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LEVI-FLAT INVARIANT SETS OF HOLOMORPHIC

SYMPLECTIC MAPPINGS

by Xianghong GONG

1. Introduction.

Let ϕ be a biholomorphic mapping defined near the origin of C2n

with ϕ(0) = 0. Recall that ϕ is symplectic if it preserves the holomorphic
symplectic 2-form

∑n
j=1 dξj ∧ dηj . Assume that the linear part of ϕ is

diagonalizable. In suitable local holomorphic symplectic coordinates, ϕ is
then given by

(1.1) ξj → λjξj + uj(ξ, η), ηj → λ−1
j ηj + vj(ξ, η), j = 1, . . . , n,

where uj , vj are holomorphic functions starting with terms of order at least
two. One says that λ = (λ1, . . . , λn) is non-resonant, if

(1.2) λα1
1 λα2

2 · · ·λαn
n 6= 1

for all integers α1, . . . , αn with |α1| + · · · + |αn| > 0. G.D. Birkhoff [4]
showed that under formal symplectic transformations, ϕ is equivalent to
the formal symplectic mapping

(1.3) ξj → λjξje
ωj , ηj → λ−1

j ηje
−ωj , ωj = ∂ζj

H
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with H a formal power series in the products ζ1 = ξ1η1, . . . , ζn = ξnηn

without constant term.

Analogous to work of C.L. Siegel [17] on Hamiltonian systems, a re-
sult of H. Rüssmann [12] says that as a rule the Birkhoff normal form (1.3)
of ϕ is not realizable by convergent symplectic transformations. In fact,
one aspect of divergence for Birkhoff’s normalization for Hamiltonian sys-
tems was understood by Siegel [16] much earlier. Recall that holomorphic
functions invariant under a holomorphic symplectic mapping or the flow
of a holomorphic Hamiltonian system are called first-integrals. Siegel [16]
showed that there are Hamiltonian systems of degree of freedom larger than
one that admit no first-integrals other than functions of their Hamiltoni-
ans. On the other hand, when admitting a certain system of first-integrals,
a holomorphic symplectic mapping or Hamiltonian system can be trans-
formed into the Birkhoff normal form by convergent transformations. This
is the so-called integrability of Hamiltonian systems (or symplectic map-
pings) via first-integrals, which was already observed by Birkhoff [3] for
the case of one degree of freedom. In general cases, such integrability re-
sults were obtained by Rüssmann [13] for analytic Hamiltonian systems
with two degrees of freedom and by J. Vey [18] for analytic Hamiltonian
systems and symplectic mappings of any degrees of freedom, for which
the quadratic forms of the first-integrals satisfy a certain non-degeneracy
condition. Most recently H. Ito [10] studied the convergence of Birkhoff’s
normalization for analytic Hamiltonian systems and symplectic mappings
which admit certain first-integrals with degenerate quadratic forms. The
reader is also referred to results of L.H. Eliasson [9] on smooth real Hamil-
tonian systems. We should mention that the results in [13], [18], and [10],
based on the first-integral method, hold for both real and complex cases.

In case the holomorphic symplectic map is in its normal form (1.3),
it is clear that for each j the quantity ξjηj is invariant under the map. In
particular the set defined by <ξjηj = 0 (j = 1, . . . , n) is invariant. More
generally, if Hj are holomorphic functions of n variables, the set defined by
<{Hj(ξη)} = 0 is invariant.

In Vey’s theorem and in Ito’s one has of course the existence of
a (singular) foliation of C2n by (n-codimensional) invariant sets. In the
present work, we show the convergence of (the reduction to) the normal
form under the sole hypothesis of just one appropriate invariant real
analytic set containing the origin. The invariant set that we assume to exist
is of co-dimension n in C2n, and Levi-flat, as above. A generic n-dimensional
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real analytic set in C2n is said to be Levi-flat if its regular set (away
from singular points and CR singularities) is foliated by n-dimensional
complex manifolds. The main result of this paper is the convergence of the
normalization under the assumption of the existence of an invariant set in
two special cases (see below): (1.4) and (1.5).

We now state the following.

Theorem 1.1. — Let ϕ be a holomorphic symplectic mapping of

C2n given by (1.1)–(1.2), and let M ⊂ C2n be the real analytic set

(1.4) <
{∑

ajkξkηk

}
+Rj(ξ, η, ξ, η) = 0, j = 1, . . . , n,

where rank(ajk) = n and Rj(ξ, η, ξ, η) = O(3) are real-valued analytic

functions. Assume that M is Levi-flat and ϕ(M) = M . Then ϕ can be

transformed into the Birkhoff normal form (1.3) by convergent symplectic

transformations.

It turns out that the integrability of ϕ in terms of Levi-flat invariant
sets of the form (1.4) is well connected to its first-integrals; namely, we shall
prove that ϕ has n first-integrals if it has a Levi-flat invariant set (1.4).
Thus Theorem 1.1 follows eventually from the above-mentioned result of
Vey. Our next result is the following.

Theorem 1.2. — Let ϕ,M be as in Theorem 1.1 except that M is

given by

(1.5) |ξj |2 − |ησ(j)|2 +Rj(ξ, η, ξ, η) = 0, j = 1, . . . , n,

where σ is a permutation of 1, . . . , n and Rj(ξ, η, ξ, η) = O(3) are real-

valued analytic functions. Assume that ϕ(M) = M . Then |λσ(j)| · |λj | = 1
for j = 1, . . . , n. Moreover, ϕ has n formal first-integrals δjκ such that ϕ

can be transformed into (1.3) by convergent symplectic transformations,

provided σ2 = Id and all δjκ ≡ 1.

For the definition of δjκ (δjκ ≡ 1 if σ = Id), see (4.37) below.

In contrary to case (1.4), the Levi-flat invariant set (1.5), however,
leads to meromorphic eigenfunctions of the holomorphic symplectic map-
pings. We shall show that such a mapping ϕ has n meromorphic functions
mj satisfying mj ◦ ϕ = λjλσ(j)mj . An example (end of Section 2) shows
that it is not enough to assume the existence of an invariant Levi-flat n
codimensional set in C2n for n ≥ 2, but in case of (1.5) we have no coun-
terexample if one drops the restrictive hypotheses on the permutation σ
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and on δjκ. It also remains open if the Birkhoff normalization converges
for the holomorphic symplectic mappings of C2 that have a Levi-flat real
hypersurface. Only for a special case shall we prove the following.

Theorem 1.3. — Let ϕ be a holomorphic symplectic mapping of

C2 given by (1.1)–(1.2). Let M ⊂ C2: r = 0 be a real analytic Levi-flat

hypersurface invariant under ϕ. Assume that the quadratic form of r defines

a real hypersurface in C2. Then ϕ can be transformed into its Birkhoff

normal form by convergent symplectic transformations.

Note that Theorem 3 is meant for the case |λ| = 1, since Moser [11]
already showed that a holomorphic symplectic mapping of C2 is always
normalizable by convergent transformations if |λ| 6= 1.

The present paper relies on some techniques used in very recent
joint work of D. Burns and the author [6], where singular Levi-flat real
analytic hypersurfaces of Cn are studied. These techniques will allow us
to construct holomorphic first-integrals or meromorphic eigenfunctions
for the holomorphic symplectic mappings. Motivated by applications to
holomorphic symplectic mappings, we shall also extend some results in [6]
to Levi-flat sets of higher codimensions. One of main ingredients used
in [6] is that of Segre varieties, which is a family of invariant complex
varieties associated to a real analytic hypersurface in complex space [15].
In dealing with singular Levi-flat structure one encounters with difficulties
of constructing formal normal forms. In [6] and in this work, the Segre
varieties serve as an essential tool to avoid the formal normal forms of
Levi-flat sets. As another application of Segre varieties we shall also use
Segre varieties to prove part of Theorem 1.3 directly (see Proposition 4.2).
The reader is also referred to work of E. Bedford [2] on the domain of
holomorphy of complements of singular Levi-flat hypersurfaces. For other
applications of Segre varieties, see work of S.M. Webster [19] on algebraic
real hypersurfaces with non-degenerate Levi-form and work of Diederich-
Fornaess [8] on complex varieties in real analytic sets.

The paper is organized as follows. Sections 2 and 3 consist in a pre-
liminary study of Levi-flat invariant sets of codimension n. In Section 2,
we study those Levi-flat sets defined by real quadratic forms. Their clas-
sification happens to be already non-trivial, and in fact we succeed only
in classifying Levi-flat sets of special types. In Section 3, the Levi-flat sets
that have been studied serve as models for more general Levi-flat sets. At
the expense of having the hypotheses looking more artificial, the reader can
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read Section 3 without having read Section 2. Also, the results but not the
proofs in Section 3 are to be used in Section 4.

In Section 4, the simplified equations that we found for the Levi-
flat invariant sets allow one to study the defining functions of those sets,
i.e., functions whose at least the common zero level set is invariant. From
this study one is able to get either enough first-integrals, or meromorphic
eigenfunctions.

In case enough first-integrals are obtained, the convergence of normal
forms follows from Vey’s theorem. This however does not establish Theo-
rem 1.2, which correspond to a case for which in Section 4 one obtains only
meromorphic eigenfunctions. This latter case is treated in Section 5, using
a KAM method.

In Section 6 we shall formulate analogous results for holomorphic
Hamiltonian systems, based on an observation regarding normal forms of
the time-one mappings of Hamiltonian systems. The paper is concluded
with an appendix about two equivalent Birkhoff normal forms of holomor-
phic symplectic mappings.

Acknowledgment. The author is indebted to Dan Burns for the
insights in Segre varieties through the collaboration [6]. The author would
also like to thank Jean-Pierre Rosay for helpful suggestions.

2. Invariant Levi-flat sets
defined by real quadratic forms.

In this section we shall study certain classes of Levi-flat sets of high
codimension in C2n defined by real quadratic forms. Here the classification
is not complete. In fact, we shall only consider 4 families of Levi-flat sets of
high codimension under an additional condition that the sets are invariant
under an elliptic complex linear symplectic transformation. A complete
classification of Levi-flat quadratic hypersurfaces of Cn is in [6].

Recall that a germ M of real analytic set of dimension k at 0 ∈ Cn

admits a decomposition M = M∗ ∪ Ms, where M∗ consists of points x
near which M is a k-dimensional submanifold of Cn. By a result of Bruhat
and Cartan [5], if M is irreducible, M∗ is the union of a finite number of
topological components M∗

j with the origin of Cn in the closure of each
M∗

j . We define the CR dimension of M to be

lim inf
M∗3p→0

dimC TpM ∩
√
−1TpM ≡ dimCRM.
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Let Mcs be the set of points x ∈ M∗ at which the complex dimension
of TxM ∩

√
−1TxM is larger than dimCRM . Then Mcs is a real analytic

subset of M∗. We say that M is Levi-flat, if Mc ≡ M∗ \Mcs is foliated
by complex submanifolds of dimension dimCRM . Notice that we allow
Mcs to contain some components of M∗. In general, one has dimCRM ≥
max{dimM−n, 0}. We say that M is generic, or of minimal CR dimension,
when dimCRM = max{dimM − n, 0}, i.e., when TxMc +

√
−1TxMc = Cn

for all x ∈Mc, or TxMc ∩
√
−1TxMc = 0 for all x ∈Mc. In the latter case

Mc is said to be totally real. We shall also use a standard fact that the
real analytic submanifold Mc is Levi-flat, if and only if the Lie brackets
[Li, Lj ] remain in the span of L1, . . . , Lm, L1, . . . , Lm for any local basis
L1, . . . , Lm(m = dimCRM) of (1, 0) tangent vectors of Mc, i.e., tangent
vectors of Mc of the form

∑n
j=1 aj(z, z) ∂

∂zj
with aj being analytic.

We shall need some basic properties about the complexification of
real analytic varieties. Recall that a germ M of real analytic variety of Rn

at 0 is contained in a unique germ M c of complex variety at 0 ∈ Cn such
that M = M c∩Rn, and such that germs of holomorphic function at 0 ∈ Cn

vanishing on M c are precisely the germs of complex-valued real analytic
function at 0 ∈ Rn that vanish on M . We shall refer the germ M c as the
Bruhat-Whitney-Cartan complexification of M . A result of H. Cartan [7]
says that M is irreducible if and only if M c is irreducible; consequently, a
germ of real analytic function vanishing on an open subset of M∗, of which
the closure contains the origin, vanishes entirely on the germ M .

The main purpose of this section is to study Levi-flat sets that are
defined by quadratic forms and invariant under the C-linear symplectic
mapping

(2.1) Λ: ξj → λjξj , ηj → λ−1
j ηj , j = 1, . . . , n,

where λ1, . . . , λn satisfy the non-resonance condition (1.2). Throughout the
section, we assume that Λ is elliptic, that is that |λj | = 1, j = 1, . . . , n.

A complex-valued quadratic form on C2n is a quadratic homogeneous
polynomial in ξ, η, ξ, η; the space of all complex-valued quadratic forms
will be denoted by E. Let Epsh be the set of complex-valued quadratic
forms containing no terms of the form ξαηβξ

γ
ηδ with |α| + |β| = 1, and

Ehrm the set of quadratic forms containing only the terms ξαηβξ
γ
ηδ with

|α|+ |β| = 1. Sending f to f ◦Λ, the transformation Λ:E → E is C-linear.
Put

λ−j = λj , ξ−j = ξj , η−j = ηj .
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Notice that (2.1) holds for j = ±1, . . . ,±n. The eigenvalues of the linear
transformation Λ:E → E are 1 and λiλj (i + j 6= 0), to which the
corresponding eigen-spaces are

E1 =
n⊕

i=1

C · ξiηi ⊕ C · ξiηi ⊕ C · ξiξi ⊕ C · ηiηi,

Eij = C · ξiξj ⊕ C · ηiηj ⊕ C · ξiηj ⊕ C · ηiξj

with
i, j = ±1, . . . ,±n, j ≥ i, i+ j 6= 0.

Let Q be the vanishing set of finitely many real quadratic forms on C2n,
and let I = IQ be the set of complex-valued quadratic forms vanishing
on Q. Assume that Q is invariant under Λ, so I is invariant under Λ also.
¿From the theory of linear algebra one knows that

I = I ∩E1 ⊕
⊕

I ∩Eij ≡ I ∩ E1 ⊕ I ∩E0.

We shall only classify the Levi-flat sets Q for which I is contained in one
of the subspaces

E1 ∩ Epsh, E1 ∩ Ehrm, E0 ∩ Epsh, E0 ∩ Ehrm.

We start with the following.

Proposition 2.1. — Let Q ⊂ C2n be a generic real analytic set

defined by real quadratic forms. Assume that Q has codimension m ≤ 2n
and IQ is contained in Epsh ∩E1. Then there exists an m×n matrix (aij)
of rank m such that

(2.2) Q:<
{∑

aijξjηj

}
= 0, i = 1, . . . ,m.

Conversely, (2.2) is a Levi-flat real analytic set in C2n of minimal CR

dimension 2n−m, provided the rank of (aij) is m.

Proof. — Take k quadratic forms qi(ξη) =
∑n

j=1 aijξjηj so that
<q1, . . ., <qk form a basis for real quadratic forms vanishing on Q. Since Q
is generic and of codimension at most 2n, then Q is not contained in any
proper complex subvariety of C2n. This implies that q1, . . . , qk are linearly
independent over C. For the proof, we assume for the sake of contradiction
that qk = c1q1 + · · ·+ ckqk−1. Then

k−1∑
j=1

=cj · =qj = −<qk +
k−1∑
j=1

<cj<qj
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vanishes on Q. Hence,
∑k−1

j=1 =cj · qj vanishes on Q. Since <q1, . . . ,<qk are
linearly independent over R, then at least one of =cj is nonzero. Therefore,
Q is contained in the complex variety

∑k−1
j=1 =cj · qj = 0, which is a

contradiction.

To show that k = m, we need only to verify the last statement in the
proposition. Without loss of generality, one may assume that (aij)1≤i,j≤m

is nonsingular. Then Q \ ∪m
j=1{ξj = 0} is parameterized by

ηi =
√
−1
{∑

j≤m

bijtj +
∑
j>m

cijξjηj

}
/ξi, i = 1, . . . ,m

with (bij) = (aij)−1
1≤i,j≤m and ti ∈ R. This shows that Q\∪m

j=1{ξj = 0} is a
generic Levi-flat CR manifold of CR dimension 2n−m. Next, we want to
show that Q∩∪m

j=1{ξj = 0} has dimension less than 4n−m. It suffices to
verify that Q′ = Q ∩ {ξ1 = 0} has dimension less than 4n−m. Note that
the rank of (aij)1≤i≤m,2≤j≤m is m− 1. Without loss of generality, we may
further assume that (aij)2≤i,j≤m has rank m−1. Obviously, Q′ is contained

in C×Q′′ for Q′′ ⊂ C2n−2:<
{∑m

j=2 aijξjηj

}
= 0, i = 2, . . . ,m. Applying

induction on n and m, one can verify that Q ∩ {ξ1 = η1 = 0} is a real
analytic set of dimension at most 4(n−1)−(m−1); hence dimQ′ < 4n−m.
The proof of the proposition is complete. tu

Proposition 2.2. — Let Q ⊂ C2n be an irreducible generic real

analytic set defined by real quadratic forms and of dimension at least 2n.

Assume that Λ(Q) = Q, and that I is contained in Epsh∩E0. There is a C-

linear symplectic transformation which leaves Λ in the diagonal form (2.1)

and transforms Q into the set

(2.3) ξjησ(j) + µjξσ(j)ηj = 0, j = 1, . . . , 2L

with σ(2j − 1) = 2j = σ−1(2j − 1) for j = 1, . . . , L, and

(2.4) |µj | = 1, µσ(j) = µj .

