∂n

is a basis of Der(− log D). Up to isomorphism it is the only example among
hyperplane arrangements, cf. [20, Ch. 4].
In the space B2,3 of binary cubics, the discriminant D, which consists of
binary cubics having a repeated root, is a linear free divisor. For f(u, v) =
xu3 + yu2v + zuv2 + wv3 has a repeated root if and only if its Jacobian
ideal does not contain any power of the maximal ideal (u, v), and this in
turn holds if and only if the four cubics

u∂uf, v∂uf, u∂vf, v∂vf

are linearly dependent. Writing the coefficients of these four cubics as the
columns of the 4× 4 matrix

A :=


3x 0 y 0
2y 3x 2z y

z 2y 3w 2z

0 z 0 3w


we conclude that D has equation det A = 0. After division by 3 this deter-
minant is

−y2z2 + 4wy3 + 4xz3 − 18wxyz + 27w2x2.

TOME 59 (2009), FASCICULE 2



814 M. GRANGER, D. MOND, A. NIETO-REYES & M. SCHULZE

In fact each of the columns of this matrix determines a vector field in
Der(− log D); for the group Gl2(C) acts linearly on B2,3 by composition
on the right, and, up to a sign, the four columns here are the infinitesimal
generators of this action corresponding to a basis of gl2(C). Each is tangent
to D, since the action preserves D.

Further examples of irreducible linear free divisors can be found (though
not under this name) in the paper [23] of Sato and Kimura. Besides our
example, two, of ambient dimension 12 and 40, are described in [23, §5,
Prop. 11, 15], and by repeated application of castling transformations,
cf. [23, §2], it is possible to generate infinitely many more, of higher di-
mensions.

In Section 5 of this paper we describe a number of further examples of
linear free divisors, and in Section 6 we prove some results about linear
bases for the module Γ(Cn,Der(− log D)), and go on to classify all linear
free divisors in dimension n 6 4.

Linear free divisors provide a new insight into a conjecture of H. Terao
[26, Conj. 3.1] relating the cohomology of the complement of certain divi-
sors D to the cohomology of the complex Ω•(log D) of forms with logarith-
mic poles along D. For linear free divisors, the link between the complex
Γ(Cn,Ω•(log D)) and H∗(Cn r D) can be understood as follows.

Definition 1.5. — For a linear free divisor D defined by ∆ ∈ C[x], we
consider the subgroup

GD := {A ∈ Gln(C) | A(D) = D} = {A ∈ Gln(C) | ∆ ◦A ∈ C ·∆}

with identity component G◦
D and Lie algebra gD. We call D reductive if

G◦
D, or equivalently gD, is reductive.

It turns out that Cn r D is a single orbit of G◦
D with finite isotropy

group, so H∗(Cn r D;C) is isomorphic to the cohomology of G◦
D; this

is explained in Section 2. Moreover, H∗(Γ(Cn,Ω•(log D))) coincides with
the Lie algebra cohomology of gD with complex coefficients. For compact
connected Lie groups G, a well-known argument shows that the Lie algebra
cohomology coincides with the topological cohomology of the group. For
linear free divisors the group G◦

D is never compact, but the isomorphism
also holds good for the larger class of reductive groups, and for a significant
class of linear free divisors, G◦

D is indeed reductive. In Section 3 we prove
our main result:

Theorem 1.6. — If D is a reductive linear free divisor then

(1.1) H∗(Γ(Cn,Ω•(log D))) ' H∗(Cn r D;C).

ANNALES DE L’INSTITUT FOURIER



LINEAR FREE DIVISORS 815

Among linear free divisors to which it applies are those arising as dis-
criminants in representation spaces of quivers, as discussed in detail in [3]
and briefly in Section 4 below.

Terao’s conjecture remains open, though it has been answered in the af-
firmative for a very large class of arrangements in [29], using a technique
developed in [7]. For general free divisors, a local result from which the
global isomorphism of (1.1) follows holds when imposing the following ad-
ditional hypothesis.

Definition 1.7. — A divisor D is called quasihomogeneous at p ∈ D if
the germ (D, p) admits a local defining equation ∆ ∈ Op that is weighted
homogeneous with respect to weights w1, . . . , wn ∈ Q+ in some local coor-
dinate system x1, . . . , xn centred at p. Dividing w1, . . . , wn by the weighted
degree of ∆, note that the preceding condition means that χ(∆) = ∆ where
χ =

∑n
i=1 wixi∂i ∈ Der(− log D)p. D is called locally quasihomogeneous if

it is quasihomogeneous at p for all p ∈ D. We say homogeneous instead of
quasihomogeneous if w = 1, . . . , 1.

Theorem 1.8 ([7]). — Let D ⊆ Cn be a locally quasihomogeneous free
divisor, let U = Cn r D, and let j : U → Cn be inclusion. Then the de
Rham morphism

(1.2) Ω•
X(log D) → Rj∗CU

is a quasi-isomorphism.

Grothendieck’s Comparison Theorem [12] asserts that a similar quasi-
isomorphism holds for any divisor D, if instead of logarithmic poles we
allow meromorphic poles of arbitrary order along D. Because of this simi-
larity, we refer to the quasi-isomorphism of (1.2) as the Logarithmic Com-
parison Theorem (LCT) and to the global isomorphism (1.1) as the Global
Logarithmic Comparison Theorem (GLCT). Several authors have further
investigated the range of validity of LCT, and established interesting links
with the theory of D-modules, in particular in [4], [6], [11], [27], and [28].

Local quasihomogeneity was introduced in [7] as a technical device to
make possible an inductive proof of the isomorphism in 1.8. Subsequently
it turned out to have a deeper connection with the theorem. In particular by
[5], for plane curves the logarithmic comparison theorem holds if and only if
all singularities are quasihomogeneous. The situation in higher dimensions
remains unclear. There is as yet no counterexample to the conjecture that
LCT is equivalent to the following weaker condition.

TOME 59 (2009), FASCICULE 2
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Definition 1.9. — A divisor D is called Euler homogeneous at p ∈ D

if there is a germ of vector field χ ∈ mp ·Derp such that χ(∆) = ∆ for some
local defining equation ∆ ∈ Op of the germ (D, p). In this case, χ is called
an Euler vector field for D at p. D is called strongly Euler homogeneous if
it is Euler homogeneous at p for all p ∈ D.

Remark 1.10. — The Euler homogeneity of D is independent of the
choice of an equation. If χ is an Euler vector field at p for D defined by
∆ ∈ Op, and u ∈ O∗

p is a unit, then the defining equation u∆ of D at p

satisfies an equation

(χ(u) + u)−1uχ(u∆) = (χ(u) + u)−1(χ(u) + u)u∆ = u∆

with Euler vector field (χ(u) + u)−1uχ.

In Section 7 we examine the examples described in Sections 5 and 6 with
respect to local quasihomogeneity and strong Euler homogeneity. It turns
out that all linear free divisors in dimension n 6 4 are locally quasiho-
mogeneous and there is no linear free divisor which we know not to be
strongly Euler homogeneous. The optimistic reader could therefore conjec-
ture that all linear free divisors are strongly Euler homogeneous, and also
fulfil LCT and so also GLCT. We do not know any counter-example to
these statements.

In Subsection 7.1 we give examples of quivers Q and dimension vectors
d for which the discriminant in Rep(Q,d) is a linear free divisor but is not
locally quasihomogeneous. In such cases Theorem 1.8 therefore does not
apply, but Theorem 1.6 does.

In Subsection 7.2, we show that a linear free divisor does not need to be
reductive for LCT to hold. However we do not know whether reductiveness
of the group implies LCT for linear free divisors. The property of being a
linear free divisor is not local, and our proof of GLCT here is quite different
from the proof of LCT in [7].

The fact that linear free divisors in Cn arise as the complement of the
open orbit of an n-dimensional connected algebraic subgroup of Gln(C),
means that there is some overlap between the topic of this paper and of
the paper [23], where Sato and Kimura classify irreducible prehomogeneous
vector spaces, that is, triples (G, ρ, V ), where ρ is an irreducible represen-
tation of the algebraic group G on V , in which there is an open orbit.
However, the hypothesis of irreducibility means that the overlap is slight.
Any linear free divisor arising as the complement of the open orbit in an
irreducible prehomogeneous vector space is necessarily irreducible by [23,
§4, Prop. 12], whereas among our examples and in our low-dimensional

ANNALES DE L’INSTITUT FOURIER
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classification (in Section 6) all the linear free divisors except one (Exam-
ple 1.4(1.4)) are reducible. Even where G is reductive, the passage from
irreducible to reducible representations in this context is by no means triv-
ial, including as it does substantial parts of the theory of representations
of quivers.

2. Linear free divisors and subgroups of Gln(C)

A degree zero vector field δ ∈ Der can be identified with an n×n matrix
A = (ai,j)i,j ∈ Cn×n by δ =

∑
i,j xiai,j∂j = xA∂t. Under this identifica-

tion, the commutator of square matrices corresponds to the Lie bracket of
vector fields.

Let D ⊆ Cn be a reduced divisor defined by a homogeneous polynomial
∆ ∈ C[x] of degree d.

Definition 2.1. — We denote by

LD := {xA∂t | xA∂t(∆) ∈ C ·∆} ⊆ Γ(Cn,Der(− log D))

the Lie algebra of degree zero global logarithmic vector fields.

Recall from Definition 1.2, that D is linear free if LD contains a basis of
Der(− log D), and recall G◦

D from Definition 1.5.

Lemma 2.2. — G◦
D is an algebraic subgroup of Gln(C) and

gD = {A | xAt∂t ∈ LD}.

