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Abstract

The planetary boundary layer (PBL) is comprised of energy exchanges with the

Earth’s surface, and as such plays a large factor in the evolution of weather con-

ditions. However, traditional methods of observing the atmosphere, such as ra-

diosondes and surface weather stations, considerably underrepresent processes oc-

curring in the PBL. More recently, surface-based remote sensing capabilities have

advanced, but these instruments are often expensive and difficult to implement

across large scales operationally.

Using small unmanned aircraft systems (sUAS) to make atmospheric ob-

servations is rapidly being realized as a means to collect previously unobtainable

observations in the lowest part of Earth’s atmosphere. This study seeks to build

off these advancements in technology to develop a rotary-wing sUAS (rwUAS) for

collecting in-situ thermodynamic and kinematic measurements of the PBL. To do

so, it is imperative to establish an understanding of the strengths and limitations

of the sensors and retrieval algorithms implemented, as well as how they perform

under various configurations and flight conditions. This process began with the

selection of sensors capable of making high quality measurements operating stan-

dalone that were also small enough to reasonably mount onboard a rwUAS. These

sensors were calibrated using an environmentally controlled chamber and validated

against instrumented towers and were determined to be reliable enough moving for-

ward to the next stage, which was integrating them with rwUASs. Having sensors

perform well in a lab setting is important, but their placement onboard a rwUAS

introduces additional sources of error and uncertainty. Optimal siting locations

xx



for thermistors were examined, with results indicating that it is possible to obtain

accurate measurements in the propeller wash if the sensors are adequately aspi-

rated and motor, frictional, and compressional heating are avoided. In addition

to thermodynamic measurements, a statistical model to estimate horizontal winds

was derived by implementing Euler angles derived from the rwUAS’s autopilot.

Once these measurements were optimized individually, the systems were further

validated against instrumented towers, radiosondes, and other sUASs.

Capitalizing on the intricacies of collecting meaningful observations learned

through this calibration and validation, the Center for Autonomous Sensing and

Sampling (CASS) at the University of Oklahoma (OU) designed and built the

CopterSonde, a rwUAS optimized for thermodynamic and kinematic measurements

in the PBL. This specialized aircraft allowed for the exploration of scientific ob-

jectives to determine the utility of rwUAS in the larger context of observational

capabilities. The Environmental Profiling and Initiation of Convection (EPIC)

was a field campaign in the spring of 2017 that demonstrated the capability of

UASs to provide forecasters with quasi-real time profiles of pre-convective envi-

ronments. Furthermore, a method of evaluating vertical heat flux profiles during

diurnal PBL transitions was examined. The results presented herein represent

foundational efforts towards developing the infrastructure required for successful

rwUAS operations. To conclude, an outlook for tapping into the serviceability of

rwUAS for atmospheric sciences is discussed.

xxi



Chapter 1

Introduction and Background

1.1 The Planetary Boundary Layer

The planetary boundary layer (PBL) is the lowest layer of the troposphere which

exchanges energy with the Earth’s surface on timescales of less than one hour (Stull,

1988), and acquiring atmospheric measurements in this region has proven to be

challenging (National Research Council, 2009; Hardesty and Hoff, 2012). Forcings

such as radiative transfers, frictional dissipation, and evaporative cooling combine

to modify the PBL with diurnal periodicity (Figure 1.1). For instance, as the sun

rises and begins warming the surface via shortwave radiation, turbulence devel-

ops and mixes heat and momentum throughout the expanding PBL. As the solar

elevation angle decreases towards sunset, turbulence decays as the ground cools

faster than the air directly above, inducing stable stratification. With the vertical

transport in momentum diminished, this stable layer can decouple from the resid-

ual layer aloft, becoming effectively stationary with only intermittent turbulence

(Stull, 1988).

Due to spatiotemporal heterogeneities in energy exchanges, the PBL can be

further categorized into various sublayers. The lowest 10% or so of the PBL is

known as the surface layer, where vertical fluxes are approximately constant with

height and wind speed, temperature, and moisture assume logarithmic profiles

1



Figure 1.1: Conceptual depiction of diurnal variation in PBL structure and pro-

cesses (from Scipión (2011)).

(Garratt, 1992). During the day, the remainder of the PBL above the surface

layer is convectively mixed and vertically homogeneous in momentum, potential

temperature, and mixing ratio. In the evenings, the stratification in the PBL is not

always as transparent. With calm winds, temperature changes are dominated by

longwave cooling near the surface which causes temperature to increase with height.

Exceptions to this model include cloudy nights, which also radiate heat downwards,

counteracting the effective surface cooling. Furthermore, spatial heterogeneities

in land surface type can influence cooling and moistening rates overnight, which

in turn can promote the development of localized flows. Complex terrain can

induce drainage flows into valleys and create disturbances in flows across hilltops,

further compounding the vertical structure of the nocturnal PBL (Wood, 2000;

Shapiro and Fedorovich, 2007). In the Great Plains region of the United States,

baroclinicity across sloping topography can induce a low-level jet (LLJ) overnight

(Bonner, 1968) that is characterized by wind speeds greater than geostrophic flow.
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This feature is commonly located below one kilometer above ground level (AGL),

and is often associated with nocturnal convection events (Reif and Bluestein, 2017).

Understanding PBL processes is vital to a proper understanding of larger-scale

weather phenomena, since turbulent eddies ranging in size from kilometers to mil-

limeters redistribute momentum, heat, and moisture. These local heterogeneities

can impact regions of cloud cover and storm development, frontal propagation, and

low pressure system intensification, all of which are pertinent to forecasters. For ex-

ample, Nowotarski et al. (2011) demonstrated that thermodynamic stratification

in the boundary layer in proximity to supercell thunderstorms can significantly

impact updraft strengths and low level vorticity fields, and Sinclair et al. (2012)

provides insight to the complexity of low-level frontal structure. Markowski (2016)

explores the significance of surface drag on development of vertical vorticity in

supercell thunderstorms. Markowski and Bryan (2016) discuss the importance of

large eddy simulation (LES) PBL schemes to be able to accurately depict turbu-

lence with regards to simulation accuracy.

Recently, wind energy has been a rapidly-developing sector of the world econ-

omy, making it imperative to understand and predict boundary layer winds. Cli-

matologies of prevailing winds is important in designing the dimensions of wind

turbines, and complexities in terrain can create a challenge when determining indi-

vidual siting (Zhou and Chow, 2012). Optimization of energy production based on

interactions of downstream wake propagation in wind farms is of great interest to

energy companies, who need to be able to adjust power output from other sources

accordingly. As the world turns to renewable energy as a means to reduce green-

house gas emissions, companies must be able to maximize their energy production.

This endeavor will require sufficient wind forecasts, which can be improved through

better observations of the PBL.
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Formation and persistence of fog can significantly impact the transportation

of goods and services, which results in large economic losses for these companies.

Furthermore, conditions with reduced visibility cause around 700 driving fatalities

per year in the United States (Ashley et al., 2015). Numerical weather predic-

tion (NWP) models have relatively low skill in forecasting fog, which is largely

dependent on boundary layer parameterization schemes (Steeneveld et al., 2015,

and references therein). A better understanding of the boundary layer and its role

in fog development would improve predictive capabilities, thereby mitigating the

associated economic impacts.

Boundary layer processes are also of great interest to public health, as it is

the region of the atmosphere in which humans live. Pollutants disperse in the

atmosphere as passive scalars, and can get trapped in a temperature inversion

during PBL transitions. According to the World Health Organization (2016), air

pollution was estimated to cause 3 million premature deaths worldwide in 2012.

With a better understanding of particle dispersion in boundary layer flows, air

quality forecasts can be made more accurately and further in advance so people

can prepare accordingly.

1.2 PBL Observational Systems

Boundary layer flows are highly complex and nonlinear in space and time, even

with several layers of assumptions applied in theory. As such, it has always been

a challenge for meteorologists to collect representative measurements of the envi-

ronment, even with continual advances in technology. One of the most common

resources for PBL studies has been instrumented towers, which can continually

provide data at a point location over long periods of time. For example, Charba

(1974) examined thunderstorm outflow characteristics in comparison to laboratory
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density current observations by using a 444 meter tall tower instrumented at sev-

eral heights to collect vertical cross-sections. Shapiro (1984) analyzed a cold front

using the 300 meter tower in Boulder, Colorado, and discussed how its structure

was capable of triggering new convection. Poulos et al. (2002) used a highly instru-

mented 60 meter tower to calculate fluxes and other PBL processes in the stable

nocturnal boundary layer. The Oklahoma Mesonet (Brock et al., 1995; McPherson

et al., 2007) is a network of 120 instrumented 10 meter towers across the state of

Oklahoma, and collects surface observations every five minutes year-round. These

observations form a climatology of Oklahoma weather dating back to the 1990s,

and have been the focus of hundreds of scientific studies (Van der Veer Martens

et al., 2017). While highly reliable and configurable, instrumented towers do come

with an inherent downside. Being limited in vertical extent, the convective bound-

ary layer often extends well above even the tallest of towers. Networks with the

horizontal resolution of the Mesonet still cannot provide details on the vertical

structure of the atmosphere.

Presently, weather balloons are the most common tool available for in-situ ob-

servations above the level of towers. They provide valuable kinematic and thermo-

dynamic data from the upper atmosphere, which impacts both short-term weather

forecasts (Cohen et al., 2007; Faccani et al., 2009; Lackmann, 2011) as well as

climatological trends (Luers and Eskridge, 1998; Lanzante et al., 2003; Thompson

and Solomon, 2005) and can serve as a baseline for model verification (Agust́ı-

Panareda et al., 2010; Benjamin et al., 2010; Gensini et al., 2014). Rawinsondes

are launched in hundreds of locations around the world every day, although usu-

ally only twice a day at most sites. This operational network is also not suited

to provide adequate PBL measurements, as they ascend too rapidly through the

lowest levels (National Research Council, 2009). More frequent deployments with

slower ascents are commonly performed on field campaigns (e.g., Kosiba et al.,
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2013; Parker, 2014; Trapp et al., 2016; Geerts et al., 2017), but this becomes ex-

pensive as the sensor package is rarely recovered for reuse. Specialized satellite

remote sensors can derive vertical thermodynamic and kinematic profiles across

significant areas of the Earth, but vertical resolutions in the PBL are too coarse

for practical application.

Surface-based remote sensors such as wind profilers, Doppler lidars, sodars, and

radiometers are capable of continuously observing a fixed location (e.g., Grund

et al., 2001; Poulos et al., 2002; Banta et al., 2015; Bonin et al., 2015; Lundquist

et al., 2017; Toms et al., 2017; Geerts et al., 2017; Blumberg et al., 2017), but rely

on numerous assumptions about the atmosphere and have trouble resolving mea-

surements close to the surface. These types of instruments are also cost-prohibitive

when considering expansion to larger-scale networks such as the global upper-air

sites.

Even when combining surface towers, balloons, and remote sensors with other

observational techniques such as tethered balloons, Doppler weather radars, and

satellite remote sensors, the National Research Council (2009) still concluded that

the “vertical component of U.S. mesoscale observations is inadequate.” The NRC

in this report implored government agencies to pursue developments in capabilities

to monitor the lower atmosphere at finer scales in space and time. Fortunately,

unmanned aerial vehicles (UAVs, a subset of the more general term, unmanned

aircraft systems (UASs)) appear to resolve some of these issues, which is detailed

in Section 1.3.
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1.3 Unmanned Aircraft Systems in Atmospheric

Sciences

Capitalizing on the recent commercial accessibility of UAVs and miniaturized sen-

sor packages, numerous groups around the world have embraced the potential for

integrated platforms to fill this atmospheric data void (e.g., Reuder et al., 2009;

Houston et al., 2012; Lothon et al., 2014; Wildmann et al., 2014; Vömel et al.,

2018). UAVs have the notable advantage of being able to operate in regions be-

yond the reach of typical systems, including environments that may be dangerous.

Sophisticated systems can be deployed on a regular basis for consistent measure-

ments, and they are less expensive alternatives to ground-based remote sensors

measuring similar parameters. They can be used for a variety of missions measur-

ing different quantities, such as horizontal transects across airmass boundaries or

continuous vertical profiling at fixed ascent rates (Figure 1.2). Because of these

advantages, the National Research Council (2007) stated that UAV “technology

should be increasingly factored into the nation’s strategic plan for Earth science.”

The concept of utilizing remote controlled aircraft (RCA) to take atmospheric

measurements has been around for nearly half a century (Konrad et al., 1970).

Back then, mounting sensors onto an RCA posed a significant challenge, as the

instruments were large and heavy. In recent years, technological advancements in

manufacturing and signal processing have led to miniaturization of sensors down

to the size of centimeters and weighing only a few grams. In conjunction with the

recent commercialization of UAS and open source autopilot software, atmospheric

scientists in the past few decades have begun to realize the potential for using UAS

to sample the lower atmosphere.
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Figure 1.2: Adapted from Figure 1.1 to include spatiotemporal scales of different

observational systems. Towers provide continuous observations but are usually

confined to the surface layer. Weather balloons traverse the whole troposphere,

but are usually only launched twice per day. UAS can help to fill this data gap

through continuous PBL profiles. (Not to scale)

Several groups have experimented with fixed-wing UAS (fwUAS) for research

in the PBL. For example, Reuder et al. (2009, 2012) developed the Small Un-

manned Meteorological Observer (SUMO) based on a foam pusher propeller plane

to sample temperature, pressure, and humidity. The SUMO has had numerous

recent successes in field campaigns, including the Boundary-Layer Late Afternoon

and Sunset Turbulence (BLLAST) field campaign in France in 2011 (Lothon et al.,

2014; B̊aserud et al., 2016). The SUMO was also the inspiration for the Small Mul-

tifunction Autonomous Research and Teaching Sonde (SMARTSonde) project at

the University of Oklahoma (OU) (Chilson et al., 2009). This platform has been

used in numerous applications including the estimation of heat flux profiles (Bonin
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et al., 2012), structure function estimations (Wainwright et al., 2015), wind vec-

tor estimations (Bonin et al., 2013), and ozone concentrations in the PBL (Zielke,

2011). At the Eberhard-Karls-University Tübingen in Germany, Wildmann et al.

