
ANALYSIS OF HIGHER EDUCATION MANAGEMENT SYSTEMS 

THROUGH THE USE OF DYNAMIC MODELING 

CONCEPTS 

By 

JOHN LEONARD IMHOFF 
n 

Bachelor of Science 
Duke University 

Durham, North Carolina 
1945 

Master of Science 
University of Minnesota 
Minneapolis, Minnesota 

1947 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
May, 1972 





ANALYSIS OF HIGHER EDUCATION MANAGEMENT SYSTEMS 

THROUGH THE USE OF DYNAMIC MODELING 

CONCEPTS 

Thesis Approved: 

• 

)a,.u,&~ 
() Q lHAAa-= 

Den of the Graduate College 

OKLAHOMA 
STATE lJNIVE"SITY 

LIIRA,1,y 

AUG 10 1973 



ACKNOWLEDGMENT 

I am deeply indebted to my committee members for their invaluable 

guidance. To Professors Earl Ferguson and the late Wilson Bentley for 

their advisory assistance and training in organization theory, Professor 

James Shamblin for a better understanding of operations rese~rch, 

Professor Hamid Eldin for a firmer foundation in systems theory, 

Professor Keith Adams for a greater appreciation of the human factors 

field, and Professor Kenneth St. Clair for an important understanding 

of educational systems and theory. 

A strong debt also exists for the help extended by other friends 

and acquaintances. President Emeritus Oliver Willham, Vice Presidents 

Davidson and Hesser, Institutional Research Director Mack Usher, and 

the late Lee Severe, Head of Administrative Systems Development, pro­

vided insight into the management philosophy and operations at Oklahoma 

State University. Similar understanding was furnished at the University 

of Minnesota through consultation with Clifford Hooker of the College 

of Education, Dean Paul Grambsch and Albert Wickesberg of Business 

Administration, William Ammentorp of UMREL (Upper Midwest Research in 

Education Laboratory), and Gary Andrew and Stanley Johnson, both in­

volved in Institutional Research activities. Also valuable were visits 

with and literature provided by Chester Neudling of the Office of 

Education, Washington, D. C., Wolter Fabrycky of Virginia Polytechnic 

Institute, Albert Holzman of the University of Pittsburgh, and David 

Raphael, George Theuring, Robert Newton, and Vice President Thomas Bates 

.: .: .: 



of Pennsylvania State University. Useful literature was provided 

through the generosity of Fred Balderston and George Weathersby of the 

University of California at Berkeley, Dennis Meadows of the Massachu­

setts Institute of Technology and Benjamin Bernholtz and Ismail Turksen 

of the University of Toronto. 

Typing of draft copies by Katy Lindsey of Fayetteville and the 

final copy and other assistance provided by Velda Davis and Marilynn 

Bond of Stillwater were invaluable, as was the general advice of 

University of Arkansas faculty members Ronald Skeith and Hamdy Taha. 

Last, but not least, I am deeply indebted to my family for their 

constant encouragement and patience during the formulation of this 

treatise. 

, ,r 



Chapter 

I. 

II. 

TABLE OF CONTENTS 

INTRODUCTION 

Research Objectives. 
Plan of the Dissertation 

DEVELOPMENT OF SYSTEMS CONCEPTS 

Definition •.•• 
Educational Applications 
Systems Simulation 

III. SYSTEM DYNAMICS MODELING AND SIMULATION 

Basic Theory ••••••••• 
Flow Diagram Symbols 
Feedback Loops •••• 
Equations ••••••• 
Continuous Systems Simulation 

IV. A UNIVERSITY ANALYSIS 

Model Development. 
CSMP Simulation •• 

V. A DEPARTMENTAL ANALYSIS 

Model Development ••••••••••.•••• 
Input Data Discussion. • ••••••••••••• 
CSMP Simulation. • • ••••••• 
Simulation Results 

VI. CONCLUSIONS AND RECOMMENDATIONS 

BIBLIOGRAPHY 

APPENDIX A - SAMPLE COMPUTER OUTPUT - UNIVERSITY MODEL 

APPENDIX B - SAMPLE COMPUTER OUTPUT - DEPARTMENTAL MODEL 

Page 

1 

6 
8 

10 

10 
14 
18 

22 

22 
JO 
33 
36 
38 

44 

44 
53 

67 

67 
78 
83 
87 

100 

103 

115 

119 



Table 

I. 

LIST OF TABLES 

Projected Results of Ten-Year Simulation -
Departmental Model, 1971-81 ••••••• 

Page 

98 



LIST OF FIGURES 

Figure Page 

1. A Basic System Dynamics Model 25 

2. Symbols for Level, Rate, and Auxiliary Equations. 31 

3. Flow Lines, Information Take-off, Sources and Sinks, 
atid Parameters. • • . • • • . • • • • ••• 32 

First-Order Negative and Positive Feedback Loops. 35 

5. University Composite Model •••••••• 

6. University Model - First Simulation - Exponential Growth . 56 

7. University Model - First Simulation - Exponential Growth . 57 

8. University Model - Second Simulation - Linear Growth . . . . . 59 

9. University Model - Second Simulation - Linear Growth . . . . . 60 

10. University Model - Third Simulation - Van Bertalanffy Growth . 62 

11. University Model - Third Simulation - Van Bertalanffy Growth . 63 

12. University Model - Fourth Simulation -
Van Bertalanffy Growth - Lower Faculty Support. • • • • • • 6~ 

13. University Model - Fourth S~mulation -
Van Bertalanffy Growth - Lower Faculty Support 65 

1~. Composite Model, University Department. 79 

15. Departmental Model - Initial Fit - 1961-1971. 

Departmental Model - Slow Growth - 1961-1981. 90 

17. Departmental Model - Slow Growth - 1971-1991, 
Added Research •••••••.•••••• 92 

18. Departmental Model - Fast Growth - 1971-1981. 93 

19. Departmental Model - Fast Growth - 1971-1981, 
Added Research •••••••••••••.• 95 

vii 



Figure 

20. Departmental Model - Positive Linear Growth - 1971-1981 

21. Departmental Model - Positive Linear Growth, Added 
Research - 1971-1981 ••••••••••• 

'\Ti ; ; 

Page 

97 



CHAPTER I 

INTRODUCTION 

The problems eurrently facing higher education are tremendous. 

Evidence is available from all quarters of increasing dissatisfaction 

with both the processes and products of the Country I s colleges and 

universities. 

In a recent special Saturday Review article, entitled "Who Runs the 

University?", prepared in cooperation with the Committee for Economic 

Development, a group of leaders representing various facets of higher 

education, pinpointed a number of the problems (1). President Meyerson, 

of the University of Buffalo, painted the bleak picture of a nation 

whose people still failed to give proper weight to the humanities, whose 

outstanding professors seemed to be leaning more toward research and 

less toward teaching, and whose legislators and private donors, angered 

by student unrest, were curtailing funds vitally needed to meet in­

creasing enrollments and burgeoning costs. Robert Powell, President of 

the National Student Association, argued eloquently for increased stu­

dent influence in matters of internal governance, including faculty 

selection, promotion and retention, grading policies, and curriculum 

determination. William Roth, a University of California regent, spoke 

out for greater power to enable top administration officials to cope 

with the vise-like pressures converging at that level - between students, 

~arents, faculty, industry, regents, and government officials. Not only 
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is greater power needed, the administrators must also be flexible, po­

litically keen, and capable of optimizing the use of available funds. 

Logan Wilson, President of the American Council on Education, criticized 

the diffusion of decision-making and lack of clear-cut authority charac­

terizing many of the institutions of higher learning. John Millett, 

Chancellor of the Ohio Board of Regents, felt that the great challenge 

for the 1970's involved the establishment of new forms of governance 

which can preserve autonomy, resolve conflict and result in improved 

management of resources. Franklin Patterson, President of Hampshire 

College, sharply criticized most institutions for their failure to 

develop new patterns of association and cooperation between similar 

organizations. He felt that they tended to duplicate capital, instruc­

tional, and managerial costs, and that to survive, many schools must 

learn to pool their resources. 

The broad-guage Saturday Review article, encompassing many forms 

of university problems, is only one of hundreds which have been written 

recently in varied publications. Similar views of university and out­

side groups were expressed in a special issue of the Oklahoma State 

University o•Collegian newspaper (2), a special report of the trustees 

of Editorial Projects for Education (3), a report on higher education of 

the Department of Health, Education, and Welfare (HEW) (4), a panel on 

State Planning and Coordination of Higher Education (5), a study by The 

Fund for the Advancement of Education (6), and many others. 

While student unrest, campus governance, administrative power, edu­

cational objectives, and other vital topics are discussed with increas­

ing frequency, the problem of spiraling costs and their management is 

apparently of universal concern. The sheer magnitude of present 



educational expenditures and the rapid rate of increase provide ample 

cause for concern. A recent U. S. Office of Education report estimated 

an increase in college and university enrollment from 6.9 million in 

1967 to 9.4 million in 1977 (7). Costs were estimated to rise from 

$16.6 billion to $27.8 billion during the same period. During the 

1960-1970 decade, enrollment in higher education doubled while costs 

quadrupled. 
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Arnold Reisman (8), Editor of the new Educational Science Section 

Newsletter of the Operations Research Society of America, recently noted 

that the United States has 2,269,000 teachers in elementary and second­

ary schools and 833,000 faculty members in colleges and universities. 

It is estimated that 3,315,000 professions are directly or indirectly 

connected with the Country's total educational program, and that 

67,646,000 persons are enrolled as students. Future expenditure pro­

jections indicate that the 1969-70 operating budget of $63.4 billion 

dollars will reach $87.4 billion by 1980. Personnel needs in elementary 

and secondary schools should reach 2,928,000 by 1980, and in higher edu­

cation, the Ph.D. requirement should reach 763,000, increases of 29% and 

60%, respectively. The estimated replacement value of the current 

national educational plant is over $500 billion, making it one of the 

most important sectors of the economy in magnitude as well as impact. 

Considering the current magnitude and rising cost of education, 

coupled with student unrest and the economic slowdown, one might expect 

the current pressure for more effective cost control to be natural. 

Suggestions for attaining accountability are being received from all 

quarters. A recent sample of the potpourri of proposals includes: a 

Forbes article, entitle "Wake Up, Cut Down or Die" (9); Amitai 



Etzioni's (10) editorial, entitled "On the Art of University Pruning" 

in Science magazine; a Wall Street Journal discussion of the desirabil­

ity of changing tenure provisions to cut costs (11); Frederick Terman's 

(12) interesting paper on the minimum economic size of undergraduate 

and graduate engineering programs; Business Week's description of the 

university consortiums formed in various regions to share faculty, 

audio classroom facilities, libraries, and other expensive components 

(13); and the provocative theories of George Pake (1~), in his article, 

entitled "Wither United States Universities?". 

While several proposals for change are made in the article by Pake, 

its major thrust involves the problem of effective management and cost 

control. Currently Vice-President of Xerox Corporation, the author 

acquired considerable university expertise through his experience as a 

student in university-run classes from the elementary level through the 

Ph.D., as a teacher at two universities, and in subsequent assignments 

as provost, then trustee of a major institution. In his opinion, the 

major management challenge concerns the inability of educational insti­

tutions to increase the teaching productivity of individual faculty mem­

bers. In the face of rising salaries, decreasing teaching loads, 

escalating library and computer expenses, and faculty and student 

comments and demonstrations which threaten to reduce appropriations and 

donations, there are few direct incentives for administration, faculty, 

or students to reduce costs. Course and departmental proliferation, as 

well as actions causing negative public reactions, would be controlled 

more effectively, he feels, under a type of group incentive plan similar 

to a well-known college teacher retirement system. Under the plan, each 

person would obtain a specific number of shares, the value of each being 



a function of the total university appropriation. If course loads or 

class sizes are significantly reduced, or course proliferation occurs, 

the value of each share would drop. His thesis is that such a device 

would have a significant "damping" effect on spiraling costs and would 

improve the understanding of administrative problems by faculty and 

students. 

While the myriad published solutions to the problems of higher 

education may or may not "fit" a particular institution's needs, a 
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vital by-product of such thrusts is heightened interest in and pressure 

for management improvement. Education administration has long been a 

program area in colleges of education, and much work has been done in 

the development of organization theory and other subject matter, partic­

ularly as applied to administration of public elementary and secondary 

schools. During the past decade, however, a number of other groups 

have sought to apply the theories and practices of quantitative manage­

ment to educational problems. In 1961, at the first joint meeting of 

the Operations Research Society of America and the Institute of Manage­

ment Science, Platt (15) suggested that quantitative management tools be 

applied to education. Subsequent progress in their application has been 

rapid. Taft and Reisman (16) considered the utility of using systems 

analysis procedures to show how the various subsystems in a university 

are interrelated. They viewed the structure as a complex grouping of 

entwined dynamic subunits, rather than as a series of independent 

parts. Many other systems studies (to be discussed in the next chapter) 

have also been proposed. One group of investigators has utilized con­

trol theory to develop state-space models, while a sizable number have 

approached the problem from the viewpoint of decision-making through 



Planning, Programming, Budgeting Systems concepts (PPBS), and smaller 

groups have recommended other approaches. 
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To date, none of the major systems approaches enjoy the status of 

being fully operational, tested and widely accepted. The mathematically 

based state-space models have been criticized as being unrealistically 

simplified to fit mathematical restrictions; Planning, Programming, 

Budgeting Systems have met with varying degrees of success; Leontieff 

Input-Output models have been denounced as inflexible and representative 

of past data; programming, inventory control, and other operations re­

search tools have been condemned for possibly suboptimizing at the 

expense of over-all optimization, and management information systems 

have come under heavy fire because of the difficulties and expense con­

nected with data acquisition. 

Research Objectives 

The tools listed above have been applied to total institutional 

analysis as well as to such areas as student enrollment prediction, 

student flow registration procedures, faculty, student and classroom 

scheduling, curriculum planning, institutional investment policy, main­

tenance resource allocation, personnel management, student services, 

academic productivity, analysis of university year-round operations, 

student attendance patterns, faculty distribution in a college, and 

other similar subsystems. The criticisms mentioned above have been most 

severe where attempts have been made to apply the concepts to total 

university units. Unrealistic simplification to fit mathematical limi­

tations, data acquisition expense and difficulty, inflexibility, old or 

incomplete data, and other condemnations increased as the scope of 
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educational systems studies expanded. Other difficulties, which will be 

discussed later, include the human relations problems involved in gain­

ing the vital understanding and support of operating managers who con­

trol organizational data, the need for new types of data aimed toward 

control of operations rather than mere recording of past events, and a 

better understanding of educational organization problems by quantita­

tive management analysts. 

A formidable obstacle to effective educational system analysis is 

that of understanding the interrelationships involved at all levels, 

including subsystems of universities such as departmental units. Com­

plications include the existence and impact of both formal and informal 

lines of communication, the relative effect of internal and environ­

mental changes, difficulties involved in defining objectives and deter­

mining educational quality, and many other intangibles which combine to 

complicate the job of system improvement. 

While no panacea exists which circumvents all of the difficulties 

involved, the objective of this research is to determine the applica­

bility to and efficacy of the dynamic systems concepts developed by 

Forrester (17). It is felt that the equations and diagrams involved may 

engender a better understanding of educational systems than other ana­

lytical approaches, and the simulation procedures which play a key role 

in the procedure should pinpoint the critical planning and control 

areas. The concepts emphasize the information-feedback characteristics 

of organized activities and provide a procedure to study the means by 

which structure, amplification (through policies) and time delays (in 

decisions and actions) interact to influence the success of any enter­

prise. They permit an analysis of the flows of people, funds, 
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materials, orders, and capital equipment, as well as the information 

flows and decision-making networks which tie them together. The two 

types of variables recognized are level and rate. Using an analogy 

taken from accounting, level variables are somewhat like balance sheets. 

They represent the system accumulations, which might include faculty, 

existing buildings and laboratories, funds, and such intangibles as 

faculty attitudes and reputation. Profit and loss statements are simi­

lar to the rate variables. They represent activity, and establish the 

rates at which the level variables are changing. They are the policies 

or decision-functions which cause the system to evolve. Also analogous 

would be a system of interconnected fluid storage tanks whose levels are 

controlled by a series of valves. Since such general basic concepts 

should be applicable to any type of organization, from the simplest unit 

organization to one as complex as a large university, this research has 

been conducted to demonstrate first the feasibility of using the con­

cepts to model the structure of higher educational units, and then to 

utilize the models for sensitivity analyses designed to improve their 

organization and operation. 

Plan of the Dissertation 

An introduction to systems concepts and a history of their develop­

ment will comprise the first section of the second chapter. Attention 

will then be given to current applications of the concepts to educa­

tional institutions. The chapter will close with an introduction to and 

evaluation of the major educational simulation models developed to date. 

Following an introductory explanation of system dynamics princi­

ples in the opening section of Chapter III, a brief comparative analysis 
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will be made of the compilers which can be used to simulate the models. 

The first model will be constructed in Chapter IV. It will consist 

of an aggregative, broad-gauge model of a university structure. Because 

of the complexities involved in such a complex of unit organizations, 

the model will be restricted to only a few of the major interacting 

loops which are common to most institutions of higher learning. For 

example, the interactions of auxiliary enterprises such as food service, 

housing, parking, and others will not be considered because the loop 

interactions and resulting complexity would be prohibitive. The latter 

part of the chapter will comprise an introduction to the International 

Business Machines Corporation compiler - Continuous Systems Modeling 

Program ( System/J60 CSMP) - and its use as an analytical tool in conjunc­

t ion with S,Ystem dynamics models. Its efficacy will be tested by first 

running an analysis on the initial model, then checking it for sensi­

tivity to specific variables. 

To test the effectiveness of system dynamics in a unit organiza­

tion, a university department will be modeled in Chapter V. While a 

number of intangibles are present, as in the university model, a more 

microscopic view will be obtained. The divisions considered include 

the student, staff, research, and quality sectors. The model will then 

be analyzed by CSMP. 

The final chapter will consist of conclusions derived from the 

research and recommendations for further study. 



CHAPTER II 

DEVELOPMENT OF SYSTEMS CONCEPTS 

Definition 

During the past fifteen years, the term "systems" has gained such 

widespread use that it is now a part of almost every American's vocabu­

lary. Unfortunately, the term has been used in different ways and 

applied to countless activities, resulting virtually in semantic chaos. 

For example, many managers and analysts use the terms "systems analysis", 

"operations analysis", "management analysis", "operations research", and 

others synonymously. Compounding the difficulty currently encountered 

is the fact that the term has been used in different ways for many 

years. Man has always tried to discover relationships between things 

and has long established procedures or systems to explain the relation­

ships. For example, Plato and other philosophers contemplated and wrote 

about a system of society (18) (19); early astronomers wrote of the 

stellar system and the cosmos; and early Egyptian architects used an 

ingenious system of measurements to construct the pyramids (20) (21). 