Proof. — Since I is invariant under Λ, we have I = ⊕Ipsh
ij for

Ipsh
ij ≡ I ∩ Epsh ∩ Eij .

Assume that Ipsh
ij 6= {0}. We first want to show that dimC I

psh
ij = 1.

Without loss of generality, one may assume that i, j > 0. Assume for
the sake of contradiction that dimC I

psh
ij > 1. Since dimCE

psh
ij = 2 then
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Ipsh
ij = Epsh

ij ; hence, Q is contained in ξiξj = 0, which contradicts that Q
is generic and of dimension at least 2n. Next, we want to show that

(2.5) dimC I
psh
ij + dimC I

psh
i′j′ ≤ 1

for {i, j} 6= {i′, j′} and {i, j} ∩ {i′, j′} 6= ∅. Let us focus on the case
i, j > 0, and other cases can be checked similarly. Assume for the sake
of contradiction that on Q

aξiξj + bηiηj = 0, cξiξj′ + dηiηj′ = 0

for some a, b, c, d 6= 0. Eliminating ξi and ηi yields

(2.6) adξjηj′ − bcξj′ηj = 0

on Q\ ({ξi = 0}∪ {ξj′ = 0}). Since Q is irreducible and generic, then (2.6)
holds on Q also, which contradicts that I ∩ Ehrm = {0}.

Next, we want to show that all Ipsh
ii = 0. Otherwise, one may assume

that Ipsh
1,1 6= 0, so Q is defined by the vanishing of ξ21 − aη2

1 and other
quadratic forms independent of ξ1, η1. Denote by Q′ ⊂ C2n−2 the vanishing
set of the complex-valued quadratic forms in I that are independent of
ξ1, η1. Obviously, the decomposition

Q = ({ξ1 +
√
aη1 = 0} ∪ {ξ1 −

√
aη1 = 0})×Q′

contradicts that Q is irreducible.

To achieve (2.3), let I contain one of quadrics

ξiηj + aηiξj , ξiξj + aηiηj , ηiηj + aξiξj

with i 6= j and a 6= 0. By substituting (ηj ,−ξj) for (ξj , ηj) in the second
quadratic form and replacing the third quadratic form by its conjugate
divided by a, one may assume that the first quadratic form is in I. Next,
interchange (ξi, ηi) with (ξ1, η1) and (ξj , ηj) with (ξ2, η2), respectively. Thus
I contains

ξ1η2 + µ1η1ξ2, µ1 6= 0.

By the transformation (ξ1, η1) → (
√
|µ1|ξ1, η1/

√
|µ1|), one gets |µ1| = 1.

Inductively, one finds the remaining coordinates (ξ3, η3, . . . , ξn, ηn) so that
Q is given by (2.3)–(2.4). The proof of the proposition is complete. tu

Analogous to Proposition 2.2, we have the following.

Proposition 2.3. — Let Q ⊂ C2n be an irreducible generic real

analytic set defined by real quadratic forms and of dimension at least 2n.
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Assume that Q is invariant under Λ, and that I is contained in Ehrm ∩E0

and satisfies the non-degeneracy conditions

(2.7) dimC Ihrm
ij · dimC Ihrm

jk = 0

for all distinct i, j, k. Then there is a C-linear symplectic transformation

which leaves Λ in the diagonal form (2.1) and transforms Q into

(2.8) ξjξσ(j) − µjηjησ(j) = 0, j = 1, . . . , 2L

with µσ(j) = µj , |µj | = 1, and σ(2j−1) = 2j = σ−1(2j−1) for j = 1, . . . , L.

The proof is almost the same as that of Proposition 2.2, except (2.7),
replacing (2.5), is part of the assumptions of the proposition. One can show
that Q is equivalent to ξjησ(j) +µjηjξσ(j) = 0, j = 1, . . . , 2L. However, the
latter is equivalent to (2.8) by a symplectic transformation. The details are
left to the reader.

We depart from the symplectic coordinates for a moment.

Proposition 2.4. — Let Q ⊂ Cn be defined by the vanishing of

some linear combinations of z1z1, . . . , znzn. Assume that Q is generic, Levi-

flat, and of codimension m ≤ n. Then m is less than n and rearranging

z1, . . . , zn gives

(2.9) Q: zjzj − cjzkjzkj = 0, j = 1, . . . ,m

for some cj > 0 and kj > m.

Proof. — For the space of R-linear combinations of z1z1, . . . , znzn

that vanish on Q, choose a basis q1, . . . , qk so that for a possible rearrange-
ment of z1, . . . , zn

(2.10) qj(z, z) = zjzj −
∑
α>k

ajαzαzα, j = 1, . . . , k.

Since Q is not contained in ∪n
j=1zj = 0, then

D =
{

(zk+1, . . . , zn)|
∑
l>k

ajlzlzl > 0, j = 1, . . . , k
}

is a nonempty open set in Cn−k, of which the boundary contains the origin.
Obviously, {q1 = · · · = qk = 0} \ ∪k

j=1{zj = 0} is a smooth submanifold in
Cn of codimension k; in particular, k ≥ m. On the other hand, if k > m,
then Q∗ is contained in ∪k

j=1{zj = 0}, which contradicts that Q is generic.
Therefore, k = m.
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To determine ajα we consider (1, 0) tangent vectors of Qc \∪k
j=1{zj =

0}, spanned by

(2.11) Lα =
m∑

j=1

ajα
zα

zj

∂

∂zj
+

∂

∂zα
, α > m.

One has

[Lα, Lβ ] =
m∑

j=1

ajαajβ
zαzβ

zjz
2
j

∂

∂zj
−

m∑
j=1

ajαajβ
zαzβ

zjz2
j

∂

∂zj
, α 6= β.

Since Q is Levi-flat, the Lie bracket [Lα, Lβ ], restricted to Qc\∪{zj = 0}, is
locally in the span of vector fields (2.11) and their conjugates. This implies
that [Lα, Lβ ] vanishes on Qc \ ∪{zj = 0}, i.e.,

ajαajβ
zαzβ

zjz
2
j

= 0, on Q \ ∪m
j=1{zj = 0}.

Since Q \ ∪m
j=1{zj = 0} is not contained in zαzβ = 0, then ajαajβ = 0

for α 6= β. On the other hand, from (2.10) one knows that at least one of
ajα(α > m) is positive. This shows that Q has the form (2.9). The proof
of the proposition is complete. tu

Returning to symplectic coordinates, we now want to prove the
following.

Proposition 2.5. — Let Q ⊂ C2n be a Levi-flat real analytic

set defined by elements in Ehrm ∩ E1. Assume that Q is generic and of

codimensionm ≤ 2n, and that Q contains no C-linear coordinate subspaces

(i.e., vanishing sets of some of ξ1, η1, . . . , ξn, ηn) of dimension greater than

2n− 2m. Then under a change of symplectic coordinates which leaves Λ in

the form (2.1), Q is given by

(2.12) |ξj |2 − µj |ησ(j)|2 = 0, j = 1, . . . ,m,

where σ: {1, . . . ,m} → {1, . . . , n} is injective, and µj satisfy

µj =
{

1/µσ(j) > 0 if τj is even and positive,

1 otherwise

with τj being the smallest positive integer satisfying στj (j) = j (τj = 0
when σk(j) > m for some k).

Proof. — In view of Proposition 2.4, such a set takes the form (2.9)
with z1, . . . , z2n being a permutation of ξ1, η1, . . . , ξn, ηn. Since Q does
not contain any C-linear coordinate subspace of dimension greater than

TOME 51 (2001), FASCICULE 1



162 XIANGHONG GONG

2n− 2m, all k1, . . . , km in (2.9) are distinct; consequently, m ≤ n and Q is
given by m equations

(2.14) |ξi1 |2 = c′i1 |ξα(i1)|
2, |ξi2 |2 = c′′i2 |ηβ(i2)|

2, |ηi3 |2 = c′′i3 |ηγ(i3)|
2,

in which c′i1 , c
′′
i2
, c′′′i3

are positive, and indices i1, i2, i3 run over subsets
I1, I2, I3 of {1, . . . , n}, respectively. Moreover, I1, I2 and α(I1) are mutually
disjoint, and so are I3, β(I2), and γ(I3). We shall first permute the sym-
plectic coordinates to eliminate the first and last groups of equations in
(2.14). For each j ∈ α(I1), we change the coordinates (ξj , ηj) to (−ηj , ξj),
and for each k ∈ β−1(α(I1) ∩ β(I2)), we change the coordinates (ξk, ηk) to
(−ηk, ξk) and replace c′′k with 1/c′′k . Thus, equations in the first group are
eliminated. Next, we apply the coordinate change (ξj , ηj) to (−ηj , ξj) for
each j ∈ I3 and j ∈ β−1(I3 ∩ β(I2)). After the above coordinate changes,
only the second group of equations in (2.14) remains. By a permutation of
symplectic coordinates, we achieve (2.12) for an injective σ.

To obtain the normalization (2.13), we apply induction on the number
of equations in (2.12). If m = 1, one readily obtains (2.13) by applying the
transformation (ξj , ηj) → (

√
µ1ξj , ηj/

√
µ1) for j = 1, σ(1).

For induction, we assume that (2.13) can be achieved if the number
of equations in (2.12) is less than m. We first consider the case there
exists the smallest integer τ1 with στ1(1) = 1. Note that such τ1 always
exists if σk(1) ≤ m for all integer k. In this case, the equations in (2.12)
break into two groups: the equations involving only (ξσk(1), ησk(1)) for
k = 1, . . . , τ1 and the ones not involving any of those variables. If both
groups are non-empty, (2.12) follows from the induction assumption. Thus,
one may assume, without loss of generality, that τ1 = m, σj(1) = j + 1 for
j = 1, . . . ,m− 1.

Consider a symplectic transformation

(2.15) ξj → cjξj , ηj → ηj/cj , cj > 0, j = 1, . . . , n.

The transformation (2.15) sends (2.12) to |ξj |2 − µ̃j |ησ(j)|2 = 0 with
µ̃j = c2jc

2
j+1µj . Put c1 = 1 and cj = 1/(cj−1

√
µj−1) for j = 2, . . . ,m.

Then µ̃j = 1 for j = 1, . . . ,m− 1. To normalize µ̃m, consider first the case
that m is even. In this case

δ1µ ≡ µ1µ
−1
2 µ3 · · ·µ−1

m

is invariant under (2.15). Therefore, (2.12) are equivalent to |ξj |2 −
µ′j |ηj+1|2 = 0, j = 1, . . . ,m for µ′1 = (δ, µ)1/m and µ′σ(j) = 1/µ′j , since
δ1µ

′ = δ1µ. Consider now the case that m is odd. In this case we apply
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another transformation (2.15) with c1 = (µ′m)−1/4 and cj+1 = 1/cj for
j = 1, . . . ,m− 1, which gives us (2.12) with µj = 1 for j = 1, . . . ,m.

We now consider the case that σk(1) = m′ > m for some k. In
this case 1 ≤ τ−1(m′) ≤ m. Let τ be the largest integer such that
σ−τ (m′) is well-defined. The equations in (2.12) are divided into two
groups: the ones involving ηm′ , ξσ−1(m′), ησ−1(m′), . . . , ξσ−τ (m′) only and the
ones not involving ξσ−k(m′), ησ−k(m′) for k = 0, . . . , τ . Thus by the induction
assumption, one may assume that τ = m − 1. Put j0 = σ−m+1(m′) and
jk = σk(j0) for k = 1, . . . ,m− 1. Thus, (2.12) becomes

|ξkj
|2 − µkj

|ηkj+1 |2 = 0, j = 0, . . . ,m− 1

with j0, . . . , jm−1 ≤ m being distinct and jm = m′ > m. Take ckm−1 = 1,
and ckj = 1/(ckj+1

√
µkj ) for k = m − 2, . . . , 0. Then applying the

transformation (2.15) one gets µkj
= 1 for j = 0, . . . ,m−1. The proposition

is proved by induction. tu

To conclude this section we remark that, for holomorphic symplectic
mappings, having a Levi-flat invariant set of minimal CR dimension is not
a sufficient condition for the convergence of their normalizations. In fact,
the sets M2, . . . ,M5 below are combinations of 4 types of Levi-flat sets
(2.2), (2.3), (2.8) and (2.12).

Examples. — The following are Levi-flat sets of minimal CR dimen-
sion:

M1 ⊂ C4: ξ22 − η2
2 = 0,

M2 ⊂ C6: ξ2η2 + ξ2η2 = ξ3ξ3 + η3η3 = 0,

M3 ⊂ C6: |ξ2|2 − |η2|2 = ξ2η3 + ξ3η2 = 0,

M4 ⊂ C6: |ξ2|2 − |η2|2 = |ξ3|2 − |η3|2 = |ξ2|2 − |ξ3|2 = 0,

M5 ⊂ C8: ξ2ξ3 − η2η3 = ξ3ξ4 − η3η4 = 0.

Note that all these sets contain the (ξ1, η1)-subspace. Let ψ be an elliptic
holomorphic symplectic transformation of C2 which is not normalizable by
any convergent symplectic transformation. For each Mj , one can find a map
ϕ which is the product of ψ with a suitable elliptic C-linear symplectic
transformation of C2n−2 (n = 2, 3, or 4) such that Mj is invariant
under ϕ. However, ϕ is not normalizable by any convergent symplectic
transformation.
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3. Normalization of Levi-flat invariant sets.

Throughout the paper we denote by [p]k the sum of homogeneous
terms of order k, whenever p is a multivariable power series.

In Section 2, four special Levi-flat classes of quadrics were introduced:
the sets defined by (2.2), (2.3), (2.8) and (2.12), respectively. We now study
Levi-flat sets defined by equations whose lowest order terms correspond to
these quadratic polynomials, and we try to simplify their equations by
changing holomorphic coordinates. For this purpose, we shall combine two
singularities (2.2) and (2.3) since such combination results in no extra diffi-
culties. One can also treat two singularities (2.8) and (2.12) simultaneously.
Notice that quantities µj in Section 2 are symplectic invariants, but are not
the holomorphic ones. Since holomorphic coordinates, not the symplectic
ones, are used throughout this section, we can restrict ourselves to the case
all µj = 1. We shall also use a simpler permutation σ to simplify notations.

To combine two types of singularities (2.2) and (2.3), we let σ be a
permutation of 1, . . . ,m (m ≤ n) satisfying

(3.1) σ(j) =
{
j, if 1 ≤ j ≤ K,
σ−1(j) 6= j, if K < j ≤ K + 2L = m.

In particular, σ2 = Id. Put

(3.2) qj(ξ, η) =
{∑n

k=1 ajkξkηk, 1 ≤ j ≤ K,

ξjησ(j), K < j ≤ m

with

(3.3) det(aij)1≤i,j≤K 6= 0.

Define the set

(3.4) Q ⊂ C2n: qj(ξ, η) + qσ(j)(ξ, η) = 0, j = 1, . . . ,m.

Note that we allow K = 0 or m, so that sets (2.2) and (2.3) (all µj = 1)
are indeed special cases of (3.4). In Proposition 3.5 below, we shall prove
that (3.4) is generic, irreducible and Levi-flat.

One of main results of this section is the following.

Theorem 3.1. — Let M ⊂ C2n be a real analytic variety defined

by

(3.5) qj(ξ, η) + qσ(j)(ξ, η) +Rj(ξ, η, ξ, η) = 0, j = 1, . . . ,m,
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where σ, qj , and aij are given by (3.1)–(3.3) and Rj are real analytic and

satisfy the reality condition

(3.6) Rσ(j)(ξ, η, ξ, η) = Rj(ξ, η, ξ, η).

Assume that M is Levi-flat. Then there are m holomorphic functions

Hj(ξ, η) = O(3) such that M , as a germ of real analytic set at the origin,

is given by

(3.7) qj(ξ, η) + qσ(j)(ξ, η) +Hj(ξ, η) +Hσ(j)(ξ, η) = 0, j = 1, . . . ,m.

To combine two singularities (2.8) and (2.12), let σ be still given by
(3.1), and put

(3.8) qj(ξ, η, ξ, η) =
{
|ξj |2 − |ηj |2, 1 ≤ j ≤ K,
ξjξσ(j) − ηjησ(j), K < j ≤ m.

We now state the following rigidity result.

Theorem 3.2. — Let M ⊂ C2n be a Levi-flat real analytic variety

defined by

(3.9) qj(ξ, η, ξ, η) +Rj(ξ, η, ξ, η) = 0, 1 ≤ j ≤ m,

where σ, qj are given (3.1) and (3.8), and Rj(ξ, η, ξ, η) = O(3) are real

analytic and satisfy the reality condition (3.6). Then near the origin, M is

holomorphically equivalent to the set

(3.10) Q ⊂ C2n: qj(ξ, η, ξ, η) = 0, j = 1, . . . ,m.

Note that (3.10) becomes (2.12) (all µj = 1 and σ = Id) when K = 0,
or (2.8) (all µj = 1) when K = m. As a consequence of Proposition 3.7 we
shall see that the set (3.10) is generic, irreducible, and Levi-flat.

The main purpose of this section is to prove Theorem 3.1 and
Theorem 3.2. We start with the following.

