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Abstract 

The identification and quantification of DNA shed into aqueous environments 

can be used to estimate site occupancy and population density of various taxa. It is often 

easier to sample for environmental DNA (eDNA) than use traditional surveying 

techniques, and results of eDNA analyses are often more accurate. The sensitivity and 

efficiency of eDNA sampling makes it a useful tool for conservation biology. Detection 

of eDNA is particularly useful for aquatic species that are rare or difficult to survey, 

though it may have promising applications for less aquatic species as well. I tested the 

hypothesis that eDNA can be used to detect the presence of Canada geese, a semi-

aquatic bird species. I screened pond samples from central Oklahoma for the Canada 

goose NADH dehydrogenase subunit 2 (ND2) mitochondrial gene using a species-

specific primer-probe with quantitative, real-time PCR (qPCR). Canada goose eDNA 

was detected at all ponds sampled, including those where Canada geese were absent 

during sampling. eDNA detection rate increased as goose abundance increased and was 

unaffected by other environmental variables (e.g. temperature, pH, water flow). These 

results may be due to increased eDNA production where Canada geese are more 

abundant. The pond environments were relatively homogenous and did not significantly 

affect eDNA presence and detection. Overall, eDNA can be used to detect Canada 

goose DNA in ponds and potentially to monitor other bird species which are rare, 

endangered, cryptic, or difficult to survey (e.g. black rail, Laterallus jamaicensis). Used 

in conjunction with conventional surveying techniques, eDNA can aid in the 

conservation of rare and threatened species across a wide range of taxa, including semi-

aquatic birds. 
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Introduction 

Ongoing global decline in biodiversity is of great concern (Hull 2015). 

Accelerating climate change threatens biodiversity and is detrimental to ecosystem 

functioning and ecological and human health (Cardinale et al. 2012; Ceballos et al. 

2017). Effective conservation efforts are critical to slow or halt the loss of biodiversity. 

A significant priority in biodiversity conservation is accurately assessing occurrence 

and distribution of species, which depends on reliable species monitoring techniques 

(Margules & Pressey 2000; Hopkins & Freckleton 2002). For conservation biologists 

and policy-makers to make scientifically informed decisions to conserve, manage, and 

enjoy the planet’s life and resources, researchers must first understand the planet’s 

diversity and distribution patterns (Martin 2004; Wheeler et al. 2004). This knowledge 

is relevant for a variety of disciplines, including conservation biology, ecology, 

evolutionary biology, and biogeography (Ficetola et al. 2008). 

A persistent decline in the number of expert taxonomists, combined with 

uncertainty and cost associated with field survey techniques, slows the creation of 

accurate species distribution maps for use in effective biodiversity conservation (Dayrat 

2005). Since the 1950s there has been a decline in systematics and taxonomic 

researchers. This decline has resulted in similar declines in the description of discovered 

species, documentation of population sizes and species distributions, the discovery of 

previously unknown species, and the assessment of natural history and ecology 

(Hopkins & Freckleton 2002; Wheeler 2014). In addition, species which are locally 

scarce and occupy small ranges are easily overlooked by taxonomists, though these 

species are disproportionately more likely to be threatened with extinction than 
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widespread, locally-abundant species (Pimm et al. 2014). This could lead to focusing 

conservation efforts on less threatened and more easily identifiable taxa while 

neglecting species of greater conservation concern (Hopkins & Freckleton 2002; 

Wheeler 2014). In addition, survey methods which depend primarily on visual counting 

are often costly and effort-intensive, have low detection probability, are often be 

seasonally restricted, and may increase the risk of harming sensitive species (Wilcox et 

al. 2013; Turner et al. 2014). Failure to detect threatened native species or over-

estimates of species density could lead to mis-management of critical conservation 

areas, which could be detrimental to those species’ persistence and impact their 

functional roles within ecosystems. To improve conservation management strategies in 

an effort to preserve global and local biodiversity, more efficient methods for assessing 

biodiversity are needed. Technological advances in genetic methods and computation 

open new opportunities for species surveys that rely less on detection by individual 

observers and their skill in field identification. 

One such advance in species identification involves DNA taxonomy, which 

identifies and differentiates species using DNA sequences. Of particular interest is the 

detection and identification of environmental DNA (eDNA), or DNA extracted from 

environmental samples (e.g. water, soil, air) without physically capturing the target 

organism (Wilcox et al. 2013; Thomsen & Willerslev 2014; Turner et al. 2014). The 

development of survey methods that detect eDNA in water samples to assess species’ 

presence and abundance has garnered substantial interest in the last decade due to its 

wide availability and efficiency for species monitoring (Takahara et al. 2013). 

Macrofaunal eDNA typically originates from epidermal cells, saliva, urine, blood, 



3 

mucous, reproductive fluids, or feces and persists in the environment for variable 

amounts of time (e.g. days to thousands of years) depending on climate and an array of 

environmental factors, such as water flow, temperature, pH, and sediment load and type 

(Bohmann et al. 2014; Rees et al. 2014; Thomsen & Willerslev 2014). Used for 

detection of a single species, eDNA can provide information about species presence or 

absence, distribution, and, in some cases, abundance, density, or biomass (Ficetola et al. 

2008; Thomsen et al. 2012; Takahara et al. 2013; Doi et al. 2015). A multi-species 

approach to eDNA using metabarcoding can assess current or historic species and 

community diversity at a site (Evans et al. 2016). Used in conjunction with molecular 

analyses (e.g. DNA barcoding or metabarcoding), eDNA makes rapid and reliable 

species detection possible without the need for visual confirmation or physical capture 

of the target organism (Thomsen & Willerslev 2014; Davy et al. 2015). The detection of 

eDNA in species monitoring programs is therefore of particular interest for organisms 

that are difficult to survey, such as invasive, endangered, or cryptic species, and species 

for which accurate distribution data may be lacking. 

Because all living organisms shed DNA into their environment, eDNA can be a 

useful tool to study various taxa in an array of habitat types. To date, eDNA has been 

most widely used to detect microorganisms in soil, ice cores, permafrost, and in fresh 

and sea water (Thomsen & Willerslev 2014). Since 1991, eDNA has also been used to 

study macro-organisms in a variety of environments, including human forensics and 

agricultural transgenics. It was not until 2008 that eDNA was used to detect aquatic 

macrofaunal (Ficetola et al. 2008), and since then most of these studies have focused on 

the detection of strictly aquatic organisms (e.g. amphibians, fish), including threatened 
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or invasive species (Takahara et al. 2013; Wilcox et al. 2013; Rees et al. 2014; Thomsen 

& Willerslev 2014; Turner et al. 2014; Davy et al. 2015). Aquatic species monitoring 

using eDNA was first applied by Ficetola et al. (2008) to detect the presence of the 

invasive American bullfrog (Lithobates catesbeianus) in ponds in France. Since then, 

eDNA has been used to investigate increasingly complex biodiversity questions for 

aquatic species. Some studies have used eDNA to evaluate the distribution of invasive 

fish species in ponds (Takahara et al. 2013), estimate aquatic species’ abundance and 

biomass (Takahara et al. 2012; Doi et al. 2015), quantify fish and amphibian species 

diversity using a multi-species approach (Evans et al. 2016), characterize entire faunas 

using next-generation sequencing (Rees et al. 2014), and investigate the effects of 

environmental conditions on eDNA degradation, availability, and detectability 

(Stoeckle et al. 2017). Because of its broad range of applications and potential 

generalizability across many taxa, eDNA has potential for use in many fields of study, 

including paleontology, ecology, disease ecology, parasitology, and conservation 

biology (Thomsen & Willerslev 2014; Bass et al. 2015; Huver et al. 2015). Further 

research will continue to illuminate the monitoring technique’s full range of 

applications. 