Modern examples are also commonplace. Subway systems, school systems, 

and air defense systems are but a few of an almost infinite number (22)-

(26). 

Challenging even to many engineers whose work is closely allied 

with systems is the role of control and communication theory. The in­

formation theory developed by Claude Shannon (27), an eminent electrical 
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engineer, and the communication and control theories of Norbert Wiener 

(28), an outstanding mathematician, are so abstruse that only a small 

fraction of those interested in systems analysis have studied them in 

detail, yet they are often referred to as basic to the systems field. 

For example, the work in cybernetics of Wiener and the electrical engi­

neering control theory research of Forrester at the Massachusetts Insti­

tute of Technology formed the background for Industrial Dynamics, the 

interesting new approach to systems analysis utilized in this disserta­

tion for modeling. Based on feedback systems, simple concepts can be 

used to explain the rudiments of the approach (29). Ordinary concepts 

like a thermostat controlling a home furnace, a person driving an auto­

mobile, or a manufacturing company seem to have little in common. On 

closer review, however, they do have one single identifying similarity. 

Each represents an information feedback system in which a stimulus - the 

temperature, another car, a change in orders - causes a reaction. The 

reaction, in turn, affects the stimulus. The change in the stimulus 

then creates a further reaction. The process is one of continual inter­

play and adjustment, as information flows back and forth within the 

system. 

Each of the three examples cited is a closed loop information sys­

tem, in which one action creates a reaction which modifies the first 

action. The thermostat, when the temperature drops below a certain 

level, switches on a furnace. When the furnace brings the temperature 

up to the desired level, the thermostat turns the furnace off. The man 

driving down the street "automatically" reacts when his car deviates 

from the speed or direction he desires, and his reaction corrects the 

deviation. 
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Manufacturing companies and other organizations follow much the 

same pattern, except that their reaction time is much slower. A rise in 

orders will call forth a reaction within a business, for example, but it 

may take weeks to occur because so many factors and so many people are 

involved. The necessary information needed by each actor to make cor­

rect decisions about the action to be taken has a time lag factor much 

longer than that present in the case of the man driving down the street. 

The man can react almost instantaneously; the corporate enterprise will 

take much longer. Yet, both are dynamic; both do react to stimuli which 

they, in turn, modify. Study of the modification and interaction proc­

ess through System Dynamics principles represents a unique and hopefully 

valuable tool in all systems studies. 

Another major area involved in the semantics morass surrounding 

systems concepts is that of management principles or organization 

theory. Even those familiar with the field have difficulty defining the 

lines of demarcation between traditional and systems concepts. Many 

writers have attempted to develop general theories concerning the rela­

tionships involved in organized human activity. Among.classical or 

traditional theorists were Weber (JO) and his work on bureaucracy, Fayal 

(31) and his general management theory, F.merson (32) and his principles 

of efficiency, Mooney and Reiley (33) and their work on the division of 

authority and responsibilityt and Taylor's (34) theory of shop manage­

ment. Later, a human relations school of organizational behavior devel­

oped following the pioneering effort of Roethlisberger and Dickson (35). 

The views of the traditionalists and humanists were brought to­

gether by Chester I. Barnard (36), one of the most respected (and 

quoted) authors in the organization theory field. Writing in the 1930's 
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after ·thirty years of top-level management experience, he welded the 

structural concepts of the past to the human relations view which recog-

nized the organization as a system whose efficacy depended greatly on 

formal, informal, and intergroup relationships. 

Rensis Likert (38) later associated the human relations model with 

systems concepts. Herbert Simon (39) and James March (40) stressed the 

importance of the decision-making process within an organization, 

Talcott Parsons (4:1) and William Scott (42) helped to usher in the 

modern interlinking of organization and systems concepts, and Van Court 

Hare (43), Richard Johnson (44), and Stanford Optner (45) efficiently 

combined theory with contemporary practice. 

Although some difference of opinion still exists concerning the 

exact nature and meaning of systems and their relationship with the 

areas listed, a pattern of understanding is currently emerging. One of 

the best publications available for a composite current view of defini-

tions in the field is the paper entitled "The Future of Systems and 

Industrial Engineering, 11 by Croft and Eldin (46). They state that a sys-

tern is an array of components designed to accomplish a particular objec-

tive according to plan. 

Another systems area currently involved in some confusion is that 

called "total systems". Numerous authors have discussed the concept, 

usually defining it only in a broad sense or merely citing examples of 

military and airline installations where a series of subsystems have 

been interlocked for effective over-all coordination (47)-(50). A more 

precise definition is given by Eldin (51): 

The complete monitoring of an enterprise by groups of inter­
connected computers; the automatic control by the machine of 
inventories, production scheduling, shipping, payroll and 
other operations that can be reduced to mathematical 



representation arid the limiting of direct human control to 
such functions as setting over-all objectives and reacting 
to totally unexpected situations. 

While many organizations may never achieve a total system under the 

above definition, a number of writers consider the objective to be a 

desirable one (52)-(56). 

Educational Applications 

While semantic difficulties have plagued the systems concept and 
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severe technical problems have hampered its implementation, the desira-

bility of utilizing modern quantitative tools to thoroughly analyze all 

facets of a problem is gaining widespread recognition. The high costs 

concomitant with computer operations, the difficulties sometimes in-

volved in fitting mathematical equations to specific realistic problems, 

the stochastic nature of some events which precludes precise solutions, 

and many other difficulties have presented impediments to systems analy-

sis but have not appreciably slowed their application to the myriad 

problems of modern education. An effective catalyst for such efforts 

was provided at a 1961 joint meeting of the Operations Research Society 

of America and the Institute of Management Science, when Platt (15) 

recommended that quantitative tools be applied to education. 

Aided by progress in control theory, computer hardware and soft-

ware, operations research, simulation and industrial experimentation, 

and spurred by the magnitude and urgency of the problems facing educa-

tion, an ever-increasing number of systems analysts are attempting to 

improve the operations of educational systems. Representing a large 

number of disciplines and employed "Qy a variety of organizations in-

eluding universities, consulting firms, and various levels of government, 
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they have studied problems ranging from departmental unit organizations 

to complete universities and their environmental interactions. Strong 

institutional support has also been extended by many organizations. 

Several of the more prominent include the U.S. Office of Education, the 

American Council on Education (representing the National Association of 

State Universities and Land-Grand Colleges, The American Association of 

State Colleges and Universities, The Association of American Colleges, 

The Association of American Universities, and The American Association 

of Junior Colleges), The National Science Foundation, The Ford Founda­

tion, The Operations Research Society of America, the Institute of 

Management Science, The Western Interstate Commission for Higher Educa­

tion, The American Association of School Administrators, and the 

recently formed International Society of Educational Planners. 

Educational institutions have also been vitally interested. For 

example, The University of California, operating as an active member of 

the Western Interstate Commission for Higher Education (WICHE), has con­

tributed significantly to current research concerned with the management 

of university systems and effective resource allocation. Under Univer­

sity and Ford sponsorship, the Office of the Vice President - Planning 

and Analysis - has sponsored far-ranging investigations (56)-(80). 

While California and the WICHE group have already achieved a posi­

tion of eminence in university systems analysis, many other institutions 

are becoming active. One is the Systems Research Group at the Univer­

sity of Toronto. Under the leadership of Judy and Levine (81) (82), 

they developed the flexible and well-known comprehensive simulation 

model called "Comprehensive Analytic Methods for Planning in University 

Systems 11 · (CAMPUS) ~ which is already being adapted to community colleges, 
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state systems, colleges with completely individualized instruction, and 

to elementary and secondary school systems. Further work there has 

resulted in a newer version, CONNEQT/CAMPUS, which is the most detailed 

of the straightfqrward resource-costing models currently available, and 

other advances (83)-(8~). 

Significant progress in the analysis of educational systems has 

also been made at a number of other universities. Those most active 

include The University of Pittsburgh (85)-(92), Pennsylvania State 

University (93)-(98), Iowa State (99)-(102), Michigan State (103)-(105), 

Ohio State (106)-(116), Florida State (117), The University of Texas at 

Austin (118), Rennsselear (119) (120), Virginia Polytechnic Institute 

(121)-(12~), The University of Minnesota (125) (127), Stanford (128), 

Louisiana State (129), Carnegie Tech (130), and Purdue (131). 

Other groups are also making significant contributions. One very 

important organization previously referred to is the Western Interstate 

Commission for Higher Education (WICHE). Consisting of thirteen western 

states, with headquarters at Boulder, Colorado, the group has focused on 

such objectives as: to increase educational opportunities for western­

ers, to expand the supply of specialized manpower in the West, to help 

universities and colleges improve both their programs and their manage­

ment, and to inform the public about the needs of higher education. The 

organization has already had considerable impact on educational efforts 

through its sponsorship of conferences and clinics, its cooperation and 

joint sponsorship of studies with the American Council on Education and 

various government agencies, the dissemination of useful information 

among its members, the publication of numerous proceedings and special 

papers on a variety of topics, including management information systems 
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to aid budget and facilities officers (132), and a classification struc­

ture to aid the exchange of information between educational institutions 

(133). 

Not previously mentioned are other major non-profit organizations 

interested in the area; they include: The Department of Health, Educa­

tion, and Welfare (HEW) (134), the Organization for Economic Cooperation 

and Development (OECD) (135), The Western Association of College and 

University Officers (136), The American Association of Collegiate 

Registrars and Admission Officers (AACRAO) (137) (138), and the Rand 

Corporation (139). 

A number of profit-oriented organizations have also invested sig­

nificant time and manpower in an effort to improve the management of 

educational institutions. Among the most active are the Systems Re­

search Group of Toronto (140), Peat, Marwick, Mitchell and Company of 

New York (141)-(145), Cresap, Moore, and Padgett of New York, Isaacs­

Dobbs Systems Incorporated of Los Angeles, and Management-Computer 

Interlock, Incorporated of Houston. 

As was mentioned earlier, the efficacy of extensive efforts by 

management scientists in all areas is a function of the understanding 

and support accorded by the college and university administrators. Time 

and training, coupled with exogenous pressures, will gradually secure 

their support. Implementation of the concepts in the administration of 

elementary and secondary education also needs the support of teachers 

and administrators. The speed with which such support is acquired 

depends somewhat on the understanding and acceptance of the concepts by 

education college faculties and the authors of their textbooks. Fortu­

nately, their current texts and individual pronouncements indicate a 



heightened interest. Revisions of established texts are now including 

sections on the subject and a number of new books are entirely devoted 

to one or more facets of systems science (146)-(153). 
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Systems concepts are also being included in many of the textbooks 

devoted to other phases of educational administration. For example, it 

is mentioned in several sections of the new two-volume Handbook on 

Administration, edited by Knowles (152), in a new text by Neagley, 

Evans, and Lynn (153), and in the second edition of the Morphet, Johns 

(148) text on educational organization and administration. 

In summary, it appears that modern systems concepts will be 

applied to the problems of educational administration at a rapidly 

increasing rate in the future. New advances are being made by those 

trained in the sciences and those responsible for implementation are 

apparently adopting the concepts with alacrity. While considerable 

energy and wisdom will be required to overcome the many physical and 

human obstacles involved, administrative practices at all levels of 

education should undergo a remarkable transformation during the 1970 1s. 

Systems Simulation 

A number of the tools of management science already have been 

applied to educational systems. Some, like PPBS, PERT-CPM and decision 

theory, have been mentioned. A more complete list would include control 

theory, inventory theory, linear, quadratic and dynamic programming, 

engineering economic analysis, organization theory, applied statistics, 

methods analysis and standards, queueing principles, Markov chains, 

matrix theory, Leontieff input-output analysis, computer technology, 

and facilities design. The procedures have been applied to different 
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segments of the systems and have met with varying degrees of success. 

PPBS, for example, has been praised by some as an aid to planning and 

condemned by others as unduly complicated. PERT-CPM has enjoyed success 

for project management activities, but does not fit many of the on-going 

day-to-day problems faced by administrators. Linear and other mathe­

matical programming tools have been criticized for not fitting realistic 

problems. Queueing, inventory theory, and other methods have been 

accused of suboptimizing or being too narrow in scope. To avoid some 

of the criticism and to permit more accurate broad-gauge analyses, sys­

tems simulation has become increasingly popular in educational adminis­

tration. A number of small-scale models have been developed to handle 

specific fragments of an institution, but the number of effective com­

prehensive models is small. One of the earliest and best known is 

CAMPUS which was developed at the University of Toronto by Judy and 

Levine (82). Another is CSM (Cost Simulation Model) developed at the 

University of California by Weathersby. Based on the CSM model, 

Mathematica later developed RRPM (Resource Requirements Prediction 

Model) for WICHE. Also well-known is the model developed at Michigan 

State University by Koenig (103), called the "Systems Model for Manage­

ment, Planning, and Resource Allocation in Institutions of Higher 

Education." More limited in scope, but also well-known are CAP:SC 

(Computer Assisted Planning for Small Colleges), developed by the con­

sulting firm of Peat, Marwick, Livingston, and Company, and the Tulane 

University Model. 

The CAMPUS model was developed at a cost of over a million dollars, 

and its successor, CONNECT/CAMPUS is one of the most flexible and widely 

used systems. Work has been done to utilize it not only in larger 
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universities, but also in small community colleges and elementary and 

secondary schools. While such a complete system tends to require con­

siderable quantities of expensive data, the problem has been reduced 

somewhat through the utilization of data normally available in most 

institutions. The RRPM contains less detail than CAMPUS and is directed 

more toward institutional finances and costs. Like CAMPUS, it is cur­

rently being tested in a number of institutions. It is also designed to 

use data which are generally available. The Koenig model is less flexi­

ble than CAMPUS or RRPM and does not quantify measures of output other 

than costs and the number of student degrees completed. Designed to 

operate for a nine year planning period, the Tulane model is most useful 

for resource costing purposes, particularly in the area of faculty costs 

based on student enrollment. It is not good for decisions concerning 

optimal resource allocation, however, because it contains no structure 

to evaluate the interrelationship of its variables and the impact of 

exogenous inputs. CAP:SC also has no structure to evaluate variable 

interrelationships, hence, a larger number of expensive computer runs 

must be made for the decision-making process. It is also relatively 

inflexible, but contains a sufficient level of aggregation to make it a 

potentially useful long-range planning tool for small colleges. 

Unfortunately, none of the models consider the major outputs of 

educational institutions and none seem to combine such features as 

flexibility, suitability for both over-all and subunit analysis, ability 

to evaluate the interrelationship of endogenous and exogenous variables, 

and moderate cost. While such a perfect instrument may not exist, it is 

felt that the principles of system dynamics, coupled with the use of the 

IBM continuous system modeling program, System J60/CSMP, may provide a 
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new and potentially valuable tool for the analysis of educational sys­

tems. In the next chapter, the basic principles of system dynamics will 

be explained, followed by a brief discussion of applicable compilers 

which are available for simulation. In the following chapter, an 

attempt will be made to utilize those concepts to prepare an aggregate 

model of a university. The feasibility of using CSMP for its evaluation 

via sensitivity analysis will then be attempted. Finally, a similar 

analysis will be applied to a university department subunit. 



CHAPTER III 

SYSTEM DYNAMICS MODELING AND SIMULATION 

Basic Theory 

While a thorough working knowledge of system dynamics theory can 

be achieved only through experience and a careful study of the litera­

ture, its basic elements are easily grasped (17) (29) (15~). 

The system dynamics concept, formerly called Industrial Dynamics, 

was developed by J. W. Forrester (17), Professor of Industrial Manage­

ment at the MIT Sloan School of Management, who felt that management 

education needed a central skeleton around which the art of management 

could be organized. He and his group consequently developed the systems 

philosophy which they believe can integrate the traditional functional 

management subjects (marketing, finance, production, etc.), with the 

human aspects, the technical considerations and environmental condi­

tions. Their viewpoint is, they feel, fundamental and common to all 

systems, providing a framework which should be both conceptual and 

theoretical, and at the same time practical and useful. The management 

systems philosophy is based on the belief that the central problems of 

management arise from the characteristics of closed, goal seeking 

systems. These are extensions of the feedback_systems studied in engi­

neering se:r>vo-mechanism which imply that, at all points within a system, 

conditions lead to decisions that cause actions that change conditions 

and, thereby, alter future decisions. In such mechanisms, the vital 
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importance of the communications network is obvious, putting Forrester 

in strong agreement with other students of organization theory such as 

Chester I. Barnard (36) and Melvin R. Lohmann (37). They also are in 

agreement that organizations are living, viable organisms which must be 

viewed as dyn'amic rather than static. 

As modern society grows increasingly complex, the task of manage­

ment has developed into much more than an art; conceptual skill is 

playing an increasing role in the success of all organizational effort. 

Management has fast become an exciting, dynamic, and intellectually 

demanding field. Formerly, because society felt that it was an art 

more than a profession, both education and practice were highly frag­

mented. The student was taught individual skills such as organization, 

manufacturing, marketing, and finance. This produced graduates who as 

specialists in a particular area were not fully aware of how the sub­

sets of the discipline interacted to form the unified system required 

for the successful operation of an organization. In highly competitive 

business, for example, the relationships between the flows of informa­

tion, materials, money, manpower and capital equipment must be con­

sidered, along with goals and values. They interlock to amplify each 

other, causing fluctuations which might require changes in decisions, 

policies, organizational forms, and investment choices, to name a few. 

System dynamics was developed to provide an analytic tool to handle 

such requirements. As mentioned above, it views the organization as a 

complex system of interlocking information channels merging at various 

points for the control of the physical process. Within the system, 

there are individual points whose information sources travel into other 

areas of the organization and the surrounding environment. At each 



decision-making point, a decision-information loop is established. 

Through the use of information as an input to the loop, decisions are 

developed causing action, which in turn adds new information to the 

loop. Thus, decision-making is a continuous process in which informa­

tion is converted into rates of flow to the system. New information is 

used as it becomes available in order to provide the exact amount of 

action needed to adjust the system to its desired goals. 

In the development of a decision, the state of the system is de­

scribed by the condition of the levels as shown in Figure 1. Some exam­

ples of levels are laboratory inventories, the number of faculty and 

staff employees, and the degree of optimism about the economic future. 

The output developed from the decision point affects the rate at which 

the system level will change. Flow rates between the levels are changed 

by the decisions. 

