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CHAPTER I
INTRODUCTION

The process of structural synthesis is a systematic rational
approach. A great deal of work has been done to_undertake the task of
structural analysis and synthesis in the fields of electrical networksy
chemistry, transportation systems, social sciences and other related
fields [1,2,3,4,5,6]"

Using the analogy of the symbolic notations of chemistry, Reuleaux
in 1876 [7] attempted to develop a symbolic representation for kingmat-
ic chains. His objectives were to devise a vocabulary of symbols to
describe a particular combination of kinematic components. A link and
a fixed link are represented by a solid line and two parallel lines re-
spectively. The kinematic elements, which are defined by their geomet-
rical form and their kinematic function, are represented by 15 capital
letters, for example, S is for screw, P for prism, C for cylinder, R
for turning joint. The superscripts + and - after these letters indi-
cated the male and the female component forms of a kinematic pair.
Although his symbolic representation for kinematic chains serves to
illustrate many kinematic relationships, it has not proved generally

applicable due to its inconvenience in use.

1Numbers in brackets denote the references given in the Bibliogra-
phy.



Recently, Franke [8,9] contributed to an alternate symbolic nota-
tion of kinematic chains. 1In contrast to Reuleaux's approach, the
joints of a chain are only the elements of méchanisms themselves. For
example, a single joint chain is represented by E, a two-joint chain by
Z, a three~joint chain by D, and a four-joint chain by V. Small sub-
script letters are also used, for example, d denotes a turning joint
ana s a sliding joint.

Davies and Crossley [10] applied these Franke's condensed nota-
tions to chains in which a link is represented by a molecule and a
joint connection by a line segment. They obtained the structural enu-
meration of seven, nine and eleven-link kinematic chains. This work
represents the first application of Franke's notation to the structural
analysis of kinematic chains.

During the period around 1930, Alt [11], Gruebler [12,13,14],
Malytcheff [15] and Kutzbach [16,17,18] were concerned with the theo-
retical approach to the determination of the degree of mobility of the
planar and spatial kinematic chains. Later in 1950's, Artobolevski
[19] and Dobrovol'ski [20] took into account the existence of the par-
adoxical mechanisms and introduced the concept of the general con-
straints.‘

Soni [21] applied the Franke's condensed notation and concept of
.general constraint to analyze the two-loop (8- and 9- links) and three-
loop (11~ and 12- links) kinematic chains which have two general con-
straints and mobilities one and two. All the kinematic chains consid-
ered by Soni consist of helical pairs with parallel axes and random
pitch values.

Hain and Zielstorff [227] analyzed the sixteen parent 8-link



kinematic chains (see Appendix A) and tabulated all the seventy-one
mechanisms derived from 8-link chains. A systematic analysis by them
shows that these sixteen 8-1ink chains with single pair yield addition-
algforty—four 8-1link chains with multiple pairs. Kinematic inversions
from these forty-four chains yield é64 mechanisms with 'double joints'
and 'triple joints'.

Assur [23,24] developed different groups of various open chains
which would express the characteristics and the forms of kinematic
chains. Manolescu, Haas and Crossley [25,26] used the Assur group to
classify and study the general formula; functions and the practical ap-
plications of kinematic chains and mechanisms. Davies [27,28] extend-
ed Manolescu's classification of planar mechanisms to the mechanisms of
mobility M>1. The mobilities of the kinematic chain and its subchains
are studied in' terms of total and partial mobilities.

Using the number synthesis technique and the‘general mobility
equation, Harrisberger and Soni [29,30] explored 417 and 212 kinds
respectively of one-loop space kinematic chains with zero énd one gen-
eral constraint. They suggested the classification of kinematic pairs
by their number of degrees of freedom. There are five classes of kine-
matic pairs as the pair can have the maximum of five and'minimum_of one
degree of freedom.

Woo [31] applied the concepts of Mcontraction map" and enumerated}
the 10-link kinematic chains. ihe reéults found by Woo, coupled with
those by Davies and Crossley [10] do confirm that the number of 10-link
plane kinematic chains is 230.

Sihce the basic schematic representations used by both Woo and

Davies [31,10] are the same,,the approaches used by both authors have



two points in common: (a) The enumeration of all possible arrangements
of molecules or contraction maps without considering binary links and
(b) The enumeration of the number of ways of adding the binary links
to those arrangements.

From the graph-theoretic point, Crossley [32] analyzed the kine-
matic chains of eight members or less. Since the links and turning
joints of a kinematic chain are represented by vertices and edges in a
graph, the graph shows the kinematic chain as a function of topology
of the components. Therefore, many properties of the kinematic chain
can be studied precisély using graph theory.

Following the works done by Harrisberger and Soni [29,30],
Freudenstein and Dobrjanskyj [33,34,35] applied the concepts of graph
theory and combinatorial method to enumerate the single loop spatial
kinematic chains and mechanisms with lower kinematic pairs. It is
shown that the number of single loop spatial kinematic chains with dif-
ferent kinematic pairé is equal to the coefficient of the weight func-
tion in the expansion 9f the cycle index of the dihedral group. In
these works, no éttempt is made to include mechanisms with pas;ive con-
straints or to exclude the unworkable combinations.

The problems of kinematic synthesis which are discussed above can
be divided into two  categories:

(1) Synthesis of plane kinematic chains with turning joints and
rigid 1inks'on1y. The methods used are: Franke's notation
and contraction map [10,21,23,24,25,26,31].

(2) Synthesis of single loop space kinematic chains with differ-
ent kinematic pairs. The methods used are: number synthesis

technique and graph theory [29,30,33,34,35].



From the two parent 6-link chains, Hain [36] obtained 158 cam-link-
age mechanisms with one, two, three cam pairs and single and double
joints. In his tables, the cam pair in cam linkage mechanism is the
contact of one cam and one roller rather than the contact of two cams.

Replacing a turning pair by a prism pair, Hain [37] derived six
six-link chains with one prism pair from Watt's and Stephenson's six-
link chains. Hain also obtained 54 different screw-crank mechanisms
with single and double joints by replacing the prism pair by a screw
joint. Later in 1968, Hain [38] derived all the six-link kinematic
chains with more than one prism pairs. There are 50 brism kinematic
chains with a maximum of four prism pairs and single joint and 28 prism
kinematic chains with a maximum of four prism pairs and double joints.

Based on the information of prism kinematic chains, the piston-
cylinder kinematic chains with one piston-cylinder were developed by
Hain [39] from the two 6-link chains. Four piston-cylinder kinematic
chains with one pistén-cylinder were obtained which yield eight piston-
cylinder mechanisms. Hain also displayed seven six-link double piston
mechanisms in which two pistons are in one cylinder.

From the two six-link chains, eight different belt-pulley mecha-
nisms are derived by Hain [40]. Hain also demonstrated that the belt-
pulley mechanism: can be transformed into an equivalent rolling-contact
(cam) mechanism such that both belt-pulley mechanism and cam mechanism
have exactly the same relative motions.

Thirteen spring kinematic chains with single and double joints
were derived by Hain [41] from four- and six-link chains. |

The procedures to derive belt-pulley and spring mechanisms are

combined by Hain [42] to produce a total of 16 different spring-belt



mechanisms.

Besides, Hain [43] derived five gear-crank mechanisms with prism
pairs from a five-link chain and ﬁwo gears. Five chain-crank mecha-
nisms derived from four-link chain were also obtained by Hain [44].

Hain's work is more or less restricted to inspection process’ and
does not depend on the mathematical theories. The érocess becomes more
iﬁvolved especially when it ié required to enumeraté kinematic chains
and mechanisms with more than six links.