Species detection using eDNA involves collecting, extracting, amplifying, and 

sequencing DNA. The three primary approaches to species detection with eDNA are 

interrogation of: 1) a single known DNA sequence from a target species using species-

specific primers; 2) a single unknown sequence of an unidentified species using more 

general primers followed by a BLAST (Basical Local Alignment Search Tool) search to 

identify the unknown sequence by finding regions of similarity between it and 
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biological sequences in a database (NCBI 2018); 3) many unknown sequences 

simultaneously by pooling amplicons and performing deep sequencing followed by a 

BLAST search (Bohmann et al. 2014). Many eDNA studies have used DNA barcoding 

to target a single species’ DNA in environmental samples, though there is great 

potential for next-generation sequencing to recover sequences of thousands of 

specimens from a single water sample, providing a more complete measure of 

community biodiversity over time and space (Shokralla et al. 2012). 

Although eDNA has an array of potential uses in a variety of disciplines, some 

studies have shown that such approaches may not be equally effective for all taxa (Davy 

et al. 2015). Organisms shed DNA into the environment at different rates, and factors 

such as the amount of time an animal spends in a particular environment (e.g. in water, 

on land, in the air, or underground), the organism’s behavior, and habitat preferences all 

affect the accumulation of eDNA (Davy et al. 2015). In addition, sampling method and 

environmental conditions (e.g. for water samples: pH, temperature, water flow, and 

sediment load and type) influence the persistence, due to DNA degradation, and 

detectability of eDNA (Strickler et al. 2015; Stoeckle et al. 2017; Tsuji et al. 2017; 

Seymour et al. 2018). It is therefore vital to determine optimal sampling methods to 

detect eDNA for a variety of taxa, the effects of environmental conditions on eDNA 

degradation and persistence, and the limitations of eDNA to detect various taxa in 

different environments in order to accurately interpret eDNA surveillance results 

(Barnes et al. 2014).  

Many recent studies have successfully used eDNA to detect aquatic macrofauna, 

such as turtles (Davy et al. 2015), frogs (Ficetola et al. 2008; Evans et al. 2016), 
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crayfish (Treguier et al. 2014), and fish (Takahara et al. 2013; Turner et al. 2014; Evans 

et al. 2016). Fewer studies have extended this surveying method to semi-aquatic species 

(e.g. some mammals, birds, and insects) to compare its use for taxonomic groups with 

different behaviors and habitat preferences than strictly aquatic species (Thomsen et al. 

2012). Thomsen et al. (2012) sampled for eDNA of six animal species representing 

various taxa (fish, amphibians, crustaceans, mammals, and insects), including the 

Eurasian otter, Lutra lutra, in a variety of aquatic environments in Europe (i.e. ponds, 

lakes, streams, and temporary pools) to determine the applicability of eDNA for a 

variety of freshwater species. All taxa were detected successfully – even those whose 

life history would seemingly make them difficult to detect with these methods – though 

at lower rates for two species (Eurasian otter and European weather loach, Misgurnus 

fossilis) in areas where they were not observed during sampling. For the otter, a 

decreased detection rate could be in part due to its semiaquatic lifestyle and large 

territorial range. In addition, the species often inhabits streams where water retention 

time is low and water volume is high (Thomsen et al. 2012). Nonetheless, this study 

demonstrates that eDNA of semi-aquatic species can be detected successfully and at 

sites where species presence was unconfirmed using visual surveys at the same level of 

effort. As eDNA research continues to develop and sampling procedures improve and 

become more standardized, eDNA may prove to be a valuable complement to 

conventional monitoring of even semi-aquatic taxa (Thomsen et al. 2012).  

Before eDNA can be used for monitoring semi-aquatic, or even terrestrial, taxa 

within a conservation context, further work is needed to determine the method’s 

reliability for detecting such species in water samples. Nonetheless, it has been 
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demonstrated that eDNA of semi-aquatic and terrestrial taxa can be detected in water 

samples. In addition to using eDNA to detect six target species, Thomsen et al. (2012) 

recovered eDNA of four species that live in close proximity to water, including the red 

deer (Cervus elaphus), wood pigeon (Columba palumbus), Eurasian coot (Fulica atra), 

and marsh warbler (Acrocephalus palustris). Though the Eurasian coot spends much of 

its time in aquatic environments, the other three species have much less interaction with 

water. This finding demonstrates that eDNA of semi-aquatic and even non-aquatic 

species can be detected in water, though the interpretation of these results may differ 

from those of strictly aquatic species (Ficetola et al. 2008; Thomsen et al. 2012). To 

date, the application of eDNA techniques to monitor semi-aquatic taxa has been 

minimal, and though birds have been detected positively using generic primers, no 

research has yet targeted bird species directly as the focal taxa to test the method’s 

generalizability. Therefore, the aim of my study was to evaluate the use of eDNA to 

detect a semi-aquatic bird species. Specifically, I tested the method’s ability to detect 

the Canada goose (Branta canadensis), an abundant, semi-aquatic bird species, and 

investigated the impact of goose abundance and environmental factors on eDNA 

detectability. 

The use of eDNA techniques for monitoring species has great potential to 

improve biodiversity assessments and aid in more effective conservation strategies. 

Though eDNA detection in water has been most widely used for aquatic species, it has 

potentially promising applications for monitoring semi-aquatic taxa, as well. Before 

applying this technique to conservation settings, it is useful to first determine whether 

eDNA can reliably detect the presence of a widespread and relatively abundant bird 
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species as a proof-of-concept. Because eDNA of three bird species was successfully 

detected in Thomsen et al. (2012), I predicted that Canada goose eDNA would be 

positively detected at ponds where Canada geese were present during sampling. In 

addition, I expected detection rate to increase with target species abundance and that 

environmental variables might affect eDNA detection rates among samples. To test 

these predictions, I took water samples and recorded environmental data at ponds, both 

with and without Canada geese present, in central Oklahoma. Ultimately, the results of 

my study have implications for the eDNA technique’s use in monitoring other semi-

aquatic bird species or taxa which are rare, cryptic, or difficult to survey, and especially 

for those of conservation concern. 
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Methods and Materials 

Study Species 

The Canada goose (Branta canadensis) is a common and abundant species in 

central Oklahoma and throughout much of the United States. Range-wide, Canada 

geese typically inhabit reservoirs, ponds, and rivers in temperate and tundra regions, 

wintering throughout most of the U.S. and in northern Mexico. They usually feed in 

pastures and grain fields (Baumgartner & Baumgartner 1992; Banks et al. 2004), though 

they have become common in urban parks and golf courses, as well (Reinking 2004), as 

is the case in Norman, Oklahoma, where water sampling took place. 

An important aspect of eDNA study designs that use DNA barcoding to 

distinguish between closely related species is the inclusion of outgroup (non-target) 

species with which to test the sensitivity and specificity of a primer-probe assay. I 

selected three closely-related outgroup species in the family Anatidae (ducks, geese, 

swans): mallard (Anas platyrhynchos), gadwall (Anas strepera), and cackling goose 

(Branta hutchinsii). Recent studies and phylogenies have shown these species to be 

appropriate outgroup lineages (Gonzalez et al. 2009; Ottenburghs et al. 2016). In 

addition, all three species co-occur with Canada geese in Oklahoma (Sullivan et al. 

2009) and are fairly common throughout the state, particularly during winter (Reinking 

2004). 

Canada geese, cackling geese, mallards, and gadwalls have occurred regularly in 

Oklahoma for at least the past century (Nice & Nice 1924; Sutton 1967; Wood & 

Schnell 1984). The cackling goose was not classified as a species distinct from the 

Canada goose until 2004 (Sibley 2004), and therefore it lacks a detailed historical 
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account in Oklahoma. Nonetheless, it is likely that cackling geese have long been 

common in the state; in 1967, George Miksch Sutton wrote of different subspecies of 

migratory and winter resident Canada geese (in the broad sense) in Oklahoma, with at 

least three subspecies of the Canada goose regularly migrating through Oklahoma. 