In the organization structure, policy is the formulation of a 

statement which defines the relationships between information sources 

and resulting decision flows. Two types of policies exist: formal and 

informal. Formal policy exists for guidance of the decision maker while 

informal policy depends on habit, conformity, social pressure, ingrained 

concepts of goals, awareness of power centers within the organization, 

and upon personal interests. The dynamic model is used to study the 

influence of policies on the system behavior. In the model, all deci­

sions come under the control of policy, and policy controls the flow at 

all points in the actual system. At each decision point it is important 

that consideration be given to those variables available at the time the 

decision process occurs. It is essential that both those values which 
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Figure 1. A Basic System Dynamics Model 
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are 11 true 11 values and those associated variables representing measured 

or conceived values be included so that the model is portrayed 

realistically. 
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The first step in developing the decision function for a decision 

point is to list .those factors that influence the decision. Not only 

nrust their direct effect on the decision be evaluated but consideration 

must be given to the degree of feedback of the decision developed on 

the factor and the timing of the feedback. The short- and long-term 

influences of the factor must be considered because they can be in 

opposite directions. The interaction between the variables is very 

important in determining the behavior of the information-feedback sys­

tem. Upon completion of the individual decision point functions, they 

are combined to produce the decision model. 

Basically, system dynamics involves the construction of verbal, 

graphical, and then mathematical models of the closed loop feedback 

characteristics of the most important activities of a system, which 

Forrester defines as a grouping of parts that operate together for a 

common purpose. Every model has four basic features: 

(1) Leyels represent the accumulations at various points in the 

system at any given point in time. As mentioned before, 

examples would include such things as the number of students, 

laboratory equipment, operating funds, and others. Looking 

at them another way, one may say that levels exist wherever 

there are delays in flow rates. 

(2) Flow rates are the present movements between levels. They 

indicate activity; levels measure the state to which the 

system has been brought by activity. 
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An educational example would be a university department. 

Its total educational capacity would be a level; the demands 

made upon that capacity would be a flow. If demands exceed 

capacity, additional capacity would have to be developed. So 

flow rates determine levels - as levels do flow rates. 

As an industrial example, consider inventory reorders. 

When stock in inventory (a level) goes below a certain pre­

determined point, additional stock is ordered from the fac­

tory. Movement of goods (a flow rate) from factory (a level) 

to inventory (a level) will change both factory and inventory 

levels. 

(J) Decision functions or rate equations determine how the infor­

mation received about levels leads to the decision whether to 

lower or increase a flow rate. Thus, in the industrial exam­

ple just given, an automatic reorder point for inventory would 

initiate an increase in the flow rate from factory to inven­

tory whenever that point was passed. 

(~) Information channels are the media connecting decision func­

tions to levels. 

It is the system dynamics thesis that this basic structure can be 

used to describe the simple networks that, when put together, form the 

organization model. The number of networks required depends on the 

organization studied and on the degree of aggregation feasible. The 

departmental model studied in Chapter V, for example, has four 

networks - student, staff, research, and quality. According to 

Forrester (17), six or fewer networks generally provide a meaningful 



model of an industrial situation. Such a model might include the 

following: 

(1) The materials network, which represents all flow rates and 

levels of physical goods. 

(2) The orders network, which includes orders for materials, 

requisitions for new employees, purchase of new plant, or 

office space. 
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(3) The money network. Here money is used only in the sense of 

actual cash, with money flow and movement of payments between 

money levels. The bank balance is a money level under this 

concept; accounts receivable and price are not included; they 

are part of the over-all information network which inter­

connects all the others. 

(~) The personnel network, which outlines the company's position 

in terms of available manpower and utilization of manpower. 

Obvious levels here would be the labor pool, men in training, 

men working at the factory. Flow rates would be the rates at 

which workers were moving from one level to another. 

(5) The capital equipment network, which includes factory and 

storage space, tools and equipment. Flow rates would include 

the installation of new equipment and production space, and 

the discard rate of old machines. 

(6) Finally, and most important of all, there is the interconnect­

ing information network. Obviously none of the five subsid­

iary networks can exist in a vacuum; decisions in each are 

influenced by information flowing in from other networks. So 

the information network is the coordinating system for all the 



others, transferring information about any level to decision 

points using that information in any network. For example, 
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a radical change in the orders network will invariably affect 

the materials network, and could affect the personnel and 

capital equipment networks as well. It should certainly be 

communicated to the money network. Thus, the information 

network has the job of tying together the entire company into 

a cohesive whole able to make a coordinated response, just as 

the nerves in the human body make possible a logical and 

controlled response to some outside stimulus. 

The foregoing comments were designed to provide an understanding of 

the basic objectives of system dynamics and its over-all operation. As 

mentioned previously, the method involves the construction of verbal, 

graphical, and then mathematical models of the closed loop feedback 

characteristics of the most important activities of a system. Since 

feedback concepts can be quite abstruse, it is helpful to construct a 

flow diagram of the loop structure for better comprehension of the rela­

tionships between the various elements. While verbal descriptions 

provide the information required to construct specific parts of a dia­

gram, and the equations precisely describe the composition of each level 

and rate, a flow diagram is vital to an understanding of how level and 

rates are interconnected to generate feedback loops, and how the loops 

are interrelated to form the system. 

To provide a better understanding of the flow diagram used to de­

scribe the university and departmental models in Chapters IV and V, it 

is appropriate that a brief description be given of the factors involved 

in model construction. First, sketches of the basic elements and the 



corresponding equations (where appropriate), are shown in Figures 2 

~nd 3. Following a brief discussion of each element, several of the 

feedback building blocks will be illustrated. Then the process of 

formulating the mathematical equations, the last step in the initial 

model construction, will also be abstracted from the Forrester text 

(29). Finally, the chapter will close with an overview of the con­

tinuous simulation compilers which are available for analysis and 

improvement of the model. 

Flow Diagram Symbols 
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In Figure 2, levels are first shown. It is recommended that all 

level equations and special functions involving integration be repre­

sented by a rectangle. The symbol identifies the accompanying equation, 

shows the rates in and out which are being integrated, the symbols 

representing the variable, the full variable name, and the equation 

number as a cross reference to the model in the equation set. Rates or 

policies are shown next. Valve-shaped, since they act as a valve in the 

analysis, they receive only information as their input. Rate equations 

are the policy statements that define the flow streams in a system. The 

symbol shows the letter group representing the variable and its full 

name, the equation number, and the information inputs on which the rate 

depends. The auxiliary variables lie in the information flow between 

the rates and the levels. Although they are parts of the rate equa­

tions, they are subdivided and separated because they express concepts 

with independent meaning. A circle is used to identify the equation, 

its abbreviation and number, and the input and output information flows. 
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The flow lines in Figure 3 improve diagram clarity by identifying 

the different variables. Information connections occur in a "noncon­

served" subsystem where information can be used without depleting the 

source. The other variables are "conserved" in that they show quanti­

ties that are moved from place to place in the system. While the 

information network is used in all models, the others are frequently 

used but will often need redefinition depending on the system involved. 

Information about a variable can be taken without reducing that 

variable, the small circle represents only the transfer of information 

about the magnitude of the content. When leaving a level, only take-off 

is possible, unless the level itself is information, in which case flow 

would occur. When leaving a rate or auxiliary, only take-off is 

possible. 

Parameters are the values which remain constant during a simulation 

run, although they can be changed between simulations. They are used as 

inputs to rates, either directly or indirectly through auxiliary equa­

tions. As is shown, their information take-off is either underlined or 

over lined. 

Sources and Sinks are used to indicate flows which exert no direct 

influence on the system after they leave the model boundary. Source 

results from an outside or infinite source and sinks are used to termi-

nate flow lines after they leave the system. 

Feedback Loops 

Feedback loops are the basic "building blocks" of system dynamics, 

for they are interlinked to form the flow diagrams used to model the 

system under study. Since a feedback, or 11 closed11 system is modified 



by its past action a knowledge of loop characteristics is important to 

analysts. The loops may involve either positive or negative feedback. 

Positive feedback generates growth processes, for in it action builds 

on past results, as in the growth of a herd of cattle, a grove of trees, 

as well as in most other life processes. Negative feedback is char­

acterized as goal-seeking. It sets an objective and adjusts until it 

is achieved, as in the case of a heating system seeking a correct temp­

erature, or a university department waxing or waning in response to 

fluctuating student enrollment. 

Figure~ illustrates two of the simplest loops: first-order 

negative feedback, and positive feedback. In the first-order negative 

loop, it will be noted that a single decision rate regulates the input 

to one system level, the inventory. It is called "first-order" because 

the inventory represents the only level variable involved. Also, no 

complications are included such as delays or distortions in the infor­

mation channel traveling from inventory to order rate, or delays between 

orders for goods and their receipt. If the latter problem did exist, 

the loop would require a second level, goods on order, which would make 

the loop a second-order negative feedback. It would also use a second 

rate variable called receiving rate. 

The positive loop, as previously mentioned, represents a growth 

process rather than a goal-adjusting one. It does not have the reversal 

of sign in traveling around the loop. Positive loop action increases 

the difference between the system level and the "goal" or reference 

point, as the growth process continues through time. 
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Equations 

Since verbal descriptions of model components are much less precise 

and more lengthy than equations, the latter are used as soon as possible 

to describe the system under study. To simplify the construction of 

equations, a number of conventions have been adopted by the developers 

of system dynamics. One is the use of 11 J 11 to indicate the immediately 

preceding period, "K" for the time in which the current computation 

applies, and "L" for the next time period. Thus, when computation 

starts at time K, previous computations have made available the levels 

at time J, and the rates of flow over the interval JK. If no previous 

computations have been performed, the level equations must be given 

initial values to define the condition of the system. Based on these 

values, the rates of flow between the levels can be determined immedi­

ately, and the new levels at the end of the computation period are also 

obtained. 

Equation symbols also have a standard format. Since computer 

printing machines do not have subscript or superscript notation, only 

line level characters and numbers are used. Constants and variables 

are represented by six or less characters, the first of which is alpha­

betic. Variables are closed with a period and time postscript, levels 

using J or K, and rates JK or KL, indicating the preceding or following 

interval. Constants have no postscripts. 

Equation symbols can best be illustrated by writing a level and a 

rate equation. A level equation could be compared to a storage tank 

which rises or falls depending on the input and output flow rates over 

time. It can be represented as follows: 



L.K = L.J + (DT)(RA.JK - RS.JK) 

L--Level (units) 
L.K--New value of level being computed at time K (units) 
L.J--Value of level from from previous time J (units) 

DT--The length of the solution interval between time 
J and time K (time measure) 

RA--Rate being added to level L (units/time measure) 
RA.JK--The value of the rate added during the JK time 

interval (units/time measure) 
RS--Rate being subtracted from level L (units/time 

measure) 
RS.JK--The value of the rate subtracted during the JK 

time interval (units/time measure) 

The solution interval DT is a parameter, not of the system but of 

the computing process. It converts the flow rate over time into an 

added or reduced amount in the level, enabling the level equation to 

perform the process of integration. The level equation above is also 
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known as a first-order difference equation in the branch of mathematics 

involving step-by-step integration. 

Since rate equations indicate the flow controls in a system, their 

inputs are system levels and constants and their outputs control the 

flow to, between, or from levels. When computing at time K, using 

level information at K, to obtain the KL flow rates, a rate equation 

would take the following form: R·KL = f(levels and constants). In 

general, since they are really policy or decision statements which tell 

how the system controls itself, they are broader, more subtle, and take 

many more forms than level equations. 

Auxiliary equations are subdivisions of the rates and must be 

evaluated following the level equations on which they depend, and 

before the rate equations of which they are a part. Thus, the compu-

tation sequence when they are used is first levels, then auxiliaries, 

and finally rates. These and initial value equations both may take 

many forms (29). 
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The preceding introduction to system dynamics concepts was neces­

sarily sketchy, for the subject is somewhat similar to accounting in 

one sense. It involves considerable detail and requires experience 

before modeling proficiency can be achieved. Additional skill is then 

required to analyze the initial model with the assistance of the com­

pilers described next. For additional mastery of the modeling and 

simulation details, the previous references (17) (29) (15~) are sug­

gested, along with several specialized treatises written by members of 

the MIT dynamics group (155) (156) (157). 

Continuous Systems Simulation 

A continuous system is one in which the predominant activities 

cause smooth changes in the attributes of the system entities. When 

such a system is modeled mathematically, the variables of the model 

representing the attributes are controlled by continuous functions. 

Most generally, in continuous systems, relationships among the attri­

butes describe the rates at which attributes change, so that the model 

consists of differential equations (158). 

Discrete systems, on the other hand, are systems in which changes 

are predominantly discontinuous. A description of a discrete system 

is concerned with the events producing changes in the state of a system. 

A description of a continuous system is usually in the form of continu­

ous equations showing how system attributes change with time. However, 

the type of description does not necessarily coincide with the type of 

system. 



The study of continuous systems will sometimes be simplified 
by considering the changes to occur as a series of discrete 
steps •••• In addition, the description of discrete systems 
is often simplified by considering the changes to occur 
continuously (158). 
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Dynamic modeling is the modeling of continuous systems, describable 

l:zy differential equations, or mixed systems, describable in terms of 

differential equations and logical equations (158). Those continuous 

dynamic systems that are of usual concern to scientists and engineers 

have traditionally been simulated on analog computers. As systems under 

investigation have become increasingly complex, however, the need for 

speed, flexibility, and accuracy has increased. Digital simulation of 

continuous systems dates back only to 1955 with the work of Selfridge 

(158). Although special compilers were prepared earlier, the first 

commonly used digital simulation program, MIDAS~ did not appear until 

1963. 

A number of continuous system simulation languages have been 

developed since that time which offer the user greater freedom in de-

scribing a system. They make use of a FORTRAN-like statement language, 

allowing a problem to be programmed directly from the equations of a 

mathematical model, rather than requiring the equations to be broken 

into functional elements. They extend the range of continuous system 

simulation by removing the orientation toward linear differential 

equations which characterizes analog methods (158)G 

Several compilers are now available to provide continuous simula-

tion for organizations modeled by system dynamics methods. One, called 

DYNAMO, was developed especially for the concepts by Pugh, a member of 

the MIT group (160). DYNAMO (DYNAmic MOdels) was a 1959 successor to 

SIMPLE (Simulation of Industrial Manag.ement Problems with Lots of 



Equations) which was prepared in 1958 for the IBM 704 computer. DYNAMO 

was later improved and modified for the IBM 709, 7090, and 9094 com-

puters and now exists as Dynamo II, version 4, which is available from 

1 Pugh-Roberts Associates, Inc. Version 4 can now be used effectively 

on the IBM 360 and other modern units. 

Since DYNAMO is a special purpose compiler designed for the digital 

simulation of industrial dynamics models, which are constructed essen-

tially in terms of algebraic and first-order difference equations, its 

programs are written in terms of rate and level equations. As was men-

tioned previously, rate equations can have any appropriate algebraic 

form. They represent the decision functions in the system. Level equa-

tions, on the other hand, represent accumulations (of information, 

materials, capital equipment, etc.) within the system, and have the JK 

and KL intervals described earlier in the chapter. The main purpose of 

the time notation is to facilitate the construction of equations in such 

a way that they are compatible with the procedure followed by the com-

puter in calculating all equations at each iteration. Thus, during the 

simulation runs, levels are computed at each point in time, for example 

time K, based on the previous values of the levels at time J and the 

values of the rates during the interval JK. 

In addition to rate and level equations, DYNAMO programs include 

auxiliary, supplementary, constant, and initial-value equations. These 

are convenient for programming purposes, but otherwise have no impact on 

the logic of the model. At each iteration, then, the order of computa-

tion is first levels, then auxiliaries, and finally rates. 

1:Pugh-Roberts Associates, Inc., 179 Fifth Street, Cambridge, Mass., 
121!±1. 



Another compiler designed especially for Systems Dynamics is 

FORDYN (FORtran simulator for industrial DYNamics), published in 1965 

by Llewellyn (161) to aid investigators who did not have access to an 

IBM 7090 or 709~ computer. Written for the IBM 1~10 computer, Fordyn is 

a system of Fortran IV FUNCTIONS AND SUBROUTINES, plus a framework which 

fits the system dynamics models. While Fordyn is said to lack some of 

the diagnostic properties of DYNAMO, it has been used effectively by a 

number of investigators. 

The compiler used to simulate the educational models described in 

the next two chapters is the System/J60 Continuous System Modeling. pro­

gram {S/J60CSMP). It is intended to help satisfy the need for a 

problem-oriented language by allowing problems to be prepared directly 

from either a block-diagram or a set of ordinary differential equations. 

The program provides a basic set of functional blocks with which the 

components of a continuous system may be represented, and it accepts 

application-oriented statements by defining the connections between 

these functional blocks. CSMP also accepts FORTRAN statements, thereby 

allowing the user to more easily handle nonlinear and time-variant 

problems of considerable complexity. Through these features, S/J60 CSMP 

strives to allow the user to concentrate on the phenomena being simu­

lated rather than the mechanism for producing the simulation (162) 

( 163). 

CSMP and DYNAMO both have the advantage of. being non-procedural 

(automatic sorting) and application-oriented, but CSMP has the addi­

tional advantage of a no-sort option. Since it automatically accepts 

statements in Fortran, a user may program in Fortran IV and.use the 



simulation capabilities of CSMP. This makes the language easy to use, 

since most analysts are already familiar with FORTRAN. 

Three tYPes of statements are used in order to write a simulation 

problem in CSM.P: 

1. Structure statements. These correspond to the level and rate 

equations in DYNAMO; i.e., they include both functional and 

algebraic relationships. The structure statements form the 

network to be simulated. 

2. Data statements. These take care of all numerical values 

necessary for the simulation; i.e., parameters, initial condi­

tions, constants, and table entries associated with the 

problem. 

J. Control statements. These refer to matters concerning compi­

lation and output specifications; i.e., run time, solution 

interval, and output variables to be printed and/or plotted. 

These statements are composed of constants, variables, and opera­

tors, as in FORTRAN, plus CSM.P functions. In essence, CSM.P has most of 

the special functions available in DYNAMO, plus others not provided by 

the earlier compiler. Also, those functions available in DYNAMO and 

not in CSM.P (i.e., exponential delays) can be easily obtained through 

the use of either MACRO functions or subroutines written in FORTRANo 

Finally, while CSM.P does not provide simultaneous (superimposed) plot­

outs of several variables, that feature can be provided through the 

use of the Calcomp Plotter. 

DYNAMO simulation models treat system accumulation as first-order 

difference equations, as indicated previously. The continuous formula­

tion of such levels could be written as follows: 



J.t LEVEL= LEVELt = O + INR(t) - OURT(t) 
0 

dt 

This would be the theoretical formulation of levels in industrial 

dynamic models using a differential equation formulation. An equivalent 

.statement, written in CSMP notation, would be as follows: 

LEVEL = INTGRL ( ICLEV, INR-OUTR) 

where 

LEVEL = Value of the accumulation at any time 

INTGRL = Functional notation 

ICLEV = Initial condition of LEVEL 

INR = Variable input.rate 

OUTR = Variable output rate 



CHAPTER IV 

A UNIVERSITY ANALYSIS 

Model Development 

This chapter is designed to demonstrate the applicability of sys­

tem dynamics and dmtinuous simulation concepts to an educational 

system. Since the system selected is that of a complex state univer­

sity, the model will be simplified to facilitate concentration on the 

methodology employed. Verbal description, equations, and a flow diagram 

will all be utilized to demonstrate their respective roles and aggre­

gative procedures will be used to reduce complexity. 