(2014) developed the Multipurpose Airborne Sensor Carrier (MASC) for PBL mea-

surements at high enough resolutions to directly resolve turbulent processes for

use in wind energy research. Houston et al. (2012) have demonstrated the infras-

tructure required to combine meteorology, engineering, and policy to conduct PBL

research with UAVs specifically in the United States airspace. Several other groups

successfully experimented with UAS technology (e.g., de Boer et al., 2016; Bailey

et al., 2017; Vömel et al., 2018), and funding agencies such as the National Science

Foundation (NSF) in the United States have encouraged collaboration between

universities (Chilson et al., 2016; Jacob et al., 2018).

Owing in part to the longstanding history of manned research aircraft, fixed-

wing UASs (fwUASs) have been at the forefront of UAS development for atmo-

spheric research (Säıd et al., 2005; Gioli et al., 2006; van den Kroonenberg et al.,

2012). However, fwUASs come with several notable disadvantages, namely their

inability to sample a vertical column at a fixed horizontal position, risks when

operating close to the ground, and the need for a suitable surface for landing and

possibly takeoff. Currently, rotary-wing UASs (rwUASs) are being proven to be a

viable supplement to fwUASs thanks to their autonomous vertical takeoff/landing

capabilities (Brosy et al., 2017; Vömel et al., 2018). Integration of rwUAS with

observational networks and research efforts has the potential to vastly improve our

understanding of processes occurring in the lowest regions of the atmosphere at

unprecedented scales.
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1.4 CLOUD-MAP

The Collaboration Leading Operational UAS Development for Meteorology and

Atmospheric Physics (CLOUD-MAP) project, supported by the National Science

Foundation’s (NSF) Established Program to Stimulate Competitive Research (EP-

SCoR), is a four year, six million dollar project awarded in 2015 to collaborators

from Oklahoma State University (OSU), the University of Oklahoma, the Univer-

sity of Nebraska-Lincoln (UNL), and the University of Kentucky (UK; Figure 1.3).

This project is designed as a testbed for pioneering effective integration of UAVs

with atmospheric sciences, and is one of the first of its kind on this magnitude

(Chilson et al., 2016; Jacob et al., 2018). This significant investment by the NSF

aligns with recent reports from the National Research Council (2007, 2009) call-

ing for increased UAS technology in Earth sciences to address the inadequacies of

current observational networks. As mentioned before, the prospect of using UAS

for atmospheric research has been researched for decades, but CLOUD-MAP of-

fers the opportunity for a multi-disciplinary approach to examine a broad swath

of topics. With expertise from the participating universities in robotics, UAS, me-

teorological instrumentation, and atmospheric modeling, CLOUD-MAP seeks to

determine how atmospheric data acquired by UAS could be used to better under-

stand weather phenomena, how UAS might be able to detect large-scale weather

trends, and the required operational designs necessary to implement UAS on a

regular basis.

To answer these basic questions, four specific objectives are proposed with re-

search tasks to be supervised by the principal investigators (PIs) at each university.

These objectives are designed to flow from one to another in a manner that en-

courages collaboration between universities (Figure 1.4). The primary objective

is to develop a mentorship for early-career faculty with relevant expertise in at-

mospheric observations with UAS. Establishing an environment that encourages
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Figure 1.3: CLOUD-MAP team photo at the summer field campaign in Stillwater,

Oklahoma, at the OSU unmanned aircraft flight station in June 2016.

Figure 1.4: CLOUD-MAP objective flow chart to facilitate successful research.

participation from students enables the faculty to be more successful in advancing

the science. The second objective focuses on the development and application of

UAVs for use in atmospheric sensing, which includes testing with different sensors,

platforms, mission designs, and communication technologies. This core compo-

nent of the CLOUD-MAP mission inspired and funded the work in this study, and

facilitated several investigations by the other collaborators. The third objective

involves the optimization of communication and control capabilities of UAS, which

explored the engineering required to support the atmospheric science-driven ob-

jectives. For safe and routine operations in the national airspace, it is essential to

have robust communications between the ground station and aircraft at all times.

11



Furthermore, to support sampling in a heterogeneous environment, one approach

involves a network of spatially distributed platforms communicating with one an-

other. Finally, the fourth CLOUD-MAP objective is to improve national education

on UAS technology through outreach. One facet of this objective involves K-12

activities that promote science, technology, engineering, and mathematics interest

such as education on basic weather phenomena, UAS utility for measuring the

environment, and the basics of electrical, aerospace, mechanical, and computer

engineering required to facilitate operations.

The CLOUD-MAP project is a revolutionary investment from the NSF both fi-

nancially and scientifically. Support of this magnitude transparently portrays how

much the United States believes in the technology, as it lays significant groundwork

for future endeavors. Addressing the objectives outlined previously has allowed

CLOUD-MAP to greatly contribute to the community of scientists and engineers

experimenting with UASs in atmospheric sciences. Integrating UASs into the na-

tional airspace for research has proven to be a complex problem spanning many

disciplines, which is largely why the objective-oriented approach of this project has

been successful. Not only does this collaboration include the four main universities

of OSU, OU, UNL, and UK, it also has significant contributions from other ex-

perts in the fields of atmospheric physics and UAS engineering. These partnering

institutions include the National Aeronautics and Space Administration (NASA),

the National Center for Atmospheric Research (NCAR), the National Oceanic and

Atmospheric Administration (NOAA), the University of Colorado, Massachusetts

Institute of Technology, and private companies Aerospace Corporation, Blackswift,

Piasecki, and FLIR. Drawing expertise from these partners has allowed CLOUD-

MAP to maximize its impact on the community, which will have rippling effects

for years to come.
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1.5 UAS at the University of Oklahoma

It is apparent that UAS technology has great potential to fill the data gap in

lower atmospheric observations. To realize this potential, this study seeks to de-

sign and implement a rotary-wing UAS capable of vertical thermodynamic and

kinematic profiling. To do so, development has been segmented into three primary

components. First, thermodynamic sensors small enough to fit on a UAV and also

offering high quality measurements were selected and calibrated to determine their

reliability. Second, these sensors were integrated with the platforms, and their new

responses and uncertainties were quantified. Such optimization included the issue

of sensor placement along with calibration of wind vector estimations. Finally,

once the platforms were capable of operations, measurements were taken in the

field and validated against other instruments and theory to ensure results were

physical and not artifacts of the system.

This development has required proficiency across the disciplines of engineering

and meteorology, and has been a catalyst for the creation of the Center for Au-

tonomous Sensing and Sampling (CASS) at OU. Established in 2016 under the

auspices of the Vice President for Research Office, CASS’s mission is to explore,

advance, and develop complete adaptive and autonomous sensing and sampling

systems for use in the atmosphere, on the ground, and in the water, and to help

facilitate the integration of this technology across various disciplines and institu-

tions.

To meet the growing demand for PBL observations, CASS has experimented

with and designed several unmanned aerial vehicles (UAVs) and sensor packages,

which will be outlined in more detail in Chapters 2 and 3. To ultimately move

towards unattended autonomous profiling, CASS developed and manufactured the

CopterSonde (Figure 1.5), which is an rwUAS outfitted with a Pixhawk autopilot
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Figure 1.5: The CopterSonde, an octo-rotor UAS designed and built by CASS

at OU. This first-generation CopterSonde has been the primary mode of testing

sensor placement and responses along with collecting atmospheric data since May

2017.

(3D Robotics), four temperature, and four relative humidity sensors for thermo-

dynamic profiling (Section 2.3). Sensor integration with the CopterSonde posed

a key challenge to ensure proper representation of the sampled environment, and

much care has been taken to optimize their locations (Chapter 4; Greene et al.,

2018). Furthermore, by utilizing rotational angles from the Pixhawk’s intertial

measurement unit (IMU), the CopterSonde is capable of measuring the horizontal

wind vector during vertical profiles (Section 3.1).

The CopterSonde’s ability to sample thermodynamic and kinematic profiles

of the PBL has been put to the test on numerous occasions (Chapters 5 and 6).

Beginning with the Environmental Profiling and Initiation of Convection (EPIC)

field campaign in May 2017, continuous profiling in pre-convective environments in

North-Central Oklahoma was performed with data being sent back to the National

Weather Service in Norman in real time. This experiment was an example to the

National Oceanic and Atmospheric Administration (NOAA) of how UAS could be

utilized in day-to-day operations. Later that summer, in June 2017, the Copter-

Sonde flew in conjunction with several platforms from collaborators on the NSF
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CLOUD-MAP project, as a collaborative effort to compare how measurements

respond between the platforms and against other ground-based instruments. Fi-

nally, the CopterSonde has flown profiles to investigate morning PBL transitions

at the Kessler Atmospheric and Ecological Field Station in Purcell, Oklahoma.

Results from each of these individual campaigns have provided insight both from

a meteorological perspective but also in terms of streamlining operations and im-

plementing more effective platforms. The capabilities of CASS extend well beyond

the first generation CopterSonde discussed herein (and beyond just atmospheric

sensing as well), but these largely stem from the knowledge and experiences gained

from its development and utilization.
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Chapter 2

Concept and Platforms

Flying UASs and collecting atmospheric observations is a multi-faceted, interdis-

ciplinary task. Ultimately, the end product yields datasets to be interpreted by

atmospheric scientists; however, this is only one small piece of the puzzle. Design-

ing platforms to fly and synthesize meteorological sensors with flight controllers

requires expertise in aerospace, mechanical, and electrical engineering. Autopilot

customization with a ground station streaming and saving data in real time is

accomplished through proficiency in computer science. Operating UAVs in the

National Airspace System (NAS) also requires significant coordination with the

Federal Aviation Administration (FAA) and university risk management, which

is streamlined through collaboration with privately licensed pilots. Key details

such as sensor placement, mission design, and deployment strategies also necessi-

tate an understanding of atmospheric physics. Fortunately, CASS has grown to

encompass this array of disciplines in its employees, and continues to improve its

scientific capabilities.

The nature of this project strongly encouraged experimentation with differ-

ent commercially available platforms and sensor packages. This ultimately led to

dozens of different variations on sensor integration, a few of which will be discussed

in this chapter. Vertical profiling missions typically consisted of a rwUAS (with
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Handheld Transmitter

UAS with Sensors

Ground Station

Antenna

Figure 2.1: Cartoon depiction of general setup during operations, which requires

a handheld transmitter and ground station communicating with the UAS.

integrated thermodynamic sensors) controlled by the aircraft’s autopilot and com-

municating through radio frequency to a computer ground station (Figure 2.1). A

human operator was also present with a hand held radio transmitter to arm the

motors prior to takeoff, but otherwise only was necessary as a safety backup since

flight missions were pre-configured using the open-source Mission Planner software

(Figure 2.2) and written to the Pixhawk autopilot to be flown automatically.

Missions were built by defining waypoints in latitude, longitude, and altitude,

and status of the UAV could be monitored in real time with Mission Planner. Each

specific combination of platform and sensors necessitated a unique ground station

setup, and it was found that systems were more reliable with fewer data streams

involved.

Selection of a platform and sensors is the first major step in development of a

UAS for atmospheric sampling. This begins with sensors that offer high quality

measurements and are robust enough to be mounted on a UAS. Furthermore,
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Figure 2.2: Heads Up Display (HUD) screen in Mission Planner (http://

ardupilot.org/planner/docs/mission-planner-ground-control-station.

html). This screen provides information about an aircraft when connected to

the ground station, including heading, battery voltage, altitude, and ground

speed. This software can also be used to build flight missions and perform other

diagnostics.

it requires a platform sturdy enough to withstand atmospheric conditions and

customizable enough to meet data acquisition requirements. The NOAA UAS

Program Office has set forth guidelines for data quality standards (Table 2.1),

which has served as the benchmark for this study.

2.1 Windsond Sensors

One of the first sensor packages CASS tested was the Windsond by Sparv Em-

bedded (Figure 2.3). An individual sensor consisted of a base circuit board with
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Table 2.1: NOAA UAS Program Office measurement quality specifications set

forth to unify standards across different instruments and UAVs.

Meteorological Variables and Accuracies

Temperature ± 0.2◦C

Relative Humidity ± 5.0%

Pressure ± 1.0 hPa

Wind Speed ± 0.5 m s−1

Wind Direction ± 5◦ Azimuth

Sensor Response Time

Time < 5 s

(preferably < 1 s)

Operational Environmental Conditions

Temperature −30− 40◦ C

Relative Humidity 0− 100%

Wind Speed 0− 45 m s−1

a removable extension that altogether measured GPS location, pressure, temper-

ature, and relative humidity at 1 Hz and streamed live to a ground station with

provided software, and optionally logged data onboard. While their miniature size

and advertised specifications met the NOAA guidelines (Table 2.2), several months

of testing exposed some key weaknesses. The electrical components of the circuit

board, namely the GPS and telemetry antennae, were often unreliable. The devices

required a full GPS signal before they would record data, which could sometimes

take over 10 min to acquire. Furthermore, they would commonly lose signal to

the ground station. Because data were not logged on the sensors themselves and

only saved on the ground station for our operations, this created gaps in data that
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Figure 2.3: Windsond by Sparv Embedded. These thermodynamic sensors are

only a few centimeters in size, making them ideal for mounting onto a UAV or

releasing with a small balloon. Shown here are two packages mounted to wooden

dowels, which was one of the various methods of integrating with a rwUAS.

could occasionally last the majority of a mission. These sensors were also rela-

tively fragile, and extended use brought the degradation of circuit connections and

battery life, rendering them unresponsive. Finally, each sensor required its own

connection to the base station, so mounting several sensors on a platform for com-

parisons would often cause interference in communications. Although the version

tested was not reliable enough for integration operationally, the Windsond sensors

still provided a necessary avenue for scientific development with several valuable

lessons learned. These sensors have since been upgraded by Sparv Embedded, but

we have not performed extensive testing with the newer models.

2.2 3DR Iris+ Platform

At the time of this writing, there are hundreds (if not thousands) of rwUAS avail-

able for purchase, each of varying quality and included accessories. Many of these

are controlled with proprietary software and autopilots that do not lend themselves
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Figure 2.4: The Iris+ by 3D Robotics is a quadcopter controlled by a Pixhawk

autopilot and served as one of the primary experimental platforms for atmospheric

research at CASS for several years. Numerous iterations of sensor placement of

the Windsond probes were evaluated during this time when it was determined that

response characteristics were impacted by location.

to the level of customization necessary for research missions. Fortunately, there are

a number of platforms that make use of the open source Pixhawk autopilot. The

Iris+ by 3D Robotics (Figure 2.4; no longer in production) is one such platforms,

and was one of the first rwUAS tested by CASS. With a brand new battery, it

can achieve flight times around 15–20 min, which is more than enough time to

traverse the 120 m vertical limit imposed by the FAA part 107 license regulations.

