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LEVI-FLAT INVARIANT SETS OF HOLOMORPHIC
SYMPLECTIC MAPPINGS

by Xianghong GONG

1. Introduction.

Let ¢ be a biholomorphic mapping defined near the origin of C?"
with ¢(0) = 0. Recall that ¢ is symplectic if it preserves the holomorphic
symplectic 2-form Z?Zl d&; A dn;. Assume that the linear part of ¢ is
diagonalizable. In suitable local holomorphic symplectic coordinates, ¢ is
then given by

(11) gj_))‘jgj +uj(£777)7 77j_>)\;177j+”j(577))» j:]-v"'vna

where u;, v; are holomorphic functions starting with terms of order at least
two. One says that A = (A1,...,\,) is non-resonant, if

(1.2) AQIAGZ A% £ ]

for all integers aq,...,a, with |ag| + -+ + |ay| > 0. G.D. Birkhoff [4]
showed that under formal symplectic transformations, ¢ is equivalent to
the formal symplectic mapping

(1.3) & — N, = AT e, wy =0 H
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with H a formal power series in the products (1 = &111,...,Cn = &
without constant term.

Analogous to work of C.L. Siegel [17] on Hamiltonian systems, a re-
sult of H. Riissmann [12] says that as a rule the Birkhoff normal form (1.3)
of ¢ is not realizable by convergent symplectic transformations. In fact,
one aspect of divergence for Birkhoff’s normalization for Hamiltonian sys-
tems was understood by Siegel [16] much earlier. Recall that holomorphic
functions invariant under a holomorphic symplectic mapping or the flow
of a holomorphic Hamiltonian system are called first-integrals. Siegel [16]
showed that there are Hamiltonian systems of degree of freedom larger than
one that admit no first-integrals other than functions of their Hamiltoni-
ans. On the other hand, when admitting a certain system of first-integrals,
a holomorphic symplectic mapping or Hamiltonian system can be trans-
formed into the Birkhoff normal form by convergent transformations. This
is the so-called integrability of Hamiltonian systems (or symplectic map-
pings) via first-integrals, which was already observed by Birkhoff [3] for
the case of one degree of freedom. In general cases, such integrability re-
sults were obtained by Riissmann [13] for analytic Hamiltonian systems
with two degrees of freedom and by J. Vey [18] for analytic Hamiltonian
systems and symplectic mappings of any degrees of freedom, for which
the quadratic forms of the first-integrals satisfy a certain non-degeneracy
condition. Most recently H. Ito [10] studied the convergence of Birkhoff’s
normalization for analytic Hamiltonian systems and symplectic mappings
which admit certain first-integrals with degenerate quadratic forms. The
reader is also referred to results of L.H. Eliasson [9] on smooth real Hamil-
tonian systems. We should mention that the results in [13], [18], and [10],
based on the first-integral method, hold for both real and complex cases.

In case the holomorphic symplectic map is in its normal form (1.3),
it is clear that for each j the quantity &;7; is invariant under the map. In
particular the set defined by &;n7; = 0 (j = 1,...,n) is invariant. More
generally, if H; are holomorphic functions of n variables, the set defined by
R{H;(&n)} = 0 is invariant.

In Vey’s theorem and in Ito’s one has of course the existence of
a (singular) foliation of C*" by (n-codimensional) invariant sets. In the
present work, we show the convergence of (the reduction to) the normal
form under the sole hypothesis of just one appropriate invariant real
analytic set containing the origin. The invariant set that we assume to exist
is of co-dimension n in C2?”, and Levi-flat, as above. A generic n-dimensional
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real analytic set in C?" is said to be Levi-flat if its regular set (away
from singular points and CR singularities) is foliated by n-dimensional
complex manifolds. The main result of this paper is the convergence of the
normalization under the assumption of the existence of an invariant set in
two special cases (see below): (1.4) and (1.5).

We now state the following.

THEOREM 1.1. — Let ¢ be a holomorphic symplectic mapping of
C?" given by (1.1)—(1.2), and let M C C*" be the real analytic set

(1'4) %{Zajkgknk} + Rj(g?nagvﬁ) =0, .7 =1,...,n,

where rank(a;r) = n and R;(£,1,€,m) = O(3) are real-valued analytic
functions. Assume that M is Levi-flat and p(M) = M. Then ¢ can be
transformed into the Birkhoff normal form (1.3) by convergent symplectic
transformations.

It turns out that the integrability of ¢ in terms of Levi-flat invariant
sets of the form (1.4) is well connected to its first-integrals; namely, we shall
prove that ¢ has n first-integrals if it has a Levi-flat invariant set (1.4).
Thus Theorem 1.1 follows eventually from the above-mentioned result of
Vey. Our next result is the following.

THEOREM 1.2. — Let ¢, M be as in Theorem 1.1 except that M is
given by

(15) |§J|2_ |n0(j)‘2+Rj(£an7z7ﬁ) :Oa .7:177n’7

where o is a permutation of 1,...,n and R;(&,n,£,m) = O(3) are real-
valued analytic functions. Assume that o(M) = M. Then |\, |- |A;] =1
for j =1,...,n. Moreover, ¢ has n formal first-integrals 0;x such that ¢
can be transformed into (1.3) by convergent symplectic transformations,
provided o = 1d and all §;x = 1.

For the definition of d;x (0;x =1 if 0 = Id), see (4.37) below.

In contrary to case (1.4), the Levi-flat invariant set (1.5), however,
leads to meromorphic eigenfunctions of the holomorphic symplectic map-
pings. We shall show that such a mapping ¢ has n meromorphic functions
my satisfying m; o ¢ = A\jA,(jym;. An example (end of Section 2) shows
that it is not enough to assume the existence of an invariant Levi-flat n
codimensional set in C?” for n > 2, but in case of (1.5) we have no coun-
terexample if one drops the restrictive hypotheses on the permutation o
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and on d;k. It also remains open if the Birkhoff normalization converges
for the holomorphic symplectic mappings of C? that have a Levi-flat real
hypersurface. Only for a special case shall we prove the following.

THEOREM 1.3. — Let ¢ be a holomorphic symplectic mapping of
C? given by (1.1)—(1.2). Let M C C%r = 0 be a real analytic Levi-flat
hypersurface invariant under ¢. Assume that the quadratic form of r defines
a real hypersurface in C?. Then ¢ can be transformed into its Birkhoff
normal form by convergent symplectic transformations.

Note that Theorem 3 is meant for the case |A| = 1, since Moser [11]
already showed that a holomorphic symplectic mapping of C? is always
normalizable by convergent transformations if || # 1.

The present paper relies on some techniques used in very recent
joint work of D. Burns and the author [6], where singular Levi-flat real
analytic hypersurfaces of C" are studied. These techniques will allow us
to construct holomorphic first-integrals or meromorphic eigenfunctions
for the holomorphic symplectic mappings. Motivated by applications to
holomorphic symplectic mappings, we shall also extend some results in [6]
to Levi-flat sets of higher codimensions. One of main ingredients used
in [6] is that of Segre varieties, which is a family of invariant complex
varieties associated to a real analytic hypersurface in complex space [15].
In dealing with singular Levi-flat structure one encounters with difficulties
of constructing formal normal forms. In [6] and in this work, the Segre
varieties serve as an essential tool to avoid the formal normal forms of
Levi-flat sets. As another application of Segre varieties we shall also use
Segre varieties to prove part of Theorem 1.3 directly (see Proposition 4.2).
The reader is also referred to work of E. Bedford [2] on the domain of
holomorphy of complements of singular Levi-flat hypersurfaces. For other
applications of Segre varieties, see work of S.M. Webster [19] on algebraic
real hypersurfaces with non-degenerate Levi-form and work of Diederich-
Fornaess [8] on complex varieties in real analytic sets.

The paper is organized as follows. Sections 2 and 3 consist in a pre-
liminary study of Levi-flat invariant sets of codimension n. In Section 2,
we study those Levi-flat sets defined by real quadratic forms. Their clas-
sification happens to be already non-trivial, and in fact we succeed only
in classifying Levi-flat sets of special types. In Section 3, the Levi-flat sets
that have been studied serve as models for more general Levi-flat sets. At
the expense of having the hypotheses looking more artificial, the reader can
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read Section 3 without having read Section 2. Also, the results but not the
proofs in Section 3 are to be used in Section 4.

In Section 4, the simplified equations that we found for the Levi-
flat invariant sets allow one to study the defining functions of those sets,
i.e., functions whose at least the common zero level set is invariant. From
this study one is able to get either enough first-integrals, or meromorphic
eigenfunctions.

In case enough first-integrals are obtained, the convergence of normal
forms follows from Vey’s theorem. This however does not establish Theo-
rem 1.2, which correspond to a case for which in Section 4 one obtains only
meromorphic eigenfunctions. This latter case is treated in Section 5, using
a KAM method.

In Section 6 we shall formulate analogous results for holomorphic
Hamiltonian systems, based on an observation regarding normal forms of
the time-one mappings of Hamiltonian systems. The paper is concluded
with an appendix about two equivalent Birkhoff normal forms of holomor-
phic symplectic mappings.

Acknowledgment. The author is indebted to Dan Burns for the
insights in Segre varieties through the collaboration [6]. The author would
also like to thank Jean-Pierre Rosay for helpful suggestions.

2. Invariant Levi-flat sets
defined by real quadratic forms.

In this section we shall study certain classes of Levi-flat sets of high
codimension in C2" defined by real quadratic forms. Here the classification
is not complete. In fact, we shall only consider 4 families of Levi-flat sets of
high codimension under an additional condition that the sets are invariant
under an elliptic complex linear symplectic transformation. A complete
classification of Levi-flat quadratic hypersurfaces of C" is in [6].

Recall that a germ M of real analytic set of dimension k£ at 0 € C"
admits a decomposition M = M™* U M, where M* consists of points =
near which M is a k-dimensional submanifold of C". By a result of Bruhat
and Cartan [5], if M is irreducible, M* is the union of a finite number of
topological components M} with the origin of C" in the closure of each
M. We define the C'R dimension of M to be

Allim infO dime T,M NV —=1T,M = dimcr M.
*Sp—
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Let M.s be the set of points x € M™* at which the complex dimension
of T,M N +/—1T,M is larger than dimcgr M. Then M, is a real analytic
subset of M*. We say that M is Levi-flat, if M. = M* \ M, is foliated
by complex submanifolds of dimension dimcg M. Notice that we allow
M.s to contain some components of M*. In general, one has dimgg M >
max{dim M —n, 0}. We say that M is generic, or of minimal C R dimension,
when dimggr M = max{dim M —n, 0}, i.e., when T, M, +/—1T, M, = C"
for all x € M, or TyM,N+/—1T, M. = 0 for all z € M,. In the latter case
M. is said to be totally real. We shall also use a standard fact that the
real analytic submanifold M, is Levi-flat, if and only if the Lie brackets
[L;, L;] remain in the span of Li,..., Ly, L1,..., L, for any local basis
Ly,...,Lyp(m = dimgg M) of (1,0) tangent vectors of M., i.e., tangent
vectors of M, of the form >77_, a; (Z,E)a%j with a; being analytic.

We shall need some basic properties about the complexification of
real analytic varieties. Recall that a germ M of real analytic variety of R™
at 0 is contained in a unique germ M€ of complex variety at 0 € C™ such
that M = M°NR", and such that germs of holomorphic function at 0 € C™
vanishing on M€ are precisely the germs of complex-valued real analytic
function at 0 € R™ that vanish on M. We shall refer the germ M¢ as the
Bruhat-Whitney-Cartan complexification of M. A result of H. Cartan [7]
says that M is irreducible if and only if M€ is irreducible; consequently, a
germ of real analytic function vanishing on an open subset of M*, of which
the closure contains the origin, vanishes entirely on the germ M.

The main purpose of this section is to study Levi-flat sets that are
defined by quadratic forms and invariant under the C-linear symplectic

mapping

(21) Aigj —>)\jfj, 77j —>)\;17’]j, jzl,...,’l’L7
where Ap, ..., \, satisfy the non-resonance condition (1.2). Throughout the
section, we assume that A is elliptic, that is that [A\;| =1,7=1,...,n.

A complex-valued quadratic form on C2" is a quadratic homogeneous
polynomial in &,7,&,7; the space of all complex-valued quadratic forms
will be denoted by E. Let EPS" be the set of complex-valued quadratic
forms containing no terms of the form £*n°¢' 7’ with |a| + || = 1, and
EM™ the set of quadratic forms containing only the terms 5“776?73 with
|| + |8 = 1. Sending f to f o A, the transformation A: E — E is C-linear.
Put

)\—j:Xj’ f—jzgjv N—j = 1;-
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Notice that (2.1) holds for j = %1,...,£n. The eigenvalues of the linear
transformation A:E — E are 1 and A\A; (¢ + 5 # 0), to which the
corresponding eigen-spaces are

Ei=EPC &noC-&7,0C- & o C- i,
=1
E;=C-&G0C-nm0C &1, 0 C-1¢;
with
i,j==x1,...,%n, j2>14, 1+j#0.

Let Q be the vanishing set of finitely many real quadratic forms on C2",
and let 7 = Zg be the set of complex-valued quadratic forms vanishing
on Q. Assume that Q is invariant under A, so Z is invariant under A also.
From the theory of linear algebra one knows that

I:IﬁEwMEImEUEIn&@Im%.

We shall only classify the Levi-flat sets Q for which Z is contained in one
of the subspaces

EiNEPh B NEM™™  EynEP"  E,nEM™.

We start with the following.

PROPOSITION 2.1. — Let Q C C?" be a generic real analytic set
defined by real quadratic forms. Assume that Q has codimension m < 2n
and Ig is contained in EP*" N Ey. Then there exists an m x n matrix (a;;)
of rank m such that

(2.2) Q:%‘:{Zaij{jnj}:O, i=1,...,m.

Conversely, (2.2) is a Levi-flat real analytic set in C*>" of minimal CR
dimension 2n — m, provided the rank of (a;;) is m.

Proof. — Take k quadratic forms ¢;({n) = 2?21 a;;€;m; so that
Rq1, - .., Rqp, form a basis for real quadratic forms vanishing on Q. Since Q
is generic and of codimension at most 2n, then Q is not contained in any
proper complex subvariety of C?*. This implies that ¢1, ..., g, are linearly
independent over C. For the proof, we assume for the sake of contradiction
that g, = c1q1 +--- 4+ crqr—1. Then

k—1 k—1
Z C50]' . %q]' = —%(Ik + Z %Cj%q]‘
j=1 j=1
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. k=1 . .

vanishes on Q. Hence, ijl e - g5 vanishes on Q. Since Rqq, ..., Rqy are

linearly independent over R, then at least one of 3¢; is nonzero. Therefore,
. . . . k=1 . S

Q is contained in the complex variety ijl Sej - q; = 0, which is a

contradiction.

