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Abstract 

The Internet of Things (IoT) is reshaping our world. Soon our world will be 

based on smart technologies. According to IHS Markit forecasts, the number of 

connected devices will grow from 15.4 billion in 2015 to 30.7 billion in 2020. Forrester 

Research predicts that fleet management and the transportation sectors lead others in 

IoT growth. This may come as no surprise, since the infrastructure (roadways, bridges, 

airports, etc.) is a prime candidate for sensor integration, providing real-time 

measurements to support intelligent decisions. The energy cost required to support the 

anticipated enormous number of predicted deployed devices is unknown. Currently, 

experts estimate that 2 to 4% of worldwide carbon emissions can be attributed to power 

consumption in the information and communication industry [1]. 

This thesis presents several algorithms to optimize power consumption of an 

intelligent vehicle counter and classifier sensor (iVCCS) based on an event-driven 

methodology wherein a control block orchestrates the work of various components and 

subsystems. Data buffering and triggered vehicle detection techniques were developed 

to reduce duty cycle of corresponding components (e.g., microSD card, magnetometer, 

and processor execution). A sleep mode is also incorporated and activated by an 

artificial intelligence-enabled, reinforcement learning algorithm that utilizes the field 

environment to select proper processor mode (e.g., run or sleep) relative to traffic flow 

conditions. Sensor life was extended from 48 hours to more than 200 days when 

leveraging 2300 mAh battery along with algorithms and techniques introduced in this 

thesis. 
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Chapter 1 Introduction 

Transportation systems are at the heart of our socio-economic environment and 

played a major role in shaping the trajectory of economic strength and quality of life in 

a given community. The opposite effect is also true. For a strong and continually 

prosperous economy, it is a necessity for underlying infrastructure to be equipped and 

up-to-date with technological advancements characteristic of other industry sectors. 

Transportation systems must integrate and interoperate with others. 

Intelligent Transportation System (ITS) technology has been accelerated since 

the turn of the century due to a variety of technological forces that have caused an ever-

increasing need to efficiently utilize the transportation infrastructure. In spite of the fact 

that other industries (e.g., information technology, communications) have evolved at a 

faster pace, the 2010-2011 ITS America Annual Report informs [2]: 

• 77% of fixed bus route agencies have real-time arrival data. 

• 94% of toll roads have electronic collection. 

• 70% of the population is covered by 511 systems in 38 states. 

• Thousands of miles of highway and arterial roads are managed under Traffic 

Management Centers surveillance. 

ITS is one of the most promising sectors for Internet of Things (IoT) hype, 

primarily due to the impact transportation system elements will have on domains 

connected to the Internet cloud. Smart traffic signals and surveillance systems enable 

more convenient traffic planning by communicating traffic conditions and flow to 

connected vehicle on-board systems, which, in turn, will aid in saving an enormous 

amount of time due to traffic congestion delays. ITS America reports that each year the 
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average American spends 40 hours sitting in traffic [3]. Moreover, public safety 

vehicles, buses, and commercial vehicle fleets will benefit from a smart, connected 

infrastructure able to communicate valuable information about traffic and road 

conditions. Cisco Systems has already introduced a high-level system overview, namely 

Cisco Connected Roadways [4]. 

An essential ITS system component is vehicle detection and classification. 

However, the integral real-time traffic monitoring and analysis functionality proves 

problematic. Commuters, traffic administrators and agencies must rely on such systems 

for improving traffic control and management, as well as for trip planning and routing 

decisions. 

Technologies used for vehicle detection and surveillance can be categorized into 

two types: 

- In-roadway sensors, including Inductive Loop Detectors (ILD), magnetic 

sensors, piezoelectric sensors, and Weigh-In-Motion (WIM) sensors. 

- Off-roadway sensors, including video image processors, microwave radars, 

infrared sensors, ultrasonic sensors, and passive acoustic arrays sensors. 

Interested readers can find additional details about these technologies in [5]. Existing 

technologies, like Bluetooth, have also been used to detect vehicles and estimate 

highway travel time [6]. 

Regardless of the technology, the era of IoT is redefining the objectives and 

standards of all systems. IoT device are expected to be smart, reliable, and low-cost, 

without significant maintenance. For ITS systems to fit into the IoT paradigm, they 

must adhere to the inherent need for constrained resources for processing, memory, 
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power, and security functionality. These could impose further difficulties and 

challenges on ITS, especially given the nature of the applications they target. For 

instance, some Automatic Vehicle Classification (AVC) systems cannot save collected 

data for more than several days. WIM systems, on the other hand, can store data for up 

to a year. Problems with power consumption persist, whether at the processing or 

communication stage at the point when data is transmitted to an access point for further 

processing. 

The work detailed in this thesis is an extension to a project focused on designing 

a low-cost, reliable, and low-power intelligent vehicle counter and classification sensor 

(iVCCS) system [7] in which the sensor exploits the physical phenomenon of magnetic 

field disturbance caused by ferrite materials in the body of a vehicle. The sensor relies 

on a triaxial magnetometer to measure magnetic field before measurements are 

transmitted to processing platform. Previous work (i.e., first generation iVCCS [iVCCS 

1stG]), proved the design concept with high accuracy and reliability [7]–[9]. A second 

generation iVCCS (iVCCS 2ndG) was designed around a more powerful, 32-bit 

microcontroller equipped with an on-die digital signal processing (DSP) core. Special 

attention to power consumption was lead to the development of the new iVCCS 2ndG 

platform. 

This research focuses on minimizing sensor power consumption while 

maintaining accurate vehicle detection, count, and speed estimation. Several algorithms 

were ported and modified from iVCCS 1stG to accommodate the new platform and 

reduce overall circuit current consumption of the system. A number of new techniques 

were also introduced to enable interrupt-based microcontroller operations and reduce 
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duty cycle. In addition, a dynamic power management was proposed, leveraging the 

merits of artificial intelligence. 

The balance of this thesis is organized, as follows: 

• Chapter 2 includes the theoretical concept of magnetometers and their 

application in vehicle detection and counting; a literature review of work related 

to low-power embedded systems and dynamic power management is also 

provided. 

• Chapter 3 focuses on an overview of the system platform, describing hardware 

and specifications. 

• Chapter 4 describes algorithm modifications ported from the iVCCS 1stG to 

iVCCS 2ndG. 

• Chapter 5 introduces new techniques developed to further optimize sensor 

operations relative to interrupts in favor of a polling methodology for reducing 

duty cycle; a power analysis of components is also presented. 

• Chapter 6 highlights the dynamic power management problem and proposes a 

reinforcement algorithm to predict activities to reduce power consumption. 

• Chapter 7 reports results collected from tests and deployments obtained in both 

lab and real-world scenarios. 

• Chapter 8 concludes the thesis and offers direction for further research. 
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Chapter 2 Background and Related Work 

2.1 Magnetometer Theory of Operation 

Geomagnetic field is a force field that surrounds the earth’s surface and flows 

from the earth’s interior into the space. It is similar to a field generated by a simple bar 

magnet tilted, currently estimated at an 11.5° angle. Although the force field’s intensity 

is in constant flux and has experienced large-amplitude variations over the past 800 

thousand years [10], it is considered rather uniform at any region on the earth’s surface, 

ranging between 25 and 65 µT (0.25 to 0.65 gauss). 

 

Figure 1. Magnetic field of the earth [11]. 
 

Ferrous materials in traveling vehicles cause small, local disruptions in the 

geomagnetic field. Due to high magnetic permeability of these ferrous materials, the 

flux lines of the field are absorbed and distorted in a non-linear form as a vehicle passes 
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through the field, as shown in Figure 2. Several factors play a role in the resulting 

intensity magnitude and direction of field changes (e.g., speed, density, and size 

mechanical form). 

 

Figure 2. Disturbance in magnetic flux lines caused by a vehicle. 
 

Measured disturbance is known as the vehicle magnetic signature, which is 

unique and differs from one vehicle to another. The disturbance can be modeled as a 

number of magnetic dipoles [12]. Signatures can be measured by magnetometers, which 

report three geomagnetic components of the field: north 𝐵𝐵𝑥𝑥, east 𝐵𝐵𝑦𝑦, and vertical 𝐵𝐵𝑧𝑧. 

2.2 Related Research Work 

Power consumption is a primary concern for wireless sensor node design, as 

each element of the design (e.g., processing unit, power management unit (PMU), 

processing algorithm, and, most importantly, system components) is affected. As such, 

it is critically important to carefully select each device and peripheral as a first step to 

sensor design [13]–[15]. iVCCS 2ndG was purposefully designed to optimize low power 

consumption. 

While technological advancements have reached a point at which application 

performance is ensured, energy efficiency remains challenging, especially given IoT 
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integration. Modeling power consumption at the early stages of development and pre-

deployment becomes decisive. Authors in [16] propose a general methodology to 

simulate wireless sensor node power consumption by profiling three essential aspects of 

WSNs: networking, sampling, and processing. Although electrical component 

characteristics and wireless interfaces play a major role in determining power 

consumption, a particular standard, component, and technology becomes crucial when 

developing an algorithm. A model for performance evaluation is necessary for 

optimization.  

Literature has suggested building a predictor for estimating remaining power in 

the main energy storage and predicting the amount of power harvested during future 

time slots [17], [18]. Such mechanisms aid in determining which functionalities to 

disable and for how long based on a corresponding peripheral power profile. This stage 

of development can benefit from the power consumption model proposed in previous 

references. In [17], authors optimized RF transmission time — the most power-hungry 

system element — to determine an optimal transmission interval. 

Software development is dependent upon energy consumption. Given that a 

nonoptimal algorithm is executed for energy consumption, selecting low-power 

components is inconsequential. In fact, several techniques must then be orchestrated to 

achieve a satisfactory performance. Most energy management implementations involve 

smart and intelligent use of peripherals and system sensors [17]–[20]. Indeed, the heart 

of the power management process should be an algorithm that determines when to 

enable and disable each module on the board, in addition to flexibly controlling and 

switching between power schemes. This is preferred over a fixed profile that runs the 
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system in its many situations. Such an algorithm is commonly referred to as Dynamic 

Power Management (DPM). 

Researchers have defined and tried to resolve the DPM problem. Authors in [21] 

modeled system behavior as a time series of busy and idle periods, suggesting that 

various idle intervals require different sleep modes (see Figure 3), primarily because 

switching takes time and more energy than nominal consumption. They employed 

adaptive tree learning as a method for solving policy selection wherein a predictor is 

used to indicate when and for how long idle states occur. 

 

Figure 3. Changing system sleep mode according to load [21]. 
 

In [22], authors used Reinforcement Learning (RL) to adaptively choose the 

optimal power management policy in a given idle state wherein an action is taken and 

objectives are evaluated. Based on outcomes, subject-to-constraints (e.g. performance) 

state-action pairs are rewarded/punished, assigning a 𝑄𝑄-value. A variation of the 𝑄𝑄-

Learning algorithm, namely SARSA (State-Action-Reward-State-Action), is used to 

monitor values in a 𝑄𝑄-table. Idle time is known and can be calculated according to 

assumptions. 
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A more recent paper [23] used the 𝑄𝑄-learning algorithm to optimize power 

consumption in a video encoder System-on-Chip (SoC). 

Authors in [24] proposed a machine learning algorithm to select the optimal 

policy online. The algorithm considers a variant of RL with weights placed on policies 

and a loss function to update weights. Assumed idle times are known; the way in which 

loss function affects weight is not clear.  
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Chapter 3 System Platform Overview 

 iVCCS 2ndG is a fully autonomous system designed to achieve self-powered, 

low-power operation through energy harvesting without sacrificing performance. The 

new system is carefully crafted in a compact design (45×30×6 mm) that combines high-

performance, energy-efficient components and that is equipped with a power 

management subsystem for minimizing energy consumption while maintaining accurate 

vehicle count, logging, and speed estimation. Figure 4 shows the interconnections 

among various components. A gauge monitors and reports battery capacity to the 

microcontroller unit (MCU). Nano-power load switches are placed at the power lines of 

certain energy-hungry sensor components, including the RF wireless module, GPS 

receiver, and SD card, among others. Energy-efficient algorithms were developed to 

accurately detect, count, estimate speed, and control various system components. Figure 

5 shows top and bottom views of the printed circuit board. 