The Iris+ equipped with a suite of Windsond sensors served as a testbed for ex-

perimenting with how to fly UAVs manually, different flight patterns and sensor

placements, and estimating winds with the method described in Section 3.1. After

several months of flights and iterations of sensor integration (each with their own

varying results) we realized that obtaining representative thermodynamic measure-

ments was not as straightforward as placing the sensors wherever they fit best on

the UAV. This eventually led to an objective analysis of measurement error sources

induced by a rwUAS itself, which is covered in Chapter 4.
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Eventually, we determined that the Iris+ would require an upgrade for obtain-

ing regular PBL measurements. Being a small quadcopter made of plastic with

weak motors and shallow propellers meant it was unable to withstand wind speeds

regularly observed in Oklahoma. Its battery life was not long enough to endure

profiles through the entire convective boundary layer (CBL), which yields an in-

complete atmospheric perspective. When combined with four Windsond sensors,

the ground station had to maintain five separate lines of communication to the

platform during flights, which rarely remained continuous. Post processing all

of the irregular data streams therefore produced noisy results inconsistent with

the NOAA specifications. Other commercially available rwUASs also lacked the

customizability in mission planning and sensor integration desired for operations

when compared with the Iris+. This led to the conclusion that a UAS fabricated

in-house was necessary.

2.3 OU CopterSonde Platform

Building upon the strengths of the Iris+ system, CASS engineers designed and

built the CopterSonde rwUAS (Figure 1.5). The CopterSonde facilitates a sym-

metrical carbon fiber hashtag design with a diameter of 65 cm and is driven by

eight brushless electric motors and 25 cm diameter propellers. The maximum pay-

load mass amounts to 1 kg with a total all-up weight of about 7 kg. The maximum

flight time is about 20 minutes. It has a top flight speed of 25 m s−1 and thus

can be flown safely in winds up to a maximum horizontal speed of 20 m s−1. The

CopterSonde is equipped with a Pixhawk autopilot (3D Robotics, Inc.) which

relies on an on-board inertial measurement unit (IMU) for attitude estimation.

A barometric pressure sensor is used to control the altitude of the rwUAS. The

CopterSonde also carries a post-processing kinematic differential GPS unit which

gives centimeter positioning accuracy in space. External sensor data are sent to
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the Pixhawk via the I2C protocol, which are processed in parallel to the flight con-

trols. This setup allows for a single consolidated data stream sent to the ground

station over wireless radio using the Mavlink protocol. The operative distance

of the communication system is around 5 km, capable of 15 km with upgraded

antennae. The CopterSonde has been extensively calibrated and tuned for field

measurements, with much consideration taken for sensor placement (Chapter 4)

and optimization of data streaming.

2.4 International Met Systems Sensors

As an alternative to the Windsond sensors, the CopterSonde platform made use

of PT 100 bead thermistors from International Met Systems (iMet; Figure 2.5)

and capacitive humidity sensors produced by IST. These bead thermistors offer a

response time of 2 s in still air (approximately 1 s with 5 m s−1 aspiration) over a

range of -95 to +50◦C, with an accuracy of ± 0.3◦C and a resolution of 0.01◦C (see

Table 2.2 for comparisons to the Windsond specifications). The humidity sensors

advertise a response time of under 10 seconds and also measure temperature with

a similar response. These sensors are similar to the kind used on many standard

radiosondes and are ideal for use on a rwUAS.

Figure 2.5: The iMet-XF base board (left) and bead thermistor (right) allow for

modular sensor configurations. The base board provides power to the sensors and

synchronizes their data streams.
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The sensors are components of a bigger iMet system specifically designed for

UAV applications: the iMet-XF UAV. This system uses a main board to which

different types of thermodynamical sensors can be interfaced. It samples each

connected sensor successively, including on-board GPS and pressure sensors, and

provides these data in packets through serial communication. Acquiring and stor-

ing the data can be achieved in a variety of ways: using a pair of radios to stream

data to a ground station, or the unit can be connected to a computer for direct

data streaming using the provided iMet software.

The consolidation of sensor data into one stream significantly improves the

iMet-XF reliability over the Windsond sensors. However, due to the proprietary

signal processing on the control board, transmission of this data required an on-

board microprocessor and ground station radio link in addition to the autopilot

and telemetry link. To further reduce the number of electronic components re-

quiring power and potentially causing interference, the provided base board was

bypassed with a custom circuit board. Taking advantage of the fact that the

iMet sensors include their own integrated circuit boards that convert analog data

streams into the common I2C protocol, this custom board was capable of accepting

and synchronizing eight separate sensor inputs and converting them into a single

output stream. On the CopterSonde, this amounted to four temperature and four

humidity sensors being synchronized at once. By inputting this single data stream

into the Pixhawk flight controller, a specially configured module was programmed

to sample each sensor successively at a given rate, log their data on-board, and

stream live data to the ground station (Figure 2.6).

With virtually no impact on flight performance, this implementation of sensors

through the autopilot streamlined operations immensely. Onboard synchronization

and a single data stream yielded only a single data file after each flight, which

was easily readable for post processing. Combined with the overall reliability of
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the sensors (Chapter 3), this setup evolved to be the operational version of the

CopterSonde for research.

Figure 2.6: The iMet-XF sensor package fully integrated with a Pixhawk autopilot.

This setup allowed for total onboard synchronization and streaming of a single

output to the ground station.

Table 2.2: Advertised accuracies and resolutions of the evaluated sensors.

Windsond iMet-XF

Variable Accuracy Resolution Accuracy Resolution

Temperature (◦ C) ± 0.3 0.01 ± 0.3 0.01

Relative Humidity (%) ± 2.0 0.05 ± 1.8 0.03

Pressure (hPa) ± 1.0 0.02 N/A N/A

Max Sample Rate (Hz) 1 10
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Chapter 3

System Calibration

While many of the observational techniques outlined in Section 1.2 may not ad-

equately meet the growing demands of lower atmospheric observations, they are

still held in high regard for their quality standards. Ideally, measurements from

UAVs should be able to emulate those from observational networks that can run

continuously around the clock for years on end both in terms of consistency and

representativeness. These UAVs should also be able to do so with relatively low

maintenance. Once a platform and sensor suite has been selected, one must ded-

icate time to calibrating them to attain research quality observations. For ther-

modynamic and kinematic measurements using the multicopters and sensors out-

lined in Chapter 2, this process involved calibrations in environmentally controlled

chambers and comparisons against instrumented Oklahoma Mesonet towers.

3.1 Wind Estimation

3.1.1 Background

As one application, rotary-wing UAS can be used to measure the same thermo-

dynamic and kinematic properties as radiosondes: pressure, temperature, relative

humidity, and horizontal wind speed and direction (Neumann and Bartholmai,
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2015; Brosy et al., 2017). The thermodynamic measurements are collected di-

rectly, with sensors mounted on the platform itself. However, in the approach

adopted by the CopterSonde, the wind vector is not measured directly as in the

case of fixed-wing aircraft with a multi-hole probe (e.g., Bonin et al., 2013). In-

stead, winds are estimated using the geometry of how the UAV tilts into the wind

to maintain a fixed latitude-longitude position while in flight. This method, similar

to that outlined by Neumann and Bartholmai (2015) and Palomaki et al. (2017),

proceeds as follows.

Figure 3.1: The standard reference frame of an aircraft, with principal axes denoted

by êi. Rotation about ê1 is commonly referred to as roll, ê2 pitch, and ê3 yaw.

The inertial measurement unit onboard the Pixhawk autopilot system records

the UAV’s roll, pitch, and yaw rotation angles (also known as attitude) (Figure

3.1). By taking the lab reference frame as the base coordinates, one can interpret

the attitude as a rotated coordinate system. Taking into account the geometry of

the UAV’s reference frame, the x, y, and z rotation matrices are therefore expressed

as:
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Rx =


1 0 0

0 cos(roll) sin(roll)

0 − sin(roll) cos(roll)

 , (3.1)

Ry =


cos(pitch) 0 − sin(pitch)

0 1 0

sin(pitch) 0 cos(pitch)

 , (3.2)

Rz =


cos(yaw) − sin(yaw) 0

sin(yaw) cos(yaw) 0

0 0 1

 . (3.3)

Combining these three matrices represents the full 3 dimensional rotation matrix

Rij:

Rij = Rz ∗Ry ∗Rx =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 , (3.4)

where each element represents the projection of the jth element of the rotated

coordinate system onto the ith element of the lab coordinate system. For a rwUAS

in flight and maintaining a fixed horizontal location, it will tilt into any oncoming

winds so as to divert some thrust proportional to the speed of the wind. Based

on the geometry of this coordinate system, the inclination (vertical tilt) angle ψ is

calculated as:

ψ = arccos(R33), (3.5)

which is related to the drag force Fd by:

Fd = g m tan(ψ), (3.6)
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where g is the acceleration due to gravity, and m is the mass of the platform. Neu-

mann and Bartholmai (2015) suggest that wind speed can therefore be estimated

using the definition of drag coefficient cd:

v =

√
2Fd

ρAprojcd
, (3.7)

where Aproj is the projected surface area and ρ is the air density. However, Aproj

and cd are generally not known and must be determined, usually as a function

of inclination angle using 3D-CAD software. These parameters are also propor-

tional to the angle of attack relative to the platform, which can be complex for

asymmetrical designs. Maintaining its dependence on
√

tan(ψ), wind speed can

be estimated using a simple linear regression model that implicitly accounts for

the design factors of the UAV:

v = C0 + C1 ∗
√

tan(ψ), (3.8)

where C0 and C1 are empirically derived coefficients based on comparisons with a

reference anemometer (outlined in Section 3.1).

Wind direction can be calculated directly based on the UAV’s tilt direction.

Accounting for the meteorological definition of wind direction, mathematical defini-

tions of trigonometric functions, and the UAV’s coordinate system, wind direction

is evaluated simply:

direction = arctan

(
R23

R13

)
. (3.9)

3.1.2 Experimental Determination of Coefficients

As stated previously, coefficients C0 and C1 from equation 3.8 are functions of the

acceleration due to Earth’s gravity and other design factors of the UAV such as its

mass, surface area, drag coefficient, and motor thrust. These are in turn dependent

on the wind direction relative to the UAV’s orientation. While there are methods
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Figure 3.2: Experimental setup for wind vector measurement calibrations. (a)

Oklahoma Mesonet towers are outfitted with a propeller vane anemometer at 10

m and measure temperature at 9 m. (b) The Iris+ hovering at 10 m next to the

tower, which was performed multiple times over the course of multiple days to

gather a large sample of wind speeds and directions. This identical process was

also performed with the CopterSonde, maintaining a constant yaw angle so as to

account for differing wind attack angles relative to the UAV.

of determining these coefficients in an ideal sense, another approach at estimating

them empirically is applied in this study.

Using the Washington, Oklahoma Mesonet tower as a reference (Figure 3.2a),

the CopterSonde was flown at a fixed altitude of 10 m directly adjacent to the tower

(similar to the Iris+ in Figure 3.2b). The CopterSonde hovered in place for 10–15

min (battery life permitting) at a time. By repeating this process on multiple days

with varying wind conditions, a statistical model relating the CopterSonde atti-

tude angles to the real wind vector was calibrated across a representative range.

This model assumes the form of equations 3.8 and 3.9, whose coefficients were

determined through linear regression of the UAV’s autopilot data versus the refer-

ence tower. Since the Mesonet averaged observations over 1 min intervals but the
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Figure 3.3: Relationship between 1 min averaged wind speed measured by the

Washington Mesonet tower to the square root of the tangent of the vertical tilt

angle on the CopterSonde. The solid red line denotes the least squares linear fit,

which has a correlation coefficient of 0.7799. Data points are colored according to

the flight when they were collected.

Pixhawk IMU can measure attitude information at over 10 Hz, the attitude angles

were averaged to be consistent with the Mesonet data. While this method smooths

out higher frequency oscillations from wind gusts and vibrations, the underlying

linear relationship between wind speed and vertical tilt angle ψ is preserved (Fig-

ure 3.3). Employing the resulting linear regression model for wind speed (Figure

3.4a) yields root mean square errors of 0.67 m s−1, which is larger than the 0.5 m

s−1 desired by NOAA (2.1). However, this is likely biased high by a few outlier

points at higher wind speeds.
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Figure 3.4: Wind speeds estimated in two different manners with respect to the ref-

erence 1-minute averaged Mesonet values. (a) Simple linear regression of
√

tan(ψ)

yields root mean squared errors of 0.67 m s−1, close to the standard requested by

NOAA. (b) Linear fit with an intercept forced through the origin as an approxi-

mation of equation 3.10. This method increases RMSE relative to simple linear

regression, but has a more physical relationship.

Low wind speeds are particularly difficult to measure using a rwUAS, as tilt

angles compensating for the wind become negligible and become lost in natural

high frequency oscillations. This problem appears in the linear fit as a negative

intercept, which implies negative wind speeds for small tilt angles. The theoretical

relationship between wind speed and inclination angle ψ given in equations 3.7

and 3.6 described by Neumann and Bartholmai (2015) can be rearranged to read

as:

v = C
√

tan(ψ), (3.10)

where C is the collection of theoretical constants:

C =

√
2gm

ρAprojcd
. (3.11)
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Figure 3.5: Estimated wind directions fit with simple linear regression (blue) com-

pared to the ideal 1:1 line (red). A slope of 0.996 and correlation coefficient of

0.999 imply a significantly linear relationship, but a negative 12.77 intercept skews

RMSE to almost 14◦. This offset can likely be attributed to magnetometer inter-

ference from being in proximity to the metal Mesonet tower, which biases compass

headings and therefore wind direction measurements. Otherwise, when averaged

to 1-min samples, this estimation method appears robust.

In this sense, instead of dynamically calculating the drag coefficient cd and pro-

jected surface area Aproj, one can empirically derive a value for the coefficient C.