To show that k = m, we need only to verify the last statement in the
proposition. Without loss of generality, one may assume that (a;;)1<i j<m
is nonsingular. Then Q \ UL, {§; = 0} is parameterized by

nz:\/jl{z bijtj"'zcijgjnj}/gi; t=1,....m
j<m j>m
with (b;;) = (aij)l_gli,jgm and t; € R. This shows that Q\UJL;{{; = 0} isa
generic Levi-flat C'R manifold of C' R dimension 2n — m. Next, we want to
show that Q@ NUTL,{; = 0} has dimension less than 4n —m. It suffices to
verify that @ = Q N {& = 0} has dimension less than 4n — m. Note that
the rank of (@i;)1<i<m,2<j<m is m — 1. Without loss of generality, we may
further assume that (a;;)2<;, j<m has rank m—1. Obviously, Q' is contained
in Cx Q" for 9" c C»2: R {Z;nzz aijfjnj} =0,i=2,...,m. Applying
induction on n and m, one can verify that @ N {& = n; = 0} is a real
analytic set of dimension at most 4(n—1)— (m—1); hence dim Q' < 4n—m.
The proof of the proposition is complete. a

PROPOSITION 2.2. — Let Q C C?" be an irreducible generic real
analytic set defined by real quadratic forms and of dimension at least 2n.
Assume that A(Q) = Q, and that T is contained in EP*" N Ey. There is a C-
linear symplectic transformation which leaves A in the diagonal form (2.1)
and transforms Q into the set

(2.3) Moty + 158y =0, G =1,...,2L
with0(2j —1)=2j =0"%(2j —1) for j =1,...,L, and

(2.4) il =1, pogg) =ty

Proof. — Since Z is invariant under A, we have Z = EBIZSh for
ho_ h
If’js =ZINEP"NE,;.

Assume that Iijh # {0}. We first want to show that dimCIZSh = 1.
Without loss of generality, one may assume that 4,5 > 0. Assume for
the sake of contradiction that dimg¢ IZSh > 1. Since dimg EZSh = 2 then

ANNALES DE L’INSTITUT FOURIER



LEVY-FLAT SETS AND SYMPLECTIC MAPPINGS 159

Iffh = Eijh; hence, Q is contained in &&; = 0, which contradicts that Q

is generic and of dimension at least 2n. Next, we want to show that
. h . h
(2.5) dimg Z}7" + dime 775 < 1

for {i,7} # {#,7'} and {4,5} N {¢',5'} # 0. Let us focus on the case
i,j > 0, and other cases can be checked similarly. Assume for the sake
of contradiction that on Q

a&i&; + bﬁiﬁj =0, c&&y+ dﬁiﬁj’ =0
for some a, b, ¢,d # 0. Eliminating &; and 7, yields

(2.6) adfjﬁj/ — bij/ﬁj =0

on Q\ ({¢& = 0}uU{¢; = 0}). Since Q is irreducible and generic, then (2.6)
holds on Q also, which contradicts that Z N E"™ = {0}.

psh

Next, we want to show that all I;;”" = 0. Otherwise, one may assume

that Ifyslh # 0, so Q is defined by the vanishing of ¢ — a7 and other
quadratic forms independent of &1, 7;. Denote by Q' C C?*~2 the vanishing
set of the complex-valued quadratic forms in Z that are independent of
&1, m1. Obviously, the decomposition

Q= ({& + Vam, =0} U{& — Var, =0}) x Q
contradicts that Q is irreducible.

To achieve (2.3), let Z contain one of quadrics

§ny +an&y,  && +aniy,  ming + ag;é;
with ¢ # j and a # 0. By substituting (n;, —¢;) for (§;,n;) in the second
quadratic form and replacing the third quadratic form by its conjugate
divided by @, one may assume that the first quadratic form is in Z. Next,
interchange (&;,n;) with (&1, m) and (§;, n;) with (§2,72), respectively. Thus
7 contains

&z + &y, #0.

By the transformation (&1,11) — (\/|p1l€1, m//|121]), one gets |p1| = 1.
Inductively, one finds the remaining coordinates (3,73, .. .,&n, Mn) S0 that

Q is given by (2.3)—(2.4). The proof of the proposition is complete. O

Analogous to Proposition 2.2, we have the following.

PROPOSITION 2.3. — Let Q C C?" be an irreducible generic real
analytic set defined by real quadratic forms and of dimension at least 2n.
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Assume that Q is invariant under A, and that Z is contained in Ehrmn B
and satisfies the non-degeneracy conditions

(2.7) dime Z)Y™ - dime Z)™ = 0

for all distinct i,j,k. Then there is a C-linear symplectic transformation
which leaves A in the diagonal form (2.1) and transforms Q into

(2:8) &80ty — MilMoy =0, j=1,...,2L
with L) = [i;, |uj] =1, and 0(2j —1) = 2j = oY (2j—1)forj=1,...,L.

The proof is almost the same as that of Proposition 2.2, except (2.7),
replacing (2.5), is part of the assumptions of the proposition. One can show
that Q is equivalent to §;7,(;) + 17;€5(j) = 0,7 = 1,...,2L. However, the
latter is equivalent to (2.8) by a symplectic transformation. The details are
left to the reader.

We depart from the symplectic coordinates for a moment.

ProposITION 2.4. — Let @ C C" be defined by the vanishing of
some linear combinations of z1Z1, . . ., 2, Zn. Assume that Q is generic, Levi-
flat, and of codimension m < n. Then m is less than n and rearranging
Z1y- ..y 2 giVEs

(2.9) Q:2Zj — cjzr; 2K, =0, j=1,....m

for some c; > 0 and k; > m.

Proof. — For the space of R-linear combinations of z1Z1,..., 2,2,
that vanish on Q, choose a basis ¢, ..., gr so that for a possible rearrange-
ment of z1,...,2,

(2.10) qi(2, %) = z;Z; — Z GjaZaZa, J=1,...,k.
a>k

Since Q is not contained in U}_;z; = 0, then

D = {(zk+1,...,zn)|2aﬂzl§l >0, = 1,...,]{7}
1>k

is a nonempty open set in C*~*, of which the boundary contains the origin.
Obviously, {¢1 = -+ = g, = 0} \ U5_,{z; = 0} is a smooth submanifold in
C™ of codimension k; in particular, k¥ > m. On the other hand, if & > m,
then Q* is contained in U;?:l{zj = 0}, which contradicts that Q is generic.
Therefore, k = m.
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To determine a;, we consider (1,0) tangent vectors of QC\Ué?:l{zj =
0}, spanned by

i Za O 0
(2.11) Lo=Y ot 7+, a>m
One has

ZaZg O G za25 0
La’Lﬁ Zam%ﬂ 2 Gz] Ajal i85 2 8z] a#B.
j=1
Since Q is Levi-flat, the Lie bracket [Lq, Lg], restricted to Q.\U{z; = 0}, is
locally in the span of vector fields (2.11) and their conjugates. This implies
that [Le, Lg] vanishes on Qc \ U{z; =0}, ie,

Ajaljs — Eatb _ =0, on Q\Uj,{z =0}
z]z]
Since Q \ UJL;{z; = 0} is not contained in 2,25 = 0, then ajna;s = 0
for a # S. On the other hand, from (2.10) one knows that at least one of
ajo (e > m) is positive. This shows that Q has the form (2.9). The proof
of the proposition is complete. a

Returning to symplectic coordinates, we now want to prove the
following.

PROPOSITION 2.5. — Let Q@ C C?" be a Levi-flat real analytic
set defined by elements in E"™ N E,. Assume that Q is generic and of
codimension m < 2n, and that Q contains no C-linear coordinate subspaces
(i.e., vanishing sets of some of 1,11, ...,&n, Nn) of dimension greater than
2n — 2m. Then under a change of symplectic coordinates which leaves A in
the form (2.1), Q is given by

(212) ‘€j|2 7ﬂj|770(j)|2 :07 ] = 13"'am7
where o:{1,...,m} — {1,...,n} is injective, and p; satisfy

_ { 1/ poy >0 if 7; is even and positive,

Ky = .
1 otherwise

with 7; being the smallest positive integer satisfying o™i (j) = j (1, = 0

when o*(j) > m for some k).

Proof. — In view of Proposition 2.4, such a set takes the form (2.9)
with z1,..., 29, being a permutation of &1,71,...,&n, My Since Q does
not contain any C-linear coordinate subspace of dimension greater than
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2n —2m, all kq, ..., ky, in (2.9) are distinct; consequently, m < n and Q is
given by m equations

(2.14) & = i, an P 1&al® = cllnpan s Il = ¢y,
in which ¢ ,c} ¢/’ are positive, and indices iy,i2,i3 run over subsets
I, I, I3 of {1,...,n}, respectively. Moreover, I, Is and «(I;) are mutually
disjoint, and so are I3, 3(I2), and v(I3). We shall first permute the sym-
plectic coordinates to eliminate the first and last groups of equations in
(2.14). For each j € a(Iy), we change the coordinates (£;,n;) to (—n;,§;),
and for each k € 37 (a(I1) N B(I2)), we change the coordinates (&x,ny) to
(—nk, &) and replace ¢ with 1/¢}. Thus, equations in the first group are
eliminated. Next, we apply the coordinate change (§;,n;) to (—n;,§;) for
each j € I3 and j € 371 (I3 N B(I5)). After the above coordinate changes,
only the second group of equations in (2.14) remains. By a permutation of

symplectic coordinates, we achieve (2.12) for an injective o.

To obtain the normalization (2.13), we apply induction on the number
of equations in (2.12). If m = 1, one readily obtains (2.13) by applying the
transformation (§;,7n;) — (&, n;/+/m) for j =1,0(1).

For induction, we assume that (2.13) can be achieved if the number
of equations in (2.12) is less than m. We first consider the case there
exists the smallest integer 73 with 0™ (1) = 1. Note that such 7 always
exists if 0%(1) < m for all integer k. In this case, the equations in (2.12)
break into two groups: the equations involving only (&,x(1y,7#(1)) for
k = 1,...,71 and the ones not involving any of those variables. If both
groups are non-empty, (2.12) follows from the induction assumption. Thus,
one may assume, without loss of generality, that 7, = m, 07(1) = j + 1 for
j=1,...,m—1

Consider a symplectic transformation
(215) fj_)cjgj, 77j—>77j/0j, Cj>0, j=1...,n.

The transformation (2.15) sends (2.12) to [§;* — fij|n.(j[*> = 0 with

fij = ;i py. Put ¢y = 1 and ¢; = 1/(¢c;_1 /1) for j = 2,...,m.
Then fi; =1 for j =1,...,m — 1. To normalize fi,,, consider first the case
that m is even. In this case

O = pafiy iz

is invariant under (2.15). Therefore, (2.12) are equivalent to [&;|* —
wilnjl® = 0,5 = 1,...,m for py = (6, 1)Y/™ and Moy = 1/}, since
014/ = 01p. Consider now the case that m is odd. In this case we apply
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another transformation (2.15) with ¢; = (u},)”%/* and ¢j41 = 1/¢; for
j=1,...,m—1, which gives us (2.12) with y; =1for j=1,...,m.

We now consider the case that o*(1) = m’/ > m for some k. In
this case 1 < 771(m/) < m. Let 7 be the largest integer such that
o~ 7(m') is well-defined. The equations in (2.12) are divided into two
groups: the ones involving N/, -1 (m/)s No=1(m?)s - - - » Eg—7(m?) Only and the
ones not involving §;—x (1), Mo~ () for k = 0, ..., 7. Thus by the induction
assumption, one may assume that 7 = m — 1. Put jo = =™ 1 (m/) and
jx = *(jo) for k =1,...,m — 1. Thus, (2.12) becomes

€k, 1> =ty ;001> =0, j=0,...,m—1

with jo,...,Jm—1 < m being distinct and j,, = m' > m. Take ¢,,_, = 1,
and ¢, = 1/(ck;,y\/Bk;) for & = m — 2,...,0. Then applying the
transformation (2.15) one gets yy,; = 1for j = 0,...,m—1. The proposition
is proved by induction. ad

To conclude this section we remark that, for holomorphic symplectic
mappings, having a Levi-flat invariant set of minimal C'R dimension is not
a sufficient condition for the convergence of their normalizations. In fact,
the sets My, ..., M5 below are combinations of 4 types of Levi-flat sets
(2.2), (2.3), (2.8) and (2.12).

Examples. — The following are Levi-flat sets of minimal C'R dimen-

sion:

M; C (C4:€§ _ﬁg = 07

My C C%: &omp + Eamp = E3&3 + a7z = 0,

Ms C C% |&]? — |n2]? = & + €371, = 0,

My C Co: & — mol* = [&)° — Ins|* = |&2” — &> = 0,

M5 C C%: &85 — Tans = €364 — Tizma = 0.
Note that all these sets contain the (&1, 71)-subspace. Let 1) be an elliptic
holomorphic symplectic transformation of C? which is not normalizable by
any convergent symplectic transformation. For each M, one can find a map
@ which is the product of ¢ with a suitable elliptic C-linear symplectic
transformation of C*"~2 (n = 2,3, or 4) such that M; is invariant

under ¢. However, ¢ is not normalizable by any convergent symplectic
transformation.
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3. Normalization of Levi-flat invariant sets.

Throughout the paper we denote by [p]; the sum of homogeneous
terms of order k, whenever p is a multivariable power series.

In Section 2, four special Levi-flat classes of quadrics were introduced:
the sets defined by (2.2), (2.3), (2.8) and (2.12), respectively. We now study
Levi-flat sets defined by equations whose lowest order terms correspond to
these quadratic polynomials, and we try to simplify their equations by
changing holomorphic coordinates. For this purpose, we shall combine two
singularities (2.2) and (2.3) since such combination results in no extra diffi-
culties. One can also treat two singularities (2.8) and (2.12) simultaneously.
Notice that quantities y; in Section 2 are symplectic invariants, but are not
the holomorphic ones. Since holomorphic coordinates, not the symplectic
ones, are used throughout this section, we can restrict ourselves to the case
all u; = 1. We shall also use a simpler permutation o to simplify notations.

To combine two types of singularities (2.2) and (2.3), we let o be a

permutation of 1,...,m (m < n) satisfying
NI fl1<j<K,

(3.1) "(1)—{01(3')7&3', ifK <j<K+2L=m.
In particular, o2 = Id. Put

S ore 1 @R, 1< <K,
3.2 (&m) = = )
(32) e = { 2= Pt
with
(3.3) det(aij)i<ij<x 7 0.
Define the set
(3.4) QCC¥™qi(&n) +Tpy(EM =0, j=1,...,m.

Note that we allow K = 0 or m, so that sets (2.2) and (2.3) (all p; = 1)
are indeed special cases of (3.4). In Proposition 3.5 below, we shall prove
that (3.4) is generic, irreducible and Levi-flat.