Johnson and Towfigh [45] applied the number synthesis techniques
to design the gear kinematic chains. Levai [46], Benford [47], Tuplin
[48], Spotts [49] and Chironis [50] also used the numerical rules to
design the various gear kinematic chains.

Using graph theory and synthesis procedufes, Buchsbaum [51,52]
investigated the structural classification and enumeration.of gear ki-
nematic chains with a maximum of 3 gear joints (commonly known as gear
trains, speed reducers or differentials). The enumeration of gear ki-
nematic chains is shown to be equivalent to the enume;ation of geomet-
ric structures, that is, linear 2-colored graphs. Besides the tech-
nique of Pblya'é theory of counting [53,54] which is used to establish
the completehess of enumeration procedure, Bushsbaum also presented two
basic algbrithms to show the local degree listing and the synthesis of
vertex-vertex (y-v) incidence matrices for linear one-colored graph.

The latest work by Quist [55] includes the enumeration of 10 link
chains with kinematic elements such as cam pairs, prism pairs, spring
pairs and belt-pulleys. The method Quist used is.called "path matrix"
in which the links of a given kinematic chain are labelled with differ-

ent numbers, the row of '"path matrix" is formed by writing the sequence

S SR



numbers of each circuit in the kinematic chain. Unlike the mathemat-
ical approach based on graph theory, Quist's enumeration technique has
to rely on a given list of parent kinematic chains and the method of
"path matrix" becomes 'trial and error' for crossed-link kinematic
chains.
Therefore, two more categories concerned with kinematic synthesis
can be summarized as follows:
\(3) Synthesis of plane kinematic chains with different kinematic
elements other than turning joints, such as cam pairs, prism
pairs, piston-cylinders, springs and belt~pulleys [36-44,55].
The methods used are: inspection process and "path matrix!.

(4) Synthesis of gear kinematic chains [45-50,51,52] (linear 2-
colored graphs). The methods used are: number synthesis,
graph theory and enumeration techniques.

The purpose of this study is to develop procedures to apply graph
theory to the general problems of synthesizing kinematic chains with
different kinematic elements and their combinations. The kinematic
elements under consideration are cam pairs, prism pairs, piston-cylin-
ders, gears, springs and belt-pulleys.

All the graphical representations for the kinematic chains with
different kinematic elements have been systematically established.

The kinematic chains are represented in the form of linear or non-
linear multicolored graphs in which colored edges and/or colored ver-
tices correspond to certain types of kinematic elements.

Using the general mathematical theories, three major general algo-
rithms are developed which take into account the whole process of syn-

thesizing the multicolored graphs. Computer programs describing the



three algorithms are developed. They are listed in Appendix B.

The first algorithm generates a list of specification for n-col-
ored graph. The specification is expressedmin terms of the sets of
degrees of vertices of n subgraph. A general computer program has been
developed to generate the listing of colored graph specifications. The
given conditions are the numbers of vertices and edges of a graph. The
lower and the upper bounds of the specifications can also be ;pecified.

The listing of specifications only'provides the information about
the numbers of ways of combining the degrees of vertices of a graph.

It does not provide any information about the connections of the ver-
tices. Therefore, the second algorithm is developed to synthesize the
linear and the non-linear colored graphs from a given specification.

The synthesis of v-v incidence matrices of n-colored graphs can be
accomplished by considering each subgraph (graph with same type of
edges) specification individually. For each subgraph specification,
the corresponding v-v incidence matrices can be synthesized. All the
possible superpositions of the elements in the v-v incidence matrices
of n subgraphs beéome the final v-v incidence matrices oBfained for the
given n-colored graph specification.

A general computer program has been developed to synthesize the
v-v incidence matrices of n-colored graphs. rThe program is written in
such a way that it can take care of any number of types of colored
edges and any number of vertices.

Since not, all v-v incidence matricés of n-colored graphs synthe-
sized are non-isomorphic, they have to go through the process ofvgraph
isomorphism tést. The isomorphism test is then the third algorithm to

be described. Due to the necessity of the problems defined in this



study, the writer has developed a general algorithm to test the isomor-
phism of a pair of linear or non-linear n-colored graphs. The method
of incidence tables is used and the total number of possibilities of
finding the graph isomorphism is described. A general computer pro-
gram is developed to take into account any number ;f colored vertices
and colored edges in the linear or non-linear colored graphs.

Given the number of links and turning joiﬁts of a parent kinematic
chain and different kinematic elements,‘all the unequivalent:'kinematic
chains with different kinematic elements (or co;ored graphs) can be
synthesized by going through the whole process of.the three algorithms
described above.

In order to establish the completeness of the enumeration, Polya's
theory of counting has been used. It provides the exact count af the
total number of graphs which should be generated for a given number of
vertices and edges. Chapter II is mainly concerned with the applica-
tion of the Polya's theory‘of counting. Some illustrative examples are
given.

Since not all colored gréphs synthesized generate the closed and
isokinetic chains [32], the criteria are developed to reject those un-
acceptable colored graphs.

General mobility equations in terms of colored vertices and col-
ored edges are developed for kinematic chains with different kinematic
elements. These mobility equations are useful not only in examining
the mobility of the kinematic chains, but also in solving the sets of
numbers of colored vértices‘and colored edges required in synthesizing
colored graphs.

In Chapter VII, the general model is tested on eight link chains
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to generate all the colored graphs and their corresponding kinematic
,chains with all possible kinematic pairs and elements.

In summary, the objectives of the present investigation are:

l. To obtain the graphical representations for the kinematic
chains with different kinematic elements and their combina-
tions. The kinematic eleménts under consideration are cam
pairs, prism pairs, piston-cylinders, gears, springs and belt-
pulleys.

2. To develop a general mathematical model to take into account
the synthesis procedures of linear and non-linear n-colored
graphs. .

3. To develop the general computer programs for the mathematical
model which include the programs of lisging colored graph spec-
ifications, synthesiziné,v-v incidénce matrices of linear and
non-linear n-colored graphs“énd testing isomorphism for linear
and non-linear n-colored graphs. |

4. To derive the general mobility equations and criteria for the
various kinematic chains under consideration.

5. To obtain the design tables for the colored graphs and their
corresponding kinematic chains developed from parent 8 link

and 10 joint chains.



CHAPTER I1

A BRIEF‘REVIEW OF GRAPH THEORY AND
POLYA'S THEORY OF COUNTING

The necessary mathematical background is introduced and followed
by some examples to illustrate the applications of the mathematical
techniques. Some of the techniques concerning the combinatorial anal-
ysis, such as partitioning, combinations are described in related
chapters and are implemented as subroutines in the programs shown in
Appendix B. The mathematical proofs for the techniques introduced in

this chapter are available in the literature [34,35,53,54,56,57].
Definitions -

Some of the definitions of graph theory used in this study are
described below: |
"1. Vertex: An endpoint of an edge.
2. Edge: A line segment terminated by distinct end points.
3. Graph: A céllection of vertices and edges.

4. Linear graph: A graph which has no slings (or self-loops) or

multiple-edges.

5. Non-linear graph: A graph which has slings and/or multiple-edges.

6. Slings: Self-loop or a loop connecting a vertex to itself.

7. Multiple-edge: The subgraph of a non-linear graph in which two or

more edges appear between two vertices.

8. Double-edge: A multiple-edge with exactly two edges between two



10.

11.

12,

13.

14'

15.

16.

17.

18.

12

vertices.