This results in a similar approach to the least squares fit above, except forcing the

intercept to go through the origin (Figure 3.4b). While this makes more physical

sense for applications at lower wind speeds and adheres more closely to the theo-

retical model, the fit derived in this manner results in root mean squared errors of

over 0.81 m s−1, an increase of 20% over the least squares regression. For opera-

tional estimations of wind speeds, it was decided that the linear regression fit was
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the optimal choice because of its higher accuracy. Wind speeds below a certain

threshold were therefore filtered out as undetermined measurements.

Equation 3.9 implies that estimating wind direction requires only the direction

of tilt, which is independent of wind speed. Fitting results of the CopterSonde

flights to a linear regression (Figure 3.5) indicate that this model is appropriate. A

slope and correlation coefficient both near unity imply a strong linear relationship,

but the 12.77◦ intercept causes root mean squared errors to appreciably exceed

the NOAA guidelines. After further manual field testing, it was determined that

this offset was likely caused by the CopterSonde’s onboard compass magnetometer

erroneously reporting its heading when in proximity to the large metal Mesonet

tower. This deviation in yaw angle was consistent across flights on different days

due in part by flying in the same location at the same heading each time. With

these results in consideration, the estimated CopterSonde wind directions were

taken as calculated in equation 3.9 without any linear fit applied.

3.2 Mesonet Environmental Chamber

As discussed in Section 2.4, the iMet sensors were chosen to integrate with the

CopterSonde for streamlined data communications. They are advertised to be

within the NOAA specifications, but an independent calibration was performed to

ensure their robustness. This calibration was conducted on four iMet-XF thermis-

tors in an environmentally controlled chamber operated by the Oklahoma Mesonet.

Over a period of 14 hrs, the chamber temperatures were incremented by steps of

10◦C ranging between -40 and +60◦C (Figure 3.6). A linear bias as a function of

temperature range for each sensor was determined by averaging the deviation of

each sensor from the chamber’s reference probe over 20◦C bins (Figure 3.7). The

ramp input of the temperature changes was slow enough such that the bias cor-

rection also accounts for errors due to response time, so averaging over the whole
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Figure 3.6: Time series of iMet sensor A over course of calibration in environmen-

tally controlled chamber. Temperatures ranged from -40 to +60◦C over the course

of about 14 hrs.

time period is an adequate approximation. At worst, sensor A exhibits biases of

0.4◦C in environments above 40◦C, which is within the advertised specifications.

However, this sensor trends outside the spread of sensors B–D over the calibration

range. When excluding sensor A as an outlier, the accuracy is improved signifi-

cantly to less than 0.2◦C. These calibrations have therefore demonstrated that the

iMet thermistors meet the expectations desired by NOAA under ideal conditions.

The following section will discuss how these sensors perform in a more realistic

environment.
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Figure 3.7: Calibration of 4 different iMet sensors.

3.3 Mesonet Tower

Another calibration technique involved aspirated chambers mounted on the Mesonet

tower in the parking lot of the National Weather Center (Figure 3.8). These cham-

bers provided reference measurements averaged over one min, and experimental

sensors could be mounted inside of them for several hours at a time. While not as

robust as using the environmentally controlled chamber, the tower offered a con-

venient and quick method of obtaining offsets for both temperature and humidity

sensors in realistic environmental conditions. This is an important step in main-

tenance of a thermodynamic sensor package, as normal use on a UAV can cause

their responses to drift over time. An example set of these measurements taken in

May 2017 for a suite of thermodynamic sensors is shown in Table 3.1.
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(a) (b)

Figure 3.8: (a) The Mesonet tower in the parking lot of the National Weather Cen-

ter in Norman, Oklahoma. (b) Mounted on the tower are two aspirated chambers

as reference in calibrating the iMet temperature and humidity sensors.
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Table 3.1: Summary of average iMet temperature and relative humidity sensor

biases compared to NWC Mesonet tower measured in May 2017.

Thermistor ID Offset (◦C) Humidity ID Offset (%)

45361 -0.163 0x10A +3.64

45363 -0.077 0x11A +3.79

45364 +0.029 0x12A +3.58

48620 +0.141 0x13A +3.43

48621 +0.098 0x10B +3.73

48622 +0.149 0x11B +3.43

48623 +0.184 0x12B +2.98

48624 +0.081 0x13B +3.76

48625 +0.145

48626 +0.188

48727 +0.158

48728 +0.231
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Chapter 4

Sensor Placement

One of the primary functions of the CopterSonde was to collect observations of the

PBL in vertical profiles. However, when making measurements, the platform itself

can influence these observations. There are a number of factors that can affect any

single measurement and each observation must be carefully designed and examined

to ensure that external influences are minimized. In this study, we focus on the

effects of sensor placement on temperature observations.

To ensure that a thermometer, such as a thermistor, produces accurate mea-

surements, it is critical that the sensor be shielded from solar radiation and properly

aspirated with the ambient environment (Tanner et al., 1996; Richardson et al.,

1999; Hubbard et al., 2004). Moreover, sensor self-heating can lead to significant

measurement bias in some thermistors if not properly accounted for. Thermistors

use a temperature-sensitive resistor to measure temperature. By knowing the in-

put voltage and measuring how it changes across the thermistor, the resistance

of the temperature sensitive resistor can be determined, and thus the tempera-

ture. If current is run constantly through the resistor, heat is generated. Such a

sensor must be properly aspirated or the resultant heat can modify the ambient

environment, thereby influencing the measurement itself.

Observations of temperature from tower-mounted thermistors typically utilize

solar-shielded chambers with fans to mechanically aspirate the sensors to improve
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data quality (Brock et al., 1995; McPherson et al., 2007). However, when con-

sidering the integration of sensors into a rwUAS, utilizing a fan poses a dilemma.

Although a fan could ensure proper aspiration, it would draw power and add weight

to the platform and potentially significantly decrease flight duration. Therefore, an

alternative solution to this problem is to aspirate the sensors with the air currents

produced by the rotating propellers, or rotor wash. However, due to the complex

flow around a rwUAS in flight, the location on the rwUAS providing the best aspi-

ration is not obvious. If exposed to too little airflow, the sensor could self heat or

not adequately sample the ambient atmosphere. If exposed to too much airflow,

compressional heating of the air stream becomes an issue (Rodert, 1941). Further-

more, dissipation of heat from the rotary motor can also alter the measured air.

Flow in proximity to the propeller tips is also associated with the highest values of

turbulent intensity and temperature fluctuations (Swean and Schetz, 1979). After

initial experiments involving rwUAS for research efforts, it was determined that a

more in-depth examination of sensor location was needed to ensure data quality.

4.1 Equipment

With the questions surrounding temperature sensor placement on a rwUAS, an

experiment was created to objectively determine the optimal location for quality

temperature measurements. A summary of the findings from the experiment are

discussed below.

4.1.1 Rotary-wing Aircraft and Sensors

As the CASS prototype platform, the CopterSonde (Section 2.3) was chosen for

this experiment. Although manufactured to customized standards, results from

this study are still directly applicable to other platforms. The CopterSonde was
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equipped with iMet thermistors (Section 2.4) that were mounted onto a linear

actuator arm which varied their position inside of the propeller wake, as will be

described in Section 4.1.4. These sensors were validated in the aspirated shelter

at the NWC Mesonet tower prior to these tests, as described in Section 3.3. The

CopterSonde was slightly modified from normal operational use: its speed con-

trollers were bypassed so that the speed of the motors were directly proportional

to the throttle level coming from the radio transmitter. Since the experiments

were performed inside with the aircraft stationary and mounted to a pedestal, this

setup allowed for more direct control of the motors instead of allowing them to

automatically compensate for the lack of flight.

4.1.2 NSSL Mobile Mesonet

To provide a comparison with the temperature data recorded using the iMet ther-

mistors, a modified version of the National Severe Storms Laboratory (NSSL)

Mobile Mesonet (MM) rack was used. The equipment rack, normally mounted to

the roof of a vehicle, is capable of temperature, pressure, wind speed and direction,

relative humidity, and solar radiation observations. For the tests presented here,

the equipment rack was mounted to a cart. This allowed the rack to be placed in

close proximity to the CopterSonde during measurements.

To measure temperature, two Campbell Scientfic model 109 thermistors (CS

109) were used. One was mounted inside an aspirated radiation shield and one was

mounted to the CopterSonde. The 109 probe has less than 0.03◦C linearization

error over the range of -50 to +70◦C, with a ±0.2◦C tolerance between 0 and 70◦C.

The thermistor is contained within a stainless steel housing, meant for use in damp

conditions such as soil moisture measurements, and as such has a response time

of 30 s with 5 m s−1 airflow. The sensors used for this study had been recently

calibrated in the Oklahoma Mesonet calibration lab to ensure their accuracies.
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4.1.3 Oklahoma Mesonet hot wire anemometer

In addition to measuring temperature, it is also relevant to measure the flow rate at

the temperature sensor location. This allows one to assess the extent to which the

probes are in a “well mixed” environment and provides insight to the conditions

that are being experienced by the sensors themselves. A Thermo Systems Inc.

(TSI) hot-wire anemometer was used to gather precise velocity measurements as

close as possible to the temperature sensor mounting locations.

4.1.4 Linear actuator arm

The overall goal of the experiment was to find locations on a rwUAS where temper-

ature readings are most representative of the environment. With this in mind, data

collected at multiple locations on the rwUAS were examined to determine where

the sensors experience bias relative to ambient air. To achieve this, the thermis-

tors were placed on a linear actuator arm which moved the sensors horizontally

directly underneath two of the motor mounts (Figure 4.1). The initial starting po-

sition at point A was 6.5 cm outside of one propeller, and the the sensor position

was stepped by 0.24 cm with a dwelling time of two seconds per increment across

the width of the CopterSonde towards point B. The ground station recorded arm

position, wind speeds, and computer timestamps at each step. The ending location

was 12.5 cm outside the opposite side of the rwUAS, and took approximately 35

min to complete the process. Two of the iMet temperature sensors were attached

to the arm, as was a 109 temperature sensor from the NSSL MM rack. Combining

these three different datasets (NSSL logs for the NSSL probes, Pixhawk logs for

the temperature sensors, and the computer logs for the arm and the anemometer)

with their common timestamps therefore allowed for synchronized analysis of the

separate data streams.
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Figure 4.1: Schematic and dimensions of the rwUAS used in this study (drawing

not to scale). In front and top view, the linear actuator arm is represented by

the red rectangle outline, and the sensor package as a red circle. The arm was

displaced from point A to point I, directly underneath the motor mounts and one

pair of propellers as seen in the top-down and side views. Point B represents the

tip of propeller 1, point C is directly under motor 1, D is the other side of the

same propeller. Point E is halfway between the two propellers, and points F–H

are symmetrical to points B–D.
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4.2 Thermistor self-heating experiment

Prior to analysis of the sensor placement temperature profiles detailed in later

sections, a baseline depiction of the iMet thermistor self-heating is required. A

simple experiment consisting of three thermistors and a ducted fan was conducted

to isolate the effects of aspiration. The fan was located at the base of a solar shield

duct, which was bent at a right angle with sensors inserted through holes along

the top. With the fan switched on, this configuration induced airflow to enter

horizontally, pass across the sensors, and exhaust downwards through the fan.

The sensors were initially powered on to collect data while the fan was off.

After holding this condition for approximately 6 min, the fan was powered on,

pulling air across the sensors at 6 m s−1. The fan was then alternately switched

on and off for periods of two to three minutes each, for a total of three cycles.

Analysis of the iMet temperature responses (Figure 4.2) revealed that the sen-

sors closely tracked with one another while the fan was on, with only a linear

offset. It is immediately apparent that the sensors react to airflow through the

solar shield, as temperatures repeatedly drop over 1◦C in under 20 s. Prior to the

first time the fan was switched on, the setup was idle for several minutes. However,

following the fan being switched off, the sensors indicated temperature increases.

For these periods, the observed heating was likely due to a combination of both

sensor-self heating and the fan motor radiating heat upwards towards the sensors.

This hypothesis is supported by iMet sensor 2 being in closest proximity to and

directly above the fan while also heating the most rapidly. Furthermore, the other

two sensors were higher up and displaced horizontally due to the geometry of the

duct, and they showed slower heating rates while the fan was off. The key evidence

for sensor self-heating is that the sensors return to their same respective tempera-

ture levels each time the fan was on, regardless of how they behaved while the fan
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was off. Therefore, this supports the requirement of sensor aspiration to properly

measure the environmental temperature.
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Figure 4.2: Time series of the uncalibrated iMet temperature sensors sampling at

10 Hz relative to the times the fan was switched on (green dashed line) and off

(red dashed line).

4.3 Anechoic chamber experiments

4.3.1 Setup

The University of Oklahoma Radar Innovations Laboratory has a large anechoic

chamber used for calibration and testing of radar components and other electronic

equipment. This chamber however also provides a reasonably homogeneous en-

vironment for testing when it is necessary to isolate the effects of various sensor

influences on a rwUAS without solar radiation concerns or changes to the ambient

environment. To offset the vertical variations in temperature that could exist in

45



such a room, a common carpet fan was directed at 45◦ from horizontal and turned

on to maximum airflow for about 15 min before the experiment to mix the envi-

ronmental air. The CopterSonde was mounted on a large pedestal near the center

of the room with a bracket that accommodated the vehicle and a linear actuator

arm as previously mentioned (Figure 4.3a).

To simulate the wind flow of the aircraft in flight, the iMet and CS 109 thermis-

tors and hot wire anemometer were positioned inside of a 3D-printed plastic solar

shield (Figure 4.3b, c). Due to the spatial constraints of the setup, the CS 109

was mounted vertically and underneath the iMet and wind sensors in an effort to

measure the same air stream. Furthermore, to avoid bias in temperature measure-

ments, the hot wire anemometer was removed for the final round of testing. For

each experiment, the actuator arm was mounted so that the sensors would pass di-

rectly underneath the motor mounts as the linear actuator arm moved horizontally

(Figure 4.1).