Lemma 3.3. — Let V ⊂ C2m×Cn be a complex variety defined by

fj = x2
j + y2

j + qj(x, y, z) + hj(x, y, z) = 0, j = 1, . . . ,m,

where qj is a quadratic polynomial in xj+1, yj+1, . . . , xm, ym, z for j =
1, . . . ,m, and hj are holomorphic functions of order at least 3. Let f be

a holomorphic function vanishing on V . Then, as a germ of holomorphic

function at the origin, f admits a decomposition

f = a1f1 + a2f2 + · · ·+ anfn
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for some holomorphic functions aj with minj{ord aj} = ord f − 2.

Proof. — Without loss of generality one may assume that fj is a
quadratic Weierstrass polynomial in xj . Put f = g0. Using the Weierstrass
division theorem, one gets

gj−1 = ajfj + gj , j = 1, . . . ,m

with min{ord aj + 2, ord gj} = ord{gj−1} ≥ ord f . Hence

f = a1f1 + · · ·+ amfm + gm.

Assuming that f 6≡ 0, we would like to show that ord gm > ord f and
min{ord aj} = ord f − 2.

Consider the dilation (x, y, z) → (εx, εy, εz). Let V ε be defined by

x2
j + y2

j + qj(x, y, z) + hj(x, y, z, ε) ≡ fj(εx, εy, εz)/ε2 = 0

for j = 1, . . . ,m. Obviously, hj = 0 for ε = 0. Put

∆r = {t ∈ C: |t| < r}

and let ∆k
r be the products of k copies of ∆r. We shall also drop the

superscript in ∆k
r whenever the dimension k is clear from context. Let π be

the projection (x, y, z) → (y, z). Choose δ, δ′ so small that the restriction
π:V ε ≡ V ε ∩ (∆m

δ ×∆m+n
δ′ ) → ∆m+n

δ′ is a 2m-to-1 branched covering, for
which the branch locus is denoted by Bε. Obviously,

B0 = V 0 ∩ {(y2
m + qm(x, y, z)) · · · (y2

1 + q1(x, y, z)) = 0}

is a proper subvariety of V 0; hence, Bε is also a proper subvariety of V ε for
small ε. Off the branch locus Bε, V ε is locally given by x = dJ(y, z, ε), J ∈
Zm

2 = {0, 1}m with dJ(·, ε) → dJ(·, 0) as ε→ 0. Note that for ε = 0 the k-th
coordinate of dJ is obtained by choosing a square root of −y2

k − qk(x, y, z),
starting with k = m. This implies that for J = (j1, . . . , jm) ∈ Zm

2 and Jk =
(jk, . . . , jm), one has dJ(y, z, 0) = (XJ1(y, z), XJ2(y, z), . . . , XJm

(y, z)).
Moreover,

(3.11) X(0,Jk+1)(y, z) 6= X(1,Jk+1)(y, z), Jk+1 ∈ Zm−k−1
2

for (y, z) 6∈ B0 and 1 ≤ k ≤ m.

Assume for the sake of contradiction that ord gm = ord f ≡ k. Note
that

(3.12) gm(εx, εy, εz)/εk = [gm]k(x, y, z) + εg̃m(x, y, z, ε)
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vanishes on V ε, and that ord g̃m > k. Since qj is independent of x1, . . . , xj ,
one gets from [gj−1]k = [aj ]k−2[fj ]2 + [gj ]k that

[gm]k(x, y, z) =
∑

α∈Zm
2

cα(y, z)xα.

Now (3.12) yields∑
α∈Zm

2

cα(y, z)dα
J (y, z, ε) + εg̃m(dJ(y, z, ε), y, z, ε) = 0, J ∈ Zm

2

for (y, z) 6∈ π(Bε). Letting ε→ 0, one gets∑
α∈Zm

2

cα(y, z)dα
J (y, z, 0) = 0, J ∈ Zm

2

for (y, z) 6∈ π(B0). The above are 2m linear equations in 2m unknowns
cα(y, z), for which the coefficients dα

J (y, z), α, J ∈ Zm
2 form a block matrix

D =
(

D′ D′

X0D
′ X1D

′

)
,

where D′ is the matrix formed by d
(0,α′)
(0,J ′) with α′, J ′ ∈ Zm−1

2 , and X0, X1

are diagonal 2m−1 × 2m−1 matrices of which the J ′-th diagonal entry
is X(0,J ′)(y, z) and X(1,J ′)(y, z), respectively. From (3.11) it follows that
det(X0−X1) 6= 0. Applying induction on m, one gets detD=det(X0−X1)
detD′ 6= 0. Therefore, cα = 0. This shows that ord gm > ord f and
ord f = min{ord aj}+ 2.

However, gm still vanishes on V , so one can find another decomposi-
tion for gm. Inductively, one can at least achieve

(3.13) f = a1f1 + · · ·+ amfm, min{ord am} = ord f − 2

for some formal power series aj . By a theorem of M. Artin [1], there are
convergent power series ãj(x, y, z) = aj(x, y, z) + O(k) satisfying (3.13).
This completes the proof of the lemma. tu

Lemma 3.4. — Let V, q1, . . . , qm be as in Lemma 3.3, and let

qj(0, 0, z) =
∑n

k=1 ajkz
2
k. Assume that the rank of (ajk) is m. Then V

is irreducible.

Proof. — As in the proof of Lemma 3.3, let π be the projection
(x, y, z) → (y, z). Choose δ, δ′ > 0 such that the restriction π:V ≡
V ∩ (∆m

δ ×∆m+n
δ′ ) → ∆m+n

δ′ is a 2m-to-1 branched covering, for which the
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set of points of branch order 2m, i.e., the points p ∈ V with π−1π(p) = {p},
contains a subset B satisfying additional equations

(3.14) 2xj + ∂xjhj = ∂xjfj = 0, j = 1, . . . ,m.

For a possible smaller δ′, the above equations define a one-to-one covering
over ∆m+n

δ′ . Solving for x from (3.14) and inserting x into fj(x, y, z) yields
new functions

(3.15) f̃j(y, z) = y2
j + qj(0, y, z) + h̃j(y, z) = 0, j = 1, . . . ,m

on B. Since (ajk) is of rank m, one may assume that (ajk)1≤j,k≤m is
nonsingular. Fix (y0, z0) on y2

j + qj(0, y, z) = 0, j = 1, . . . ,m, so that
z0
m+1 = · · · = z0

n = 0, while none of y0
1 , z

0
1 . . . , y

0
m, z

0
m is zero. Consider the

dilation gj(y, z, ε) ≡ f̃j(εy, εz)/ε2. Then ∂g/∂(z1, . . . , zm) is nonsingular for
(y, z) = (y0, z0) and ε = 0. By the implicit function theorem, one can verify
that for small ε, there exist x(ε), z(ε) such that x(ε), εy0, z(ε) satisfy (3.14)–
(3.15) and |x(ε)|, |z(ε)| ≤ cε for some constant c (zj(ε) = 0 for j > m).

On the other hand, the singular locus Vs of V is contained in

det ∂f/∂y = 2my1y2 · · · ym +O(m+ 1) = 0,

which obviously does not contain (x(ε), εy0, z(ε)) ∈ B for small ε 6= 0. This
shows that V contains a smooth point of branch order 2m. Hence, V ∗ is
connected, i.e., V is irreducible. This completes the proof of the lemma. tu

Note that the above proof is based on branched coverings and the
existence of smooth branch points of maximal branch order. Applying the
same argument to the family of complex varieties

V ε: f ε
j (x, y, z) ≡ fj(εx, εy, εz)/ε2, j = 1, . . . ,m

yields that any neighborhood of the origin contains another neighborhood
D, independent of ε, such that each V ε ∩D is connected for small ε.

We now apply the above lemmas to the real analytic variety given by
(3.5) and (3.6).

Proposition 3.5. — Let M ⊂ C2n be a real analytic set given by

(3.5)–(3.6). Then M is a generic and irreducible real analytic variety of

codimension m. Also, a germ of any real analytic function f vanishing on

an open subset of M∗, of which the closure contains the origin, can be

decomposed into a1r1 + · · ·+ amrm for germs of some complex-valued real

analytic functions aj with minj{ord aj} = ord f − 2. Moreover, the set Q,

defined by (3.4), is Levi-flat.
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Proof. — Put rε
j(ξ, η, ξ, η) = rj(εξ, η, εξ, εη)/ε2 for j = 1, . . . ,m.

Note that Q is defined by r01 = · · · = r0m = 0. At ξ = (0, . . . , 0), η =
(1, . . . , 1), one has

det ∂r0/∂(ξ1, . . . , ξm) = detA 6= 0, A = (aij)1≤i,j≤K .

This shows that dimQ ≥ 4n − m, and that Q is generic if dimQ =
4n − m. Now the implicit function theorem implies that M enjoys the
same property.

To show that dimM = 4n−m, we consider the complex variety

M⊂ C2n × C2n: rj(ξ, η, ξ, η) = rj(ξ, η, ξ, η) = 0, j = 1, . . . ,m,

where ξ, η, ξ, η are now independent complex variables. By the reality
conditions (3.6), M is actually defined by rj(ξ, η, ξ, η) = 0 for j = 1, . . . ,m;
more explicitly, M is given by

ξjηj +
n∑

k=K+1

bjkξkηk +
n∑

k=1

cjkξkηk + R̃j(ξ, η, ξ, η) = 0, 1 ≤ j ≤ K,

ξjησ(j) + ξσ(j)ηj +Rj(ξ, η, ξ, η) = 0, K < j ≤ m,

where (cjk)1≤j,k≤K is nonsingular. Choose complex linear coordinates
x, y, z so that

(3.16)
ξjηj = x2

j + y2
j , ξjηj = z2

j + z2
m+j , 1 ≤ j ≤ K,

ξjησ(j) = x2
j + y2

j , ξσ(j)ηj = z2
j + z2

m+K+j , K < j ≤ m.

Substitute the rest of z-variables for ξ, η, ξ, η that do not appear in (3.16).
Obviously, in the new coordinates, M has defining functions satisfying all
the assumptions in Lemma 3.4; hence, M is irreducible and of codimension
m. Since M ≡ {(ξ, η, ξ, η): (ξ, η) ∈ M} ⊂ M is of real dimension at least
4n−m, then M is the Bruhat-Whitney-Cartan complexification of M . A
result of H. Cartan [7] implies that the complexification of f vanishes on
M. In view of Lemma 3.3, the complexification of f , and hence f , admits
a decomposition a1r1 + · · ·+ amrm.

The above argument shows especially that Q is irreducible, generic,
and of codimension m. Finally, we want to show that Q is Levi-flat.
Note that Q \ ∪m

j=1{ηj = 0} is the disjoint union of graphs over the
(ξm+1, . . . , ξn, η)-space, which are given implicitly by

n∑
k=1

ajkξkηk = itj , σ(j) = j,

ξjησ(j) = tj + itσ(j), ξσ(j)ηj = −(tj − itσ(j)), σ(j) > j
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with tj ∈ R. Hence, Q \ ∪m
j=1{ηj = 0} is smooth and Levi-flat. Since Qc is

generic, it is contained in the closure of Q\∪m
j=1{ξj = 0}. Therefore, Qc is

Levi-flat. This completes the proof of the proposition. tu

Before we prove the first main result of this section, we should recall
the Segre varieties associated to a real variety [15]. Let M be a germ of real
analytic variety at 0 ∈ Cn defined by r1(z, z) = · · · = rm(z, z) = 0, where
rj are real power series convergent on a polydisc ∆n

ε ×∆n
ε ⊂ Cn×Cn. Then

the Segre varieties are the family of complex varieties

Qw = {z ∈ ∆n
ε : r1(z, w) = · · · = rm(z, w) = 0}, w ∈ ∆n

ε .

For a fixed w ∈ ∆n
ε , the Segre variety Qw could be an empty set, or the

whole polydisc ∆n
ε , or a proper subvariety of dimension between 0 and

n − 1. For our applications of Segre varieties, we shall only deal with real
analytic sets M that admit defining functions r1, . . . , rm such that germs of
real analytic function vanishing on M are always generated by r1, . . . , rm.
This implies that the Segre varieties Qw are independent of the choice of
such defining functions rj , except that a possible smaller polydisc ∆n

ε ×∆n
ε

has to be chosen for a given set of such defining functions. Also, note that,
given two real analytic varieties M,M ′ admitting such defining functions
and a biholomorphic mapping φ sending M onto M ′, φ must send Segre
varieties of M into Segre varieties of M ′ (by shrinking the polydiscs on
which M,M ′ are defined if necessary). Finally, we should mention that if a
germ of complex variety V at w is contained in M , then V is also contained
in the Segre variety Qw of M .

Proof of Theorem 3.1. — Following [6], we start with the dilation
M ε defined by

rε
j(ξ, η, ξ, η) ≡ rj(εξ, εη, εξ, εη)/ε2 = 0, j = 1, . . . ,m.

Write
rε
j(ξ, η, ξ, η) = qj(ξ, η, ξ, η) +Rj(ξ, η, ξ, η, ε).

Parameterize

γε = M ε ∩ {ηj = 1, j ≤ m; ξj = ηj = 0, j > m}

by z = γε(t) = (ξ(t), η(t)) (t ∈ Rm) with
m∑

k=1

ajkξk(t) = itj + αj(t, ε), αj = αj if σ(j) = j,

ξj(t) = tj + itσ(j) + αj(t, ε)

ξσ(j)(t) = −(tj − itσ(j) − αj(t, ε))

}
if σ(j) > j.
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Then αj should satisfy

2αj +Rj(ξ(t), η(t), ξ(t), η(t), ε) = 0, σ(j) ≥ j.

The implicit function theorem implies that the above equations have a
unique solution

αj = αj(t, ε), σ(j) ≥ j

with αj |ε=0 ≡ 0.

The Segre variety Qγε(t) of M ε is defined by

−itj + αj(t, ε) +
n∑

k=1

ajkξkηk +Rj = 0 if σ(j) = j,

(3.17)
−tj − itσ(j) + αj(t, ε) + ξjησ(j) +Rj = 0

tj − itσ(j) + αj(t, ε) + ξσ(j)ηj +Rσ(j) = 0

}
if σ(j) > j

for Rj = Rj(ξ, η, γε(t), ε). By applying the fixed-point theorem, one can
solve (3.17) to get

tj = ihj(ξ, η, ε), j = 1, . . . ,m,

where hj are holomorphic functions of ξ, η, ε. It is easy to see that

(3.18) hj(ξ, η, 0) =
m∑

k=1

cjkqk(ξ, η), det(cjk) 6= 0.

This implies that for small ε, all hj(ξ, η, ε) are well-defined on the domain

Ds = ∆2n
2 ∩ {|qj(ξ, η)| < s, j = 1, . . . ,m},

where s > 0 is small and independent of ε. Clearly, γε(t) is contained in
Ds when ε, t are small. As mentioned after the proof of Lemma 3.4, Ds

contains a neighborhood D′ of the origin such that for each small ε the
smooth locus of Mε ∩D′ is connected.

Note that ∂(rε
1, . . . , r

ε
m)/∂(ξ1, . . . , ξm) is nonsingular near γε. Hence,

M ε is smooth and of CR-dimension 2n−m near γε. This implies that M ε

is Levi-flat near γε; in particular, the branch Q′γε(t) of Qγε(t), which passes
through γε(t), is contained in M ε.

Next, we would like to show that Q′γε(t) ⊂ M ε sweep out an open
subset of (M ε)∗ ∩ D′. To this end we take a polydisc ∆2n

s′ ⊂ D′. Rewrite
(3.17) as

ξj = η−1
j

(
K∑

k=1

bjk(itk − αk −Rk) +
∑
k>K

bjkξkηk

)
, σ(j) = j,
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ξj = η−1
σ(j)(tj + itσ(j) − αj −Rj)

ξσ(j) = η−1
j

(
(itσ(j) − tj − αj)−Rσ(j)

)} σ(j) > j.

Applying the fixed-point theorem to the above equations, one can get a
unique solution ξj = pε

j(η, ξ
′′, t) defined on Em × ∆2n−2m

s′′ for |t| < s′′,
where s′′ < s′ is a positive constant depending only on s′ and

E = {w ∈ C: s′/2 < |w| < 3/2, | argw| < π/2}.

This shows that when ε, t are sufficiently small, the branch Q′γε(t) contains
the graph

Gε
t ⊂ C2n: ξj = pε

j(ξ
′′, η, t), (η, ξ′′) ∈ Em ×∆2n−2m

s′′ .

Obviously, Gε
t ∩∆2n

s′ is nonempty if ε, t are small, and (∂pε/∂t)(η, ξ′′, t) is
nonsingular on Em×∆2n−2m+1

s′′ for ε = 0. This shows that Gε ≡ ∪Gε
t ⊂M ε

is an immersed real manifold of dimension 2n−m. Thus, Gε∩(M ε)∗∩∆2n
s′ is

nonempty. On the other hand, Gε
t is contained in the Segre variety Q′γε(t) on

which the holomorphic functions hj(ξ, η, ε) are pure imaginary. Therefore,
all <{hj(ξ, η, ε)} vanish on a nonempty open subset of (M ε)∗ ∩ ∆2n

s′ .
The latter is, however, a totally real subspace of (Mε)∗ ∩ D of maximal
dimension. Therefore, the complexification of each <{hj(ξ, η, ε)} vanishes
on Mε ∩D. In return, <{hj(ξ, η, ε)} vanishes on M ε.

We now fix a small ε. In view of Proposition 3.5, we have

(3.19) <{hj(ξ, η, ε)} =
∑

djk(ξ, η, ξ, η)rε
k(ξ, η, ξ, η), j = 1, . . . ,m.