Complete graph: A graph in which every pair of distinct vertices

are joined by an edge.

Planar graph: A graph which can be drawn in the plane in such a

way that its edges intersect only at their endpoints.

Non-planar graph: A graph in which not all the edges can be drawn

on a plane without crossing.

Path: A sequence of line segments of a graph such that the terminal

vertex of each line segment coincides with the initial vertex of
the succeeding line segment.

Connected graph: A graph in which there exists at least one path

between every pair of vertices.

Separable graph: A connected graph in which there exists a pair of

vertices Vj and Vk (j#k) such that all possible paths between
these two vertices have one vertex (point of articulation) Vi
(i#j#k) in common.

Non-separable graph: A connected graph in which there exists at

Incidence: If a vertex is an endpoint of an edge, then.the vertex-

least two distinct paths between any two of its vertices.

and the edge are said to be incident.

Degree of vertex: The number of edges incident at that vertex.

Contracted graph (or Contraction map): A graph in which all the

vertices of degree two are deleted.

19. Isomorphism: Graphs Gl=(V1,Fl) and G2=(V2,E2) are said to be

20.

isomorphic to each other if there exists 1-1 correspondence be-

tween V1 and V2 and between Eliand E2

whichipreserye incidences.
Colored graph: A graph in which vertices and/or edges are
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distinguished from each other.
21. Gircuit (or Loop): A cyclic path from any vertex point a through
other vertices returning to a, in which no vertex is visited more

then once.

22. 2-isomorphism: Two graphs G1 and G, are 2-isomorphic if they become

2

isomorphic under (repeated application of) either or both of the

following operations:

a. Separation into componenté;

b. Interchange of the names of two subgraphs (let the graph consist
of two subgraphs H1 and H2 which have only two vertices in
common). |

23. Tree: A connected subgraph of a connected graph which contains all
the vertices of the graph but does not contain any circuits.

Incidence Matrices and Their Relations in
Graph Isomorphism

Let an incidence number P be the number of times a certain edge

(or loop) is incident to a given vertex (or edge). The incidence
number P is usually 1 or O, as the designated pair is, or is not inci-
dept. For instance, incidence number P(vi,ej)=1 or O as vertex 2 is,
or is not incident with edge ej. Morebver, P(vi,ej) can be equél to
2, if ej is a double-edge. Similarly, P(fi,ej%=1 or 0 as edge ej is,
or is not an element of 1oop‘li. '

An incidence matrix can now be formed by writing the mathematical
.array of incidence numbers which precisely describeg a given graph.

A vertex-edge incidence matrix [Mve] of v rows and e columns is an

array of incidence numbers P(v,e), in which each column represents a
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specific edge and each row represents a specific vertex (Fig. 1).

¢

1 2 3 4 5
., 11 00 1 0
2|00 1 11 ,
[MQe] ~ 3]0 1 1 0 O
411 1 0 0 1
(a) (b)

Figure 1. A Vertex-Edge Incidence Matrix
and its Corresponding Graph

The other incidence matrices are arranged in similar manner.

Vertex-vertex incidence matrix [M&V] of v rows and v columns is a
square matrix in which the entry is one if the two vertices have an

edge in common, otherwise, the entry is zero. Loop-edge incidence

matrix [Mle] of { rows and e columns is the rectangular matrix in

which the entries are 1 or O as the edges are or are not the elements

of a specific loop. Loop-vertex incidence matrix [Miv] of £ rows and

v columns is also a rectangular matrix in which the entries are 1 or
0 as a specific loop does or does not pass through the vertices.

The five different in;idence matrices described above aré not in-
dependent of each other. According to the modulo-2 operation [3] and
the ordinary algebraic operation, we may transform the incidence
matrices from one to another. Four equations which relate ﬁhe inci-

dence matrices are shown in Eq. (2-1) through Eq. (2-4). The super-

script T refers to the transpose of a matrix.
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[, ] [, I" = 0 2-1)
[, = [, 1" [,,] (2-2)
[, 1=1[w10n 1" (2-3)
[M,,]= (1/2) [M, ] x [m 1° (2-4)

It should be noted that Eqs. (2-1), (2-2) and (2-3) are to be
carried out by modulo-2 operation, while Eq. (2-4) is to be carried
out by ordinary algebraic operation.

Example 2-1 Express and verify the relationships of Eq. (2-1)

‘through Eq. (2-4) for the graph shown in Fig. 1(b).

Solution:
100 1 0
00 1 1 1 1 00 1 1
Med=l0 1 1 0 o0 Mel=10 1 1 o0 1]
110 0 1

(1) For Eq. (2-1):

1 0.0 1 :
T . 0 0 1 1
1 0 0 1 1 0 0 0 O
M 1M 1= 0110=[ ]=o
Le ve 01 1 0 1 110 0 0 0 0O
01 0 1
(2) For Eq. (2-2):
1 0 0 1 01 0 1 1
T 0 0 1 1 (1)8(1)1(1) 101 0 1
M 1" 1=10 1 1 0 =0 1 0 1 1
ve ve 0 1 1 0 O
, 110 0|7 7 o o0 1 1 0 1 0 1
01 0 1 o 1 1 1 1 0

= [v,]

ee
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(3) For Eq. (2-3):

F1oo1o(1)8(1)io101
T 1o 0 1 1 1 1 11 1 1 1
[Mve][Mve]—Olloo(1)1(1)8—0101
(1 1.0 0 ]|, ;7 o 4 1111
(0 1 0 1
1 0 1 1
=lo 1 o 1]|=[M,]
(1 1 1 0

It should be noted that the diagonal entries of [M&v] should be
equal to zeros. O or 1 on diagonal entry only means that the degree
of vertex is either even or odd.

(4) For Eq. (2-4):

T 100 1 1
(1/2) [Mle] X [MQe] = (1/2) [O 11 0 1] X

O OO0ORK
[ = e
OO L O
= O O K

2 2 0 2 11 0 1
=(1/2)[o 2 2 2]=[o 11 ;]:f[b&_y]

Two incidence matrices are equivalent, if they are different
only bf permutations of rows/and columns. Two graphs are isomorphic
if there exists 1-1 correspondence between their vertices and edges,
and the incidences are preserved. Since vertices and edges are in-
volved in the definition of isomorphisﬁ, the vertex-edge incidence
matrix is usually‘used\in the graph isomorphism test. Therefore, two
graphs are isomorphic, if their vertex-edge incidence matrices are
equivalent.: It should be noted that vertex-vertex iﬁcidence matrix

can be converted directly into vertex-edge incidence matrix. The

number of non-zero entries in the upper triangle of vertex-vertex

i
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incidence matrix are the number 6f edges or number of columns in
vertex-edge incidence matfix.

If the vertex-edge incidence matrices of two graphs are equivalent,
the graphs are isomorphic [35]. However, if the edge-edge or loop-edge
or loop-vertex incidence matrices of two graphs are equivalent, these
facts do not guarantee that the two graphs are isomorphic.

Fig.‘2 shows two graphs whose edge-edge incidénce matrices are
the same, but which are not isomorphic. According to Whitney [58,59],

this is one of a very few exceptions.