 

Figure 4. Overview of the system components [7]. 
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Figure 5. iVCCS PCB components. 
 

3.1 Microcontroller 

At the heart of the sensor system lies an ultra-low power platform manufactured 

by STMicroelectronics, equipped with an ARM CORTEX-M0+ 32-bit RISC core – 
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STM32L071 [25]. This microcontroller is characterized by number of features that 

make it appealing for low-power applications [26]. These include: 

− 0.29 μA standby mode (3 wakeup pins) 

− 0.43 μA stop mode (16 wakeup lines) 

− 0.86 μA stop mode + RTC + 20 KB RAM retention 

− Down to 93 μA/MHz in run mode 

− 5 μs wakeup time (from flash memory) 

− Core from 32 kHz up to 32 MHz max 

− 1 to 25 MHz crystal oscillator 

− 32 kHz oscillator for RTC with calibration 

− Up to 192 KB flash memory with ECC 

− 20 KB RAM 

3.2 Magnetometer 

Kionix KMX62 is a 6 degrees-of-freedom magnetometer/accelerometer inertial 

sensor system [27] that senses changes in the magnetic flux of earth’s surface due to 

vehicles passing in its vicinity. KMX62 is a very reliable and power-efficient sensor, 

consuming 395 µA at high-resolution mode and 1 µA in standby mode. The 

magnetometer’s full-scale range is ±1200 µT, and digital bit depth is 16 bits, resulting 

in a magnetic sensitivity of ±0.0366 µT compared to ±0.1 µT in iVCCS 1stG. 

3.3 ZigBee Module 

The radio frequency (RF) frontend utilizes a ZigBee transceiver from ZLG 

based on an NXP JN5168 microcontroller [28]. AW516x is a low-power, high-

performance ZigBee module that incorporates the IEEE 802.15.4 standard and supports 
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a variety of protocols on top (e.g., FastZigBee, ZNET, ZigBee-PRO, and RF4CE). The 

AW5161P0CF module used in iVCCS 2ndG has a small footprint (13.5×16.5 mm) and 

features a ceramic antenna. Receiver sensitivity is -95 dBm, consuming 21 mA, and 

transmitter power is 2.5 dBm with 18 mA current consumption. The engine features a 

deep sleep mode with 100 nA typical current. Data transfer rate of the system is 2 

Mbps. 

3.4 GPS 

Time synchronization is achieved via a GPS module manufactured by Quectel. 

L76-L GPS receiver module integrates GLONASS and GPS systems [29] and provides 

a built-in low-noise amplifier (LNA) for improved performance for 33 tracking 

channels, 99 acquisition channels, and 210 PRN channels. The module features EASY 

technology [29] and allows L76-L to automatically calculate and predict orbits using 

ephemeris data stored in the internal flash of the module. This reduces time-to-fix even 

in indoor situations with poor signal levels. Current consumption is 25 mA in 

acquisition mode and 7 µA in backup mode. 

3.5 Real-Time Clock 

STM32L071 also offers an internal Real-Time Clock (RTC) and features low 

power operation [26]. It has on-the-fly correction capability with a range of 1 to 32767 

RTC clock pulses, allowing the system’s 1 Hz clock to synchronize with the Pulse Per 

Second (PPS) signal of the GPS module subsequent to fix acquisition. The internal RTC 

is clocked by a 32.768 kHz external ultra-low power oscillator manufactured by SiTime 

[30], which offers a current consumption of <1 µA and frequency stability of ±5, ±10, 
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±20 ppm options over temperature, as well as the world’s smallest footprint (1.5×0.8 

mm CSP). 

3.6 Data Storage 

The system integrates a microSD card slot used to for raw data acquisition (e.g., 

vehicle magnetic signature or accelerometer), in addition to timestamps of vehicles 

arrival/departure and status messages. The micro-SD card is connected to the 

microcontroller through serial peripheral interface (SPI). In addition, an on-board 64 

Mb serial NOR flash memory is available as a secondary storage medium. Macronix’s 

MX25R64 [31] is an ultra-low power CMOS flash memory with a minimum of 100,000 

erase/program cycles and 20-year data retention. MX25R64 features a typical 5 μA 

standby current, a maximum 4 mA read current, and 6 mA write current. 

3.7 Battery Gauge 

As part of the power management subsystem, a smart battery gauge is integrated 

for monitoring battery capacity and protecting it from deep discharge and over charge, 

especially for Li-Po batteries. Texas Instrument BQ27621-G1 [32] was used, as it 

provides advanced algorithms for calculating remaining battery capacity (mAh), state-

of-charge (%), battery voltage (mV), and temperature (°C); it also requires little to no 

configuration and can be accessed through 400 kHz I2C interface. Figure 6 shows a 

simplified schematic of gauge-battery pack connection. 
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Figure 6. Simplified schematic of the battery gauge unit [32]. 
 

3.8 Energy Harvester and Management Unit 

ADP5091 [33] is an ultra-low PMU that harvests energy from photovoltaic (PV) 

and thermoelectric generators (TEG) sources. The unit can efficiently convert power 

from sources with range as low as 6 µW to 600 mW without losing significant energy 

(i.e., sub-microwatt). The chip features a cold-start circuit with input voltage as low as 

380 mV. After cold-start, the regulator can operate at an input range of 80 mV to 3.3 V. 

Stable DC-to-DC boost conversion is realized through the use of a maximum power 

point tracking (MPPT) controller. Figure 7 shows a detailed functional diagram of the 

device. 
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Figure 7. ADP5091 detailed functional block diagram [33]. 
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Chapter 4 Porting Algorithms from 1stG to 2ndG 

iVCCS 2ndG uses most algorithms developed in iVCCS 1stG with necessary 

modifications for platform differences. iVCCS 1stG was based on an 8-bit 

microcontroller and firmware developed in BASCOM; iVCCS 2ndG is based on a 32-bit 

ARM Cortex microcontroller. Firmware was developed in C due to its efficiency and 

speed. In this chapter, essential algorithms and proposed flow charts are discussed, as 

well as differences between 1st and 2nd generations. 

4.1 Detection and Counting Algorithm 

The detection algorithm developed in iVCCS 1stG  is ported to the new design 

with modifications to fit the new platform [8]. The algorithm processes the magnetic 

flux sampled by KMX62 and detects vehicle arrival/departure as it passes through the 

sensor zone. As aforementioned, vehicles have ferrous materials that cause disturbance 

in the local magnetic field, creating a push-and-pull effect in the flux lines as the vehicle 

passes. The result is fluctuations in the magnitude of the magnetic field. KMX62 is a 

tri-axial sensor that represents each sample point by three 16-bit words (i.e., x, y, z). 

Microcontroller calculates magnitude, and then communicates it to the algorithm for 

processing. Three thresholds and three debounce timers govern the algorithm. 𝑅𝑅𝑇𝑇𝑇𝑇 

represents the baseline threshold; 𝑂𝑂𝑇𝑇𝑇𝑇 is the onset threshold; and 𝐻𝐻𝑇𝑇𝑇𝑇 is the holdover 

threshold. These parameters define vehicle arrival/departure. Figure 8 depicts a sample 

vehicle signature with illustrated thresholds and timers. Given that the magnitude 

reaches 𝑂𝑂𝑇𝑇𝑇𝑇 threshold, a timestamp of arrival is logged. If magnitude drops below 𝐻𝐻𝑇𝑇𝑇𝑇, 

the vehicle is assumed departed, and another timestamp is logged, adding ‘1’ to the 

vehicle counter. In the absence of a vehicle in the vicinity, magnitude is expected to 
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stay below 𝑅𝑅𝑇𝑇𝑇𝑇. The state-machine of the algorithm is illustrated in Figure 9. C code 

can be found in Appendix A. 

 

Figure 8. Detection algorithm parameters applied on a vehicle flux magnitude [7]. 
 

Given magnitude rises between 𝑅𝑅𝑇𝑇𝑇𝑇 and 𝐻𝐻𝑇𝑇𝑇𝑇, calibration is executed. Debounce timers 

play a crucial role in eliminating misdetections and double detections (i.e., counted 

twice). Onset debounce timer 𝑂𝑂𝐷𝐷𝑇𝑇 is used to filter glitches in a signature that result in 

misdetections. Double detections occur as a result of ferrous material distributed 

throughout the body of a vehicle. Long trucks, for instance, with extended separations 

between axles cause dips and steep fluctuations between 𝑂𝑂𝑇𝑇𝑇𝑇 and 𝐻𝐻𝑇𝑇𝑇𝑇, resulting in a 

single vehicle counted twice. Holdover debounce timer 𝐻𝐻𝐷𝐷𝑇𝑇 is leveraged to overcome 

this problem. 
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Figure 9. Detection algorithm state machine [7]. 𝑭𝑭𝑭𝑭(𝒌𝒌) is the field magnitude. 

 

 
4.2 Adaptive Compensation of Baseline Drift 

Magnitude measured by magnetometer sensor (i.e., KMX62) can suffer from 

drifts due to temperature, displacement caused by vehicles hitting the sensor, and/or 

operating stress. Consequences of such result in misdetection and speed estimation 

errors. Figure 10 shows an example of such a drift over 240 minutes due to temperature 

[8]. Consequently, magnetometer baseline should be regularly tracked and re-calibrated 

using a Moving Average Filter (MAF). Given that magnitude drops below on-set 

threshold 𝑂𝑂𝑇𝑇𝑇𝑇, calibration algorithm is executed. Moreover, calibration algorithm is 

carried out subsequent to confirmation of vehicle departure. Algorithm C code (See 

Appendix A) was redesigned in iVCCS 2ndG to make it more readable and intuitive. 

Previously, multiple flags and function calls were required for recalibration. A high-

level description of the algorithm is shown in Figure 11. 
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Figure 10. Baseline magnitude drift with (blue) and without (yellow) adaptive 
compensation [8]. 

 

Inputs: x, y, z 

Outputs: xref, yref, zref 

1: Disable external interrupts except DRI 

2: FOR i < M 

3: WAIT FOR Magnetometer Data-Ready interrupt 

4: xacm ← xacm + READ x 

5: yacm ← yacm + READ y 

6: zacm ← zacm + READ z 

7: LOOP 

8: xavg ← xacm / M 

9: yavg ← yacm / M 

10: zavg ← zacm / M 

11: Enable external interrupts 

Figure 11. High-level description of adaptive compensation algorithm. x, y, and z 
are the measured field’s components. xacm, yacm, and zacm are the accumulated 

values. 
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4.3 Adaptive Compensation of the RTC Frequency Drift 

RTC skew can occur over time, desynchronizing local and remote clocks due to 

a number of factors, including variations in temperature, effect of passive board 

components, and tolerances specified by manufacturers. Because time synchronization 

is critical among system sensor nodes, especially for speed estimation, the drift 

phenomenon should be compensated. A GPS-based approach was developed to correct 

RTC clock drift in iVCCS 1stG and ported to C in iVCCS 2ndG. A block diagram of the 

algorithm is depicted in Figure 12. 

 

Figure 12. GPS-based RTC time drift correction system block diagram [8]. 
 

After the GPS is locked to a fix, GPS module provides a 1 Hz signal, Pulse Per Second 

(PPS) routed to one of the GPIOs (General Purpose Input/Output) of the 

microcontroller. This signal is considered the accurate reference for RTC calibration. 

The RTC 1 Hz signal frequency 𝑓𝑓𝑅𝑅𝑇𝑇𝑅𝑅
(𝑀𝑀𝑅𝑅𝑀𝑀) is compared to PPS signal frequency 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃

(𝐺𝐺𝑃𝑃𝑃𝑃). 