In particular, hj(ξ, η, ε)− hj(0, 0, ε) = O(|(ξ, η)|2). ¿From (3.18), we know
that (djk)(0) is invertible. Let (d′jk) be the inverse of the constant matrix
(djk)(0). Put

h∗j (ξ, η) =
m∑

k=1

d′jkhk(ξ, η, ε).

Then qj is the quadratic form of h∗j . Notice that the right-hand side
of (3.19) is real; in particular, its quadratic form is real also. Hence,
djk(0) = djσ(k)(0). From σ2 = Id, it follows that d′jk = d

′
σ(j)k. On M ε, we

have hj(ξ, η, ε) = −hj(ξ, η, ε). Now a straightforward computation shows
that h∗j (ξ, η, ε) = −h∗σ(j)(ξ, η, ε) on M ε. This shows that M ε, and hence M ,
is of the form (3.7). The proof of the theorem is complete. tu

We now turn to the proof of Theorem 3.2. The rest of the section is
to show that the Levi-flat analytic set defined by (3.9) is holomorphically
equivalent to the set (3.10).
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We shall use general holomorphic coordinates for the rest of section.
For convenience, we set

z = (x, y), x′ = (x1, . . . , xm), x′′ = (xm+1, . . . , xn), etc,

where (x, y) = (x1, . . . , xn, y1, . . . , yn) are coordinates of C2n. In particular,
the last m−K equations in (3.9) are equivalent to the last m−K ones of

(3.20) rj = xjyσ(j) + xσ(j)yj +Rj(z, z) = 0, j = 1, . . . ,m.

The first K equations in (3.9) are transformed into the first K ones of
(3.20) by the transformation

ξj = (1 + i)xj + yj , ηj = (1 + i)xj + iyj , j = 1, . . . ,K.

Thus,M is given by (3.20) with σ of the form (3.1), and the reality condition
(3.6) now reads

(3.21) Rσ(j)(z, z) = Rj(z, z).

Thus, Theorem 3.2 is reduced to the following.

Theorem 3.6. — Let M ⊂ C2n be a Levi-flat analytic set given by

(3.20)–(3.21). Then M is holomorphically equivalent to the set

(3.22) Q ⊂ C2n:xjyσ(j) + xσ(j)yj = 0, j = 1, 2, . . . ,m.

We need the following.

Proposition 3.7. — Let M ⊂ C2n be a real analytic set defined by

(3.20)–(3.21) with σ of the form (3.1). Then M is generic, irreducible and

of codimension m. Also, a germ of any real analytic function f vanishing

on a topological component of M , of which the closure contains the origin,

admits a decomposition a1r1 + · · · + amrm for some complex-valued real

analytic functions aj with min{ord aj} = ord f − 2. Moreover, the set Q,

defined by (3.22), is Levi-flat.

Proof. — The proof is almost the same as that of Proposition 3.5.
Take a point z0 = (x0, y0) on Q such that x0

j 6= 0 6= y0
j for j = 1, . . . ,m.

Then ∂(q1, . . . , qm)/∂(x1, . . . , xm) 6= 0 at z0. This shows that Q has
codimension at most m, and that Q is generic if codimQ = m. By the
implicit function theorem, one then knows that M has codimension at
most m, and it is generic if the codimension is m. Using Lemma 3.4, one
shows that the complexification of M is the irreducible complex variety of
codimension m given by rj(z, z) = 0, j = 1, . . . ,m. Since M∗ is a totally
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real subspace in (M)∗ of maximal dimension, the complexification of f
vanishes on M. Lemma 3.3 says that the complexification, and hence f ,
can be decomposed into a1r1 + · · ·+ amrm for some real analytic functions
aj .

Finally, Q \ ∪m
j=1{xj = 0} is the disjoint union of complex manifolds

yj = itjxj , 1 ≤ j ≤ m

with parameters tj ∈ C satisfying tσ(j) = tj . Therefore, Q is Levi-flat. The
proof of Proposition 3.7 is complete. tu

Lemma 3.8. — Let σ be a permutation of 1, . . . ,m, and let

l1, . . . , lm be C-linear functions on C2n satisfying

(3.23) xj lσ(j)(x, y) + xσ(j)lj(x, y) = 0.

Then lj(x, y) = cjxj and

(3.24) cσ(j) + cj = 0.

If c, d ∈ Cm satisfy (3.24) with c− d ∈ (C∗)m, equations

(3.25) x∗j = yj − cjxj , y∗j = (yj − djxj)/(cj − dj), 1 ≤ j ≤ m

define a nonsingular linear transformation with

(3.26) x∗jy
∗
σ(j) + x∗σ(j)y

∗
j = xjyσ(j) + xσ(j)yj .

Proof. — By (3.23) it is clear that l(x, y) = (c1x1, . . . , cmxm) with
cj satisfying (3.24). Now, c − d ∈ (C∗)m implies that the transformation
(3.25) is nonsingular. In view of (3.24), the computation for (3.26) is
straightforward. The details are left to the reader. tu

Proposition 3.9. — Let M ⊂ C2n be a Levi-flat real analytic set

defined by (3.20)–(3.21). Then in suitable holomorphic coordinates, M is

given by

(3.27) xjyσ(j) + xσ(j)yj +Rj(z, z) = 0, j = 1, . . . ,m

with

Rj(z, z) =
m∑

k,l=1

xkylajkl(z, z) +
m∑

k,l=1

xkylaσ(j)kl(z, z)(3.28)

+
m∑

k,l=1

xkylbjkl(z, z′′) +
m∑

k,l=1

xkylbσ(j)kl(z, z′′),
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(3.29) bjkl(z, 0′′) ≡ bσ(j)kl(z, 0′′) ≡ 0,

(3.30) ajkσ(j)(z, 0) ≡ ajjl(0, z) ≡ 0.

Proof. — Put rε
j(z, z) = rj(εz, εz)/ε2 for ε > 0. Let M ε be the

dilation of M defined by rε
1 = · · · = rε

m = 0. Set

Eε: ∂rε
1 ∧ · · · ∧ ∂rε

m 6= 0.

Obviously, M0 ∩ E0 contains an m-dimensional totally real submanifold
parameterized by

(3.31) x′ = (1, . . . , 1), x′′ = y′′ = (0, . . . , 0),

(3.32) yj = y0
j (t) =

{
itj , σ(j) = j,
tj + itσ(j) ≡ −yσ(j), σ(j) > j

for tj ∈ R. By the implicit function theorem, M ε ∩ Eε also contains an
m-dimensional totally real submanifold γε(t) parameterized by (3.31) and

yj = yε
j(t) = y0(t) + αj(t, ε), −1 < tj < 1, j = 1, . . . ,m,

where αj(t) are real analytic functions in t and ε, satisfying ασ(j)(t, ε) =
αj(t, ε). The Segre variety Qγε(t) is defined by

(3.33) yj + xjyσ(j)(t) +Rj(z, γε(t), ε) = 0, j = 1, . . . ,m.

Note that Rj ≡ 0 when ε = 0. By the fixed-point theorem, Qγε(t) ≡
Qγε(t) ∩ {|xj | < 2, |yj | < 1/2} is a graph of the form

yj = hε
j(x, y

′′, t), |xj | < 2, j = 1, . . . ,m

for small ε and t. In particular, Qγε(t) is contained in M ε.

We would like to show that 0 ∈ Qγε(t). From (3.32), it follows that
for small ε and generic t, Qγε(t) intersects a fixed Qγε(t0) transversely along
S = Qγε(t) ∩ Qγε(t0). Fix a generic t. S contains points which can be
arbitrarily close to the origin as ε tends to 0, and near the origin S is a
closed complex submanifold of dimension 2n−2m. To show that 0 ∈ Qγε(t)

it suffices to verify that S contains the origin. Since Qγε(t) and Qγε(t0)

are complex submanifolds of codimension m ≤ n, the span of their tangent
spaces at each point in S is the whole space C2n. Therefore, the differentials
drj vanish on S. On the other hand, we have

∂xjrj = yσ(j) +O(|z|2), ∂yjrj = xσ(j) +O(|z|2), j = 1, . . . ,m.

Near the origin the above equations define a (connected) smooth real
submanifold S′ of dimension 2n − 2m. Obviously, S′ contains the origin.
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Since S(⊂ S′) and S′ have the same real dimension and both are closed
sets, they must coincide near the origin. This shows that S, and hence
Qγε(t), contains 0. Notice that the union of Qγε(t) contains an open subset
U of (M ε)∗ with γε ⊂ U and that 0 ∈ Qw for w ∈ U . We conclude that Q0

contains the open subset U of (M ε)∗; consequently, the complex variety Q0

is the whole space C2n, since M ε is generic. Therefore, rj(ξ, η, 0, 0) ≡ 0 for
j = 1, . . . ,m.

Our next step is to find new coordinates for a fixed M ε so that it has
two Segre varieties forming part of coordinate subspaces. To this end, we
fix a small ε so that M ε contains two Segre varieties Qγε(t′) and Qγε(t′′)

intersecting transversely at the origin. As shown above, Qγε(t′), Qγε(t′′)

are given by y′ = g(x, y′′) and y′ = h(x, y′′), respectively. Moreover,
g(0) = h(0) = 0. Since Qγ(t′) is contained in M , then

rj(x, g(x, y′′), y′′, x, g(x, y′′), y′′) ≡ 0

for j = 1, . . . ,m. Hence,

[gj(x, y′′)]1xσ(j) + [gσ(j)(x, y′′)]1xj = 0.

This means that [g1]1, . . . , [gm]1 satisfy (3.23), so [gj ]1(x, y) = cjxj . Simi-
larly, [hj ]1(x, y) = djxj . Define the new coordinates

x∗j = yj − gj(x, y′′), y∗j = (yj − hj(x, y′′))/(cj − dj), j = 1, . . . ,m,

for which the linear terms are of the form (3.25). NowM ≡M ε contains two
Segre varieties x∗1 = · · · = x∗m = 0 and y∗1 = · · · = y∗m = 0. For brevity, we
replace z∗ by z. In view of rj(z, 0) = rj(0, z) ≡ 0 and the reality condition
(3.21), one sees that M is given by (3.27) with

Rj(z, z) =
m∑

k,l=1

xkyla
′
jkl(z, z) +

m∑
k,l=1

xkyla
′′
jkl(z, z)

+
m∑

k,l=1

xkylb
′
jkl(z, z

′′) +
m∑

k,l=1

xkylb
′′
jkl(z, z

′′),

where a′jkl(z, z) is independent of x1, . . . , xk−1, y1, . . . , yl−1, and a′′jkl(z, z) is
independent of x1, . . . , xk−1, y1, . . . , yl−1. Obviously b′jkl, b

′′
jkl, independent

of x1, . . . , xk−1, y1, . . . , yl−1, are unique, and b′′σ(j)kl(z, z
′′) = b

′
jkl(z, z

′′) by
the reality condition Rj = Rσ(j). Put ajkl = (a′jkl + a′′σ(j)kl)/2. Then the
reality condition Rj = Rσ(j) implies that Rj are given by (3.27)–(3.29).
Note that ajkl(z, z) remains independent of x1, . . . , xk−1, y1, . . . , yl−1.

To achieve (3.30), we need to change coordinates one more time. We
shall leave the Segre varieties x1 = · · · = xm = 0 and y1 = · · · = ym = 0
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unchanged. Thus, we consider a holomorphic transformation

ψ:xj → xj + uj(z), yj → yj + vj(z), j = 1, . . . ,m

with

(3.34) uj |x′=0 = 0, vj |y′=0 = 0, uj , vj = O(2).

Put ψ−1(M) in the form of (3.27)–(3.29) with a∗jkl in place of ajkl. Thus,
from r∗j = rj ◦ ψ one obtains

(3.35) a∗j (z, z) + a∗σ(j)(z, z) = yσ(j)uj + xjvσ(j) + yjuσ(j) + xσ(j)vj

+ujvσ(j) + uσ(j)vj + aj(z∗, z∗) + aσ(j)(z∗, z∗)

for z∗ = (x′ + u, x′′, y′ + v, y′′) and

aj(z, z) =
∑

xkylajkl(z, z), a∗j (z, z) =
∑

xkyla
∗
jkl(z, z).

Comparing the coefficients of yσ(j)x
αyβ and xjx

αyβ in (3.35), respectively,
one gets

m∑
k=1

xka
∗
jkσ(j)(z, 0) = uj +

m∑
k=1

(xk + uk(z))ajkσ(j)(x+ u, y + v, 0),

m∑
l=1

yla
∗
jjl(0, z) = vσ(j) +

m∑
l=1

(yl + vl(z))ajjl(0, x+ u, y + v).

Now, the implicit function theorem implies that there exist unique u, v =
O(2) satisfying

(3.36)
m∑

k=1

xka
∗
jkσ(j)(z, 0) =

m∑
l=1

yla
∗
jjl(0, z) = 0, j = 1, . . . ,m.

Obviously, the unique solution (u, v) satisfies (3.34) also. Note that in
the decompositions (3.28), a∗jkσ(j)(z, 0) is independent of x1, . . ., xk−1 and
a∗jjl(0, z) is independent of y1, . . . , yl−1. Now identities (3.36) yield (3.30).
This completes the proof of the proposition. tu

Proof of Theorem 3.6. — Following [6], we want to show that the
Levi-flat set M , defined by (3.27)–(3.30), is the one given by (3.22).

Consider a real manifold in M parameterized by x′ = (1, . . . , 1),
x′′ = y′′ = 0 and

yj(t) =


itj + αj(t), σ(j) = j,
tj + itσ(j) + αj(t), σ(j) > j,
−tσ(j) + itj + αj(t), σ(j) < j
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with t ∈ Rm, αj(0) = 0 and ασ(j)(t) = αj(t). By the implicit function
theorem, such αj exist.

The Segre variety Qγ(t) is defined by

yj + yσ(j)(t)xj +Rj(z, γ(t)) = 0, j = 1, . . . ,m.

By rescaling the coordinates, one may assume that Rj are small functions.
Hence, Qγ(t), intersecting with a fixed neighborhood of the origin, is a
smooth complex submanifold given by

yj = hj(x, y′′, t), hj(x, y′′, 0) = hj(0, t) = 0

for j = 1, . . . ,m, where the last identity comes from 0 ∈ Qγ(t).

Since Qγ(t) is contained in M , we have

0 ≡ xjhσ(j)(x, y′′, t) + xσ(j)hj(x, y′′, t)(3.37)

+
∑

{xkhl(x, y′′, t)ajkl(z, z) + xkhl(x, y′′, t)aσ(j)kl(z, z)}

+
∑

{xkhl(x, y′′, t)bjkl(z, z′′) + xkhl(x, y′′, t)bσ(j)kl(z, z′′)}

for z = (x, h(x, y′′), y′′). Expanding the right-hand side of (3.37) as power
series in x, y′′, x, y′′ and collecting quadratic terms yields

[hj ]1(x, y′′, t) = cj(t)xj , cσ(j)(t) + cj(t) = 0.

Now looking at (3.37), we see that the homogeneous terms xαy′′
β
xσ(j) for

|α|+ |β| = 2 give us

[hj ]2(x, y′′, t) = −
∑

xkcσ(j)(t)[ajkσ(j)]1(x, [h]1(x, y′′, t), y′′, 0)

−
∑

[hl]1(x, y′′, t)[aσ(j)σ(j)l]1(0, x, [h]1(x, y′′, t), y′′).

¿From (3.30) it follows that [hj ]2 ≡ 0. Assuming for the sake of induction
that [hj ]2 = · · · = [hj ]N = 0 for 1 ≤ j ≤ m, one gets from (3.30) and (3.37)
that

[hj ]N+1(x, y′′, t) =
∑

xkcσ(j)(t)[ajkσ(j)]N (x, y, 0)

+
∑

[hl]1(x, y′′, t)[aσ(j)σ(j)l]N (0, x, y) ≡ 0

for y′ = [h]1(x, y′′, t). This shows that hj(x, y′′, t) are linear in x, and that
Qγ(t) is given by

yj = cj(t)xj , cσ(j)(t) + cj(t) = 0, j = 1, . . . ,m.

Therefore, M contains a portion of Q; consequently, M and Q coincide as
they are irreducible. The proof of the theorem is complete. tu
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4. Invariants of Levi-flat sets
and symplectic transformations.

Results in the preceding section allow one to choose much simpler
defining functions of Levi-flat sets in suitable holomorphic coordinates.
In this section we shall use (more restrictive) symplectic coordinates to
study the defining functions for the Levi-flat sets that are invariant under
a holomorphic symplectic mapping.

This section is divided into two parts: We shall first complete the
proofs of Theorem 1.1 and Theorem 1.3 after we obtain the first-integrals
from Levi-flat invariant sets. We then turn to a meromorphic eigenfunction
problem, arising from Levi-flat sets, and formulate Theorem 4.9, from which
Theorem 1.2 follows. The proof of Theorem 4.9 is given in Section 5.

¿From now on, Levi-flat sets in C2n are of codimension n. We shall
also take into account that in section 3 we ignored the symplectic invariants
µj and used a simpler permutation σ defined by (3.1). Therefore, we need
to return to the 4 types of singularities, which involve µj (and a more
general σ in case of (4.21) below).

Let σ be a permutation of 1, . . . , n satisfying

(4.1) σ(j) = j, 1 ≤ j ≤ K; σ(j) 6= j = σ2(j), j > K.

We first consider Q ⊂ C2n defined by

(4.2) qj(ξ, η) + µjqσ(j)(ξ, η) = 0, j = 1, . . . , n

with

µj = 1, 1 ≤ j ≤ K; µσ(j) = µj , |µj | = 1, j > K;
(4.3)

qj(ξ, η) =
{∑n

k=1 ajkξkηk, 1 ≤ j ≤ K,
ξjησ(j), K < j ≤ K + 2L = n

with (aij)1≤i,j≤K of rank K. Note again that we allow K = 0, or n as
special cases.