1
2 1 2
—0
3
3
(a) (b)
1 2 3
17 _1(0 1 17_ 2
|:Mee:]——le 0 1]'—[Mee]
3L1 1 O

Figure 2. Two Non-Isomorphic Graphs Having the Same
Edge- Edge Inc1dence Matrix



18

fig. 3 shows two non-isomorphic graphs whose loop~edge incidence
matrices are the same. These graphs are for the parent 8 link, 10
joint kinematic chains. The two non-isomorphic graphs in Fig. 3 are
two-isomorphic, that is, they become isomorphic under the operation

of separation into components.

o] 1
2
10 o
(b)
4
9 1
2
10 2
3
1 1100 0 0 0 0 1 1 )
[M,"]=]0 0 1 1 0 0 1 1 1 1| =[M “]
~ e 000011110 0 Le

Figure 3. Non-Isomorphic Graphs (But Are Two-Isomorphic)
Having the Same lLoop-Edge Incidence Matrix
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Fig. 4 shows two non-isomorphic graphs having the same loop-ver-

tex incidence matrix. They are also two-isomorphic [35].

(a) (b)

10 11

[, ] = = [,”]

1
1
1
0
0

Figure 4. Non-Isomorphic Graphs (But Are Two-Isomorphic)
Having the Same Loop-Vertex Incidence Matrix

[oNe NN
[eNoNel SN
[eNeNoN e
[eNeN N =
OrPr oo
[eNeNel N
L i e N )
Sl eNeNeNe)
Sl eNeNeNe)
= =20 00
Or L OO0
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The concepts of two-isomorphism are concerned with the relations
of loops and edges, or loops and vertices. Therefore, two-isomorphism
does not necessarily preserve incidences between loops, edges and
vertices. Isomorphic graphs are also two-isomorphic, but the converse
is not necessarily true. From the above examples, we know that edge-
edge, loop-edge and loop-vertex incidence matrices are not sufficient
to uniquely describe a graph.

If twq graphs are isomorphic, then their vertex-edge incidence

matrices are related by Eq. (2-5).

[m '1=[e] M 2] [E] (2-5)

e

where

[Mveljz Vertex-edge incidence matrix of graph 1.
2 .. \
[MVe ]: Vertex-edge incidence matrix of graph 2.

[Ev]: Vertex elementary matrix which transforms the vertices in

graph 1 and graph 2.

[Ee]: Edge elementary matrix which transforms the edges in graph
2 and graph 1.
From Eq. (2-2), we can derive an equation which relates the edge-

’ 1
edge incidence matrices of two isomorphic graphs, [Mee ] and [Mee2]:

1

[M

ee

]

I

[, '1" v, '] = 20" [ 20" [k 1" [E,] [, 2] [E,]

(e, 1" [, 237 [1] [, 2] 6] = [51" [n %] [&].
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Therefore, [Mee1] = [Ee]T [Méezj [Ee] (2-6)

Similarly, the equation relating the vertex-vertex incidence

matrices of two isomorphic graphs can be derived from Eq. (2-3):

1 [M§e1]T

v 17=[u

vv ve

=[] [, 2] [& 1 [e1" [ %" [ 1"
= (&, [m, % [m 21" []°
= [5,] [,,"] [5]"

Therefore,  [M '] =[e ] [M 21 [ 1" (2-7)

Since loops and edges of two isomorphic graphs are in one-to-one

correspondence and preserve adjacency, therefore,
M, 1 =[k,] M, %] [E] (2-8)
Le 2 de e

Here [Eg] is the lobp elementary matrix which transforms the loops
in graph 1 and graph 2. From Eq. (2-4), the relation of loop-vertex

incidence matrices of two isomorphic graphs can be derived:
1 1 1.T
[Mg, "1 = (1/2) [M, "] = [M "]

= (1/2) [Ep] [Miezj [ ] x [Ee]T [M&eZ]T [Ev]T

stnce  [My,°] [] x [8,]" [, "1" = [ty *] = [, *7"
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[szlj can be written as
[Mp, '] = [£g] (1/2) [M)*] x v *1" [ 7"
= [£,] [, 7 [£,]"
1 2 T
and therefore, [va ] = [Eg] [sz ] [Ev] (2-9)

The derivation of Eq. (2-9) is carried out by the ordinary alge-
braic operation, while the derivations for Eqs. (2-6), (2-7) and (2-8)

are carried out by modulo-2 operation [3].
Permutation and Cycle Index

A sequence can be mapped into another sequence by a set of trans-
formations. The set of these transformations is called permutation.
For examplé, a sequence (a,b,c,d,e,f) is mapped into another sequence
(b,d,f,a,e,c) by.the following transformations.

Permutation groups:

a
) ¢ )

bcdef
d faec
Transformations (1) a—wb-nd—=a
(2) c—=f—=c
» (35, e =t

The above transformation or permutation of fhe sequence is repre-
sented by the cyclic representation (abd) (cf) (e). The permutation
(abd) (cf) (e) consists of three cycles: (aba), (cf) and (e). The
length of a cycle is the number of elements it contains. Therefore,

in this permutation, the lengths of the three cycles are 3,2,1 respec-

. A 3
tively. The type of a permutation is the product TTti for all cycles
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of the permutation. ti is the representation of a cycle with length
i. j is the number of cycles with ti' For the above permutation
group, the permutation (abd) (cf) (e) can be represented by the type
t3t2t1.

The cycle index of a permutation group is defined as the‘sﬁmma-
tion of the types of all permutations, divided by the number of permu-
tations or order of the permutation group [53,54].

Examgle‘2-2 Let a,b,c be the‘elements in a sequence (a,b,c). Find
the cycle index of the group with all possible permﬁtations.
Solution: A table prepared to show the permutations, cyclic represen-

tations and their corresponding types is shown below.

/

Permutation Cyclic representation Type
of permutation

1: (a,b,c)—=(a,b,c) () (b) (e) e,
2: (a,b,c)—=(a,c,b) (a) (be) tit,
3: (a,byc)—=(b,a,c) (ab) (c)- €ty
4: (a,byc) —=(b,c,a) (abce) ty
5: (a,b,c)—»(c,a,b) (acb) ty
6: (a,byc)—=(c,b,a) (ac) (b) t1t2

The cycle index of this permutation group is then

3 a t'~.;'~',
Gy = (1/6) (t,” + 3t,t, + 2t3)

2
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Cycle Index of the Symmetrical Group

Symmetrical group of n objects is the set of all possible permu-
tations of n objects. The order of the symmetrical group of n objects
is n!. The cycle index of the symmetrical group, Cn’ is the summation
of the types of n! permutations, divided by n!. The cycle index Cn is

. . . R .
also equal to the coefficient of Z° in the power-series. expansion of

eq, where
| 2 3 ’
q=2t, + (1/2) Z°t, + (1/3) 2ty t ... (2-10)
q 2 3
and e'=1+q+ (1/2!) 9~ + (1/3Y) q + ... (2-11)

Example 2-3 Find the cycle index of the symmetrical group of 3 objects
by Eqs. (2-10), (2-11).

Solution: Let us substitute q from Eq. (2-10) into Eq. (2-11) to get

el = 73 (1/3 t. + 1/2! t.t. + 1/3! t13) + ...