Proof. — Clearly GD is a subgroup of Gln(C) and defined by a system
of polynomial (determinantal) equations. Thus GD and hence also G◦

D is
an algebraic subgroup of Gln(C). The Lie algebra of G◦

D consists of all
n× n-matrices A such that

∆ ◦ (I + Aε) = a(ε) ·∆ ∈ C[ε] ·∆

where C[ε] = C[t]/〈t2〉 3 [t] =: ε. Taylor expansion of this equation with
respect to ε yields

∆ + ∂(∆) ·A · xt · ε = (a(0) + a′(0) · ε) ·∆

and hence a(0) = 1 and, by transposing the ε-coefficient, xAt∂t ∈ LD. The
argument can be reversed to prove the converse by setting

a(ε) := 1 + (xAt∂t(∆)/∆) · ε.

�

TOME 59 (2009), FASCICULE 2



818 M. GRANGER, D. MOND, A. NIETO-REYES & M. SCHULZE

Lemma 2.3. — The complement Cn r D of a linear free divisor is an
orbit of G◦

D with finite isotropy groups.

Proof. — For p ∈ Cn, the orbit G◦
D ·p is a smooth locally closed subset of

Cn whose boundary is a union of strictly lower dimensional orbits, cf. [14,
Prop. 8.3]. The orbit map G◦

D → G◦
D · p sends In + Aε to p + pAtε and

induces a tangent map

(2.1) gD � Tp(G◦
D · p), A 7→ pAt.

For p 6∈ D, Der(− log D)(p) and hence also LD(p) is n-dimensional. Then
by Lemma 2.2 and (2.1) TpG

◦
D ·p and hence G◦

D ·p are n-dimensional which
implies the finiteness of the isotropy group of p in G◦

D. As this holds for all
p 6∈ D, the boundary of G◦

D · p must be D and then G◦
D · p = Cn r D. �

Reversing our point of view we might try to find algebraic subgroups
G ⊆ Gln(C) that define linear free divisors. This requires by definition that
G is n-dimensional and connected and by Lemma 2.3 that there is an open
orbit. The complement D is then a candidate for a free divisor. Indeed
D is a divisor: comparing with (2.1), D is defined by the discriminant
determinant

∆ = det
(
A1x

t · · · Anxt
)

where A1, . . . , An is a basis of the Lie algebra g of G and we denote by f =
∆red the reduced equation of D. As the entries of the defining polynomial
are linear, ∆ is a homogeneous polynomial of degree n. Thus, if ∆ is not
reduced, D can not be linear free. We shall see examples where this happens
in the next section. On the other hand, Saito’s criterion [22, Lem. 1.9] shows
the following.

Lemma 2.4. — Let the n-dimensional algebraic group G act linearly on
Cn with an open orbit. If ∆ is reduced then D is a linear free divisor. �

As a first step towards our main result, we now describe the cohomology
of Cn r D in terms of G◦

D.

Proposition 2.5. — Suppose that D ⊆ Cn is a linear free divisor and
let G◦

D,p be the (finite) isotropy group of p ∈ Cn r D in G◦
D. Then

H∗(Cn r D;C) = H∗(G◦
D;C)G◦

D,p = H∗(G◦
D;C).

Proof. — By Lemma 2.3, Cn r D ∼= G◦
D/G◦

D,p with finite G◦
D,p and

the first equality follows. The second equality holds because G◦
D is path

connected, which means that left translation by g ∈ G◦
D,p is homotopic to

the identity and thus induces the identity map on cohomology. �

ANNALES DE L’INSTITUT FOURIER
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Remark 2.6. — The argument for the second equality also shows that if
G◦

D is a finite quotient of the connected Lie group G then H∗(Cn rD;C) '
H∗(G;C). We will use this below in calculating the cohomology of Cn rD.

3. Cohomology of the complement and Lie algebra
cohomology

Let g be a Lie algebra. The complex of Lie algebra cochains with coeffi-
cients in the complex representation V of g has kth term

∧k
CHomC(g, V ) ∼=

HomC(
∧k
C g, V ), and differential dL :

∧k
CHom(g, V ) →

∧k+1
C Hom(g, V )

defined by
(dLω)(v1 ∧ · · · ∧ vk+1)

=
∑
i<j

(−1)i+jω([vi, vj ] ∧ v1 · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk+1)

+
∑

i

(−1)i+1vi · ω(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk+1).

(3.1)

The cohomology of this complex is the Lie algebra cohomology of g with
coefficients in V and will be denoted H∗

A(g;V ).
The exterior derivative of a differential k-form satisfies an identical for-

mula:
dω(χ1 ∧ · · · ∧ χk+1)

=
∑
i<j

(−1)i+jω([χi, χj ] ∧ χ1 ∧ · · · ∧ χ̂i ∧ · · · ∧ χ̂j ∧ · · · ∧ χk+1)

+
∑

i

(−1)i+1χi · ω(χ1 ∧ · · · ∧ χ̂i ∧ · · · ∧ χk+1).

(3.2)

Here the χi are vector fields.
When D is a free divisor and V = Op for some p ∈ D, it is tempt-

ing to conclude from the comparison of (3.1) and (3.2) that the complex
Ω•(log D) coincides with the complex of Lie algebra cohomology, with coef-
ficients in Op, of the Lie algebra Der(− log D)p. For Ω1(log D)p is the dual
of Der(− log D)p, and Ωk(log D) =

∧k Ω1(log D). However, this identifi-
cation is incorrect, since, in the complex Ω•(log D), both exterior powers
and Hom are taken over the ring of coefficients O, rather than over C,
as in the complex of Lie algebra cochains. The cohomology of Ω•(log D)p

is instead the Lie algebroid cohomology of Der(− log D)p with coefficients
in Op. Nevertheless, when D is a linear free divisor, there is the following
important link between these two complexes.

Recall LD from Definition 2.1.

TOME 59 (2009), FASCICULE 2



820 M. GRANGER, D. MOND, A. NIETO-REYES & M. SCHULZE

Lemma 3.1. — Let D be a linear free divisor. The complex

Γ(Cn,Ω•(log D))0

of global homogeneous differential forms of degree zero coincides with the
complex

∧•
CHom(LD,C) of Lie algebra cochains with coefficients in C.

Proof. — First we establish a natural isomorphism between the corre-
sponding terms of the two complexes. We have

Ω1(log D) = HomO(Der(− log D),O) = HomO(LD ⊗C O,O)

= HomC(LD,C)⊗C O.

Since HomC(LD,C) is purely of degree zero, and the degree zero part of O

consists just of C, the degree zero part of Γ(Cn,Ω1(log D)) is

Γ(Cn,Ω1(log D))0 = HomC(LD,C).

Since moreover Γ(Cn,Ω1(log D)) has no part of negative degree, it follows
that

Γ(Cn,Ωk(log D))0 = Γ
(
Cn,

k∧
O

Ω1(log D)
)
0

=
k∧
C

HomC(LD,C).

Next, we show that the coboundary operators are the same. Because we
are working with constant coefficients, the second sum on the right in (3.1)
vanishes. Let χ1, . . . , χk+1 ∈ LD. Then for ω ∈ Γ(Cn,Ωk(log D))0 and
i ∈ {1, . . . , k + 1}, ω(χ1 ∧ · · · ∧ χ̂i ∧ · · · ∧ χk+1) is a constant. It follows
that the second sum on the right in (3.2) vanishes. Thus, the coboundary
operator dL and the exterior derivative d coincide. �

More generally let us consider weights w = w1, . . . , wn ∈ Q+ and assign
the weight wi (resp. −wi) to xi and dxi (resp. to ∂i). Then the set of
homogeneous vector fields or differential forms of a given degree is well
defined.

Lemma 3.2. — Suppose that the divisor D ⊆ Cn is quasihomogeneous
with respect to weights w = w1, . . . , wn ∈ Q+. Then the following holds
for any open set U ⊆ Cn:

(1) If ω ∈ Γ(U,Ωk(log D)) is w-homogeneous, then Lχ(ω) = degw(ω)ω,
where Lχ is the Lie derivative with respect the Euler vector field
χ =

∑n
i=1 wixi∂i.

(2) For any closed ω ∈ Γ(U,Ωk(log D)) with decomposition ω =
∑

j>j0

ωj into w-homogeneous parts, ω − ω0 is exact.

ANNALES DE L’INSTITUT FOURIER
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(3) If Γ(U,Ωk(log D))r ⊆ Γ(U,Ωk(log D)) denotes the subspace of w-
homogeneous forms of w-degree r, then

Γ(U,Ω•(log D))0 ↪→ Γ(U,Ω•(log D))

is a quasi-isomorphism.

Proof. —

(1) is a straightforward calculation, using Cartan’s formula Lχ(ω) =
dιχω + ιχdω, where ιχ is contraction by χ.

(2) follows, for, if ω is closed, so is ωj for every j, and thus

ω − ω0 =
∑

0 6=j>j0

ωj = Lχ

( ∑
0 6=j>j0

ωj

j

)
= d(ιχ

( ∑
0 6=j>j0

ωj

j

)
).

(3) is now an immediate consequence.

�

From Lemma 3.1 and Lemma 3.2(3) applied to U = Cn we deduce the
following

Proposition 3.3. — Let D ⊆ Cn be a linear free divisor. Then

H∗(Γ(Cn,Ω•(log D))) ∼= H∗
A(LD;C). �

Recall G◦
D and gD from Definition 1.5. From Propositions 2.5 and 3.3 we

deduce

Corollary 3.4. — The global logarithmic comparison theorem holds
for a linear free divisor D if and only if

�(3.3) H∗(G◦
D;C) ∼= H∗

A(gD;C).