With the above notations, consider a Levi-flat real analytic set of the
form

(4.4) qj(ξ, η) + µjqσ(j)(ξ, η) +Rj(ξ, η, ξ, η) = 0, j = 1, . . . , n

with

(4.5) Rσ(j)(ξ, η, ξ, η) = µjRj(ξ, η, ξ, η).
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Let ξ′ =
√
µξ ≡ (

√
µ1ξ1, . . . ,

√
µnξn), η′ = η. Then equations (4.4)–(4.5),

after multiplied by
√
µj , are of the form

q̃j(ξ′, η′) + q̃σ(j)(ξ
′
, η′) + R̃j(ξ′, η′, ξ

′
, η′) = 0

with

q̃j(ξ′, η′) =
√
µjqj(

√
µξ′, η′), R̃j(ξ′, η′, ξ

′
, η′) =

√
µjRj(

√
µξ′, η′).

Now Theorem 3.1 says that the set is actually given by

q̃j(ξ′, η′) + q̃σ(j)(ξ
′
, η′) + H̃j(ξ′, η′) + H̃σ(j)(ξ

′
, η′) = 0.

Returning to the original coordinates and putting

Hj(ξ, η) =
√
µjH̃j(

√
µξ, η),

one sees that the set is of the form

(4.6) M : rj = qj(ξ, η) + µjqσ(j)(ξ, η) +Hj(ξ, η) + µjHσ(j)(ξ, η) = 0

for j = 1, . . . , n, where σ, qj , and µj are given by (4.1) and (4.3), and
Hj(ξ, η) = O(3) are holomorphic.

Theorem 4.1. — Let M,Hj , qj be as in (4.6). Let ϕ be a holo-

morphic symplectic mapping defined by (1.1)–(1.2) with ϕ(M) = M , and

Φ a formal symplectic transformation such that ΦϕΦ−1 is in the Birkhoff

normal form (1.3). Then |λσ(j)| = |λj | and

(qj +Hj) ◦ Φ−1(ξ, η) = qj(ξ, η) + Ĥj(ξη, ξ′′η′′σ), j = 1, . . . , n

with Ĥj(ξη, ξ′′η′′σ) = O(|(ξ, η)|4) and ξ′′η′′σ = (ξK+1ησ(K+1), . . . , ξmησ(m)).

Anticipating the proof of Theorem 4.1, we first prove Theorem 1.1
and Theorem 1.3.

Proof of Theorem 1.1. — Let M be the Levi-flat real analytic set
defined by

<

{
n∑

k=1

ajkξkηk

}
+Rj(ξ, η, ξ, η) = 0, j = 1, . . . , n,

where the matrix (ajk) is of rank n and Rj(ξ, η, ξ, η) = O(3) are real-valued
convergent power series. In Section 3 (Theorem 3.1) we have simplified the
equation of M , (from now on) given by

<{qj(ξ, η) +Hj(ξ, η)} = 0, j = 1, . . . , n

with Hj(ξ, η) = O(3) holomorphic, and qj =
∑n

k=1 ajkξkηk.
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Theorem 4.1 establishes that if a symplectic mapping ϕ, given by
(1.1)–(1.2) leaves the set M invariant, and if Φ is a formal symplectic
transformation that puts ϕ into its Birkhoff normal form, then (qj +Hj) ◦
Φ−1 are power series which depend only on the products ξjηj . (Indeed
under our present hypotheses qj depend only on ξη and σ is just the
identity.) These power series are thus invariant under the action of the
formally normalized mapping. Hence the functions qj + Hj are invariant,
under the action of ϕ. Since (ajk)1≤j,k≤n is nonsingular, a theorem of Vey
[18] says that ϕ is normalizable by convergent transformations. The proof
of Theorem 1.1 is complete. tu

Proof of Theorem 1.3. — Let r be the defining function of M , and q
the quadratic form of r. Note that the order of r might be one, which can
however be ruled out by applying the argument below to r2.

Since M is Levi-flat and Q: q = 0 is a hypersurface in C2, then Q
is also Levi-flat [6]. Next, we want to show that Q is invariant under Λ.
Consider first the case that M is the union of two distinct smooth real
hypersurfaces. In this case, r = r1r2 with r1(0) = r2(0) = 0. Since r ◦ ϕ
vanishes on r1 = 0 and on r2 = 0, then r1, r2 divide r ◦ ϕ. In particular,
r ◦ϕ = ur. Thus, q ◦Λ = u(0)q, i.e., Λ(Q) = Q. Next, we assume that M is
irreducible. Then either r is irreducible, or r = ur21 with r1(0) = 0. When
r is irreducible, r(ξ, η, ξ, η) is also irreducible as a germ of holomorphic
function in ξ, η, ξ, η, because M is of codimension 1 (e.g., see [6]). Since
r ◦ ϕ vanishes on M c, then r divides r ◦ ϕ, which implies that Λ(Q) = Q.
When r = ur21, it is clear that r1 divides r1 ◦ϕ. Denote by aξ+bη the linear
part of r1. Then aλξ + bλη = u(0)(aξ + bη). Since u(0) is real, the above
identity contradicts that not all a, b are zero. (Note that the contradiction
also implies that r starts with quadratic terms, as claimed at the beginning
of the proof.) Therefore, Q is invariant under Λ.

Applying the above argument to Q, one sees that all germs of real
analytic functions vanishing on Q are divisible by q, i.e., that I = IQ
is spanned by the real quadratic form q. Hence, I is contained in one of
Eij and E1. Since the former contain no Λ-invariant C-linear subspace
of dimension one, then I is contained in E1. Hence, we get q(ξ, η, ξ, η) =
<{aξη}+b|ξ|2+c|η|2. If b = c = 0, Theorem 1.1 says that ϕ is normalizable
by holomorphic symplectic transformations.

If b or c is not zero, a result in [6] says that a = 0. Thus, we see that
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M is given by

(4.7) b|ξ|2 + c|η|2 +R(ξ, η, ξ, η) = 0, b · c < 0, b, c ∈ R

with R(ξ, η, ξ, η) = O(3) real-valued. By a change of symplectic coordi-
nates, one may assume b = −c. Of course the proof of the theorem is
complete, by applying Theorem 1.2. tu

Alternatively, one can prove the theorem without using Theorem 1.2
when M is given by (4.7), for which we shall prove the next result. tu

Proposition 4.2. — Let ϕ be a holomorphic symplectic mapping

of C2 of the form

ξ′ = λξ +O(2), η′ = λ−1η +O(2), λ2 6= 1.

LetM ⊂ C2 be a Levi-flat real analytic hypersurface given by (4.7). Assume

that as germs of real analytic sets, ϕ(M) = M . Then |λ| = 1, and there

exists a single change of holomorphic symplectic coordinates that puts M

into the complex cone |ξ|2 − |η|2 = 0 and linearizes ϕ simultaneously.

Proof. — Notice that for this proposition, we allow λ to be a root
of unity. Also, it is obvious that |λ| = 1, since r(ξ, η, ξ, η) = b|ξ|2 + c|η|2 +
R(ξ, η, ξ, η) is irreducible and r ◦ ϕ = dr for some analytic real function d.

Since M is Levi-flat, a theorem in [6] says that there is a holomorphic
transformation ψ1 such that ψ1(M) is the complex cone |ξ|2 − |η|2 = 0.
(See also Theorem 3.6 in Section 3.) Next, we want to find a holomorphic
mapping

ψ2: ξ′ = p(ξ, η)ξ, η′ = p(ξ, η)η

such that the Jacobian determinant of ψ2 satisfies

(4.8) det(Dψ2) = {det(Dψ1)} ◦ {ψ−1
1 }.

Thus, ψ = ψ2 ◦ψ1 is symplectic, and ψ(M) is still the cone |ξ|2 − |η|2 = 0.
Write the right-hand side of (4.8) as a2

0(1+u(ξ, η)) with a0 6= 0 a constant,
and u(0) = 0. We seek a solution of the form p(ξ, η) = a0(1+v(ξ, η)). Thus,
(4.8) becomes

(4.9) ξvξ + ηvη + 2v = (ξvξ + v)(ηvη + v)− ξvξ · ηvη + u.

Comparing coefficients, one sees that there exists a unique formal power
series solution v(ξ, η) with v(0) = 0. Let uij , vij be the coefficients of u, v,
respectively. Put

u∗ =
∑

|uij |ξiηj , w =
∑

(i+ j + 2)|vij |ξiηj .
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Obviously, ξvξ, ηvη, ξvξ + v, ηvη + v are majorized by w, for which we write
ξvξ ≺ w, etc. Thus, (4.9) implies that

w ≺ 2w2 + u∗, w(0) = u∗(0) = 0.

By the Cauchy majorant argument, w, and hence v, is convergent.

Now ϕ∗ = ψϕψ−1 is a holomorphic mapping sending the complex
cone |ξ|2−|η|2 = 0 into itself. In particular, ϕ∗ sends a Segre variety of the
cone into another Segre variety, i.e., ϕ∗ sends a complex line (inside the
cone) through the origin to another complex line. Hence, one first sees that
ϕ∗ leaves the eigenspaces of its linear part invariant. Thus, λ 6= λ implies
that

ϕ∗: ξ → f(ξ, η)λξ, η → g(ξ, η)λη

with f(0) = g(0) = 1. Furthermore, g/f is holomorphic near the origin,
and remains constant on each complex line in the cone. Therefore, f ≡ g

on the cone, and hence near the origin in C2. This shows that ϕ∗ is of the
form (ξ, η) → f(ξ, η)(λξ, λη) with f(0) = 1. Since det(∂ϕ∗/∂(ξ, η)) = 1,
we obtain f(ξ, η) ≡ 1. In particular, ψ ◦ ϕ ◦ ψ−1 = ϕ∗ is a linear transfor-
mation. tu

We now turn to the proof Theorem 4.1. Let us first prove the following.

Lemma 4.3. — Let Q ⊂ C2n be defined by (4.2)–(4.3), and let h

be a holomorphic homogeneous polynomial in ξ, η. Assume that h is real-

valued on Q. Then h is a polynomial in q1, . . . , qn.

Proof. — By changing linear coordinates, we may assume that µj =
−1, and that σ(j) = L+ j for j = K + 1, . . . ,K + L. Put ξ = (ξ′, ξ′′), η =
(η′, η′′) with

ξ′′ = (ξK+1, . . . ξn) = (xK+1, . . . , xK+L, yK+1, . . . , yK+L),

η′′ = (ηK+1, . . . ηn) = (zK+1, . . . , zK+L, wK+1, . . . , wK+L).

Assume first that h depends only on ξ′′, η′′. Expand h(x, y, z, w) =∑
habcdx

aybzcwd. On Q, one has wj = yjzjx
−1
j for j = K + 1, . . . ,K + L.

Since h is real on Q, then∑
habcdx

a−dybzcydzd =
∑

habcdy
dzdxa−dybzc.

Fix a, b, c, d with habcd 6= 0. Comparing two sides of the above identity, one
sees that there exist a′, b′, c′, d′ such that

(a− d, b, c, 0, d, d) = (0, d′, d′, a′ − d′, b′, c′).
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Hence, a = d and b = c. This shows that h(ξ′′, η′′) =
∑
habba(ξ′′η′′σ)(a,b).

For the general case, we shall prove by induction on l that there exist
decompositions

(4.10) h(ξ, η) =
∑
|β|<l

cαβ(ξ′′, η′′)ξ′αη′β +
∑
|γ|≥l

cγ(ξ′′η′′σ)qγ1
1 · · · qγK

K

for l = 0, 1, . . .. Fix ξ′′, η′′ satisfying equations (4.2) for j > K, and let ξ′, η′

satisfy
n∑

k=1

ajkξkηk = tj , j = 1, . . . ,K

for tj ∈ R. Solving for η1, . . . , ηK yields

(4.11) ηj = ξ−1
j bj(t) + ξ−1

j

n∑
k=K+1

cjkξkηk, j = 1, . . . ,K,

where t → b(t) = (b1(t), . . . , bK(t)) is a nonsingular linear transformation.
The decompositions (4.10) are trivial for l > deg h. Assuming that the
decompositions (4.10) hold for l > k, we want to show that (4.10) for l = k

is valid. ¿From (4.10)–(4.11) one sees that terms of order k in t are given
by ∑

|β|=k

cαβ(ξ′′, η′′)ξ′α−β
bβ(t).

For fixed ξ′′, η′′, the above summation is real-valued for t ∈ RK and
ξ′ ∈ CK . Since the transformation t → b(t) is nonsingular, we know that
on Q

(4.12)

cαβ(ξ′′, η′′) = 0, α 6= β, |β| = k,

=

∑
|β|=k

Bβ
αcββ(ξ′′, η′′)

 = 0, |α| = k,

where Bβ
α are the coefficients of the linear transformation

(4.13) tβ → bβ(t) =
∑
|α|=k

Bβ
αt

α, |β| = k.

Now (4.12) implies that for α with |α| = k,
∑

|β|=k B
β
αcββ(ξ′′, η′′) are

polynomials in ξ′′η′′σ . Since the linear transformation (4.13) is nonsingular,
then cββ(ξ′′, η′′) are power series in ξ′′η′′σ for |β| = k. Rewrite (4.10) as

h(ξ, η) =
∑
|β|<k

c̃αβ(ξ′′, η′′)ξ′αη′β +
∑
|γ|≥k

cγ(ξ′′η′′σ)qγ1
1 · · · qγK

K .

By induction, the proof of the lemma is complete. tu
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To state the next result, we need some notation. For a power series
f(ξ, η, ξ, η), denote by P0f the sum of terms in the power series expansion
of f , which are not of the form (ξη)a(ξη)b(ξ′′η′′σ)c(ξ′′η′′σ)d.

Lemma 4.4. — Let r1, . . . , rn be the formal power series in (4.6)

with qj being (4.3). Let d1, . . . , dn be power series in ξ, η, ξ, η of order at

least k. Assume that

[P0d1]kq1 + · · ·+ [P0dn]kqn = 0.

Then there exist formal power series d̃1, . . . , d̃n such that

(4.14) d1r1 + · · ·+ dnrn = d̃1r1 + · · ·+ d̃nrn

with ord d̃j ≥ k and [P0d̃j ]k = 0.

Proof. — Choose C-linear combinations r∗1 , . . . , r
∗
K of r1, . . . , rK so

that

r∗j (ξ, η, ξ, η) = ξjηj +
∑
k>K

bjkξkηk +
n∑

k=1

cjkξkηk +O(3).

It suffices to prove the lemma for

r∗1 , . . . , r
∗
K , rK+1, . . . , rn.

For brevity, we drop the superscript of r∗j . For j > 1, decompose [dj ]k =
ujq1 + [u′j ]k so that [u′j ]k contains only terms ξαηβξ

γ
ηδ with α1 = 0, or

β1 = 0. Put
u′j = dj − ujr1, j > 1.

Then
d1r1 + · · ·+ dnrn = d̃1r1 + u′2r2 + · · ·+ u′nrn.

Comparing terms ξαηβξ
γ
ηδ with α1, β1 ≥ 1, one sees that [P0d̃1]k = 0, and

hence
[P0u

′
2]kq2 + · · ·+ [P0u

′
n]kqn = 0.

Inductively, one determines d̃2, . . . d̃K so that

d1r1 + · · ·+ dnrn = d̃1r1 + · · ·+ d̃KrK + u′′k+1rK+1 + · · ·+ u′′nrn

and [P0d̃1]k = · · · = [P0d̃K ]k = 0. To find d̃K+1, we decompose u′′j =
vjrK+1 + v′j for j > K + 1 so that [v′j ]k contains only terms of the form
ξαηβξ

γ
ηδ with αK+1 = 0 or βσ(K+1) = 0. Thus,

u′′K+1rK+1 + · · ·+ u′′nrn = d̃K+1rK+1 + v′K+2rK+2 + · · ·+ v′nrn.
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Comparing the terms of the form ξαηβξ
γ
ηδ with αK+1, βσ(K+1) ≥ 1 yields

[P0d̃k+1]k = 0. Now the proof of the lemma is complete by induction. tu

Proof of Theorem 4.1. — By Proposition 3.5, r1 ◦ ϕ, . . . , rn ◦ ϕ are
in the ideal generated by r1, . . . , rn. In particular,

qj(λξ, λ−1η) + µjqσ(j)(λξ, λ
−1
η) =

n∑
k=1

cjk(qk(ξ, η) + µkqσ(k)(ξ, η)

for some constants cjk, where

λξ ≡ (λ1ξ1, . . . , λnξn), λ−1η ≡ (λ−1
1 η1, . . . , λ

−1
n ηn).

Since (ajk)1≤j,k≤K is nonsingular, then q1, . . . , qn are linearly independent.
Now, a simple computation shows that cjj = 1 for j = 1, . . . ,K,

λjλ
−1
σ(j) = cjj = λσ(j)λ

−1

j

for j = K + 1, . . . , n, and cjk = 0 for j 6= k. In particular, |λσ(j)| = |λj |.
Now, we have decompositions

(4.15) ∆rj ≡ rj ◦ ϕ− λjλ
−1
σ(j)rj =

∑
Djkrk, 1 ≤ j ≤ m

with

(4.16) min
k
{ordDjk} = min{ord∆rj} − 2 > 0.

By abuse of notation, we replace ΦϕΦ−1 by ϕ, and Φ(M) by M , etc. Then
M is of the form (4.6), while H1, . . . ,Hn are formal power series.