When a system involves a number of interacting variables its model 

usually requires some estimation and experimentation. Initial values of 

the constants and parameters are often difficult to predict and the 

interactions of the variables compound the problems involved. Although 

many of the values utilized in the university model are taken from an 

actual example, others represent data which required estimation. 

The areas selected for the aggregated model include undergraduate 

and graduate students, faculty, physical facilities, and the budget. 

As shown in Figure 5, undergraduate and graduate student sources were 

selected as the starting points for the analysis. They were estimated 

initially at 9000 and ~500, respectively, based on past records of high 

school and college graduation in the area surrounding the subject 

university. 

I I 
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The fraction of source groups who apply for admittance to a par-

ticular institution depend on a number of factors, some quite intan-

gible. Current draft laws, family occupations, job availabilities and 

university standards, reputation and capacity represent only a small 

sample. One of the intangible factors selected for inclusion in the 

model is the ratio of actual faculty to the number indicated as desir-

able by a perusal of course offerings, comparison with other college 

catalogs, or discussions with students previously enrolled. If the 

employed number of faculty is less than the indicated number needed, 

applications should be adversely affected. 

C = NFP/INF 

C = Faculty influenced variable affecting student 
applications received. 

NFP = Number of faculty in the university pool. 

INF= Indicated number of faculty for the university. 

~6 

University standards will also have an impact on applications sub-

mitted. For this model, they are initially assumed to eliminate 

seventy-two per cent of the potential undergraduate source and sixty-

five per cent of the graduate. Both factors are designed to vary with 

time and as a function of the student~faculty ratio, arbitrarily set 

near eighteen for each. The equations are designed to relax standards 

by 1% per one year simulation period until the ratio restriction is 

encountered, then they are tightened by 1% annually. 

TS2NFP = TS/NFP 

TS2NFP = Ratio of total students to the number of 
faculty in the pool. 

TS = Total number of students in the university. 

NFP = Previously defined. 



USTU = USTU + 0.01 

IF(TS2NFP .GTo 18.5) USTU = USTU - 0.02 

USTU = University standards for undergraduate 
applications. 

TS2NFP = Previously defined. 

USTG = USTG + 0.01 USTG = USTG - 0.02 

USTG = University standards for graduate appli­
cations. 

TS2NFP = Previously defined. 

The number o~ undergraduate applications received by the univer-

sity is found by combining the above factors. 

UAP = (USTU) (C) (US) 

UAP = Number of undergraduate applications. 

USTU = Previously defined. 

C = Previously defined 

US = Undergraduate source. 

The number of graduate applications received, as well as being a 

function of some external source is also dependent on the number of 

students graduating from the same university and possibly reapplying 

for graduate school. 

GAP= (USTG) (PGA + GS) (C) 

GAP = Number of applications for graduate school. 

USTG = Previously defined. 

PGA - Potential graduate applications from university 
graduates. 

GS = External graduate source. 

C = Previously defined. 

One of the critical assumptions made in writing the model is that 

4:7 

as the source of students becomes larger and the size of the university 
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increases additional schools will be established in the state to absorb 

some of the increase. Thus, some of the qualified students in the 

source will enroll at other universities. 

Another assumption is that the university model has some enroll-

ment limit beyond which it can expand no further. The upper limit may 

be the result of several reasons - facility limitation, land limitation, 

arbitrary action of the administration, the practical limits of teaching 

loads, etc. 

Initially, most applicants are qualified for admittance. As the 

number of total students approaches the maximum university size, how-

ever, increased standards will cause a smaller percentage of applicants 

to be declared qualified. Since the current enrollment is ten thousand, 

and forty thousand is considered close to the maximum possible number, a 

damping factor is employed to slow future growth. 

QUA= (UAP/4.0) (MAX/TS) 

QUA= Number of qualified undergraduate applications. 

UAP= Previously defined. 

MAX= Maximum enrollment considered feasible, as approached 
standards become increasingly stiff. 

TS = Previously defined. 

The number of qualified graduate applications was considered to 

be dependent on the ratio of students to faculty. 

QF = QF + 0.02 

IF (TS2NFP oGT. 18.5) QF = QF - O.OJ 

IF (QF .GT. 1.0) QF = 1.0 

QGA = (GAP) (QF) 

QGA = Number of qualified graduate applications. 



GAP= Previously defined. 

QF = Qualification factor. 

Since the model assumes a public, state-supported university, all 

qualified undergraduate applicants are admitted. 

AU = QUA 

AU = Number of admitted undergraduates. 

QUA= Previously defined. 

Graduate students are admitted at a rate of three per faculty 

member if that many applicants are qualified. 

AG= J.O NFP 

IF (AG .GT. QGA) AG= QGA 

AG = Number of admitted graduate students. 

NFP = Previously defined. 

QGA = Previously defined. 

The amount of alumni contributions to the university is based on 

a simple average donation per alumnus. 

DON = (AL) (DPA) 

DON= Donations to the university. 

AL = Number of university alumni. 

DPA = Average contribution per alumnus per year. 

The graduation rate of the university was assumed to be twenty 

per cent of the student body per year. 

GR= (TS·0.20)/DELTAT 

GR = Graduation rate. 

TS = Previously defined. 

DELTAT = Time period for the simulation (in this model, 
one year). 



The number of alumni accumulates as more students graduate. 

AL= AL+ (GR) (DELTAT) 

AL = Number of university alumni. 

GR = Previously defined. 

DELTAT = Previously defined. 

The total number of students in the university is computed by 

taking those students enrolled previously plus the number of newly 

admitted undergraduates and graduates less those that graduated less 

those that dropped. It was assumed that 12% of the previous year's 

student body did not return, or "dropped out 11 • 

TS= TS+ AU+ AG - (GR"DELTAT) - (TS•o.12) 

TS= Number of students in the university. 

AU= Previously defined. 

AG= Previously defined. 

GR= Previously defined. 

The number of potential graduate school applications from the 

graduating class was assumed to be one-fourth. 

PGA = (GR) (DELTAT) (0.25) 

PGA = Number of potential graduate applications from 
the current period graduating class. 

GR = Previously defined. 

The rate of legislative support for the university was assumed to 

increase by 2% per year. 

LEG= 1.02•LEG 

LEG= Legislative appropriation. 

50 

The hub of the university, the budget, is computed from the legis-

lative appropriation, alumni contributions, and student fees. 



B = (TS) (DPS)+ DON+ LEG 

B = Budget. 

TS = Previously defined. 

DPS= Fees in dollars per student. 

DON= Previously defined. 

LEG= Previously defined. 
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The indicated number of faculty that should be employed at the 

university is computed as a function of the budget and average faculty 

salary. Thirty per cent of the university budget was devoted to faculty 

salaries. 

INF= (O.JO•B)/FS 

INF= Indicated number of faculty that should be employed. 

B = Previously defined. 

FS = Average salary per faculty member. 

The number of faculty in the university pool of instructors at the 

current time period is a function of those faculty members employed 

during the previous period and those newly employed. 

NFP = NFP + (FHR) (DELTAT) 

NFP = Number of faculty in the university pool. 

FHR = Faculty hiring rate. 

DELTAT = Previously defined. 

The rate at which faculty members are hired is determined by the 

number of new instructors needed and the average faculty hiring time. 

It is possible for the hiring rate to become a negative value and, thus, 

staff would be reduced. 

FHR = (INF - NFP)/FHT 

FHR = Faculty hiring rate. 
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INF= Previously defined. 

NFP = Previously defined. 

FHT = Average faculty hiring time. 

The amount of facilities available to a university plays an 

important role in its functioning. Three factors are a part of this 

section - the indicated facilities needed, the facility acquisition 

rate, and the actual facilities available. 

The indicated facility increase needed is estimated as 10% of the 

budget. 

IFC = o.1o·B 

IFC = Indicated facility increase. 

B = Previously defined. 

The facility acquisition rate is influenced by the average facility 

building time. For this model, the building time was assumed to be two 

years. In other words, one-half of the new facilities are ready in one 

year, the other one-half are completed the following year. 

FAR= IFC/FBT 

FAR= Facility acquisition rate. 

IFC = Previously defined. 

FBT = Facility building time. 

FAC = FAC + (FAR 0 DELTAT) + PREY 

FAC = Total facility increase since time O. 

FAR = Previously defined. 

DELTAT = Previously defined. 

PREY = Facilities budgeted the previous time period but 
not acquired until the current time. 



PREY= IFC - FAR 

PREY= Facilities budgeted the previous period but not 
acquired until the current time. 

IFC = Previously defined. 

FAR = Previously defined. 

The budget for faculty research is computed as a fixed amount per 

faculty member up to one-fourth of the total university budget. 

RB= 1200 • NFP 

IF (RB .GT. o.25~B) 

RB = Research Budget. 

NFP = Previously defined. 

The budget for maintenance and physical plant is a percentage of 

the over-all university budget. 

UPK = 0.05·B 

UPK = Maintenance and physical plant upkeep budget. 

B = Previously defined. 

The CSMP Simulation 

A number of simulation runs were made to test the model and to 

evaluate its sensitivity to changes in several of its variables. The 

constants and parameters employed are as follows: 

CONST DELTAT = 1 

CONST DPA = 2.00 

CONST DPS = 1500 

CONST FS = 12000 

CONST FHT = 1 

CONST T = 1 

time/run (1 year) 

dollars/alumnus 

dollars/student 

average faculty salary 

faculty hiring time 

initial exponent for student source 
growth 
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CONST FBT = 2.0 

CONST MAX = lJ:oooo 

PARAM us = 9000 

PARAM GS = 1±500 

PARAM x = 10000 

PARAM y = 1.15 

PARAM p = 5000 

PARAM Q = 1.1 

PARAM usw = .28 

PARAM USTG = .35 

PARAM UAP = 2500 

PARAM GAP = 11±oo 

PARAM QF = 0.75 

PARAM QUA = 2000 

PARAM QGA = 1000 

PARAM AU = 2000 

PARAM AG = 1000 

PARAM GR = 2000 

PARAM TS = 10000 

PARAM DON= 175000 

PARAM AL= 87500 

PARAM LEG = 9500000 

PARAM B = 25000000 

PARAM INF = 625 

PARAM NFP = 625 

PARAM FHR = 10 

PARAM IFC = 2500000 

facility building time, in years 

maximum number of students 

51± 

initial undergraduate student source 

initial graduate student source 

undergraduate student source factor 

undergraduate student growth factor 

graduate student source factor 

graduate student growth factor 

university standards--undergraduate 

university standards--graduate 

undergraduate applications 

graduate applications 

graduate qualification factor 

qualified undergraduate applications 

qualified graduate applications 

number admitted undergraduates 

number admitted graduates 

graduation rate 

total students initially enrolled 

dollars donated by alumni 

number of alumni 

dollars legislative appropriation 

annual university budget 

indicated number in faculty pool 

number in faculty pool 

faculty hiring rate, initial 

indicated facility increase/year 
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PARAM FAR= 1250000 facility acquisition rate 

PARAM FAC = 22500000 existent facilities 

PARAM PREY= 1250000 facilities acquired in previous year 

PARAM RB= 750000 

PARAM UPK = 1250000 

annual research budget 

annual maintenance and physical plant 
budget 

The rate of university growth appears to be one of the most crit-

ical factors in the model. It is governed by the graduate and under-

graduate student sources, GS and US. Three different student source 

functions were used in separate simulation runs to test the model. The 

percentage of the budget allocated to faculty salaries was also altered 

slightly. In addition, one of the apparently delicate factors in the 

model, the faculty to student ratio, was changed slightly to determine 

its effect. Each simulation run was for a period of twenty-five years. 

A sample copy of the program and several of the curves generated 

for one of the university model runs are included as Appendix A. 

After some initial adjustment to the interacting variables, the 

first simulation model to yield reasonable results used exponentially 

t t 
shaped source curves (XY and PQ) to generate undergraduate and grad-

uate applications, JO% of the budget for faculty salaries and student-

faculty ratios of 18}{! for undergraduate and 1?}{i for graduate students. 

Since currently available CSMP facilities do not permit multiple 

plots, the outputs from the simulation runs were plotted on a Calcomp 

printer to facilitate analysis. Figures 6 and 7 show the results of 

the initial run. Admitted undergraduates and graduates, total students, 

university budget, and number in the faculty pool were plotted in 

Figure 6, and undergraduate and graduate applications, indicated number 

of faculty, faculty hiring rate and research budget are shown in 
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Figure 7. It is clear that the number of admitted students begins to 

level off after about twenty years as the student-faculty ratio gets 

above the set standards and the student body size approaches ~,ooo, the 

ceiling imposed. As the rate of student body growth declines, the 

faculty hiring rate also drops rapidly. 

The second simulation run used the same student faculty ratios as 

the first, but the faculty budget was increased from JO% to J5% of the 

total budget, and the student source curves were changed from expo­

nential to linear growth. The same ten values, shown in Figures 8 and 

9, were plotted as in Figures 6 and 7. The rate of student body growth, 

particularly undergraduate, increased more rapidly during the early 

years but dropped off sharply during the middle of the simulation period 

as the student-faculty ratio exceeded the limit and forced stricter 

standards for admission. This caused a similar wide fluctuation in the 

faculty hiring rate, both curves showing a second rise as the ratio fell 

back to the proper level around the twentieth year. Several of the 

curves, including undergraduate applications and admissions, and the 

faculty hiring rate, all fluctuated more than they did during the first 

run. 

Since the linear growth rate of the student sources was rather 

high, the final values of the curves in the second simulation were sub­

stantially greater than the first. Undergraduate applications were 

32,000 compared to 20,000; graduate applications rose from 5,800 to 

18,000; admitted undergraduates were up from 6,500 to 7,500; admitted 

graduates went from J,000 to 6,800; total students 39,000 to 4J,OOO; 

faculty 1,500 to 2,JOO; research budget $1.8 to $2.7 million, and total 

budget $61 million to $80 million. 
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The third simulation used the same student-faculty ratio and 

faculty budget, but the student source growth rate was changed from 

linear to a diminishing returns type. Specifically, the Van Bertalanffy 

curve ( -kt) y = A 1-e was used. While the plotted curves for the third 

run, as shown in Figures 10 and 11, initially appear similar to those of 

Figures 8 and 9, significant differences resulted from the change to the 

Van Bertalanffy source curve. After twenty-five years, undergraduate 

and graduate student applications were somewhat lower at 12,000 and 

8,000, respectively (in consonance with smaller sources); acceptances 

numbered less than 5,000 each; total enrollment was approximately 

28,000; the faculty pool was slightly less than 1,700; and the research 

and university budgets were $2,000,000 and $58,000,000, respectively. 

It was felt that the diminishing returns source curve gave a more rea-

listic student source than those of the first two runs, for other 

schools are assumed to be able to handle a part of the anticipated 

student population growth in the region. 

The fourth run again used the Van Bertalanffy source curve and 

approximately the same student-faculty ratio, but used only 30% of the 

budget for faculty rather than 35%. By the end of the twenty-five year 

run, significant differences had occurred. While the sources remained 

the same as the third run, the applications from undergraduates and 

graduates dropped to 9,200 and 2,700, and the acceptances to 4,500 and 

2,600. Total enrollment also dropped to 21,000, faculty to 1,160, and 

the research and total budgets to $1.4 and $47 million. The results 

are shown in Figures 12 and 13. 

In the next chapter, a university department will be modeled in 

more detail. In addition, an attempt will be made to obtain a 
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reasonable approximation to the past performance and growth charac­

teristics of the unit under consideration in order to improve the 

model's effectiveness for future prediction. 
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CHAPTER V 

A DEPARTMENTAL ANALYSIS 

Model Development 

The preceding model demonstrated the applicability of system 

dynamics concepts to an aggregated model. A broad gauge view was ob-

tained, using equation symbols similar to those explained in Chapter III 

but without the time notation. The notation is useful as an aid to 

memory, but is not required when CSMP is substituted for Dynamo in the 

simulation process. The purpose of this chapter is to model a univer-

sity sub-unit in a more detailed fashion. In addition, time notation 

will be added and the CALCOMP 563 plotter will again be utilized to 

provide a clearer summary of simulation results. 

Student Section 

The base of this model is student enrollment in the College of 

Engineering. Therefore, a type of predictive technique for future 

enrollment is first established. 

ENROL.K = ENGR ST-1,L 

ENROL.K = Enrollment in the College of Engineering 
for the current year. 

ENGR = Variable whose value was assigned by some 
predictive technique for the model. 

The enrollment rate in the Master of Science programs in Industrial 

Engineering and Operations Research was assumed to be a fraction of 
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those students graduating from the undergraduate Industrial Engineering 

program each year plus others from outside sources. It was also assumed 

that the quality of the department was a factor in influencing the num-

ber in each group. Since some doubt existed over the linearity of the 

relationship between quality and enrollment, a logarithmic relationship 

was selected. 

RRMS.JK = (MSFRAC) (XLOG(QUAL.J,QUALO,FMS1)) (IEBS.J) 
+ (MSQ) (XLOG(QUAL.J,QUALO,FMS2)) 

RRMS.JK = Enrollment rate in M.S. programs. 

MSFRAC = Fraction of B.S.I.E. students enrolling in 
the M.S.I.E. or M.S.O.R. programs at year O 
per quality point. 

MSQ = Number of other enrollments in M. S. programs 
at year O per quality point. 

XLOG(QUAL.J,QUALO,F) = Function relating the value 
of quality in the following 
manner: 

XLOG(QUAL.J,QUALO,F) = F•1n(QUAL.J/QUALO) 
+ QUALO 

QUAL.J = Current value for departmental quality. 

ST-2,R 

QUALO = Initial value of department quality at year O. 

FMS1 and FMS2 = Constant scale factors. 

IEBS.J = Number of undergraduates enrolled in 
Industrial Engineering during time period J. 

Since students drop out of the M.S. programs at varying rates over 

a period of two years, the following equations were established. 

DRMS.JK = (MSDR1) (CARMS(2)) + (MSDR2) (CARMS(1)) 

DRMS.JK = Dropout rate in M.S. programs. 

MSDRi = Fraction of M.S. students who drop out during 
the ith year of graduate study. 

ST-J,R 

CARMS(2) = Number of M.S. students enrolling at time J. 



CARMS(1) = Number of students enrolling in M.S. programs 
at time J - 1. 

Graduation from the Master of Science programs generally takes 

place in either one or two years. 

GRMS.JK = (MSGR1) (CARMS(2)) + (MSGR2) (CARMS(1)) ST-4,R 

GRMS.JK = Rate of graduation from the M.S. programs. 

MSGRi = Fraction of M.S. students that graduate during 
the ith year of graduate study. 

CARMS(2) = Previously defined. 

CARMS(i) = Previously defined. 