One of main results of this section is the following.

THEOREM 3.1. — Let M C C?" be a real analytic variety defined
by

ANNALES DE L’INSTITUT FOURIER



LEVY-FLAT SETS AND SYMPLECTIC MAPPINGS 165

where o, q;, and a;; are given by (3.1)-(3.3) and R; are real analytic and
satisfy the reality condition

(36) Rd(j)(é-vnagvﬁ) :Ej(gﬁ,fﬂ?)-

Assume that M is Levi-flat. Then there are m holomorphic functions
H;(&,m) = O(3) such that M, as a germ of real analytic set at the origin,
is given by

(3.7) ¢ (&n) + Ty (&M + Hi(€,n) + Ho(j(§,7) =0, j=1,...,m.

To combine two singularities (2.8) and (2.12), let o be still given by
(3.1), and put

1651 = Ins[%, 1<j<K,

3.8 (&, 6,m) = _ )
a8 gentn-{ Mo ST
We now state the following rigidity result.

THEOREM 3.2. — Let M C C?" be a Levi-flat real analytic variety
defined by

(3.9) g (&, &M+ Ri(6,n,E,m) =0, 1<j<m,

where o,q; are given (3.1) and (3.8), and R;(&,m,€,m) = O(3) are real
analytic and satisfy the reality condition (3.6). Then near the origin, M is
holomorphically equivalent to the set

(3.10) QCC™yq(&n&n =0, j=1,....m.

Note that (3.10) becomes (2.12) (all y; =1 and o = Id) when K =0,
or (2.8) (all u; = 1) when K = m. As a consequence of Proposition 3.7 we
shall see that the set (3.10) is generic, irreducible, and Levi-flat.

The main purpose of this section is to prove Theorem 3.1 and
Theorem 3.2. We start with the following.
LEMMA 3.3. — Let V C C?" x C" be a complex variety defined by
fj:x?+y]2+QJ(x7yaz)+hj(x7yuz>:07 j:17‘-~7m7

where q; Is a quadratic polynomial in Tj11,Yj41,---,%Tm,Ym,2 for j =
1,...,m, and h; are holomorphic functions of order at least 3. Let f be
a holomorphic function vanishing on V. Then, as a germ of holomorphic
function at the origin, f admits a decomposition

f=aifi+afo+-+anf
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for some holomorphic functions a; with min;j{orda;} = ord f — 2.

Proof. — Without loss of generality one may assume that f; is a
quadratic Weierstrass polynomial in x;. Put f = go. Using the Weierstrass
division theorem, one gets

gi-1=a;fj+g;, j=1....m
with min{orda; + 2,0rd g;} = ord{g;_1} > ord f. Hence
f=afi+ - +amfm+ gm-

Assuming that f # 0, we would like to show that ordg,, > ord f and
min{orda,} = ord f — 2.

Consider the dilation (x,y,2) — (ex, ey, €z). Let V¢ be defined by
.Z‘? + yJQ- +qj(z,y,2) + hj(z,y, 2,€) = fi(ex, ey, e2) /e =0
for j =1,...,m. Obviously, h; =0 for e = 0. Put
A, ={teC:|t|<r}

and let AF be the products of k copies of A,. We shall also drop the
superscript in A¥ whenever the dimension k is clear from context. Let 7 be
the projection (z,y,2) — (y, 2z). Choose §, ¢’ so small that the restriction
mVe=Ven (AP x ADT") — ADF" is a 2™-to-1 branched covering, for
which the branch locus is denoted by B€. Obviously,

B =V’ {(y, + @m(z,9,2)) - (U + @1(z,,2)) = 0}

is a proper subvariety of V?; hence, B¢ is also a proper subvariety of V¢ for
small e. Off the branch locus B¢, V¢ is locally given by = = d;(y, z,¢),J €
75 ={0,1}" with d;(-,€) — d;(-,0) as e — 0. Note that for e = 0 the k-th
coordinate of d; is obtained by choosing a square root of —y? — g (z,y, 2),
starting with k& = m. This implies that for J = (j1,...,Jm) € Z5* and Jj, =

(jk7"'ajm)7 one has dJ(yaz70) = (XJl(yaz)va(yaz)v'--7XJm(y;Z))'
Moreover,

(3.11) X)) ¥:2) # X g ) ®,2),  Jegr € 25 F!
for (y,2) ¢ B and 1 < k < m.

Assume for the sake of contradiction that ord g,, = ord f = k. Note
that

(3.12) gm(ex, ey, e2) /€ = [gmli(@, Y, 2) + €fm (2., 2, €)
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vanishes on V¢, and that ord g,, > k. Since g; is independent of z1, ..., z;,
one gets from [g;_1]r = [a;]k—2[fj]2 + [g;]r that

[gm]k(x,y,z) = Z ca(y,z)xa.

acZy

Now (3.12) yields

7 aly, 2)d5 (Y. z.€) + €Gm(ds(y, 2,€),y,2,€) =0, J € ZF
oLy

for (y,z) & w(B€). Letting € — 0, one gets

Z ca(y,2)d5(y,2,0) =0, JeZ}

acZy

for (y,z) ¢ n(BY). The above are 2™ linear equations in 2™ unknowns
ca(y, 2), for which the coefficients d9(y, z), o, J € Z3* form a block matrix

D’ D’
b= (XOD’ XlD’>’
where D’ is the matrix formed by dgg?:g with o/, J' € Z7"', and X, X3
are diagonal 2™~! x 2™~ matrices of which the J'-th diagonal entry
is X0, (y,2) and X1 j(y, 2), respectively. From (3.11) it follows that
det(Xo—X1) # 0. Applying induction on m, one gets det D=det(Xy—X1)
det D’ # 0. Therefore, ¢, = 0. This shows that ordg, > ordf and
ord f = min{orda;} + 2.

However, g, still vanishes on V| so one can find another decomposi-
tion for g,,. Inductively, one can at least achieve

(3.13) f=a1fi+ -+ amfm, minforda,} =ordf —2

for some formal power series a;. By a theorem of M. Artin [1], there are
convergent power series a;(z,y,2) = aj(z,y,2) + O(k) satisfying (3.13).
This completes the proof of the lemma. a

LemMmA 3.4. — Let V,q1,...,qm be as in Lemma 3.3, and let
q;(0,0,2) = Yp_, ajzi. Assume that the rank of (aj) is m. Then V
is irreducible.

Proof. — As in the proof of Lemma 3.3, let m be the projection
(x,y,2) — (y,z). Choose 0,8’ > 0 such that the restriction m:V =
VN (AP x ATFT™") — AZF™ is a 2™-to-1 branched covering, for which the
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set of points of branch order 2™, i.e., the points p € V with 7= 17 (p) = {p},
contains a subset B satisfying additional equations

(314) 2x]+8xjh]:8%fj:(), ]:1,,7’)’1

For a possible smaller ¢’, the above equations define a one-to-one covering
over A7'*". Solving for z from (3.14) and inserting x into f;(z,y, z) yields
new functions

on B. Since (a;i) is of rank m, one may assume that (a;x)i<jr<m 18
nonsingular. Fix (y%,2%) on y]2 +¢;(0,y,2) = 0,5 = 1,...,m, so that
201 =+ =28 =0, while none of y?,29...,¢% 29 is zero. Consider the
dilation g;(y, 2, €) = f;(ey, €2)/€*. Then dg/d(21, .. ., zm) is nonsingular for
(y,2) = (y°,2°) and € = 0. By the implicit function theorem, one can verify
that for small €, there exist z(€), z(€) such that z(e), ey®, z(¢) satisfy (3.14)—

(3.15) and |x(€)|,|2(€)| < ce for some constant ¢ (z;(e) = 0 for j > m).
On the other hand, the singular locus V; of V' is contained in
det df /0y = 2My1y2 -+ ym + O(m + 1) =0,

which obviously does not contain (x(e), ey, 2(¢)) € B for small € # 0. This
shows that V contains a smooth point of branch order 2™. Hence, V* is
connected, i.e., V is irreducible. This completes the proof of the lemma. O

Note that the above proof is based on branched coverings and the
existence of smooth branch points of maximal branch order. Applying the
same argument to the family of complex varieties

Ve fi(x,y,2) = filex,ey,e2) /e, j=1,...,m

yields that any neighborhood of the origin contains another neighborhood
D, independent of €, such that each VN D is connected for small e.

We now apply the above lemmas to the real analytic variety given by
(3.5) and (3.6).

PROPOSITION 3.5. — Let M C C?" be a real analytic set given by
(3.5)—(3.6). Then M is a generic and irreducible real analytic variety of
codimension m. Also, a germ of any real analytic function f vanishing on
an open subset of M*, of which the closure contains the origin, can be
decomposed into a1 + - - - + T for germs of some complex-valued real
analytic functions a; with min;{orda;} = ord f — 2. Moreover, the set Q,
defined by (3.4), is Levi-flat.
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Proof. — Put r;(f,n,g,ﬁ) = r;(e&,m, e, em)/e* for j = 1,...,m.
Note that Q is defined by r{ = .- = 70 = 0. At £ = (0,...,0),n =
(1,...,1), one has

det 8r0/8(§1, e ,fm) = detA 7é 0, A = (aij)lgingf(.

This shows that dim @ > 4n — m, and that Q is generic if dim Q =
4n — m. Now the implicit function theorem implies that M enjoys the
same property.

To show that dim M = 4n — m, we consider the complex variety
M C (C2n X C%:Tj(fﬂ%gvﬁ) :Fj(gvﬁvgvn) = 01 J = 17' .., m,
where £,7,€,7 are now independent complex variables. By the reality

conditions (3.6), M is actually defined by r;(&,n,£,7) =0forj =1,...,m;
more explicitly, M is given by

i+ Y, bk + Y el + Ri(6n, &M =0, 1< <K,
k=K+1 k=1

fjno(j) +gg(j)ﬁj + Rj(fa nvg7ﬁ) = Oa K < ,7 < m,

where (cjr)i<jk<k is nonsingular. Choose complex linear coordinates
x,9, z so that

§iMlo() = 05 TYjs Loy =% + Zmyryyy K <js=m
Substitute the rest of z-variables for &1, &,7 that do not appear in (3.16).
Obviously, in the new coordinates, M has defining functions satisfying all
the assumptions in Lemma 3.4; hence, M is irreducible and of codimension
m. Since M = {(&,1,€,7): (§,7) € M} C M is of real dimension at least
4n — m, then M is the Bruhat-Whitney-Cartan complexification of M. A
result of H. Cartan [7] implies that the complexification of f vanishes on
M. In view of Lemma 3.3, the complexification of f, and hence f, admits
a decomposition a17ry + -+ 4+ G-

The above argument shows especially that Q is irreducible, generic,
and of codimension m. Finally, we want to show that Q is Levi-flat.
Note that Q \ UT.;{n; = 0} is the disjoint union of graphs over the
(&Em+t1s- -+ &n,m)-space, which are given implicitly by

n
Zag‘k&mk = itj, a(j) =7

k=1

Eio) =t Hito(ys oty = —(tj —itogy),  0(j) >
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with ¢; € R. Hence, Q \ UJL;{n; = 0} is smooth and Levi-flat. Since Q. is
generic, it is contained in the closure of @\ U7, {{; = 0}. Therefore, Q. is
Levi-flat. This completes the proof of the proposition. O

Before we prove the first main result of this section, we should recall
the Segre varieties associated to a real variety [15]. Let M be a germ of real
analytic variety at 0 € C™ defined by r1(2,Z) = --- = r(2,%) = 0, where
r; are real power series convergent on a polydisc A? x A? C C" xC". Then
the Segre varieties are the family of complex varieties

Qu={z€Al:r(2,W) = =rp(zw) =0}, weAl

For a fixed w € A?, the Segre variety Q,, could be an empty set, or the
whole polydisc A, or a proper subvariety of dimension between 0 and
n — 1. For our applications of Segre varieties, we shall only deal with real
analytic sets M that admit defining functions r1, . .., r,, such that germs of
real analytic function vanishing on M are always generated by r1,...,7m.
This implies that the Segre varieties @, are independent of the choice of
such defining functions r;, except that a possible smaller polydisc Al x A7
has to be chosen for a given set of such defining functions. Also, note that,
given two real analytic varieties M, M’ admitting such defining functions
and a biholomorphic mapping ¢ sending M onto M’, ¢ must send Segre
varieties of M into Segre varieties of M’ (by shrinking the polydiscs on
which M, M are defined if necessary). Finally, we should mention that if a
germ of complex variety V' at w is contained in M, then V is also contained
in the Segre variety (., of M.

Proof of Theorem 3.1. — Following [6], we start with the dilation
M€ defined by

r5(&m, & 1) = rj(e€, en, €&, /e =0, j=1,...,m.
Write
r5(&,m,61m) = q;(§,m,6,1) + R;(€,1,6,7, €).
Parameterize
YV =MN{n=1 j<m &§=mn=0, j>m}
by z =~°(t) = (£(),n(t)) (t € R™) with

m
D abe(t) =ity + ajte), aj=a; ifo(j) =],
k=1

fj (t) = tj + ita(j) + Olj (t, 6)

if o(y i
Eo(iy(t) = —(t; — ite() — ay(t,€)) } (J)>J
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Then o should satisfy
20 + R;(&(t),n(t), (1), 71(t), €) = 0, o(j) > .

The implicit function theorem implies that the above equations have a
unique solution

a; = aj(te), o(j)=>j
with aj|e:0 =0.

The Segre variety Q<) of M€ is defined by

7’L'tj + Oéj(t, 6) + Zajkfknk + Rj =0 if 0’(]) =7,
k=1
—tj —ito(j) + a;(t,€) + & oy + By =0

(3.17) , _
tj = ito() +;(t,€) + &)y + Ro(j) = 0

} if o(j) >Jj

for R; = R;(§,m,7°(t),€). By applying the fixed-point theorem, one can
solve (3.17) to get
tj:ihj(f,ﬂ,é), j:].,...,m,

where h; are holomorphic functions of £, n, €. It is easy to see that
(3.18) hi(€m,0) = cipau(€,m),  det(cji) #0.
k=1

This implies that for small €, all h;(&,n, €) are well-defined on the domain
Dy =A"n{lg;(&n)] <s,j=1,...,m},

where s > 0 is small and independent of €. Clearly, v¢(¢) is contained in
D, when ¢,t are small. As mentioned after the proof of Lemma 3.4, D,
contains a neighborhood D’ of the origin such that for each small € the
smooth locus of M¢N D’ is connected.

Note that 9(r§,...,75,)/9( 1, - - -, &m) is nonsingular near €. Hence,
M€ is smooth and of C R-dimension 2n — m near «¢. This implies that M*¢
is Levi-flat near +¢; in particular, the branch Q:{ <(t) of Qe(), which passes
through ~v¢(t), is contained in M¢€.