There is such an isomorphism if G is a connected compact real Lie group
with Lie algebra g (which is not our situation here). Left translation around
the group gives rise to an isomorphism of complexes

T :
•∧

g∗ →
(
Ω•(G)G, d

)
where g∗ = HomR(g,R) and Ω•(G)G is the complex of left-invariant real-
valued differential forms on G. Composing this with the inclusion

(3.4)
(
Ω•(G)G, d

)
→
(
Ω•(G), d

)
and taking cohomology gives a morphism

(3.5) τG : H∗
A(gD;R) → H∗(G;R).
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If G is compact, (3.5) is an isomorphism. For from each closed k-form ω

we obtain a left-invariant closed k-form ωA by averaging:

ωA :=
1
|G|

∫
G

`∗g(ω)dµL,

where µL is a left-invariant measure and |G| is the volume of G with respect
to this measure. As G is path-connected, for each g ∈ G `g is homotopic to
the identity, so ω and `∗g(ω) are equal in cohomology. It follows from this
that ω and ωA are also equal in cohomology.

Of course, this does not apply directly in any of the cases discussed
here, since GD is not compact. Nevertheless if GD is a reductive group,
the complexified morphism (3.5) is an isomorphism. We now briefly out-
line the necessary definitions. Let G0 be a compact Lie group. Then ([19,
§5.4, Thm. 10]) G0 has a faithful real representation. It follows ([19, §3.4,
Thm. 5]) that G0 has an affine real algebraic group structure. This allows
its complexification.

Definition 3.5. —
(1) The complex Lie algebra representation is reductive if it is the direct

sum of a semi-simple ideal and a diagonalizable ideal.
(2) The complex linear algebraic group G is reductive if its Lie algebra

(representation) is reductive.

The term “reductive” is due to the fact that these groups are charac-
terised, among complex algebraic groups, by the complete reducibility of
every finite-dimensional complex representation. Chapter 5 of [19] estab-
lishes a bĳection between compact Lie groups and reductive complex linear
algebraic groups:

Theorem 3.6 ([19, §5.2, Thm. 5]). — On any compact Lie group K

there exists a unique real algebraic group structure, whose complexification
K(C) is reductive. Any reductive complex algebraic group possesses an
algebraic compact real form (of which it is therefore the complexification).

�

The significance of this notion for us derives from the following fact:

Theorem 3.7 ([19, §5.2 Thm. 2]). — Let G be a complex reductive
algebraic group with an n-dimensional compact real form K. Then G is
diffeomorphic to K ×Rn. �

Corollary 3.8. — If G is a connected reductive complex algebraic
group with complex Lie algebra g then

H∗
A(g;C) ' H∗(G;C).

ANNALES DE L’INSTITUT FOURIER



LINEAR FREE DIVISORS 823

Proof. — Let K be a compact real form of G. By 3.7, inclusion of K into
G = K(C) induces an isomorphism on cohomology. The Lie algebra g of G

is the complexification of the Lie algebra k of K, so we have

H∗
A(g;C) ' H∗(k;R)⊗ C ' H∗(K;R)⊗ C ' H∗(K;C) ' H∗(G;C),

where the second isomorphism comes from the isomorphism (3.5). �

From Corollary 3.4, Definition 3.5, and Corollary 3.8 we now conclude
Theorem 1.6 as announced in the introduction: the Global Logarithmic
Comparison Theorem holds for all reductive linear free divisors.

Using the reductiveness of the group Gln(C), we will show in the next
section that the group GD is reductive for divisors obtained as discriminants
in the representation spaces of quivers. The subgroup Bn ⊆ Gln(C) of
upper triangular matrices is not reductive, and appears as the group GD in
Example 5.1 which shows that reductivity is not necessary for the GLCT
to hold.

4. Linear free divisors in quiver representation spaces

The following discussion summarises part of [3]. A quiver Q is a finite
connected oriented graph; it consists of a set Q0 of nodes and a set Q1

of arrows joining some of them. For each arrow ϕ ∈ Q1 we denote by tϕ

(for “tail”) and hϕ (for “head”) the nodes where it starts and finishes. A
(complex) representation V of Q is a choice of complex vector space Vα

for each node α ∈ Q0 and linear map V (ϕ) : Vtϕ → Vhϕ for each arrow
ϕ ∈ Q1. For a fixed dimension vector

d = (dα)α∈Q0 := (dim Vα)α∈Q0 .

and a choice of bases for the Vα, α ∈ Q0, the representation space of the
quiver Q of dimension d is

Rep(Q,d) :=
∏

ϕ∈Q1

Hom(Cdtϕ ,Cdhϕ) ∼=
∏

ϕ∈Q1

Hom(Vtϕ, Vhϕ).

On this space the quiver group

Gl(Q,d) :=
∏

α∈Q0

Gldα(C) ∼=
∏

α∈Q0

Gl(Vα)

acts, by

(4.1)
(
(gα)α∈Q0 · V

)
ϕ

:= ghϕV (ϕ)g−1
tϕ .
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This action factors through the group

(4.2) Z := C∗ · (Idα)α∈Q0 ⊆ Z(Gl(Q,d))

in the center of Gl(Q,d) where Idα
∈ Gldα

(C) is the unit matrix. The group
Gl(Q,d)/Z is reductive as, choosing a vertex x0 ∈ Q0, we can consider it
as a central quotient

(4.3) Gl(Q,d)/Z ∼=
(
Sldx0

(C)×
∏

x∈Q0r{x0}

Gldx(C)
)/(

µdx0
·
∏

Idx

)
where µk ⊆ C∗ denotes the cyclic subgroup of order k. It acts faithfully on
Rep(Q,d). For Rep(Q,d) and Gl(Q,d)/Z to play the role of Cn and GD

as in Section 2, we must require

(4.4)
∑
n∈N

d2
n −

∑
ϕ∈A

dtϕdhϕ

= dimCGl(Q,d)− dimCRep(Q,d) = dim Z = 1.

But this equality is not yet sufficient: it is also necessary that Gl(Q,d)/Z
has an open orbit. This occurs if the general representation in Rep(Q,d)
is indecomposable. If both this last condition and (4.4) hold, d is called
a real Schur root of Q. In this case, there is a single open orbit, and the
discriminant determinant ∆ defines its complement D, a divisor called
the discriminant. This is the consequence of a result due to Kraft and
Riedtmann [17, §2.6], which asserts that if the general representation is
indecomposable it has only scalar endomorphisms. Then

(4.5) Gl(Q,d)/Z ∼= GD = G◦
D.

The above discussion combined with Theorem 1.6 proves the following

Theorem 4.1. — If d is a real Schur root of a quiver Q and the dis-
criminant D in Rep(Q,d) is reduced then D is a linear free divisor that
satisfies GLCT.

In [3] it is shown that if, moreover, Q is a Dynkin quiver, i.e. its under-
lying unoriented graph is a Dynkin diagram of type An, Dn, E6, E7 or E8,
then ∆ is always reduced, and thus defines a linear free divisor. The signif-
icance of the Dynkin quivers is, that by a theorem of Gabriel [9], they are
the quivers of finite type, i.e. the number of Gl(Q,d) orbits in Rep(Q,d) is
finite. It is this that guarantees that ∆ is always reduced, cf. [3, Prop. 5.4].
It also implies that every root of a Dynkin quiver is a real Schur root.
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Corollary 4.2. — If d is a (real Schur) root of a Dynkin quiver Q

then the discriminant D in Rep(Q,d) is a linear free divisor that satisfies
GLCT.

Remark 4.3. — The argument showing that GLCT holds for the free di-
visors arising as discriminants in quiver representation spaces yields a sim-
ple topological proof of a theorem of V. Kac [16, p. 153] (see also [24]): When
d is a sincere (i.e. dx > 0 for all x ∈ Q0) real Schur root of a quiver Q with
no oriented cycles, the discriminant in Rep(Q,d) has |Q0| − 1 irreducible
components. The proof is this: the number of irreducible components of a
divisor in a complex vector space is equal to the rank of H1 of the comple-
ment. From Theorem 1.6 we know that H1(Rep(Q,d)rD;C) ' H1

A(gD;C);
as by (4.3)

gD ' sldx0
(C)⊕

⊕
x∈Q0r{x0}

gldx
(C),

it follows that

H1(Rep(Q,d) r D;C) ' 0⊕
⊕

x∈Q0r{x0}

H1(gldx
(C);C)

and so has rank |Q0| − 1.
Another simple algebraic proof of Kac’s theorem was pointed out to us

by the referee. It consists in determining the dimension of the vector space
of rational function on Cn with zeroes and poles along D only and lifting
them to the group GD.

5. Examples of linear free divisors

The conclusion of Section 2 guides our search for linear free divisors.
Our first example shows that the implication in Theorem 1.6 is not an
equivalence.

We denote by

(5.1) Eij = (δi,k · δj,l)k,l ∈ gln(C)

the elementary matrix with 1 in the ith row and jth column and 0 else-
where.

5.1. A non-reductive example satisfying GLCT

Example 5.1. — For n > 2, the group Bn of n×n invertible upper trian-
gular matrices is not reductive. It acts on the space Symn(C) of symmetric
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matrices by transpose conjugation:

B · S = BtSB.

Under the corresponding infinitesimal action, the matrix b in the Lie algebra
bn gives rise to the vector field χb defined by

χb(S) = btS + Sb.

The dimensions of Bn and Symn(C) are equal. The discriminant determi-
nant ∆ is reduced and defines a linear free divisor D = V (∆).

To see this, consider an elementary matrix Eij ∈ bn and let χij be the
corresponding vector field on Symn(C). If I is the n × n identity matrix,
then χij(I) = Eji + Eij . The vectors χij(I) for 1 6 i 6 j 6 n are therefore
linearly independent, and ∆(I) 6= 0.