We need to show that

(4.17) [P0Hj ]d+1 = 0, j = 1, . . . , n.

For the purpose of induction we shall also prove that there exist decompo-
sitions

(4.18) rj ◦ ϕ− λjλ
−1
σ(j)rj =

∑
D̃jkrk, j = 1, . . . , n

with

(4.19) [P0D̃ij ]d−1 = 0.

Obviously, (4.17)–(4.19) hold for d = 1 when formulae (4.18) are replaced
by (4.15). Assume for induction that [D̃ij ]k for k < d have been determined
such that (4.18)–(4.19) hold. We would like to show that (4.18)–(4.19) hold
if d is replaced by d + 1. For brevity we shall temporarily replace [Hj ]d+2

by Hj , and [Djk]d by Djk, etc. Then by (4.17)–(4.19), terms of order d+ 2
in (4.18) yield

(4.20) P0Kj(ξ, η) + µjP0Kσ(j)(ξ, η) =
∑

P0Djk · [rk]2
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with
Kj(ξ, η) = Hj(λξ, λ−1η)− λjλ

−1
σ(j)Hj(ξ, η).

Obviously, the real and imaginary parts of the left-hand side of (4.20), i.e.,
<{P0Kj + µjP0Kσ(j)} and <{−iP0Kj + iµjKσ(j)}, vanish on Q. ¿From
Lemma 4.3, it follows that Kj are polynomials in q1, . . . , qn; in particular,
P0Kj = 0. Now the non-resonance condition (1.2) yields P0Hj = 0, which
gives us (4.17) with d+ 1 in place of d.

We now have ∑
P0[D̃jk]d · [rk]2 = 0.

In view of Lemma 4.4, one can modify [D̃ij ]d so that (4.18)–(4.19) hold
when d is replaced by d+ 1. This completes the proof of the theorem. tu

The rest of section is to study the Levi-flat real analytic sets M ⊂ C2n

of the form

(4.21) qj(ξ, η, ξ, η) +Rj(ξ, η, ξ, η) = 0, j = 1, . . . , n

with

qj =
{
|ξj |2 − µj |ησ(j)|2, 1 ≤ j ≤ K,
ξjξσ(j) − µjηjησ(j), K < j ≤ n,

where µj and σ (a permutation of 1, . . . , n) satisfy

(4.22)
1 ≤ σ(j) ≤ K, µσ(j) = 1/µj > 0, 1 ≤ j ≤ K;

σ(j) = σ−1(j) 6= j, |µj | = 1, µσ(j) = µj , K < j ≤ n

for some 0 ≤ K ≤ n + 1. We further assume that Rj satisfy the reality
conditions

Rj(ξ, η, ξ, η) = Rj(ξ, η, ξ, η), 1 ≤ j ≤ K;

Rσ(j)(ξ, η, ξ, η) = Rj(ξ, η, ξ, η), K < j ≤ n.

With the above assumptions and the change of coordinates ξj → ξj , ηj →√
µσ−1(j)ηj , we can then apply Theorem 3.6. Thus, M is given by

(4.23) 0 = rj =

{
Fj(ξ, η)F j(ξ, η)− µjGσ(j)(ξ, η)Gσ(j)(ξ, η), j ≤ K,

Fj(ξ, η)Fσ(j)(ξ, η)− µjGσ(j)(ξ, η)Gj(ξ, η), j > K,

where σ, µj are given by (4.22), and

(4.24)
Fj(ξ, η) = ξj + fj(ξ, η), Gj(ξ, η) = ηj + gj(ξ, η),
fj(ξ, η) = O(2), gj(ξ, η) = O(2).

Introduce meromorphic functions

(4.25) mj(ξ, η) =
ξj + fj(ξ, η)

ησ(j) + gσ(j)(ξ, η)
, j = 1, . . . , n.
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Proposition 4.5. — Let M be a real analytic set given by (4.22)–

(4.24). Then m1, . . . ,mn depend only on M . If M is invariant under ϕ

defined by (1.1)–(1.2), then |λσ(j)| = 1/|λj | and

(4.26) mj ◦ ϕ = λjλσ(j)mj , j = 1, . . . , n.

Proof. — We first want to show that µj ,mj are uniquely determined
by M . Assume that M is also given by (4.23)–(4.24) with r∗j , µ

∗
j , f

∗
j , g

∗
j in

place of rj , µj , fj , gj , respectively. Definem∗
j as in (4.25). By the Weierstrass

preparation theorem, we may assume that the coefficients of gj , g
∗
j satisfy

the normalizing condition

(4.27) gjαβ = 0, βj 6= 0.

We need to show that µ∗j = µj , f
∗
j = fj , and g∗j = gj . Since r∗j −rj vanishes

on M , it follows form Proposition 3.7 that

(4.28) r∗j − rj =
∑

Djkrk

with

(4.29) min{ordDjk} = ord(r∗j − rj)− 2.

Comparing the quadratic terms in (4.28) gives µ∗j = µj and Djk(0) = 0.

Assume for induction that

∆fj ≡ f∗j − fj = O(d), ∆gj ≡ g∗j − gj = O(d), Djk = O(d− 1).

For brevity, we replace [fj ]d by fj , and [Djk]d−1 by Djk, etc. In (4.28)
terms of the form ξαηβξ

γ
ηδ with |α|+ |β| = d and |γ|+ |δ| = 1 give us

(4.30) ξj∆fj − µjησ(j)∆gσ(j) =
∑

Djk(ξ, η, 0, 0)[rk]2, j ≤ K,

(4.31) ξσ(j)∆fj − µjηj∆gσ(j) =
∑

Djk(ξ, η, 0, 0)[rk]2, j > K.

On Q, the right-hand sides of (4.30)–(4.31) vanish and one can put

(4.32)
ησ(j) = ρjξj/

√
µj , |ρj | = 1, j ≤ K;

ηj = √
µjρjξj , ρjρσ(j) = 1, j > K.

Note that ∆gσ(j) is independent of ησ(j). Inserting (4.32) into the right-
hand side of (4.30) and discarding terms containing ξj yields ∆gσ(j)(ξ, η) =
0, where η is given by (4.32). This shows that the holomorphic function
∆gσ(j) vanishes on Q. Since Q contains a totally real submanifold in C2n of
maximal dimension, then ∆gj = 0, i.e., [g∗j − gj ]d = 0 for j ≤ K. Similarly,
inserting (4.32) into the right hand side of (4.31) and discarding terms
containing ξσ(j) yields [g∗j − gj ]d = 0 for K < j ≤ n. Now (4.30)–(4.31)
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read ∆fj(ξ, η) = 0, in which η is given by (4.32). This shows that f∗j = fj .
Now formula (4.29) yields [Djk]d−1 = 0. Thus, under the normalizing
condition (4.27) we obtain by induction that [fj ]d = [f∗j ]d and [g∗j ]d = [gj ]d.
Therefore, µj ,mj are uniquely determined by M .

Now, we can show that |λσ(j)| = 1/|λj | and mj satisfy (4.26).
Note that M = ϕ(M) is also given by (4.23) with µj being replaced by
|λjλσ(j)|2µj and Fj , Gj being replaced by

F ∗j (ξ, η) = λ−1
j Fj ◦ ϕ(ξ, η) = ξj +O(2),

G∗j (ξ, η) = λjGj ◦ ϕ(ξ, η) = ηj +O(2),

respectively. By the above uniqueness result, we have |λσ(j)λj | = 1 and
F ∗j /G

∗
σ(j) = mj , which gives us (4.26). The proof of the proposition is

complete. tu

The above proposition leads us to the question: If a holomorphic sym-
plectic mapping (1.1)–(1.2) admits n meromorphic eigenfunctions (4.25),
can it be put into its Birkhoff normal form by a convergent transformation?

The rest of this section and Section 5 are devoted to this eigenfunction
problem.

Before we turn to the eigenfunction problem, we first remark that a
holomorphic symplectic mapping of the form (1.1)–(1.2) satisfies |λσ(j)| ·
|λj | = 1, when it admits the Levi-flat real analytic set (4.23). Although
the existence of eigenfunctions (4.25) puts no extra restriction on the
eigenvalues of the mapping, it restricts the higher order terms in the
Birkhoff normal, as shown in the following.

Theorem 4.6. — Let ϕ be a holomorphic symplectic mapping

defined by (1.1)–(1.2). Assume that ϕ admits nmeromorphic eigenfunctions

mj given by (4.25). Let Φ be a formal symplectic transformation such that

ΦϕΦ−1: (ξ, η) → (λjξje
Hζj

(ζ), λ−1
j ηje

−Hζj
(ζ)) +O(k).

Then

mj ◦ Φ−1(ξ, η) =
ξjκj(ξη) + f̂j(ξ, η)
ησ(j) + ĝσ(j)(ξ, η)

, min{ord f̂j , ord ĝσ(j)} ≥ k,

where κj are power series in ξ1η1, . . . , ξnηn with κj(0) = 1. Moreover, the

formal power series ω1, . . . , ωn in the normal form (1.3) of ϕ satisfy

(4.33) ωj + ωσ(j) = 0.
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Proof. — For brevity, we replacemj◦Φ−1 bymj , and ϕ by Φ◦ϕ◦Φ−1.
Put mj in the form (4.25), where fj , gj are now formal power series with
gj satisfying the normalizing condition (4.27).

¿From mj ◦ ϕ = λjλσ(j)mj , we get

(4.34) (ησ(j) + gσ(j))(ξjeωj + λ−1
j fj ◦ ϕ)

= (ξj + fj)(ησ(j)e
−ωσ(j) + λσ(j)gσ(j) ◦ ϕ) +O(k + 1).

Assume for induction that

(4.35)
fj(ξ, η) = ξjκj(ξη) +O(d), gj(ξ, η) = O(d),

ωj(ξη) + ωσ(j)(ξη) = O(|(ξ, η)|d−1)

hold for some d < k − 1. We would like to show that the above identities
hold if d is replaced by d + 1. Setting ησ(j) = 0 in (4.34), one gets from
(4.35) and the normalizing condition (4.27) that

gσ(j)(ξ, η) = λσ(j)gσ(j)(λξ, λ−1η) +O(d+ 1).

Hence, gj(ξ, η) = O(d+ 1). Now, terms of order d+ 1 in (4.34) give us

(4.36) ξj [ωj + ωσ(j)](d−1)/2(ξη) + λ−1
j [fj ]d(λξ, λ−1η) = [fj ]d,

where [ωj +ωσ(j)](d−1)/2 is treated as zero if (d−1)/2 is not an integer. Set

ej = (0, . . . , 1, . . . , 0) ∈ Zn,

where 1 is the j-th entry. Collecting terms ξαηβ for α− β = ej yields

[ωj + ωσ(j)](d−1)/2(ξη) = 0.

We now have [fj ]d(λξ, λ−1η) = λj [fj ]d(ξ, η). Therefore, [fj ]d(ξ, η) contains
only terms ξαηβ with α−β = ej , and (4.35) hold if d is replaced by d+1. By
induction, (4.15) holds for d = k. This shows that min{ord f̂j , ord ĝj} ≥ k,
as stated in the theorem.

The identity (4.33) follows from the above result (with k = ∞) and
the existence of Φ that normalizes ϕ. The proof of the theorem is com-
plete. tu

As a consequence of Proposition 4.5 and Proposition 4.6, we know
that if ϕ has an invariant Levi-flat real analytic set defined by (4.21) with
σd = Id for some odd integer, then (4.33) implies that all ωj = 0, that is
that ϕ is formally linearizable. By a theorem of Rüssmann [14], we obtain
the following.

Corollary 4.7. — Let ϕ be a holomorphic symplectic mapping

defined by (1.1)–(1.2). Assume that ϕ admits an invariant Levi-flat real
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analytic set given by (4.21) with σk = Id for some odd integer k. If the

eigenvalues λj of ϕ satisfy the Diophantine condition

|λα − λj | ≥ c/|α|τ , |α| > 1, j = 1, . . . , n

for some positive constant c, τ , then ϕ is linearizable by holomorphic

symplectic mappings.

For n = 1, see Proposition 4.2 with weaker hypotheses.

To state the next theorem, we need some notation. Let σ be a
permutation of 1, . . . , n, and let mj , given by (4.25), be meromorphic
eigenfunctions of ϕ. Theorem 4.6 implies that if Φ normalizes ϕ, then

mj ◦ Φ−1(ξ, η) = ξjκj(ξη)/ησ(j).

For 1 ≤ j ≤ n, recall that τj is the smallest positive integer with στj (j) = j.
Define

(4.37) τjκ = 1, for τj = 1; δjκ =
τj−1∏
k=0

κ
(−1)k

σk(j)
, for τj > 1.

One readily sees that

(4.38) δjκ · δσ(j)κ =
{

1, if τj is one or even,
κ2

j , otherwise.

The dependence of δjκ on the formal normalizing transformation Φ is
described as the following.

Proposition 4.8. — Let δ1κ, . . . , δnκ be as above. Fix j with

1 ≤ j ≤ n. The formal power series δjκ is independent of the choice of

Φ if τj is even, but δjκ ≡ 1 for some formal normalizing transformation Φ
if τj is odd.

Proof. — Let Φ̃ be another formal symplectic mapping which trans-
forms ϕ into (1.3). Put mj ◦ Φ̃−1 = ξj κ̃j/ησ(j). For (ξ′, η′) = Φ̃ ◦Φ−1(ξ, η),
one has

(4.39) ξ′j κ̃j(ξ′η′)/η′σ(j) = ξjκj/ησ(j).

Since Φ̃◦Φ−1 preserves the normal form of ϕ, the formal theory of Birkhoff’s
normal form says that

Φ̃ ◦ Φ−1: ξ′j = ξje
Gζj

(ξη), η′j = ηje
−Gζj

(ξη), j = 1, . . . , n,

where G is a formal power series in ζ = ξη. Now (4.39) yields

e
Gζj

(ζ)+Gζσ(j)
(ζ)
κ̃j(ζ) = κj(ζ),
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which gives us δj κ̃(ζ) = δjκ(ζ) if τj is even. When τj is odd, we get

e2Gζj
(ζ)δj κ̃(ζ) = δjκ(ζ).

Solving the above equation for a formal power series G, one obtains a
formal normalizing transformation Φ̃ such that δj κ̃ ≡ 1. The proof of the
proposition is complete. tu

We now state the following theorem.

Theorem 4.9. — Let ϕ,m1, . . . ,mn be as in Theorem 4.6, and let

δjκ be the associated formal power series. Assume that σ2 = Id, and

that there exists a formal transformation Φ normalizing ϕ such that all

δjκ ◦Φ are convergent. Then ϕ is normalizable by holomorphic symplectic

mappings.

In conclusion of this section, note that Theorem 1.2 follows from
Proposition 4.5 and Theorems 4.6 and 4.9.

5. Normalization of holomorphic symplectic mappings
with meromorphic eigenfunctions.

Recall that Proposition 4.5 provides us the relationship between the
Levi-flat invariant sets of the form (4.23) of a holomorphic symplectic map-
ping and meromorphic eigenfunctions of the mapping. The relationship
between meromorphic eigenfunctions and Birkhoff normal forms of holo-
morphic symplectic mappings might be interesting in its own right.

In Section 4, we introduced the following eigenfunctions:

(5.1) mj =
ξj + f(ξ, η)

ησ(j) + gσ(j)(ξ, η)
, j = 1, . . . , n,

where σ is a permutation of 1, . . . , n, and fj(ξ, η) = O(3), gj(ξ, η) =
O(3) are holomorphic. We should mention that we have no example of
holomorphic symplectic mappings having eigenfunctions mj , for which the
Birkhoff normalization diverges.

The purpose of this section is to prove Theorem 4.9. However, we need
a further reduction for the theorem, which is a necessary step for us to be
able to apply the KAM method. Recall from Section 4 (Theorem 4.6) that
if a formal holomorphic symplectic mapping Φ normalizes the symplectic
mapping ϕ, then mj ◦ Φ−1 are of the form

(5.2) ξjκj(ξη)/ησ(j), j = 1, . . . , n.
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Assuming that σ2 = Id and all δj ◦ Φ are convergent, we now modify mj

such that

(5.3) δjκ ≡ 1, j = 1, . . . , n.

If σ(j) = j, we simply put m̃j = mj . Otherwise, say σ(1) = 2, we put

m̃1 = m1/(δ1κ ◦ Φ), m̃2 = m2.

Then δ1m̃ = m̃1/m̃2 = 1 = δ2m̃. Let us still denote by mj the modified
meromorphic functions m̃j . In such a way we achieve (5.3).

Since σ2 = Id, Proposition 4.8 implies that (5.3) remains true under
all formal symplectic transformations that normalize ϕ. Also, (5.3) is
equivalent to κj = κσ(j), since δjκ = κj/κσ(j) when σ2 = Id.

Thus, Theorem 4.9 is reduced to the following special case.

Theorem 5.1. — Let ϕ be a holomorphic symplectic mapping

given by (1.1)–(1.2). Let m1, . . . ,mn be n meromorphic eigenfunctions of

ϕ of the form (5.1) with σ2 = Id. Let Φ be a formal transformation that

normalizes ϕ and transforms κj into (5.2). Assume that κσ(j) = κj for

j = 1, . . . , n. Then ϕ can be transformed into its Birkhoff normal form by

some holomorphic symplectic transformation.