3 172

Therefore, C3 is equal to the coefficient of 23, that is

+ 2t3)

3
Cy = (1/6) (t1 + 3t1t2

The expression for C3'derived here does conform with that in
Example 2-2.
Table I shows the first six cycle indices of the symmetrical

groups for a maximum of 6 objects [57].
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TABLE I

THE FIRST SIX CYCLE INDICES OF
SYMMETRICAL GROUP, Cn

O
]

(1/11) (tl)

O
Il

(1/21) (t12 +t,)

3
Gy = (1/31) (t1 + 3t1t2 + 2t3)
G, = (1/41) (t 4 + 6t 2, + 3t 2 + 8t,t, + 6t,)
4 : 1 172 2 173 4
C. = (1/51) (t 5+ 10t 3t + 15t,t 2 + 20t 2t + 20t .t
5 e 1 1 72 172 1 -3 2°3
+ 3‘0t1t4+ 24t5)
6 4 2 2 3 3
Cq = (1/61) (tl; + 15, e, + 45ty t,” + 40t 7ty + 15t,
+ 120ttt + 90t 2t +40t2+90tt
1273 1 74 3 274
+ 144t1t5 + 120t6)

Cycle Index of the Dihedral Group

The dihedral group is a group of rigid-body motions which are
performed by means of rotations and reflections of a plane regular
polygon. The dihedral group of a plane regular polygon of n sides is
of order 2n. The order 2n is also equal to the total number of
covering operatipns on the polygon. The number of rotations is equal

to n (including identity) and the remainder n is the number of
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reflections.
Example 2-4 Find the cycle index of the dihedral group of the penta-

gon shown in Fig. 5.

L 4

Figure 5. Pentagon and Its Axes
of Symmetry

Solution: A table is presented in the following page showing the
different covering operations, permutations of vertices and their

corresponding types.
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Covering Operation Vertex Permutation Type
Identity (1)(2)(3)(4)(5) £,
72° rotation about o (12345) ts
144° rotation about o (13524) ts
216 rotation about o (14253) ts
288° rotation about o (15432) ts
Reflection about aa (1)(25)(34) t1t22
Reflection about bb (2)(13)(45) £yt
Reflectibq about cc (3)(15)(24) t1t22
Reflection about dd (4)(12)(35) t1t22
Reflection about ee (5)(14)(23) £yt

Therefore, the cycle index D

gon is (1/10) (t15

+ 5t .t

172

2

5 of the dihedral group of the penta-

+ 4t5).

The cycle index Dn for a plane regular polygon of n sides, for

n= 3,4, «es 47 is shown in Table II.
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TABLE 11

THE CYCLE INDICES OF DIHEDRAL GROUP
Dn (tl, ceey tn), n=3,4y0.,7

3
D, = (1/6) (t1 + 2ty + 3t1t2)
B 4 2 2
D, = (1/8) (t1 + 2t1 t, + 3t2 + 2t4)
D. = (1/10) (t5+5tt2+4t)
5 1 172 5
_ 6 2.2 2
D, = (1/12) (t1 + 3t t," + 4t2 +2t," # 2_t6)
D, = (1/14) (t7+6t +7tt3)
7 1 7 172

Cycle Index of the Full Pair Group

The full pair group is‘a group of permutations of all the point
pairs ¥ v(v-1) of v vertices. This group is in one-to-one correspon-
dence wi;h the symmetrical group [54,88]; that is, for a given type in
the cycle index of a symmetrical group, Cn, there always exists a
corresponding type in the cycle index of the full pair group, Rh' The
full group plays an important role in the enumeration of graphs having
v vertices and e edges. Any graph with v vertices and e edges can be
represented by multicolored full pair group. For example, a linear

.graph with 4 vertices and 5 edges can be represented by bi-colored
full pair group in which one color is for the 5 existing edges, the

other color for the non-existing edges. The total number of point

pairs in a complete graph is % v(v-1) = % 4(3) = 6, this number is’
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equal to the sum of the existing and non-existing edges in that graph.
An example of the full pair group having 4 vertices is used to

illustrate the procedures to obtain the cycle index of the full pair

group R.n from that of symmetrical group Cn and is shown in Table III.

It should be noted that for a given type in C,, there always

4

exists a corresponding type in R, regardless of the particular permu-

4

tation chosen for that type. For example, for the type t1t2 in 04,
either permutation (1)(2)(34) or (1)(3)(24) will result in the same |7

4 2 .

corresponding type t.t 2 in R,. From Table III, ty sty tys «e. ar

172 4
6 N 2, 2

substituted by ty sty t2 s »+- in the cycle index C, and it becomes

4
the cycle index of full pair group R4=

2, 2 2 2,2

6
R4~(1/4!) (t1 + 6t,°t.” + 8t +3t1 t, +6t2t4)

2

= (1/41) (tl6 + 9t."t +28t3

1t + 6t2t4) (2-12)

Cycle Index of Polyhedral Group

The polyhedral group is the group of three-dimensional motion of
a rigid body. The motion consists of rotations of the rigid body about
the rotational axes in space. The cycle index of polyhedral group is
the summation of the types of permutations about the rotational axes
in space, divided by the number of permutations.

The cycle index of a pyramid with respect to the faces, and that
of a cube with respect to the vertices are obtained by first con-
structing the rotational axes of the rigid body and then finding the
types of permutations. The procedures for finding the cycle indices

of these two cases are described in the following two examples:



PROCEDURES FOR OBTAINING THE CYCLE INDEX
' OF FULL PAIR GROUP, R

TABLE III

4

Unpermuted edge

Permutation types of C

operating on a;

4
Point pair 4 . 2 2
a = (v, v) 1 f1 & 153 ) t4
oo (1)(2)(3)(4) (1)(2)(34) (1)(234) (12)(34) (1234)
a, = (1,2) (1,2) = a, (1,2) = a, (1,3) = a, (2,1) = a, (2,3) = a,
az = (1,3) (1,3) = a2 (1,4) - 3.3 (1,4) = 33 (2,4) =‘ 35 (2,4) = 3.5
a, = (1,4) (1,4) = a, (1,3) = a, (1,2) = a, (2,3) = a, (2,1) = a,
34 = (2,3) (2’3) = 34 (2’4) = 35 (394) = a6 (134) = 33 (3’4) = 36
ag = (2,4) (2,4) = ag (2,3) = a, (3,2) = a, (1,3) = a, (3,1) = a,
a, = (3,4) (3,4) = a, (3,4) = a, (4,2) = a, (4,3) = a (4,1) = a,
Gyclic representation (al)(az)(aB) (al),(a6) (a1a2a3) (al)(a6) (a2a5)
°f permutation (a,)(ag)(ag) (ayaz)(a,a;) (a,acas) (ayas)(aza,) (aja,agas)
Corresponding Types
in cycle index of t16 t12t22 t32 t12t22 t2t4

full pair group (R4)

0€
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Example 2-5 Find the cycle index of the pyramid with respect to the
four faces shown in Fig. 6.

Solution: The pyramid has four faces 1,2,3 and 4 with face 4 as base.
The rotational axis XX is passing through point o and perpendicular to

the base. The types of permutations are obtained as follows:

Covering Operation Face Permutation Type

, 4
Identity (1)(2)(3)(4) ty

120° rotation about XX (123)(4) £ty

240° rotation about XX (132)(4) tits

Therefore, the cycle index of the pyramid with respect to the

faces is

_ 4
B, = (1/3) (t1 + 2t,t (2-13)

3)

Example 2-6 Find the cycle index of a cube with respect to the 8

vertices shown in Fig. 7.

Soiution: A table prepared to show the operations of rotations about

different axes; is presented on page 33. |
Therefore, the cycle index of a cube with respect to 8 vertices

4 2 2 2

is _ 8 -
Pg = (1/24) (t1 +9t,  + 6t," +8t "ty ) (2-14)

2

1
P5.27

is the axis crossing edges 45,27. R,_. is the axis
passing through vertices 2 and 5.