These different subspecies which Sutton hypothesized belonged to “two species rather 

than one,” included both the Canada and cackling goose (Sutton 1967). All four species 

have historically been common transients and winter residents from about mid-

September to early May throughout Oklahoma (Sutton 1967; Reinking 2004). In the last 

few decades the populations of resident and nesting Canada geese within the United 

States have grown 7.9% per year (Cleary et al. 2006). Canada geese and mallards have 

become common permanent residents of Oklahoma and now regularly breed throughout 

the state (Reinking 2004; Oklahoma Bird 2014; Reinking 2017).  

Historically, mallards were widespread and abundant, inhabiting reservoirs, 

marshes, and streams, and foraging in hay and grain fields (Sutton 1967; Baumgartner 

& Baumgartner 1992; Reinking 2004). Gadwalls are widespread though less common, 

foraging in grain fields and inhabiting ponds and the backwaters of reservoirs and rivers 

(Baumgartner & Baumgartner 1992). The cackling goose breeds near water on tundra 

(i.e. Canada, the Aleutian Islands, Alaska, etc.) and winters on inland lakes and marshes 

from British Columbia to California and east to western Louisiana and can be found 

throughout Oklahoma in winter (Banks et al. 2004; Sullivan et al. 2009). 
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Study Area 

Landscape of Oklahoma 

 Oklahoma is an ecologically diverse state consisting of flat to rolling plains, a 

range of soil types, six major rivers flowing from northwest to southeast, more than 200 

man-made lakes, and four distinct mountainous areas (Ozarks, Ouachitas, Arbuckles, 

and Wichitas; Baumgartner & Baumgartner 1992; Arndt 2003). Based on a natural 

vegetation map from Duck and Fletcher (1943), Cleveland and surrounding counties 

(where environmental sampling took place) are composed of tallgrass prairie, postoak-

blackjack oak forest (or cross-timbers), and bottomland forest (Hoagland 2004). 

Tallgrass prairie is the most extensive grassland type in Oklahoma and is composed 

primarily of big bluestem, little bluestem, Indian grass, and switchgrass; however, much 

of the state’s grasslands have been hayed, grazed, or converted (Hoagland 2004). The 

cross-timbers, the dominant habitat type in central Oklahoma, are a mixture of forest, 

woodland, tallgrass, and mixed-grass prairie vegetation, with post oak and blackjack 

oak species contributing up to 90% of the canopy cover and 50% of the basal area in 

cross-timber forests (Hoagland 2004). Bottomland forests occur along major rivers 

throughout Oklahoma, with vegetation associations varying widely from east to west 

(Hoagland 2004). 

Ponds of Central Oklahoma 

 I sampled a total of nine ponds - eight in Norman, Oklahoma, and one near Lake 

Overholser in Oklahoma City. Two of the ponds sampled (Summit Lake and Summit 2) 

in Norman were residential, catch-and-release fishing ponds (Summit Lakes 2018), 

another was on an apartment complex-owned golf course (The Links), one pond was on 
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the University of Oklahoma campus (Brandt Park), three were neighborhood ponds, and 

one pond (Route 66) was located at a public park next to Lake Overholser, a reservoir 

formed by a dam on the North Canadian River (or Oklahoma River) for use as a 

municipal water source. Most of the ponds lacked information about their use and 

source of water. All ponds were in developed areas, and at least part of the landscape 

surrounding all ponds included mowed grass and some trees (Figure 1; Table 1). 

 

 

Figure 1. Photographs of three ponds sampled for Canada goose eDNA. A) 

Sampling location at the Norman Community Dog Park pond; B) Coontail 

(Ceratophyllum demersum) was abundant at the pond at the Norman Community 

Dog Park; C) Northeast Lions Park in Norman, OK; D) Route 66 Park in 

Oklahoma City, OK. 
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Field Sampling 

Nine ponds were sampled for Canada goose eDNA between June and October 

2017. I observed Canada geese at six of the ponds during sampling, and all species 

except the gadwall were observed at a minimum of one sampling location. I performed 

all environmental sampling myself to standardize methods. I wore latex gloves during 

sampling to prevent contamination and collected samples using VWR sterile round wire 

sample bags (catalog number 82007-726), which remained sealed (i.e. sterile) until 

opening at each respective sampling point. For each pond I submerged a sterile bag 

filled with approximately 500mL distilled water under the pond surface near the shore 

for 30 seconds to serve as a negative control, which would indicate whether 

contamination occurred during transportation (Bohmann et al. 2014). I took eight 

environmental samples along the shore of each pond in a 4x2 fashion, which consisted 

of four points, 5 meters apart, in a line transect along the shore, with two samples per 

point at 1 and 2 meters from the edge of the shore (see Figure 2). At two sites (Links 

and Summit Lake) the water was too deep, or the substrate was too unstable, to sample 

safely two meters from the shore without a kayak. In these cases, I used an 8x1 

sampling regime instead, sampling at 8 points 5 meters apart and 1 meter in from the 

shore. 

I took a variety of measurements at each pond site and sampling point. I used a 

Garmin GPSMAP 64st to record GPS coordinates and elevation of each water body 

and, later, at each sampling point (n=8 per pond) prior to water collection. I described 

relative pond size (small, medium, large) in the field based on personal observations 

and later calculated pond area (m2) in Google Earth Pro. I conducted a 5-minute direct 
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counting survey of the target species (B. canadensis) prior to sampling, recording the 

number of birds, their general location (i.e. in water, on shore), and their proximity to 

the initial GPS point (i.e. <25m or >25 meters), and documented presence of outgroup 

species. At each sampling point, prior to water collection, I measured water temperature 

(°C), pH, conductivity (µS), and total dissolved solids (TDS, in ppt) using an ExTech 

probe. The ExTech probe did not tare properly for some measurements of TDS and 

conductivity, so these variables were omitted from analyses. A wind flow meter was 

inserted just below the water surface to approximate water flow (m/s). Samples were 

taken by dragging the bag through the water, about 5cm below the water surface. I 

walked along the dry shore between sampling points (1 – 4) to avoid disturbing the 

water and sediment. After sampling was completed, I recorded secchi depth (cm) of the 

water body as an indicator of turbidity. At one pond I collected a Canada goose fecal 

sample and mixed it with distilled water to create a fecal positive control. I stored all 

water samples in a cooler on ice in the field. When possible, I transported samples to the 

lab immediately after sampling for filtration; however, to prevent DNA degradation 

when immediate filtration was not possible, I stored samples in a refrigerator for up to 

25 hours or in a freezer until filtration was completed. Some eDNA degradation could 

have occurred in samples that were not filtered immediately (Thomsen et al. 2012; 

Stoeckle et al. 2017; Tsuji et al. 2017); however, correlation analyses revealed no 

significant effect of storage time prior to filtration on eDNA detection rates. 
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Water Filtration 

I performed water filtration in a fume hood in the pre-PCR room at the Sam 

Noble Museum. Most samples were filtered using 250mL Autofil 0.45µm High Flow 

PES top filters with a 66mm filter diameter, though some samples were filtered using 

500mL VWR 0.45µm 75mm PES filters, which filtered higher water volumes more 

rapidly than the Autofil filters (Figure 3). Negative control samples were often filtered 

first. I filtered a maximum of four samples at once using a four-way air splitter 

connected to the hood vacuum system to increase filtration speed. When possible, the 

entire sample volume (500 – 1000mL) was filtered, but for many samples the filter 

became clogged with pond sediment and biological material, preventing complete 

filtration. In these cases, once filtration stopped, I discarded any remaining unfiltered 

water. I cut each filter out of its plastic cup using sterilized forceps (soaked in Eliminase 

and rinsed with doubly distilled H20) and a disposable sterile #11 blade scalpel. I 

preserved each filter in its own cryotube filled with 95% ethanol at -20°C until 

screening. 

eDNA Filter Extraction Protocol 

Day 1: Scissors and forceps were rinsed, sterilized with DNA Eliminase (item 

number DE32330102), and rinsed twice more with RODI H2O in autoclaved beakers to 

prevent contamination between filters. Filter pipette tips were used to prevent 

contamination. I created a negative lab control by removing the filter paper from a 

sterile filter top, rinsing it in RODI H2O in an autoclaved beaker, and finally soaking it 

in EtOH until further use. About one-quarter of each filter was used for eDNA 

extraction, and the remainder was preserved at -20°C. I cut each quarter into halves and 
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Figure 2. The 4x2 sampling regime used to collect a total of eight water samples at 

each pond. Yellow stars indicate sampling location at each pond. Locations within 

ponds were based on accessibility and were usually near the target species where 

possible. The distance between each point was 5m along the shore. “A” samples 

were taken 1m from the shore, and “B” samples were taken 2 meters from the 

shore. (Goose image from https://www.vectorstock.com/royalty-free-

vector/canada-goose-vector-479739). 