The algorithm measures both signal durations using high frequency clock 𝑓𝑓𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇
(𝑀𝑀𝑅𝑅𝑀𝑀), 

driven from the MCU’s 8 MHz oscillator. Error induced in measuring clock (i.e., 

oscillator) is canceled in the differentiation stage since both signals are measured at the 

same time using the same clock. 
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The algorithm commences by aligning RTC and PPS signals. Subsequently, two 32-bit 

MCU timers (i.e., Cnt1 and Cnt2) are configured in up-counting mode and controlled by 

RTC 1 Hz signal and PPS 1 Hz signal, respectively. Both originate at the first rising 

edge of 1 Hz signal and stop on the following rising edge. Time correction coefficient is 

defined as the difference between the two counters. Figure 13 and Figure 14 show a 

flow chart that explains the algorithm in detail. 

Figure 13. A flow chart depicting the algorithm for RTC drift calibration. 
 

The algorithm sets a flag measure_freq to inform the interrupt function of RTC 1 

Hz — called each time one second passes — to start counters, and the stop them on the 

next rising edge of the signal (i.e., one period of 1 Hz signal). 

Calibrate RTC? Stop MGM INT RTC or PPS 
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No

RTC
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Figure 14. PPS-RTC difference calculation sub process. 

 

Once interrupt measuring is complete, the function sets measure_freq to zero, 

indicating the completion of the measuring phase relative to the main function. The 

microcontroller proceeds with the algorithm (Figure 15). The process is repeated for the 

number of taps of a moving average filter (default value is 10), and then measurements 

are averaged. The same procedure is repeated for PPS from the GPS module after it is 

locked and synchronized. Information about C implementation is available in Appendix 

A. 

 

Figure 15. Measuring process flow chart inside RTC 1 Hz signal interrupt 
function.  
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4.4 Optimized ARM DSP Functions 

Notably, the function for calculating magnitude was not optimized, requiring an 

average 0.75 milliseconds. Initially, generic C functions were used for floating point 

arithmetic, although these functions in generic C libraries are considered too slow and 

not optimized for a specific platform. ARM provides a DSP library that is optimized for 

some select microcontrollers, among them the on utilized for iVCCS 2ndG. ARM DSP 

cores provide 0.62 milliseconds improvement. Code is available in Appendix A. 

4.5 Text Formatting Function 

Text formatting required additional time — up to 3.5 millisecond. C-style text 

formatting function, namely sprintf, were used to convert floating point data into ASCII 

characters writable for a text file. To mitigate delay, float data were converted to 16-bit 

data, and an optimized function for converting integers to ASCII based on Terje 

Mathisen’s algorithm was developed (See algorithm in Appendix A). Delay was 

reduced to 0.1776 milliseconds for single number conversion and 0.5625 milliseconds 

for complete reading from the magnetometer. Throughput of data collection was 

improved. 
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Chapter 5 System Algorithms and Power Analysis 

Previous chapters have discussed how some algorithms were changed from 1st to 

2ndG, porting them from the former to the latter 32-bit platform. In essence, the 

algorithms are identical, although two natures imposed a necessity for changing the 

operation to ensure accurate functionality. Another important aspect of iVCCS 2ndG 

features low-power operation. Notably, storage and communication are two of the most 

energy-hungry components of an embedded system. In this chapter, algorithms 

developed for mitigating power consumption induced by the microSD card, ZigBee, 

and continuous data fetching from the magnetometer KMX62 are discussed. An 

analysis of microSD card and ZigBee current consumption for the proposed algorithms 

is presented, as well as an estimate of system battery life at this stage of processing. 

5.1 Data Buffering Technique 

As indicated in Section 3.6, microSD card is used to log timestamps and store 

other status messages and raw data. However, microSD cards are energy inefficient and 

counter intuitive to the low power paradigm due to the fact that they simply dump data 

and messages directly to the card. According to SanDisk microSD card specifications 

[34], Read and Write procedures can take up to 100 mA in current consumption. 

Turning the card on/off when data must be stored is impractical due to required time 

delay for repeated card initialization each time the card is powered on. Specifications 

also refer to the automatic sleep feature wherein cards enter sleep mode, given no 

commands are received within 5 ms. In this mode, cards consume 350 μA. This 

indicates inefficiency for system duration. Consequently, the on-board ultra-low power 

flash memory is utilized to buffer data before shifting it to the microSD card, primarily 
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because the memory excels in energy efficiency and read/write performance when 

compared to the microSD card. The result is suitable for instantaneous data logging. 

 

Figure 16. Block diagram illustrating data buffering technique. 
 

MX25R64 exhibits a page basis write functionality, in which page size is 256 

bytes. Host can commence reading at any byte address, although it can only write at the 

beginning of a page address. Hence, microcontroller must retain length of data required 

for the write function to avoid creating gaps in the flash memory. Figure 16 illustrates 

the procedure and Figure 17 provides a high-level description of the algorithm. C 

implementation can be found in Appendix B. 
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1: IF New Sector THEN 

2: Erase Sector 

3: END IF 

4: RAM Buffer ← Data 

5: IF RAM Buffer Size ≥ 256 THEN 

6: Move data: Flash ← RAM 

7: Shift remaining data in RAM 

8: END IF 

9: IF Flash Full Pages ≥ Flash Threshold THEN 

10: Open new file in SD card 

11: FOR EACH Flash Page i DO 

12: SD card ← Flash page i 

13: END FOR 

14: SD card ← RAM Buffer 

15: Close file in SD card 

16: END IF 

Figure 17. High level description of data buffering technique, 
 

5.2 Triggered Vehicle Detection 

Typically, the magnetometer interrupts the microcontroller at any time in which 

a new sample is acquired in the buffer, in accordance with configured data rate (i.e., 

Data Ready Interrupt [DRI]). Desired behavior occurs only when an approaching 

vehicle interrupts MCU, thus, triggering execution of the detection algorithm. KMX62 

magnetometer 2 is interrupted, as are DRI, Magnetometer Motion Interrupt (MMI), and 

Buffer Full Interrupt (BFI). MMI is issued when the difference between two 

consecutive samples on one axis reaches a programmed threshold in a specific direction 

(i.e., either increasing or decreasing) and stays above the threshold indicated for a 
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specific number of samples (i.e., time). The KMX62 buffer can operate in triggered 

mode and hold 64 samples of three components (x, y, z). Given a physical interrupt is 

caused a digital engine (i.e., magnetometer or accelerometer), a trigger event is asserted, 

and SMP_TH number of samples prior to the event are retained. Sample collection 

continues until the buffer is full. Data is reported in chronological order, as explained in 

Figure 18. MMI is configured to trigger the buffer, and BFI is routed to MCU through 

one of the GPIOs [27]. SMP_TH is set to 63, which causes KMX62 to immediately 

interrupt MCU subsequent to the reception of the first sample received after an MMI 

interrupt (i.e., vehicle approach/detection). 

 

Figure 18. MMI and BFI operation in KMX62 magnetometer. 
 

Figure 19 describes the way in which the algorithm reads and controls data flow from 

KMX62. MCU completes a dummy read for a number of samples, primarily because 

the first few samples might not relate to a vehicle's signature. The algorithm is 

configured to consider the last 24 samples prior to vehicle approach, discarding the first 

40 samples from the buffer. After 24 samples are read and processed and given the state 

machine of the system still indicates detection, the MCU continues pulling new samples 

through Data Ready Registers until vehicle has departed. 

 

 

MMI Interrupt BFI Interrupt

SMP_TH1 64
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1: IF DRI Flag THEN 

2: Read data from DRI registers 

3: ELSE IF BFI Flag THEN 

4: Disable BFI 

5: Discard 40 samples 

6: WHILE Samples Counter < 24 THEN 

7: Read data from Samples Buffer 

8: Increase Samples Counter 

9: END WHILE 

10: IF State = Detection THEN 

11: Enable DRI 

12: ELSE 

13: Enable BFI 

14: END IF 

15: END IF 

Figure 19. High level description of triggered vehicle detection algorithm. 
 

5.3 Communication Scheme 

The primary role of the RF in this system is to report data (i.e., count and 

timestamps) to an access point (AP). This function is complete once each day, typically 

at midnight. However, the system is also capable of interacting with user requests. 

Notably, the ZigBee module is one of the most power-consuming units on board, and 

constantly turning it on will quickly deplete the battery. 

MCU is not required to use RF interface, except for initial status reporting after 

sensor is initialized and data reporting at midnight. To accommodate user/AP requests, 

MCU must activate the ZigBee module for one minute, during which time it sends a 

status message reporting battery charge level and number of vehicles counted. Given 

that a command is received within this minute, the timer is reset, allowing for additional 
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commands. If none are received, RF module is shut down. Implementation is described 

in Appendix B. 

5.4 microSD Card Power Analysis 

In this section, microSD card power consumption and its effect on battery life 

are analyzed. Data written to a vehicle signature file is considered for two scenarios: 1) 

a regular, non-optimized scenario, wherein the microcontroller continuously writes data 

coming from the magnetometer as non-stop; and 2) an optimized scenario, wherein the 

microcontroller writes data coming from the magnetometer only when a vehicle is in 

the vicinity, thus eliminating ambient magnetic flux. 

5.4.1 Continuous Data Transfer 

Each sample consists of three components, x, y, and z in floating-point format. 

The microcontroller first converts data to ASCII to be written in a text file. Resulting 

data is a 25-byte chunk for each sample read from the magnetometer, as shown in 

Figure 20. 

 

Figure 20. Data format for each sample. 
 

Assuming that magnetometer sampling rate is 100 Hz, results for one hour (3600 

seconds) are calculated, as follows: 

3600 × 100 × 25 = 9 × 106 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵]. 

MicroSD card is interfaced with MCU via Serial Peripheral Interface (SPI) protocol. 

Interface clock is derived from the microcontroller system clock (8 MHz) with a pre-
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scale of 2; therefore, SPI speed is 4 Mbit/s. Hence, time to write one sample to microSD 

card can be calculated as: 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
25 [𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵]

4 [𝑀𝑀𝑏𝑏𝑀𝑀𝐵𝐵/𝑠𝑠]  = 524288 [𝐵𝐵𝐵𝐵𝑠𝑠]
= 47.68 [𝜇𝜇𝑠𝑠] 

Notably, MCU spends some time pulling and conditioning data from the magnetometer, 

as illustrated in Figure 21. Since sampling rate is 100 Hz, microcontroller waits 0.01 

second for sample arrival and spends 3.5 ms for conditioning. 

 

Figure 21. Timing diagram for writing to microSD card. 
 

Total time for writing all bytes for one hour is determined by the following equation. 

𝑇𝑇𝑊𝑊𝑇𝑇 =
9 × 106

524288
= 17.1661 [𝑠𝑠] 

Hence, hourly duty cycle for writing is: 

𝐷𝐷𝐶𝐶𝑊𝑊 =
17.1661

3600
= 0.004768 = 0.4768% 

Consequently, hourly duty cycle for idle time is: 

𝐷𝐷𝐶𝐶𝐼𝐼 = 1 − 0.004768 = 0.995231 = 99.5231% 

According to SanDisk datasheets [34], average current for writing to microSD card is 

100 mA, and average current for idle (i.e., sleep) state is 150 µA. Average consumed 

current for write and idle states are calculated, as follows. 

𝐼𝐼𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = 0.004768 × 100 𝑚𝑚𝑚𝑚 = 0.4768 [𝑚𝑚𝑚𝑚ℎ] 

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.995231 × 150 𝜇𝜇𝑚𝑚 = 0.1493 [𝑚𝑚𝑚𝑚ℎ] 
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Total average consumed current is 0.6261 mAh. 