The Ph.D. enrollment rate is approximately the same form as the 

M.S. rate. M.S.I.Ea students who continue into the Ph.D. program and 

other students from outside the system compose the source of enrollment. 

Again, a logarithmic relationship between students and quality of the 

I.E. department yielded reasonable results. 

RRPHD.JK = (PHDFRA) (XLOG(QUAL.J,QUALO,FPHD1)) (IEMS.J) 
+ (PHDQ) (XLOG(QUAL.J,QUALO,FPHD2)) 

RRPHDQJK = Enrollment rate in Ph.D. program. 

ST-5,R 

PHDFRA = Fraction of M.S.I.E. graduates enrolling in the 
Ph.D. program at year O per quality point. 

PHDQ = Number of other enrollments in Ph.D. program at 
year O per quality point. 

XLOG(QUAL.J,QUALO,F) = Previously defined. 

FPHD1 and FPHD2 = Constant scale factors. 

IEMS.J = Number of M.S.I.E. students during time J. 

Students drop out of the Ph.D. program at varying rates over a 

four year period, as reflected in the following equations. 

DRPHD.JK = (PHDDR1) (CARPHD(4)) + (PHDDR2) (CARPHD(J)) 
+ (PHDDRJ) (CARPHD(2)) + (PHDDR4) (CARPHD(1)) ST-6,R 



DRPHD.JK = Dropout rate in Ph.D. program. 

PHDDRi = Fraction of Ph.D. students that drop out during 
their ith year in the program. 

CARPHD(5 - i) = Number of students enrolling in the Ph.D. 
program at time 5 - i. 

Students graduate from the Ph.D. program at varying rates over 

four periods of one year each. 

GRPHD.JK = (PHDGR1) (CARPHD(~)) + (PHDGR2) (CARPHD(J)) 
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+ (PHDGRJ) (CARPHD(~)) + (PHDGR~) (CARPHD(1)) ST-7,R 

PHDGRi = Fraction of Ph.D. candidates in I.E. who 
graduate during their ith year in the program. 

CARPHD(5 - i) = Previously defined. 

Based on past experience, the number of B.S.I.Eo students was 

assumed to be some percentage of the over-all enrollment in the College 

of Engineering. This percentage varies according to departmental 

quality. A logarithmic relationship was used. 

IEBS.K = (BSFRAC) (XLOG(QUAL.J,QUALO,FBS)) (ENROL.K) 

IEBS.K = Number of undergraduates enrolled in the 
B.s.I.E. program during time K. 

BSFRAC = Fraction of undergraduate students in the 
College of Engineering enrolled in I.E. at 
year 0/quality point. 

XLOG(QUAL.J,QUALO,F) = Previously defined. 

FBS = Constant scale factor. 

ENROL.K = Previously defined. 

ST-8,L 

The total number of M.S.I.E. candidates during the current time 

period is the number enrolled during the previous period plus the newly 

enrolled students less the graduates and dropouts. 

IEMS.K = IEMS.J + (RRMS.JK - GRMS.JK - DRMS.JK) (DT) 

IEMS.K = Number of graduate students enrolled in the 
M.S.I.E. program at time K (current time). 

ST-9,L 



IEMS.J = Number of graduate students enrolled in the 
MoS.I.E. program at time J (previous time 
period). 

RRMS.JK = Previously defined. 

GRMS.JK = Previously defined. 

DRMS.JK = Previously defined. 

DT =Onetime period. (In this model, DT = 1 year). 
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The total .number of Ph.D. candidates during the present time period 

is the number enrolled during the previous period plus those who en-

rolled since that time less the number who graduated or dropped out 

since the previous period. 

IEPHD.K = IEPHDsJ + (RRPHD.JK - GRPHD.JK - DRPHD.JK) (DT) 

IEPHD.K = Number of students enrolled in the Ph.D. 
program at time K (current time). 

IEPHD.J = Number of students enrolled in the Ph.D. 
program at time J (previous time period). 

RRPHD.JK = Previously defined. 

GRPHD.JK = Previously defined. 

DRPHD.JK = Previously defined. 

DT = Previously defined. 

Research Section 

ST-10,L 

In the research section· of the model, the number of active research 

projects in the department was the basic variable. There are essen-

tially two types of research projects in the Industrial Engineering 

department. One type consists of projects sponsored by university 

in-house grants. The other type is that which is sponsored by some 

group external to the university, which will be called out-house 

projects. 
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The acquisition of university sponsored research projects bears a 

strong relationship to the number of graduate faculty in the department. 

IHRESRoJK = (IHFAC) (FACGR.J) RS-1,R 

IHRESR.JK = Rate representing the number of in-house 
projects generated from time J to time K 
(in this case one year). 

IHFAC = Constant representing the number of in-house 
projects received per year per graduate faculty 
member. 

FACGR.J = Number of graduate faculty members in the 
I.E. department at time J. 

The number of externally funded research projects is assumed to be 

a function of the quality of the department. 

OHRESR.JK = (OHQ) (1n(QUAL.J/QUALO) + QUALO) 

OHRESR.JK = Rate representing the number of out-house 
research projects generated per time 
period (from J to K). 

OHQ = Constant representing the number of out-house 
research projects received each year as a 
function of quality. 

RS-2,R 

The termination rate of research projects is based on the total 

number of active projects in the department. 

RESTR.JK = (RESTF) (RESF.J) 

RESTR.JK = Research termination rate in projects per 
time period. 

RESTF = Fraction of the total research projects that 
are terminated during the year. 

RESFeJ = Number of active research projects during 
time period J. 

RS-J,R 

The number of current research projects can be computed by using 

the three previous rates. 

RESF.K = RESF.J + (IHRESF.JK + OHRESR.JK - RESTR.JK) (DT) 

RESF.K = Number of research projects active during 
the current time period K. 
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RESF.J = Previously defined. 

IHRESRoJK = Previously defined. 

OHRESR.JK = Previously defined. 

RESTRoJK = Previously defined. 

DT = Previously defined. 

Staff Section 

There are basically three types of staff members in the I.E. 

department - graduate faculty, undergraduate faculty, and graduate 

assistants. This model is designed to calculate only the number of 

positions in each of these three categories which is justified to 

cover teaching and available research. 

The teaching load of the department was determined in average total 

hours per semester for undergraduate courses, graduate courses, and 

thesis and dissertation work. The following three equations are de-

signed to measure these three separate areas. 

HUNGR.K = (HBSIE) (IEBS.K) + (HBSNIE) (ENROL.K - IEBSoK) 

HUNGR.K = Hours of undergraduate courses to be taught 
in the I.E. department each semester. 

HBSIE = Average number of hours of I.E. courses re­
quired per B.S.I.Eo student. 

IEBSoK = Previously defined. 

HBSNIE = Average number of I.E. courses required per 
non-I.E. engineering student. 

ENROL.K = Number of students in the College of 
Engineering. 

HGRADoK = (HMSIE) (IEMS.K) + (HPHDIE) (IEPHD.K) 

HGRAD.K = Hours of graduate courses to be taught in 
I.E. department each semester. 

SF-1,L 

SF-2,L 



HMSIE = Average number of hours of I.E. courses 
required per M.SoioE. student. 

IEMS.K = Previously defined. 

HPHDIE = Average number of hours of I.E. courses 
required per Ph.D. candidate. 

IEPHD.K = Previously defined. 

HTHES.K = (THMS) (IEMS.K) + (THPHD) (IEPHD.K) 

HTHES.K = Total thesis hours per semester required 
by graduate students. 

THMS = Average number of thesis hours per MoSoioE. 
student. 

IEMS.K = Previously defined. 

THPHD = Average number of thesis hours per Ph.D. 
candidate enrolled. 

IEPHDmK = Previously defined. 

SF-3,L 

The number of research projects determine the research load in the 

department. It was assumed that research projects funded positions for 

graduate faculty and graduate assistants only. The number of such posi-

tions calculated is the number of full-time equivalent positions. 

FACRES.K = (FACRP) (RESF.K) 

FACRES.K = Number of graduate faculty positions paid 
by research funds. 

FACRP = Average number of graduate faculty positions 
supported per research project. 

RESFaK = Previously defined. 

GARES.K = (GARP) (RESF.K) 

GARES.K = Number of graduate assistant positions paid 
by research funds. 

SF-li:,L 

SF-5,L 

GARP = Average number of graduate assistants supported 
per research project. 

RESFoK = Previously defined. 
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The justified number of graduate I.E. faculty is given by the sum 

of the number required for research, the number required for teaching 

graduate courses and directing thesis research, and the number required 

to teach advanced undergraduate courses. 

FACGR.K = FACRES.K + (POSGR) (HGRAD.K + HTHES.K) 
+ (POSGR) (UNFRGF) (HUNGR.K) 

FACGR.K = Number of justified graduate faculty 
positions. 

FACRES.K = Previously defined. 

POSGR = Constant representing positions per 
graduate hour. 

HGRADaK = Previously defined. 

HTHES.K = Previously defined. 

UNFRGF = Fraction of undergraduate courses 
taught by graduate faculty. 

HUNGRaK = Previously defined. 

The justified number of undergraduate faculty is based on the 

SF-6,L 

fraction of the undergraduate teaching load carried by the undergraduate 

faculty and on the load per facu.l ty member. 

FACUGR.K = (POSUGR) (UNFRUF) (HUNGR.K) 

FACUGR.K = Number of justified undergraduate faculty 
positions. 

POSUGR = Constant representing positions per 
undergraduate hour. 

UNFRUF = Fraction of undergraduate courses taught 
by undergraduate faculty. 

HUNGRoK = Previously defined. 

SF-7,L 

Graduate assistant positions may be supported by either teaching 

or research. The number of full-time equivalent graduate assistant 

positions is given, therefore, by the sum of the teaching positions for 

undergraduate courses not taught by faculty and the research positions. 
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GA.K = GARES.K + (POSUGR) (UNFRGA) (HUNGR.K) SF-8,L 

GA.K = Number of justified graduate assistant 
positions. 

GARES.K = Previously defined. 

POSUGR = Previously defined. 

UNFRGA = Fraction of undergraduate courses taught 
by graduate assistants. 

HUNGR.K = Previously defined. 

Quality Section 

The quality section is one of the more important facets of the 

model. Each of the three sections discussed previously impinge on the 

quality of the Industrial Engineering department. 

The number of published papers are assumed to be one of the fac-

tors related to quality. They come from the work of graduate faculty, 

M.S.I.E. students, Ph.D. candidates, and funded research projects. 

PAPERS.K = (PAPGF) (FACGR.K) + (PAPMS) (IEMSGK) 
+ (PAPPHD) (IEPHD.K) + (PAPRES) (RESF.K) 

PAPERS.K = Number of papers published per time 
period by the I.E. department. 

QU-1,L 

PAPGF = Constant representing the number of papers 
published per graduate faculty member not doing 
funded research per year. 

FACGRaK = Previously defined. 

PAPMS = Constant representing the number of papers 
published per M.S. student per year. 

IEMSaK = Previously defined. 

PAPPHD = Constant representing the number of papers 
published per Ph.D. candidate per year. 

IEPHDQK = Previously defined. 



PAPRES = Constant representing the number of papers 
published per research project each year. 

RESF.K = Previously defined. 
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The quality of the Industrial Engineering department is assumed to 

be a function of the following six factors: graduate faculty, under-

graduate faculty, published papers, M.S. students, Ph.D. candidates, 

and research projects. A logarithmic relationship between these factors 

and quality seems to yield reasonable values. 

QUAL.K = (100.0)•1n((((QPGF) (FACGR.K) + (QPUGF) (FACUGR.K) 
+ (QPPAP) (PAPERS.K) + (QPPHD) (IEPHD.K) 
+ (QPMS) (IEMS.K) + (QPRP) (RESF.K) )/QUALO) + 1.0) 

QUAL.K = Quality of department. 

QPGF = Relative value assigned per graduate 
faculty member. 

FACGR.K = Number of justified graduate faculty 
positions. 

QPUGF = Relative value assigned per undergraduate 
faculty member. 

FACUGR.K = Number of justified undergraduate faculty 
positions. 

QPPAP. Relative value assigned per published paper. 

PAPERS.K • Number of papers published by department 
members per year. 

QPPHD. Relative value assigned per Ph.D. candidate. 

IEPHD.K • Number of Ph.D. candidates in the I.E. 
program. 

IEMS.K. Number of M.S. students in the I.E. program. 

QPRP • Relative value aasigned per research project. 

RESF.K. Total number of research projects. 

QUALO. Quality of I.E. department at time o. 

QU-2,L 



The composite model illustrating the previous equations is shown 

on the following page as Figure 1~. 

Input Data Discussion 

The number of equations required for the departmental model and 
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the complexity of their interactions made it desirable to present them 

in the preceding summarized fashion. A more detailed explanation of the 

thought process involved, the assumptions required and the initial con­

ditions utilized for the modeling process will now be provided. While 

the model is more detailed than that of the university outlined in the 

preceding chapter, numerous assumptions and some simplifications were 

nevertheless necessary. 

The basic sectors considered included students, staff, research, 

and quality. In the student section the first equation (ST-1,L) was 

selected to emphasize the fact that college enrollment is considered 

to be the base of the model. The equation symbols were designed to 

provide rapid and accurate identification. For example, ST-1,L refers 

to the student section of the model, first equation, level type. 

The second equation, ST-2,R, refers to the student section, second 

equation, rate type. As indicated, the enrollment rate in the masters 

programs depends on internal and external sources, both of which are 

affected by departmental quality based on the logarithmic relationship 

listed. The quality factors in the model were selected to provide an 

estimate of the relative worth of several departmental groups and 

activities, and to provide an initial total which was approximately 100 

for the test department studied. With IEBS enrollment known, and on 

the basis of a logarithmic function initially approximating 100, MSFRAC 



ENROL 

MSQ 
-<l;~<,, 

IEBS 

FM Si 
--y-

1 

MSDRi 
----<j>"""--

1 
I 

CARMS(Il MSGRi PHDFRA PHDO PHDDRi CARPHD(Il PHDGRi 

-r-~ -r-~, 1\ -,-
- I '\ I 

I ;x::z: ;x::.; X • >I IEPHD 

I .,-
1 .,.., I .,., , --~ / .,.,"' .,.,,' ',, --.... ---- , ~ I .,,"' HPHDIE .,..,. ''-.. .......... ,...________ ,.,. ... I 

HBSIE S' I .,.,"' ~ ,............ -----:-'C----- ... , .,..,........ : ~ - ~ e' ...... , ------------.I!::!Ct!Q. -, ', .,.. ... ,... : 
', HUNGR ', --- ', ', ':::,,,.... t 

.... HGRAD ~ j '¥ \ I 
I I ', -- HTHES \ I 
l I ', 1 , I 
I \ ',, I . .,...... \ I 
l I ', I .,."' \ . I 
I I ', I .,.,"' \ I 
: I ',, I .,.,"' -----------, \ I 
I I ', I ,"' ,...,.- "'-.. I I 
I \ , I .,., ..,...,. ,, \ I 

UN~RUF ! \ ',, I UNFRGF .,.,:;::::/ ' \ f 
', I I ',, ~GR / -f- .,.,;/ ~, ~ I PAPGF ~~· \ ...... ,... I : / .,. .... "':"' ', . '\ I ~PAPMS 

~..at11"_~ I , $.,,.,. ,/' ' I I I ~ 
\ . JJNf;RGA ',, ,// ~' I I ,/ ~ 

1 ,' FACGR ' . ,,,' ~~ PAPERS =---~ 
I ',, GA I \ I I I 
I I \ / 
I I \ I 

\ ',, : \ / 
\ ~', : I / 

\ ',,~ ,\ / 
\ GARES I \ I 
\ --- I \ RESTR / 

\ -'1'--- \ / \ I ___ , I 

', I --\-.... / . 
', ~RP ~· ,,---- / QPGF ~I ~ ', ,,, . . . ',, ---- , ~ \ I ' oPPHn 

', ' FACRES ' --- --~ . ', .. \ I I ~ .... ------~-------~ RESF. -.... ,.:. . ' . ·I ·/·. . ,, 

. __ "":'_______________________ . ·. '--------~-------- ----:::~ ... ----~ 
-------------- ---------- QUAL Ol.14LO ---------------- ------~ 

Figure 1l.tc. Composite Model Univers~ty Department 

-..J 
-.a 



and MSQ values were selected which yielded results close to past 

experience. The constant scale factors were included as part of the 

quality equation to provide additional flexibility for model manipula­

tion if required to achieve realistic results. 
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The master's program dropout rate equation, ST-3,R, and the grad­

uation rate, ST-4,R, were both based on past records of the department. 

Approximately 4% was used as the first year dropout rate, MSDRI, and 

1% for the second year, MSDR2. Similarly, the graduation rates MSGR1 

and MSGR2, 70%, and 25%, respectively, were based on experience, as 

were student enrollments, CARMS1 and 2. 

Equations ST-5,R; ST-6,R; and ST-7,R considered enrollment, drop­

out, and graduation rates for doctoral students. Except for the longer 

time period involved, they were handled in the same manner as those 

involving the master of science students. The constant scale factors, 

FPhD1 and 2, were set at 100 each and initial dropout rates were esti­

mated at 6% for PhDDR1, 1% for PhDDR2, and .05% for the third and 

fourth years. Graduation rates were estimated to average 0% at the end 

of one calendar year (PhDGR1), 38% after two years, 39% after three, and 

15% after four. As with the master of science equations, the enroll­

ment from within the department (PhDFRA) and from outside (PhDQ) were 

selected to yield results close to past experience. 

The equations for the remainder of the student sector, BaS.I.E. 

student level (Equation ST-9,L), M.S. student level (ST-9,1), and Ph.D. 

student level (ST-10,L) were then based on the equations and concepts 

discussed. The constant scale factor (FBS) and BSFRAC were determined 

as before, and the last two equations represented accumulations of 

information determined from previous equations. 
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In the research sector, the first equation, RS-1,R, was designed to 

determine the number of in-house projects generated per year. The 

number of graduate faculty members (FACGR) was known, and the number of 

projects received per year per member was estimated from prior exper­

ience. Externally funded projects, determined from Equation RS-2,R, 

were made a function of quality. Since the initial value of the loga­

rithmic term was close to 100, an OHQ constant was selected which 

yielded a realistic value. The termination rate of research projects, 

Equation RS-J,R, was determined from the product of known active proj­

ects and an estimated fraction of terminations per year (75%). The 

latter figure was obtained from existing departmental records. The 

fourth research sector equation, RS-4,L, designed to provide the number 

of current research projects (RESF), was determined by summarizing the 

results of the three research rate equations. 

The staff sector equations were designed to calculate the number of 

graduate faculty, undergraduate faculty, and graduate assistants re­

quired to handle teaching and research requirements in the department. 