To provide a reference temperature of the ambient environment, a second CS

109 sensor on the NSSL MM rack was mounted inside the aspirated U-tube ra-

diation shield (not depicted, see Waugh and Fredrickson, 2010). A second iMet

thermistor was also suspended 50 cm below the CopterSonde, allowing for reason-

able (but turbulent) aspiration, as determined from previous trials not included

in this study. The additional measurements provided by the suspended iMet ther-

mistor and the CS 109 probe inside the radiation shield, were used to measure

the “ambient” environment. For the purposes of these tests, the autopilot inputs

to the motor throttle were bypassed, allowing for direct manipulation of throttle

input using an external device.
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Figure 4.3: A: Position of linear actuator arm underneath rwUAS on mounting

pedestal. Arm was aligned such that sensors passed directly underneath the motor

mounts so as to make the system essentially two-dimensional. The sensor package

is outlined in white. B: Close-up side view of the sensor package. The NSSL

thermistor (CS 109) is strapped vertically to a foam mount so that it reaches inside

the solar shield (white cylinder) from the bottom. The hot-wire anemometer is

attached to the linear actuator arm with a clear mount and passes into a hole on

the back side of the solar shield. C: Close-up front view of the sensor package. An

iMet thermistor (PT 100) enters the solar shield through a hole on the right side.

CS 109 also visible pointing vertically.
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4.3.2 Procedure

To begin, power was supplied to the iMet and NSSL thermistors and they began

logging data. For the first trial, the motor position began at point A (6.5 cm

horizontally from the tip of the nearest propeller, Figure 4.1), and the battery was

connected with throttle at zero, allowing the sensors to sample an unaspirated

environment for 8 min. After this period, the CopterSonde was throttled up to

approximately 55% maximum power to simulate the airflow typical during slow

ascent. Although not directly under the propellers, airflow across the sensors was

2 m s−1, sufficient enough for aspiration. This position was sustained for two min

before powering the motors off again. The sensors then remained in quiescent

conditions for 2.5 min before throttling to 55% again. After giving the sensors 40

s to aspirate, the linear actuator was then incrementally moved towards point B

by 0.24 cm, holding each position for 2 s. In total, it moved approximately 71.1

cm, which was outside of the rotor wash on the “B” side of the configuration. This

experiment took a total of approximately 35 min to complete.

To control for the effects of potential heat advection from the hot-wire anemome-

ter, the same test was conducted after removing it from the solar shield. During

this second trial, however, the initial start-stop-start of the motors was not per-

formed. The CopterSonde and sensors were powered on for 2.7 min, then the

throttle was increased to 55% for 35 s before incrementing the linear actuator

arm’s position.

4.4 Results and discussion

4.4.1 Experiment 1 - wind probe in tube

In the first experiment, to account for the longer response function of the CS 109

probes and to make more appropriate comparisons, a moving 10 s average of the
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Figure 4.4: Experiment 1 - Time series graph of air temperature (◦C) and wind

speed (m s−1). The background temperature is shown by the CS 109 probe (dot-

ted black) and the iMet sensor (solid black). The CopterSonde temperatures are

shown by the iMet sensor (solid blue), while the reference temperature of the CS

109 is shown in solid red. Air velocity at the CopterSonde sensor location is plot-

ted in solid orange. Dotted green and red vertical lines indicate times when the

motors were throttled on and off, respectively. Points A–I from Figure 4.1 are also

indicated here.

iMet temperature data was calculated before each analysis point (Figure 4.4). The

wind speeds presented are the raw outputs. Furthermore, the hot-wire anemometer

had not been calibrated prior to this experiment, and thus values displayed may

not be absolute. Confidence in relative precision is still high, however.

The air flow velocity peaked near 17 m s−1 before decreasing to near zero

directly underneath the motor which clearly identified passage through the rotor

wash of the propellers as the linear actuator moves from one side of the rwUAS to

the other (Points B, D, figure 4.1). A second minimum was encountered between
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the two propellers, before a similar pattern was observed while the sensors passed

under the second propeller. A gradual temperature increase of 0.5◦C was observed

by both background temperature sensors over the course of the 35 min experiment,

likely attributable to the mechanical mixing of the chamber environment.

This velocity pattern and associated temperature bias demonstrates that when

considering sensor location for adequate airflow, directly under the motors or be-

tween the two propellers is not a viable option. While the first conclusion might

be obvious, a relative minima in the flow velocity was not expected between the

propellers. In addition to the velocity structure, it is also evident that differences

do exist between the various sensors, and that a steady increase in temperature on

all sensors was measured over the duration of the experiment.

A closer look at the first 16 min of this analysis relative to the background tem-

perature (Figure 4.5) reveals evidence of the self-heating phenomenon. For over 8

min, the probes in the solar shield recorded 0.2–0.4◦C above the relatively constant

background, with variations owing to the presence of the hot-wire anemometer.

During this period, the motors of the CopterSonde were not on, thus no aspiration

to the sensor existed. Once the motors initially throttled up, temperatures dropped

to within 0.1◦C of the reference, and remained in this range until the motors were

shut off again 2 min later. Immediately after throttling down, temperature began

rising again, by 0.5◦C in under 3 min. Finally, when throttled back up again at the

13 min mark, temperatures returned to anomalies of 0.1◦C in under 30 s. While

wind speeds were not recorded during this time, it is reasonable to extrapolate the

2.5 m s−1 reading backwards from min 13.6 since the sensor position was fixed.

Although influences from the anemometer are likely inherent during this initial

period, the overall response of the sensors to aspiration matches results from the

experiment discussed in Section 4.2. It can therefore be concluded that rotor wash

is capable of mitigating the decoupling of sensors from the ambient environment,
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Figure 4.5: Temperatures (◦C) relative to NSSL background temperature at the

beginning of experiment 1 to reiterate sensor self-heating. Propellers throttling on

and off (green and red vertical dashed lines, respectively) seem to directly impact

temperature measurements.

so long as the sensors are free from other external sources of heating which will be

discussed below.

After the motors turned on at the 13 min mark, the actuator arm began trans-

lating underneath the aircraft. Due to the complexity of the flow field underneath

propellers rotating at several thousand revolutions per minute, it is reasonable to

believe that small nuances in temperature depicted can be caused by limits in

sensor accuracy and sampling rates in turbulent flow. There are, however, several

identifiable trends that are attributable to artificial sources such as motor heat and

sensor decoupling (Figure 4.6).

At min 15.5 (just prior to point B), the probes intercepted a warm stream of air

likely owing to turbulent fluctuations and compressional heating on the tip of the

propeller spreading down and outward along the periphery of the propeller wash.
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Figure 4.6: Experiment 1 time series of temperature (◦C) relative to the NSSL

background temperature after the actuator arm begins incrementing. Points A–I

are included from Figure 4.1.

A similar observation is made on the other end of the CopterSonde at min 28 (after

point H). At min 16 (point B), the sensors moved under the propellers and out

of the warm air stream from the tips, allowing temperatures to stabilize within

0.2◦C of the reference temperature. This pattern is consistently observed under-

neath the four peaks in wind speed, representing: exterior propeller 1 (point B),

interior propeller 1 (point D), interior propeller 2 (point F), and exterior propeller

2 (point H), in order.

As the actuator arm moved the sensors underneath the CopterSonde’s motor

mounts from min 18–19.5 (point C) and 25–26.5 (point G), temperatures rapidly

rose 0.7–1.0◦C relative to the background over the course of 1 minute (Figure 4.6).

Since temperatures began rising with wind speeds well above levels at the beginning

of the experiment (2–4 m s−1), the source of this increase was not necessarily solely
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due to self heating. Instead, their proximity to the motors leads to the conclusion

that the sensors were intercepting hot air advected from the motors.

Finally, the sensors mounted on the arm sampled the space in between the in-

terior propeller tips at min 21.5–23 (Point E). At that time, wind speeds dropped

to less than 3 m s−1, similar to those at the initial position of the sensors. Sub-

sequently, a small (0.1◦C) temperature rise is noted in both the iMet and NSSL

sensors. Because the aspiration rates were similar to those at the beginning of

this experiment, the primary driver of this temperature rise was likely a warm air

stream originating from the hot wire anemometer. In order to remove this effect,

a second analogous experiment was performed by removing it.

4.4.2 Experiment 2 - no wind probe

In Experiment 2, sensors were allowed to remain unaspirated for about 2.75 min

before throttling up and moving the linear actuator arm, similar to Experiment

1 except without the initial aspiration test. Although the wind probe was re-

moved, the actuator arm increments were identical, so it is reasonable to compare

the temperature time series against the wind speeds from Experiment 1 (Figure

4.7). In general, the temperature pattern was largely similar to the results from

Experiment 1: symmetrical about the center of the two propellers, increases in

temperature on the outside tips (before point B and after point H), and large in-

creases underneath the motor mounts (points C and G). However, the small rise in

temperature in between both propellers (point E) was no longer observed, and the

overall increase in temperature underneath the motor mounts was 0.2–0.3◦C less

than in Experiment 1. Therefore, the hot-wire anemometer likely biased tempera-

ture readings in this region of relatively stagnant flow. Finally, the CopterSonde’s

battery rapidly approached its critical level as the motors were shut off at min

18.5, so temperature trends after this mark should not be strongly considered.
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Figure 4.7: Experiment 2 - temperature and wind speed vs. relative time. Winds

from Experiment 1 included for reference (dotted orange). Letters A–I included

from Figure 4.1.
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Chapter 5

Field Validation

In Chapter 2, the CopterSonde was introduced as a method of collecting lower

atmospheric observations using an iMet thermodynamic sensor package. These

sensors were calibrated and determined to be robust (Sections 3.2 and 3.3), and

careful consideration was taken in determining their location on the CopterSonde

(Chapter 4). Furthermore, a method of estimating wind speeds from the UAV

tilt was evaluated and produced encouraging results (Section 3.1). With these

successes in the design and calibration phases, the next step in development in-

volved collecting environmental observations with scientific objectives to validate

the measurements against other sources. Through this method, one can determine

whether CopterSonde measurements reflect systematic errors or if they accurately

represent the environment.

One of the first opportunities to test the capabilities of the CopterSonde came

with the EPIC field campaign, supported by the NOAA UAS office and led by the

National Severe Storms Lab (NSSL) in May 2017. NSSL and OU, in conjunction

with the University of Colorado Boulder (CU) and the Swiss company Meteo-

matics, Inc., aimed to evaluate the capability of UAS to provide valuable lower

atmospheric observations in pre-convective environments for use by forecasters at

the National Weather Service (NWS). Combining expertise in disciplines across en-

gineering and meteorology, this collaboration also sought to raise the “technology

55



Figure 5.1: Concept of operations for the EPIC field campaign in May of 2017. The

DOE ARM SGP site in Lamont, Oklahoma (center of yellow circle) was selected as

the base of operations due to its vast array of atmospheric monitoring equipment.

Oklahoma Mesonet locations (red circles) were selected based on weather forecasts

for each day, and vertical profiles were performed at the SGP and selected Mesonet

sites by the OU CopterSonde and Meteomatics Meteodrone rwUAS. In the mean-

time, the CU TTwistor fwUAS flew horizontal transects between the two locations.

Flights to 2500 feet AGL were permitted within the red circles in proximity to the

Mesonet sites.

readiness level (TRL)” of the UAS capabilities through refined PBL measurement

strategies, quantification of measurement uncertainties, and communication of the

unique observations in near-real time. The details of this project and its results

will be discussed in the following sections.

5.1 EPIC Concept of Operations

Temperature, moisture, and momentum distributions within the PBL can strongly

dictate the potential for severe storm development. By utilizing high-resolution

measurements from UAS, EPIC sought to explore their potential to measure the
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Figure 5.2: CU TTwistor launching from the roof of a chase vehicle (left). The

Meteomatics Meteodrone hexcopter (right). These platforms, along with the OU

CopterSonde, were the primary methods of sampling the PBL during EPIC.

rapidly changing fields of moisture, instability, and vertical wind shear not resolv-

able by traditional observational networks (e.g., Koch et al., 2016). A domain

encompassing north-central Oklahoma in mid-May was chosen as a target for op-

erations, which were centered upon the Department of Energy (DOE) Atmospheric

Radiation Measurment (ARM) Southern Great Plains (SGP) facility in Lamont,

Oklahoma (Figure 5.1). The SGP site is outfitted extensive atmospheric obser-

vational systems, which was utilized for UAS measurement validation in October

2016, prior to the main campaign. The aircraft in this campaign consisted of

the OU CopterSonde (discussed earlier), the CU TTwistor (a fwUAS capable of

several hours of flight; Houston et al., 2012), and the Meteomatics Meteodrone

(a lightweight rwUAS; Figure 5.2). Special flight permissions from the FAA were

granted for these platforms to fly to an altitude of 2500 ft (760 m) AGL within

visual line of sight at specific Mesonet locations (Figure 5.1). Unfortunately, the

permissions to fly at this altitude at the SGP were not granted in time for the field

campaign, so flights were primarily conducted at Mesonet sites.
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Each day, the NWS in Norman, Oklahoma, provided a weather briefing in

support of determining potential convective initiation. Having knowledge of fore-

casted mesoscale airmass boundaries (fronts, dryline, outflows, etc.) for the day,

two Oklahoma Mesonet sites were then chosen in an effort to transect the feature in

question (Figure 5.1). Teams consisting of one CopterSonde and one Meteodrone

were deployed to the selected Mesonet sites to perform continuous vertical profiles

while the TTwistor flew horizontal transects between the two. This setup allowed

for monitoring of both spatial and temporal heterogeneities in the CBL. For further

validation of the vertically profiling rwUAS, radiosondes were also launched at reg-

ular intervals at the two sites from an NSSL mobile mesonet (Straka et al., 1996)

and the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS), a

mobile platform consisting of a Doppler lidar, atmospheric emitted radiance inter-

ferometer, and microwave radiometer.

Flight teams required several personnel assigned to specific roles in accordance

with the special FAA requirements. Four roles were required: 1) a licensed private

pilot served as the pilot in command (PIC) to communicate with other air traffic

and surrounding control towers, 2) a visual observer with FAA class II medical

qualifications was tasked with monitoring the sky to avoid in-air collisions, 3)

someone with experience flying UAVs was in charge of the radio transmitter to

take over in case of an emergency, and 4) a person monitored the ground station

for data quality and relay information about the aircraft’s performance while in

flight. With all of these safety precautions in place, vertical profiles were acquired

by alternating CopterSonde and Meteodrone flights once every 15–20 minutes,

and continuous TTwistor transects flown until the onset of storms made flight

conditions unsafe, signaling the end of operations for the day.
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A B

Figure 5.3: Doppler radar reflectivity factor image from KVNX on 11 May 2017.

The red start denotes the approximate location of the OU profiling team at each

time. A: at 1830 UTC, the storm was severe-warned and was drawing inflow from

the region sampled during the campaign. B: after sampling teams had ceased

operations, the storm eventually produced a tornado as it passed the I-35 corridor.