Next, we would like to show that QQ/ ey C M€ sweep out an open
subset of (M€)* N D'. To this end we take a polydisc A2? C D’. Rewrite
(3.17) as

K
& =mn;" (Z bjk(ity, — a — Ri) + Z bjkfkﬁk) . o(j) =14,

k=1 k>K
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& =105t +itey) —a; — Ry) N

1y, _ o(j)>J
oty =15 ((ita() =t — @) = Ro()

Applying the fixed-point theorem to the above equations, one can get a

unique solution &; = p§(n,&”,t) defined on E™ x AZ2 for |t < s,

where s’ < s’ is a positive constant depending only on s' and

E={weC:s/2<|w| <3/2,|argw| < 7/2}.

This shows that when €, ¢t are sufficiently small, the branch nyﬁ( 0 contains
the graph

Gy CC™:& =p5(¢" mt), (n,€") € E™ x AZ

s’

Obviously, G§ N A% is nonempty if €,t are small, and (9pc/dt)(n,£",t) is
nonsingular on E™ x A%72™*1 for ¢ = (. This shows that G¢ = UGS C M*
is an immersed real manifold of dimension 2n—m. Thus, G¢N(M€)*NAZ is
nonempty. On the other hand, G§ is contained in the Segre variety ny
which the holomorphic functions h;(§, 7, €) are pure imaginary. Therefore,
all R{h;(&,m,€)} vanish on a nonempty open subset of (M€)* N A2,
The latter is, however, a totally real subspace of (M€)* N D of maximal
dimension. Therefore, the complexification of each ${h;(§,7,€)} vanishes

on M®ND. In return, R{h;(&,n,€)} vanishes on M*.

<(t) o1

We now fix a small €. In view of Proposition 3.5, we have
(3'19) §R{}L](é-7 777 6)} = Zd]k(§7 n’ E?ﬁ)rz(€7 ,'77 g?ﬁ)? j = 17 AR 7m'

In particular, h;(&,n,€) — h;(0,0,€) = O(|(£,1)|?). (From (3.18), we know
that (d;x)(0) is invertible. Let (d’;) be the inverse of the constant matrix
(d;4)(0). Put

h’;k (67 7’) = Z d;khk (67 1, 6)'
k=1
Then ¢; is the quadratic form of h}. Notice that the right-hand side
of (3.19) is real; in particular, its quadratic form is real also. Hence,
— —/
d; (0)7:7 io(k) (0). From o =1d, it follows that d);, = d, ;- On M¢, we
have h;(£,7,€) = —h;(§,n,€). Now a straightforward computation shows
that h¥(&,7,€) = —Ef;(j)(g,n, €) on M¢€. This shows that M€, and hence M,
is of the form (3.7). The proof of the theorem is complete. O

We now turn to the proof of Theorem 3.2. The rest of the section is
to show that the Levi-flat analytic set defined by (3.9) is holomorphically
equivalent to the set (3.10).
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We shall use general holomorphic coordinates for the rest of section.
For convenience, we set

Z:((ﬂ,y), .’ﬂI:(.Tl’...,:L'm), x//:(xm+1a"'7xn)v etc,

where (z,9) = (21,...,%n,Y1,. - .,Yn) are coordinates of C?". In particular,
the last m — K equations in (3.9) are equivalent to the last m — K ones of

(3.20) TP =Ty T To(j)¥i + Ri(2,2) =0, j=1,...,m.

The first K equations in (3.9) are transformed into the first K ones of
(3.20) by the transformation

§ =04z +y; nj=0+iz; +iy;, j=1...,K

Thus, M is given by (3.20) with o of the form (3.1), and the reality condition
(3.6) now reads

(3.21) R,(j)(2,%) = R;(z, 2).
Thus, Theorem 3.2 is reduced to the following.

THEOREM 3.6. — Let M C C?" be a Levi-flat analytic set given by
(3.20)—(3.21). Then M is holomorphically equivalent to the set

(322) QC (CQnI xjya(j) +§U(j)yj = O7 j = 1, 2, o, M.

We need the following.

PROPOSITION 3.7. — Let M C C?" be a real analytic set defined by
(3.20)—(3.21) with o of the form (3.1). Then M is generic, irreducible and
of codimension m. Also, a germ of any real analytic function f vanishing
on a topological component of M, of which the closure contains the origin,
admits a decomposition a1r1 + -+ + a7y, for some complex-valued real
analytic functions a; with min{orda;} = ord f — 2. Moreover, the set Q,
defined by (3.22), is Levi-flat.

Proof. — The proof is almost the same as that of Proposition 3.5.
Take a point 20 = (2°,5°) on Q such that 29 # 0 # 3 for j = 1,...,m.
Then 9(q1,...,qm)/0(x1,...,2m) # 0 at 2°. This shows that Q has
codimension at most m, and that Q is generic if codim @ = m. By the
implicit function theorem, one then knows that M has codimension at
most m, and it is generic if the codimension is m. Using Lemma 3.4, one
shows that the complexification of M is the irreducible complex variety of
codimension m given by 7;(2,%Z) = 0,5 = 1,...,m. Since M* is a totally
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real subspace in (M)* of maximal dimension, the complexification of f
vanishes on M. Lemma 3.3 says that the complexification, and hence f,
can be decomposed into a171 + - + - + a7 for some real analytic functions
a]—.

Finally, Q@ \ UJL,{z; = 0} is the disjoint union of complex manifolds
y; =itjr;, 1<j<m

with parameters t; € C satisfying t,(;) = t;. Therefore, Q is Levi-flat. The

proof of Proposition 3.7 is complete. a
LEMMA 3.8. — Let o be a permutation of 1,...,m, and let

li,...,lm be C-linear functions on C*" satisfying

(3.23) Tilojy (T, y) + To()li(2,y) = 0.

Then l;(z,y) = cjz; and

(3.24) Co(jy +¢; = 0.

If ¢,d € C™ satisty (3.24) with ¢ — d € (C*)™, equations

(3.25) @ =y;— ¢y Y =(y; —djz;)/(c; —d;), 1<j<m
define a nonsingular linear transformation with

(3.26) T5Vs() + To()¥i = Ti¥o(j) T To()Vs-

Proof. — By (3.23) it is clear that I(x,y) = (c121,. .., CmTm) With
¢; satisfying (3.24). Now, ¢ — d € (C*)™ implies that the transformation
(3.25) is nonsingular. In view of (3.24), the computation for (3.26) is
straightforward. The details are left to the reader. O

PROPOSITION 3.9. — Let M C C?" be a Levi-flat real analytic set
defined by (3.20)—(3.21). Then in suitable holomorphic coordinates, M is
given by

with
m m
(3.28) Z Yk (%, Z) Z kY180 (j)k1 (2, 2)
k=1 k=1
+ Z Tryibjr (2, 2" Z Uibo (i (7, 2"),
k=1 =1
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(3.29) biri(z,0") = by (2, 0") =0,

(3.30) Aiko(5)(2,0) = a;;(0,Z) = 0.

Proof. — Put 15(2,Z) = rj(ez,€z)/e® for € > 0. Let M¢ be the
dilation of M defined by r{ =--- =7rf, = 0. Set
E¢:0r{A---NOr;, #0.

Obviously, M° N E° contains an m-dimensional totally real submanifold
parameterized by

(3.31) =(1,...,1), 2" =y"=(0,...,0),
itj, U(.]) =7,
3.32 =) =<7 . _ S
(3.52) v =5 (1) {tj tite() = Yoy, o) >
for t; € R. By the implicit function theorem, M€ N E¢ also contains an
m-~dimensional totally real submanifold v¢(¢) parameterized by (3.31) and
yi = y5() = ') + ay(te), —1<t; <1, j=1,....m,

where a;(t) are real analytic functions in ¢ and e, satisfying aq(;)(t,€) =
@;(t,e). The Segre variety Q<) is defined by
(3.33) Yi +T0e(j () + Rj(2,7°(t), ) =0, j=1,...,m.
Note that R; = 0 when ¢ = 0. By the fixed-point theorem, Q. =
Qqery N{]x5] < 2,]y;] < 1/2} is a graph of the form

y; = h5(x,y",t), Jzl <2, j=1,....,m
for small € and ¢. In particular, Q<) is contained in M*€.

We would like to show that 0 € Q). From (3.32), it follows that
for small € and generic ¢, Q. () intersects a fixed Q¢(;,) transversely along
S = Qyery N Qye(ry)- Fix a generic t. S contains points which can be
arbitrarily close to the origin as € tends to 0, and near the origin S is a
closed complex submanifold of dimension 2n —2m. To show that 0 € Q< (y)
it suffices to verify that S contains the origin. Since Q. ;) and Qe
are complex submanifolds of codimension m < n, the span of their tangent
spaces at each point in 9 is the whole space C?". Therefore, the differentials
dr; vanish on S. On the other hand, we have

alj’rj = ya(j) + O(|Z|2)) Cr)yjrj =To(j) + O(|Z|2), j=1...,m

Near the origin the above equations define a (connected) smooth real
submanifold S’ of dimension 2n — 2m. Obviously, S’ contains the origin.

TOME 51 (2001), FASCICULE 1



176 XIANGHONG GONG

Since S(C S’) and S’ have the same real dimension and both are closed
sets, they must coincide near the origin. This shows that S, and hence
Q< (1), contains 0. Notice that the union of Q,<(;) contains an open subset
U of (M¢€)* with v¢ C U and that 0 € Q,, for w € U. We conclude that Qg
contains the open subset U of (M €)*; consequently, the complex variety Qo
is the whole space C2", since M€ is generic. Therefore, r;(&,n,0,0) = 0 for
j=1....,m

Our next step is to find new coordinates for a fixed M€ so that it has
two Segre varieties forming part of coordinate subspaces. To this end, we
fix a small € so that M€ contains two Segre varieties Q. ey and Q)
intersecting transversely at the origin. As shown above, Q. ey, Qcir)
are given by y' = g(z,y”) and ¢y = h(z,y"), respectively. Moreover,
g(0) = h(0) = 0. Since Q) is contained in M, then

ri(z,9(z,y"),y",7,9x,7"),7") =0
for j =1,...,m. Hence,
[gj(mvyﬂ)]lfa(j) + [ga'(j) (x7y//)]1x]’ =0

This means that [g1]1, ..., [gm]1 satisfy (3.23), so [g;]1(z,y) = ¢jz;. Simi-
larly, [hjli(z,y) = d;z;. Deﬁne the new coordinates

o =y;—gi(xy"), yj =y —hi(x,y")/(e; —dj), j=1,...,m,
for which the linear terms are of the form (3.25). Now M = M€ contains two
Segre varieties 2] = --- =z}, =0 and yj = --- =y, = 0. For brevity, we
replace z* by z. In view of 7;(z,0) = r;(0,Z) = 0 and the reality condition
(3.21), one sees that M is given by (3.27) with

g ﬂSklel]kl 2,%) E xkyla]kl Z, %)

k=1 k=1
m
+ E afkylbgkz 2,2" E Ty b ]kl z,2"),
k=1 =1
where a’y, (2, %) is independent of x1, ..., ¥k—1,71, ..., ¥j_1, and afy, (%, 2) is
: = = . ’ 72
independent of T1,...,Tg_1, Y1,--.,y;—1. Obviously bk Uy iIndependent
. 1" = I =
of z1,...,Tk_1,Y1,--.,Y1_1, are unique, and ba(j)kl(z,z ) = b,1(%,2") by

the reality conditLon Rj = Ry(j)- Put aji = (af, + @, (;yk1)/2- Then the
reality condition R; = Ry(;) implies that R; are given by (3.27)-(3.29).
Note that a;x(2,%) remains independent of z1,...,Tk—1,G1,---,Yj_1-

To achieve (3.30), we need to change coordinates one more time. We
shall leave the Segre varieties 21 = --- =2, =0and y3 = - =y, =0
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unchanged. Thus, we consider a holomorphic transformation
Yrag — xy+ui(2), Yy —ytoi(z), j=1...,m

with

(3.34) Ujlpr=0 =0, vjly=0=0, u;,v; =0(2).

Put ¢~"(M) in the form of (3.27)-(3.29) with aj,, in place of ;. Thus,

o .
from 7} = r; o1 one obtains

(3.35) a;(2,2) + g;)(%: 2) = Uo(j)Uj + TVo(j) + Yilo() T To(j)V;
+uiVo(j) + Uo() vy + a5 (27, Z) + Go() (27, 27)
for z* = (' + u, 2",y + v,y"”) and

(2,2) = Zxk?zajkl(zvfﬁ a;(z,%z) = Zwk?la;kz(z»§)~

Comparing the coefficients of yg(j)xo‘yﬁ and :cjfo‘yﬁ in (3.35), respectively,
one gets

Z xka;kg(j)('Z? 0) = Uj + Z(xk + uk(z))ajka(j) (IL’ +u,y+v, 0)7
k=1 k=1

m

Z 1071(0,2) = Tg(jy + Z 7 +01(2))ajn(0,7 + 1,y + ).

Now, the implicit function theorem implies that there exist unique u,v =
0(2) satisfying

(3.36) Zxka]ko 0)=> 7a;;(0,2) =0, j=1,...,m.

FMS

Obviously, the unique solution (u, ) satisfies (3.34) also. Note that in

the decompositions (3.28), a};, ;(2,0) is independent of zy, ..., 2x—1 and
a3;(0,%) is independent of ¥y, ...,%,_,. Now identities (3.36) yield (3.30).
This completes the proof of the proposition. O

Proof of Theorem 3.6. — Following [6], we want to show that the
Levi-flat set M, defined by (3.27)—(3.30), is the one given by (3.22).

Consider a real manifold in M parameterized by =/ = (1,...,1),
"=y" =0and
ity + o(t), o(j) =J
y;(t) = Q tj +itoy) +a;(t), o(j) > J
—to(y +it; +a;(t),  o(j) <J
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with ¢ € R™, a;(0) = 0 and a,(;)(t) = @;(t). By the implicit function
theorem, such «; exist.