5.4.2 Triggered Data Transfer 

The same methodology can be applied to the second scenario for triggering data 

transfer. Assuming average speed of the vehicle is 65 mph and average vehicle length is 

5 m, a sampling rate of 100 Hz would result in 18 samples for each vehicle. Assuming a 

length of 30 samples by taking into account samples before vehicle arrival and after 

departure: 

𝑇𝑇𝑇𝑇𝐵𝐵𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑚𝑚𝑏𝑏𝐵𝐵𝑛𝑛 𝑇𝑇𝑓𝑓 𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 𝐵𝐵𝐵𝐵𝑛𝑛 𝑣𝑣𝐵𝐵ℎ𝑀𝑀𝑖𝑖𝑇𝑇𝐵𝐵 = 30 𝑠𝑠𝑇𝑇𝑚𝑚𝐵𝐵𝑇𝑇𝐵𝐵𝑠𝑠/𝑣𝑣𝐵𝐵ℎ𝑖𝑖 × 25 𝐵𝐵/𝑠𝑠𝑇𝑇𝑚𝑚𝐵𝐵𝑇𝑇𝐵𝐵

= 750 [𝐵𝐵/𝑣𝑣𝐵𝐵ℎ𝑖𝑖] 

Therefore, time to write all bytes of a signature for one vehicle can be calculated as: 

𝑇𝑇𝑊𝑊 =
750

524288
= 1.4305 [𝑚𝑚𝑠𝑠] 

Assuming traffic volume at a highway designated detection point is 1000 vehicles per 

hour, total time for write operation is determined by: 

𝑇𝑇𝑊𝑊𝑇𝑇 = 1.4305 [𝑠𝑠] 

Corresponding hourly duty cycle is determined by: 

𝐷𝐷𝐶𝐶𝑊𝑊 =
1.4305
3600

= 0.000397 

Hourly duty cycle for idle time is, then: 

𝐷𝐷𝐶𝐶𝐼𝐼 = 1 − 0.000397 = 0.999603 

Average consumed current can now be calculated in the following way. 

𝐼𝐼𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 = 0.000397 × 100 𝑚𝑚𝑚𝑚 = 0.0397 [𝑚𝑚𝑚𝑚ℎ] 

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.999603 × 150 𝜇𝜇𝑚𝑚 = 0.1499 [𝑚𝑚𝑚𝑚ℎ] 

Total average consumed current is 0.1896 mAh. 
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A reduction of 0.4365 mAh (or 69.6%) in consumed power is achieved using the new 

mechanism by refraining from writing ambient samples between vehicles 

arrivals/departures. It is worth noting that this number is further improved by reducing 

microSD card idle time. Buffering data through the serial flash is used for this purpose. 

5.5 ZigBee Power Analysis 

This section describes ZigBee power consumption when the module is mounted 

on the iVCCS sensor. First, a theoretical analysis of the consumed current based on the 

datasheet of the module (AW516P0) is presented [28]. Next, empirical data for three 

scenarios are provided, the first of which is a baseline, wherein all components are shut 

down and battery capacity is logged every minute for an hour. An intermittent 

transmission scenario with module going back to active mode is reported, and finally, 

the module is configured in receive mode. 

5.5.1 Theoretical Analysis 

To calculate module power consumption in various modes for different 

functionalities, scenario timing is required along with corresponding current consumed 

in each stage. Typically, these figures are provided by the manufacturer and published 

in their datasheets. The ZigBee module utilized in this research is based on NXP JN516 

ZigBee platform, and the following analysis is based on their documentation. 

Consider an example wherein the sensor continuously performs the following 

actions to send status beacons: 

1. Start the module. 
2. Receive data frame from the host CPU/MCU. 
3. Perform Clear Channel Assessment (CCA). 
4. Transmit data frame containing a payload of 60 bytes. 
5. Transmission is complete; reception is off; module is active. 
6. After 10 minutes, repeat from Step 2. 
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Duration and current corresponding to the aforementioned steps are determined below. 

Module startup 

JN516x devices start up using a fast RC oscillator before executing bootloader code at 

26 MHz. After an additional 170-740 μs, the faster 32 MHz crystal becomes stabilized 

and a glitch-less switchover occurs. Application code is expected to wait until the 

crystal is stable for radio transmission, which occurs 230 μs later; thus, requiring 1 ms 

from reset/wake event. During the time in which transceivers are not operating, the 

module is still considered in active mode, assuming the module is working at default 

clock rate 16 MHz. In this case, current consumed will be 4.98 mA. 

UART Data Transmission 

According to the datasheet, receiving data from the host MCU consumes 5.04 

mA. The example used in this work assumes 60 bytes data payload. Hence, it is 

necessary to determine the time required for the UART peripheral to send the following 

frame: 

60𝐵𝐵𝑦𝑦𝐵𝐵𝑠𝑠 × �8𝑏𝑏𝑏𝑏𝐵𝐵𝑠𝑠 + 1𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠𝐵𝐵 𝑏𝑏𝑏𝑏𝐵𝐵 + 1𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝐵𝐵�/57600𝐵𝐵𝑠𝑠𝐵𝐵𝐵𝐵 𝑠𝑠𝑠𝑠𝐵𝐵𝑠𝑠 = 10.42 [𝑚𝑚𝑠𝑠] 

Each byte has a start bit and a stop bit — thus, 8+1+1. Default baud rate of the module 

is 57600 bps. Time taken to receive the frame is 10.42 ms. 

Performing CCA 

Assuming a channel is clear after CCA and that random back-off period is two, 

the time required for executing the CSMA/CA algorithm in a non-beacon enabled 

network is: back off period = 0.96 ms, and CCA period = 0.128 ms. 

The application operates throughout the back-off period, and transceiver remains 

on, even though it is neither transmitting nor receiving. Current drawn during this 
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period is 5.16 mA. During CCA, the radio receiver is on and, therefore, a 20.28 mA 

current is drawn. 

Data Transmission 

The medium access control (MAC) layer header size (𝐻𝐻𝑀𝑀𝑀𝑀𝑅𝑅) is set to 25 bytes 

for 64-bit source and destination addresses. The physical (PHY) layer header size 

(𝐻𝐻𝑃𝑃𝑇𝑇𝑃𝑃) is fixed and equal to 6 bytes. Payload frame size (𝐹𝐹𝑃𝑃𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵) depends on the 

amount of data transmitted — loaded up to 114 bytes. In the example reported a 60-byte 

payload was assumed: 

𝑇𝑇 =
𝐻𝐻𝑀𝑀𝑀𝑀𝑅𝑅 + 𝐻𝐻𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵

250 𝑘𝑘𝑏𝑏𝐵𝐵𝑠𝑠
× 8 =

25 + 6 + 60
250 𝑘𝑘𝑏𝑏𝐵𝐵𝑠𝑠

= 2.912 [𝑚𝑚𝑠𝑠] 

Therefore, time required to transmit a data frame is 2.912 ms, during which the 

transceiver consumes a current of 18 mA. 

Idle Time 

Per the example provided, the sensor will refrain from transmission for 10 

minutes, during which time the transceiver remains on, even though there is no TX or 

RX. Current consumed by the ZigBee module is 5.16 mA. Figure 22 illustrates the 

timing diagram of this process. 

 

Figure 22. ZigBee transmit period (TTX) and receive period (TIdle). 
 

It is necessary to calculate time and current consumed during the TX cycle. 
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Table 1. ZigBee Phases, Timings, and Currents 
Phase Current (mA) × Time (ms) Charge (µC) 

UART Data Transmission 5.04 𝑚𝑚𝑚𝑚 ×  10.42 𝑚𝑚𝑠𝑠 52.52 

CCA Back-off 5.16 𝑚𝑚𝑚𝑚 × 0.96 𝑚𝑚𝑠𝑠 4.95 

CCA Period 20.28 𝑚𝑚𝑚𝑚 × 0.128 𝑚𝑚𝑠𝑠 2.6 

Transmit Data 18 𝑚𝑚𝑚𝑚 ×  2.912 𝑚𝑚𝑠𝑠 52.416 

Total 𝟏𝟏𝟏𝟏𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒 

 

Total time = 14.42 ms. Average current consumed during transmission = Total Charge / 

Total Time = 7.8 µA. 

Since a transmission is assumed to occur once every 10 minutes, hourly duty cycle of 

RF transmission is given by: 

𝐷𝐷𝐶𝐶𝑇𝑇𝑇𝑇 =
0.01442 × �60

10�
3600

= 0.0024% 

Consequently, hourly duty cycle for idle time is: 

𝐷𝐷𝐶𝐶𝐼𝐼𝐵𝐵𝑠𝑠𝑠𝑠 = 100 − 0.0024 = 99.9976% 

Average hourly consumption can be calculated in the following way: 

𝐼𝐼𝑇𝑇𝑇𝑇 = 0.000024 × 7.8 𝜇𝜇𝑚𝑚 = 0.0001872 [𝜇𝜇𝑚𝑚ℎ] 

𝐼𝐼𝐼𝐼𝐵𝐵𝑠𝑠𝑠𝑠 = 0.999976 × 5.16 𝑚𝑚𝑚𝑚 = 5.16 [𝑚𝑚𝑚𝑚ℎ] 

Total hourly consumption is: 

𝐼𝐼𝑇𝑇𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠 = 5.16 [𝑚𝑚𝑚𝑚ℎ] 

Notably, this value does not take into account the current drawn by the sensor or the 

self-discharge of the battery. 
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5.5.2 Empirical Data Collection 

Data were collected for three scenarios: a baseline, wherein all components 

where powered down or put in sleep mode if there is no power switch (e.g. 

magnetometer/accelerometer), as well as TX and RX. For TX, a message is sent to AP 

once every 10 minutes. For RX, a message is sent from AP to the sensor mode once 

every 10 minutes. The following figure depicts battery capacity over time, logged every 

minute. 

 

Figure 23. Power consumption of ZigBee TX and RX compared to baseline test. 
 

Transmit consumption curve decays in a slightly steeper norm than receive 

mode. Therefore, caution should be taken when implementing the communication 

protocol. Obviously, ZigBee should not be constantly turned on; thus, a dynamic 

switching approach should be employed. 
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5.6 System Level Power Consumption Analysis 

In this section the system’s power consumption is empirically analyzed by 

dividing the sensor’s one-hour cycle into states, and then measuring the amount of 

current drained in each state. Assuming the sensor is deployed on a highway with 65 

mph speed limit and following distance of 1 second between vehicles, the result flow 

rate for a single lane will be 3089 passenger vehicles per hour. Assume flash threshold 

(See Section 5.1) is 10 pages (i.e., 2560 bytes), at which MCU buffers data from flash 

to microSD card. Sensor logs time of arrival (TA), time of departure (TD), and number 

of vehicles in the counter (N) for each detection. Additionally, sensor logs battery status 

once every minute. During a one-hour period, sensor will transition through the 

following states: battery status log, vehicle log, flash-to-microSD card buffering, status 

beacon, and standby. 

 

Figure 24. Example for battery status log line (a) and Vehicle timestamp (b). 
VOLT, CAP, and SOC are battery voltage, capacity, and state-of-charge, 

respectively. 
 

During one hour, sensor will log 60 lines of battery status, each for 51 bytes. Figure 24 

(a) shows an example line. 

𝐵𝐵𝑏𝑏𝑠𝑠𝐵𝐵 = 60 × 51 = 3060 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠/ℎ𝑇𝑇𝑛𝑛𝑛𝑛] 

For each detected vehicle, the timestamps and counter compose 54 bytes of logged data 

(or 56 bytes when counter is four digits), as shown in Figure 24 (b): 

𝐵𝐵𝑣𝑣𝑠𝑠ℎ = 3089 × 54 = 166806 [𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠/ℎ𝑇𝑇𝑛𝑛𝑛𝑛] 

N01_TA@21225109.160156<CR><LF>
N01_TD@21225109.519531<CR><LF>
N01_N#73<CR><LF>

b)

[BAT: VOLT = 4021 mV, CAP = 2480 mAh, SOC = 95 %]<CR><LF>a)
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According to the aforementioned assumptions, the sensor will collect a total of 169,866 

bytes during a one-hour time period. Since MCU moves data from flash to microSD 

card every 10 flash pages (2560 bytes), the result in 66 transfers. 