5.2 11 May 2017 Case Study

On the afternoon of 11 May 2017, the OU team deployed to the Oklahoma Mesonet

site in Marshall. While flying vertical profiles with the CopterSonde, a thunder-

storm initiated to the southwest of the site which shortly thereafter developed a

mesocyclone and became severe-warned (Figure 5.3A). At this point, the team

ceased operations for the day, and narrowly missed intercepting the storm as it

went on to produce a confirmed tornado near Orlando (Figure 5.3B). While taking

measurements, it was visually apparent from the Mesonet tower that the winds

at the Marshall site had transitioned from northwesterly background flow to more

northeasterly as the storm grew in intensity and began drawing in air from its

northeast. The winds estimated from the CopterSonde (Figure 5.4) agree with

this observation, indicating that the environment sampled at the Marshall site was
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Figure 5.4: Time-height coordinates of horizontal winds (in knots) estimated by

the CopterSonde at the Marshall Mesonet site on 11 May 2018. The winds change

from northwesterly background flow to northeasterly storm inflow over the course

of about 90 minutes as a severe thunderstorm begins modifying its environment.

being directly ingested into the pre-tornadic storm. With this information being

communicated back to forecasters in Norman in real time, this case demonstrates

the utility of UAVs being deployed in a near-storm environment.

5.3 Results and Summary

Over the two-week period of the primary field campaign, observations were col-

lected in several pre-convective environments. These deployments included sam-

pling the inflow region of a pre-tornadic supercell (11 May 2017) and the warm

sector of a remarkably volatile environment forecasted by the Storm Prediction

Center (SPC) to be of highest risk for severe weather (18 May 2017). One of the
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largest achievements of the campaign for OU and CASS was the significant im-

provement in TRL of the CopterSonde. Compared to test flights just a few months

prior, experience gained during EPIC streamlined operations considerably. A more

comprehensive pre-flight safety checklist was developed. Novel autopilot program-

ming and integration with the ground station allowed for onboard pre-flight prepa-

rations, simplifying the process to begin data collection. Communication skills

between the flight team members and coordination between other teams became

crucial for successful flights, and team members became familiar with their respon-

sibilities while grounded such as charging batteries and post-processing data for

upload. Weaknesses in platform and software design were diagnosed and addressed

at the end of each day, leading to a more robust system with each iteration.

In addition to having a reliable aircraft for atmospheric measurements, this

logistical side of operations was a key component in assessing the overall capability

of UAVs to fill the data gap in the PBL. While many aspects of the EPIC campaign

proved successful, this was still the first true test of the CopterSonde’s abilities

and was not without room for improvement. For example, the areas with special

permission to fly above the general 400 feet AGL limit in uncontrolled airspace

was extremely limited relative to the coverage of typical convective development.

Having access to Mesonet sites was certainly beneficial, but many of the weather

systems in the time period were outside of the domain of interest. The primary

boundary driving the high risk event on 18 May was several hundred kilometers

away from the closest site with special flight access, significantly impeding the

capability to transect it. In its current state of regulations, being able to fly high

enough to collect the necessary data can often come down to whether a storm

develops and propagates close enough to a predetermined flight area. Nonetheless,

these regulations were strictly obeyed during operations, as they existed to keep

the airspace safe.
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In addition to airspace limitations, data quality were occasionally affected by

CopterSonde performance issues. Being of symmetrical design with a square plate

in the center, the CopterSonde was largely susceptible to harmonic vibrations

when in flight. These vibrations could occasionally be significant, and affected

the representativeness of measurements collected. Furthermore, it was discovered

that sensors required their own separate power source isolated from the main bat-

tery driving the motors since they required a clean, consistent current draw to

maintain smooth measurements. These problems were addressed shortly after the

campaign, which significantly improved the quality of measurements. Even with

these shortcomings, the lessons learned and experiences gained during EPIC were

instrumental in development of the CopterSonde, elevating it to a reliable platform

with robust measurement and deployment capabilities.
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Chapter 6

Boundary Layer Transitions

Knowledge of the diurnal cycles of temperature, humidity, and winds in the PBL

can significantly improve forecasting skill in the many applications detailed in Sec-

tion 1.1. Beginning at sunset, land surfaces cool via longwave radiation overnight

more rapidly than the atmosphere directly above in the absence of advection and

cloud cover. These conditions induce a shallow and stably stratified PBL with min-

imum surface temperatures occurring directly before sunrise the following morning.

Following sunrise, the surface is warmed via incoming shortwave radiation and the

low-level temperature inversion is eroded as buoyant surface air parcels act to mix

an increasingly deep layer. This continues until the convective boundary layer

(CBL) is established. This transition of the temperature profiles has been well

documented (e.g., Stull, 1988) and is a fundamental aspect of the PBL.

While traditionally difficult to measure (see Section 1.2), the diurnal transition

of the PBL is one of many areas of interest for UAS applications. By continually

observing vertical profiles with the CopterSonde (Section 2.3), thermodynamic and

kinematic processes involved with the morning PBL transition were examined on

multiple occasions. These results will be discussed in the following sections.

63



6.1 Background

While there are numerous processes that act to physically modify PBL heat and

moisture profiles during the morning transition period, one of the main drivers is

vertical turbulent sensible and latent heat fluxes. Angevine et al. (2001) described

these mechanisms though analysis of meteorological tower and wind profiler data,

and concluded that surface layer heating that occurs immediately after sunrise is

primarily due to turbulent diffusion from above. This study also developed and

validated a finite-difference model to predict surface wind speed and temperatures

based on their results. Although this was one of the first studies to document

the morning transition, it was limited in vertical extent by surface towers and

resolution to which the boundary layer profiler could observe. Lapworth (2006)

expanded on the observations of morning PBL transitions by creating a six year

summer climatology of measurements obtained with a tethered balloon system in

conjunction with a sonic anemometer and platinum resistance thermometer near

the surface. These measurements were collected inland on nights with strong

radiative cooling followed by morning insolation. Results from these continuous

profiles agreed with Angevine et al. (2001) that after sunrise, the surface remained

stable such that the initial heating was mainly from downward heat fluxes until

the near-surface heat fluxes change from negative to positive. Even after this

transition, the layer is warmed mostly due to entrainment from above the nocturnal

inversion until the solar radiative flux becomes large enough to drive the convective

boundary layer.

Advances in computational abilities in the past several decades have allowed for

large eddy simulations (LES) to become a useful tool for evaluating turbulent-scale

processes in the PBL. For example, Fedorovich et al. (2004) demonstrated that the

convective boundary layer is characterized by positive turbulent heat fluxes near

the surface which then decrease aloft and become negative in the region known as
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the entrainment zone. The entrainment zone marks the transition from the PBL

to the free atmosphere above. These negative heat fluxes in the entrainment zone

are consistent with the observations that downward flux of heat play a large part

in heating of the boundary layer as a whole.

UAS have the capability to extend surface measurements in both space and time

by rapidly sampling the lower atmosphere, providing new insight to PBL processes.

One of the first studies of the diurnal PBL cycle using UAS was performed by

Bonin et al. (2012), which focused on the evening transition in the southern great

plains of the United States. By collecting numerous consecutive vertical profiles of

temperature, humidity, pressure, and winds during the period just before sunset,

vertical flux profiles were estimated using a technique suggested by Deardorff et al.

(1980):

w′θ′(z) =

∫ ha

z

(
∂θ

∂t
+ w

∂θ

∂z

)
dz, (6.1)

which is the horizontally homogeneous heat balance equation solved for vertical

kinematic heat flux, integrated from each level z to height ha where fluxes go to

zero. Equation 6.1 can be further simplified assuming the mean vertical velocity

is negligible:

w′θ′(z) =

∫ ha

z

∂θ

∂t
dz. (6.2)

When accounting for discrete data samples and converting to sensible heat flux,

6.2 becomes:

H(z) = cp

ha∑
z

ρ
∆θ

∆t
(z), (6.3)

Where H(z) is the sensible heat flux at level z, cp is the heat capacity for dry air

at constant pressure, and ρ is the density of air evaluated at each level. The same

method can be reproduced for latent heat fluxes L by replacing θ with specific

humidity q and cp with latent heat of vaporization, Lv:

L(z) = Lv

ha∑
z

ρ
∆q

∆t
(z). (6.4)
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Given ideal conditions of weak background advection, results using this method

indicated that as the evening progressed and the boundary layer height decreased,

the majority of vertical heat fluxes were confined to increasingly shallow layers just

above the surface.

Wildmann et al. (2015) employ the Multi-purpose Airborne Sensor Carrier

(MASC), developed by the group of Environmental Physics at the University of

Tübingen, which uses fine-wire platinum resistance thermometers and multi-hole

probes to directly measure turbulent parameters. Flying constant-altitude profiles

100 meters above the German countryside allowed for application of mixed-layer

scaling, which resulted in only being valid for convective temperatures. When

compared with a ground-based sonic anemometer and flux measurements, results

from these constant-altitude profiles indicated that heat fluxes do not change sign

aloft until 2–3 hours after sunrise, and then increase in magnitude as the morning

continues. Although the terrain was not entirely horizontally homogeneous in ele-

vation or land use, these results agree with what would be expected from Lapworth

(2006).

Even more recently, rotary-wing UAS (rwUAS) are being utilized to collect

vertical profiles of atmospheric measurements. One primary advantage rwUAS

have over their fixed-wing counterparts is the ability to operate without a launching

or landing mechanism, making quasi-unattended operations a possibility. Since the

method outlined by Bonin et al. (2012) is not platform-specific, this study seeks

to address the capability of rwUAS to obtain vertical flux estimates. This will

be done by determining the effectiveness of the algorithm in addition to outlining

scenarios in which errors inhibit analysis.

The chapter is structured as follows: in Section 6.2, a description of how the

datasets were acquired and how fluxes were estimated is introduced. In Section
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6.3, two cases representative of the dataset as a whole are presented. In Section

6.4 conclusions are discussed.

6.2 Data and methods

The CopterSonde rwUAS, as discussed in Section 2.3, is capable of collecting kine-

matic and thermodynamic measurements similar to traditional radiosondes. Over

the course of September 2017 to April 2018, the CopterSonde was flown at the

Kessler Atmospheric and Ecological Field Station (KAEFS) in Washington, Ok-

lahoma, during and after sunrise to capture the morning transition period. One

advantage this study has compared to previous ones is that CASS is allowed to

operate the CopterSonde up to 2500 ft (760 m) AGL beginning 30 min before

sunrise at this location via special permissions from the FAA. In general, flight

conditions ranged from clear/sunny and calm mornings to cloudy and windy, but

were mainly chosen based on lack of clouds or precipitation the night previous.

More details about these flights are included in Table 6.1.

Operations typically consisted of consecutive flights once every 15–20 min, and

vertical sensible and latent heat fluxes were estimated as in the algorithm outlined

by Bonin et al. (2012) in equations (6.3) and (6.4). The height ha to which each

profile is integrated was determined subjectively by identifying the level where

values of ∂θ/∂t and ∂q/∂t approach zero, approximately where fluxes no longer

influence temperature profiles. This method was supplemented by Doppler wind

lidar (DL) measurements when available (see Table 6.1), but still allows room for

error due to measurement inconsistencies. These errors will be discussed in more

detail in Section 6.3.3.
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Table 6.1: Summary of flights conducted at KAEFS with the OU CopterSonde

Date, Civil

Twilight

Number

of Profiles

Average

∆t (min)

CLAMPS Weather Conditions

21 Sep 2017

1153 UTC

12 21 No Warm and dry, partly

cloudy with moderate

southerly winds.

18 Oct 2017

1214 UTC

18 13 No Sunny, dew in morn-

ing, residual LLJ.

Strong mixing in

transition.

09 Nov 2017

1233 UTC

8 23 No Mostly sunny, near

freezing, and humid.

Light winds allowed

for sharp inversion

which mixed out.

05 Apr 2018

1146 UTC

6 19 Yes Chilly, dry, breezy,

cloudy. Southerly

winds. Gradual in-

crease in T and Td.

24 Apr 2018

1121 UTC

12 16 Yes Calm and clear transi-

tioning to sunny with

some cirrus with light

winds.
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6.3 Results and Discussion

6.3.1 24 April 2018

Around the beginning of civil twilight (1121 UTC) on the morning of April 24,

2018, conditions at KAEFS were clear, humid, and calm with dew on the grass

and fog in nearby valleys as evidenced by the Washington Mesonet site located on

the property (Figure 6.1). DL measurements indicated that these calm conditions

were present aloft as well. This setup allowed for the assumptions used in the

Bonin et al. (2012) algorithm: negligible advection and mean vertical velocities.

As the morning transition progressed, winds at the surface remained calm (below

3 m s−1) and the skies were clear.

Potential temperature from each flight was interpolated in time at each level

and contoured in time-height coordinates (Figure 6.2). Immediately apparent is

the strongly stable layer extending from the surface to approximately 200 m AGL,

with a considerably less stratified residual layer atop it. The height of this inversion

layer appears to grow nearly exponentially with time, eventually becoming well-

mixed above 760 m by 15 UTC. This evolution is in excellent agreement with the

conceptual model of thermodynamic PBL transitions (Stull, 1988), likely due to

the early conditions described above.

Sensible heat fluxes near the surface just after sunrise are negative, even as

surface temperatures increase, which supports the hypothesis from previous studies

that PBL heating during this time is driven by entrainment (Figure 6.3). As the

boundary layer expands throughout the morning, a region of negative sensible

heat fluxes follows along the top of the inversion in potential temperature, likely

representative of the entrainment zone atop the newly-formed convective boundary

layer. Meanwhile, surface sensible heat flux changes sign around 13 UTC, about 2

hrs after sunrise, and increase in magnitude consistently as insolation increases.
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Figure 6.1: 24 April 2018 Meteogram from the Washington Mesonet at KAEFS.

The vertical red line represents the beginning of civil twilight, and the vertical

black dashed lines are the first and last CopterSonde flights of the day. Top left is

Temperature (◦C; red) and dewpoint temperature (◦C; green); top right is pressure

(hPa); bottom left is wind speed (m s−1) and direction (◦); and bottom right solar

radiation (W m−2).

The relative humidity sensors on the CopterSonde for this case were functional,

but not necessarily representative due to their age and number of missions flown.