For an n× n matrix A, let Aj be the j × j matrix obtained by deleting
the last n−j rows and columns of A, and let detj(A) = det(Aj). If B ∈ Bn

and S ∈ Symn(C), then because B is upper triangular, (BtSB)j = Bt
jSjBj ,

and so detj(BtSB) = detj(Bj)2 detj(S). It follows that the hypersurface
Dj := {detj = 0} is invariant under the action, and the infinitesimal action
of Bn on Symn(C) is tangent to each. Thus ∆ vanishes on each of them.
The sum of the degrees of the Dj as j ranges from 1 to n is equal to
dim Symn(C), and so coincides with the degree of ∆. Hence ∆ is reduced,
and we conclude, by Lemma 2.4, that D = D1 ∪ · · · ∪ Dn is a linear free
divisor. In particular, when n = 2, D ⊆ Sym2(C) = C3 is the union of a
quadric cone and one of its tangent planes.

We now give a proof that GLCT holds for D, in the spirit of the proofs of
the preceding section, even though D is not reductive. In fact LCT already
follows, by Theorem 1.8, from local quasihomogeneity, which we prove in
Subsection 7.2 below.

Proposition 5.2. — GLCT holds for the discriminant D of the action
of Bn on Symn(C) in Example 5.1.

Proof. — The group G◦
D is a finite quotient of the group Bn of upper-

triangular matrices in Gln(C). There is a deformation retraction of Bn to
the maximal torus T consisting of its diagonal matrices, and, with respect
to the standard coordinates aij on matrix space, it follows that H∗(Bn) is
isomorphic to the free exterior algebra on the forms daii/aii. Each of these
is left-invariant, and it follows that the map τBn

: H∗
A(bn;C) → H∗(Bn;C)

from (3.5) is an epimorphism.
Similarly, the Lie algebra complex

∧•
b∗n has a contracting homotopy to

its semisimple part. We may consider it as the complex of left-invariant
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forms on the group Bn. Assign weights w1, . . . , wn to the columns and
weights −w1, . . . ,−wn to the rows. This gives the elementary matrix Eij ∈
bn the weight wi − wj . If εi,j ∈ b∗n denotes the dual basis and we assign
the weight 0 to C then wt(εi,j) = −wt(Ei,j). With respect to the resulting
gradings of bn and b∗n, both the Lie bracket and the differential dL of the
complex

∧•
b∗n are homogeneous of degree 0, cf. (3.1).

Let E =
∑

i wiEii, and let ιE :
∧•

b∗n →
∧•

b∗n be the operation of
contraction by E defined by

(ιEω)(v1 ∧ · · · ∧ vk) := ω(E ∧ v1 ∧ · · · ∧ vk).

Observe that for each generator Eij ∈ bn we have

(5.2) [E,Eij ] = (wi − wj) · Eij = wt(Eij) · Eij .

We claim that the operation

LE := ιEdL + dLιE ,

of taking the Lie derivative along E has the effect of multiplying each
homogeneous element of

∧•
b∗n by its w-degree. Indeed the operation LE

is a derivation of degree zero on
∧•

b∗n, and the result on 1 forms,

LE(εi,j) = (wj − wi)εi,j ,

is therefore sufficient and can be easily checked by direct calculation.
Thus LE defines a contracting homotopy from

∧•
b∗n to its w-degree 0

part
(∧•

b∗n
)
0
, by exactly the same calculation as in Lemma 3.2, but with

Γ(U,Ωk(log D)) and Lχ replaced respectively by
∧•

b∗n and LE . If we choose
w1 < · · · < wn then all off-diagonal members of the basis {εi,j}16i6j6n of
b∗n have strictly positive w-degree. It follows that

•∧
b∗n '

( •∧
b∗n

)
0

=
•∧
〈ε1,1, . . . , εn,n〉 =

•∧
t∗

where t is the Lie algebra of the torus T above. The differential dL is zero
on this subcomplex, showing that τBn

is an isomorphism. �

5.2. Discriminants of quiver representations

The following example, due to Ragnar-Olaf Buchweitz, is of the type
discussed in Section 4.
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Example 5.3. — In the space Mn,n+1(C) of n × (n + 1) matrices, let
D be the divisor defined by the vanishing of the product of the maximal
minors. That is, for each matrix A ∈ Mn,n+1(C), let Aj be A minus its j’th
column, and let ∆j(A) = det(Aj). Then

D = {A ∈ Mn,n+1(C) : δ =
n+1∏
i=1

∆j(A) = 0}.

It is a linear free divisor. Here, as the group G in Remark 2.6 we may take
the product Gln(C)× {diag(1, λ1, . . . , λn) : λ1, . . . , λn ∈ C∗}, acting by(

A,diag(1, λ1, . . . , λn)
)
·M = A ·M · diag(1, λ1, . . . , λn)−1

The placing of the 1 in the first entry of the diagonal matrices is rather
arbitrary; it could be placed instead in any other fixed position on the
diagonal. That D is a linear free divisor follows from the fact that

(1) the complement of D is a single orbit, so the discriminant determi-
nant is not identically zero, and

(2) the degree of D is equal to the dimension of GD, so the discriminant
determinant is reduced.

In our Example 5.3, Mn,n+1(C) is the representation space of the star
quiver

•

��
33

33
33

•

����
��

��

• // • •oo

•

EE������
•

YY333333

consisting of one sink and n + 1 sources, with dimension vector assigning
dimension n to the sink and 1 to each of the sources: Once we have chosen
a basis for each Vα, each V (ϕ) is represented by an n× 1 matrix; together
they make up an n × (n + 1) matrix. So the basis identifies Rep(Q,d) =
Mn,n+1(C) and then

(5.3) Gl(Q,d) = Gln(C)×Gl1(C)n+1

and the action in (4.1) becomes

(5.4) (A, λ1, . . . , λn+1) ·M = AM diag(λ−1
1 , . . . , λ−1

n+1).

From (4.2), (4.3), and (4.5), result isomorphisms

(5.5) Gl(Q,d) ∼= GD × Z, Z = C∗ · (In, (1, . . . , 1)),

defined by normalizing an arbitrary element in the second factor.
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Many more examples of linear free divisors can be found by similar means
in representation spaces of quivers. The next example, also from [3], is a
non Dynkin quiver where finiteness of orbits fails and ∆ is not reduced.

Example 5.4. — Consider the star quiver of Example 5.3 with n = 3
with d = (3, 1, 1, 1, 1), as before, and now reverse the direction of one
of the arrows.

•

• B // •

A

OO

•
D

oo

•

C

OO

The four hypersurfaces

det(AB) = 0,det(AC) = 0,det(AD) = 0,det(BCD) = 0,

are invariant under the action of the subgroup GD ⊆ Gl(Q,d) of Exam-
ple 5.3. However, the last of these is made up of infinitely many orbits: if
the images of B, C and D lie in a plane P , then together with ker(A ∩ P )
they determine a cross-ratio. The discriminant determinant is equal, up to
a scalar factor, to

∆ = det(AB) · det(AC) · det(AD) · (det(BCD))2.

5.3. Incomplete collections of maximal minors

In the space Mm,n(C) of m×n matrices with n > m + 1, the product of
all of the maximal minors no longer defines a linear free divisor, by reason
of its degree. However, certain collections of n maximal minors do define
free divisors. There is a simple procedure for generating infinitely many
such collections, first described in [18]:

The space Mm,n(C) can still be viewed as Rep(Q,d) where Q is the star
quiver of Example 5.3 with 1 sink and n sources, and d = (m, 1, . . . , 1).
As before, the quiver group Gl(Q,d) acts with 1-dimensional kernel Z, but
now

dim Gl(Q,d)− 1 = m2 + n− 1 < mn = dim Mm,n(C),

making an open orbit impossible. Therefore we replace Gl(Q,d) by a group

(5.6) G := Glm(C)×GR
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with dim G/Z = dim Mm,n by augmenting the second factor in (5.3) to
a group GR ⊆ Gln(C) with dim GR = mn − m2 + 1. To construct GR,
we consider an auxiliary quiver Q̃ = (Q0, Q1) with Q0 = {1, . . . , n} and
Q1 ⊆ Q2

0 satisfying the following conditions:
• |Q1| = mn−m2 + 1;
• (i, j) ∈ Q1 and (j, k) ∈ Q1 implies that (i, k) ∈ Q1.
• (i, i) ∈ Q1 for all i ∈ Q0;

These conditions are exactly those we need for the following formula:

(5.7) GR := CQ1 r {det = 0} ⊆ Cn×n r {det = 0} = Gln(C)

to define a group. We write (Q0, Q1) =: Q(GR). This group GR is gener-
ated by Gl1(C)n = diag(C∗, . . . ,C∗) and mn−m2 − n + 1 supplementary
elementary matrices In + C · Ei,j with (i, j) ∈ Q1 and i 6= j, cf. (5.1).

The action of G on Mm,n(C) extends that in (5.4) by right multiplication
of GR and factors through G/Z with Z = C · (Im, In) which is, as in (4.3),
a central quotient

(5.8) G/Z ∼= (Slm(C)×GR)/µm · (Im, In)

where µk ⊆ C∗ denotes the cyclic subgroup of order k.

Proposition 5.5. —
If the discriminant determinant ∆ of the action of G is not identically zero
and the action of G preserves the divisors of zeros of precisely n distinct
m × m minors, then the union of these divisors is a linear free divisor
D = V (∆).
If the action of G preserves the divisor of zeros of more than n distinct
m×m minors then ∆ is identically zero.

Proof. — Any algebraic set preserved by the action of G is contained
in V (∆). By construction, if ∆ is not identically zero then its degree is
mn. If moreover the action of G preserves the zero set of n distinct m×m

minors then ∆ is reduced and Lemma 2.4 shows that V (∆) is a linear free
divisor. �

Lemma 5.6. — Right multiplication by In+C·Ei,j preserves the divisor
defined by an m×m minor if and only if the minor either contains column
i of the generic matrix or does not contain column j.