25
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(a) | - (b)

Figure 6. A Pyramid and Its Axis of Rotation

(b)

(c)

Figure 7. A Cube and Iﬁs Axes of Rotation



Rotating Operation Vertex Permutation Type
Identity ENENENINEIOICHNEINE
90° about XX | (1234)(5678) £,
180° about XX (13)(24)(57)(68) t24
270° about XX - (1432)(5876) £,
90° about YY (1672)(4583) £,
180° about YY j (17)(26)(48)(35) e,
270" about YY | (1276)(4385) t42
90° about 2Z ‘ (2783)(1654) t42
180° about ZZ E (28)(37)(15)(46) t24
270" about 22 | (2387) (1456) c42
180° about P97 (45)(27)(18)(36) t24
180° about P . g (16)(38)(25)(47) e,
180° about P, . (23)(56)(18)(47) e,
180° about P, (14)(78)(25)(36) £,
180° about Py, s (12)(58)(36) (47) e,
180" about Py, . (67)(43)(18)(25) t24
120° about R, (2)(5)(137)(486) tlzt
120°abouc'R18 (1)(8)(264)(375) t12t
120° about R, (4)(7)(153)(268) e, %t
120° about R, (3)(6)(248)(157) e’

138° about R, (2)(5)(173)(468) £’
240° about Rig (1)(8)(246)(357) t12t
240° about R, (4)(7)(135)(286) £, 2t
240° about R (3)(6)(284)(175) e 2

36

33
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Polya's Theory and Its Application

Polya's theory: The total of all unequivalent colored patterns is

obtained by substituting the weight function ;E; W,i for t, in the
i=

cycle index of a permutation group, where k is the number of color

elements and i is the length of cycle t. For a two—color‘pattern,

k = 2 and ti = xi + yi; for a three color pattern, k = 3 and

e, =x +y +2 and so forth [51,52,53,54].

The problem of the enumeration of linear graphs is equivalent to
finding the number éf unequivalent ways of coloring.the % v(v-1) edges
of the complete graph of v vertices with two colors (say red for onme
edge, black for no edge). The cycle index of the full pair group Rv
is to be applied to show the application of the theory and an example
is shown below.

Example 2-7 Enumerate the linear graphs having &4 vertices.
Solution: The complete linear graph having &4 vertices has

5 v(v-1) = % 4(4-1) = 6 edges. From Eq. (2-12), the cycle index of

full pair group of 4 vertices is

2t2+8t

_ 6 2
R, = (1/4Y) (t1 + 9t1 ) 3t 6t2t4)

substitutiﬁg — xi + yi, i=1,2,3,4

into R4, it becomes

R, (x,y) = x6 + x5y + 2x4y2 + 3x3y3 + 2x2y4 + xy5 + y6h (2-15)

i

The coefficients of each term in Eq. (2-15) represent the number

of unequivalent patterns having the same weight. For the total number
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of unequivalent patterns, the sum of all coefficients is computed as

follows.
R4 (st) = R4 (1’1) =11

All the eleven unequivalent ?atterns are shown in Table IV.

If double-edges are permitted between any two vertiées, then the
enumeration becomes a 3-color problem, that is, between any two ver-
tices of a graph, there exist three types of edges: no edge, one edge
and double-edge. The enumeration of 3-colored graphs with v vertices
is obtained by substituting t, = xi + yi + zi into the cycle‘index of
the full pair group Rv'

Example 2-8 Enumerate the numbers of non-linear graphs having 4 ver-

tices with the following weights:
5

(1) vz x: no edge
32 '
(2) Xy z where y: one edge
(3) x2yz3 z: double-edge
. " i i i ,
Solution: Let ti =x +y +z, i=1,2,3,4

and substitute t, into Eq. (2-12) which is the cycle index of full

pair group of 4 vertices, Eq. (2-12) becomes
R, (x,¥,2) = (x6 + xsy + 2x4y2 + 3x3y3 + 2x2y4 + xy5 + y6) +
(x5 + 2x4y + 4x3y2 + 4x2y3 + 2xy4 + ys)z +
2(x4 + 2x3y + 3x2y2 + 2xy3 + y4)z2 +
(333 + 4x2y + 4xy2 +.3y3)231+

2(x2 + xy + y2)z4 + (x + y)z5 + z6 (2-16)
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TABLE IV

THE LINEAR GRAPHS HAVING 4 VERTICES

36

Graph

Patterns Weight C?effl-
cient
Vertices | Edges
(o) o]
0 x6 1
o] o]
o
1 x5y 1
(o
e
. o
) 3 \ X3y3 3
0
o~ o o
4 . x2y4 2
O O O
Total Number of Linear Graphs. 11
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There are seven terms in Eq. (2-16), the first term is same as
Eq. (2-15) which is the equation for the enumeration of linear graphs,
the remainder of the terms represent the number of non-linear graphs
having different weights with the number of double-edges ranging from
one to six.

Table V is prepared to show the number of non-linear graphs having
4 vertices with weights y5z’AXy3z2 and x2y23.

The applications of the cycle index of the polyhedral group are
shown by the following two examples:
Example 2-9 Find the distinct ways of painting the four faces of the
pyramid shown in Example 2-5 with two colors:
Solution: The cycle index of the pyramid with respect to the four

faces has been found in Example 2-5 as
P, = (1/3) (t4+2tt)
4 1 173

Let g, =% +y, 1=1,3

substituting t, into P4, it becomes
P, (x,y) = < + 2x3y + 2x2y2 + 2xy3 + y4

Let the two colors be x (red) and y (green), then the number of
ways of painting the four faces of the pyramid with three reds and one
green is equal to the coefficient of x3y, that is 2. The total number
of ways of painting the four faces of the pyramid with two colors is

equal to

P4(1,1)=1+2+2+2+1=8



TABLE V

NON-LINEAR GRAPHS HAVING 4 VERTICES WITH

WEIGHTS y5z, xy322 and x2yz3

Weights
Vertices | x: no edge Coeffi- Patterns
y: one edge cient )
z: double-
edge
10
ysz | ]:ii%%iii[
2. 3.
4 xy322 4 4. 5.
6. 7.
2 3
X yz 4
Y 8. 9.
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Example 2-10 Find the distinct ways of painting the eight vertices
of a cube with two colors.
Solution: The cycle index of a cube with respect to the 8 vertices

has been obtained in Example 2-6 as
8
P8 = (1/24) (t:1 + 9t 4+ 6t
. . i i ,
substituting ti =X + ¥y, i=1,2,3,4

into P it becomes

8’
4
Py (x,y) = e + x7y + 3x6y2 + 3x5y3 + 7x4y

+ 3x3y5 + 3x2y6 + xy7 + y8

The total number of distinct ways of painting the eight vertices

of a cube with two colors is equal to

P8 (1,1) = 23



CHAPTER III

SYNTHESIS OF LINEAR AND NON-LINEAR
COLORED GRAPHS
The specifications of linear and non-linear colored graphs and
the listing of specifications with certain number of Verticég and edges
are described. A general scheme is developed to synthesize the vertex-
vertex incidence matrices of colored graphs from a given specification.
A general computer program which takes into account any number of ver-
tices and any number of different colored edges has been developed and
shown in Program B, Appendix B. In the last section, a method of cut-
set matrix with modulo-2 operation is applied to enumerate exclusively

the linear two-colored graphs with trees.
Specifications of Colored Graphs

The specification of a colored graph is defined as the set of
degrees of vertices of each subgraph [élj 52j cee Smj], or [Sij],
where Sij is the degree of vertex i of subgraph j and m is the number
of vertices of the colored graph. The colored graph having n types of
colored edges is célled n-colored graph. n-colored graph has n sub-
graphs. For the case of l-colored graph, the colo;ed graph itself is
the subgraph. For the case of two-colored.graph, the specification is

formed as follows.
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The first and second rows of the specification represent the
degrees of vertices of first and second subgraphs of the two-colored
graph respectively.