 

 
Figure 3. A) Setup of four Autofil 0.45µm High Flow PES (polyethersulfone 

membrane) top filters connected to the fume hood vacuum system via a four-way 

air splitter. The left-most filter is a negative control. Sediment and biological 

material collected on the filters, and filtered water was discarded. Chambers were 

sterilized with Eliminase and reused. B) 500mL VWR 0.45µm 75mm PES filters 

were used for some samples. A sample with high sediment load, the fecal positive 

control, and a negative control are pictured. 

 

then into smaller pieces and placed them in two separate, sterilized microcentrifuge 

tubes. A SpeedVac was used to dry the tubes on low heat for about 20 minutes. I added 
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400µL Buffer ATL and 20µL Proteinase K (Qiagen DNeasy kit) to each 

microcentrifuge tube using filter pipette tips and then incubated the tubes in an 

Eppendorf ThermoMixer C at 500RPM and 55°C overnight.  

Day 2: I transferred all contents from the Day 1 microcentrifuge tubes into 

Qiashredder spin columns and collected the filtrate. I added 800µL Buffer AL to each 

filtrate sample and incubated the samples for 10 minutes at 70°C. 800µL of 200 proof 

ethanol was added to the tubes and the mixture was then added to a Qiamp Spin column 

(DNeasy kit). The filtrate was discarded, and the spin columns were placed into new 

collection tubes. 500µL of Buffer AW1 was added to each spin column, followed by 

500µL Buffer AW2. In a new collection tube, 50µL Buffer AE was added to the spin 

column to elute the DNA. The columns were centrifuged after incubating at room 

temperature for 5 minutes. 50µL Buffer AE was added again to each spin column; each 

tube sat at room temperature for 2 hours before centrifuging. Following centrifugation, 

eluted DNA was transferred to Zymo Inhibition kit spin columns and centrifuged once 

again. The final eDNA samples were then stored at -20°C until ready for Canada goose 

eDNA screening using quantitative, real-time PCR. 

Tissue Extraction Protocol 

A total of thirty-three tissue aliquots from the target and non-target species were 

obtained from four museums for use in primer-probe assay design and testing 

(Appendix I). Six tissue aliquots from Oklahoma specimens (4, B. canadensis; 1, A. 

platyrhynchos; 1, A. strepera) loaned from the Sam Noble Oklahoma Museum of 

Natural History represented the local population. Additional tissues were obtained from 

the Denver Museum of Nature and Science (n = 11), the Museum of Vertebrate 
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Zoology at the University of California Berkeley (n = 4), and the Field Museum of 

Nature and Science (n = 12) to account for nationwide genetic diversity during assay 

design and to meet the recommended sample sizes suggest by Pilliod et al. (2013).  

I used Fujita’s modified guanidine thiocyanate extraction method (Esselstyn et 

al. 2008) to extract genomic DNA from all 33 tissue aliquots. This protocol consisted of 

three phases: cell lysis, DNA precipitation, and DNA resuspension. I performed cell 

lysis using a solution composed of 410µL extraction buffer (1M Tris, 5M NaCl, 0.5M 

EDTA, and sterile ddH2O), 80µL 10% SDS, and 10µL Proteinase K (10mg/ml). 

Samples were digested overnight in an Eppendorf ThermoMixer C at 55°C and 

500RPM. The following day I removed the samples from the incubator and centrifuged 

them to remove excess protein. I then poured the supernatant into microcentrifuge tubes 

containing 200µL 5M NaCl. I inverted the tubes 50 times and centrifuged them to 

remove salts. I poured the supernatant into microcentrifuge tubes containing 500µL cold 

isopropanol and cooled them at -20°C for about 10 minutes. I centrifuged the samples 

once again to precipitate DNA, forming DNA pellets. I washed the DNA pellets in three 

rounds of 500µL cold 80% EtOH, centrifuging and discarding supernatant in between. I 

air-dried the tubes overnight at room temperature until evaporation was complete. The 

following day I resuspended the dried DNA in 100µL 0.25xTE Buffer and stored them 

at -20°C until further use in PCR and serial dilution trials. 

Primer-Probe Assay Design 

A key component of this study was the design of a species-specific primer-probe 

assay with which to amplify Canada goose eDNA extracted from water samples. To 

ensure that I designed an assay specific to Canada geese, I first used relatively general 
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primers, or short sequences of DNA that attach to a complementary strand of DNA to 

begin replication, amplify target and non-target species’ DNA for eventual sequencing, 

alignment, and primer-probe assay design. 

I designed thirty-five primer pair combinations for three mitochondrial genes—

cytochrome c oxidase I (COI), cytochrome b (Cyt b), NADH dehydrogenase subunit 2 

(ND2)—using primers published in the literature (Appendix II; Johnson & Sorenson 

1998; Donne-Gousse et al. 2002; Paxinos et al. 2002; McCracken & Sorenson 2005; 

Kerr et al. 2007) and tested them on seven tissue DNA extractions (four Canada goose 

and one each of mallard, gadwall, and cackling goose) using polymerase chain reaction 

(PCR) to determine which gene and primer pairs best amplified all four species’ DNA 

(PCR products and eventually sequences of all four species would be used to design a 

primer-probe specific to Canada geese). Samples were prepared in 10µL volumes 

consisting of 1µL DNA extraction, 6.5µL doubly distilled H2O, 1µL 10xPCR Buffer, 

0.8µL dNTP mixture (2.5mM), 0.05µl Takara Taq HS, 0.4µL forward primer, and 

0.4µL reverse primer. PCR was performed in a Bio-Rad C1000 touch Thermal Cycler at 

the following conditions: 2.5 min at 98°C, then 35 cycles of 10s at 98°C, 30s at 55°C, 

and 60s at 55°C, and followed by 5min at 72°C and infinite hold at 12°C. 

I used gel electrophoresis to visualize the PCR products. I created a 1% agarose 

gel submerged in 1xTBE buffer to wet-load 2µL of each PCR product and a DNA 

ladder (100mg/mL 1kb plus from Thermo Fisher) stained with GelRed (Biotium). I ran 

the gel for 50 minutes at 110mV using a Labnet Enduro Power Supply Mini and 

performed imaging in a Bio-Rad Molecular Imager Gel Doc XR+ with Image Lab 

Software 5.1. Following imaging, I selected two primer pairs for each gene (COI, Cyt b, 



21 

ND2) to optimize band strength, fragment length, and amplification across all species 

and localities. I tested the resulting six primer pairs on fifteen DNA extractions (eight 

Canada goose, three cackling goose, two mallards, and two gadwall) from different 

localities to confirm their ability to amplify DNA of all four study species. I visualized 

the PCR products using the same gel electrophoresis protocol as before. 

I selected one primer pair for each gene (Table 2), maximizing the number of 

samples successfully amplified, especially for the target species. I submitted the PCR 

products (18µL) from each of these three primer pairs to the University of Oklahoma 

Biology Core Molecular Laboratory for PCR cleanup, Sanger sequencing using ABI 

Prism BigDye Terminator, version 3.1 (Applied Biosystems, Foster City, CA), and 

sequencing cleanup. Novel sequence data were deposited in GenBank (Table 3). 

I trimmed and aligned DNA sequences for all three genes in Geneious 9.0.5. 