Proof. — Suppose that the m×m submatrix M ′ of the generic m× n ma-
trix M contains column j but not column i. Let p be a point of {det M ′ = 0}
at which M ′ has rank m− 1 and the matrix M ′′ obtained from M ′ by re-
placing column j by column i has rank m. Then det(M ′ ·(In+Ei,j))(p) 6= 0.
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That is, ·(In + C · Ei,j) does not preserve {det M ′ = 0}. Similarly, det M ′

is clearly invariant under ·(In + C · Ei,j) if M ′ contains both columns i

and j. �

Example 5.7. — Let m = 3 and n = 6. The quiver

1
  A

AA 3
~~}}}   A

AA 5
~~}}}

2 4

determines admissible minors M123, M345, M135, M136, M156, M356, and the
associated divisor (the zero locus of their product) is a linear free divisor.
Other linear free divisors that can be constructed by these methods are
listed, for small values of m,n, in the preprint version [10] of this article.
They are not in general reductive.

Proposition 5.8. — Let D = V (∆) be a linear free divisor as con-
structed above. If Q(GR) has no oriented loops then GLCT holds for D.

Proof. — As in the proof of Proposition 5.2, one can show that

τGR
: H∗

A(gR;C) → H∗(GR;C)

from (3.5) is an isomorphism. Here the absence of oriented loops serves
as a replacement for the upper triangularity in the preceding proof. In-
deed, if there are no oriented loops in Q(GR), it is possible to order the
vertices of Q(GR), and thus the rows of the matrices in Mm,n, so that
i < j whenever there is an arrow from i to j. This puts all of the ma-
trices of GR into upper triangular form. It follows both that GR has a
deformation retraction to its maximal torus T consisting of diagonal ma-
trices, and that the same contracting homotopy as in the proof of 5.2
shows that the inclusion

∧•
t∗ →

∧•
g∗R is a homotopy equivalence. Thus

H∗(T ) : H∗
A(gR;C) → H∗(GR;C) is an isomorphism.

Also for G = Slm(C) the map τG from (3.5) is an isomorphism. So by
applying the the Künneth formulas for both Lie algebra and complex coho-
mology, the same holds for G = Slm(C)×GR. By (5.8), G/Z is connected
as a finite quotient of the connected group Slm(C)×GR. By Proposition 5.5
G◦

D is then also a connected finite quotient of G/Z hence of Slm(C)×GR,
and GLCT holds for D by Corollary 3.4. �
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6. Classification in small dimensions

6.1. Structure of logarithmic vector fields

Let δ, ξ ∈ Der and let g ∈ O. To emphasise the action of δ on O and
on Der, in place of dg(δ) we write δ(g), and in place of [δ, ξ] we write
δ(ξ) = adδ(ξ). The degree k parts of Γ(Cn,Der) and Γ(Cn,Der(− log D))
with respect to deg(xi) = 1 = −deg(∂i) will be denoted by Γ(Cn,Der)k

and Γ(Cn,Der(− log D))k respectively. For δ ∈ Γ(Cn,Der)0, we write δS

for its semisimple part and δN for its nilpotent part.
Let D ⊆ Cn be a linear free divisor defined by the homogeneous poly-

nomial ∆ = det((δi(xj))i,j) ∈ C[x] of degree n as in Lemma 1.3 where
δ = δ1, . . . , δn is a global degree 0 basis of Der(− log D). Then δi(∆) ∈ C ·∆
and there is the standard Euler vector field χ =

∑
i xi∂i ∈ 〈δ1, . . . , δn〉C.

Since χ(∆)/∆ = n 6= 0, we can assume that δ1 = χ and δi(∆) = 0 for
i = 2, . . . , n. So δ2, . . . , δn is a global degree 0 basis of the annihilator
Der(− log ∆) of ∆ which is a direct factor of Der(− log D).

Since χ vanishes only at the origin, the origin of the affine coordinate sys-
tem x = x1, . . . , xn is uniquely determined. A coordinate change between
two degree 0 bases of Der(− log D) can always be chosen linear. Among
all possible linear coordinate changes, let s + 1 be the maximal number of
linearly independent diagonal logarithmic vector fields.

Theorem 6.1. — There exists a global degree 0 basis χ, σ1, . . . , σs,
ν1, . . . , νn−s−1 of Der(− log D) such that

(1) χ(σi) = 0 and χ(νj) = 0,
(2) the σi are simultaneously diagonalizable with eigenvalues in Q and

σi(∆) = 0,
(3) the νj are nilpotent and νj(∆) = 0,
(4) σi(νj) ∈ Q · νj and

∑
j σi(νj)/νj + trace(σi) = 0.

(5) If δ ∈ Γ(Cn,Der(− log D))0 with σi(δ) = 0 for i = 1, . . . , s then
δS ∈ 〈σ1, . . . , σs〉C.

Moreover, s > 1 and if s = n − 1 then ∆ = x1 · · ·xn defines a normal
crossing divisor.

Proof. — It is easy to check that the formal coordinate changes used
in [11] reduce to linear coordinate changes in the case of linear free divisors.
Thus (1)-(3), (5), and the first part of (4) follow from [11, Thm. 5.4].
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For the second part of (4), we set δ1, . . . , δn = χ, σ1, . . . , σs, ν1 . . . , νn−s−1

and rewrite ∆ as

(6.1) ∆ =
∑

α∈Sn

sign(α) · δ1(xα1) · · · δn(xαn).

Let us choose coordinates in which all σi are diagonal: σi =
∑

j wi,jxj∂j .
The equation σi(∆) = 0 means that ∆ is weighted homogeneous of degree
zero when we assign to the variable xj the weight wi,j = σi(xj)/xj . The
weighted degree of δj(xk) is then σi(δj)/δj + wi,k. This implies the second
part of (4), since each term in the sum (6.1) has the same weighted degree∑

j

(
σi(δj)/δj + wiαj

)
=
∑

j σi(δj)/δj + trace(σi).
Now assume that s = 0. Then the vector space generated by the νi

is entirely made of nilpotent elements and we can apply Engel’s Theo-
rem [25, I.4], and ν1, . . . , νn−1 can be chosen upper triangular. But then
∆ is clearly divisible by the square of the first variable x1 and hence not
reduced. So s = 0 is impossible.

If s = n−1, then ∆ must be a monomial and hence ∆ = x1 · · ·xn defines
a normal crossing divisor. �

Remark 6.2. — In Theorem 6.1, one can perform the Gauss algorithm
on the diagonals of σ1, . . . , σs. Then σi ≡ xi∂i mod

∑n
j=s+1 C · xj∂j .

We shall frequently use the following simple fact.

Lemma 6.3. — Let σ =
∑

i wixi∂i. Then xi∂j is an eigenvector of adσ

for the eigenvalue wi − wj .

6.2. The case s = n− 2

Lemma 6.4. — Let s = n − 2 in the situation of Theorem 6.1. Then
−σk(ν1)/ν1 = trace(σk) 6= 0 for some k and ν1 has, after normalization,
two entries equal to 1 and all other entries equal to 0.

Proof. — If s = n − 2 then for any σ ∈ {σ1, . . . , σn−2}, σ(ν1)/ν1 +
trace(σ) = 0. Hence, a monomial xi∂j in ν1 gives a relation wi − wj +∑

k wk = 0 on the diagonal entries w1, . . . , wn of σ. Since 3 of these re-
lations with i 6= j and also σ1, . . . , σn−2 are linearly independent, ν1 can
have at most 2 nonzero nondiagonal entries. If σk(ν1)/ν1 6= 0 for some k

then ν1 is strictly triangular with at most 2 nonzero entries after ordering
the diagonal of σk. If ν1 has only one nonzero entry then ∆ is divisible by
the square of a variable, a contradiction. Both nonzero entries of ν1 can be
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normalized to 1. If σk(ν1)/ν1 = 0 for all k then the nonzero entries of ν1 are
in a 2-dimensional simultaneous eigenspace of χ, σ1, . . . , σn−2. Otherwise,
there are 3 linearly independent relations wi1 = wj1 , wi2 = wj2 ,

∑
k wk = 0

on the diagonal entries of σ1, . . . , σn−2, a contradiction to the linear inde-
pendence of these vector fields. But then ν1 has only one nonzero entry
after a linear coordinate change, a contradiction as before. �

To simplify the notation, we shall write ≡ for equivalence modulo C∗.
By Lemma 6.4, we may assume that ν1 = xk∂1 +xl∂2 where 1 6= k 6= l 6= 2.
Then

∆ =∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 · · · xn

a2,1x1 a2,2x2 a2,3x3 · · · a2,nxn

...
...

...
...

an−1,1x1 an−1,2x2 an−1,3x3 · · · a1,nxn

xk xl 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
≡ (x2xk − x1xl)x3 · · ·xn.

As ∆ is reduced, there are, up to coordinate changes, only two non-
normal-crossing cases:

6.2.1. k = 2, l = 3

Then ∆ comes from the linear free divisor of Example 5.1 in dimension 3:

∆ = (x2
2 − x1x3)x3 · · ·xn ≡

∣∣∣∣∣∣
x1 x2 x3

4x1 x2 −2x3

2x2 x3 0

∣∣∣∣∣∣ · x4 · · ·xn.

6.2.2. k = 3, l = 4

Then ∆ comes from a linear free divisor in dimension 4:

∆ = (x2x3 − x1x4)x3 · · ·xn ≡

∣∣∣∣∣∣∣∣
x1 x2 x3 x4

x1 2x2 −x3 0
2x1 x2 0 −x4

x3 x4 0 0

∣∣∣∣∣∣∣∣ · x5 · · ·xn.
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6.3. Classification up to dimension 4

We consider the situation of Theorem 6.1 and abbreviate x, y, z, w =
x1, x2, x3, x4. By the results of Section 6.2, we may assume that s = 1 and
n = 4. Let us first assume that Γ(Cn,Der(− log D))0 is a nonsolvable Lie
algebra and hence 〈σ1, ν1, ν2〉 = sl2.