In general, two graphs having the same specification are not
necessary to be isomorphic. This is because the specification of a
graph only shows the listing of degrees of vertices of the graph, the
listing itself does not take into account the connections between ver-
tices. Fig. 8 shows two one-colored graphs having the same specifi-

cation [322322] but are not isomorphic. Although the two two-colored

12221

21111], these

graphs shown in Fig. 9 have the same specification [
graphs are not isomorphic.

Given the number of vertices and edges of a colored graph, its

specification has to satisfy the following equation:
v . .
=5 d=2xe (3-1)
i=1 % :

where SiJ: degree of vertex i of subgraph j.

v: number of vertices of colored graph.

ed: number of edges of subgraph j.

For the two-colored graphs shown in Fig. 9, we have el (fine

edges) = 4 and e2 (heavy edges) = 3, therefore

S slci1+2+2+241=8=2xe =2x4

11

o
11

S.2 =24+ 1+14+14+1=6=2x e2 =2x3

1 1

and

Mo

P
L}



1
1
2
5 6
3
7 4
[322322] [322322]
(a) (b)

Figure 8. Two One-Colored Graphs Having

the Same Specification But
Are Not Isomorphic

{

1
2

2
1

22
11

) (2

(a) : (b)

222
111

!

Figure 9. Two Two-Colored Graphs Having
the Same Specification But
Are Not Isomorphic

42
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It should be noted that Eq. (3-1) is also valid for the non-
linear colored-graphs. Fig. 10 shows a non-linear two-colored graphs

having 4 vertices and its specification.

Figure 10. A Non-Linear Two-
Colored Graph

The listing of the specifications of a colored graph is the set
of solutions of Sij of Eq. (3-1). Therefore, given the number of ver-
tices v and edges ej of subgraph j, the list of specifications can be
obtained. A computer program has been developed to generate the list-
ing of specifications and is shown in Program A, Appendix B. The
detail usage of this program is also described in Appendix B.

In the next section, the procedures to synthesize the vertex-

vertex incidence matrices of colored graphs from a given specification

will be presented.



44
Synthesis of Vertex-Vertex Incidence Matrices

A vertex-vertex incidence matrix (v-v incidence matrix) is a
square and symmetrical matrix with all zeros in diagonal elements.
The sum of the elements in row i (or column i) is the degree of vertex,
Si' The element aij of the matrix is the number of edges between ver-
tex i and vertex j. For the general case, there are different types
(or colors) of edges in a graph. For.example, a graph with fine and
heavy edges has two types of edges. Therefore, in order to represent
aij by a digit number in terms of different types of edges, a method
of representation of aij is developed as follows.

aij = xy (digit number)

The number of places of the digit number is the number of types
of edges in a graph. Then each place of the digit number represents
the number of certain type of edgg. In the case of having two types
of edges in a graph, say fine and heavy edges, the ones place is for
the number of fine edges and tens place is for the number of heavy
edges. It should be noted that the sum of the numbers in different
places of the digit number of aij is the total number of edges bet&een
vertex i and vertex j.

Example 3-2 Form the v-v incidence matrix for the graph shown in
Fig. 11.
Solution: The v-v incidence matrix is formed as follows.

4

0 1 10 10)

{
1 0 1 0

[M

vV
10~ 1 0 1
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Figure 11. A Linear Two-
Colored
Graph

Since v-v incidence matrix is symmetrical, it is sufficient to
consider only the upper triangle of the matrix in order to synthesize
the v-v incidence matrix from a given specification. A general form
of v-v incidence matrix is shown below with all diagonal elements
equal to zeros and aij = aji' The sum of the elements in row i (or

column i) is the degree of vertex i, Si'

4 .
0 412 413 0 me1 % )
a1 0 253 ot Byag1 Yo
a3 839 0 0t 83 p1 83

[M ] = :

8m-11 %m-1 2 %p-1.3 0 m-1 m
a a a Y. a 0

§ ml m2 m3 m m-1 /

(3-2)
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For a n-colored graph, there are n subgraphs. If we consider the

Eq. (3-2) as the v-v incidence matrix of subgraph j, then

i_
= j - = V -
b22 32 a, a,3 + ay, + T + ay (3-4)
— g J =
b - S = 334 + a35+ es e + a3 m-1 + a3m (3"5)

33 3 T 813 7 23

Eqs. (3-3), (3-4), (3-5) and so forth show the relationship be-
tween the elements of a v-v incidence matrix and the degrees of ver-
tices.

The synthesis of v-v incidence matrices of n-colored graphs can
be accomplished by considering each subgraph individually. Given a
n-colored graph specification, the v-v incidence matrices for each
subgraph specification are to be synthesized first, then all the
possible combinations (or superpositions) of the v-v incidence matri-
ces of n subgraphs become the final v-v incidence matrices synthesized
for the given n-colored graph specification.

The procedures to synthesize the v-v incidence matrices of sub-
graph j are presented as follows.

Procedures:

1. Given the specification of subgraph j, [Slj/Szj_... Smj].

2. According to Eq. (3-3), find the ‘all possible distributions

(submatrices) of S,J among columns 2,3, ... m. For l-colored

1

graph, the number of distributions of 51J should not include

the sets of repetitions. This is to exclude the introduction

of isomorphic graphs. For n-colored graph, where n>1, all
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possible distributions should be included. This is to intro-
duce the non-isomorphic graphs due to the superpositions of
all subgraphs. (See Example 3-3 and 3-4).

3. For each possible distribution, subtract a

i

12° 2132 *** 84y

from S j, S3j, ceey Smj to get b eeey b

2 22° Py3 2m’
4. According to Eq. (3-4), find the all possible distributions of

b22 among columns 3,4, eeey Me :
5. For each possible distribution, subtract 3539 a5, ...,‘a2m

from b to get b

23° P42 c00 Py 33° P3g4r ceer Py

6. The procedures of distribution are continued until the number
to be distributed is for the last column.

7. 1If the distribution becomes 1ﬁpossib1e, then the corresponding
incidence matrix does not exist.

8. Form the v-v incidence matrix of subgraph j by combining the
different submatrices, completing lower triangle of matrix and
filling out the diagonal elements with zeros.

The procedures described above end up with a problem of collecting
tree branches. The technique to collect the tree branches has been
developed and shown in the main program of computer program B
(Appendix B).

Example 3-3" Synthesize all possible v-v incidence matrices of linear
1-colored graphs with the specification [332222].

Solutioniv According to the procedures described above, we obtain the

following submatrices.