The first three equations were concerned with teaching load require­

ments for coursework (graduate and undergraduate) and thesis and dis­

sertation activities. The first equation, SF-1,L, was used to determine 

the undergraduate course load required each semester for industrial and 

non-industrial engineering students. The average number of hours of 

industrial engineering courses required for each, HBSIE and HBSNIE, 

were estimated from past course load records. Graduate course load 

requirements for master and doctoral candidates were determined in a 

similar manner in SF-2,L. The total thesis load hours required each 

semester by graduate students were obtained through the use of Equation 



SF-J,L. IEMS and IEPhD enrollments were readily available, and the 

figure for the average number of thesis load hours per M.S.IoE. and 

Ph.D. student (THMS and THPhD) were estimated from past departmental 

enrollment and staff load data. Parenthetically, in the department 

considered, each student engaged in masters thesis work generates one­

half load hour for his adviser and each dissertation student provides 

one load hour. 

The number of graduate faculty and graduate assistant positions 

paid by research funds was determined by Equations SF-4,L and SF-5,L. 

The average number of faculty (FACHP) and graduate assistant (GAHP) 

positions supported per research project was subject to considerable 

variation but reasonable estimates were made from a perusal of depart­

mental data over a ten-year period. 

Justified graduate faculty, undergraduate faculty, and teaching 

assistant positions were calculated in SF-6,L, SF-7,L, and SF-8,L. 

Graduate faculty positions, as shown in SF-6,L, were determined from 

the sum of research support (FACRES) 7 hours of graduate coursework and 

thesis load multiplied by POSGR (a constant representing positions per 

graduate hour, determined on the basis of a nine hour load), and the 

hours of undergraduate coursework handled. The last value was obtained 

as the product of POSGR, HUNGR (total undergraduate course hours taught 

per semester), and UNFRGF (fraction of undergraduate courses taught by 

graduate faculty). UNFRGF was estimated from past course schedules. 

Undergraduate faculty and graduate assistant positions were handled in 

a similar but less complicated manner since only undergraduate course­

work was involved. Both used the constant POSUGR to represent positions 

per undergraduate hour (based on a twelve hour load). 
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Departmental quality was considered to be chiefly a function of 

the number of graduate and undergraduate faculty, published papers, 

research, and the number of graduate students. Equation QU-1,L was 

designed to calculate the number of papers published per year by the 

department. Several of its factors were estimated from past experience­

PAPMS, a constant representing the number of papers published per M.Se 

student per year, PAPGF for graduate faculty members, PAPhD for Ph.D. 

candidates and PAPRES for research projects. The graduate faculty, 

research project and Ph.D. estimates were more readily obtained than 

that of the M.S. candidates. The second equation, QU-2,L, provided an 

over-all quantitative estimate of departmental quality. It was obtained 

as a function of the natural logarithm of the sum of the contributing 

factors, each of which was assigned a relative value. Other known con­

tributing factors were omitted because they were considered to be even 

more intangible. Although a logarithmic relationship was selected for 

the equation, a straight ratio arrangement would also yield reasonable 

results. 

The CSMP Simulation 

A number of simulation runs were made to test the model and to 

evaluate its sensitivity to changes in several of its variables. The 

following constants and parameters in the departmental model CSMP simu­

lation came from several sources. Some were based on departmental 

policy, others from known values over the past years, several resulted 

from experience, and the remainder were experimentally derived to yield 

results consistent with available operating data. 



Student Section 

CONST BSFRAC = 0.00112 

CONST BSQ = 1.0 

CONST FBS = 20.0 

CONST FMS1 = 10.0 

CONST FMS2 = 10.0 

CONST FPHD1 = 100.0 

CONST FPHD2 = 100.0 

CONST MSDR1 = 0.04: 

CONST MSDR2 = 0.01 

CONST MSFRAC = 0.0010 

CONST MSGR1 = 0.70 

CONST MSGR2 = 0.25 

CONST MSQ = 0.084: 

CONST PHDDR1 = 0.06 

CONST PHDDR2 = 0.01 

CONST PHDDRJ = 0.005 

CONST PHDDR/,i, = 0.005 
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per cent of engineering students/ 
quality point enrolled as BoSoloE. 1 S 
at year O 

per cent of B.So enrolled/quality 
point from outside sources at year O 

constant scale factor for calcu­
lating B.S. enrollment 

constant scale factor for calcu~ 
lating M.S. enrollment 

constant scale factor for calcu­
lating M.S. enrollment 

constant scale factor for calcu­
lating Ph.D. enrollment 

constant scale factor for calcu­
lating Ph.D. enrollment 

per cent of M.S. students dropping 
out in year 1 

per cent of M.S. students dropping 
out in year 2 

per cent of B.S.I.E. students/quality 
point enrolling in MoS. at year O 

per cent of M.S. students graduating 
during year 1 

per cent of M.S. students graduating 
during year 2 

number of M.S. enrollees/quality 
point from other schools at year O 

per cent of Ph.D. students dropping 
out in year 1 

per cent of Ph.D. students dropping 
out in year 2 

per cent of Ph.D. students dropping 
out in year J 

per cent of Ph.D. students dropping 
out in year 4: 



CONST PHDFRA = 0.00175 

CONST PHDGR1 = o.o 

CONST PHDGR2 = 0.38 

CONST PHDGR3 = 0.39 

CONST PHDGR4: = 0.15 

CONST PHDQ = 0.0095 

CONST DT = 1.0 

PARAM ENGR = 900 

PARAM IEBS = 90 

PARAM IEMS = 5 

PARAM IEPHD = 1 

Research Section 

CONST IHFAC,_,= O. 20 or 0.50 

CONST OHQ = 0.02 or 0.05 

CONST RESTF = 0.75 

PARAM RESF = 2.0 

per cent of M. S. graduates/quality 
point enrolling in Ph.D. at year O 
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per cent of Ph.D. students graduating 
during year 1 

per cent of Ph.D. students graduating 
during year 2 

per cent of Ph.D. students graduating 
during year 3 

per cent of Ph.D. students graduating 
during year 4: 

number of other enrollees in Ph.D. 
program/quality point at year O 

1 year time period 

initial engineering college 
enrollment 

I.E. department enrollment B.S. level 

I.E. department enrollment M.S. level 

I.E. department enrollment Ph.D. 
level 

number of in-house research projects/ 
year/graduate faculty member 

number of out-house research proj­
ects/year as function of quality 

per cent of total research projects 
terminated in 1 year 

number of active research projects 

Staff Section 

CONST FACRP = 0.25 average number of graduate faculty 
positions supported/research project 



CONST GARP = 0.125 

CONST HBSIE = O.~ 

CONST HBSNIE = 0.039 

CONST HMSIE = 0.6 

CONST HPHDIE = o.8 

CONST POSGR = 0.111 

CONST POSUGR = 0.083 

CONST THMS = 0.25 

CONST THPHD = 0.67 

CONST UNFRGA = 0.29 

CONST UNFRGF = 0.20 

CONST UNFRUF = 0.51 

PARAM HUNGR = 105.0 

PARAM HGRAD = 17.0 

PARAM HTHES = 10.0 

PARAM FACRES = 0.5 

PARAM GARES= O.O 

PARAM FACGR = 2.5 
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average number of graduate assistant 
positions supported/research project 

average number of hours load in I.E. 
courses required/B.S.I.E. student 

average number of hours load in I.E. 
courses required/non-B.S.I.E. 
student 

average number of hours load in I.E. 
courses required/M.S.I.E. student 

average number of hours load in I.E. 
courses required/Ph.D. student 

number of graduate faculty positions 
required/course load hour 

number of undergraduate faculty 
positions required/course load hour 

average number of thesis hrs/M.S. 
student 

average number of thesis hrs/Ph.D. 
student 

undergraduate per cent of courses 
taught by graduate assistants 

undergraduate per cent of courses 
taught by graduate faculty 

undergraduate per cent of courses 
taught by undergraduate faculty 

hours of undergraduate courses 
taught in I.E. dept./sem. 

hours of graduate courses taught in 
I.E. dept./ sem. 

hours of thesis courses taught in 
I.E. dept./ sem. 

number of graduate faculty jobs paid 
by research funds 

number of graduate assistant jobs 
paid by research funds 

number of justified graduate faculty 
jobs 



PARAM FACUGR = 6.0 

PARAM GA = 1.0 

Quality Section 

CONST PAPGF = 1.0 

CONST PAPMS = 0.1 

CONST PAPPHD = 0.2 

CONST PAPRES = 1.0 

CONST QPGF = 3.5 

CONST QPMS = 1.2 

CONST QPPAP = 3.5 

CONST QPPHD = 2.5 

CONST QPRP = '=i:.o 

CONST QPUGF = 2.0 

PARAM PAPERS = 10.0 

PARAM QUAL = 100.0 

PARAM QUALO = 95.0 

number of justified undergraduate 
faculty jobs 
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number of justified graduate assis­
tant jobs 

number of papers/yr/ graduate faculty 
member (not on research) 

number of papers/yr/M.S. student 

number of papers/yr/Ph.D. student 

number of papers/yr/research project 

quality points/graduate faculty 
member 

quality points/M.S. student 

quality points/published paper 

quality points/Ph.D. student 

quality points/research project 

quality points/undergraduate faculty 
member 

number of papers published/period 
by I.E. department 

quality of department 

quality of department at time O 

Simulation Results 

The initial simulation runs were designed to get the model in 

running order without detailed commitment to a match with actual condi-

tions. After a working model was obtained, simulation runs were made 

to test its sensitivity to several factors, as was done with the uni-

versity model. While the results were interesting, they were not 
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considered useful for prediction purposes since the model had not been 

checked against actual departmental operations. Consequently, the 

actual constants and parameters involved in the departmental operations 

in 1961 were inserted as a starting point, and an attempt was made to 

adjust the interacting factors to produce actual departmental conditions 

in 1971. The simulation results shown in Figure 15 provide an excellent 

approximation. Undergraduate faculty decreased from approximately 6.o 

(equivalent) to four, graduate faculty rose from 2.5 to 7, graduate 

assistants from 1(2 half-time people) to 2 3/4 (~h half-time), BoSo 

enrollment from approximately 90 to 150, M.S~ from 5 to 21, Ph.D. from 

1 to 10, and over-all college enrollment from 900 to 1287. The results 

are also tabulated as row 1 of Table I. Parenthetically, the table 

also lists Research Projects and Quality, taken from the computer 

printout but not included in the graphs. 

To further study the efficacy of the model, a twenty year simula­

tion was run from 1961 to 1981, to observe the predicted results if 

departmental operations continued as before, using the Van Bertalanffy 

growth curve (moderate rate, diminishing returns) for enrollment and 

the lower constant value for research support included in the preceding 

list (IHFAC = 0.2, OHQ = 0.2). The results of the simulation are shown 

in Figure 16. The 1981 estimates are also included as row two in Table 

I. Total engineering enrollment increased from 1287 in 1971 to 1621 in 

1981, a growth of 334 versus 387 for the preceding decade. The results 

fit expectations, for the Van Bertalanffy curve involves a diminishing 

growth ratee Based on current engineering enrollment trends, however, 

the actual rate of increase should flatten still more during the next 
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ten years, hence all of the simulated results shown in row two are 

probably high for 1981. 

91 

The next simulation run, shown in Figure 17, continued to use the 

slow Van Bertalanffy enrollment growth curve, but with more research 

support (IHFAC = 0.05, OHQ = 0.05). In addition, the growth curve was 

increased from the .5 value of the 1961 run to the more realistic .9 

value of 1971 for initial conditions. The results are shown in Figure 

17 and the 1981 values are summarized in row J. Note that while total 

engineering enrollment stayed the same as the preceding row, depart­

mental BaSm, MoSm, and Ph.D. numbers all increased slightly. The 

number of undergraduate faculty members remained constant at five, still 

up only one from the 1971 figure. As expected, the number of graduate 

faculty members increased from 17 to 21, for the quality and number of 

research projects rose substantially as a result of the additional 

research impact. The period covered was from 1971 to 1991. 

The next change in the model involved the use of a fast Van 

Bertalanffy growth curve for engineering enrollment and covered the 

period 1971-1981. The results are shown in Figure 18 and the 1981 

values are tabulated in row four of the table. The substantial engi­

neering college enrollment increase over the preceding row indicates 

that the 1971-1981 slow Van Bertalanffy results of the two preceding 

rows were calculated over the early, consistently rising portion of the 

curve rather than a later stage when flattening had occurred. The JO% 

college increase was matched by the bachelor's enrollment in industrial 

engineering, but not by the graduate sector, where only a 17% rise was 

achieved at both the M.S. and Ph.D. levels. The lower rate of graduate 

enrollment growth appeared, however, to be in consonance with the 
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moderate increase in both departmental quality from 2~8 to 265, and 

number of research projects, from seven to eight. 

9~ 

Figure 19, whose final results are tabulated in row 5 of the table, 

reflects for the fast Van Bertalanffy growth the additional research 

support demonstrated previously for the slow Van Bertalanffy curve. 

The period covered was again 1971-1981. As before, total engineering 

growth remained the same, industrial engineering enrollment at all 

levels increased slightly, the number of undergraduate faculty stayed 

constant, and quality, graduate faculty and research contracts increased 

substantially. 

The two final simulation runs, each from 1971 to 1981, were made 

to check the model under linear enrollment growth conditions rather than 

the diminishing returns Van Bertalanffy curve. The results are shown 

in Figure 20 (for normal research support) and Figure 21 (for added 

research). The final values are tabulated in rows 6 and 7 of Table I. 

A comparison of the 1981 values from rows 2 and J with 6 and 7 demon­

strates that, except for minor differences in the yearly growth curves 

(or timing of step changes), the final values are virtually identical. 

Actual differences are often less than apparent ones, for the scale 

values are varied automatically by the Cal Comp plotter, hence will 

differ between charts. 

A sample copy of the program and several of the curves computed 

for the department runs which generated Figure 16 (slow Van Bertalanffy 

growth, less research, for the period 1961 to 1981) are included as 

Appendix B to provide additional information about the model. 
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TABLE I 

PROJECTED RESULTS OF TEN-YEAR SIMULATION - DEPARTMENTAL MODEL; 1971-81 

ENROL IEBS IEMS IEPHD RESF FACGR FACUGR GA QUAL 

Initial Conditions 
1971 1287 149 21 12 2 7 4 2.76 100 

Slow Van Bertalanffy 
1981 Values - From 

Figure 16 1621 207 47 50 7 17 5 J.88 248 

Slow Van Bertalanffy 
.Additional Research 
:1981 Values - From 

Figure 17 1621 211 48 53 20 21 5 5.50 275 

Fast Van Bertalanffy 
.1981 Values - From 

Figure 18 2114 273 55 59 8 21 7 4.94 265 

Fast Van Bertalanffy 
Additional Values 
1~81 Values - From 

Figure 19 2114 278 57 62 23 25 7 6.85 292 

Positive Linear 
1981 Values - From 

Figure 20 1647 210 46 50 7 17 5 3.92 247 

Positive Linear 
Additional Research 
1981 Values - From 

Figure 21 1647 214 48 53 5 21 5 5.58 275 ',!) 
co 
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Although considerable work was required to match the model with 

the operation of the department, such effort was worthwhile for greater 

confidence resulted in the model's ability to predict the impact of 

changes in any of its segments. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The dissertation objectives outlined in the first chapter included 

two major facets. One was an attempt to determine the applicability of 

systems analysis modeling techniques to institutions of higher educa­

tion. The other involved a feasibility study of the International 

Business Machine Corporation compiler, s/360 CSMP (Continuous System 

Modeling Program) as a tool for model analysis. The university and 

departmental research results illustrated in Chapter IV and V demon­

strated the potential value of the suggested approach. 

The university model, though aggregated, served as an initial 

demonstration of the applicability of systems modeling techniques. It 

also provided a testing ground to evaluate the efficacy of the CSMP 

compiler for model analysis. The detailed departmental model which 

followed extended both phases of the research effort. The system was 

studied in more detail, which permitted greater accuracy, and the ini­

tial CSMP simulation was adjusted to match actual data, which increased 

its predictive and sensitivity utility. 

As anticipated, system analysis becomes quite complex as the number 

of interacting factors is increased. Model accuracy can be increased 

with additional detail, but at the price of greater analytical and simu­

lation difficulty. The departmental model match with actual conditions, 

for example, consumed considerable analytical and computer time. 
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Another major difficulty encountered was that of accurately formulating 

system equations. Estimation was frequently required where insufficient 

data existed for accurate curve-fitting. In addition, factors known to 

contribute were omitted because of their inherent complexity and the 

need to keep the model size within reasonable limits. 

Although the effective application of system. dynamics concepts 

requires considerable time and skill, they nevertheless provide a useful 

tool for the analysis of higher education systems. Since organizations 

operate as viable, dynamic units through a series of interacting parts 

tied together by information and communication networks, the concepts 

make it possible to study the individual facets and their interaction" 

This represents one of the strong contributions of the subject for in­

formation feedback loops and their interrelations with other sectors of 

an organization, the timing of decisions, and the impact of delays in 

planning and implementation are more effectively handled by the system 

concepts utilized in the treatise than by judgment alone. 

Simulation of system models by CSMP greatly augments their effi­

cacy. While it is a powerful compiler, it currently has the weakness of 

being able to plot only one variable per sheet. That weakness can, with 

some difficulty, be offset by utilizing sections of FORDYN to provide 

multiple plots, and can be effectively eliminated by further programming 

effort and use of the CALCOMP plotter. When combined, the hardware and 

software make it possible to conduct effective sensitivity analyses on 

the systems models. 

Although the modeling and simulation procedure developed should 

prove very helpful in the improvement of institutions of higher educa­

tion, additional work should prove fruitful in several areas. First, 
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the models were necessarily simplified because of the time and complex­

ity involved in a thorough study of such organizations. The work should 

be greatly expanded. Further, the concepts should prove valuable for 

educational institutions at all levels, including the primary and 

secondary sectors. An investment of effort in those areas should pro­

vide substantial returns. Finally, a,dditional research on CSMP should 

make it still more effective. Superimposed plots might be obtained 

directly and additional useful subroutines currently available only in 

DYNAMO might be possible. 