The Segre variety Q) is defined by

Yi + U (O)z; + Ri(2,7() =0, j=1,....m
By rescaling the coordinates, one may assume that R; are small functions.
Hence, Q), intersecting with a fixed neighborhood of the origin, is a
smooth complex submanifold given by

yj = hj(z,y".t), hi(z,y",0) =h;(0,t) =0
for j =1,...,m, where the last identity comes from 0 € Q)
Since Q) (¢) is contained in M, we have
(337) 0= ‘TJhU(J)( 1) + Toyhy(x,y" 1)
+ Z{iﬁkhz z, 7" taji(2,2) + Tehi(z,y" ) ae i (Z, 2) }
+ > {zrhi(@ 7", bk (2,2") + T (T, T )bo iy (2, 2)}

for z = (z,h(x,y"),y"). Expanding the right-hand side of (3.37) as power
series in z,y”,Z,y” and collecting quadratic terms yields

(hili(z,y" t) = c;()z;,  coq)(t) +E(t) = 0.
Now looking at (3.37), we see that the homogeneous terms z%y""z o(j) for
|a] + 8] = 2 give us

[h } 7y t Zxkco(j) jko’(j)]l(z7 [h]l(zvy//at)7y//a O)

- Z hl 7y )t U(])O’(])l} (O,I, [h]l(xa yuvt)a y/,)'

(From (3.3 ) it follows that [h i]2 = 0. Assuming for the sake of induction
that [hj]o = -+ = [hj]n = 0 for 1 < j < m, one gets from (3.30) and (3.37)
that

[h’ ]N+1 x y t Z[Ekca aj/CO’(j)]N("E) y70)
+ ) [ @,y )@ (henlv (0,2, y) = 0
for y' = [h]1(x,y",t). This shows that h;(x,y",t) are linear in z, and that
Q~(¢) is given by
yj = ci(t)r, cou)(t) +¢5(t) =0, j=1,....m

Therefore, M contains a portion of Q; consequently, M and Q coincide as
they are irreducible. The proof of the theorem is complete. O
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4. Invariants of Levi-flat sets
and symplectic transformations.

Results in the preceding section allow one to choose much simpler
defining functions of Levi-flat sets in suitable holomorphic coordinates.
In this section we shall use (more restrictive) symplectic coordinates to
study the defining functions for the Levi-flat sets that are invariant under
a holomorphic symplectic mapping.

This section is divided into two parts: We shall first complete the
proofs of Theorem 1.1 and Theorem 1.3 after we obtain the first-integrals
from Levi-flat invariant sets. We then turn to a meromorphic eigenfunction
problem, arising from Levi-flat sets, and formulate Theorem 4.9, from which
Theorem 1.2 follows. The proof of Theorem 4.9 is given in Section 5.

JFrom now on, Levi-flat sets in C?" are of codimension n. We shall
also take into account that in section 3 we ignored the symplectic invariants
p; and used a simpler permutation o defined by (3.1). Therefore, we need
to return to the 4 types of singularities, which involve p; (and a more
general o in case of (4.21) below).

Let 0 be a permutation of 1,...,n satisfying
41 o) =4 1<i<K; o) #i=00), j>K
We first consider Q C C?" defined by
(4.2) 4;(&,m) + 10,51 =0, j=1,...,n
with
pi=1, 1<j<K;  peg =g, Iul=1 j>K;

(&) = Sope1 Gikbrne, 1< <K,
drism EiMo(h)s K<j<K+2L=n

(4.3)

with (aij)1<ij<kx of rank K. Note again that we allow K = 0, or n as
special cases.

With the above notations, consider a Levi-flat real analytic set of the

form

(4.4) gi(&:m) + 13T, (&) + B (§,m,&7) =0, j=1,....n
with

(4.5) Ro(j)(&m,67) = 1 R;(€,7,€,m).
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Let & = i€ = (VB -+, VEnEn), 7 = 1. Then equations (4.4)—(4.5),
after multiplied by ,/fi;, are of the form

~ = = _ -l = _
3 (& n') + 4o (& T) + R (0, 6,7) =0
with
- — ~ = —
qj <§/7 77/) = \V4 quj(\//jg/a 77/)7 Rj (5/7 77/7€ 777/) =/ IU/jRj(\/H£/7 7]/)
Now Theorem 3.1 says that the set is actually given by
. = = _ r = = _
q; (f/a 77/) + QU(j) (6 777/) + HJ (5/7 77/) + Ha'(j)(é- 777/) =0.
Returning to the original coordinates and putting
H;(&,) = /i, (\/EE, m),
one sees that the set is of the form
(4.6)  M:ry=q;(&,n) + piT, ) (&) + Hj(€,n) + pjHoy(€,7) = 0
for j = 1,...,n, where o,q;, and p; are given by (4.1) and (4.3), and
H;(&,n) = O(3) are holomorphic.

THEOREM 4.1. — Let M,H,,q; be as in (4.6). Let ¢ be a holo-
morphic symplectic mapping defined by (1.1)—(1.2) with ¢(M) = M, and
® a formal symplectic transformation such that ®p®~! is in the Birkhoff
normal form (1.3). Then |[A,;)| = |\;| and

(q; + Hy) o @Y (&,m) = q;(E,m) + Hy(€n,€"0Y), j=1,....n
with H;(€n,6"n2) = O(|(&,n)|*) and "0} = (Ek+1M(K41)s -+ EmTo(m))-

Anticipating the proof of Theorem 4.1, we first prove Theorem 1.1
and Theorem 1.3.

Proof of Theorem 1.1. — Let M be the Levi-flat real analytic set
defined by

%{Za/]kgknk)}+R](§777?§7n):0) j:17"'7na
k=1

where the matrix (a;z) is of rank n and R;(£,n,&,7) = O(3) are real-valued
convergent power series. In Section 3 (Theorem 3.1) we have simplified the
equation of M, (from now on) given by

Ri{g;(&n) + Hi(§&m)} =0, j=1,....n
with H;(&,n) = O(3) holomorphic, and ¢; = > 1_; a;xEkmk-
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Theorem 4.1 establishes that if a symplectic mapping ¢, given by
(1.1)—(1.2) leaves the set M invariant, and if ® is a formal symplectic
transformation that puts ¢ into its Birkhoff normal form, then (g; + H;) o
&~ are power series which depend only on the products &nj. (Indeed
under our present hypotheses ¢; depend only on {n and o is just the
identity.) These power series are thus invariant under the action of the
formally normalized mapping. Hence the functions ¢; + H; are invariant,
under the action of ¢. Since (a;jx)1<jk<n is nonsingular, a theorem of Vey
[18] says that ¢ is normalizable by convergent transformations. The proof
of Theorem 1.1 is complete. O

Proof of Theorem 1.3. — Let r be the defining function of M, and ¢
the quadratic form of r. Note that the order of r might be one, which can
however be ruled out by applying the argument below to 2.

Since M is Levi-flat and Q:q = 0 is a hypersurface in C2, then Q
is also Levi-flat [6]. Next, we want to show that Q is invariant under A.
Consider first the case that M is the union of two distinct smooth real
hypersurfaces. In this case, r = ryry with 71(0) = 72(0) = 0. Since r o ¢
vanishes on r; = 0 and on ro = 0, then ry,7s divide r o ¢. In particular,
ro@ = ur. Thus, go A = u(0)g, i.e., A(Q) = Q. Next, we assume that M is
irreducible. Then either 7 is irreducible, or r = ur? with 71(0) = 0. When
7 is irreducible, r(&,7n,&,n) is also irreducible as a germ of holomorphic
function in &7, &,7, because M is of codimension 1 (e.g., see [6]). Since
r o ¢ vanishes on M¢, then r divides r o ¢, which implies that A(Q) = Q.
When r = urf, it is clear that 1 divides r1 0. Denote by a& +bn the linear
part of r1. Then a\é + bAn = u(0)(a& + bn). Since u(0) is real, the above
identity contradicts that not all a,b are zero. (Note that the contradiction
also implies that r starts with quadratic terms, as claimed at the beginning
of the proof.) Therefore, Q is invariant under A.

Applying the above argument to Q, one sees that all germs of real
analytic functions vanishing on Q are divisible by ¢, i.e., that T = g
is spanned by the real quadratic form ¢. Hence, Z is contained in one of
E;; and E;. Since the former contain no A-invariant C-linear subspace
of dimension one, then Z is contained in E;. Hence, we get q(&,n,&,7) =
R{a&n}+bl¢]2+c|nl?. If b= ¢ = 0, Theorem 1.1 says that ¢ is normalizable
by holomorphic symplectic transformations.

If b or ¢ is not zero, a result in [6] says that a = 0. Thus, we see that
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M is given by

(4.7) B +clnl* + R(&n,€7) =0, b-c<0, beceR

with R(£,n,€,7) = O(3) real-valued. By a change of symplectic coordi-

nates, one may assume b = —c. Of course the proof of the theorem is

complete, by applying Theorem 1.2. O
Alternatively, one can prove the theorem without using Theorem 1.2

when M is given by (4.7), for which we shall prove the next result. O
PROPOSITION 4.2. — Let ¢ be a holomorphic symplectic mapping

of C? of the form

E=X+0(2), 7=X'n+0(2), N#£L
Let M C C? be a Levi-flat real analytic hypersurface given by (4.7). Assume
that as germs of real analytic sets, o(M) = M. Then |A| = 1, and there

exists a single change of holomorphic symplectic coordinates that puts M
into the complex cone [£]? — |n|> = 0 and linearizes ¢ simultaneously.

Proof. — Notice that for this proposition, we allow A to be a root
of unity. Also, it is obvious that [A| = 1, since r(&,7,&,7) = bl¢|2 + c|n|® +
R(&,m,€,7) is irreducible and r o ¢ = dr for some analytic real function d.

Since M is Levi-flat, a theorem in [6] says that there is a holomorphic
transformation v such that (M) is the complex cone |£[2 — |n|?> = 0.
(See also Theorem 3.6 in Section 3.) Next, we want to find a holomorphic
mapping

o =p(&mE 0 =p&mn

such that the Jacobian determinant of 1), satisfies

(4.8) det(Dy) = {det(Dyn)} o {yy '},

Thus, 1 = 1) 0 11 is symplectic, and (M) is still the cone |£]? — |n|? = 0.
Write the right-hand side of (4.8) as a3 (1 +wu(£,n)) with ag # 0 a constant,
and u(0) = 0. We seek a solution of the form p(§,n) = ap(1+v(&,n)). Thus,
(4.8) becomes

(4.9) §vg + 1y + 20 = (§vg +v)(Nvy + v) = Eve - MUy + u.

Comparing coefficients, one sees that there exists a unique formal power
series solution v(&,n) with v(0) = 0. Let u;;,v;; be the coefficients of u, v,
respectively. Put

ut =Y fuiglétn’, w =Y (i 4+ 2)|viylEn’
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Obviously, &ve, vy, £ve +v, nuy, +v are majorized by w, for which we write
&vg < w, etc. Thus, (4.9) implies that

w =< 2w? +u*,  w(0) =u*(0) =0.
By the Cauchy majorant argument, w, and hence v, is convergent.

Now ¢* = 11y ~! is a holomorphic mapping sending the complex
cone |£|2 —|n|? = 0 into itself. In particular, p* sends a Segre variety of the
cone into another Segre variety, i.e., ¢* sends a complex line (inside the
cone) through the origin to another complex line. Hence, one first sees that

©* leaves the eigenspaces of its linear part invariant. Thus, A # X implies
that

©" & — fEmAS,  n— g(&mAn
with f(0) = ¢g(0) = 1. Furthermore, ¢g/f is holomorphic near the origin,

and remains constant on each complex line in the cone. Therefore, f = ¢
on the cone, and hence near the origin in C2. This shows that ¢* is of the

form (&,m) — f(&,n)(A§, M) with f(0) = 1. Since det(dp*/d(&,n)) = 1,
we obtain f(£,n) = 1. In particular, ¥ o ¢ 0 9p~! = * is a linear transfor-

mation. O

We now turn to the proof Theorem 4.1. Let us first prove the following.

LEMMA 4.3. — Let @ C C*" be defined by (4.2)—(4.3), and let h
be a holomorphic homogeneous polynomial in £,n. Assume that h is real-
valued on Q. Then h is a polynomial in q1, ..., Q.

Proof. — By changing linear coordinates, we may assume that u; =
—1,and that o(j) = L+jfor j=K+1,..., K+ L. Put £ = (&,¢&"),n=
(n',n") with

¢ = (Ert15---&n) = (Tr41, - TRAL, YK 41, -+ - YK+L),
0" = MKty n) = (BK415 -3 ZK4 Ly WE AL+ WK L)-
Assume first that h depends only on f” 77 Expand h(z, y,z,w) =

> habear®y®zcw?. On Q, one has w; = Y%7, Yfor j=K+1,...,K+L.
Since A is real on Q, then

Z habcdx dybzcydzd Z habcdydzdxa ] b Z°.
Fix a,b, ¢, d with hgpeq # 0. Comparing two sides of the above identity, one
sees that there exist a/, ¥, ¢, d’ such that

(a —d,b,c,0,d,d) = (0,d,d,a" —d V).
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Hence, a = d and b = ¢. This shows that h(¢”,17") = 3 happa (£707) (@),

For the general case, we shall prove by induction on [ that there exist
decompositions

(w10 C Y canl€ €+ Y € i
|Bl<! [y|=1

for 1 =0,1,.... Fix £’ ,n" satisfying equations (4.2) for j > K, and let £',n

satisfy

/

n
Z@jkfkﬁkztja .]ZlavK
k=1

for t; € R. Solving for 1, ...,nk yields

(4.11) =&+ Y b, j=1,....K,

k=K+1
where t — b(t) = (b1(t),...,bk(t)) is a nonsingular linear transformation.
The decompositions (4.10) are trivial for { > degh. Assuming that the
decompositions (4.10) hold for I > k, we want to show that (4.10) for [ =k
is valid. jFrom (4.10)—(4.11) one sees that terms of order k in ¢ are given

by
S cap(€ )TV (1),
|8|=Fk

For fixed &”,n", the above summation is real-valued for ¢ € R¥ and
¢ € CK. Since the transformation t — b(t) is nonsingular, we know that

on Q
Caﬁ(gﬁan”) :Oa a#ﬁv |6| :k7

(4.12)
> Blegp(€" ") p =0, lal=F,
|Bl=k
where BP are the coefficients of the linear transformation
(4.13) P Pty = > Bit*, |8 =k
|a|=k

Now (4.12) implies that for o with |af = k, 355 L Blcgp(€",n") are
polynomials in £”’n/. Since the linear transformation (4.13) is nonsingular,
then cgg(£”,n") are power series in &"nl for |3| = k. Rewrite (4 10) as

hEm) =Y Gap€ 0+ e (&gl -

|B|<k [v|>k

By induction, the proof of the lemma is complete. O
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To state the next result, we need some notation. For a power series
f(€,m,€,7m), denote by Pyf the sum of terms in the power series expansion
of f, which are not of the form (&n)2(&n)°(¢"n!)e(€"n)?.

LEMMA 4.4. — Let rq,...,r, be the formal power series in (4.6)
with q; being (4.3). Let di,...,d, be power series in &,n,&,7 of order at
least k. Assume that

[Podi]rqy + -+ + [Podn]kgn = 0.
Then there exist formal power series Jh ... ,dn such that
(4.14) diry 4+ +dpry =diry + -+ dyry
with ord d; > k and [Pyd,)), = 0.