Only one cackling goose amplified well using Cyt b, while multiple cackling goose 

sequences amplified successfully for COI and ND2. Because it was important to 

incorporate sufficient outgroup species diversity (especially of the cackling goose) to 

ensure a robust assay design, I proceeded to design primer-probe assays for COI and 

ND2 only (Table 4). I tried to maximize base pair mismatches between the target and 

non-target species in both the primer- and probe-binding regions to reduce or prevent 

amplification and fluorescence of non-target species during quantitative PCR reactions 

(qPCR; Wilcox et al. 2013). One probe and two primers (forward and reverse) were 

designed for each gene in Primer Express 3.0.1 using Taqman MGB Allelic 

Discrimination. The ND2 probe and primers targeted an 82-base pair region of the 

Canada goose ND2 gene, while the COI probe and primers targeted a 71-base pair 
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region of the Canada goose mitochondrial COI gene (Table 4). Primers were ordered 

from Thermo Fisher. 

 

Table 1. Three primer pairs (one each for COI, Cyt b, and ND2) were selected for 

optimizing DNA amplification in PCR, visualized with gel electrophoresis. The 

forward primer is listed above the reverse primer for each gene. 

 

Gene Primer Primer Sequence (5'–3') 

COI FalcoFA TCAACAAACCACAAAGACATCGGCAC 

 BirdR2 ACTACATGTGAGATGATTCCGAATCCAG 

Cyt b L15191  ATCTGCATCTACCTACACATCGG 

 H16064 CTTCGATTTTTGGTTTACAAGACC 

ND2 L5216 GGCCCATACCCCGRAAATG 

 H6313 CTCTTATTTAAGGCTTTGAAGGC 

 

Primer-Probe Validation 

I performed single-tube DNA quantitation (ng/µL) on all tissue DNA extractions 

using the QuantiFluor dsDNA System in a Promega Quantus Fluorometer (product 

number E6150). I prepared each tissue extraction sample, a blank sample, and a 200ng 

DNA standard in 0.5mL thin-wall PCR tubes containing 200µL QuantiFluor dsDNA 

dye working solution (1:400 dilution in 1xTE buffer). 

I ran a serial dilutions experiment on fifteen tissue extractions that were not used 

for assay design to test the specificity and sensitivity of the COI and ND2 primer-

probes. I used the DNA quantitation data to create 50µL solutions (20ng/µL) of each of 

the fifteen tissue extractions in 0.25xTE Buffer. For each sample I created 1:10, 1:100, 

1:1,000, and 1:10,000 dilutions in series by combining 2µL of the 20ng/µL solution (or 

subsequent dilution) with 18µL 0.25xTE Buffer. I resuspended the COI and ND2 

primers in Buffer AE and tested them on the serial dilutions of Canada goose (1:10,000 

dilution) and nontarget species DNA (1:1000 dilution) and a negative control in  
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Table 3. Primers and probes (5'–3') were designed to target the mitochondrial 

genes ND2 and COI for Canada goose (Branta canadensis). Melting temperature 

(Tm) of each is included. Both assays were tested in qPCR against serial dilutions 

of target and non-target species DNA extracted from tissue samples. Though both 

amplified target species DNA, ND2 was more consistent and was therefore used for 

eDNA screening. 

 

Gene  Sequence Tm 

ND2 Forward Primer CCGCCCTGGTCCTATTCTC 58 

 Reverse Primer GAGGTTGGGTGGTTTATTTGTGTAA 59 

 Probe CATAACTAACGCCTGAG 67 

COI Forward Primer CCGCGCAGAACTAGGACAAC 59 

 Reverse Primer GGGCGGTGACGATTACATTG 60 

 Probe CTCTCCTAGGCGACG 66 

 

triplicate using quantitative, real-time PCR (qPCR). These dilutions were used to 

simulate relatively low DNA concentrations observable in pond samples, as well as 

more concentrated non-target species DNA than target DNA. qPCR was preferred over 

PCR because it amplifies a target region of DNA specific to a target organism in real-

time and uses both primers and a probe to provide additional specificity and potentially 

quantitative data. I prepared PCR plates in a separate room from qPCR equipment to 

avoid contamination. Each tissue extraction dilution was screened in triplicate using 

3µL of DNA sample (or doubly distilled H2O for the negative control) and 7µL of 

reagent consisting of 0.75µL ddH2O, 5µL MasterMix, 0.5µL of each primer (10µM), 

0.25µL probe (10µM. An Applied Biosystems QuantStudio 3 Real-Time PCR System 

and QuantStudio Design & Analysis Software v1.4 were used for screening and 

analysis. The qPCR conditions were as follows: 20 seconds at 95°C, 50 cycles of 1 

second at 95°C and 20 seconds at 60°C, and a post-read stage of 30 seconds at 60°C. A 

sample is considered positive for target DNA if its normalized reporter intensity (Rn, 

the ratio of the fluorescence emission intensity of the reporter dye divided by that of the 
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passive reference dye) is above the fluorescence intensity threshold value, which is 

calculated by the software based on the negative controls. A high Rn value indicates 

stronger fluorescence. With a threshold value of 3.230, all screening reactions 

containing non-target species DNA for both gene assays resulted in no positive 

detection. For the ND2 assay, all Canada goose samples were positive for Canada goose 

DNA, and all non-target species and the negative controls were negative for Canada 

goose DNA (Appendix IV). For the COI assay, all but two of twenty-one Canada goose 

replicates confirmed the presence of target DNA. I found that these two negative 

replicates had ∆Rn values just below threshold (3.188 and 3.244) but considerably 

higher than any non-target species (mean ∆Rn=1.284 for non-target samples; the next-

highest ∆Rn was an outlier of 2.980 for one gadwall replicate). Because of the potential 

for Type II error when using the COI assay, and because the ND2 assay more reliably 

called presence/absence without needing to adjust the threshold, I continued assay 

testing for ND2 only. 

Using the same qPCR protocol as before, I tested the sensitivity and specificity 

of the ND2 assay on fifteen different mixtures of target and non-target species DNA, 

each at 1:10,000 dilution, in an attempt to mimic environmental samples, which can 

contain DNA fragments from thousands of specimens of hundreds of species in a single 

sample (Shokralla et al. 2012). I created various DNA combination samples in which 

target DNA was at a lower relative concentration than, and mixed with, outgroup 

species’ DNA. Amplification occurred in all samples containing Canada goose DNA 

(100% detection rate). All samples lacking target DNA, including the negative control, 

had negative detection, confirming assay specificity (Appendix V). Interestingly, 
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Welch’s t-test revealed that the mean ∆Rn for combination samples containing Canada 

goose DNA but lacking cackling goose was significantly higher (=3.65) than samples 

with both Canada and cackling goose DNA present (mean=2.69; t=6.45, df=6.74, 

p=0.00041). In other words, when cackling goose DNA was present along with Canada 

goose DNA, ∆Rn was significantly lower, though still above the threshold value. 

eDNA Screening 

I screened 81 eDNA extractions (n=8 per pond + 1 negative field control per 

pond), one negative lab control (doubly distilled H2O) from each eDNA extraction 

event (n=8), and one positive control fecal sample for Canada goose eDNA using the 

ND2 assay and following the same qPCR protocol as before. If at least two out of three 

replications for a pond sample yielded a positive result, I considered the sample positive 

for the presence of Canada goose eDNA. Samples in which only one out of three 

replicates were positive were re-screened; if at least one replicate in the second run 

yielded a positive result, Canada goose eDNA was considered present. 

Statistical Analysis 

 All statistical analyses were performed in R version 3.3.1. I used the ggplot2 

(Wickham 2009) and ggpubr (Kassambara 2017) packages to create scatterplots. 