We now proceed to prove Theorem 5.1, by applying the KAM method.
Starting with the holomorphic symplectic mapping ϕ defined by (1.1)–(1.2),
we construct a sequence of holomorphic symplectic mappings φm as follows.
Put ϕ1 = ϕ. Let Φ1 be the unique normalized formal transformation
transforming ϕ1 into its normal form. Let

∑
λjξjη

′
j + H1(ξ, η′) be the

generating function of ϕ1, that is,

ϕ1: ξ′j = λjξj + ∂η′
j
H1(ξ, η′), η′j = λ−1

j ηj − λ−1
j ∂ξj

H1(ξ, η′).

Let
∑
ξjη

′
j + S1(ξ, η′) be the generating function of Φ1. ¿From the formal

theory of Birkhoff’s normal form, one knows that ordS1 = d0 ≡ ordPH1

for
PH1(ξ, η′) =

∑
α6=β

H1,αβξ
αη′

β
.

Let φ1 be the holomorphic symplectic mapping generated by the truncated
power series

S̃1(ξ, η′) =
∑

j

ξjη
′
j +

2d0−3∑
k=d0

[S1]k(ξ, η′)

with
[S1]k(ξ, η′) ≡

∑
α+β=k

S1,αβξ
αη′

β
.
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Define ϕ2 = φ1 ◦ ϕ1 ◦ φ−1
1 . Repeating the above construction, we find

holomorphic symplectic transformations ϕk, φk with ϕk+1 = φk ◦ϕk ◦φ−1
k .

Let
∑
λjξjη

′
j + Hk(ξ, η′) be the generating function of ϕk and put dk =

ordPHk.

If one of dk is infinite, proof of Theorem 5.1 is trivial; so we will
assume that all dk are finite. Then

dk+1 ≥ 2dk − 2, d0 ≥ 3.

In particular, dk − 2 ≥ 2k, k = 0, 1, . . .. It is clear that as k →∞ the limit
of φk ◦φ2 ◦ · · · ◦φ1 is a formal symplectic mapping φ such that φ◦ϕ◦φ−1 is
in the Birkhoff normal form. We shall complete the proof of Theorem 5.1
by showing the convergence of φ.

To avoid functional equations involving small divisors, we shall de-
termine φ1 through eigenfunctions mj . Changing notations, replace d0, S̃1

and φ1 by d, S, φ, respectively. We also rewrite

(5.4) mj(ξ, η) =
ξjκj(ξη) + fj(ξ, η)
ησ(j) + gσ(j)(ξ, η)

,

where fj , gj satisfy

(5.5) fjαβ = 0, α− β = ej ; gjαβ = 0, βj 6= 0,

in which ej = (0, . . . , 1, . . . , 0). Theorem 4.6 implies that ord fj , ord gj ≥
d− 1.

One knows that

(5.6) φ: ξ′j = ξj + uj(ξ, η), η′j = ηj + vj(ξ, η), j = 1, . . . , n

is determined by

(5.7) ξ′j = ξj − Sηj
(ξ, η′), η′j = ηj + Sξj

(ξ, η′),

where S, according to the normalizing condition on Φ, satisfies

(5.8) Sαα = 0, ordS = d.

One also has

uj(ξ, η) = −Sηj (ξ, η) +O(2d− 3), vj(ξ, η) = Sξj (ξ, η) +O(2d− 3).

Set

(5.9) mj(ξ, η) = m̂j ◦ φ =
(ξj + uj)κ̂j ◦ φ(ξ, η) + f̂j ◦ φ(ξ, η)
ησ(j) + vσ(j) + ĝσ(j) ◦ φ(ξ, η)

with f̂j , ĝj satisfying (5.5). By Theorem 4.6, we have

ord f̂j , ord ĝj ≥ 2d− 3; ord(κ̂j − κj) ≥ (d− 2)/2.
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The linearized equations of (5.9) are

(5.10) ησ(j)Sηj (ξ, η) + ξjSξσ(j)(ξ, η) = pj(ξ, η), j = 1, . . . , n

with

pj = ξjησ(j)∇ζ log κj · (ξSξ − ηSη)(5.11)

+ ξjgσ(j) − ησ(j)fj/κj + ξjησ(j)(κ̂j/κj − 1) +O(2d− 2).

In particular,

(5.12) ξjSξj
+ ηjSηj

= pj(ξ, η), for σ(j) = j.

For σ(j) 6= j, rewrite (5.10) as

ξ−1
j Sηj

+ η−1
σ(j)Sξσ(j) = ∇ζ log κj · (ξSξ − ηSη) + p̃j

with

(5.13) p̃j(ξ, η) = gσ(j)/ησ(j) − fj/(ξjκj) + κ̂j/κj − 1 + · · · ,

in which the omitted terms are of the form ξαηβ/ξiησ(j) with |α| + |β| ≥
2d− 2. Using (5.3), we obtain

τj−1∑
k=0

(−1)k

(
Sη

σk(j)

ξσk(j)

+
Sξ

σk+1(j)

ησk+1(j)

)
=

τj−1∑
k=0

(−1)kp̃σk(j) ≡ ∆j p̃;

in other words,

(5.14)
Sηj

ξj
− (−1)τj

Sξj

ηj
+

τj−1∑
k=1

(−1)k

(
Sη

σk(j)

ξσk(j)

−
Sξ

σk(j)

ησk(j)

)
= ∆j p̃

for σ(j) 6= j.

Lemma 5.2. — Let
∑
ξjηj + S(ξ, η), satisfying (5.8), be the gener-

ating function of the unique formal mapping Φ that normalizes ϕ. Then

S ≡ [S]d + · · ·+ [S]2d−3 is uniquely determined by (5.12) and (5.14).

Proof. — Let S be the solution to (5.12) and (5.14), which satisfies
the normalization condition (5.8). Fix α, β with α− β 6= 0 and choose j so
that

(5.15) |αj − βj | = max{|αk − βk|}.

If σ(j) = j, then (5.12) implies that

(5.16) Sαβ = pjαβ/(αj + βj).

Assume now that σ(j) 6= j. To determine Sαβ , we need to consider all
coefficients of ξα′ηβ′ in (5.14), for which

α′ − β′ = α− β; α′k ≥ −1, β′k ≥ −1, k = 1, . . . , n.
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Put Sαβ = 0 for αk ≤ −1 or βk ≤ −1. ¿From (5.14) we obtain

(β′j − (−1)τjα′j)Sα′,β′ +
τj−1∑
k=1

(−1)k(βσk(j)−ασk(j))Sα′+e
σk(j)−ej ,β′+e

σk(j)−ej

= (∆j p̃)α′−ej ,β′−ej
.

If α′j + β′j = min{α̃j + β̃j |α̃− β̃ = α− β}, then

(5.17) Sα′β′ =
1

β′j − (−1)τjα′j
pj,α′−ej ,β′−ej .

Assume that Sα′β′ have been determined for all α′, β′ with α′−β′ = α−β
and α′j + β′j < l. Then for α′, β′ with α′j + β′j = l, we have

Sα′β′ =
τj−1∑
k=1

(−1)k−1
βσk(j) − ασk(j)

β′j − (−1)τjα′j
Sα′−ej+eσ(j),β′−ej+eσ(j)(5.18)

+
1

β′j − (−1)τjα′j
(∆j p̃)α′−ej ,β′−ej

.

Thus, (5.16)–(5.18) determine all Sα′β′ for α′−β′ = α−β. This completes
the proof of the lemma. tu

We should point out that the proof of Lemma 5.2 does not depend
on any assumption on δjκ, and that the convergence of all δjκ, as assumed
in Theorem 4.9, would not give us an immediate good control of S due to
the recursive formulae (5.18) when some τj ≥ 2. To get estimates for S,
it is crucial that all ∇ζ log δjκ vanish, which is obtained via (5.3) for the
modified eigenfunctions. Even if δjκ ≡ 1, the recursive formulae (5.18) lead
to another problem: The radius of convergence would shrink by a constant
factor of τj − 1 if τj > 1. Therefore, only for τj = 1, 2 shall we have the
control of the radius of convergence that is useful in iteration.

We need some notation. Let f = (f1, . . . , fm) be an m-tuple of
holomorphic functions defined on ∆r ⊂ Cn. Expand fj(z) =

∑
fjαz

α and
let

f∗(z) =
∑

f∗|α|z
α, f∗k = max{|fjα|; |α| = k, j = 1, . . . ,m};

‖f‖r = sup{|fj(z)|: z ∈ ∆r, j = 1, . . . ,m}.
In particular, one has ξ∗ = ξ∗j =

∑
(ξj + ηj), where (ξ, η) are coordinates

of C2n. We also put

(∇f)∗ = (∂z1f, . . . , ∂zn
f)∗, ‖∇f‖r = ‖(∂z1f, . . . , ∂zn

f)‖r.

Given holomorphic functions f and g, one has

(f + g)∗ ≺ f∗ + g∗; f∗ ≺ g∗, if f ≺ g.
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Also

(5.19) f∗ ≺ z∗(∇f)∗, if f(0) = 0.

Lemma 5.3. — Let f be a holomorphic function defined on ∆r ⊂
Cn. Then ‖f∗‖(1−θ)r ≤ ‖f‖r/θ

n+1.

Proof. — Since |fα| ≤ ‖f‖r/r
|α|, then ‖f∗‖(1−θ)r is bounded by

‖f‖r

∑
α

(1− θ)|α| = ‖f‖r

∑
k≥0

(
n+ k

n

)
(1− θ)k = ‖f‖r/θ

n+1.

This completes the proof of the lemma. tu

Lemma 5.4. — Let φ, S be given by (5.6)–(5.8). Assume that

(5.20) ‖S‖r ≤ θ2r2/(4n), 0 < θ < 1.

Then

(5.21)
φ, φ−1:∆(1−kθ)r → ∆(1−(k−1)θ)r,

‖φ−1 − Id ‖(1−kθ)r ≤ ‖S‖(1−(k−2)θ)r/(rθ), k ≥ 2.

Proof. — Fix (ξ, η) ∈ ∆(1−kθ)r. Consider the mapping

T : ξ′j → ξj − Sη′
j
(ξ, η′), η′j → ηj − Sξj

(ξ, η′).

¿From (5.20) it follows that T maps ∆(1−(k−1)θ)r into itself and

‖∇T‖(1−θ)r ≤ 1/(4n).

Hence, with the norm ‖(ξ, η)‖ = max{|ξj |, |ηj |}, T is a contraction
map. By the fixed-point theorem, equations (5.7) determine a mapping
φ:∆(1−kθ)r → ∆(1−(k−1)θ)r. Applying the above argument to the map-
ping ξj → ξ′j + Sη′

j
(ξ, η′), ηj → η′j − Sξj (ξ, η

′), one gets φ−1:∆(1−kθ)r →
∆(1−(k−1)θ)r. Consequently, we have

‖φ−1 − Id ‖(1−kθ)r ≤ ‖∇S‖(1−(k−1)θ)r ≤ ‖S‖(1−(k−2)θ)r/(rθ).

The proof of the lemma is complete. tu

Let κj(ζ1, . . . , ζn) be as in (5.4). Put

κ = (κ1, . . . , κn), κ−1 = (κ−1
1 , . . . , κ−1

n ).

Lemma 5.5. — Let ϕ and S be as in Lemma 5.2, and let φ be given

by (5.7). Assume that

(5.22) ‖(κ−1)∗‖r2 < 2, r2‖(∇ζκ)∗‖r2 ≤ 1/(16n2).
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There exist constants c1, c2 > 1 such that if

(5.23) ‖f‖r + ‖g‖r ≤ rθ2n+4/c1,

then

(5.24)
φ, φ−1:∆(1−kθ)r → ∆(1−(k−2)θ)r, k ≥ 2,

‖φ−1 − Id ‖(1−2θ)r ≤ c2(‖f‖r + ‖g‖r)/θ2n+3.

Proof. — We first introduce the following notation:

Ŝ(ξ, η) =
∑

|Sαβ |ξαηβ

which will be used only in the proof of this lemma. Fix α, β with α 6= β

and let j be defined by (5.15). Note that (5.15) implies that

|{ξkSξk
− ηkSηk

}α′β′ | ≤ |αj − βj |Ŝα′β′ , k = 1, . . . , n

for α′ − β′ = α− β. Hence, for σ(j) = j one gets from (5.16) that

|Sαβ | ≤ {ξjηj(∇ζκ)∗(κ−1)∗Ŝ + ξjg
∗
j + ηj(κ−1

j )∗(fj)∗}αβ

≤ {ξ∗η∗(∇ζκ)∗(κ−1)∗Ŝ + ξ∗(κ−1)∗(f∗ + g∗)}αβ .

If σ(j) 6= j, (5.17)–(5.18) yield

|Sαβ | ≤ (1 + min{αj , βj}){ξ∗g∗ + η∗(κ−1)∗f∗}αβ

≤ (|α|+ |β|){ξ∗g∗ + η∗(κ−1)∗f∗}αβ

= {(ξ · ∂ξ + η · ∂η)(ξ∗(κ−1)∗f∗ + ξ∗g∗)}αβ .

Notice that we have used the essential assumption that τj = 2 to obtain
the first inequality above. Thus,

(5.25) Ŝ ≺ 1
1− ξ∗η∗(∇ζκ)∗(κ−1)∗

(Id+ξ∂ξ + η∂η)(ξ∗(κ−1)∗(f∗ + g∗)).

¿From (5.19) we get ‖ξ∗η∗(∇ζκ)∗(κ−1)∗‖r < 1/2 and

‖(ξ ·∂ξ+η · ∂η)(ξ∗(κ−1)∗(f∗+g∗))‖(1−θ/2)r/θ ≤8n‖ξ∗(f∗+g∗)‖(1−θ/2)r/θ

≤ c̃1r(‖f‖r + ‖g‖r)/θ2n+2

for some constant c̃1. ¿From (5.25) it follows that

‖Ŝ‖(1−θ)r ≤ c1r(‖f‖r + ‖g‖r)/(4nθ2n+2).

Now, Lemma 5.4 implies that the mapping φ, determined by (5.6)–(5.7),
satisfies (5.24), provided (5.22)–(5.23) hold. tu

The following is a special case of the Weierstrass preparation theorem.
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Lemma 5.6. — Let f be a holomorphic function on ∆r ⊂ C2n.

Assume that 0 < θ < 1/2 and

(5.26) ‖f‖r ≤ rθ/12, f(ξ, η) = O(2).

Fix 1 ≤ j ≤ n. There is a unique decomposition

(5.27) ηj + f(ξ, η) = (1 + u(ξ, η))(ηj + g(ξ, η)), u(0) = 0,

where u, g are holomorphic on ∆(1−θ)r with g satisfying the normalizing

condition (4.27). Moreover, for some constant c̃2 > 1 one has

(5.28) ‖g∗‖(1−θ)r ≤ c̃2‖f‖r/θ
2n+1, ‖u∗‖(1−θ)r ≤ c̃2‖f‖r/(rθ2n+2).

Proof. — From (5.26) it follows that for ξj ∈ ∆r there exists a unique
solution ηj = −g(ξ, η) to ηj + f(ξ, η) = 0, given by

g(ξ, η) = − 1
2πi

∫
|ηj |=r

ηj

1 + fηj (ξ, η)
ηj + f(ξ, η)

dηj

= − 1
2πi

∫
|ηj |=r

ηjfηj
(ξ, η)− f(ξ, η)
ηj + f(ξ, η)

dηj , (ξ, η) ∈ ∆r ⊂ ∆2n−1.

Thus, Cauchy inequalities imply that

(5.29) ‖g‖(1−θ/2)r ≤ 2(2‖f‖r/θ + ‖f‖r) ≤ 6‖f‖r/θ.

Now the desired estimate for g∗ in (5.28) follows from Lemma 5.3.

To estimate u∗, note that u = (f−g)/(ηj + g(ξ, η)). ¿From (5.26) and
(5.29) it follows that ‖u‖(1−θ/2)r ≤ 4(‖f‖r +‖g‖(1−θ/2)r)/r ≤ 28‖f‖r/(rθ).
In view of Lemma 5.3, we obtain (5.27). This completes the proof of the
lemma. tu

Proposition 5.7. — Let φ be as in Lemma 5.5. Let κ̂j , f̂j , ĝj be as

in (5.9). There exist constants c3, c4 > 1 such that

(5.30) ‖f̂‖(1−6θ)r + ‖ĝ‖(1−6θ)r ≤ c3(1− θ)d(‖f‖r + ‖g‖r)/θ6n+6,

(5.31)
‖(∇ζ κ̂)∗‖((1−6θ)r)2 ≤ ‖(∇ζκ)∗‖r2 + c3(‖f‖r + ‖g‖r)/(r3θ7n+8),

‖(κ̂−1)∗‖((1−6θ)r)2 ≤ ‖(κ̂−1)∗‖r2 + c3(‖f‖r + ‖g‖r)/(rθ7n+7)

provided (5.22) holds, and

(5.32) ‖f‖r + ‖g‖r ≤ rθ6n+6/c4.

Proof. — Changing the notation in (5.6), we write

φ−1: ξ′j = ξj + uj(ξ, η), η′j = ηj + vj(ξ, η).
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We first want to express f̂j , ĝj in terms of fj , gj and S. Start with the
decomposition

ηj + vj(ξ, η) + gj ◦ φ−1(ξ, η) = (1 + aj)(ηj + ĝj(ξ, η)).

¿From (5.24), one sees that

‖vj + gj ◦ φ−1‖(1−2θ)r ≤ 2c2(‖f‖r + ‖g‖r)/θ2n+3.