Timings and drained current for each state is measured using high accuracy Fluke 289 

multimeter [35]. Figure 25 depicts sensor current consumption for various states. Each 

data transfer is 1 second and consumes, at most, 30 mA. 

 

Figure 25. Current consumption at various states. 
 

Each hour the sensor sends a status beacon message and activates the ZigBee module 

for one minute. Current drained is 24 mA. Sensor spends the majority of the time in 

standby state, consuming an average of 4 mA. Let’s consider two scenarios: 1) sensor 

shuts down the ZigBee module after system initialization and does not incorporate the 

status beacon messages, and 2) status beacon messages used to periodically enable the 

ZigBee module. In the first scenario, average current for one hour is determined by: 

𝐼𝐼𝑠𝑠𝑣𝑣𝑎𝑎 =
𝑇𝑇𝐵𝐵𝐼𝐼𝐵𝐵 + (3600 − 𝑇𝑇𝐵𝐵)𝐼𝐼𝐵𝐵

3600
=

66 × 30 + 3534 × 4
3600
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0 50 100 150 200 250 300 350 400 450 500
Time [s]

0

10

20

30

40

50

60

70

Cu
rr

en
t [

m
A

]

System initialization

Flash-to-microSD Card buffering

Standby/Detection

ZigBee periodic window



40 

where 𝑇𝑇𝐵𝐵, 𝐼𝐼𝐵𝐵 are buffering time and current, respectively, and 𝐼𝐼𝐵𝐵 is the detection/standby 

current. Thus, the life of a 2300 mAh battery with up to an 80% derating can be 

calculated as: 

𝑇𝑇𝐵𝐵𝑠𝑠𝐵𝐵 =
2300
4.48

× 0.8 = 411 [ℎ] 

In the second scenario, average current for one hour can be determined as: 

𝐼𝐼𝑠𝑠𝑣𝑣𝑎𝑎 =
66 × 30 + 60 × 24 + 3474 × 4

3600
= 4.81 [𝑚𝑚𝑚𝑚] 

Therefore, the life for a 2300 mAh battery with up to an 80% derating factor can be 

calculated as: 

𝑇𝑇𝐵𝐵𝑠𝑠𝐵𝐵 =
2300
4.81

× 0.8 = 383 [ℎ] 
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Chapter 6 Reinforcement Learning for Power Management 

The optimization methods and algorithms introduced in the previous chapters 

can be deemed hard-coded workarounds to minimize power consumption, as they lack 

flexibility and resilience for adapting to varying conditions. Although some policies 

lead to significant energy savings, cost to the system is response time and accuracy. 

Hence, proper orchestration between alternate methods and policies is necessary. With 

the problem of DPM, an algorithm controls power/performance tradeoff according to 

workload on the system. In this chapter, DPM and RL are described in an effort to 

further improve system power consumption. 

6.1 Introduction to Reinforcement Learning 

Reinforcement Learning (RL) is a branch of Artificial Intelligent (AI) 

algorithms that mimics a natural way of gaining knowledge and experience (i.e., 

learning through trial and error). Typically, this technique is tended to classify 

algorithms into one of two AI categories: supervised and unsupervised learning. 

Supervised learning agents are trained on a set of labeled data provided by an external 

expert, while unsupervised learning agents are trained on data that has no labels with a 

goal of finding hidden structure within unlabeled data [36]. Many researchers argue that 

RL falls somewhere between these two categories. In fact, RL can be considered an 

unsupervised method because it does not rely on expert correct-based examples of data 

sets [36]. Instead of finding hidden structures, RL attempts to maximize sparse rewards, 

based on what the agent must learn to behave in a given environment. 

Although the concept is natural and intuitive, several challenges are 

characteristic of RL that are not characteristic of other types of machine learning (e.g., 
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dilemma of exploration and exploitation). For example, should the agent exploit the 

knowledge gained by selecting actions to maximize its rewards? Or should the agent 

explore by selecting alternative untried actions for building a more realistic estimate and 

understanding of the environment? With regard to the credit assignment, how should 

one determine rewards and penalties associated with actions that lead to an arbitrary 

state? 

The most common way of formalizing an RL problem is utilizing Markov 

Decision Processes (MDPs) [37], consisting of: 

- finite state space 𝑆𝑆, 

- set of available actions 𝑚𝑚, 

- reward function 𝑅𝑅: 𝑆𝑆 × 𝑚𝑚 → 𝑅𝑅, and  

- system dynamics function 𝑃𝑃: 𝑆𝑆 × 𝑆𝑆 × 𝑚𝑚 → [0,1]. 

This can be written as 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑇𝑇) where: 

 �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑇𝑇)
𝑠𝑠′∈𝑃𝑃

= 1      ∀ 𝑠𝑠 ∈ 𝑆𝑆,∀ 𝑇𝑇 ∈ 𝑚𝑚 

In other words, function 𝑃𝑃 determines the probability of transitioning to state 𝑠𝑠′, given 

that the agent remains in state 𝑠𝑠 and performs action 𝑇𝑇. However, in an RL problem the 

agent has no initial or prior knowledge of the rewards function nor the system dynamics 

function. 

Q-Learning is a standard RL algorithm, in which the agent’s experience is 

expressed as sequences of states, actions, and rewards: 

< 𝑠𝑠0,𝑇𝑇0, 𝑛𝑛1, 𝑠𝑠1,𝑇𝑇1, 𝑛𝑛2, … > 

In state 𝑠𝑠0, the agent performed action 𝑇𝑇0 and was rewarded 𝑛𝑛1, resulting in 

transitioning to state 𝑠𝑠1, and so on. Interactions with the environment form experience 
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the agent accumulates over time. The agent aims to maximize experience value — 

typically realized as a discounted future reward. In Q-Learning, this value is given by a 

function 𝑄𝑄∗(𝑠𝑠,𝑇𝑇) defined as the expected value of the cumulative discounted reward of 

performing action 𝑇𝑇 in state 𝑠𝑠, and, hence, following the optimal path. 

In general, the discounted future reward is defined as the immediate reward the 

agent receives for the current action taken and the future reward. Given a finite series of 

experiences: 

< 𝑠𝑠0,𝑇𝑇0, 𝑛𝑛1, 𝑠𝑠1,𝑇𝑇1, 𝑛𝑛2, … , 𝑠𝑠𝑛𝑛−1,𝑇𝑇𝑛𝑛−1, 𝑛𝑛𝑛𝑛, 𝑠𝑠𝑛𝑛 > 

total reward would be: 

𝑅𝑅 = 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + ⋯+ 𝑛𝑛𝑛𝑛 

Therefore, future reward accumulated from time 𝐵𝐵 onward is: 

𝑅𝑅𝐵𝐵 = 𝑛𝑛𝐵𝐵 + 𝑛𝑛𝐵𝐵+1 + 𝑛𝑛𝐵𝐵+2 + ⋯+ 𝑛𝑛𝑛𝑛 

However, due to the stochastic nature of the environment, the future reward for a given 

action is not guaranteed the same when chosen next. Thus, a discount factor is 

introduced to impart less significance on future rewards when compared a current 

reward, as shown below: 

𝑅𝑅𝐵𝐵 = 𝑛𝑛𝐵𝐵 + 𝛾𝛾𝑛𝑛𝐵𝐵+1 + 𝛾𝛾2𝑛𝑛𝐵𝐵+2 + ⋯+ 𝛾𝛾𝑛𝑛−𝐵𝐵𝑛𝑛𝑛𝑛 

where 0 ≤ 𝛾𝛾 < 1 is the discount factor. If 𝛾𝛾 = 0, then the algorithm will be short-

sighted, relying on only the immediate reward. If 𝛾𝛾 = 1, total future reward would be 

the same, thus, it would make sense if identical actions consistently reap the same 

rewards in a deterministic environment. A more balanced approach would be 𝛾𝛾 = 0.9. 

In this case, the discounted reward can be rewritten as: 
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𝑅𝑅 = �𝛾𝛾𝑏𝑏−1𝑛𝑛𝑏𝑏

∞

𝑏𝑏=1

 

= 𝑛𝑛1 + 𝛾𝛾𝑛𝑛2 + 𝛾𝛾2𝑛𝑛3 + ⋯+ 𝛾𝛾𝑏𝑏−1𝑛𝑛𝑏𝑏 + ⋯ 

= 𝑛𝑛1 + 𝛾𝛾(𝑛𝑛2 + 𝛾𝛾(𝑛𝑛3 + ⋯ )) 

Let 𝑅𝑅𝐵𝐵 be the reward accumulated from time 𝐵𝐵 

𝑅𝑅𝐵𝐵 = 𝑛𝑛𝐵𝐵 + 𝛾𝛾�𝑛𝑛𝐵𝐵+1 + 𝛾𝛾(𝑛𝑛𝐵𝐵+2 + ⋯ )� 

= 𝑛𝑛𝐵𝐵 + 𝛾𝛾𝑅𝑅𝐵𝐵+1 

𝑄𝑄-function will be discussed in more detail in subsequent sections of Chapter 6. 

6.2 RL for iVCCS 

Originally, the sensor exhibited an all-on policy, wherein all on-board 

components were turned on. This approach was not intuitive approach, and the sensor 

lasted barely 40 hours. A more flexible operation was added wherein certain 

components were turned on and off following a predetermined action flow. This 

resulted in reduced current consumption, as shown in Figure 25. To further enhance 

power consumption, sleep mode of ARM Cortex-M0 microprocessor was incorporated 

into the operation. However, this caused misdetections and/or double counting vehicles 

that had less than 2 seconds following distance as a consequence of long wake-up time 

from the sleep mode following the detection of a passing vehicle. Sensor power cycle 

can be divided into several phases, namely: 

1. System initialization, 

2. Data buffering, 

3. ZigBee periodic communication, and 

4. Standby/detection. 
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System initialization is a one-time phase and, therefore, has a negligible effect on long-

term power consumption. Data buffering is part of the data-driven phase and related to 

the number of detected vehicles and the traffic flow. This phase was incorporated to 

reduce current consumed by microSD card and operation duty-cycle. ZigBee periodic 

communication was also implemented to reduce operation duty-cycle. Although sleep 

mode drains current at 2 mA, standby phase drains at 4 mA. The problem with sleep 

mode, as mentioned earlier, is that system response time increases and causes 

misdetections. Notably, in a low traffic condition — where vehicle following distance is 

more than 5 seconds — sleep mode is expected to perform faultlessly, as well as 

conserve more power. A DPM was introduced to solve the problem. 

6.3 Problem Formulation 

An RL algorithm based on Q-Learning was proposed as an approach to 

intelligently optimize the selection of power policies in a given state. 

Assume the following: 

• System can 

o observe the environment (i.e., traffic congestion) and 

o measure power consumption. 

• Environment behavior can be modeled as high traffic (HT)/low traffic (LT). 

• Power policies available to the agent (i.e., sensor) include: 

o High Power (HP) mode and 

o Low Power (LP) mode. 

The system is modeled as a Markov Decision Process, with four-state space: High-

Power High-Traffic (HP-HT), High-Power Low-Traffic (HP-LT), Low-Power High 

Traffic (LP-HT), and Low-Power Low-Traffic (LP-LT). Figure 26 shows the state 
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transition diagram of the system. Solid arrows are transitions made by the agent, and 

dashed arrows are transitions made by environment. Although agent is not penalized for 

transitions made by the environment, transitions should have high penalty in the reward 

matrix to prevent agent from taking such an action. 

 

Figure 26. State transition diagram. 
 

The agent (i.e., iVCCS) can switch to either high-power or to low-power mode. Reward 

function is defined as an R matrix, as indicated below. 