Proof. — Choose C-linear combinations r],...,r% of ri,...,rx so
that

n
5 (&m,67) = &m; + Z bie&knr + Z cjk€rnre + O(3).
k>K k=1

It suffices to prove the lemma for

S S e PR LA
For brevity, we drop the superscript of r}. For j > 1, decompose [d;]; =
ujq1 + [uj]x so that [u}]y contains only terms nPe'n’ with aq = 0, or
01 = 0. Put

u;-:dj—ujrl, j>1
Then

diry + -+ dpry = diry +ubre + o Uy,

Comparing terms fanﬁ?ﬁ‘; with a1, 51 > 1, one sees that [Pocfl]k =0, and
hence
[Pous]kgz + - - - + [Pouy,|kgn = 0.

Inductively, one determines Jg, .d i so that

diri+ -+ dpry :Jﬂ"l +"'+CZK7"K+U;€/+1TK+1 —&——l—uxrn

1
J
vjTr41 + vj for j > K + 1 so that [v]; contains only terms of the form

fo‘nﬁ?ﬁ‘s with ag 1 =0 or B5(xy1) = 0. Thus,

and [Podl]k = ... = [POJK]k = 0. To find dg.1, we decompose u

" " 7 / /
Ug 1 TK+1 + o F Uy = dr+1Tr+1 + Vg yoTK+2 + -+ U, .
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Comparing the terms of the form 50‘77'8?# with a1, Br(k41) = 1 yields
[Podp+1]x = 0. Now the proof of the lemma is complete by induction. O

Proof of Theorem 4.1. — By Proposition 3.5, 71 o ¢, ..., 1, 0 are
in the ideal generated by r1,...,r,. In particular,

a; (A& A1) J'_MjQU(j)(vaX_ n) chk ax(&,m) + 1eGok) (§57)
k=1

for some constants c;z, where

)‘55 ()‘1517"'7)‘7151’7,)7 )‘_1775 ()‘Iln17"'a)‘;1nn)-

Since (ajk)1<j k<K is nonsingular, then g, ..., ¢, are linearly independent.
Now, a simple computation shows that c¢j; =1 for j=1,..., K,
1 T 11
>\j>\a-(j) = Cjj = Aa(i)Aj

for j = K +1,...,n, and ¢;, = 0 for j # k. In particular, |\, = |A;].
Now, we have decompositions

(4.15) Arj=rj0p— XA 3)7"] ZDjkrk, 1<j<m
with
(4.16) mkin{ord Dji} = min{ord Ar;} —2 > 0.

By abuse of notation, we replace ®p® ! by ¢, and ®(M) by M, etc. Then
M is of the form (4.6), while Hy, ..., H, are formal power series.

We need to show that

(417) [POHj}d-i-l :0, j:l,...,n

For the purpose of induction we shall also prove that there exist decompo-
sitions

(4.18) 0P — A Am)r] ZD]W, j=1,.

with

(4.19) [PoDijla—1 = 0.

Obviously, (4.17)—(4.19) hold for d = 1 when formulae (4.18) are replaced
by (4.15). Assume for induction that [IN)ij}k for k < d have been determined
such that (4.18)—(4.19) hold. We would like to show that (4.18)—(4.19) hold
if d is replaced by d + 1. For brevity we shall temporarily replace [H;]|q42
by H;, and [Dj;]q by Djk, etc. Then by (4.17)-(4.19), terms of order d + 2
in (4.18) yield

(4.20) PoK;(&,m) + 1 PoK o) (1) = > PoDjk - [ri)2
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with

K;j(&m) = Hy(M A ) = MAZG Hi(€,m).
Obviously, the real and imaginary parts of the left-hand side of (4.20), i.e
R{PK; + [1;PoKo(jy} and R{—iPy K + ifi; K4(jy}, vanish on Q. ;From
Lemma 4.3, it follows that K; are polynomials in ¢, ..., ¢; in particular,
PyK; = 0. Now the non-resonance condition (1.2) yields PyH; = 0, which
gives us (4.17) with d + 1 in place of d.

ZPO ikl [rk]2 = 0.

In view of Lemma 4.4, one can modify [D ”]d so that (4.18)—(4.19) hold
when d is replaced by d + 1. This completes the proof of the theorem. 0O

We now have

The rest of section is to study the Levi-flat real analytic sets M C C?»
of the form

(4.21) 4 (EnEM +Ri(En,EM) =0, j=1,...,n

with ) ) '
:{Iﬁjl = 15l 1<j<K,
’ §j§g(j) — H51Me(5) K <j<n,

where p; and o (a permutation of 1,...,n) satisfy

1<o(j) <K, pogy=1/p; >0, 1<j<K;
J(j):o—il(j)#j’ |/~Lj|:1a Ma(j):ﬁjv K<j<n
for some 0 < K < n + 1. We further assume that R; satisfy the reality
conditions

(4.22)

R;(&n,&m) = R;(§,m,&m), 1<j<K;
RU(j)(é-?n’g?ﬁ) :Ej(g7ﬁ7£7n>7 K <j S n.

With the above assumptions and the change of coordinates &; — §;,7m7; —
V/Fo—1(j)Nj, we can then apply Theorem 3.6. Thus, M is given by

(4.23) 0=r; = { 5(&mF (&) — 1;G o) (€,1)Gs (i (§ 7), jé K,
(57 ) 0'(])(57 ) NjGU(j)(f,n)G (5 77), J > Kv
where o, p1; are given by (4.22), and
fi(§,n) = 0(2), g;(§,m) = O(2).
Introduce meromorphic functions
(4.25) myem) = —2 H L&MW

770(] +go (5 77)
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PROPOSITION 4.5. — Let M be a real analytic set given by (4.22)—
(4.24). Then mq,...,m,, depend only on M. If M is invariant under ¢
defined by (1.1)-(1.2), then |[\,(;)| = 1/|\;| and

(4.26) mjop=NAsjymj, j=1,...,n.

Proof. — We first want to show that p;, m; are uniquely determined
by M. Assume that M is also given by (4.23)—(4.24) with 77, i3, ¥, g in
place of 75, uj, fj, gj, respectively. Define m7 as in (4.25). By the Weierstrass
preparation theorem, we may assume that the coefficients of g;, g satisfy
the normalizing condition

(427) Gjap = O, ﬁj 75 0.

We need to show that pf = pj, fj = f;, and g = g;. Since r
on M, it follows form Proposition 3.7 that

*_

7 —rj vanishes

(4.28) ri—r; =Y Djry
with
(429) min{ord D]k}} = Ord(’/‘; — ’I"]) — 2.

Comparing the quadratic terms in (4.28) gives pj = p; and D;(0) = 0.
Assume for induction that
Afj=f; —fj=0(), Agj=g;j—g;=0(d), Djx=0(d-1).

For brevity, we replace [f;lqa by f;, and [Dji]a—1 by Dj, etc. In (4.28)
terms of the form £nP€'7° with |o| 4 |3] = d and |y| + |6] = 1 give us

(4.30) AL — 13T,y Ado(j) = ZDjk(ﬁﬂ%Oa 0)[rile, <K,

On Q, the right-hand sides of (4.30)—(4.31) vanish and one can put

(4.32) To) = Pi&i/ G lpil =1, j< K
i = VPG, PiPoiy =1, 1> K.

Note that Agy(;) is independent of 7,(;). Inserting (4.32) into the right-
hand side of (4.30) and discarding terms containing &; yields Ag,;)(§,n) =
0, where 7 is given by (4.32). This shows that the holomorphic function
Agg(j) vanishes on Q. Since Q contains a totally real submanifold in C2" of
maximal dimension, then Ag; =0, i.e., [g] — g;]la = 0 for j < K. Similarly,
inserting (4.32) into the right hand side of (4.31) and discarding terms
containing &, ;) vields g7 — g;]a = 0 for K < j < n. Now (4.30)-(4.31)
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read Af;(§,m) = 0, in which 7 is given by (4.32). This shows that f} = f;.
Now formula (4.29) yields [Dji]lq—1 = 0. Thus, under the normalizing
condition (4.27) we obtain by induction that [f;]a = [f;]a and [g}]a = [g;]a-
Therefore, 1, m; are uniquely determined by M.

Now, we can show that |\,;| = 1/|\;| and m; satisfy (4.26).
Note that M = (M) is also given by (4.23) with p; being replaced by
IAjAs(j)|? 1 and Fj, G being replaced by

Fr(&m) = A" Fjop(&,n) =& +0(2),

G;(fﬂ]) = AjGj o 80(5,77) =nj+ 0(2)a

respectively. By the above uniqueness result, we have [A,(;)A;| = 1 and
Fr /G:(j) = my;, which gives us (4.26). The proof of the proposition is
complete. a

The above proposition leads us to the question: If a holomorphic sym-
plectic mapping (1.1)—(1.2) admits n meromorphic eigenfunctions (4.25),
can it be put into its Birkhoff normal form by a convergent transformation?

The rest of this section and Section 5 are devoted to this eigenfunction
problem.

Before we turn to the eigenfunction problem, we first remark that a
holomorphic symplectic mapping of the form (1.1)-(1.2) satisfies [A, ;| -
|Aj| = 1, when it admits the Levi-flat real analytic set (4.23). Although
the existence of eigenfunctions (4.25) puts no extra restriction on the
eigenvalues of the mapping, it restricts the higher order terms in the
Birkhoff normal, as shown in the following.

THEOREM 4.6. — Let ¢ be a holomorphic symplectic mapping
defined by (1.1)—(1.2). Assume that ¢ admits n meromorphic eigenfunctions
m; given by (4.25). Let ® be a formal symplectic transformation such that

Ded L (£,) — (N€ e © A;lnje_HCJ Y+ O(k).
Then

m;j o @71(5717) = §ts (&) + fj(E’n), min{ordf;, ordﬁa(j)} >k,

Mo (5) + /g\o(j) (57 77)

where k; are power series in {111, ..., &Ny, With k;(0) = 1. Moreover, the
formal power series w1, . ..,w, in the normal form (1.3) of ¢ satisfy
(4.33) Wj + We(j) = 0.
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Proof. — For brevity, we replace mjoqfl by m;, and ¢ by dopod 1,
Put m; in the form (4.25), where f;, g; are now formal power series with
g; satisfying the normalizing condition (4.27).
(From mj o p = A\jA,(;ym;, we get
(4.34) (o) + o)) (&€ + X fi 0 )
= (& + f)No(hre” 7D + Ao 9o () © p) + O(k + 1).
Assume for induction that
fi(&m) = &ki(€n) + 0Wd),  g;(&,n) = O(d),
Wi (€n) + wo(y) (€n) = O((&m]|*)
hold for some d < k — 1. We would like to show that the above identities
hold if d is replaced by d + 1. Setting 7,(;) = 0 in (4.34), one gets from
(4.35) and the normalizing condition (4.27) that
o) (&) = Ao 9oy (A AT) + O(d + 1).
Hence, g;(&,17) = O(d + 1). Now, terms of order d + 1 in (4.34) give us
(4.36) &lwi + wo()la—1)72(6n) + A [Fila(AE A ) = [fila,
where [wj +ws(;)](d—1)/2 is treated as zero if (d —1)/2 is not an integer. Set

e; =(0,...,1,...,0) € Z",

(4.35)

where 1 is the j-th entry. Collecting terms £%n° for o — 3 = e; yields

[wj + wo()]@—1)/2(§n) = 0.
We now have [f;]a(A, \71n) = X;[fj]a(€,n). Therefore, [f;]a(€,n) contains
only terms £%n” with a— 3 = e;, and (4.35) hold if d is replaced by d+1. By
induction, (4.15) holds for d = k. This shows that min{ord f;,ord g;} > k,
as stated in the theorem.

The identity (4.33) follows from the above result (with & = oco) and
the existence of ® that normalizes . The proof of the theorem is com-
plete. a

As a consequence of Proposition 4.5 and Proposition 4.6, we know
that if ¢ has an invariant Levi-flat real analytic set defined by (4.21) with
o? = 1d for some odd integer, then (4.33) implies that all w; = 0, that is
that ¢ is formally linearizable. By a theorem of Riissmann [14], we obtain
the following.

COROLLARY 4.7. — Let ¢ be a holomorphic symplectic mapping
defined by (1.1)—(1.2). Assume that ¢ admits an invariant Levi-flat real
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analytic set given by (4.21) with o* = Id for some odd integer k. If the
eigenvalues \; of ¢ satisfy the Diophantine condition

A =X > ¢/, Jal>1,j=1,...,n
for some positive constant c,T, then ¢ is linearizable by holomorphic
symplectic mappings.
For n = 1, see Proposition 4.2 with weaker hypotheses.

To state the next theorem, we need some notation. Let o be a
permutation of 1,...,n, and let m;, given by (4.25), be meromorphic
eigenfunctions of ¢. Theorem 4.6 implies that if ® normalizes ¢, then

mj o ®HEn) = ki (E) /o)

For 1 < j < n, recall that 7; is the smallest positive integer with ¢ (j) = j.
Define

Ti—1
(4.37) k=1 formy=1; k= H /@'1(7;(1;:, for 7; > 1.
k=0
One readily sees that
1, if 7; is one or even,
(4.38) 0t - da(jk = { H?, otherwise.

The dependence of §;x on the formal normalizing transformation & is
described as the following.

ProrosiTiON 4.8. — Let 01K,...,0,k be as above. Fix j with
1 < j < n. The formal power series 6;k is independent of the choice of
® if 7; is even, but ;5 = 1 for some formal normalizing transformation ®

if 7; is odd.

Proof. — Let ® be another formal symplectic mapping which trans-
forms ¢ into (1.3). Put m; o @1 = &;&;/1,(;). For (£,7) = ®o ®71(&,n),
one has
(4.39) &R (€M) /M5y = ik /o)

Since ®o®~! preserves the normal form of ¢, the formal theory of Birkhoff’s
normal form says that

= - Ge, —G¢. .
$od 1:5;:@6 <J(§77)’ 773‘:773'@ 41(577)7 i=1,....n,
where G is a formal power series in ¢ = £n. Now (4.39) yields

GO0 O (0) = k;(0),
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which gives us §;7(¢) = 6;x(¢) if 7; is even. When 7 is odd, we get
¢*75 15,7 (C) = 6 ().
Solving the above equation for a formal power series G, one obtains a

formal normalizing transformation ® such that 0;k = 1. The proof of the
proposition is complete. a

We now state the following theorem.

THEOREM 4.9. — Let ¢, mq,...,m, be as in Theorem 4.6, and let
§;k be the associated formal power series. Assume that o> = Id, and
that there exists a formal transformation ® normalizing ¢ such that all
0k 0 ® are convergent. Then ¢ is normalizable by holomorphic symplectic

mappings.

In conclusion of this section, note that Theorem 1.2 follows from
Proposition 4.5 and Theorems 4.6 and 4.9.