Recall that by [25, IV.4], C4 is a direct sum of irreducible sl2-modules
Wm of dimension m + 1 and that Wm is represented in a basis e0, . . . , em

by

σ1(ei) = (−m + 2i)ei, ν1(ei) = (i + 1)ei+1, ν2(ei) = (m− i + 1)ei−1.

So there are 3 types of sl2-representations. The first two cases are C4 =
W2 ⊕ W0 and C4 = W1 ⊕ W1, which lead to a zero and a nonreduced
determinant of the form ∆ ≡ (xw − yz)2 respectively. But W3 gives the
nontrivial linear free divisor

∆ =

∣∣∣∣∣∣∣∣
x y z w

−3x −y z 3w

y 2z 3w 0
0 3x 2y z

∣∣∣∣∣∣∣∣ ≡ y2z2 − 4xz3 − 4y3w + 18xyzw − 27x2w2

isomorphic to the discriminant in the space of binary cubics described in
Example 1.4.(1.4).

Now, assume that Γ(Cn,Der(− log D))0 is a solvable Lie algebra. Then,
by Lie’s Theorem [25, I.7], ν1 and ν2 can be chosen triangular and also
[ν1, ν2] is triangular. Hence, [ν1, ν2] ∈ 〈ν1, ν2〉 and even [ν1, ν2] = 0 by
nilpotency of adν1 and adν2 .

We set

σ1 = ax∂x + by∂y + cz∂z + dw∂w

and start a case by case discussion with respect to the cardinality of
{a, b, c, d}. In the following we shall omit the details that can be found
in the preprint version [10] of this article.

6.3.1. 2 6 |{a, b, c, d}| 6 3

In each case we refine to subcases depending on whether σ1(νi)/νi, i =
1, 2, is zero or not. All these subcases lead to ∆ = 0 or ∆ being divisible
by a square of a variable, in contradiction to our assumptions.
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6.3.2. |{a, b, c, d}| = 4

Since ν1 and ν2 are σ1-homogeneous and might be chosen triangular,
σ(ν1)/ν1 6= 0 6= σ(ν2)/ν2 and hence ν1 and ν2 have at most 3 nonzero
entries by Lemma 6.3. Using, if necessary, permutations of the basis vectors,
we have only to consider the following two cases:

6.3.2.1. ν1 has one nonzero term or ν1 and ν2 have at most
two nonzero terms. In both cases, a detailed discussion leads to the
contradiction that ∆ is divisible by a square of a variable.

6.3.2.2. ν1 has three nonzero terms. This turns out to be the only
case that leads to a linear free divisor with solvable Lie algebra and s = 1.
We may assume that

ν1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


which implies also that (a, b, c, d) = a · (1, 1, 1, 1) + (0, λ, 2λ, 3λ) for some
0 6= λ ∈ Q. The relation [ν1, ν2] = 0 then implies that

ν2 = p · ν1 +


0 0 q r

0 0 0 q

0 0 0 0
0 0 0 0

 .

So using the σ1-homogeneity of ν2 the only case which was not yet consid-
ered is

ν2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , ∆ ≡

∣∣∣∣∣∣∣∣
x y z w

0 λy 2λz 3λw

0 x y z

0 0 x y

∣∣∣∣∣∣∣∣ ≡ x(y3 − 3xyz + 3x2w).

The trace equation in Theorem 6.1.4 for σ1 reads −λ − 2λ + 4a + 6λ = 0
or a = − 3

4λ. Setting λ = 4, we obtain σ1 = −3x∂x + y∂y + 5z∂z + 9w∂w.

6.4. Summary of the classification up to dimension 4

The following table summarizes our classification of linear free divi-
sors up to dimension 4. The matrices are interpreted row-wise as bases
of Der(− log D).
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n ∆ Der(− log D) gD reductive?

1 x
(
x
)

C Yes

2 xy

(
x 0
0 y

)
C2 Yes

3 xyz

(
x 0 0
0 y 0
0 0 z

)
C3 Yes

3 (y2 + xz)z

(
x y z
4x y −2z
−2y z 0

)
b2 No

4 xyzw

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

 C4 Yes

4 (y2 + xz)zw

 x y z 0
4x y −2z 0
−2y z 0 0
0 0 0 w

 C⊕ b2 No

4 (yz + xw)zw

x 0 0 −w
0 y 0 w
0 0 z w
z −w 0 0

 C2 ⊕ g0 No

4 x(y3 − 3xyz + 3x2w)

x y z w
0 y 2z 3w
0 x y z
0 0 x y

 C⊕ g No

4
y2z2−4xz3−4y3w +

18xyzw − 27w2x2

3x 2y z 0
0 3x 2y z
y 2z 3w 0
0 y 2z 3w

 gl2(C) Yes

The annihilators of ∆ in the Lie algebras for ∆ = (yz + xw)zw and
∆ = x(y3 − 3xyz + 3x2w) are described in [15, Ch. I, §4]. The former is
the direct sum of C and the non-Abelian Lie algebra g0 of dimension 2,
and the latter is the 3-dimensional Lie algebra g characterized as having
2-dimensional Abelian derived algebra g′, on which the adjoint action of a
basis vector outside g′ is semi-simple with eigenvalues 1 and 2. Straightfor-
ward computations show that the two groups G◦

D are, respectively, the set
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of 4× 4 matrices of the form
x−1y−2 0 z 0

0 x−2y−1 0 −x−1yz

0 0 x 0
0 0 0 y


and 

x−3 0 0 0
y x 0 0
z x4y x5 0

x3yz − 1
3x6y3 x4z x8y x9


with x, y ∈ C∗ and z ∈ C in the first and x ∈ C∗, y, z ∈ C in the second.

7. Strong Euler homogeneity and local quasihomogeneity

In this section, we investigate linear free divisors with respect to the
properties of local quasihomogeneity and strong Euler homogeneity from
Definitions 1.7 and 1.9.

The following reformulation of the definition of local quasihomogeneity
is a direct consequence of the Poincaré–Dulac Theorem [1, Ch. 3, §3.2] and
Artin’s Approximation Theorem [2].

Theorem 7.1. — A divisor D is locally quasihomogeneous if and only
if, at any p ∈ D, there is an Euler vector field χ for D at p whose degree
zero part χ0 has strictly positive eigenvalues.

We denote by D = DCn the sheaf of germs of linear differential opera-
tors with holomorphic coefficients on Cn. It is naturally equipped with an
increasing filtration F of coherent O-modules by the order of differential
operators and we denote by σ(P ) the symbol of P ∈ D in grF D . Note
that grF Dp

∼= Op[∂] = C{x}[∂] in a local coordinate system x at p, where
we identify σ(∂i) = ∂i.The following property is closely related to local
quasihomogeneity.

Definition 7.2. — A free divisor D is called Koszul free if, at any
p ∈ D, there exists a basis δ1, . . . , δn of Der(− log D)p such that σ(δ1), . . . ,
σ(δn) is a regular sequence in grF Dp.

Koszul freeness can be interpreted geometrically in terms of the loga-
rithmic stratification, introduced by K. Saito [22], which is the partition of
D into the integral varieties of the distribution Der(− log D). As it is not
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always locally finite, the term “stratification” is a misnomer, but is gener-
ally used. If Dα is a stratum of the logarithmic stratification and p ∈ Dα

then TpDα = Der(− log D)(p). The graded ring grF Dp
∼= Op[∂] contains

Derp = ⊕n
i=1Op∂i and can be identified with the ring of functions on the

cotangent space T ∗(Cn, p) of the germ (Cn, p), polynomial on the fibers
and analytic on the base.

Definition 7.3. — The logarithmic characteristic variety LCn(D) of D

is the variety in T ∗Cn defined by the image of Der(− log D) in grF D .

Thus D is Koszul free at p if and only if LCn(D) is purely n-dimensional
[4, 1.8]. Moreover, by [22, 3.16], LCn(D) is the union, over all strata Dα ⊆ D

in the logarithmic stratification of D, of the conormal bundle T ∗
Dα
Cn of Dα,

each of which is n-dimensional. This proves the following result.

Theorem 7.4. — A free divisor D is Koszul free if and only if the
logarithmic stratification is locally finite.

A locally quasihomogeneous free divisor is Koszul free [4, 4.3], and thus
the failure of Koszul-freeness serves as a computable criterion for the failure
of local quasihomogeneity.

As in Section 6.1, let D ⊆ Cn be a linear free divisor and χ, δ2, . . . , δn a
global degree 0 basis of Der(− log D) with δi(∆) = 0 for ∆ = det(S) where

S :=
(

χ(xj)
δi(xj)

)
i,j

The arguments which follow are valid as well for an arbitrary germ of a
free divisor D ⊆ (Cn, 0) with a germ of an Euler vector field χ ∈ Der0 at 0.

The following criterion gives a method to test strong Euler homogeneity
algorithmically. The reduced variety Sk defined by the (k + 1) × (k + 1)-
minors of the n × n-matrix S is the union of logarithmic strata of dimen-
sion at most k. In more invariant terms, Sk is the variety of zeros of the
(n− k − 1)’st Fitting ideal of the OCn -module Der / Der(− log D). Thus
a free divisor D is Koszul free if and only if dim Sk 6 k for all k. Note
that Sn = Cn, Sn−1 = D, and Sn−2 = Sing(D). For a linear free di-
visor, S0 = {0} because of the presence of the Euler vector field. Since
dim Sing(D) < dim D, it follows that linear free divisors are Koszul free in
dimension n 6 3.

In order to characterize strong Euler homogeneity, we also consider the
reduced variety Tk ⊇ Sk defined by the (k + 1) × (k + 1)-minors of the
(n − 1) × n-matrix T := (δi(xj))i,j . Again, this is the variety defined by
a Fitting ideal, this time the (n − k − 2)nd Fitting ideal of the module
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Der / Der(− log ∆). Note that, by definition,

S =
(

x

T

)
.