𝑅𝑅 = �

15 −50 −50 −50
−50 −50 15 −50
−50 −20 15 −50
15 −50 −50 −50

� 

A tuple of < 𝑠𝑠, 𝑇𝑇, 𝑛𝑛 > forms an experience in the table. 𝑄𝑄-function constructs the 𝑄𝑄-

table by giving the expected value of reward (i.e., 𝑄𝑄-value). The 𝑄𝑄-table can be either 

randomly initialized or zero initialized, as indicated below. 

HP-HT
1

HP-LT
2

LP-HT
4

LP-LT
3
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𝑄𝑄 = �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

� 

6.4 Bellman Equation vs. Temporal Differences Equation 

The proposed model consists of four states, as discussed earlier: HP-HT, HP-LT, 

LP-HT, and LP-LT. The agent can control its state in HP or LP. The environment 

controls sensor state through traffic, placing it in high or low traffic. Sensor should read 

information for either to determine its state. When the agent performs an action, a 

corresponding reward from R matrix is selected, and a new experience (i.e., tuple of 

state, action, reward < 𝑠𝑠,𝑇𝑇, 𝑛𝑛 >) is formed. This result is the 𝑄𝑄-value 𝑄𝑄∗(𝑠𝑠,𝑇𝑇), which is 

the expected value of action 𝑇𝑇 in state 𝑠𝑠, and then following optimal policy, defined as: 

𝑄𝑄∗(𝑠𝑠,𝑇𝑇) = �𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑇𝑇)[ℛ𝑠𝑠𝑠𝑠′
𝑠𝑠 + 𝛾𝛾𝑉𝑉∗(𝑠𝑠′)]

𝑠𝑠′

 

where 𝑉𝑉∗(𝑠𝑠) is the expected value of following an optimal policy from state 𝑠𝑠. 

Bellman equation is used to estimate this value, as follows. 

𝑄𝑄(𝑠𝑠, 𝑇𝑇) = 𝑛𝑛 + 𝛾𝛾max
𝑠𝑠′

𝑄𝑄(𝑠𝑠′,𝑇𝑇′) 

where max
𝑠𝑠′

𝑄𝑄(𝑠𝑠′,𝑇𝑇′) is the maximum 𝑄𝑄-value in the experience table (𝑄𝑄-table) for 

future state 𝑠𝑠′ over all possible actions 𝑇𝑇′. Bellman equation provides the maximum 

future reward as the reward received for the action taken in the current state 𝑠𝑠 plus the 

maximum future reward for the next state 𝑠𝑠′. In some RL problems, newer values of 𝑄𝑄 

can be given additional weight to increase their influence as they are deemed more 

accurate. To weigh later experiences, the following Temporal Differences (TD) 

equation can be used: 

𝑄𝑄(𝑠𝑠,𝑇𝑇) = 𝑄𝑄(𝑠𝑠,𝑇𝑇) + 𝛼𝛼 �𝑛𝑛 + 𝛾𝛾𝑚𝑚𝑇𝑇𝑚𝑚
𝑠𝑠′

𝑄𝑄(𝑠𝑠′,𝑇𝑇′) − 𝑄𝑄(𝑠𝑠,𝑇𝑇)� 
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• 0 < 𝛼𝛼 ≤ 1 determines the weight of newer values compared to older ones. 

• 𝛾𝛾 is the discount factor. 

• 𝑛𝑛 is the reward corresponding to an action from R matrix. 

Both cases were simulated to study their convergences. Figure 27 shows that Bellman 

equation converges faster than the TD equation by a factor of 10 times. 

 

Figure 27. Q-Matrix convergence: Bellman vs. TD equation. 
 

By looking at the normalized 𝑄𝑄-matrix for both cases, it is clear that the agent was 

rewarded for going to the optimal states 1 and 3, which correspond to HP-HT, and LP-

LT, respectively. Although it is not optimal, some rewards were given for transitioning 

into state 2 from state 3, since it does not affect the detection and counting accuracy at 
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the expense of power consumption. Figure 28 and Figure 29 depict the normalized 

experience matrices (i.e., 𝑄𝑄-Matrix). 

 

Figure 28. Normalized Q-Matrix for Bellman equation. 
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Figure 29. Normalized Q-Matrix for TD equation. 
 

A small difference can be observed in the 𝑄𝑄-Matrix and accumulated 𝑄𝑄-values of TD 

equation. This is attributed to the fact that TD is a suboptimal solution to Bellman 

functional equation [38]. States and actions 1, 2, 3, and 4 refer to HP-HT, HP-LT, LP-

LT, and LP-HT, respectively. Given the fast convergence of Bellman equation, it is 

prudent to be chosen as the system 𝑄𝑄-function. 

6.5 Reducing Number of Actions 

In the previous section, the simulation was accomplished when agent had the 

option to move to any state. Notably, it was penalized for choosing actions that resulted 
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factor of half, compared to results obtained earlier. Figure 30 and Figure 31 show 𝑄𝑄-

Matrix convergence and 𝑄𝑄-Matrix normalized. 

 

Figure 30. Bellman equation convergence: 2 actions vs 4 actions. 

 

Figure 31. Q-Matrix using two actions. 
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6.6 Power Consumption Analysis 

When employing an RL algorithm, circuit current drained by the system can be 

calculated utilizing a similar approach to the analysis detailed in Section 5.6. In this 

scheme, the algorithm places the microcontroller core in sleep mode during standby 

state, reducing current consumed to 2 mA. Given that a vehicle approaches the sensor 

zone, microcontroller experiences an interruption, exits sleep mode, and switches to 

detection state. Consequently, drained current becomes a function of the number of 

vehicles detected by the sensor. Figure 32 represents current consumed when a vehicle 

is detected. Vehicle time spent traveling over the sensor determines length of detection 

state, which was statistically calculated as an average 0.5 seconds. 

 

Figure 32. Current consumed when MCU wakes from sleep mode. 
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𝐼𝐼𝑠𝑠𝑣𝑣𝑎𝑎 =
𝑇𝑇𝐵𝐵𝐼𝐼𝐵𝐵 + 𝑁𝑁𝑣𝑣𝑇𝑇𝑣𝑣𝐼𝐼𝐵𝐵 + (3600 − 𝑇𝑇𝐵𝐵 − 𝑁𝑁𝑣𝑣𝑇𝑇𝑣𝑣)𝐼𝐼𝑠𝑠

3600
= 3.71 [𝑚𝑚𝑚𝑚] 

where 𝑁𝑁𝑣𝑣 is number of vehicles detected per hour; 𝑇𝑇𝑣𝑣 is the detection period; and 𝐼𝐼𝑠𝑠 is 

the sleep state current. Given a 2300 mAh battery, battery life is extended, as follows: 

𝑇𝑇𝐵𝐵𝑠𝑠𝐵𝐵 =
2300 × 0.8

3.71
= 496 [ℎ] 

6.7 Simulation using Real-World Data 

Simulations detailed above were provided with synthetic data, where the agent is 

randomly assigned a state and is required to take appropriate action. This process was 

repeated over 5000 episodes, and each episode commences in a random state and 

terminates when the agent reaches the goal state. 

To simulate real-word scenarios, a code was developed that uses the same 

sensor (iVCCS 2ndG) to combine vehicle timestamps collected during past deployments 

for forming the state of the agent using two variables — power policy (LP or HP) and 

traffic trend (HT or LT). Traffic trend is defined as vehicles detected per minute. A 

threshold of 10 vehicle/min separates high from low traffic. The algorithm was tested 

using two data sets — one collected on campus for 24 hours and another on Britton 

Highway for 3 hours. Power policy 1 represents low power; 2 represents high power. 

The following figures show the traffic trend and power policy chosen over time for both 

data sets. Since campus traffic is rather low, the agent chose to keep power policy on 

low (i.e., 1). High traffic on Britton Highway caused the agent to maintain high power 

(i.e., 2). The switch between HP and LP can be observed at the beginning and end of the 

graphs for Britton Highway, on which traffic increases and decreases due to lane 

closure by traffic control for installation. 
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Figure 33. Traffic trend and power policy on campus. 
 

 

Figure 34. Traffic trend and power policy on Britton Highway. 



55 

Chapter 7 Experiments and Results 

7.1 Detection Algorithm Validation 

iVCCS 2ndG was deployed on Britton Highway to test functionality and to verify 

the algorithm worked as expected in a real-world scenario. Magnetometer sampling rate 

was configured to 100 Hz, and the sensor was configured to collect timestamps of 

vehicle arrivals and departures, as well as magnetic signatures. Battery capacity was 

logged every minute to study power consumption of regular polling-based detection and 

triggered vehicle detection. A camera was set up to record all vehicles for ground-truth 

validation. Figure 35 shows the deployment setup. 

 

Figure 35. iVCCS setup on Britton Highway. 
 

Sensors were deployed at 11:26 AM for two hours. The first sensor reported 

1765 detected vehicles; the second detected 1756. During the same time period, video 
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recording captured 1766 vehicles. Separation distance between the two sensors was 2 

meters. Difference in the number of detected vehicles between the two sensors resulted 

from cars changing lanes while traveling over the sensors. In general, an accuracy of 

more than 99% was achieved for vehicle detection. 

Power information were collected during the deployment (e.g., battery capacity, 

battery voltage, and state of charge) and logged every minute. A third sensor was also 

deployed on the same lane as the other two for testing the triggered detection 

mechanism (See Section 5.2), which notifies the microcontroller only when a vehicle 

approaches and passes through the sensible magnetic field of the iVCCS. The following 

figure compares power consumption of two sensors — one with triggered detection and 

the other without — for a period of over 180 minutes. 

 

Figure 36. Battery capacity of regular and triggered detection sensors over a 180-
minute time period. 
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As the figure illustrates, depletion rate for the triggered detection sensor is lower 

than regular detection. During the 180-minute period, regular detection firmware 

consumed 133 mAh; triggered detection consumed 86 mAh, resulting in a 35% 

improvement. It is worth noting that this enhancement was achieved only by stopping 

the detection algorithm when there’s no vehicle in the vicinity. The microcontroller was 

still in active mode, and all other peripherals (i.e., RF transmission, microSD card, 

UARTs, and others) were switched on. 

7.2 Power Optimization Validation 

The system was tested in two scenarios: a lab test using a train continuously 

running for 24 hours and a field test wherein two sensors were deployed at the south 

entrance of campus for 24 hours. The sensor captured vehicle count and speed estimates 

for individual cars. Reported speeds harmonized with the expectations and nominal 

values of a real-world setting. 

7.2.1 Lab Test 

In the lab test, a sensor was placed under a miniature train track with a train 

operating for 24 hours at varying speeds. Figure 37 illustrates the setup. The detection 

algorithm was validated, and battery life was examined. Results were compared with 

the empirical analysis detailed in Section 5.6. 
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Figure 37. Lab test using a train and two sensors placed under the track. 
 

Figure 38 lists the frequency at which the sensors detected the train, along with 

reported speed, which was calculated using distance between the two sensors.

 

Figure 38. Lab test: Speed estimates of the train for a time period over 24 hours. 
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The sensor consumed only 11 mAh in a time period over 24 hours (i.e., 0.458 

mAh per hour) as Figure 39 shows, which is 10 times less than predicted in the analysis 

described in Section 5.6. 

 

Figure 39. Lab test: Battery capacity of the sensor for a time period over 24 hours. 
 

7.2.2 On-Campus Test 

For the field test, two sensors were deployed at the south entrance of campus: 

one with the proposed DPM algorithm managing the power policy and the other 

running a plain version of the firmware. Figure 40 depicts the sensors’ locations. 

Sensors were deployed for 24 hours, collecting the number of vehicles that entered the 

campus, time of arrival and departure, as well as battery capacity for comparing power 

consumption of both versions of firmware. Speed was calculated in a postprocessing 

stage, wherein detected vehicle timestamps were used with known separation distance 

(e.g., 2 meters) between sensors. 
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Figure 40. Campus field test setup. 
 