5. Normalization of holomorphic symplectic mappings
with meromorphic eigenfunctions.

Recall that Proposition 4.5 provides us the relationship between the
Levi-flat invariant sets of the form (4.23) of a holomorphic symplectic map-
ping and meromorphic eigenfunctions of the mapping. The relationship
between meromorphic eigenfunctions and Birkhoff normal forms of holo-
morphic symplectic mappings might be interesting in its own right.

In Section 4, we introduced the following eigenfunctions:

G+ [fEn)

T o)+ o) (6m)
where o is a permutation of 1,...,n, and f;({,n) = O(3),g9;(&,n) =
O(3) are holomorphic. We should mention that we have no example of
holomorphic symplectic mappings having eigenfunctions m;, for which the

(5.1)

j=1...,n,

Birkhoff normalization diverges.

The purpose of this section is to prove Theorem 4.9. However, we need
a further reduction for the theorem, which is a necessary step for us to be
able to apply the KAM method. Recall from Section 4 (Theorem 4.6) that
if a formal holomorphic symplectic mapping ® normalizes the symplectic
mapping ¢, then m; o @1 are of the form

(52) 53“3(577)/770(3), .] = 1,,7’&
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Assuming that 02 = Id and all §; o ® are convergent, we now modify m;
such that

(5.3) k=1, j=1,...,n
If 0(j) = j, we simply put m; = m,. Otherwise, say o(1) = 2, we put
my =my/(f1k 0 P), 1Mo = ma.
Then 617 = M/ = 1 = dam. Let us still denote by m; the modified
meromorphic functions ;. In such a way we achieve (5.3).

Since 0% = Id, Proposition 4.8 implies that (5.3) remains true under
all formal symplectic transformations that normalize . Also, (5.3) is
)y When o =1d.

equivalent to k; = Kq(j), since 6;k = K; /Ky (;

Thus, Theorem 4.9 is reduced to the following special case.

THEOREM 5.1. — Let ¢ be a holomorphic symplectic mapping
given by (1.1)—(1.2). Let my,...,m, be n meromorphic eigenfunctions of
¢ of the form (5.1) with 0% = 1d. Let ® be a formal transformation that
normalizes ¢ and transforms r; into (5.2). Assume that ky(j) = k; for
j=1,...,n. Then ¢ can be transformed into its Birkhoff normal form by
some holomorphic symplectic transformation.

We now proceed to prove Theorem 5.1, by applying the KAM method.
Starting with the holomorphic symplectic mapping ¢ defined by (1.1)—(1.2),
we construct a sequence of holomorphic symplectic mappings ¢,,, as follows.
Put ¢1 = ¢. Let ®; be the unique normalized formal transformation
transforming ¢ into its normal form. Let ZAjfﬂ?} + Hq(&,1) be the
generating function of 1, that is,

01:&5 = A& + 37,;H1(§777/), ;= /\;1773' - AflafjHl(faﬁl)-
Let > &;n; + S1(§,1') be the generating function of ®;. ;From the formal
theory of Birkhoff’s normal form, one knows that ord S; = dy = ord PH;
for
PH\(&,n') = Z Hl,aﬁfanlﬁ-
B
Let ¢1 be the holomorphic symplectic mapping generated by the truncated

power series
2do—3

Si(&n) = ijn; + > [Siel&n)

k=do
with
[SikEn) = Y Sraseon’”.

a+pB=k
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Define @2 = ¢ 0 1 © ¢f1. Repeating the above construction, we find
holomorphic symplectic transformations ¢y, ¢ with pr11 = ¢ 0 g © ng,;l.
Let > \;&m) + Hi(§,n') be the generating function of ¢y and put di =
ord PHj,.

If one of dj is infinite, proof of Theorem 5.1 is trivial; so we will
assume that all dj, are finite. Then

dpy1 > 2dp — 2, do > 3.

In particular, dp — 2 > 2F k =0,1,.... It is clear that as k — oo the limit
of ¢ropyo---0¢y is a formal symplectic mapping ¢ such that ¢popop~! is
in the Birkhoff normal form. We shall complete the proof of Theorem 5.1
by showing the convergence of ¢.

To avoid functional equations involving small divisors, we shall de-
termine ¢; through eigenfunctions m;. Changing notations, replace dy, S1
and ¢ by d, S, ¢, respectively. We also rewrite

) 5;"%(577) + fj(&ﬂ)
(54) mi&m) = Mo (j) + 9o() (&)

where f;, g; satisfy
(5.5) fiap =0, a—=B=¢; gjap=0, B;#0,

in which e; = (0,...,1,...,0). Theorem 4.6 implies that ord f;,ordg; >
d—1.

One knows that
(56) d)é.;:gj—’_uj(gan)v 773:77j+vj(5777)7 j:1,...,’n

is determined by

(57) f_; = fj - S’r]j (57 n/)a "7; =15 + Sfj (57 77/)’
where S, according to the normalizing condition on ®, satisfies
(5.8) Saa =0, ord S = d.

One also has
ui(§,m) = =Sy, (§,n) +0(2d = 3), v;(§,n) = S¢,;(§,m) +O(2d - 3).
Set

(5.9)  my(E,n) =10 = (5J‘ +uj)R; 0 $(E,m) + fi 0 6(E,m)

Mo (i) + Vo) + do(i) © ¢(6,1)
with fj,gj satisfying (5.5). By Theorem 4.6, we have
ord fj,ordgj > 2d — 3; ord(k; — kj) > (d —2)/2.
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The linearized equations of (5.9) are
(5.10) No(5)Sn; (€M) +E&iSe,,, (§m) = pi(&m), F=1,...,n
with
(5.11) pj = &M (j) Ve log ;- (€5 — nSy)

+8i90() = Mo Ji /5 + §iMa() (R /K5 — 1) + O(2d = 2).
In particular,
(5.12) §iSe; + 19y, =p;i(&m), for o(j) = j.
For o(j) # j, rewrite (5.10) as

&Sy 1,5y S¢,, = Velog k- (€S¢ — nSy) + B
with
(5.13) Di(&n) = 9o (i) /Moy — [i/(&iks) + Ri/r; — 1+,

in which the omitted terms are of the form £*n°/&n, ;) with |af + 8] >
2d — 2. Using (5.3), we obtain

iy Sn k S& k jeiny
) 1. B B
Z(fl)k ( ok () + ok+ (J)) — Z(*l)kpgk(j) = Ajp§

Pt EorG)  Tar+1(h) Pt

in other words,

T;—1

S, Se. 4 Sn(,r,- Sga,, N

(5.14) % — (—1)73% + Z (—=1)F ("(J) _ sk ) AP
J k=1

j Eor(j)  Tok(h)
for o(j) # j.

LEMMA 5.2. — Let )" &;n; + S(&,n), satisfying (5.8), be the gener-
ating function of the unique formal mapping ® that normalizes ¢. Then
S =[S)a+ -+ [S]2da—3 is uniquely determined by (5.12) and (5.14).

Proof. — Let S be the solution to (5.12) and (5.14), which satisfies
the normalization condition (5.8). Fix «, 8 with a — 3 # 0 and choose j so
that

(5.15) la; — B3] = max{|o — Brl}-
If o(j) = j, then (5.12) implies that
(5.16) Sap = pjas/ (@ + Fj)-

Assume now that o(j) # j. To determine S,3, we need to consider all
coefficients of €5 in (5.14), for which

o —F=a-0; o,>-1, B, >-1, k=1,...,n.
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Put Sap =0 for a, < —1 or G < —1. (From (5.14) we obtain

T;—1
(5;‘ (- )T’a a,p Z ﬁok(a) aak(j))sa”reak(j)*ewﬁuf@ok(j)*ej
= (Ajﬁ)a’—ej,ﬁ’—ej-
If o, + B = min{q; + Bjla — 8 = a— B3}, then
1
(5.17) Sargr mpL ;.8 —e;-

Assume that S, g have been determined for all o, 3’ with o/ — ' = a— 0
and o} + 3; <. Then for o/, 8" with o/, + 3} = I, we have

Ti—1 ﬂ
_ k—1 Pok@) — & ’“(J)
(518) Sa’ﬁ' - Z(_l) ﬂ/ ( ) Sa '—ejteq),B —ejteqs(s)
k=1

1
———(Ap a'—e; B —e,;-
+ 6‘; _ (—1)77063( ]p) J7ﬁ g

Thus, (5.16)—(5.18) determine all Sy g for o' — 3’ = a— 8. This completes
the proof of the lemma. O

We should point out that the proof of Lemma 5.2 does not depend
on any assumption on J;x, and that the convergence of all J;x, as assumed
in Theorem 4.9, would not give us an immediate good control of S due to
the recursive formulae (5.18) when some 7; > 2. To get estimates for S,
it is crucial that all Vlogd;x vanish, which is obtained via (5.3) for the
modified eigenfunctions. Even if §;x = 1, the recursive formulae (5.18) lead
to another problem: The radius of convergence would shrink by a constant
factor of 7; — 1 if 7; > 1. Therefore, only for 7; = 1,2 shall we have the
control of the radius of convergence that is useful in iteration.

We need some notation. Let f = (fi,...,fm) be an m-tuple of
holomorphic functions defined on A, C C". Expand f;(z) = >_ fjaz® and
let

z) :Zf|*;|zo‘, fi =max{|fjalilal =k, j=1,...,m};
I fll- =sup{|fj(z):z € Ay, 5 =1,...,m}.

In particular, one has £* = £ = > (&; + n;), where (£,7) are coordinates
of C?". We also put

(VI =01 0.0 IVl = 10020 f5 0,02, )l

Given holomorphic functions f and g, one has
(f+9) = f"+g5  f=g, Hf=g
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Also
(5.19) fr=z25(vh*, if f(0)=0.

LEMMA 5.3. — Let f be a holomorphic function defined on A, C
C™. Then || f*||1—gyr < I|f]l-/0" .

Proof. — Since |fa| < || f|l»/r1®!, then || f*||(1-g) is bounded by
HISEEUERIS o (VS A TINES

k>0

This completes the proof of the lemma. a

LEMMA 5.4. — Let ¢,S be given by (5.6)-(5.8). Assume that
(5.20) S|l < 6*2/(4n), 0< O <1.
Then
(5.21) 6,07 Aoy — A—(k—1)0)r»
lo™" = Td la-keyr < ISN(1-(k—2)0)/(r0), k> 2.

Proof. — Fix (§,n) € A(1—rg)r. Consider the mapping
Tg; _)gj _Sn/ (5777/)a 77; — 1y _Sﬁj(ganl)'

i
(From (5.20) it follows that 7" maps A(;_(x—1)6), into itself and
19T 1y < 1/(4).

Hence, with the norm |[[(&,n)| = max{|;|,|n;|}, T is a contraction
map. By the fixed-point theorem, equations (5.7) determine a mapping
O A(1—kyr — Aa—(k—1)0)r- Applying the above argument to the map-
ping & — & + Sy (&,1'),m; — mj — S, (€, 1), one gets ¢~ Aq_yg) —

A—(k—1)0)r- Consequently, we have
67" = 1d |a—keyr < IVSlla=k—10)r < ISlla=(k—2)0)r/(r6).
The proof of the lemma is complete. ad

Let £;(C1,...,¢n) be as in (5.4). Put

K= (K1, shin)y K = (k1" k0 0).

r '

LEMMA 5.5. — Let ¢ and S be as in Lemma 5.2, and let ¢ be given
by (5.7). Assume that

(5.22) 15 e <2, #21(Ver)lle < 1/(1602).
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There exist constants ¢1,co > 1 such that if

(5.23) 11l + gl < 76"+ /s,
then
(5.24) b, 0" Ap_koyr — Da——2y0yr, k=2,
lo™" —Td |20y < c2llf Il + llgll:) /672
Proof. — We first introduce the following notation:

SEn) =" |Saplen”

which will be used only in the proof of this lemma. Fix «, 8 with « # 3
and let j be defined by (5.15). Note that (5.15) implies that

{€kSe. = mSn Yol < laj = B|Srp, k=1,....n
for o/ — ' = a — 3. Hence, for o(j) = j one gets from (5.16) that
[Sapl <{Emi(Ver) (578 + &g5 +ni (k) ()" Yas
<{ET (Ver) ()" S + € () (F* + ) Yas-
If 0(j) # j, (5.17)~(5.18) yield
[Sapl < (1 +min{ay, B;){€7g" + 0" (k71)" f*}ap
< (lel +1B){E 0" +n" (5™ ") f*Yap
={(&- 0 +n-0,)(€ (K1) f* +E9") Yap-

Notice that we have used the essential assumption that 7; = 2 to obtain
the first inequality above. Thus,

1
L= & (Ver)*(k71)
JFrom (5.19) we get [|€*n*(Ver)*(k71)*] < 1/2 and
18- +n - 0y) (€ (67" (f+9")l1—0/2)/0 <8n)1E"(f*+9" ) 1-0/2)r/0
< ar(Ifll- + llgll-) /6"

for some constant ¢;. {From (5.25) it follows that
IS1a-ayr < exr(Ifll + lglln)/ (4n67"+2).

Now, Lemma 5.4 implies that the mapping ¢, determined by (5.6)—(5.7),
satisfies (5.24), provided (5.22)—(5.23) hold. O

(5.25) S <

- (I +€0¢ +ndy) (€ (k71" (f* +97))-

The following is a special case of the Weierstrass preparation theorem.
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LEMMA 5.6. — Let f be a holomorphic function on A, C C2".
Assume that 0 < § < 1/2 and
(5.26) Ifllr <r0/12,  f(&n) = O(2).
Fix 1 < j < n. There is a unique decomposition
(5.27) n + (&) = L+ n)n +9(&n), u0)=0,

where u, g are holomorphic on A(_g), with g satisfying the normalizing
condition (4.27). Moreover, for some constant é; > 1 one has

(528)  lg*lla—o) <l fl-/0°"F1 ulla—oyr < Ellflle/(rg>"+2).

Proof. — From (5.26) it follows that for {; € A, there exists a unique
solution n; = —g(§,m) to n; + f(&,n) = 0, given by
1 1+ f7]j (57 77)

9(Em) = —5— 2 Ly,
( n) 2mi [njl=r W 5 + f(ga 77) '
1 / 13 fn; (& m) — f(§;m) -1
= —— J d iy 3 E A’I' C A " .
2mi [njl=r 1 + f(gv 77) g (g 77)
Thus, Cauchy inequalities imply that

Now the desired estimate for g* in (5.28) follows from Lemma 5.3.