Lemma 7.5. — D is strongly Euler homogeneous if and only if Sk = Tk

for 0 6 k 6 n− 2.

Proof. — A vector field δ ∈
(
mp ·χ+

∑
i Op ·δi

)
∩mp ·Derp is not an Euler

vector field at p ∈ D since δ(∆) ∈ mp · ∆, and indeed δ(u · ∆) ∈ mp · u∆
for any unit u. Hence, an Euler vector field η for D at p must be of the
form η = a0 · χ +

∑
i ai · δi ∈ mp · Derp with a0(0) 6= 0. This means

that χ(p) ∈
∑

i C · δi(p), and the matrices S and T have equal rank at
p. Conversely if χ(p) =

∑
λiδi(p) then up to multiplication by a scalar,

χ−
∑

i λiδi is an Euler field for D at p. �

Remark 7.6. — The proof of Lemma 7.5 shows that the question of
local quasihomogeneity is much more complicated: The degree zero parts
of Euler vector fields at a point p ∈ D are the degree zero parts of vector
fields a1 · χ +

∑
i ai · δi where a1, . . . , an are linear forms such that a1(p) ·

χ(p) +
∑

i ai(p) · δi(p) = 0.

For k = 1, . . . , n, let Mk = (−1)k+1 det(δi(xj))j 6=k.

Lemma 7.7. — For k = 1, . . . , n, ∂k(∆) = n ·Mk. In particular, Sk = Tk

for k = n− 2.

Proof. — Since

S

∂1(∆)
...

∂n(∆)

 =


χ

δ2

...
δn

 (∆) =


n ·∆

0
...
0


we obtain, by canceling ∆,

∂1(∆)
...

∂n(∆)

 = Š


n

0
...
0

 = n ·

M1

...
Mn


where Š denotes the cofactor matrix of S. �

Lemma 7.8. — S0 = T0.
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Proof. — Assume that T0 6= S0 = {0}. By homogeneity, T0 contains the
xn-axis after an appropriate linear coordinate change. Then T is indepen-
dent of xn. Writing x′ = x1, . . . , xn−1, we have that ∆ = g + xn ·∆′ where
g and ∆′ := Mn depend only on x′. Since ∆ does not depend on fewer vari-
ables, we must have ∆′ 6= 0. For i = 2, . . . , n, let δ′i :=

∑n−1
j=1 δi(xj)∂j be

the projection of δi to the C[x]-module with basis ∂′ := ∂1, . . . , ∂n−1. Then,
for i = 2, . . . , n, δ′i(∆

′) = 0, as it is the coefficient of xn in δi(∆) = 0. Since
the rank of the C[x′]-annihilator of ∂1(∆′), . . . , ∂n−1(∆′) is strictly smaller
than n− 1, there must be a relation

∑n
i=2 aiδ

′
i = 0 for some homogeneous

polynomials ai ∈ C[x′]. But since δ2, . . . , δn are independent over C[x],∑n
i=2 aiδi(xn) 6= 0 and hence 0 =

∑n
i=2 aiδi(∆) =

(∑n
i=2 aiδi(xn)

)
· ∆′,

contradicting the fact that ∆′ 6= 0. �

Lemma 7.9. — Let D be strongly Euler homogeneous. Then D is locally
quasihomogeneous on the complement of Sn−3. In particular, D is locally
quasihomogeneous if Sn−3 = {0}.

Proof. — By [22, 3.5], (D, p) = (D′, p′)× (Cn−2, 0) for p ∈ Sn−2 r Sn−3

where (D′, p′) ⊆ (C2, 0) is strongly Euler homogeneous by [11, 3.2]. As
the germ of a curve, (D′, p′) has an isolated singularity. Then (D′, p′), and
hence (D, p), are quasihomogeneous, by Saito’s theorem [21]. �

Theorem 7.10. — Every linear free divisor in dimension n 6 4 is locally
quasihomogeneous and hence LCT and GLCT hold.

Proof. — By Lemmas 7.7 and 7.8, S1 = T1 if n = 3 and S0 = T0. If
n 6 3 then D is strongly Euler homogeneous by Lemma 7.5 and so locally
quasihomogeneous by Lemma 7.9.

For n = 4 analogous arguments yield S0 = T0 = {0} and S2 = T2. Now
we use the classification in Subsection 6.4 and a case by case study: In each
case, one can verify that S1 = T1 and construct an Euler vector field with
positive eigenvalues in degree zero at each point of S1 r S0. Again this is
sufficient for local quasihomogeneity by Lemma 7.9. For ∆ = (yz +xw)zw,
S1 = {xy = z = w = 0} and 2χ−σ+ x−ξ

ξ σ, where σ = 2x∂x +y∂y−w∂w, is
an Euler vector field at (ξ, 0, 0, 0) 6∈ S0 with eigenvalues 2, 1, 2, 3 in degree
zero. For ∆ = x(y3 − 3xyz + 3x2w), S1 = {x = y = z = 0} and 9χ − σ +
w−ω

ω σ, where σ = −3x∂x + y∂y + 5z∂z + 9w∂w, is an Euler vector field at
(0, 0, 0, ω) 6∈ S0 with eigenvalues 12, 8, 4, 9 in degree zero. The remaining
cases are trivial.

By [7], local quasihomogeneity implies that LCT and hence, by taking
global sections, GLCT holds. �
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7.1. Example 5.3 again

In this subsection, we study the linear free divisor in Example 5.3 in
detail and show that if n > 2 it is not Koszul free and hence not locally
quasihomogeneous. However we will see that it is strongly Euler homoge-
neous, like all other linear free divisors whose strong Euler homogeneity
has been investigated.

Denote by xi,j , 1 6 i 6 n, 1 6 j 6 n + 1, the coordinates on the space
of n × (n + 1)-matrices Mn,n+1. The Lie group G = Gln(C) × Gl1(C)n+1

acts on Mn,n+1 by left matrix multiplication of Gln(C) and multiplication
of the jth factor Gl1(C) = C∗ on the jth column of members of Mn,n+1.
By Lemma 2.2, Der(− log D) is generated by the infinitesimal action of the
Lie algebra of G and hence a basis of Der(− log D) is extracted from the
set of n2 + n + 1 vector fields

ξi,j =
n+1∑
k=1

xi,k∂j,k, for 1 6 i, j 6 n,

ξi =
n∑

l=1

xl,i∂l,i, for 1 6 i 6 n + 1,

(7.1)

by omitting one because of the relation

χ =
n∑

i=1

ξi,i =
n+1∑
j=1

ξj

corresponding to the Lie algebra of the kernel of the action. Note that the
vector field ξi,i resp. ξj is the Euler vector field related to the ith row resp.
to the jth column of the general n× (n+1)-matrix and that χ is the global
Euler vector field on Mn,n+1.

Since the determinant ∆j has degree one with respect to each line and to
each column except the jth column for which the degree is zero, the degree
of ∆ equals n + 1 with respect to a row and n with respect to a column.
These considerations yield

ξi,i(∆) = (n + 1)∆, ξj(∆) = n∆, ξi,j(∆) = 0 for i 6= j,

and one can easily derive a basis of the vector fields annihilating ∆.
The following lemma is self evident by definition of the action of G on

Mn,n+1 and we shall use it implicitly. In particular, the rank of a G-orbit
is well-defined as the rank of any of its elements.

Lemma 7.11. —
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Two matrices in Mn,n+1 having the same row space are in the same G-
orbit. Similarly two matrices given by lists of column vectors A = C1, . . . ,
Cn+1 and A′ = C ′

1, . . . , C
′
n+1 are in the same G-orbit if there is a λj ∈ C∗

such that C ′
j = λjCj for all j = 1, . . . , n + 1.

If A and A′ are in the same G-orbit in Mn,n+1 then any submatrix of A

consisting of columns Ci1 , . . . , Cip
has the same rank as the submatrix of

A′ consisting of the corresponding columns C ′
i1

, . . . , C ′
ip

of A′. In particular
A and A′ have the same rank.

By the left action of Gln(C) ⊆ G, any G-orbit in rank r contains, up to
permutation of columns, an element of the form

(7.2)



1 . . . 0 x1,r+1 . . . x1,n+1

...
. . .

...
...

...
0 . . . 1 xr,r+1 . . . xr,n+1

0 . . . 0 0 . . . 0
...

...
...

...
0 . . . 0 0 . . . 0


By using also the action of G, we may assume that xi,r+1 ∈ {0, 1}: If
xi,r+1 6= 0 then one can divide the ith row by xi,r+1 and multiply the
ith column by xi,r+1. Thus there is only a finite number of maximal rank
G-orbits including the generic orbit for which all xi,n+1 equal 1.

Proposition 7.12. —
There are only finitely many G-orbits in M2,3, and the linear free divisor
D ⊆ M2,3 is locally quasihomogeneous(1) .
The number of G-orbits in the linear free divisor D ⊆ M3,4 is infinite. In
particular, the set of G-orbits in D is not locally finite, and D is not Koszul
free and hence not locally quasihomogeneous.

Proof. —
The first statement follows, by Gabriel’s theorem [9], from the fact that we
are considering the representation space of a Dynkin quiver, here of type
D4. In fact, in the case of M2,3, the only orbits which remain to be consid-
ered are {0} and the rank one orbits which contain, up to permutation of
columns, one of the typical elements:(

1 1 1
0 0 0

)
,

(
1 1 0
0 0 0

)
,

(
1 0 0
0 0 0

)
.