In view of (5.26) and Lemma 5.6, we get from (5.28) that

(5.33) ‖aj‖(1−3θ)r ≤ 2c2c̃2(‖f‖r + ‖g‖r)/((1− 2θ)rθ4n+5),

‖ĝj‖(1−3θ)r ≤ 2c2c̃2(‖f‖r + ‖g‖r)/θ4n+4

for c4 > 24c2. Since ord ĝj ≥ 2d− 3 ≥ d, the Schwarz lemma yields

(5.34) ‖ĝ‖(1−3θ)r ≤ 2c2c̃2

(
1− 4θ
1− 3θ

)d

(‖f‖r + ‖g‖r)/θ4n+4.

For 0 < θ < 1/6 and c4 > c2c̃2, (5.32)–(5.33) imply that

(5.35) ‖aj‖(1−3θ)r < 1/2.

We now decompose

((ξj + uj)κj ◦ φ−1 + fj ◦ φ−1)/(1 + aσ(j)) = ξj κ̂j + f̂j .

Then

ξj(κ̂j − κj) + f̂j = {ξj(κj ◦ φ−1 − κj) + ujκj ◦ φ−1(5.36)

+ fj ◦ φ−1 − ξjκjaσ(j)}/(1 + aσ(j)).

We also have

‖κj ◦ φ−1−κj‖(1−2θ)r ≤ 2nr‖∇ζκj‖((1−θ)r)2 · ‖φ−1−Id ‖(1−2θ)r(5.37)

≤ c2(‖f‖r + ‖g‖r)/(rθ2n+3),

where the last inequality comes from (5.22) and (5.24). Using (5.33) and
(5.37), one gets from (5.36) that

‖ξj(κ̂j − κj) + f̂j‖(1−3θ)r ≤ c5(‖f‖r + ‖g‖r)/θ4n+5

for some constant c5 > 1. Note that f̂∗j and ξj(κ̂j − κj)∗ are majorized by
(ξj(κ̂j − κj)(ξη) + f̂j(ξ, η))∗. Thus,

‖f̂∗‖(1−4θ)r ≤ c5(‖f‖r + ‖g‖r)/θ6n+6,

(5.38) ‖(κ̂j − κj)∗‖((1−4θ)r)2 ≤ c5(‖f‖r + ‖g‖r)/(r(1− 4θ)θ6n+6).
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Since ord f̂j , ord ĝj ≥ d, the Schwarz lemma gives

(5.39) ‖f̂‖(1−5θ)r ≤ c5

(
1− 5θ
1− 4θ

)d

(‖f‖r + ‖g‖r)/θ6n+6.

Obviously, (5.34) and (5.39) yield (5.30) for c3 > 2c2c̃2 + c5. Note that
(1 − θ/2)(1 − 4θ)2 > (1 − 5θ)2. Using (5.38) and Cauchy inequalities, we
get

‖∇ζ(κ̂− κ)‖((1−5θ)r)2 ≤ c̃5(‖f‖r + ‖g‖r)/(r3θ6n+7).

In view of (5.19), we obtain

‖(∇ζ(κ̂− κ))∗‖((1−6θ)r)2 ≤ c̃5(‖f‖r + ‖g‖r)/(r3θ7n+8)

for some larger c̃5. The above inequality yields the first half of (5.31) for
c3 > c̃5. For the second half of (5.31), note that

κ̂−1
j − κ−1

j = κj

∑
k≥1

(
κj − κ̂j

κj

)k

.

Thus, (5.38) and (5.32) yields

‖(κ̂−1 − κ−1)∗‖((1−6θ)r)2 ≤
2

θn+1

∑
k≥1

(2c5(‖f‖r + ‖g‖r)
r(1− 4θ)θ6n+6

)k

≤ 8c5(‖f‖r + ‖g‖r)/(rθ7n+7).

This completes the proof of the proposition. tu

Put

(5.40) rk =
1
2

(
1 +

1
k + 1

)
r, k = 0, 1, . . . .

Rewrite the above as

rk+1 = (1− 6θk)rk, θk =
1

6(k + 2)2
, k = 0, 1, . . . .

Let us first prove a numerical result.

Lemma 5.8. — Let rk, θk be given as above, and let 0 < r0 = r < 1.
Let bk, Bk,Kk be nonnegative numbers satisfying

(5.41)
bk+1 ≤ c3(1− θk)2

k

bk/θ
6n+6
k ,

Bk+1 ≤ Bk + c3bk/(r3kθ
7n+8
k ), Kk+1 ≤ Kk + c3bk/(rkθ7n+7

k )

for k ≥ 0. Let c4 be the constant given in Proposition 5.7. There exists

c6 > 1, independent of r, such that if

(5.42) b0 ≤ r0θ
6n+6
0 /c6, r20B0 ≤ 1/(32n2), K0 < 3/2,
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then for all k > 0

(5.43) bk ≤ rkθ
6n+6
k /c4, r2kBk ≤ 1/(16n2), Kk < 2.

Proof. — Put

b̂k = rkθ
7n+9
k /(32n2c3c4), k = 0, 1, . . . .

It is easy to see that

b̂k+1/b̂k = (1− 6θk)θ7n+9
k+1 /θ7n+9

k ≥ (1− 6θ0)θ7n+9
1 /θ7n+9

0 ≡ c7.

On the other hand, one has

bk+1/bk ≤ c3(1− θk)2
k

/θ6n+6
k → 0, k →∞.

Hence, there exists N , independent of r, such that

(5.44) bk+1/bk ≤ b̂k+1/b̂k, k ≥ N.

Set
c8 = 1 + max

k≤N
c3(1− θk)2

k

/θ6n+6
k .

Then (5.42) implies that

bk ≤ b0c
N
8 ≤ r0θ

6n+6
0 cN8 /c6, k ≤ N.

This shows that for sufficiently large c6, one has bk ≤ b̂k, k = 0, . . . , N . Now
(5.44) implies that bk ≤ b̂k for all k. In particular, the estimates (5.43) hold
for bk. Also,

r2k+1Bk+1 ≤ r20B0 +
k∑

j=1

c3bj

rjθ
7n+8
j

≤ 1/(32n2) +
∞∑

j=1

θj/(32n2) < 1/(16n2)

and Kk+1 ≤ K0 +
∑k

j=1 c3bj/rjθ
7n+7
j < 2. This completes the proof of the

lemma. tu

We now complete the proof of Theorem 4.9 as follows. With the
notation introduced at the beginning of this section, we would like to show
the convergence of a subsequence of φ−1

1 ◦ φ−1
2 ◦ · · · ◦ φ−1

k . To this end, it
suffices to show that the sequence is bounded, or that

(5.45) φ−1
k :∆rk

→ ∆rk−1 , k = 1, 2, . . .

are well-defined for suitable r0 = r.

Start with

m
(1)
j (ξ, η) = mj(ξ, η) =

ξjκ
(1)
j (ξη) + f

(1)
j (ξ, η)

ησ(j) + g
(1)
σ(j)(ξ, η)

.
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Set

b0 = ‖f (1)‖r0 + ‖g(1)‖r0 , B0 = ‖(∇ζκ
(1))∗‖r2

0
,K0 = ‖((κ(1))−1)∗‖r2

0
.

Choose r0 = r so small that initial condition (5.42) holds. Applying
Lemma 5.5 to ϕ1 and φ1 gives us (5.45) for φ1. Put m(2)

j = m
(1)
j ◦ φ−1

1

and

b1 = ‖f (2)‖r1 + ‖g(2)‖r1 , B1 = ‖(∇ζκ
(2))∗‖r2

1
,K1 = ‖((κ(2))−1)∗‖r2

1
.

Since dk > 2k, Proposition 5.7 says that inequality (5.41) holds for k = 1.
Consequently, Lemma 5.8 implies that the initial condition (5.43) holds for
k = 1. Recursively, one sees that the mappings (5.45) are well-defined for
all k. This completes the proof of Theorem 4.9.

6. Hamiltonian vector fields.

This section is to apply results for holomorphic symplectic mappings
obtained in previous sections to holomorphic Hamiltonian systems.

Consider a holomorphic Hamiltonian function

(6.1) H(ξ, η) =
∑

λjξjηj + h(ξ, η), h(ξ, η) = O(3).

The corresponding Hamiltonian system of H is

(6.2) dξj/dt = λjξj +Hηj
, dηj/dt = −λjηj −Hξj

, j = 1, . . . , n.

The formal Birkhoff normal form of H is then given by

(6.3) Ĥ(ξ, η) =
∑

λjξjηj + ĥ(ξη),

where ĥ is a formal power series in products ξ1η1, . . . , ξnηn, provided
λ = (λ1, . . . , λn) satisfies the non-resonance condition

(6.4) α · λ = α1λ1 + · · ·+ αnλn 6= λj , α ∈ Zn

for all α 6= ej = (0, . . . , 1, . . . , 0). The formal flow of the Hamiltonian (6.3)
is given by

ϕ̂t: ξ′j = ξje
tĤζj , η′j = ηje

−tĤζj , j = 1, . . . , n

for t ∈ C. We say that a real or complex time t is non-exceptional

with respect to λ1, . . . , λn, if the eigenvalues etλ1 , . . . , etλn satisfy the non-
resonance condition (1.2). Note that, given λ1, . . . , λn satisfying (6.4), the
exceptional t values are countable.
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We need the following.

Proposition 6.1. — Let H be the Hamiltonian function (6.1) with

λj satisfying (6.4), and let ϕt be its Hamiltonian flow. Assume that t is non-

exceptional. If ϕt is in its Birkhoff normal form, so is H.

Proof. — Replacing H by tH, one may assume that t = 1. We need
to prove that H is a function of ξ1η1, . . . , ξnηn. Put

(6.5) H(x, y) = H̃(ξ1η1, . . . , ξnηn) +Hk(ξ, η),

where Hk(ξ, η) = O(k + 1), and all terms in the power series expansion
of H̃ have order at most k in ξ, η. Note that for two holomorphic vector
fields v(ξ, η), ṽ(ξ, η) with v(0) = ṽ(0) = 0 and ṽ(ξ, η)− v(ξ, η) = O(k), the
corresponding flows ϕt and ϕ̃t satisfy

ϕ̃t(ξ, η)− ϕt(ξ, η) = O(|(ξ, η)|k)

uniformly for |t| < T <∞. The flow ϕt of (6.5) is of the form

ξj(t) = ξje
tH̃ζj

(ξη) +
∑

ajαβ(t)ξαηβ ,

ηj(t) = ηje
−tH̃ζj

(ξη) +
∑

bjαβ(t)ξαηβ

with
ajαβ(t) = bjαβ(t) ≡ 0, |α|+ |β| < k.

For α+ β = k, one gets

dajαβ/dt− λjajαβ = (βj + 1)Hα,β+ej
e(α−β)·λt, α− β 6= ej

with ajαβ(0) = 0. Hence

ajαβ(t) = (βj + 1)
e(α−β)·λt − eλjt

(α− β) · λ− λj
Hα,β+ej

for |α| + |β| = k, α − β 6= ej . Since ϕ1 is in the normal form, then
ajαβ(1) vanish for α − β 6= ej and |α| + |β| = k. Hence, Hαβ = 0 for
α 6= β, |α| + |β| = k + 1, and β 6= 0. Computing the coefficients of
bj(α−ej)0 yields Hα0 = 0 for |α| = k + 1. Thus, [H]k+1 is a power series
in ξ1η1, . . . , ξnηn. By induction, H is a power series in ξ1η1, . . . , ξnηn. The
proof of the proposition is complete. tu

With the above observation, we now introduce a notion. Let M be the
germ of a set at 0 ∈ C2n. We say that the germ M is weakly invariant under
the flow ϕt, if the germ ϕt(M) is contained in M for some non-exceptional
t ∈ C. From Theorems 1.1 and 4.1 and Proposition 6.1, we obtain the
following.

ANNALES DE L’INSTITUT FOURIER



LEVY-FLAT SETS AND SYMPLECTIC MAPPINGS 205

Corollary 6.2. — Let ϕt be a holomorphic Hamiltonian flow

defined by (6.2) and (6.4), and let M be a Levi-flat real analytic set defined

by (1.4). Assume that M is weakly invariant under the flow ϕt. Then

the Hamiltonian system (6.2) is normalizable by convergent holomorphic

symplectic mappings. Moreover, M is invariant under ϕt for all t ∈ C.

¿From Theorem 4.6, we have the following.

Corollary 6.3. — Let M be a Levi-flat analytic set defined by

(1.5), and let ϕt be the holomorphic Hamiltonian flow of (6.2) and (6.4). If

M is invariant under ϕt0 for some non-exceptional t0, then M is invariant

under ϕst0 for all s ∈ R.

Proof. — By Theorem 3.6, M is actually given by r1 = . . . =
rn = 0 with rj being given by (4.23). Let mj = Fj(ξ, η)/Gσ(j)(ξ, η) be
the meromorphic functions defined by (4.25). Take a formal symplectic
transformation Φ = Id+O(2) which transforms the Hamiltonian (6.1) into
the Birkhoff normal form. Fix a non-exceptional t0 such that ϕt0(M) = M .
By Theorem 4.6, we know that mj ◦ Φ−1 is an eigenfunction of the flow
Φ◦ϕt ◦Φ−1 with eigenvalue et(λj+λσ(j)). Hence, mj is also an eigenfunction
of ϕt with the same eigenvalue. Thus, Fj ◦ ϕt = uje

tλjFj , Gσ(j) ◦ ϕt =
uje

−tλσ(j)Gσ(j), where uj = 1+O(1) are holomorphic functions dependent
of t. Note that |etλj | = |e−tλσ(j) | hold for t = t0, and hence holds for all
t = st0 when s is real. Now, it is straightforward that for each real s,
rj ◦ ϕst0 = vjrj for some vj 6= 0. In particular, M is invariant under ϕst0 .
This completes the proof of the corollary. tu

Finally, Theorem 1.2 gives us the following.

Corollary 6.4. — Let M be as in Theorem 1.2, and let ϕt be as

in Corollary 6.3. Assume that M is weakly invariant under the flow ϕt.

The Hamiltonian system (6.2) is normalizable by holomorphic symplectic

mappings.

Appendix: Birkhoff normal forms in terms
of time-one mappings of formal Hamiltonian systems

and formal generating functions.

There are two ways to formulate the Birkhoff normal form for
holomorphic symplectic mappings, of which one is of the form (1.3). The
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other normal form can be described in terms of generating functions. For
the sake of the reader, we derive one normal form from another in this
appendix.

Let (ξ′, η′) = ϕ(ξ, η) be a holomorphic symplectic mapping (1.1).
Regarding the mapping as a graph over ξ, η′, on which the 1-form

∑
(η′jdξj+

ξ′jdη
′
j) is closed, one has

(7.1) ξ′j = λjξj + Sη′
j
(ξ, η′), ηj = λjη

′
j + Sξj (ξ, η

′)

for some convergent power series S(ξ, η′) = O(3). Assume that λj satisfy
the non-resonance condition (1.2). By comparing the coefficients as in
the Hamiltonian case (see [4], p. 85), there is a formal power series
T (ξ, η′) = O(3) such that for the formal symplectic mapping Φ determined
by

ξ′j = ξj + Tη′
j
(ξ, η′), ηj = η′j + Tξj

(ξ, η′),

ϕ̂ = Φ ◦ ϕ ◦ Φ−1 is of the form (7.1) with

(7.2) S = Ŝ(ξη′)

being a formal power series in the products ζj = ξjη
′
j . Thus, the formal

mapping given by (7.1)–(7.2) can also be referred as the Birkhoff normal
form of ϕ.

Next, we want to put the formal mapping (7.1)–(7.2) into the form
(1.3). From (7.1)–(7.2), one has

ξ′j = λjξj(1 + λ−1
j Ŝζj

(ξη′)), η′j = λ−1
j ηj(1 + λ−1

j Ŝζj
(ξη′))−1

for j = 1, . . . , n. Hence, ξjηj are invariant by ϕ̂. Solving for η′j from the
last n equations above, one sees that

(7.3) ξ′j = λjξje
Gj(ξη), η′j = λ−1

j ηje
−Gj(ξη)

for some formal power series Gj(ξη) with Gj(0) = 0. Note that Gj are
determined by

(7.4) eGj(ζ) = 1 + λ−1
j Ŝζj (λ

−1ζeG(ζ)), j = 1, . . . , n,

where λ−1ζeG(ζ) ≡ (λ−1
1 ζ1e

G1(ζ), . . . , λ−1
n ζne

Gn(ζ)). On the other hand,
(7.3) yields∑

dξ′j ∧ dη′j −
∑

dξj ∧ dηj = d
∑

Gj(ξjηj)d(ξjηj).

The left-hand side vanishes. Hence, Gj = Hζj
for some formal power series

H in ζ.
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Conversely, if (ξ′, η′) = ϕ̂(ξ, η) is given by (1.3), then ϕ̂ preserves the
products ξjηj and is of the form

ξ′j = λjξj(1 +Kj(ξη′)), ηj = λjη
′
j(1 +Kj(ξη′))

with

(7.5) 1 +Kj(ζ) = eωj(λζK(ζ)), j = 1, . . . , n.

Now, one has∑
ξ′jdη

′
j + ηjdξj = d

(∑
λjξjη

′
j

)
+
∑

λjKj(ξη′)d(ξjη′j).

Hence, the last summand is closed, from which it follows that Kj =
λ−1

j Ŝζj
(ζ) for some formal power series Ŝ. This shows that ϕ̂ is of the

form (7.1)–(7.2). From (7.4)–(7.5), one can also see that the convergence
of Ŝ implies the convergence of H, and vice versa.

Therefore, two normal forms (1.3) and (7.1)–(7.2) are equivalent,
i.e., if one of the normal forms is realized by a holomorphic symplectic
transformation, so is the other.
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