In summary, while additional improvement and extension of the work 

should be conducted, the analytical and simulation procedures studied 

should engender greater understanding of any system analyzed. The 

methodology should - and is - being extended into areas far beyond the 

industrial sector which was involved in its origin. 
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APPENDIX A 

SAMPLE COMPUTER OUTPUT -

UNIVERSITY MODEL 

11c:; 



****CONTINUOUS SYSTEM MOOtLING PROGRAM***• 

***PROBLEM INPUT STATEMENTS••• 

TITLE HIGHER EDUCATION 
• 
PARAM POWER=.T 
CONST DELTAT=l. 
CONST OPA=Z. 
CONST OPS=l500. 
CONST FS=l2000. 
CONST FHT=l •. 
CONST T•l. 
CONST FBT=Z. 
CONST HAX•40000. 
PARAH US= 9000. 
PARAH GS=4500. 
PARAH X=lOOOO. 
PARAH Y=l.15 
PARAH P=5000. 
PARA~ Q=l.l 
PARAH USTU=.28 
PARAH USTG=. 35 
PARAH UAP•2500. 
PARAH GAP=l400. 
PARAH Qf=O. 75 
PARAH QUA=2000. 
PARAH QGA=IOOO. 
PARAH AU•ZOOO. 
PARAH AG=lOOO. 
PARAH GR=l750. 
PARAH TS•IOOOO. 
PARAH DDN=l75000. 
PARAH AL=lOOOOO. 
PARAH LEG=9500000. 
PARAH B=25000000. 
PARAM INF=b25. 
l'ARAH NFP=b25. 
PARAH fHR=lO. 
PARA~" I FC=2500000. 
PARAH fAR=l250000. 
PARAH FAC=2250000~ 
PARA~ PREV=IOOOOOO. 
PARAM RS=l250000. 
PARAH UPK=IOOOOOO. 
OYl<AM 
NO SORT 

IFtTIMEl2,2,l 
US=(l.~EXP(-POWERll*l9000. 
GS= 11.-EXP (-POWER I I *10000. 
POWER=POWER+.05 
C=NFPIINF 
USTU=USTU+.01 
TS21'1FP=TS/NFP 
IFITS2NFP.GT.18.5)USTU=USTU-.02 
UAP=USTU•C•us 
USTG•USTG+.01 
IFITS2NFP.GT.17.51USTG=USTG-.02 
GAP=USTG*(PGA+GSl*C 
OF•QF+0.02 
If t TS2NFP.GT .rs. 5 JQF=QF-0. 03 
QUA=tUAP/4.0l*IMAX/TSI 
lftQF.GT.I.ICF=l. 
OGA=GAP*UF 

AU=QUA 
AG•3.*NFP 
IFtAG.GT.QGAIAG=QGA 
DOl'l=AL*DPA 
GR=ITS*.ZI/DELTAT 
AL=AL+GR*DEL TAT 
TS=TS+AU+AG-(GR*DELTATI-ITS•.121 
PGA•GR*DELTAT*.25 
LEG=l.02*LEG 
S•TS*DPS+DOl'l+LEG 
INF•l.3*81/FS 
NFP=NFP+FHR•DELTAT 
FHR=(INF-NFPI/FHT 
IFC=.l*B 
FAR= I FC/ FB T 
FAC•FAC+IFAR*DELTATl+l'REV 
PREV= IFC-FAR 
R8•12000.•NFP 
IFIRB.GT.~25*BIRB•.25*B 
UPK=.05•8 

2 CONTINUE 
TIMER DELT•l.,FINTIM•25.,PRDEL•l.,OUTDEL=l. 
PREPAR UAP,GAP,AU,AG,GR,NFP 
PRTPLT UAP,GAP,AU,AG,GR,NFP 
LABEL HIGHER EDUCATION CSMP MODEL 
END 
STOP 

OUTPUTS INPUTS PARAHS INTEGS + MEM BLKS FORTRAN DATA CDS 
4115001 76114001 4314001 O+ 0• 013001 3916001 45 

ENDJOB 

I-" 
I-" 
O'\ 



TIME = 1.0000E 00 us = 8.8904E OJ GS = 4.8452E OJ 
TS2NFP = 1.6000E 01 UAP = 2.8682E OJ 
QUA = 2.8682E OJ QGA = 1.J708F OJ 
GR = 2.0000E OJ TS = 1.1089E 04 
PGA = 5.0000E 02 LEG = 9.6900E 06 
NFP = 6 J500E 02 FHR = 2 621JE 01 
FAC = 4.5724E 06 PREY= 1.J224E 06 

TIME= 2.0000E 00 us = 1.0871E 04 GS = 5.4J56E OJ 
TS2NFP = 1.7J84E 01 UAP = 8.1J21E OJ 
QUA = 2.8J7JE OJ QGA = 1.6662E OJ 
GR = 2.2078E 03 TS = 1.2010E 04 
PGA = 5.5195E 02 LEG = 9.88J8E 06 
NFP = 6.6121E 02 FHR = 4.1J55E 01 
FAC = 7.JOOOE 06 PREY= 1.4051E 06 

TIME= 3.0000E 00 us = 1.1804E 04 GS = 6.9020E OJ 
TS2NFP = 1.8164E 01 UAP = J.44J9E OJ 
QUA = 2.8675E OJ QGA = 1.7712E OJ 
GR = 2.4020E OJ TS = 1.2805E 04 
PGA = 6.0050E 02 LEG = 1.0Q81E 07 
NFP = 7.0257E 02 FHR = J.4884E 01 
FAC = 1.0180E 07 PREY= 1.4749E 06 

TIME= 4.0000E 00 us = 1.2692E 04 GS = 6.J458E OJ 
TS2NFP = 1.8227E 01 UAP = J.8692E OJ 
QUA = J.0215E OJ QGA = 1.9224E OJ 
GR = 2.5611E OJ TS = 1.J652E 04 
PGA = 6.4027E 02 LEG = 1.028JE 07 
NFP = 7.J745E 02 FHR = J.6891E 01 
FAC = 1.8204E 07 PREY= 1.5487E 06 

USTU = 2.9000E-01 
GAP = 1. 780JE OJ 
AU = 2.8682E OJ 
DON = 2.0000E 05 
B = 2.6449E 07 
IFC = 2.6449E 06 
RB = 6.6121E 06 

USTU = J.OOOOE-01 
GAP = 2.1091E OJ 
AU = 2.8J7JE OJ 
DON = 2.0400E 05 
B = 2.810JE 07 
IFC = 2.810JE 06 
RB = 7.0257E 06 

USTU = 3.1000E 01 
GAP = 2.1867E OJ 
AU = 2.8675E OJ 
DON = 2.0842E 05 
B = 2.9498E 07 
IFC = 2.9498E 06 
RB = 7.J745E 06 

USTU = J.2000E-01 
GAP = 2.J162E 03 
AU = J.0215E OJ 
DON = 2.1J22E 05 
B = J.0974E 07 
IFC = J.0874E 06 
RB = 7.74J4E 06 

USTG = J.6000E-01 
QF = 7.7000E-01 
AG = 1.J708E OJ 
AL = 1.0200E 05 
INF = 6.6121E 02 
FAR = 1.J224E 06 
UPK = 1.J224E 06 

USTG = J.7000E-01 
QF = 7.9000&-01 
AG = 1.6662E OJ 
AL = 1.0421E 05 
INF = 7.0257E 02 
FAR = 1.4051E 06 
UPK = 1.4051E 06 

USTG = 3.6000E-01 
QF = 8.1000E-01 
AG = 1.7712E OJ 
AL = 1.0661E 05 
INF = 7.J745E 02 
FAR = 1.4748E 06 
UPK = 1.4748E 06 

USTG = J.5000E-01 
QF = 8.JOOOE-01 
AG = 1.9224E OJ 
AL = 1.0917E 05 
INF = 7.74J4E 02 
FAR = 1.5487E o6 
UPK = 1.5487E 06 

..... ..... 
-...) 



HIGHER EDUCATION CSMP IIDDEL PAGE 

MINIMUM AU VERSUS TIME MAXIMUM 
2.CIOOOE 03 4.4867E 03 

TIME AU I I 
o.o 2.0000E 03 + 
1.ooooe oo 2. 7738E 03 --------+ 
2.ooooe oo 2~6435E 03 -------+ 
3.ooooe oo 2.6312E 03 ' ------+ 
4.0000E 00 2.U06E 03 + 
5.0000E 00 2. 7921E 03 ---- --+ 
6.0000E 00 2.1724E 03 ------~-+ 
7.0000E 00 2.9HltE 03 --------+ 
a.ooooe oo 3. 0261E 03 --------------+ 
9.0000E 00 3.1045E 03 -~----------+ 
1.ooooe 01 3.1S41E 03 ------------+ 
1.1oooe 01 3.2642E 03 -----+ 
1.2oooe 01 3.3451E 03 ----- . --------+ 
l.3000E 01 3.4268E 03 ------------------+ 
l.4000E Ol 3.5167E 03 -----------------+ 
1.soooe 01 3.6l34E 03 -----------------+ 
l.6000E Ol 3.7111E 03 -------------------+ 
l. 700flE 01. 3.8109E 03 --------------------+ 
1.eoooe 01 3. 9118E 03 -- ------. --+ 
l.9000E 01 lt.Ol36E 03 -------------------
2.ooooe 01 lt.ll62E 03 - + 
2.LOOOE 01 lt.2191tE 03 -----------------------+ 
2.2oooe 01 lt.3231E 03 --------------- + 
2.3000E 01 lt.3552E 03 ------------------- --+ 
2.ltOOOE 01 4.lt703E 03 ------ -- ----·-+ 
2.soooe· 01 4.4867E 03 ----------- + 

~ 

MINIMUM AG VERSUS TIME MAXIMUM 
1.ooooe 03 2.0685E 03 

TIME AG I I 
o.o 1.·ooooe o3. ~, ·. .;_ :. -
1.ooooe oo ··1;39s,E 03 ---- . - ' .·.:~-.· · .. -. -'+ 
2.ooooe oo l.6279E 03 --- - -------------+ 
3.0000E 00 l.61102E 03 --- . - . ---------+ 
lt.OOOOE 00 lo 7674E 03 -------------------+ 
5.0000E 00 l.8255E 03 -----+ 
6.0000E 00 l. 8840E 03 -------. ----------------+ 

. 7.0000E 00 l.9316E 03 -------------------------+ 
8.0000E 00 la.9733E 03 -------------------- . -----+ 
9-Q~OOE 00 2.0074E Ql ..... . - -------------+ 
l.OOOOE Ol 2.031t7E 03 ---- ---------------+ 
l.lOOOE 01 2.055lE 03 ------------------- -------+ 
1.2oooe 01 2.0685E 03 -- : . . -- . . . . --------------------+ 
l.3000E 01 2.0546E 03 -------------- . -~----------+ 
l.4000E Ol 2.0l6lE 03 ------------------- . --- . .. 
l.5000E O l l.9726E 03 -----------------------------------+ 
,l.6000E 01 l.9229E 03 ------ ' - -v.. ----------+ 
l.7000E 01 .l.BH'tE 03 ----------------. ----- . . ... -+ 
1.aoooe 01 l.8096E 03 -. . ----------------------+ 
l.9000E 01 l. 7"68E 03 ---------------------------+ 
2.00,00E, 01 l.680ltE 03 ~--------------------+ 
2.lOOOE 01 l. 6l07E 03 -~---------------------+ 
2.2oooe 01 1. 7l90E 03 --------r---- ·- ---------+ 
2.30001: 01 l.631t8E 03 ------------~-------+ 
2.ltOOOE Ol 1. 7527E 03 -------·-----------------+ 
2.5000E. Ol l.·Blt99E 03 ---------------------------+ 

TIME 
o.o 
l.OOOOE 00 
2.0000E 00 
3.0000E 00 
4.0000E 00 
5.0000E 00 
6.0000E 00 
7.0000E 00 
8.0000E 00 
9.0000E 00 

.. 1.ooooe ·Ol 
1.1oooe 01 
l.ZOOOE 01 
l.3000E 01 
l.4000E Ol 
l.SOOOE Ol 
l.6000E 01 
1. 7000E 01 
1.soooe 01 
l.900CIE 01 
2.ooooe 01 
2.1oooe 01 
2.2oooe 01 
·z. 30011E o l 
2.4000E Ol 
2.5-000E 01 

TIME 
o.o 
1.ooooe oo 
2.0000E 00 
3.0000E 00 
lt.OOOOE 00 
5.0000E 00 
6.0000E 00 
7.0000E 00 
e.ooooe oo 
9.0000E 00 
1.ooooe ot 
l.lOOOE Ol 
l.2000E Ol 
l.3000E Ol 
l.4000E 01 
1.soboE 01 
l.6000E Ol 
1. 7000E Ol 
l.SOOOE Ol 
l.9000E Ol 

·2:00011E o l 
2.lOOOE 01 
2.2oooe ot 
2.3000E 01 
2.ltOOOE 01 
2.souue ·01 

MINIMUM GR VERSUS TIME 
l. 7500E 03 

GR I 
l. 7500E 03 + 
2.0000E 03 ----+ 
2.l939E 03 --------+ 
2.n6lE 03 -------+ 
2.4576E 03 -------+ 
2.5708E 03 -----------+ 
2.6717E 03 --------------+ 
2. 7680E 03 + 
2.85SOE 03 -------------+ 
2.9433E 03 --------------+ 
3.0Z39E 03 --
3.lOOOE 03 -------
3. l 718E 03 -
3.2396E 03 ---
3.2992E 03 ----------
3.3500E 03 ---
3.395ZE 03 --
3.4355E 03 
3.ltTZOE 03 --------
3.5052£>· 03 
3.5356E 03 --
3.5636E 03 ----
3.58'2E 03 --
3.649lE 03 --
3.6.794E 03 --------
3.71t66E 03 ------

MINIMUM 
6.2500E 02 

NFP 

NFP 
6.2500E 
6.3500E 
6.5860E 
6.9209E 
7. l805E 
7.1tH3E 
7.6860E 
7.9204E 

I 
02 + 
02 -+ 
02 ---+ 
02 ----+ 
02 --------+ 
02 -------+ 
02 ----~--------+ 
02 ----------~-+ 

-

8. lltltlE 02 -----------+ 
a. 3599E 02 ---------------+ 

+ 
+ 

-

VERSUS TIME 

8. 5680E 02 ~-------------~+ 
s. 7690E 
8.963lE 
9. l507E 
9.3243E 
9.4827£ 

02 -------------------+ 
02 -----------------+ 
02 ----------------+ 
02 ------------------· 
02 -------------------------+ 

+ + 

02 -----------------------· 

+ 

9 •. 631.7.E. 
9. 7730E 

~9.90836' 
gi.,~-~=-~--=-"-:-:::-.":"":~-~-----------~---,--:--:-:~ ... 

+ + 
-+ 
-+ 

l.0039E 
l. 0165[ 

03 -------------------------+ 
03 --------------------------- .• 

MAXIMUM 
3.7466£ 03 

I 

+ 
+ 

·+ 
+ 

+ 

MAXIMUM 
l.0930E 03 

I 

1. 0289E 03 ------------------- . ----------+ 
l.Olt09E 
l.051~E 
l. 0727E 

01 ------------------------ --+ 
03 ------------------------------+ 
03 ----------------- . -----------+ 

l.0930E 03 ---------------
f,-lo 
f,-lo 
co 
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; ... *CONTINUOUS SYSTE" "OOELIIIIG PROGRAM•••• 

•••PROBLEM INPUT STATEMENTS••• 

"ACRO A•XLOC.IQ,QO,FI 
A•F • ALOGIQ/QDI + QO 

ENOl•iAC 
TITLE 1>£PT. "00./SLOM VAN BERT. GROWTH 
STORAGE CAR"Sl21,CARPHDl41 
IN!TlAt 

• STUDENT SECTION CONSTANTS 
• 
CONST 
CONST 
CONST 
CONST 
CONST 
CONST 
TABLE 
• 

8SFRAC•.DOll2,BSQ•l.O,FBS•20.0,FMSl=OlO.O,F"S2•010.0,FPHDl=lOD.O 
FPH02=100.0,MSDRl•0.04,"SDR2•0.0l,MSFRAC•0.00100,MSGRl=0.7 
MSGR2•0.25,MSQ=0.084,PHDDR1•0.06,PHODR2=0.0l,PHDOR3=0.005 
PHODR4=0.005 
PHOFRA•0.00175,PHDGRl•O.O,PHDGR2=0.311,PHDGR3=0.3900,PHOGR4•0.15 
PHDQ•0.0095,0T=l.O 
CARMS(l-21=2•10.0,CARPHOll-41=4•1.5 

• RESEARCH SECTION CONSTANTS 
• 
CONST IHFAC•0.2,0HQ•0.02,RESTF•0.75 
• 
• STAFF SECTION CONSTANTS 
• 
CONST 
CONST 
CONST 
• 

FACRP•0.25,GARP•0.125,HBSIE•0.4,HBSNIE•0.039,H"SIE-0.6,HPHOIE•0.8 
POSGR•O.lll,POSUGR•0.075,THIIS•0.25,THPH0•0.67,UNFRGA•0.29 
UNFRGF•0.20,UNFRUF•0.51 

• QUALITY SECTION CONSTANTS 
• 
CONST PAPGF•l.O,PAPMS•0.1,PAPPHO=D.2,PAPRES=l.O,QP6F•3.5,QPMS=l.O 
CONST QPPAP•3.5,QPPHD•2.5,QPMS•l.2,QPRP:4.0,QPUGF=2.0 
• 

STUDENT SECTION PARA"ETERS ANO INITIAL VALUES 
• 
PARAM 
PARAM 
PAR AM 
• 

EN61t•0900.0,KOUNTl•O.O,SUMl•O.O,KOUNT2=0.0,SUM2=0.0 
ENROL•90D.O,IE8S•90,IEMS•,,IEPHO=l 
X=.5 

• RESEARCH SECTION PARAMETERS ANO INITIAL VALUES 
• 
PARAM RESF•2. 
• 
• STAFF SECTIIW PARAMETERS ANO INITIAL VALUES 
• 
PARAM HUNGR•l05.0,HGRAO=l7.0,HTHES•lO.O,FACRES=0.5,GARES=O.D,FACGR=2.5 
~ARAM FACUGR~6.eGA=l. 
*· 
• QUALITY SECTIIW PARA"ETERS· ANO INITIAL VALUES 
• 
PARAM PAPERS-10,QUAL•l00,QUAL0=95. 
• 
DYNAMIC 

NO SORT 
IF ITIIIEI 2,2,1 

• 
• STUDENT· SEC Tl ON 
• 

ENR6L•ENGR 
ENGR•(l.-EXPI-Xl1•2300. 