Average speed was 6 mph, which is fairly logical given sensor location at the 

campus entrance and speed limit of 10 mph. Processing the collected power data 

revealed that the sensor running original firmware (sans DPM) consumed 

approximately 18 mAh, resulting in a battery life of over 100 days. Alternatively, the 

sensor executing the DPM algorithm consumed only 4 mAh over 24 hours, indicating a 

battery life of over 400 days. Both estimates assumed a 2300 mAh battery with a 

derating factor of 80%. The original sensor detected only 11 more vehicles (2.9%) than 

the sensor executing the DPM algorithm. 
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Figure 41. Campus field test: Number of vehicles detected and speed estimates. 

 

Figure 42. Battery capacity of sensor with and without DPM  
for a time period over 24 hours. 
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Chapter 8 Conclusion and Future Work 

8.1 Conclusion 

This research presented algorithms and methods to optimize system response 

and reduce power consumption of an iVCCS designed by the WECAD (Wireless and 

Electromagnetic Compliance and Design) Center at the OU-Tulsa campus in Tulsa, OK. 

The first prototype of the sensor adopted an all-on policy, in which all components were 

active, thus depleting battery life in nearly 48 hours. 

The second generation of the system (iVCCS 2ndG) was built around a more 

powerful processing platform utilizing a 32-bit microcontroller. The first-generation 

firmware was ported to the new platform in C language to accommodate robustness and 

speed, which is critical for an improved response time without an increase in power 

consumption. As part of the process, some algorithms were modified, while others were 

introduced to shift the operation methodology from a polling mode to an event-driven, 

interrupt-based procedure, wherein the system responds to interactions from the 

surrounding environment. 

Two operation modes (i.e., HP and LP) were designed to leverage a tradeoff 

between consumed energy and response time, which affects detection accuracy relative 

to traffic flow. An RL approach was proposed to design a DPM algorithm for observing 

traffic and controlling the system’s power policy according to the environment and 

agent states. 

An analysis of energy utilization by communication and storage subsystems 

were performed, in addition to a system level study. A conservative analysis revealed a 
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battery life of approximately 18 days. Experimental results showed that overall battery 

life of the system was extended to over 200 days for a 2300 mAh battery. 

8.2 Future Work 

iVCCS 2ndG design includes a port to host energy harvesting technology. 

Several energy sources have been considered by the research community; harvesting 

technology is also a hot topic in the IoT domain. The final goal for the project is 

designing self-powered, maintenance-free, wireless sensor nodes. Table 2 [39] shows a 

comparison of energy sources and the power outputs for typical energy scavenging 

devices based on published studies and experiments. 

Table 2. Comparison of energy sources 
Energetic Source Power Density 

Solar (outdoors) 
15 mW/cm2 (direct sun) 

0.15 mW/cm2 (cloudy day) 

Vibrations 0.01-0.1 mW/cm3 

Thermoelectric – 10 °C gradient 40 µW/cm2 

Acoustic noise 
3×10-6 mW/cm2 at 75 dB 

9.6-4 mW/cm2 at 100 dB 

Passive human-powered systems 1.8 mW (shoe inserts) 

 

In general, three sources of energy can be distinguished from the ambient 

environment: Photovoltaic Cells (PV), Mechanical Vibration (MV), and 

Electromagnetic Generators (EG) [40], [41]. PV cells are perhaps the most common 

energy harvesting technique for WSNs. This fact is not a big surprise, as it is well-

established in the literature [42], [43]. Advancement in this field has reached a level in 
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which systems can be solely powered by PV cells sans energy storage or converters 

[44]. Although such an approach is not feasible for experiments like those detailed in 

this research, the example provided assures that an ample amount of energy can be 

harvested from solar power. In view of the importance and efficiency of PV cells, the 

iVCCS 2ndG is designed to connect a solar panel for energy harvesting. 

Literature suggests the use of mechanical vibration as a viable source of energy 

when a sufficient mechanical excitation is available [40], [41], [45]. Generally, this kind 

of energy can be harvested using three main approaches, namely piezoelectric, 

electromagnetic, and electrostatic generators — each characterized by advantages and 

disadvantages [45]. Given the target environment of our sensor (e.g., vehicles with more 

than 2 axles pass on highways), the vibration generated by the vehicles could be a 

significant amount of harvested energy by a sensor node. Likewise, using 

electromagnetic flux for vehicle detection can be utilized for scavenging power, as 

explained in [45]. 

Another widely used type of energy is RF, especially given the current 

ubiquitous deployments of wireless APs. Although results hold true in environments 

characterized by urban streets, residential and shop buildings (e.g., dense in some cases) 

are increasing. Thus, it might end up that results do not hold true on highways, on 

which major dependence would be placed on sub-GHz frequencies. In [46], power 

measurements in an urban scenario revealed that maximum power levels were observed 

in the GSM-800 band, while much lower power levels were recorded in the GSM-1800 

band due to propagation loss. Hence, the proposed technologies should be studied and 

evaluated in light of the operating environment intended for iVCCS.  
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Appendix A: Ported Algorithms 

Detection and counting algorithm. 

 

/* =============== Detection Algorithm ================ */ 
if (KMX62_DRDY_INT_Flag == 1)  // Whenever data ready interrupt is triggered 
{ 
 KMX62_DRDY_INT_Flag = 0; // Clear the flag 
 KMX62_GetData();     // Get the data reading 
    
 // Wait for the OTH interrupt to come from the magnetometer 
 if (KMX62_OTH_INT_Flag == 1) 
 { 
  // Check if time of arrival should be logged 
  if (TA_Flag == 1) 
  { 
   TA_Flag = 0; 
   // Display time of arrival 
   RTC_GetDateTime(vehTime, vehDate); 
   sprintf((char*)uart_tx_buffer,"%s\n%s %s %s\n", 

"Vehicle Detected!", "Arrival Time:", vehDate, vehTime); 
   HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer, 

strlen((const char*)uart_tx_buffer), 5000);  
   DP_counter = 0; 
   HAL_TIM_Base_Start_IT(&htim7); 
  } 
  if (MEMS_Magnetometer < MAG_HTH_THRESHOLD) 
  { 
   if (!(htim6.Instance->CR1 & TIM_CR1_CEN_Msk)) 
   {         
            
   // In other words, check if TIM6 is disabled 
    // Take a reference point of time of departure 
    RTC_GetDateTime(vehTime, vehDate); 
    // Start the debounce timer 
    HAL_TIM_Base_Start_IT(&htim6); 
   } 
    
   // If HTH debounce flag is triggered, then vehicle departure is 
confirmed 
   if (HTH_Debounce_Flag == 1) 
   { 
    // Stop the HTH debounce timer 
    HAL_TIM_Base_Stop_IT(&htim6); 
    // Clear the flag 
    HTH_Debounce_Flag = 0; 
    // Stop the PDT debounce timer 
    HAL_TIM_Base_Stop_IT(&htim7); 
    // Clear the DP counter 
    DP_counter = 0; 
    // Save the reference departure time as the actual one 
    sprintf((char*)uart_tx_buffer,"%s %s %s\n", 

"Departure Time:", vehDate, vehTime); 
    HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer, 
     strlen((const char*)uart_tx_buffer), 5000); 
    // Increase the vehicle counter 
    vehiclesCounter++; 
    sprintf((char*)uart_tx_buffer,"%s %d\n", 

"Vehicles Counter:", vehiclesCounter); 
    HAL_UART_Transmit(&huart2, (uint8_t *)uart_tx_buffer, 
     strlen((const char*)uart_tx_buffer), 5000); 
    // Clear the OTH flag indicating the end of the detection cycle 
    KMX62_OTH_INT_Flag = 0; 
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    // Read the Interrupt Latch Release Register to clear the 
interrupt 
    KMX62_I2C_BufferRead(KMX62_DeviceAddress, &KMX62_char, 
     KMX62_INL, 1); 
    // Calibrate the magnitude references 
    Ref_Mag_Calb(); 
   } 
  } 
  else 
  { 
   // Stop the HTH debounce timer 
   HAL_TIM_Base_Stop_IT(&htim6); 
   // Clear the flag 
   HTH_Debounce_Flag = 0; 
  } 
   
  // Check if the detection period exceeds the specified delay (Whether a vehicle 
is parked on top of the sensor 
  if (DP_counter >= DP_Delay) 
  { 
   UART_send("Stuck vehicle... Re-calibrating... "); 
   // Stop the DP timer 
   HAL_TIM_Base_Stop_IT(&htim7); 
   // Clear the DP counter 
   DP_counter = 0; 
   /// TODO: Execute function to check if vehicle is on top of the sensor 
   // Execute magnetometer threshold recalibration function 
   Ref_Mag_Calb(); 
  } 
 } 
} 
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Adaptive compensation of baseline drift. 

 

  

void Ref_Mag_Calb () 
{ 
 // Raise the magnitude reference flag to prevent nested calls to Ref_Mag_Calb 
 Ref_Mag_Calb_Flag = 1; 
  
 // Stop all timers in case they are on 
 HAL_TIM_Base_Stop_IT(&htim6); 
 HAL_TIM_Base_Stop_IT(&htim7); 
  
 // Clear their flags 
 HTH_Debounce_Flag = 0; 
 DP_counter = 0; 
  
 // Loop for the number of the moving average filter taps 
 for (int i = 0; i < MAF_Taps; i++) 
 { 
  // Wait for the data ready interrupt 
  while (!KMX62_DRDY_INT_Flag) {}; 
   
  // Clear the flag once we detect that it is raised 
  KMX62_DRDY_INT_Flag = 0; 
   
  // Read the magnitude 
  KMX62_GetData(); 
   
  // Accumulate readings for the three axises separately and the 
magnitude 
  AVG_Mag_Conv_X_Axis = AVG_Mag_Conv_X_Axis + MEMS_Mag_Xout_Conv; 
  AVG_Mag_Conv_Y_Axis = AVG_Mag_Conv_Y_Axis + MEMS_Mag_Yout_Conv; 
  AVG_Mag_Conv_Z_Axis = AVG_Mag_Conv_Z_Axis + MEMS_Mag_Zout_Conv; 
 } 
  
 // Average the 3 axises readings and assign the result to the reference 
variables 
 MEMS_Mag_Conv_Xout_ref = AVG_Mag_Conv_X_Axis / MAF_Taps; 
 MEMS_Mag_Conv_Yout_ref = AVG_Mag_Conv_Y_Axis / MAF_Taps; 
 MEMS_Mag_Conv_Zout_ref = AVG_Mag_Conv_Z_Axis / MAF_Taps; 
 
 // Clear variables 
 AVG_Mag_Conv_X_Axis = 0; 
 AVG_Mag_Conv_Y_Axis = 0; 
 AVG_Mag_Conv_Z_Axis = 0; 
 // Clear the OTH interrupt flag to eliminate the missdetection that happens 
after threshold recalibration 
 KMX62_OTH_INT_Flag = 0; 
 // Clear the reference magnitude calibration flag 
 Ref_Mag_Calb_Flag = 0; 
 UART_send("MGM re-calibration done!\n"); 
} 
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Adaptive compensation of RTC frequency drift. 