(1) See Remark 7.19 below.
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At each point x 6= 0, D is isomorphic to the product of the germ at x of
the orbit Ix of x, and the germ at x of D′ := D ∩ T , where T is a smooth
transversal to Ix of complementary dimension. Since T is logarithmically
transverse to D in the neighborhood of x, D′ is a free divisor. By the Can-
cellation Property for products of analytic spaces [13], (D′, x) is determined
up to isomorphism by the fact that (D,x) ' Ix × (D′, x), so it does not
matter which transversal to Ix we choose. In the table below, we take T to
be affine. The local equations of D shown in the last column are simply the
restriction of the original equation of D to the transversal T . By inspection
of these equations, D is locally quasihomogeneous.

Representative Transversal Local Equation(
1 0 0
0 0 1

) (
1 x12 0
0 x22 1

)
x21x22 = 0(

1 1 1
0 0 0

) (
1 1 1

x21 x22 0

)
x21x22(x22 − x21) = 0(

1 1 0
0 0 0

) (
1 1 x13

0 x22 x23

)
x22x23(x23 − x22x13) = 0(

1 0 0
0 0 0

) (
1 x12 x13

0 x22 x23

)
x22x23(x12x23 − x22x13) = 0

In the case of M3,4, consider the stratum in D consisting of matrices of
rank 2. The four columns span a 2-dimensional plane, and assuming they
are pairwise independent, determine four lines in this plane. The cross
ratio of these four lines is a GD invariant: quadruples spanning the same
plane, but with different cross-ration, cannot be equivalent. Thus there are
infinitely many orbits. Now by [4, 4.3] D is not locally quasihomogeneous.

�

Proposition 7.13. — The linear free divisor D ⊆ Mn,n+1 from Exam-
ple 5.3 is strongly Euler homogeneous for any n.

Proof. — Let us consider a rank r orbit of G in Mn,n+1. If r < n, we can
find a point A in this orbit with a zero row, say row number i. Then the
Euler vector field ξi,i of this row is an Euler vector field at A.

If r = n we can assume that A is of the form (7.2) with xi,n+1 = 1 for
1 6 i 6 s and xi,n+1 = 0 for s + 1 6 i 6 n for some s 6 n. Then by
(7.1) the space parametrized by the variables xi,n+1 with s + 1 6 i 6 n is
a smooth transversal to the orbit at A and the restricted equation of D is
just xs+1,n · · ·xn,n+1 = 0. Thus D is normal crossing and hence strongly
Euler homogeneous. �
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7.2. Example 5.1 again

In this subsection, we show that the linear free divisors in Example 5.1
are locally quasihomogeneous and hence Koszul free by [4, 4.3]. By [7], this
implies that LCT holds although the defining group is not reductive.

We denote by xi,j , 1 6 i 6 j 6 n, the coordinates on the space of
symmetric n × n-matrices Symn(C) ⊆ Mn,n. Let D ⊆ Symn(C) be the
divisor defined by the product

∆ = det1 · · ·detn

of minors

detk =

∣∣∣∣∣∣∣
x1,1 · · · x1,k

...
...

xk,1 · · · xk,k

∣∣∣∣∣∣∣ .
By Example 5.1, the group Bn ⊆ Gln(C) of upper triangular matrices

acts on Symn(C) by transpose conjugation

B · S = BtSB, for B ∈ Bn, S ∈ Symn(C)

and the discriminant D is a linear free divisor. Thus, Der(− log D) can
be identified with the Lie algebra of Bn and has a basis consisting of the
1
2n(n + 1) vector fields

ξi,j = x1,i
∂

∂x1,j
+ · · ·+ xi,i

∂

∂xi,j
+ · · ·+ 2xi,j

∂

∂xj,j
+ · · ·+ xi,n

∂

∂xj,n

for 1 6 i 6 j 6 n.

It may be helpful to view this as the symmetric matrix

0 · · · 0 · · · 0 x1,i 0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · 0 xi,i 0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · 0 xi,j−1 0 · · · 0

x1,i · · · xi,i · · · xi,j−1 2xi,j xi,j+1 · · · xi,n

0 · · · 0 · · · 0 xi,j+1 0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · 0 xi,n 0 · · · 0


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in which all the nonzero elements lie in the j’th row and the j’th column.
Note that the Euler vector field is

χ =
1
2

n∑
i=1

ξi,i.

For i < j, ξi,j is nilpotent, so that ξi,j(∆) = 0. The vector field ξi,i is the
infinitesimal generator of the C∗ action in which the i’th row and column
are simultaneously multiplied by λ ∈ C∗. It follows that each determinant
detk with k > i is homogeneous of degree 2 with respect to ξi,i, and we
conclude that

ξi,i(∆) = 2(n− i + 1)∆, ξi,j(∆) = 0 for i < j.

Lemma 7.14. — There are finitely many Bn-orbits in Symn(C).

Proof. — If i 6 j, the pair of elementary row and column operations
(“add c times column i to column j”, “add c times row j to row i”) can
be effected by the action of Bn. By such operations any symmetric matrix
may be brought to a normal form with at most a single nonzero element
in each row and column. Another operation in Bn changes each of these
nonzero elements to a 1. Thus there are only finitely many Bn-orbits in
Symn(C). �

By the discussion at the start of Section 7, it follows that D is Koszul
free. In fact this will also follow from

Proposition 7.15. — The linear free divisor D of Example 5.1 associ-
ated with the action of Bn on Symn(C) is locally quasi-homogeneous.

To prove this, it is enough to show that at each point S of D there is an
element of Der(− log D)S which vanishes at S and whose linear part is di-
agonal with positive eigenvalues. This is the result of the proposition below.
In what follows we fix a symmetric matrix S such that si,j ∈ {0, 1}, with at
most one nonzero coefficient in each row and column. By Lemma 7.14, each
Bn orbit contains such a matrix, and local quasihomogeneity is preserved
by the Bn action, so it is enough to construct a vector field of the required
form in the neighborhood of each such matrix S.

Lemma 7.16. — Assume that si,j = 1 with i 6 j, then for each pair
(k, `) in the set

{(i, j), (i, j + 1), . . . , (i, n)} ∪ {(i + 1, j), . . . , (j, j), (j, j + 1), . . . , (j, n)}

there is a vector field vk,`, vanishing at S, such that
(i) vk,`(∆) ∈ O ·∆, and
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(ii) the linear part of vk,` at S is equal to (xk,` − sk,`) ∂
∂xk,`

, and in
particular is diagonal.

Proof. —
(1) If (k, `) = (i, `) with j < `, then

vi,` = xi,`ξj,` = xi,`

[
xi,j∂i,` mod mS Der

]
= xi,`∂i,` mod m2

S Der .

(2) If (k, `) = (i, j), then if i < j

vi,j = (xi,j − 1)ξj,j = (xi,j − 1)
[
xi,j∂i,j mod mS Der

]
= (xi,j − 1)∂i,j mod m2

S Der .

and if i = j

vi,i =
1
2
(xi,i − 1)ξi,i = (xi,i − 1)∂i,i mod m2

S Der .

(3) If (k, `) = (k, j), with i < k < j then

vk,j = xk,jξi,k = xk,j

[
xi,j∂k,j + mS Der

]
= xk,j∂k,j mod m2

S Der .

(4) If (k, `) = (j, j) with i < j, then

vj,j =
1
2
xj,jξi,j =

1
2
xj,j

[
2xi,j∂j,j mod mS Der

]
= xj,j∂j,j mod m2

S Der .

(5) If (k, `) = (j, `) with j < `, then

vj,` = xj,`ξi,` = xj,`

[
xi,j∂j,` mod mS Der

]
= xj,`∂j,` mod m2

S Der .

�

Lemma 7.17. — For each i ∈ {1, . . . , n} there is a vector field vi van-
ishing at S, such that

(i) vi(∆) ∈ O ·∆
(ii) the linear part of vi at S is

∑
k,` λk,`(xk,`−sk,`) ∂

∂xk,`
where λk,` = 0

if k > i and λi,` > 0 if ` > i; in particular it is diagonal.

In other words we have a triangular-type system of diagonal linear parts
with positive terms on the i’th row and zeros on rows after the i’th.

Proof. — If si,j = 0 for any j > i, and sk,i = 0 for any k 6 i, we can
take vi = ξi,i.

If sk,i = 1, with k 6 i, then we may apply Lemma 7.16 and a linear
combination of the vector fields vi,i, vi,i+1, . . . , vi,n does the trick.

Finally if si,j = 1 for some j > i, we observe that ξi,i − ξj,j , is diagonal
and has non zero positive eigenvalues in the positions

{(i, i), . . . , (i, j − 1)} ∪ {(i, j + 1), . . . (i, n)}.
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Then we see that the vector field

vi = vi,j + ξi,i − ξj,j + vi+1,j + · · ·+ vj,j + vj,j+1 + · · ·+ vj,n

does the trick since by adding vi,j we complete the row i by a positive
eigenvalue at (i, j), and we cancel with the help of the appropriate vk,` all
the negative eigenvalues with row indices k > i. �

Proposition 7.18. — There is an Euler vector field v, v(∆) ∈ O · ∆
vanishing at S, with linear part diagonal and having only strictly positive
eigenvalues.

Proof. — We construct v, by decreasing induction on i, as a linear combi-
nation αnvn+· · ·+α1v1 with positive coefficients, with αi > 0 large enough
following the choice of αn, . . . , αi+1. By construction we have v(∆) = λ∆
with λ ∈ O. �

This completes the proof of Proposition 7.15.

Remark 7.19. — To conclude, we mention a recent theorem of Fehér
and Patakfalvi. In [8] they prove that the discriminant D in the repre-
sentation space of a root of a Dynkin quiver is locally quasihomogeneous.
Their theorem ([8, Thm. 5.2]) is stated in terms of the Incidence Property
that is the subject of their paper, but their proof consists essentially of the
contruction of the requisite C∗-action. As a consequence, the LCT holds
for these discriminants, by Theorem 1.8.
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