Spearman’s rank correlation was used to determine the strength of the relationships 

between environmental variables and eDNA presence or detection. I ran classification 

and regression tree (CART) analyses (rpart package; Therneau & Atkinson 2018) to 

measure the effects of environmental variables (goose abundance, pond area [m2], 

goose density, water pH and temperature [°C] of each sample, secchi depth of the pond 

[cm], and sampling distance [m] from the shore) on the presence of Canada goose 
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eDNA. CART is designed to explore and model ecological data that is complex, 

unbalanced, and may contain missing values and can be used for both description and 

prediction (De’ath & Fabricius 2000). Classification and regression trees are 

represented graphically and explain variation in a dependent variable by one or more 

explanatory variables (numeric or categorical) by splitting the data into two mutually 

exclusive, relatively homogenous groups repeatedly (De’ath & Fabricius 2000). In 

classification tree analyses, eDNA presence/absence was used as the response variable. 

In regression tree analyses, eDNA detection rate (% of positive qPCR replicates) was 

used as the response variable. 

Because sampling date and time varied widely (between June to October and 

between 7am and 4pm), and because water temperature was highly correlated with air 

temperature (Figure 4), I regressed water temperature against air temperature to create 

unstandardized residuals (“residual temperature”; Figure 4). I used these residual 

temperatures in further analyses to investigate the effects of temperature while 

controlling for sampling bias. 

Ethics Statement 

No permits were required for sampling at any of the pond sites, although 

permission was granted to sample at a few privately-owned lakes. Field sampling did 

not involve any endangered or protected species, and no live vertebrate animals were 

used in this study. Lab and field protocols (protocol R17-029) were approved by the 

Institutional Animal Care and Use Committee (IACUC) at the University of Oklahoma. 

No live animals were used or harmed in this study. 
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Figure 4. Air temperature (°C) at time of sampling was highly correlated with 

water temperature (°C) of samples (r=0.87; y=0.62x+11.49). Because water 

temperature of each sample varied with sampling date (June to October) and time 

(early morning to late afternoon), residual temperature values (distance of each 

point from the regression line) were used in analyses. 
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Results 

Canada goose eDNA was detected at all nine ponds sampled, including the three 

locations where Canada geese were absent (Table 5). Both the percentage of pond 

samples and the percentage of qPCR replicates (each pond sample was run in triplicate) 

with eDNA present for each pond were analyzed. All field and lab negative controls 

were negative for Canada goose eDNA, with one exception each due to contamination 

during one round of filter extractions. Any samples extracted simultaneously with these 

negative controls (except for those which still resulted in total negative detection and 

indicated no contamination) were excluded from analyses.  

In general, the percentage of both pond and qPCR samples with eDNA present 

increased with increasing goose abundance (r=0.5527 and r=0.7097, respectively; Table 

5, Figure 5). In addition, goose abundance was positively correlated with pond area 

(r=0.4267, Figure 6), though pond area did not have a significant effect on eDNA 

detection rates. Initially, the water temperature (°C) of each pond sample was positively 

correlated with both eDNA detection rate (% samples with eDNA present, r=0.4060) 

and goose abundance (r=0.5626); however, these correlations were insignificant 

(spearman’s rank correlation) when residual temperature was used. 

Both the classification and regression trees agree that goose abundance 

accounted for the greatest variation in eDNA detection, occupying the first split in each 

tree (Figure 7), and was the best predictor for eDNA presence or absence with the 

highest improvement scores of all variables considered (Tables 6, 7). The classification 

tree (R2=0.4, Figure 7a) indicates that temperature explained the detection data best 

when goose abundance was low (improvement score=2.41), and eDNA detection was  
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Table 4. Canada goose (Branta canadensis) eDNA detection results of pond water 

samples taken from nine ponds around Norman, Oklahoma and Oklahoma City 

from June to October 2017. eDNA was confirmed present at a pond if at least one 

field sample had two or more positive qPCR replicates. 

 

Locality 

# Positive 

Pond 

Samples 

# Total 

Samples 

% 

Samples 

Positive 

% qPCR 

Positive 

eDNA 

Present 

# Geese 

Observed 

Dog Park 4 8 50 33.33 Y 0 

Hallbrook 4 8 50 33.33 Y 0 

Hall Park Lake 2 6 33.33 22.22 Y 0 

The Links 5 8 62.5 41.03 Y 3 

Summit 2 7 7 100 77.78 Y 6 

NE Lions Park 7 7 100 100 Y 14 

Route 66 Park 5 5 100 100 Y 22 

Brandt Park 7 7 100 100 Y 25 

Summit Lake 8 8 100 95.83 Y 64 

 

 

 
Figure 5. Goose abundance (# individuals present during sampling) was positively 

correlated with eDNA detection rate (% qPCR replicates with eDNA present from 

64 screened pond samples) using Spearman’s rank correlation (r=0.71). 
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Figure 6. Pond area (m2) was positively correlated with goose abundance (number 

of individuals present during sampling) at each of nine ponds in central Oklahoma 

according to Spearman’s rank correlation (r=0.43). 

 

 

predominantly positive when residual temperature was higher than expected (>0.013 

°C; Table 6). According to this model, when goose abundance was low (<4.5 

individuals), ponds with higher-than-normal water temperatures had higher eDNA 

detection rates than cooler ponds. However, the regression tree indicates that no 

variables explained the data well when goose abundance was low, resulting in a less 

complex tree with only one split (Figure 7b). Overall, the regression tree, which used 

continuous rather than categorical eDNA detection data, had an improved fit (R2=0.576, 

Figure 7b) over the classification tree, indicating that eDNA detection is best explained 

solely by goose abundance, and when more than 4.5 geese are present, eDNA detection 

is assured. 

The correlation between eDNA detection and goose density (# geese/m2*1000; 

r=0.704, p=8.507e-11) was slightly less significant than the correlation between 
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detection and goose abundance (r=0.710, p=5.209e-11), and the cross-validation error of 

the regression tree was slightly higher when using goose density (xerror=0.458) 

compared to goose abundance (xerror=0.448). In addition, in the regression tree 

analysis, goose density had a variable importance of 48, whereas when goose 

abundance and pond area (m2) were analyzed separately, goose abundance had an 

importance value of 42 and area dropped to 13. Because goose abundance was slightly 

more correlated with eDNA detection, resulted in a regression tree with slightly higher 

fit, and had a high variable importance score, analyses using goose abundance instead 

of density were used. 
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Figure 7. CART analyses of the detection of Branta canadensis eDNA in 64 water 

samples taken from nine ponds in central Oklahoma. Explanatory variables 

included goose abundance (number of individuals present during sampling), pond 

area (m2), pH, residual water temperature (°C), secchi depth (cm) of the water 

body, and sampling distance (m) from the pond’s shore. Terminal nodes indicate 

whether eDNA was absent or present among samples as well as the ratio of 

negative to positive samples (0/1).  a) Tree based on binary presence/absence data 

(R2=0.4, xerror=0.67, xstd=0.19, misclassification rate = 15/64 = 23.44%). b) Tree 

based on % detection of eDNA (R2=0.58, xerror=0.46, xstd=0.10). 
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Table 5. Explanatory variables considered for classification tree splitting. The 

primary split for a particular node includes the improvement score for that split. 

Each node was also analyzed for surrogate splits. Explanatory variables are 

ranked according to variable importance (sum=100) in splitting or predicting the 

dependent variable (eDNA presence/absence). 

 

Variables Node 1 (N=64) Node 2 (N=30) Importance 

Primary 

Splits 

Surrogate 

Splits 

Primary 

Splits 

Surrogate 

Splits 

Improvement Agree Improvement Agree 

Geese 7.9688 - 0.3409 0.800 44 

pH 3.9142 0.688 1.1111 0.733 17 

Area 1.7923 0.672 - 0.800 18 

Res. Temp 1.4593 0.641 2.4107 - 20 

Secchi 1.4083 - - - - 

Distance - - 0.0667 0.567 1 

 

Table 6. Explanatory variables considered for regression tree splitting. This tree 

includes only one node and split. The primary split includes the improvement 

score of each variable for that split. The node was also analyzed for surrogate 

splits. Explanatory variables are ranked according to variable importance 

(sum=100) in splitting or predicting the dependent variable (eDNA detection rate). 