• 

X•X+.04 
XLOGA•XLOGIQUAL,QUALO,FMSll 
XL068sXL06(QUAL,QUALO,FMS21 
RRMS•MSFRAC•XLOGA•IEBS+MSQ*XLOGB 
DRHS•HSDRl*CARMSl2l+MSDR2•CARMSlll 
GRMS•MS6Rl*CARMSl21 + "SGR2•CARMSC11 
CALL BOXCIRRMS,OUT,CARMS,KOUNTl,1,2,SUllll 
XLDGC•XLOGIQUAl,QUALO,FPHDll 
XLOGO•XLOGIQUAL,QUALO,FPHD21 
RRPHD•PHDFRA*XLOGC•IEMS+PHDQ•XLOGD 
DRPHO•PHDDRl*CARPHDl41+PHDOR2*CARPHOC31+PHDOR~'"l:ARPHD(21+PHDOR4 ••• 

*CARPHDlll 
GRPHD•PHOGR!*CARPHDlll+l'tlDGR2*CARPHDl3l+PHDGR3*CARPHDl21+PHDGR4 ••• 

•CARPHDlll 
CALL 80XCIRRPHO,OUT,CARPHO,KOUNT2,1,4,SUll21 
XLDGE•XLOGIQUAL,QUALO,FBSI 
IEBS•AINTIBSFRAC•XLOGE•ENROL+0.51 
IEMS•AINTIIIEMS+IRRMS-GRMS-OR"Sl•DTl+0.51 
IEPHD•AINTIIIEPHO+IRRPHD-GRPHD-ORPHDl•OTl+0.51 

RESEARCH SECTION 
* IHRESR•IHFAC*FACGR 

OHRESR•OHQ•IALOGIQUAL/QUALOl+QUALDI 
RESTR=RESTF*RESF 
RESF•AINTIIRESF+IIHRESR+OHRESR-RESTRl•DTl+0.51 

• STAFF SECTION 
• 

• 

HUNGR•HBSl!i*IEBS+HBSNIE•IENROL-IEBSI 
HGRAD•H~SIE•IEMS+HPHDIE•IEPHD 
HTHES•THMS•IEMS+THPHO*IEPHO 
FACRES•FACRP*RESF 
GARES•GARP•RESF 
FACGR•AINTIIFACRES+POSGR*IHGRAO+HTHESI+ POSGll*UNFRGF•HUNGRl+0.51 
FACUGR•AINTIPOSUGR*UNFRUF*HUNGR+0.51 
GA•GARES+POSUGR•UNFRGA•HUNGR 

• QUALITY SECTION 
• 

• 

PAPERS•AINTIIPAPGF*FACGR+PAPMS•IEMS+PAPPHD•IEPHD+PAPRES•RESFl+0.51 
UUAL•lOO.O•IALOGIIQPGF•FACGR+QPUGF*FACUGR+QPPAP•PAPERS+QPPHO ••• 

•IEPHO+QPMS•IEMS+QPRP•RESFI/QUALOl+l.01 

2 CONTINUE 
TIMER DELT•l.O,FINTIM•20.0,PRDEL•l.O,OUTOEL•l~O 
PKEPAR ENROL,IEBS,IEMS,IEPHD,FACGR,FACUGR,GA 
PR I NT EHIIOL,RRMS ,ORMS, GRMS ,RRPH()., ORPHD,GRPHO, • •• 

IEBS; IEM'S;IEPHO~ iHRESR, DHRESR,ilESTR, RESF,HUNGR, •• • 
HGRAO,HTHES,FA~RES,GARES,FACGR,FACUGR,GA,PAPERS,QUAL 

PRTPLT ENROL,IEBS,IEMS,IEPHD,FACGR,FACUGR,GA 
LABEL OEPT. MOO.ISLOW VAN BENT. GROWTH 
ENO 
STOP 

f-', 
l'v 
0 



tlEPT. MOO./SLOW VAN BERT. GROWTH lNTGRL NOT USED 

TIME = o.o ENROL= 9.0000E 02 RRMS " o.o ORMS " o.o GRMS = o.o 
RRPHO = o.o ORPHD = o.o GRPHO = o.o IEBS = 9.0000E 01 
lEMS = 5.0000E 00 lEPHO = l.OOOOE 00 IHRESR= o.o OHRESR= o.o 
RESTR = o.o RESF = 2.0000E 00 HUNGR = l.050DE 02 HGRAO = l.7000E 01 
HTHES = l.ODOOE 01 FACRES= 5.0000E-01 GARES = o.o FACGR = 2 •. 5000E 00 
FACUGR= 6.0000E 00 GA = 1.0000E 00 PAPERS= l.OOOOE 01 UU4L = l.OOOOE 02 

TIME = 1.00CuE 00 ENROL= 9.0000E 02 RRMS = l.bbl9E 01 ORMS = 5.0000E-01 GRMS = 09.50QOE0 00 
RRPHO = 1.8274E 00 ORPHD = l.2000E-Ol GRPHO = 1.38001: 00 11:BS = 9.lOOOE 01 
lEMS = l.2000E 01 IEPHD = l.OOOOE 00 IHRESR= 5.0000E-01 OHRESR= l.9010E 00 
RES TR = l.5000E 00 RESF " 3.0000E 00 HUNGR = 7.0ll7E 01 HGRAD = 8.0000E 00 
HTHES = 3.6700E 00 FACRES= 7.5000E-Ol GARES= 3.7500E-Ol FACGR = 4.000CE: 00 
FACUGR= 3.0000E 00 GA " l.9000E 00 PAPERS= - 8.0000E 00 QUAL = 7.88b3E 01 

TIME = 2.0000E 00 ENROL= 9.0498E 02 RRMS " l.b85BE 01 ORMS = 7.b477E-Ol GRMS = -l.4133E 01 
RRPHD = 2.3297E 00 ORPHD = 1.39t,4E-Ol GRPHO" 1.3800E 00 IEBS = .9.3000t 01 
IEMS = l.4000E 01 lEPHD = 2.0000E 00 IHRESR= 8.0000E-01 OHRESR= l.B9b3E 00 
RESTR = 2.2500E 00 RESF = 3.0000E 00 HUNGR = b.88b7E 01 HGRA~ = -J.OOOOF 01 
HTHES = 4.8400E 00 FACRES= 7.5000E-Ol GARES= 3.7500E-Ol FACGR = 4.ooooE·co 
FACUGR= 3.0000E 00 GA = 1. 8729E 00 PAPERS-= 9.0000E: 00 UUAL - = 8.9230E 01 

TIME = 3.00COE 00 ENROL= 9.59b8E 02 RRMS = l.6704E 01 ORMS = 8.4051E-Ol GRMS = l.5955E 01 
RRPHD = 3.0lb9E 00 ORPHD = 1. 7305E-Ol GRPHO = l.5044E 00 IEBS = l.OlOOE 02 
lEMS = l.4000E 01 lEPHD = 3.0000E 00 lHRESR= 8.0000E-01 OHRESR= l.8987E 00 
RESTR = 2.2500E 00 RESF = 3.0000E 00 HUNGR = 7.38881: 01 HGRAD= 1.011001: 01 
HTHES = 5.5100E 00 FACRES= 7.5000E-Ol GARES = 3.7500E~Ol FACGR·C:, 4.0000E 00 
FACUGR= 3.0000E 00 GA = l.9821E 00 PAPERS= 9.0000E 00 ·ouAL = 9;.2118E 01 

TIME = 4.0000E 00 ENROL= l.0122E 03 RRMS = l.7518E 01 ORMS = 8.3b74E-Ol GRMS "' 1.5qo1E·o1 
RRPHD = 3.1253E 00 ORPHD = 2.2095E-Ol GRPHD = l.8229E 00 IEBS = l.0700E 02 
IEMS = l.5000E 01 (EPHO = 4.0000E 00 IHRESR= 0.ooooE-01 OHRESR= 1 ~8994E 00 
RESTR = 2.2500E 00 RESF " 3.00001: 00 HUNGR = 7.8104E 01 HGRAD = l.2200E 01 
HTHES = b.4300E 00 FACRES= 7.5000E-Ol GARES= 3.7500E-Ol FACGR = 5.0000E 00 
FACUGR= 3.0000E 00 GA = 2.073BE 00 PAPERS= l.OOOOE 01 IJUAL ·= l.0362E 02 

TIME = 5.0000E 00 ENROL= l.Ob27E 03 RRMS = l.83llE 01 ORMS = 8.b776E-Ol - GRMS = 1. b't39E O l 
RRPHD = 3.70b7E 00 DRPHD = 2. l847E-Ol GRPHD = 2. 3291E 00 IEBS = 1.1 !>OOE 02 

_IEMS = l.bOOOE 01 IEPHO. = 5.0000E 00 lHRESR= l.OOOOE 00 OHRESR= l.9017E 00 
RES TR = 2.2500E 00 RESF = 4.0000E 00 HUNGR = 8.29611:: 01 ·HGRAO = l.3600E 01 
HTHES = 7.3500E 00 FACRES= l.OOOOE 00 GARES= 5.0000E-01 FACGR = 5.0000E ·.oo 
FACUGR= 3.0000E_ 00 GA = 2.3044E 00 PAPERS= 1.20001: 01 QUAL - 1. l 753E 02 

TIME = b.OOCOE 00 ENROL= l.1112E 03 RRMS = l.9328E 01 ORMS = 9.07blE-Ol GRMS = l.7197E Ol 
RRPHO = 4.3605E 00 ORPHD = 2.8039E-Ol GRPHO z 2.7l37E 00 IEBS = l.2400E 02 
IEMS = 1.1000E 01 IEPHO = b.OOOOE 00 IHRESR= l.OOOOE 00 OHRESR= 1. 9043E Ou 
RESTR = 3.0000E 00 RESF = 4.0000E 00 HUNGR = 8.8102E 01 HGRAO = l.50001:: 01 
HTHES = S.2700E 00 FACRES= l.OOOOE 00 r,ARES = 5.00001:-01 FACGR = b.OOOOf 00 
FACUGR= 3~0000E 00 GA = 2.4lb2E 00 PAPERSz 1. 3000.1:: 01 UUAI,,, = l.2o56E 02 

TIME = 7.0COOE 00 ENROL = l.1579E 03 RRlfS = -2.0357E 01 ORMS = 9.5624£:-01 GRMS = l.Al08t 01 
RRPl-'0 = 4.8546E 00 O·RPHD .= 3.294iE-01 GRPHD = 3.07991: 00 lt:tlS = l.HOCE 02 
IEMS = l.8000E 01 lEPHD = 7.0000E 00 IHRESR= l.2000E 00 LlHRESR= l.90HE 00 
RES TR = 3.0000E 00 RES.F = 4.0000F 00 HUNGR = 9.2447E 01 llGRAD = l. b40U' 01 
HTHES = 9.19COE 00 FACRES= 1.00001:: 00 GARE:S = 5.0000t-01 FACGi( = 6.000CE 00 
FACUGR= 4.0000E 00 GA = 2.5107E 00 PAPERS= 1.30001: 01 CUo\L = i.. 3 lO!>i: 02 

~ 
L\) 
~ 



DEPT. MDD./Slllll VAN BERT. GROWTH PAGE 

TIME 
o.o 
1.ooooe oo 
z.ooooe oo 
3.0000E 00 
4.0000E 00 
5.DDOOE 00 
6.0000E 00 
7.0000E 00 
8.0000E 00 
9.0000E 00 
1.0000E 01 
1.lOOOE 01 
l.2000E 01 
l.3000E 01 
l.4000E 01 
l.SDODE 01 
l.&OOOE 01 
lo7000E 01 
1.aoOOE 01 
l,9000E 01 
2.0000E 01 

TIME 
o.o 
l.OOOOE 00 
2.ooooe oo 
3.ooooE·oo 
4.0000E 00 
5.0000E 00 
6.0000£ 00 
7.0000E 00 
8 •. Q!)OOE 00 
9.0000E 00 

. l.OOOOE 01· 
l.lOOOE 01 
l.2000E Ql 
l.3000E 01 
l.ltOOOE 01 
i.SOOOE 01. 
l.6000E 01 
1.7ll00£ Dl 
.l.!IOOOE Ol 

. h9000E Of 
;z.OOOOE 01 

MINIMUM flCGR VERSUS TIME 
2.SOOOE 00 

fACGR I 
2.SOOOE 00 + 
lt.OOOOE 00 ------+ 
4.0000E 00 ------+ 
4.0000E 00 -----+ 
5.0000E 00 -------+ 
5.0000E 00 - .+ 
6.0000E 00 
6.0000E 00 - + 
6.0000E 00 - -+ 
7.0000E 00 ------ + 
7.0000E 00 -------------+ 
7.0000E 00 ---- • 
8.0000E 00 -- -+ 
8.0000E 00 -
B.OOOOE 00 
9.0000E 00 -
9.0000E 00 
9.0000E 00 
l.OOOOE 01 -
l.OOOOE 01 -
l.OOOOE 01 ---

GA· 

MINIMIIM 
l.COOOE DO 

. J 

GA 

.1.ooooe .oo... +· .•.... 
l.9000E 00 ..-.,.;. 

. J. 8729E 00 . 
1.98211: 00· 
2.0738£ DO 
2.304ftE 00 
2.41&2E 00 

---~----· ---------· ------,----+ 

------+ 
+ 

-

VERSUS TIME 

+ 
·+ 

• 2.5107E 00 
Z.595BE. 00 
2.6716E 00 
2.7616E 00 
Zo83,6E 00 
2.9062E 00 

~-~---------+· 
+ 

----.· .. ·. ----· ----+ 
..:+ 

3.109ftE 00 

MAXIMUM 
l.OOOOE 01 

+ -· + 

-~-

I 

+ 
+ 
+ 

MAXIMUM 
3.5+6BE 00 

I 

J •. J 785E 00 :----. -+ 
3 •. 2465E 00 
3o3134E··oo 
3.)791£ 60 
3~'>281E 00 
3.'>919E 00 
3.5'>68E_OO 

---,--- ·----- ~~~~--------==-·. . -,. ------- - ---------------~--+ -------- .~ ... , . 
-------------+ ·- . ------ . - . ---- .4 ________ . + 

MINIMUM 
3.0000E OD 

TIME fACUGR I 
o.o 6.0000E 00 
l.OOOOE 00 3.0000E 00 + 
2.0000E 00 3.0000E 00 + 
3.0000E 00 3.0000E lio + 
4.0000E 00 3.0000E 00 + 
5.0000E 00 3.0000E 00 + 
6.0000E 00 3.0000E 00 + 
7.0000E 00 4.0000E 00 + 
a.iloooe oo 4.0000Ec 00 - + 
9.0000E 00 4.0000E 00 • 
1.ooooE 01 4.0000E 00 -----. ---+ 
l.lOOOE 01 4.0000E 00 + 
l.2000E 01 4.0000E 00 -~---· 
lo3000E Dl 4.0000E 00 
l.4DOOE 01 lt.OOOOE 00 + 
1.soooE 01 5.0QDOE 00 
l.6000E 01 5.0000E 00 
l.7000E 01 5.0000E 00 
1.aoooE 01 5.0000E 00 
l.900DE 01 S.OODOE 00 
2.000DE 01 S.OOOOE 00 -

FACUGR VERSUS TJME 

+ 
+ 
• 
+ 
• • 

MAXI-
6.0000E 00 

I 

~ 
[lj 
[lj 
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TIME 
o.o 
1.ooooE oo 
2.ooooe oo 
3.0000E 00 
t,.OOOOE 00 
s.ooooe oo 
b.OOOOE 00 
7.0000E 00 
e.ooooe oo 
9.0000E 00 
l.OOOOE 01 
1.1oooe 01 
l.2000E 01 
·1. 3000E 01 
l.'tOOOE 01 
l.SOOOE 01 
1.1,oooe 01 
l. 7000E 01 
1.eoooe 01 
l.9000E 01 
2.ooooe 01 

TIME 
o.o 
1.ooooe oo 
2.ooooe oo 
3.0000E 00 
... aoooE oo 
5.0000E 00 
6.0000E oo 
1.ooooe oo 
s.ooooe· oo 
9.0000E 00 
1.ooooe 01 
1.1oooe 01 
1.·2oooi: 01 
l.3i>OOE 01 
l.4000E 01 
1.soooe 01 
l.bOOOf 01 
1.1oooe 01 
1.11oooe in 
l.9000E 01 
2.ooooe 01 

Ml"IMUM 
9.0000E 01 

I 
+ 
---+ -· ----+ 
-------+ ---------+ 

IEIIS VERSUS TIME 

~~~~~:=;::::::_. 

MAXIMUM 
l.9700E 02 

I IEBS 
9.0000E 01 
9. 7000)' 01 
9.3000E 01 
l. OlOOE 02 
l.0700E 02 
l.1500E 02 
l.2400E 02 
l.3100E 02 
l.3700E 02 
l.'t200E 02 
l.4900E 02 
l.5400E 02 
l.5900E 02 
l.b500E 02 
1. 7000E 02 
l.7500E 02 
1.eoooe 02 
l.8500E 02 
l.BBOOE 02 
l.9300E 02 
l.9700E 02 

-------- -----· 

~~i-~~. ---------+ 
----· -------------------· -----------------+ --------------------~--------------------+ 

Mm I MUM 
5.COOOE 00 

I IEMS 
5.0000E 00 
1.2oooe 01 
l.4000E 01 
l.ltOOOE 01 
1.soooe 01 
l.6000E 01 
l.7000E 01 
1.aoooe 01 
l.9000E 01 
2.ooooe 01 
2.1oooe 01 
2.zoooe 01 
2.3000E 01 
Z.ltOOOE 01 
2.5000E 01 
2.1,oooe 01 
2. lOOOE 01 
2.BOOOE ·01 
2.9000E 01 
3.ooooe 01 
3,lOOOE 01 

IEMS VERSUS TIME MAXI MU'°' 
3.lOOOE Ol 

I 

+ ---------+ -----------+ --~---------+ ------------+ 
--------------------+ ------+ 
----------------- --------+ --------------------------+ 
---- --- ------------------ + ----------------------+ ---------- ·-------+ -------- ·----------------+ ----------- - --------------+ 
--------------. ------ . ·- --,_-+ -------- ·---------------~-· -----~---- ------------------+ 
----------- -------- ----------------------+ 

=====--=-==---=---=---==-=========~. 

TIME 
o.o 
1.ooooE 
2.0000E 
3.0000E 
4.0000E 
5.0000E 
6.0000E 
7.0000E 
B.OOOOE 
9.0000E 
1.ooooe 
l.lOOOE 
l.2000E 
l.3000E 
l.4000E 
l.5000E 
l.6000E 
l. lOOOE 
l.8000E 
l.9000E 
2.0000E 

00 
00 
00 
00 
00 
00 
00 
00 
00 
01 
01 
01 
01 
01 
01 
Ol 
01 
01 
01 
01 

Ml"IMUM 
1.ooooE oo 

IEPHD I 
l.OOOOE 00 + 
1.ooooe oo + 
2.0000E 00 --+ 
3.0000E 00 -----+ 
't.OOOOE 00 -----+ 
5.0000E 00 -------+ 
b.OOOOE 00 -------+ 
7.0000E 00 ----------+ 

IEPHD VERSUS TIME 

11.ooooe_ oo -----------+ 
9. OOOOE 00 -----------+ 
l.OOOOE 01 ---------------+ 
1.1000E 01 ---------------• 
1.2000E 01 ------------------• 
l.3000E 01 -- -----------+ 
l.'tOOOE 01 -----------------+ 
l.5000E 01 -------------------+ 
1.1,oooE 01 ---------------------+ 

MAXIMUM 
2.ooooe 01 

I 

l.7000E 01 -------------------------+ 
1.soooe 01 -- --------------------+ 
l.9000E 01 ---------------------------------+ 
2.0000E 01· -------------------------------+ 

I-' 
tv 
'-" 
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