To estimate u*, note that u = (f—g)/(n; + 9(&¢,n)). {From (5.26) and
(5.29) it follows that [[ull(1—g/2)r < 4(I[fllr+lgll1-0/2)r) /T < 28| f||:/ (r0).
In view of Lemma 5.3, we obtain (5.27). This completes the proof of the

lemma. d
PROPOSITION 5.7. — Let ¢ be as in Lemma 5.5. Let k;, fj,gj be as

in (5.9). There exist constants cz,cq > 1 such that

(5.30) 1 lla—soyr + 19lla—0)r < ea(1 = ) (NIl + llgll) /6%,

(5.31) (Vi) Nl a—soyryz < I(Ver)™ [l +es(||fllr + lgll,)/ (20748,
1 -ooyme < NG e + a1 + llgh)/ 67 +7)
provided (5.22) holds, and

(5.32) £l + llgll < r6°"+%/cy.

Proof. — Changing the notation in (5.6), we write
o =&+ u(En), nf=n;+vi(En).
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We first want to express fj,g}j in terms of f;,g; and S. Start with the
decomposition

1 +vi(€m) +g5 007 (& n) = (1+a;)(n; + §;(&,m))-
JFrom (5.24), one sees that
lv; + g5 0 6™ lla—20y < 2e2([I £l + llgll) /62" +.
In view of (5.26) and Lemma 5.6, we get from (5.28) that
633)  lasla-sor < 20217l + lgll) /(1 ~ 28)r6"+),
135111 -30)r < 2c282(ILf 1l + llgll) /07" F
for c4 > 24cy. Since ord §; > 2d — 3 > d, the Schwarz lemma yields

1—46

d
630 - <2t (g ) (171 + lall /o

For 0 < 0 < 1/6 and ¢4 > caé2, (5.32)—(5.33) imply that

(5.35) lasll—s < 1/2.
We now decompose

(& +uj)rjod + fi007 ) /(1 + agy) = &Ry + f.
Then
(5:36) &Ry —ry) + f5 = {& (K067 —kj) +ujn 067"

+ [0t = &Rjag(}/ (1 + ag())-

We also have

(5.37)[|15 0 ¢~ " —Kjll1—20yr < 20|V ekl (a—oyry2 - l67" —1d || (1-20)r
< co(|Ifllr + lgllr)/ (r677F3),

where the last inequality comes from (5.22) and (5.24). Using (5.33) and
(5.37), one gets from (5.36) that

1€; (75 — 55) + Filla—sayr < es(If ]l + llgll) /04" +®

for some constant c5 > 1. Note that f; and &;(~k; — k;)* are majorized by
(& (&5 — r;3)(En) + f3(&m))*. Thus,
1F* a0y < es(Uf1l- + llgll) /6°+°,

(5:38)  [I(R; — &) lca—aoyrz < es(1F ]l + lgll-)/(r(1 — 46)8°"FF).
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Since ord fj, ord g; > d, the Schwarz lemma gives

: 1-50\°
(6539 Iflazser <es (1og) (Il +lall) /6.
1—46
Obviously, (5.34) and (5.39) yield (5.30) for cg > 2c¢2é2 + ¢5. Note that
(1 —6/2)(1 —40)? > (1 — 50)2. Using (5.38) and Cauchy inequalities, we
get

IVe(& = m)lla-soymz < EfI-+lgll-)/ (6% ).

In view of (5.19), we obtain

(V&= R) la-soymz < EsULflle + llglle) /(207 +%)

for some larger ¢;. The above inequality yields the first half of (5.31) for
c3 > ¢5. For the second half of (5.31), note that

o e (22

k>1
Thus, (5.38) and (5.32) yields
2¢5(1I.f[I- + llgll+)
167 = 57 -0y < o Z( o dg) g )
< 8Cs(llfllr +1lgll-)/ (™).
This completes the proof of the proposition. O
Put
(5.40) = (14 —)r k=01
. k= 5 Erl s =U,1,....
Rewrite the above as
1
=(1-66 Oph=———, k=0,1,....
Tk+1 ( k:)rlm k 6(k+2)2’ 5 Ly
Let us first prove a numerical result.
LEMMA 5.8. — Let 7y, 0% be given as above, and let 0 < rg =7 < 1.

Let by, By, Ky, be nonnegative numbers satisfying
brir < ea(1— 04) by /6570,
Bii1 < By + csby /(r300" ), Kjq1 < K, + caby/(re0]"7)

for k > 0. Let ¢4 be the constant given in Proposition 5.7. There exists
c¢ > 1, independent of r, such that if

(542) by < T098n+6/66, ’/‘gBo < 1/(32n2), Ky < 3/27

(5.41)
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then for all k > 0
(5.43) b < Tk02n+6/84, ’I“in < 1/(16n2), K < 2.

Proof. — Put
b = re01" 10/ (32n%c3c4), k=0,1,....

It is easy to see that

bigr /by = (1 — 660,)0;"1° /6779 > (1 — 660)07" /05" = cr.
On the other hand, one has

bri1 /b < es(1— 0;)% /65716 -0, & — oo,
Hence, there exists N, independent of r, such that
(5.44) big1/bi < bpg1/b, k> N.
Set
cg =14+ Engaﬁc;),(l - Gk)Qk/HS"%.
Then (5.42) implies that
b < bocév < r098"+60év/06, k <N.

This shows that for sufficiently large cg, one has by, < l;k7 k=0,...,N. Now
(5.44) implies that by, < by, for all k. In particular, the estimates (5.43) hold
for bg. Also,
k [e's)
c3b;
e Bren Sr8Bo+ ) — ks <1/(320%) + 3 0;/(320%) < 1/(16n%)
j=1"3Y%; j=1
and Ky41 < Ko+ Z?zl 03bj/rj9]7n+7 < 2. This completes the proof of the
lemma. a

We now complete the proof of Theorem 4.9 as follows. With the
notation introduced at the beginning of this section, we would like to show
the convergence of a subsequence of ¢7' o ¢y o0 -0 qb];l. To this end, it
suffices to show that the sequence is bounded, or that

(5.45) oAy = A, k=12,
are well-defined for suitable rq = r.
Start with
&r{V(en) + £V (€m)
Ne(s) + g,(,l&-)(& 1)

m{P(€,n) = my(&,n) =
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Set
bo = 1F Py + 19W 10> Bo = 1(Ver™)* |12, Ko = [((5M) )",z

Choose 19 = 7 so small that initial condition (5.42) holds. Applying
Lemma 5.5 to o1 and ¢; gives us (5.45) for ¢;. Put m§2) = mjl) ot
and

b1 = 1f Pl + 9Pl By = 1(Ver®) 2, Ko = [((5) 71 2.

Since dj, > 2, Proposition 5.7 says that inequality (5.41) holds for k = 1.
Consequently, Lemma 5.8 implies that the initial condition (5.43) holds for
k = 1. Recursively, one sees that the mappings (5.45) are well-defined for
all k. This completes the proof of Theorem 4.9.

6. Hamiltonian vector fields.

This section is to apply results for holomorphic symplectic mappings
obtained in previous sections to holomorphic Hamiltonian systems.

Consider a holomorphic Hamiltonian function
(6.1) H(&m) =Y A&ymy +h(&m),  h(&n) =0@3).
The corresponding Hamiltonian system of H is
(6.2)  dg;/dt = N\;j&; + Hy,, dnj/dt = —\jn; — He,, j=1,...,n.

The formal Birkhoff normal form of H is then given by

(6:3) H(gn) = _ A&y + h(gn),

where h is a formal power series in products &7, ...,& M, provided
A= (\1,..., \,) satisfies the non-resonance condition

(6.4) a- A=A+ Faph, F Ay, aceZ”

for all « #e; = (0,...,1,...,0). The formal flow of the Hamiltonian (6.3)
is given by

—~ tH. —tH. .

(pt:gé‘:gje CJ7 77;:77]6 CJ7 ]:1,..-,7’7/
for t € C. We say that a real or complex time t is non-exceptional
with respect to Aq,. .., \,, if the eigenvalues e**1, ..., e
resonance condition (1.2). Note that, given Ay, ..., \, satisfying (6.4), the

» satisfy the non-

exceptional ¢ values are countable.
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We need the following.

PROPOSITION 6.1. — Let H be the Hamiltonian function (6.1) with
\; satisfying (6.4), and let ¢, be its Hamiltonian flow. Assume that t is non-
exceptional. If yp; is in its Birkhoff normal form, so is H.

Proof. — Replacing H by tH, one may assume that ¢t = 1. We need
to prove that H is a function of &7, ..., &,n,. Put

(6.5) H(z,y) = H(&m, - - &ann) + Hi(€,m),

where Hy(€,m) = O(k + 1), and all terms in the power series expansion
of H have order at most k in &,n. Note that for two holomorphic vector
fields v(&,n), v(&,n) with v(0) = 9(0) = 0 and (&, n) — v(€,n) = O(k), the
corresponding flows ¢, and @, satisfy

2e(&.1) — ee(€,m) = O(I(&,m)I*)
uniformly for |t| < T < oo. The flow ¢ of (6.5) is of the form

&) = G5 + 3 ajas (e,

ni () = mje” MG 1N Tbjas(t)E
with
ajap(t) = bjas(t) =0, |a|+ (0] <k.
For a4 3 = k, one gets
dajop/dt — Ajajap = (Bj + 1)Hapre, DN, a—f#e¢
with aja3(0) = 0. Hence
(@=B)-At _ At
e e
——————H, e,
(a—B) - A—n, fte
for |a| + |B] = k,a — B # e;. Since ¢y is in the normal form, then
a;a3(1) vanish for a — 8 # e; and |a| + |3] = k. Hence, Hos = 0 for
a # Bal+ 8] = k+ 1, and § # 0. Computing the coefficients of
bj(a—e;0 Yields Hog = 0 for |af = k + 1. Thus, [H]i41 is a power series

ajap(t) = (B; +1)

j
in &1m1,...,&Mn- By induction, H is a power series in &171,...,£,0,. The

proof of the proposition is complete. a

With the above observation, we now introduce a notion. Let M be the
germ of a set at 0 € C?”. We say that the germ M is weakly invariant under
the flow ¢, if the germ ¢;(M) is contained in M for some non-exceptional
t € C. From Theorems 1.1 and 4.1 and Proposition 6.1, we obtain the
following.
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COROLLARY 6.2. — Let ¢; be a holomorphic Hamiltonian flow
defined by (6.2) and (6.4), and let M be a Levi-flat real analytic set defined
by (1.4). Assume that M is weakly invariant under the flow ;. Then
the Hamiltonian system (6.2) is normalizable by convergent holomorphic
symplectic mappings. Moreover, M is invariant under ¢, for all t € C.

From Theorem 4.6, we have the following.

COROLLARY 6.3. — Let M be a Levi-flat analytic set defined by
(1.5), and let @ be the holomorphic Hamiltonian flow of (6.2) and (6.4). If
M is invariant under ¢, for some non-exceptional ty, then M is invariant
under g, for all s € R.

Proof. — By Theorem 3.6, M is actually given by r1 = ... =
rn, = 0 with 7; being given by (4.23). Let m; = Fj;(¢, n)/GJ(])(E 77) be
the meromorphic functions defined by (4.25). Take a formal symplectic
transformation ® = Id +0(2) which transforms the Hamiltonian (6.1) into
the Birkhoff normal form. Fix a non-exceptional ¢y such that ¢, (M) = M.
By Theorem 4.6, we know that m; o ®~! is an eigenfunction of the flow
Pop,;0®~! with eigenvalue e/} +X=()). Hence, m; is also an eigenfunction
of ¢ with the same eigenvalue. Thus, Fj o ¢; = uje' Fj, Gy 0 or =
uje e Gy(;y, where uj = 1+ O(1) are holomorphic functions dependent
of t. Note that |e!%i| = |[e7!*+@ | hold for t = ¢, and hence holds for all
t = sty when s is real. Now, it is straightforward that for each real s,
Tj 0 Qst, = vj7; for some v; # 0. In particular, M is invariant under @, .
This completes the proof of the corollary. a

Finally, Theorem 1.2 gives us the following.

COROLLARY 6.4. — Let M be as in Theorem 1.2, and let ¢, be as
in Corollary 6.3. Assume that M is weakly invariant under the flow ;.
The Hamiltonian system (6.2) is normalizable by holomorphic symplectic
mappings.

Appendix: Birkhoff normal forms in terms
of time-one mappings of formal Hamiltonian systems
and formal generating functions.

There are two ways to formulate the Birkhoff normal form for
holomorphic symplectic mappings, of which one is of the form (1.3). The
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other normal form can be described in terms of generating functions. For
the sake of the reader, we derive one normal form from another in this
appendix.

Let (¢',7') = ¢(&,1) be a holomorphic symplectic mapping (1.1).
Regarding the mapping as a graph over &, 7', on which the 1-form }(nd¢;+
&dn}) is closed, one has
(7.1) & =N& + Sy (&), mj = Nmf + S, (€n)
for some convergent power series S(§,n') = O(3). Assume that \; satisfy
the non-resonance condition (1.2). By comparing the coefficients as in
the Hamiltonian case (see [4], p. 85), there is a formal power series
T(¢,m') = O(3) such that for the formal symplectic mapping ® determined
by

§=8+TyEn'), ny=m;+Te,(En),

¢ =®o0pod!is of the form (7.1) with
(7.2) S = 5(¢n)

being a formal power series in the products ¢; = §j77§-. Thus, the formal
mapping given by (7.1)—(7.2) can also be referred as the Birkhoff normal
form of .

Next, we want to put the formal mapping (7.1)—(7.2) into the form
(1.3). From (7.1)—(7.2), one has

& =N&GA+H NS, E)), =X (1 4+ A1 (')

for j = 1,...,n. Hence, {;n; are invariant by ¢. Solving for 7; from the
last n equations above, one sees that
(7.3) ¢ = ;€€ = /\j—lmefcj(gn)

for some formal power series G;(¢n) with G;(0) = 0. Note that G, are
determined by

(7.4) el =14 A1 (A1), j=1,....n,

where A71¢e%(©) = (A7 AS1,e%(©). On the other hand,
(7.3) yields

Do dE; Adify =Y dg Adny = d Yy Gy(Emy)d(Emy)-

The left-hand side vanishes. Hence, G; = H, for some formal power series
H in (.
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Conversely, if (¢/,7') = ¢(&,n) is given by (1.3), then ¢ preserves the
products &;n; and is of the form

& =N&GA+K;(En), =N+ K;(én))
with
(7.5) 14 K;(¢) = ewsOCK@) 5 =1 n.

Now, one has

> &) +nyde; = d(z&'fﬂl}) + Y NE;(En)d(&m)).
Hence, the last summand is closed, from which it follows that K; =
A;lSCj (¢) for some formal power series S. This shows that ¢ is of the

form (7.1)—(7.2). From (7.4)—(7.5), one can also see that the convergence
of S implies the convergence of H, and vice versa.

Therefore, two normal forms (1.3) and (7.1)—(7.2) are equivalent,
i.e., if one of the normal forms is realized by a holomorphic symplectic
transformation, so is the other.
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