 

Variables Node 1 (N=64)       Importance 

Primary Splits Surrogate Splits 

Improvement Agree 

Geese 0.5764 -        48 

Area 0.1420 0.672        15 

pH 0.1251 0.688        18 

Residual Temp 0.1121 0.641        18 

Secchi 0.0877 -        1 
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Discussion 

The first step in evaluating a new survey method is determining whether the 

method positively detects the target species when present. My results show that eDNA 

effectively detects the presence of Canada geese (B. canadensis) in ponds. Using a 

protocol I developed for determining the presence of the Canada goose at ponds based 

on the detection of eDNA in water samples (Takahara et al. 2013), I detected Canada 

goose eDNA, using species-specific primers and probes targeting the ND2 

mitochondrial gene, in all six ponds where the species was visually observed, as well as 

in three ponds where geese were not observed prior to or during sampling (Table 5). 

These results indicate that eDNA is a promising approach for surveying Canada geese 

and possibly other semi-aquatic bird species, as well. 

Effect of Goose abundance on eDNA Detection 

Correlation and CART analyses revealed that goose abundance is the best 

indicator of and accounts for the greatest variation in eDNA presence and detection rate. 

eDNA detection rate (% samples with eDNA present) was significantly positively 

correlated with goose abundance, so that as goose abundance increased, eDNA 

detection rate also increased (Figure 4). Both classification and regression trees found 

that goose abundance was the most important variable for explaining eDNA detection, 

while the effects of other environmental variables were generally insignificant. CART 

analyses revealed that where goose abundance was greater than 4.5 individuals, eDNA 

detection rate was very high (96.08%), and where goose abundance was less than 4.5 

individuals, eDNA detection rate was low (33.89%). These results suggest that eDNA 

presence and detection is assured when goose abundance is high, though detection rates 
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drop significantly and are more variable when goose abundance is low. According to 

Ellison et al. (2006), inconsistency in eDNA detection between qPCR replicates is 

expected when target DNA concentration is extremely low (<100 copies/reaction). In 

addition, a model by Barnes et al. (2014) estimated that qPCR became more likely to 

fail to detect common carp (C. carpio) eDNA than to detect it after 47.2 hours (~2 

days), and eDNA detection failure became 95% probable after 101.1 hrs (4.2 days) 

following carp removal. Based on these findings, it is possible that: 1) eDNA 

concentration was low in pond samples which had low detection rates, and 2) at ponds 

where geese were not observed, geese could have been present at some point in the 4 

days previous to sampling. Because ponds with low goose abundance had more variable 

detection rates between samples than ponds with high goose abundance, it is likely that 

Canada goose eDNA concentration was low at ponds with low goose abundance. This 

would support my hypothesis that increased goose abundance results in higher eDNA 

concentration and is likely due to increased eDNA production (the rate at which DNA is 

released into the environment; Strickler et al. 2015). 

Some studies have shown that target species density or biomass might be a more 

reliable predictor of eDNA concentration and detectability than target species 

abundance (Stoeckle et al. 2017; Takahara et al. 2012; Thomsen et al. 2012; Ficetola et 

al. 2008). However, my CART and correlation analyses revealed that goose abundance 

explained the data slightly better than goose density, a finding consistent with that of 

other studies (Lacoursiere-Roussel et al. 2016; Doi et al. 2015). Pond area (m2) had 

relatively low variable importance in all CART models (Tables 6, 7), and the 

relationship between pond area (m2) and goose abundance, though positive, was 
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relatively weak (Figure 6). Similarly, Doi et al. (2015) found that common carp 

(Cyprinus carpio L.) abundance more accurately estimated eDNA concentration than 

did biomass. Though there is some uncertainty as to which parameter best explains 

eDNA concentration and detection, my results align with current findings which state 

that target species abundance, density, and biomass have a significant, positive effect on 

eDNA concentration and amplification rates (Doi et al. 2015; Stoeckle et al. 2017; 

Thomsen et al. 2012; Takahara et al. 2012; Ficetola et al. 2008; Lacoursiere-Roussel et 

al. 2016). Further work is needed to determine which variable best explains eDNA 

detection, as well as how reliably eDNA concentration can estimate target species 

abundance (Stoeckle et al. 2017). 

Effects of Environmental Variables on eDNA Detection 

Spearman’s correlation and regression tree analysis revealed that goose 

abundance was the only variable that had a significant effect on eDNA detection rate. 

Studies have shown that, in general, increased temperatures cause increased DNA 

degradation rates directly via denaturation (though only at temperatures > 50°C) and 

indirectly through increased enzyme kinetics (i.e. exonuclease activity) and microbial 

metabolism (Barnes et al. 2014, Strickler et al. 2015; Tsuji et al. 2017). It therefore 

might be expected that samples with higher temperatures would result in lower or more 

variable eDNA detection rates. However, the range of temperatures recorded in this 

study was between 22.5 and 38.4°C (or -4.3°C and 5.9°C residual temperature), which 

may have been too small to detect an effect of temperature on eDNA detection rate 

(Seymour et al. 2018). In addition, the maximum temperature (38.4°C) was likely too 

low to cause direct denaturation. Strickler et al. (2015) found that, though temperature 
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(5°C, 25°C, 35°C treatments) had a significant effect on bullfrog tadpole eDNA 

concentration over time, eDNA concentration at the outset of their experiment was 

similar in all microcosms, irrespective of temperature treatment. It is possible that the 

eDNA in my samples was fresh, especially at ponds with geese present during 

sampling, and had not yet undergone significant degradation. If this were the case, no 

effect of temperature would be expected (Strickler et al. 2015). However, eDNA 

concentration and degradation rate were not quantified in this study, so no definite 

conclusions relating detection rate and eDNA concentration can be made. Overall, 

though, it is unlikely that the moderate water temperatures recorded in this study had a 

significant effect on eDNA detection rates, as demonstrated by correlation and 

regression tree analyses (Figure 7b). 

Because acidic conditions are known to catalyze hydrolytic processes that 

degrade DNA (Strickler et al. 2015), one might expect pH to have a negative effect on 

eDNA detection rates. However, studies have suggested that pH alone may be 

insufficient to accelerate eDNA degradation (Strickler et al. 2015). In a study 

investigating the effects of temperature, pH, and UV-B on bullfrog tadpole eDNA 

degradation rate, pH (=4) was only significant when interacting with other variables 

(i.e. when temperatures were high; Strickler et al. 2015). In my study, variation in pH 

(7.05 to 9.46) was low, and all samples were alkaline. This, combined with the lack of 

an effect of temperature on eDNA detection, and thus a lack of any interaction effects, 

suggests that an effect of pH on eDNA detection was unlikely (Barnes et al. 2014). 

Though evidence suggests that pH and temperature, along with other variables, affect 

eDNA persistence and detection (Seymour et al. 2018; Tsuji et al. 2017; Stoeckle et al. 
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2017; Strickler et al. 2015), greater variation and larger samples sizes are needed to 

investigate the effects more fully. In this study, where samples sizes were small and 

variation in pH and temperature were low, goose abundance alone best explained the 

data. 

Further Considerations 

eDNA availability and persistence depends on several factors, including: (1) the 

eDNA production rate of a species or individual, (2) the effects of abiotic environmental 

characteristics on eDNA degradation, (3) transport and removal of eDNA such as 

through volatilization or water flow downstream, and (4) eDNA molecule 

characteristics (length, sequence, conformation) which affect how DNA interacts with 

the environment (Barnes et al. 2014; Strickler et al. 2015). Though eDNA may become 

undetectable in less than a day after removal of the target species from a microcosm, 

studies have shown that eDNA can persist in water at detectable concentrations for up 

to 58 days after species removal (Strickler et al. 2015). In addition, eDNA can persist in 

sediment for hundreds of days to hundreds of thousands of years (Turner et al. 2015; 

Bohmann et al. 2014). It is therefore critical to understand how the above factors 

influence eDNA degradation and concentration to accurately interpret eDNA 

surveillance results, minimizing false negative and false positives, and to improve 

sampling strategies (Barnes et al. 2014). In addition, researchers must take care when 

analyzing eDNA data (e.g. eDNA presence-absence vs. concentration over time), as 

different approaches dramatically affect how eDNA surveillance results are interpreted 

(Barnes et al. 2014).  
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Conclusions and Future Research 

eDNA is an effective method for detecting Canada goose eDNA in ponds, and 

where goose abundance is high, eDNA detection is assured. When used for species 

monitoring, eDNA detection rate may provide some indication about goose abundance. 