However, their composite mixing ratio results (Figure 6.4) show similar trends

of stability and mixing as potential temperature. One notable feature apparent

starting at 13 UTC is a large increase in low-level moisture coincident with the

time dew had mostly evaporated from the surface. This is reflected in large positive

latent heat fluxes at the same time (Figure 6.5). Shortly thereafter, values decrease

towards negative as the moisture at the surface decreases, possibly from a larger-

scale downdraft from the entrainment zone. Latent fluxes then increase towards
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Figure 6.2: 24 April 2018 potential temperature shaded and contoured in time-

height coordinates. Several features are present of a classic PBL morning transi-

tion, including: stable surface layer directly after sunrise with residual layer atop;

inversion height grows exponentially with time; and a well-mixed layer by 15 UTC.

their maximum observed values around 1420 UTC in conjunction with a more

rapid expansion of the mixed surface layer.
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Figure 6.3: 24 April 2018 sensible heat flux (shaded) and potential temperature

(contoured). Sensible heat fluxes are weakly negative in early morning. Negative

fluxes follow the top of the inversion, representing the entrainment zone. Surface

heat fluxes increase in time to strongly positive by 15 UTC.
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Figure 6.4: 24 April 2018 mixing ratio shaded and contoured. Exponential increase

in altitude of the 7.0 g/kg isohume with time as boundary layer expands. Strong

surface moisture increase starting 13 UTC and subsequent decrease an hour later

as the moisture is mixed out.

73



Figure 6.5: 24 April 2018 latent heat flux (shaded) and specific humidity (con-

toured). Strong fluxes at 13 UTC as dew and fog in the region evaporated, and

subsequent decrease at 14 UTC as moisture from aloft is transported downwards.

At 1430 UTC, another positive flux profile with a maximum at the top of the

entrainment zone, which turns negative again by 15 UTC with further mixing.
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6.3.2 18 October 2017

The morning of 18 October 2017 was clear, humid, and calm, not unlike the morn-

ing of April 24 described previously. Civil twilight began at 1214 UTC. However,

one key difference was the presence of a residual low level jet with winds of 20–

25 m s−1 at 400–500 m AGL. While surface winds were initially calm at the sur-

face (around 2 m s−1) after sunrise, momentum rapidly mixed downward starting

at 14 UTC when surface winds nearly quadrupled in just an hour (Figure 6.6).

Agreement between the CopterSonde and Washington Mesonet observations were

generally good for the duration of the observed timeframe (Figure 6.7).

Figure 6.6: 18 October 2017 time series graph of data from the Washington

Mesonet site. Red and black vertical lines denote same as in Figure 6.1. Simi-

lar to the case from 24 April, the morning was humid after sunrise and dewpoints

stagnated after 14 UTC with mixing. There is a discontinuity in wind speed and

direction at 14 UTC as momentum is rapidly transferred downwards.

The transition in potential temperature (Figure 6.8) is also similar to the clas-

sical model, with a stably-stratified layer persisting until about 1430 UTC when
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Figure 6.7: First CopterSonde profile from 12:26 UTC on 18 October 2017 (left)

in comparison to the 12 UTC sounding launched from KOUN just 30 km away

(right). The black, red, and green stars at the base of the CopterSonde profile

represent 2 m and 9 m temperature and 2 m dewpoint temperature measurements,

respectively, from the Washington Mesonet tower closest to the profile time, which

are in excellent agreement with CopterSonde temperature and dewpoint. The red

box on the KOUN sounding represents the approximate same range of pressures

as the CopterSonde flight, which indicates a similar strength in thermal inversion

the boundary layer seems to expand rapidly. A mixed layer from the surface to

300 m persists for the remainder of the time period, with a considerably stable

region directly above.

The trends in estimated vertical sensible heat fluxes are not necessarily as

straightforward (Figure 6.9). Sensible heat fluxes begin weakly negative and

quickly transition to positive within half an hour, around 13 UTC. Afterwards,

the column transitions back and forth from positive to negative several times until

1430 UTC. Because of the strong winds present aloft, it is possible this is a result
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Figure 6.8: 18 October 2017 potential temperature as measured by the 18 rwUAS

profiles shaded and contoured. Strongly stable surface layer gives way to well-

mixed PBL starting around 1430 UTC. Appreciably stable zone exists at 400 m

AGL atop mixed layer after the rapid transport downward of momentum due to

vertical mixing.

of observing large-scale rising and sinking motion as mechanical turbulence pro-

duction is spread throughout the PBL. This hypothesis is supported by the abrupt

change from 2 m s−1 to 5 m s−1 in wind speeds at 14 UTC (Figure 6.6) signifying

rapid downward transport of momentum in conjunction with the strongly negative

sensible heat fluxes at this time. Afterwards, the transition proceeds similar to the

previous case, with positive sensible heat fluxes from the surface to the top of the

inversion, where fluxes change sign due to downward entrainment.

Mixing ratio (Figure 6.10) also depicts a similar PBL transition, notably with

strong stratification in the early morning at both the surface to 200 m and above

500 m AGL. These regions converge atop a surge in moisture around 1430 UTC,
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Figure 6.9: 18 October 2017 sensible heat flux (shaded) and potential temperature

(contoured) as measured from the 18 rwUAS profiles. Alternating positive and

negative heat fluxes from 1300 – 1430 UTC possibly due to alternating updrafts

and downdrafts in vertical mixing. Strong negative fluxes at 14 UTC coincident

with downward transport of momentum concentrated at top of the inversion layer.

Positive surface fluxes at 15 UTC and subsequent well-mixed layer, with negative

fluxes atop inversion implying entrainment zone.

after which a well-mixed layer extends from the surface to 300 m AGL. This pulse

of moisture is almost identical to the one observed in the previous case around the

same time after sunrise.

Latent heat fluxes on this day as calculated from the potential temperature

observations (Figure 6.11) tended to oscillate between positive and negative until

14 UTC, when these fluxes increased to strongly positive in conjunction with the

rapid moistening of the layer and mixing down of momentum. The sign of latent

heat fluxes tended to oppose that of sensible heat fluxes for the first few hours
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Figure 6.10: 18 October 2017 mixing ratio measured by the rwUAS profiles con-

toured and shaded. Strong stratification from the surface to 200 m AGL and

another zone of stratification from 500–700 m. These regions ascend and descend,

respectively, until they converge around 1430 UTC with coincident pulse in surface

moisture. There is a well-mixed layer afterwards with stratification above.

following sunrise (Figure 6.12). This opposition was most significant at 14 UTC

where sensible heat fluxes are strongly negative in accordance with the downward

momentum flux, whereas latent heat fluxes are strongly positive, close to around

the time dew and fog evaporated at the surface. Both of these change sign again

shorty thereafter as the PBL expanded rapidly.
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Figure 6.11: 18 October 2017 latent heat flux (shaded) and specific humidity (con-

toured) measured from the rwUAS profiles. Weak flux magnitudes after sunrise

until 14 UTC coincident with moisture pulse, and subsequent negative fluxes as

moisture is mixed down with vertical mixing.
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Figure 6.12: 18 October 2017 sensible (red) and latent heat flux (blue) vertical

profiles for each analysis timestep. Often times, these two mechanisms counteract

one another. This is especially apparent in the 10th panel (2.16 hrs after civil

twilight), which is coincident with the downward transport in sensible heat flux

and momentum but surge in moisture from the surface. These both change signs

again by the 12th panel (2.58 hrs), likely when vertical mixing has increased in

depth.
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6.3.3 Discussion

Given the results from 24 April that is representative of other cases not discussed, it

appears that the method of estimating fluxes from Bonin et al. (2012) is reasonable

and applicable for rwUAS when the underlying assumptions are in place. Sensible

heat fluxes from this day closely agree with observations and simulations in the

literature, and latent heat fluxes appear reasonable even with their associated

caveats.

Evaluation of 18 October is less certain, namely because the presence of strong

flow aloft is inconsistent from the algorithm’s assumption of homogeneity and

zero wind shear. Although the resulting fluxes do not follow the trend of a typical

morning PBL evolution, it is possible to infer physical mechanisms associated with

specific features. There appears to have been a large downdraft around 14 UTC

which acted to transport momentum and sensible heat downwards from the top

of the inversion layer, which was opposed by an upward transport of latent heat.

By 1430 UTC, the opposite end of this vertical circulation was observed with a

reversal of the sensible and latent heat fluxes.

While these explanations seem to adequately describe the observations, it is

also within reason that these flux estimates are prone to errors. The method of

calculation is highly sensitive to errors in measurements, and visual inspection

showed an appreciable amount of noise in the rate of change profiles (Figure 6.12)

with subjectively-chosen levels of assumed zero flux. Data in this study were

not smoothed after post-processing the raw observations, and doing so could po-

tentially lead to improved results. Future plans for evaluating this method will

compare similar days involving low level jets by also incorporating surface flux

station data as validation.
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6.4 Chapter Conclusions

A novel method of estimating vertical sensible and latent heat fluxes using rwUAS

was performed over the period of September 2017 to April 2018 in central Ok-

lahoma using the CopterSonde rwUAS developed by CASS. This method, first

suggested by Deardorff et al. (1980) and implemented by Bonin et al. (2012) using

a fixed-wing UAS, involves the rate of change in potential temperature and spe-

cific humidity at each level between consecutive profiles (equations (6.3) and (6.4)).

When the PBL represented negligible horizontal advection and weak mean vertical

winds, this method produced results that align well with theory: entrainment was

the primary driver of PBL heating for several hours after sunrise, and an explicit

entrainment zone was evident. Observed latent heat fluxes reflected moisture from

surface evaporation transported vertically through the PBL.

Even during conditions when the method’s assumptions were not necessarily

met, this method provides insight to mixed-layer processes occurring during the

morning transition. Large increases in momentum were collocated with increases

in sensible heat flux, and decreases in latent heat flux. More data will need to

be collected under similar conditions to determine if these features are physical or

resultant from inconsistencies between measurements and/or invalid assumptions.

Overall, this method appears to have merit as a tool to diagnose PBL processes

across local and nonlocal scales. By incorporating observations from other ground-

based stations (eddy covariance station, DL, etc.), we may be able to gain further

insights into how turbulence drives boundary layer growth and decay.
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Chapter 7

Conclusions and Remarks

Given the limitations of present observational networks, researchers are experi-

menting with UAS as a method to bridge the data void in the lower atmosphere.

Development of unmanned aircraft for this application has taken advantage of tech-

nological advancements in manned research aircraft, so several groups have focused

efforts on fixed-wing UASs. These systems can cover large horizontal distances with

several hours of flight duration while utilizing fast-response sensors and have al-

ready shown great promise for applications including turbulence characterization,

wind energy forecasting, convective storm environmental sampling, and trace gas

plume identification. Even more recently, rotary-wing UAS are being realized as

a viable complement to fwUAS, namely for their takeoff and landing procedures

requiring little human intervention. Multicopters typically have shorter maximum

flight durations than fwUAS, but their simplified operations have the advantage

of being able to perform missions rapidly in succession or even potentially operate

unattended.

Realizing the potential for UASs to reshape the state of atmospheric sciences,

the NSF, NOAA, and OU VPR have supported CASS at OU to establish a foun-

dation for conducting research in this field. By capitalizing on the strengths in

atmospheric physics, engineering, and aviation at OU required for this mission,

CASS has made meaningful strides in the development of UASs for atmospheric
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research. This study has detailed the multi-faceted approach to developing rwUASs

for PBL profiling along with results from several applications.

7.1 Summary

With the objective to design and implement a rotay-wing UAS for vertical ther-

modynamic and kinematic profiling, efforts were focused into three main steps:

1. select a sensor package that offers high quality measurements out of the box

and calibrate them to determine their reliabilities; 2. integrate these sensors with

a rwUAS, characterize their new responses, and develop a method of estimating

horizontal winds; and 3. evaluate the quality of measurements by collecting real-

world observations with scientific objectives. The results from these objectives are

as follows:

1. The iMet-XF sensors were advertised to be within NOAA standards, which

was verified when calibrated in an Oklahoma Mesonet environmentally con-

trolled chamber and aspirated chamber on the NWC Mesonet tower. These

sensors were preferred over the Windsond package due to their onboard syn-

chronization and unified data stream.

2. Experiments identified that the iMet thermistors suffered from self-heating

when not properly aspirated, and that it is possible to obtain reliable temper-

ature measurements when using the propeller wash as aspiration. A rwUAS

introduces several sources of error, such as heating from the motors in addi-

tion to compressional and frictional heating from the propeller tips. Place-

ment of temperature sensors 10 cm underneath the propeller and one quarter

its length from the tip can mitigate these biases. Furthermore, a statisti-

cal model for estimating wind speeds using Euler angles derived from the
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rwUAS’s autopilot was developed and produced measurements close to the

NOAA specifications.

3. The CopterSonde was tested during the EPIC field campaign in May of 2017,

and proved capable of providing reliable measurements in pre-convective en-

vironments which were relayed to forecasters at the NWS. This campaign

greatly streamlined operations in the field by improving ground station tech-

nology, communication between team members, and visualization of data.

Additionally, the CopterSonde was used for collecting measurements de-

tailing the structure of the atmosphere during morning PBL transitions

at KAEFS. These measurements validated well against the nearby Mesonet

tower and KOUN soundings, and usually agreed with the conceptual model

of the diurnal PBL cycle. A method for estimating vertical heat flux profiles

was also evaluated using these collected data, and results are consistent with

those in the literature provided conditions of homogeneity and weak winds

are met. Results from days not meeting these criteria still provide merit

to the algorithm, which shows promise for future studies using rwUAS to

measure PBL processes.

Through a systematic approach to the challenge of unifying the disciplines of

engineering, physics, and meteorology, this study has demonstrated that rwUASs

can be successfully optimized to bridge the gap in lower atmospheric observations

identified by the National Research Council (2009). With the results from this

study, future implementation of UAS technology shows potential to reshape the

landscape of atmospheric sensing and sampling.
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7.2 Future Work

The CopterSonde’s development has been insightful to the optimization of UAS

design for various applications. While its eight powerful motors enable it to with-

stand severe thunderstorm force winds, this design compromises flight endurance

due to its weight and size. In some cases, it may be advantageous to prioritize

endurance and mobility over maximum power output, for example when there

are fewer restrictions on maximum flight altitude. Realizing this, CASS has also

already designed and built a new generation of CopterSonde, termed the “Copter-

Sonde 2.0”. This rwUAS is significantly more compact and lightweight, is equipped

with real-time differential GPS, and new advancements in software development

allow it to stream data to a webpage in real-time for remote viewing. One of

the models also incorporates a ducted fan as a method to aspirate sensors more

consistently than using propeller wash, and has shown promising results.