 

/* =============== RTC Drift Compensation ================ */ 
if (Calibrate_RTC_Drift) 
{ 
 // Disable interrupts on LINE 4 and 5, which corresponds to 
interrupts on GPIO 4 and 5, i.e. MGM data ready and motion interrupt 
 EXTI->IMR &= ~(EXTI_IMR_IM5 | EXTI_IMR_IM4); 
 // Check whether it is RTC 1 Hz signal or PPS that should be 
measured now 
 if (RTC_PPS_Meas_Round == 0)  // RTC Round = 0, PPS 
Round = 1 
 { 
  if (meas_count < RTC_MEAS_PERIOD) // ...and we still 
have measurments to take... 
  { 
   // Set the frequency measuring flag 
   measure_freq = 1; 
   // Wait until the measurment is done 
   while(measure_freq); 
   // Accumulate the counter value 
   counter_RTC += (htim22.Instance->CNT << 16) | 
(htim21.Instance->CNT); 
   // Increase the number of measurments taken 
   meas_count++; 
  } 
  else // If we already collected RTC_MEAS_PERIOD 
measurments... 
  { 
   // ...calculate the average 
   counter_RTC = counter_RTC / RTC_MEAS_PERIOD; 
   /******** Debug Purpose **************/ 
   sprintf((char*)uart_tx_buffer,"RTC Counter: %d\n", 
counter_RTC); 
   HAL_UART_Transmit(&huart2, (uint8_t 
*)uart_tx_buffer, strlen((const char*)uart_tx_buffer), 5000); 
   /*************************************/ 
   // Set the round now for PPS 
   RTC_PPS_Meas_Round = 1; 
   // Clear the meas_count 
   meas_count = 0; 
  } 
 } 

 else  // Then it is the PPS turn 
 { 
  if (meas_count < RTC_MEAS_PERIOD) // ...and we still 
have measurments to take... 
  { 
   // Set the frequency measuring flag 
   measure_freq = 1; 
   // Wait until the measurment is done 
   while(measure_freq); 
   //     
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   // Accumulate the counter value 
   counter_PPS += (htim22.Instance->CNT << 16) | 
(htim21.Instance->CNT); 
   // Increase the number of measurments taken 
   meas_count++; 
  } 

  else // If we already collected RTC_MEAS_PERIOD 

measurments... 

  { 
   // ...calculate the average 
   counter_PPS = counter_PPS / RTC_MEAS_PERIOD; 
    
   /******** Debug Purpose **************/ 
   sprintf((char*)uart_tx_buffer,"PPS Counter: %d\n", 
counter_PPS); 
   HAL_UART_Transmit(&huart2, (uint8_t 
*)uart_tx_buffer, strlen((const char*)uart_tx_buffer), 5000); 
   /*************************************/ 
    
   // Calculate the corresponding time difference to 
be written on RTC Shift registers 
   RTC_Drift = (((float)counter_PPS - 
(float)counter_RTC)/8000000.0f); 
   // Update the RTC shift register 
   // Read 22.4.10 RTC synchronization in Reference 
Manual to understand why is the following calculations 
   if (RTC_Drift < 0) 
    HAL_RTCEx_SetSynchroShift(&hrtc, 
RTC_SHIFTADD1S_RESET, (uint32_t)(fabsf(RTC_Drift)*256.0f)); 
   else 
    HAL_RTCEx_SetSynchroShift(&hrtc, 
RTC_SHIFTADD1S_SET, (uint32_t)((1-RTC_Drift)*256.0f)); 
       
   sprintf((char*)uart_tx_buffer,"RTC Drift in 
seconds: %f\n", RTC_Drift); 
   HAL_UART_Transmit(&huart2, (uint8_t 
*)uart_tx_buffer, strlen((const char*)uart_tx_buffer), 5000); 
   UART_send("RTC Calibrated!\n"); 
   // Clear the meas_count 
   meas_count = 0; 
   // Clear freq counters 
   counter_PPS = 0; 
   counter_RTC = 0; 
   // Set the measurment round for RTC 
   RTC_PPS_Meas_Round = 0; 
   // Clear the calibration flag 
   Calibrate_RTC_Drift = 0; 
   // Enable interrupts for MGM 
   EXTI->IMR |= (EXTI_IMR_IM5 | EXTI_IMR_IM4); 
  } 
 } 
} 
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Optimized ARM DSP arithmetic. 

 

Terje Mathisen numeric to ASCII conversion. 

 

// These functions cause a delay of 0.75 mSec  
MEMS_Magnetometer = sqrt(pow(X,2)+pow(Y,2)+pow(Z,2));    
  
// The C math functions are replaced with fast, optimized ARM math 
functions 
// These take 0.13 mSec 
arm_power_f32(&X, 1, &X2); 
arm_power_f32(&Y, 1, &Y2); 
arm_power_f32(&Z, 1, &Z2); 
arm_add_f32(&X2, &Y2, &X2Y2_sum, 1); 
arm_add_f32(&X2Y2_sum, &Z2,&X2Y2Z2_sum, 1); 
arm_sqrt_f32(X2Y2Z2_sum, &MEMS_Magnetometer); 

typedef uint32_t fix4_28; 
void itoa(char** int_buf, int16_t value) 
{ 
 uint32_t val; 
 if (value < 0) val = -value; 
 else val = value; 
  
 *int_buf = calloc(6, sizeof(char)); 
  
 fix4_28 const f1_10000 = (1 << 28) / 10000; 
 fix4_28 tmplo, tmphi; 
 
 uint32_t lo = val % 100000; 
 uint32_t hi = val / 100000; 
 
 tmplo = lo * (f1_10000 + 1) - (lo / 4); 
 tmphi = hi * (f1_10000 + 1) - (hi / 4); 
 
 for(size_t i = 0; i < 5; i++) 
 { 
   (*int_buf)[i + 0] = '0' + (char)(tmphi >> 28); 
   (*int_buf)[i + 5] = '0' + (char)(tmplo >> 28); 
   tmphi = (tmphi & 0x0fffffff) * 10; 
   tmplo = (tmplo & 0x0fffffff) * 10; 
 } 
 char* p = *int_buf; 
 if (*((uint64_t*) p) == 0x3030303030303030) 
   p += 8; 
 if (*((uint32_t*) p) == 0x30303030) 
   p += 4; 
 if (*((uint16_t*) p) == 0x3030) 
   p += 2; 
 if (*((uint8_t*) p) == 0x30) 
   p += 1; 
 free(*int_buf); 
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 if (value < 0) 
 { 
  p -= 1; 
  p[0] = '-'; 
 } 
 *int_buf = p; 
} 
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Appendix B: Optimized Algorithms 

Data buffering technique: RAM-to-Flash. 

 

Data buffering technique: Flash-to-microSD card. 

 

uint8_t Flash_WriteData(uint8_t* data) 
{ 
 // Copy data into the buffer 
 memcpy(flashBuf + flashBufSize, data, strlen((char*)data)); 
 // Change buffer size accordingly 
 flashBufSize += strlen((char*)data); 
 // If buffer size exceeds 256, move a page into the flash 
memory 
 if (flashBufSize >= 256) 
 { 
  // Write only one page (256 bytes from the buffer) 
  if (Flash_WritePage(flashBuf, flashAddr, 256)) 
  { 
   // Increase the flash address 
   flashAddr += 256; 
   // Shift remaining data in the buffer to the 
beginning of the buffer 
   memmove(flashBuf, flashBuf+256, flashBufSize-256); 
   // Adjust the buffer size 
   flashBufSize -= 256; 
   // Increase number of pages written to flash 
   flashPagesNum++; 
  } 
  else // If flash page write operation failed... 
  { 
   // Change back the buffer size 
   flashBufSize -= strlen((char*)data); 
   return 0; 
  } 
 } 
 return 1; 
} 

uint8_t writeData(char* data) 
{ 
 if (!log_data) return 0; 
 // Erase the sector first. If the address points to the beginning of 
a sector, erase it 
 // Every 16 pages form a sector 
 if (flashPagesNum % 16 == 0) 
  if (!Flash_SE(flashAddr)) 
   return 0; 
 // Write data to the flash memory 
 if (!Flash_WriteData((uint8_t*)data)) return 0; 
 // If Number of written pages on flash exceeds a threshold move data 
to the SD card 
 if (flashPagesNum >= FLASH_PAGES_THRESHOLD) { 
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Communication scheme. 

 

  // Turn on SD card switch 
  HAL_GPIO_WritePin(LS_uSD_GPIO_Port, LS_uSD_Pin, GPIO_PIN_SET); 
  HAL_Delay(100); 
  // Mount SD card 
  if(FATFS_LinkDriver(&USER_Driver, SDPath) == 0) { 
   if(f_mount(&SDFatFs, (TCHAR const*)SDPath, 0) != FR_OK) 
    return 0; } 
  // Open data file 
  if (!newDataFile) 
   openDataFile(dataFile, 0); 
  else 
   openDataFile(dataFile, 1); 
  // Read data from flash and write to SD card recursively 
  uint8_t tempFlashBuf[256] = {0}; 
  while(flashPagesNum != 0) { 
   // Read one page 
   Flash_ReadData(tempFlashBuf, flashAddr-
(flashPagesNum*256), 256); 
   // Decrease number of occupied pages in flash 
   flashPagesNum--; 
   // Write one page data to SD card 
   if (writeToFile((char*)tempFlashBuf) != FR_OK) 
    return 0; 
  } 
  flashBuf[flashBufSize] = '\0'; 
  if (writeToFile((char*)flashBuf) != FR_OK) 
   return 0; 
  // Reset the flash buffer 
  memset(flashBuf, 0, 256); 
  // Reset buufer size 
  flashBufSize = 0; 
  // Reset flash writing address to the beginning 
  flashAddr = 0x00000000; 
  // Close data file 
  if (closeDataFile(0) != FR_OK) return 0; 
  // Unmount the SD card 
  f_mount(0, (TCHAR const*)SDPath, 0); 
  FATFS_UnLinkDriver(SDPath); 
  // Turn off SD card switch 
  HAL_GPIO_WritePin(LS_uSD_GPIO_Port, LS_uSD_Pin, 
GPIO_PIN_RESET); 
 } 
 return 1; 
} 

if (Process_CMD_Flag) { 
#ifdef _STATUS_BEACON 
    // Resetting the counter, giving the user another 2 minutes to send 
commands over ZigBee 
    zigbee_on_cntr = 0; 
#endif // _STATUS_BEACON 
    Process_CMD_Flag = 0; 
    zigbee_send("CMD Received: "); 
    zigbee_send(cmd_buffer); 
    zigbee_send("\n"); 
    handle_command(cmd_buffer); 
} 
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/* =============== 1-Minute Reference, Reinforcement Learning Algorithm, 
and Status Beacon Messages ================ */ 
if (Alarm_Min_Flag && !OTH_INT_Flag) 
{ 
#ifdef _STATUS_BEACON 
    // Status beacon 
    uint8_t minute = floor(((float)(timestamp)/3600.0f - 
(float)floor(timestamp/3600))*60.0f); 
    if (minute == 0 || minute == 15 || minute == 30 || minute == 45) 
    { 
        // Enable ZigBee 
        HAL_GPIO_WritePin(LS_ZigBee_GPIO_Port, LS_ZigBee_Pin, 
GPIO_PIN_SET); 
        // Wait a few milliseconds 
        HAL_Delay(100); 
        // Enable terminal messages 
        sendTerminal = 1; 
        // Send battery status and vehicles counter 
        sprintf(uart_tx_buffer, "BAT: VOLT = %d mV, CAP = %d mAh, SOC = %d 
%%\r\nVehicles Counter: %d\r\n", batVolt(), batRemainingCapacity(), 
batSOC(), vehiclesCounter); 
        zigbee_send(uart_tx_buffer); 
        // Wait another minute for command requests from AP/user 
        zigbee_wait_enable = 1; 
    } 
    // If the AP/user sends a command, 'zigbee_on_cntr' will be reset 
giving 2 minutes before ZigBee is turned off 
    // by the following block 
    if (zigbee_wait_enable) 
    { 
        if (++zigbee_on_cntr == ZIGBEE_ON_PERIOD) 
        { 
            // Disable the wait flag 
            zigbee_wait_enable = 0; 
            // Clear the counter 
            zigbee_on_cntr = 0; 
            // Turn off ZigBee 
            HAL_GPIO_WritePin(LS_ZigBee_GPIO_Port, LS_ZigBee_Pin, 
GPIO_PIN_RESET); 
            // Disable terminal messages 
            sendTerminal = 0; 
        } 
    } 
#endif  // _STATUS_BEACON 
} 
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