However, further work is needed to understand Canada goose eDNA production rates 

and how environmental variables affect eDNA detection, concentration, and persistence 

to better interpret surveillance results and apply this surveying technique to other 

species and taxa, particularly for conservation applications. It is of interest to apply the 

eDNA technique to semi-aquatic or marsh birds of conservation concern which are rare 

or cryptic or which have minimal vocalization, such as rails, bitterns, or woodcocks. 

However, because eDNA is so sensitive, care must be taken not to over- or under-

estimate population sizes and ranges to avoid forming misguided conservation plans. 

eDNA could also be tested using soil samples to survey for more terrestrial bird species, 

such as Henslow’s sparrow, or other terrestrial taxa, which could have applications in 

tracking temporal and spatial migratory movements. 

Although initially time-intensive during the design and testing stages, once 

markers are developed eDNA could serve as a rapid, cost-effective, and highly sensitive 

surveying technique to aid conventional surveying in identifying high-priority 

monitoring areas for species of conservation concern and to enhance species detection, 

population monitoring, distribution mapping, and conservation planning (Davy et al. 

2015). Improvements in these areas could have far-reaching consequences for a variety 

of disciplines that depend on accurate surveying and species distribution assessments, 

including conservation biology, molecular biology, biogeography, ecology, 
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paleontology, and environmental sciences (Ficetola et al. 2008; Thomsen & Willerslev 

2014). 

  Many eDNA studies have used DNA barcoding to detect a single target species. 

This approach has high detection sensitivity, specificity, and quantification ability but is 

limited in scope (Thomsen & Willerslev 2014). As technologies improve, techniques 

such as next-generation sequencing will allow researchers to exploit eDNA’s potential 

to recover the DNA of hundreds of specimens of multiple species at once from a single 

sample, which will allow efficient processing of complex environmental samples 

(Shokralla et al. 2012). Nonetheless, to better understand the implications of eDNA 

surveying for birds, the DNA barcoding approach demonstrated here should be tested 

on species of conservation concern in the hope of aiding in future conservation planning 

and management. 
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Appendix I 
 

Thirty-three museum tissue aliquots were used in this study. OCGR specimens 

were from the Sam Noble Oklahoma Museum of Natural History; DMNS - Denver 

Museum of Nature and Science; FMNH - Field Museum of Natural History; MVZ 

- Museum of Vertebrate Zoology. 

 

Sample ID Species State 

OCGR 8821 Anas platyrhynchos Oklahoma 

OCGR 8837 Anas strepera Oklahoma 

OCGR 9930 Branta canadensis Oklahoma 

OCGR 10645 Branta canadensis Oklahoma 

OCGR 11246 Branta canadensis Oklahoma 

OCGR 11835 Branta canadensis Oklahoma 

ZB 34858 Branta canadensis Colorado 

ZB 34864 Branta hutchinsii Colorado 

ZB 35091 Branta canadensis Colorado 

ZB 35224 Anas platyrhynchos Kansas 

ZB 35225 Anas strepera North Dakota 

ZB 44017 Branta canadensis Colorado 

ZB 45763 Anas platyrhynchos Colorado 

ZB 46079 Branta canadensis Colorado 

ZB 47055 Anas platyrhynchos Colorado 

ZB 47686 Branta hutchinsii Colorado 

ZB 47705 Branta hutchinsii Colorado 

FMNH 363337 Branta canadensis minima California 

FMNH 438243 Branta canadensis maxima Illinois 

FMNH 438244 Branta canadensis canadensis Illinois 

FMNH 440351 Branta canadensis maxima Wisconsin 

FMNH 449116 Branta canadensis Minnesota 

FMNH 480459 Branta hutchinsii Illinois 

FMNH 486719 Branta hutchinsii Wisconsin 

FMNH 488416 Anas platyrhynchos platyrhynchos Illinois 

FMNH 488508 Branta canadensis Illinois 

FMNH 492427 Anas strepera strepera Wisconsin 

FMNH 496455 Anas platyrhynchos platyrhynchos Minnesota 

FMNH 500383 Anas strepera strepera Illinois 

MVZ 181825 Anas platyrhynchos platyrhynchos California 

MVZ 183934 Anas platyrhynchos platyrhynchos California 

MVZ 182091 Anas strepera Oregon 

MVZ 184923 Branta canadensis California 
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Appendix II 
 

Forward and reverse primers from the literature were used to create thirty-five 

primer-pair combinations, which were tested on seven tissue DNA extractions. 

 

Primer Pair Gene Forward primer Reverse primer 

1 COI BirdF1 BirdR1 

2 COI BirdF1 BirdR2 

3 COI BirdF1 VertebrateR1 

4 COI FalcoFA BirdR1 

5 COI FalcoFA BirdR2 

6 COI FalcoFA VertebrateR1 

7 Cytb L14770 H15021 

8 Cytb L14770 H15545 

9 Cytb L14770 H15646 

10 Cytb L14770 H15742 

11 Cytb L14770 H16064 

12 Cytb L14990 H15021 

13 Cytb L14990 H15545 

14 Cytb L14990 H15646 

15 Cytb L14990 H15742 

16 Cytb L14990 H16064 

17 Cytb L14996 H15021 

18 Cytb L14996 H15545 

19 Cytb L14996 H15646 

20 Cytb L14996 H15742 

21 Cytb L14996 H16064 

22 Cytb L15191 H15021 

23 Cytb L15191 H15545 

24 Cytb L15191 H15646 

25 Cytb L15191 H15742 

26 Cytb L15191 H16064 

27 ND2 L5216 H5766 

28 ND2 L5216 H6031 

29 ND2 L5216 H6313 

30 ND2 L5219 H5766 

31 ND2 L5219 H6031 

32 ND2 L5219 H6313 

33 ND2 L5524 H5766 

34 ND2 L5524 H6031 

35 ND2 L5524 H6313 
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Appendix IV 
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Appendix V 
 

An ND2 primer-probe assay was designed and tested on fifteen different 

combinations of DNA extracts (1:1000 dilution) from museum tissue aliquots of 

four closely related species (mallard, gadwall, cackling goose, Canada goose) 

vouchered around the United States. “Presence” indicates whether DNA was 

positively amplified (Y=Yes, N=No) using the ND2 assay targeting Canada goose 

DNA. ∆Rn mean is the average change in normalized reporter intensity for each 

sample run in triplicate in qPCR. Presence of the target DNA sequence is 

determined by a ∆Rn value higher than the threshold (=2.285). 

 

Sample Name Presence ∆Rn mean Species Combination 

Combo 1 Y 3.817 Canada, mallard, gadwall 

Combo 2 Y 2.536 Canada, cackling 

Combo 3 N 2.033 Cackling 

Combo 4 Y 2.809 Mallard, gadwall, Canada, cackling 

Combo 5 N 2.037 Mallard, gadwall, cackling 

Combo 6 Y 2.836 Canada, gadwall, mallard, cackling 

Combo 7 N 1.654 Mallard, gadwall 

Combo 8 Y 3.853 Canada, mallard, gadwall 

Combo 9 Y 3.461 Canada, mallard, gadwall 

Combo 10 N 1.587 Mallard, gadwall 

Combo 11 Y 2.912 Mallard, cackling, gadwall, Canada 

Combo 12 N 1.896 Mallard, gadwall, cackling 

Combo 13 Y 2.373 Mallard, gadwall, cackling, Canada 

Combo 14 Y 3.466 Canada, mallard, gadwall 

Combo 15 N 1.960 Mallard, gadwall, cackling 

Neg. Ctrl N 1.621 None 

 