The CopterSonde 2.0 was developed in preparation for CASS participation in

the Innovative Strategies for Observations in the Arctic Atmospheric Boundary

Layer (ISOBAR) field campaign. This project took place in February of 2018 on

the island of Hailuoto, Finland, located at 65◦ North latitude, and investigated

the winter stable boundary layer above sea ice using a fleet of UAVs. ISOBAR

participants included the University of Bergen (Norway), the Finnish Meteorolog-

ical Institute, the University of Tübingen (Germany), the University of Applied

Science Ostwestfalen-Lippe (Germany), and OU, the only group from outside of

Europe. These groups represent some of the world leaders in the field of UAS in

atmospheric sciences, as they have developed several advanced custom-built plat-

forms of their own for past field campaigns. Instrumentation for ISOBAR also

included two sodars, a Doppler lidar, a 10 m tower with 3 eddy covariance sta-

tions, and a 2 m tower with an eddy covariance station. In addition to the climate

of interest for meteorological purposes, the flight regulations in Finland were also
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advantageous to operations. Flights were allowed up to 6500 ft (1980 m) AGL,

and were permissible at night and beyond visual line of sight, none of which are

the case in the United States for typical small UAS applications. These rules al-

lowed flights through cloud decks and enabled continuous monitoring of the onset

of stable boundary layers overnight, which was crucial to the scientific objectives.

During intensive operational periods (IOPs), CASS performed continuous vertical

profiles with the CopterSonde 2.0 launching from the sea ice in proximity to the

instrumented towers. IOPs typically lasted the whole night, so teams would adhere

to schedules of a few hours flying followed by a few hours of rest. In between these

IOPs, the CASS team experimented with two other fixed-wing aircraft designed

specifically for photogrammetry and carbon dioxide measurements, respectively.

Overall, the campaign was largely successful. Numerous international groups com-

bined expertise and collected valuable data in extremely inhospitable conditions.

The experiences by the CASS team significantly improved operational capabilities

with the new designs of platforms performing beyond expectations. Successful op-

erations in flight conditions not experienced or allowed in the United States should

assist in the confidence of the regulatory agencies and ease the transition of in-

creased UAV activity in the national airspace. The data collected are currently

undergoing quality control by the participating members, and their future analysis

is highly anticipated.

Development of even newer generations of CopterSonde is also ongoing. A

new experimental version combining the strengths of the two variations on the

CopterSonde 2.0 is on pace to be completed for a field campaign in July 2018.

This campaign includes members of the International Society for Atmospheric

Research using Remotely Piloted Aircraft (ISARRA) who will be combining efforts

to sample the atmosphere in the San Luis Valley in Southern Colorado. This region

is at an elevation of about 7500 ft above sea level and surrounded by mountains
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rising almost a mile above the valley floor to the North, East, and West. This

complex terrain provides a great opportunity to examine drainage flows, boundary

layer transitions, convection initiation, trace gas, and aerosol concentrations above

farmland, grassy plains, rivers, and sand dunes. This large collective effort should

prove to be an interesting case study that will continue to demonstrate the utility

of UAS in atmospheric sciences.

Presently, CASS’s most significant long-term project is known as the 3D Mesonet.

This concept begins with the utility of mesoscale surface observational networks

like the Oklahoma Mesonet, and addresses their limitations in vertical extent by

integrating fully autonomous, unattended vertically profiling rwUAS at each site.

Success in this implementation would redefine the standard for observational net-

works, providing an entire volume of thermodynamic and kinematic data across

the entire state of Oklahoma with mesoscale resolution. Access to these obser-

vations will require innovations in data visualization techniques, and can provide

forecasters with new perspectives of weather features like fronts and drylines. The

potential benefits of the 3D Mesonet are immense across several disciplines, but

the infrastructure required for its implementation is almost equally as large. Not

only do the systems have to provide reliable measurements, it must be hardened

enough to do it regularly and consistently for long periods of time in varying condi-

tions. An unattended system would require a means to recharge batteries quickly,

likely facilitating wireless charging technology inside of the automated shelter for

the UAV. The link from aircraft to ground station must be robust and have fail-

safes to prevent loss of communication. This link must also maintain a level of

encryption to prevent unauthorized control of the UAV. The ground stations will

require a streamlined interface and upload protocol for uniform data quality across

sites at a central data server, which must also be accessible to the public in near-

real time after quality control and post processing. To maintain a safe airspace
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while operating unattended, safety features like a detect and avoid radar will scan

the surrounding airspace for obstacles and relay information to the UAV to avoid

collisions. The systems will also be outfitted with a radio transponder to alert

other manned aircraft of its position at all times. These measures are just some of

those required to fill the role of human operators during normal operations, and

as such will take several years worth of research and development. Fortunately,

the lessons learned and experiences gained through the development of the original

CopterSonde in this study have already laid significant foundations for turning this

concept into a reality.
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and H. Kunstmann, 2017: Simultaneous multicopter-based air sampling and
sensing of meteorological variables. Atmos. Meas. Tech., 10 (8), 2773–2784,
doi:10.5194/amt-10-2773-2017.

Charba, J., 1974: Application of gravity current model to analysis of squall-line
gust front. Mon. Weather Rev., 102 (2), 140–156, doi:10.1175/1520-0493(1974)
102〈0140:AOGCMT〉2.0.CO;2.

Chilson, P., A. Gleason, B. Zielke, F. Nai, M. Yeary, P. Klein, and W. Shalamunec,
2009: SMARTSonde: A small uas platform to support radar research. AMS 34th
Conf. Radar Meteor., Boston, MA. Am. Meteorol. Soc.

Chilson, P. B., J. Jacob, S. Smith, and A. L. Houston, 2016: CLOUD-MAP: Ad-
vancing meteorology and atmospheric physics through unmanned aerial systems.
96th Annual Meeting, New Orleans, LA, American Meteorological Society, 4.1,
https://ams.confex.com/ams/96Annual/webprogram/Paper290287.html.

Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimina-
tion of mesoscale convective system environments using sounding observations.
Weather and Forecasting, 22 (5), 1045–1062, doi:10.1175/WAF1040.1.

92



de Boer, G., and Coauthors, 2016: The Pilatus unmanned aircraft system for
lower atmospheric research. Atmos. Meas. Tech., 9 (4), 1845–1857, doi:10.5194/
amt-9-1845-2016.

Deardorff, J. W., G. E. Willis, and B. H. Stockton, 1980: Laboratory studies of
the entrainment zone of a convectively mixed layer. Journal of Fluid Mechanics,
100, 41–64.

Faccani, C., and Coauthors, 2009: The impacts of AMMA radiosonde data on the
french global assimilation and forecast system. Weather and Forecasting, 24 (5),
1268–1286, doi:10.1175/2009WAF2222237.1.

Fedorovich, E., and Coauthors, 2004: Entrainment into sheared convective bound-
ary layers as predicted by different large eddy simulation codes. 16th Symp. on
Boundary Layers and Turbulence, American Meteorological Society, 4.7.

Garratt, J., 1992: The Atmospheric Boundary Layer. 1st ed., Cambridge Univer-
sity Press, 316 pp.

Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night
field project. Bulletin of the American Meteorological Society, 98 (4), 767–786,
doi:10.1175/BAMS-D-15-00257.1.

Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanal-
ysis environments and collocated radiosonde observations. Journal of Applied
Meteorology and Climatology, 53 (3), 742–751, doi:10.1175/JAMC-D-13-0263.1.

Gioli, B., F. Miglietta, F. P. Vaccari, A. Zaldei, and B. De Martino, 2006: The
sky arrow ERA, an innovative airborne platform to monitor mass, momentum
and energy exchange of ecosystems. Ann. Geophys.-Italy, 49 (1), URL http:
//www.ann-geophys.net/49/109/2006/.

Greene, B. R., A. R. Segales, S. Waugh, S. Duthoit, and P. B. Chilson, 2018:
Considerations for temperature sensor placement on rotary-wing unmanned air-
craft systems. Atmospheric Measurement Techniques Discussions, doi:10.5194/
amt-2018-65.

Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A.
Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for bound-
ary layer and cloud research. J. Atmos. Ocean. Tech., 18 (3), 376–393, doi:
10.1175/1520-0426(2001)018〈0376:HRDLFB〉2.0.CO;2.

Hardesty, R. M., and R. M. Hoff, 2012: Thermodynamic profiling technologies
workshop report to the national science foundation and the national weather
service. Tech. Rep. NCAR/TN-488+STR, National Center for Atmospheric Re-
search. doi:10.5065/D6SQ8XCF.

93



Houston, A. L., B. Argrow, J. Elston, J. Lahowetz, E. W. Frew, and P. C. Kennedy,
2012: The Collaborative Colorado–Nebraska Unmanned Aircraft System Ex-
periment. Bulletin of the American Meteorological Society, 93 (1), 39–54, doi:
10.1175/2011BAMS3073.1.

Hubbard, K., X. Lin, C. Baker, and B. Sun, 2004: Air temperature comparison
between the MMTS and the USCRN temperature systems. J. Atmos. Ocean.
Tech., 21 (10), 1590–1597, doi:10.1175/1520-0426(2004)021〈1590:ATCBTM〉2.
0.CO.

Jacob, J. D., P. B. Chilson, A. L. Houston, and S. W. Smith, 2018: Consider-
ations for atmospheric measurements with small unmanned aircraft systems.
Atmosphere, 9 (7), doi:10.3390/atmos9070252, URL http://www.mdpi.com/
2073-4433/9/7/252.

Koch, S. E., R. Ware, H. Jiang, and Y. Xie, 2016: Rapid mesoscale environmental
changes accompanying genesis of an unusual tornado. Weather and Forecasting,
31 (3), 763–786, doi:10.1175/WAF-D-15-0105.1.

Konrad, T. G., M. L. Hill, J. H. Meyer, and J. R. Rowland, 1970: A small, radio-
controlled aircraft as a platform for meteorological sensors. Applied Physics Lab
Technical Digest, 10, 11–19.

Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Mar-
quis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 june
2009 during VORTEX2. Monthly Weather Review, 141 (4), 1157–1181, doi:
10.1175/MWR-D-12-00056.1.

Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and
Forecasting. American Meteorological Society.

Lanzante, J. R., S. A. Klein, and D. J. Seidel, 2003: Temporal homogenization of
monthly radiosonde temperature data. part i: Methodology. Journal of Climate,
16 (2), 224–240, doi:10.1175/1520-0442(2003)016〈0224:THOMRT〉2.0.CO;2.

Lapworth, A., 2006: The morning transition of the nocturnal boundary layer.
Boundary-Layer Meteorology, 119 (3), 501–526, doi:10.1007/s10546-005-9046-0,
URL http://dx.doi.org/10.1007/s10546-005-9046-0.

Lothon, M., and Coauthors, 2014: The BLLAST field experiment: boundary-layer
late afternoon and sunset turbulence. Atmos. Chem. Phys., 14 (20), 10 931–
10 960, doi:10.5194/acp-14-10931-2014.

Luers, J. K., and R. E. Eskridge, 1998: Use of radiosonde temperature data
in climate studies. Journal of Climate, 11 (5), 1002–1019, doi:10.1175/
1520-0442(1998)011〈1002:UORTDI〉2.0.CO;2.

94



Lundquist, J. K., and Coauthors, 2017: Assessing state-of-the-art capabilities for
probing the atmospheric boundary layer: the XPIA field campaign. B. Am.
Meteorol. Soc., 98 (2), 289–314, doi:10.1175/BAMS-D-15-00151.1.

Markowski, P. M., 2016: An idealized numerical simulation investigation of the
effects of surface drag on the development of near-surface vertical vorticity in
supercell thunderstorms. Journal of the Atmospheric Sciences, 73 (11), 4349–
4385, doi:10.1175/JAS-D-16-0150.1.

Markowski, P. M., and G. H. Bryan, 2016: Les of laminar flow in the PBL: A
potential problem for convective storm simulations. Monthly Weather Review,
144 (5), 1841–1850, doi:10.1175/MWR-D-15-0439.1.

McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale
environment: A technical update on the Oklahoma Mesonet. J. Atmos. Ocean.
Tech., 24 (3), 301–321, doi:10.1175/JTECH1976.1.

National Research Council, 2007: Earth Science and Applications from Space: Na-
tional Imperatives for the Next Decade and Beyond. National Academies Press,
456 pp.

National Research Council, 2009: Observing weather and climate from the ground
up: A nationwide network of networks. National Academies Press.

Neumann, P. P., and M. Bartholmai, 2015: Real-time wind estimation on a micro
unmanned aerial vehicle using its inertial measurement unit. Sensor Actuat. A-
Phys., 235, 300–310, doi:10.1016/j.sna.2015.09.036.

Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The char-
acteristics of numerically simulated supercell storms situated over statically
stable boundary layers. Monthly Weather Review, 139 (10), 3139–3162, doi:
10.1175/MWR-D-10-05087.1.

Palomaki, R. T., N. T. Rose, M. van den Bossche, T. J. Sherman, and S. F.
De Wekker, 2017: Wind estimation in the lower atmosphere using mul-
tirotor aircraft. J. Atmos. Ocean. Tech., 34 (5), 1183–1191, doi:10.1175/
JTECH-D-16-0177.1.

Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-
storm soundings. Monthly Weather Review, 142 (2), 508–529, doi:10.1175/
MWR-D-13-00167.1.

Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of
the stable nocturnal boundary layer. B. Am. Meteorol. Soc., 83 (4), 555–581,
doi:10.1175/1520-0477(2002)083〈0555:CACIOT〉2.3.CO;2.

95



Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convec-
tion initiation over the central and southern great plains during the warm season.
Monthly Weather Review, 145 (5), 1615–1639, doi:10.1175/MWR-D-16-0340.1.

Reuder, J., P. Brisset, M. Jonassen, M. Müller, and S. Mayer, 2009: The small
unmanned meteorological observer SUMO: A new tool for atmospheric boundary
layer research. Meteorologische Zeitschrift, 18 (2), 141–147.
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