(1) Al: 33
x 1

2 2 (11) A2: 332222
3 11

2 2
00



(1):

(11):

[y
[y
o
o

—
LB L
o=
(] 125
o L

Al31: 2200
2x200

(rejected)

o

1x1
(completed)

A1131: 01

0x O

o=

o

A1421: 2 00
2 x

(rejected)

Al1521: 2 00
2 x

A211: 1100
l 1x100
(completed)

Al51: 1

1 x

Alel: 2 101
2x101
(completed)

Al1121: 10 1
1 x01

(completed)

Al411: 1 01
1 01

(completed)

Al511: 1.1 0

1x10

(completed)

a221: 2000
2x
(rejected)

48
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A231: 1 010 A241: 1 001
1%x010 1x001
(cémpleted) (completed)

Let the v-v incidence matrices of the different combinations of

the submatrices be:
[Mwlj = Al + All + A111 + A1111
2] = Al + All + A112 + Al121
[MW3] = Al + All + A113 + A1131 + A11311
4
] = A1 4+ A12 + A121
M 5] = Al + Al4 + A141 + Al1411
M 6] = Al + Al5 + A151 + Al1511
M 7] = Al + A16 + A161
[ 8] = A2 + A21 + A211
M 9] = A2 + A23 + A231
vv
10
[M 7] = A2 + A24 + A241
vv

There are ten v-v incidence matrices obtained from the given
specification [3322227. Among them, only four v-v incidence matrices

are non-isomorphic to each other, they are

(1 1= M2

@ [m7]
@ D1 = DT = D01 = I

& [ 81=1n *71=[n 19

vv v
Fig. 12 shows the four v-v incidence matrices and their

corresponding graphs.
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— OO OO
OO O
— O OO
O —HOO
—\ = OO
OO -

01001
10110

] [MVVB] = [

[eNeNe)
— O O
O - O
OO -
— O O

O -

010011
101100
010001

[

(2)

(1)

110000

— — O

— O -

O OO
— O O

o
o
O - - O
i
i
O - OO

101000
110000

~
~t
~

Four V-V Incidence Matrices and .
Their Corresponding Graphs
Obtained from [332222]

Figure 12.



Example 3-4 Synthesize all possible v-v incidence matrices of linear

1212]

and non-linear 2-colored graphs for the specification [2110

Solution: According to the procedures, the subgraphs for [1212] will
be synthesized first.

A. Subgraphs for [1212]:

(I). A1: 1212 (I1). A2: 1212 (II1). A3: 12 12
1x100 1x010 1x001
(I): All: 11 112 Al2: 11 2 Alll: 0 2
1%x10 1x01 0x
(rejected)
Al121: 11
1x1
(completed)
(I1): A21: 2 0 2 (I11): A31: 211
2 x02 2x11
(completed) (completed)
Therefore, M 17 = a1 + a12 + 121
vv -1
M 2] = A2 + A21
vv -1
[M 3] = A3 + A31
vv -1

The three v-v incidence matrices and their subgraphs for [1212]
are shown .in Fig. 13.
The subgraphs for [2110] are then to be synthesized.

B. Subgraphs for [21107:

(I). A1: 2110 All: 00O
2x110 0x00
(completed)

Therefore, 1- |
M 1, = a1 + a1t

The v-v incidence matrix and its subgraph are shown in Fig. 13.

51



QO ==
O OO
- O O
O-OO

2
3

O NO O

- O OO
OO N
i

OO - O

1212]
2110

Subgraphs and Two-Colored Graphs Obtained from [

Figure 13.
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The superpositions of the incidence matrices of two subgraphs are

then the final v-v incidence matrices for the 2-colored graph specifi-

1212
2110

matrices for the colored-2 specification [2110] are to be multiplied

cation [ ] . It should be noted that the elements of the incidence
by 10, since they represent another type of colored edge.

1

[MVV ] = [Mvvljl + 10 [MVVIJZ

[MVVZJ = [Mvvzji + 10 [MVVIJZ
l'—-MVVS:| = [MVVBJI + 10 [MVVIJZ

The three 2-colored graphs and their v-v incidence matrices have

been shown on page 52.
Cut-Set Matrix with Modulo-2 Operation

In this section, a method called cut~set matrix with modulo-2
operation is presented to enumerate the colored graphs with trees.

The method used is developed by Malik and Lee [60]. The principal ad-
vantages of this method are its compact notations and a high degree of
organization. The method organizes‘the tree-finding problem in such a
manner that it lends itself to determine the subsets of the set of trees
of a graph. For example, it permits one to find the set of all trees
which contain only a given set of edges.

The fundamental system of cut-sets with respect to a tree T is the
set of v-1 cut-sets (v is number of vertices), one for each branch, in
which each cut-set includes exactly one branch of T. The cut-set
matrix of distance 1 is an array bf b x ¢ where b is the number of

branches or number of cut-sets and ¢ is the number of chords in a graph.
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The element aij of the cut-set matrix of distance 1 is 1 if chord j is
incident with branch i, otherwise, aij = 0. The cut-set matrix of

distance i is an array of .C, x (., where . C, and C., are the i-combi-
; i ci b7i ci

b
nation of b things and i-combination of c things respectively. If b is
greater than or equal to ¢, the maximal distance of the cut-set matrix
is ¢, otherwise, the maximal distance of the cut-set matrix is b. The
element of the cut-set matrix with distance greater than one is. the
determinapt of the corresponding submatrix of the cut-set matrix with
distance 1.

Given a starting tree, the cut-set matrices with distance k can
be formed. The total possible number of trees is then equal to the
sum of the number of the element 1's in the cut-set matrices with
different distances and the starting tree. An example is shown to
illustrate the application of this method.

Example 3-5 Find all the other number of tree graphs from the starting

graph shown in Fig. 14.

1 1
a b
4 5 2 4 5 2
& 8 c
3 3\
(a) (b)

Figure 14. Graph and Its Cut-Sets
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Solution: A graph with a tree should satisfy the following two

equations:
c=¢e=-v+1 (3-6)
b=v -1 (3-7)
where c: number of chords in a graph.

b: number of branches in a graph.
e: number of edges in a graph.
v: number of vertices in a graph.
Let the starting tree be T which contains branches 3,4,5 of the
given graph és shown in Fig. 14 (a). Therefore, if the cut-sets a,b,c
are chosen as shown on page 54, then the cut-set matrices of distances

one and two are obtained as follows.

12 12
(1) _3[o01 (2) 3411
R ‘4[1 o] Q ‘35[1]

5111 45 {1

The algebra of the field modulo-2 was used to find the entries of

(2)

cut-set matrix of distance 2, Q « The basic modulo-2 operation is

listed below:

14+41=0 W
exclusive or
14+ 0=1]
1 x1=17
1x0=20 and
0x 0= 0]

(2)

For example, the entry (34, 12) in Q is obtained by finding the

determinant.

D=3[01]=0x0+1x1=0+1=1
4
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(1)

A non-zero entry such as the entry (3,2) of Q corresponds

to the tree 245 of distance one which is obtained by replacing branch
3 by chord 2 as shown in Fig. 15 (b). Using this procedure, the other
three trees of distance one from T are found to be: 315, 341, 342,

(2)

Similarly, from Q , the three trees of distance two are found to
be: 512, 412, 312,
Therefore, the complete set of 'trees of the graph are the eight
trees listed above including the starting tree T shown in Fig. 15 (a).
It should be noted that among the éight graphs with trees, there
are only three graphs which are non-isomorphic to each other, they are
1.  (a) = ()
2. (b) = (c)
3. (d) = (e) = (g) = (h)

The graph isomorphism test is presented in the next chapter.



Figure 15.

(d) 341

(h) 312

Graphs with Complete Set of Trees
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' CHAPTER 1V

AIGORITHM OF COLORED GRAPH
ISOMORPHISM TEST

Two graphs are isemorphic, if and only if the vertices and edges
of the two graphs can be placed in one-to-one correspondence and the
incidences are preserved.

Unger [61] showed a heuristic method for a pair of directed lin-
ear graphs. The procedures attempt to express the inward and outward
degrees of vertices and the partitioning, on the basis of degrees of
vertices, for possible matches. The method is able to handle a fairly
complex graphs in a relatively short time, but may not work in all
cases due to its heuristic nature.

Goodman and Cummins presented a method to determine whether or
not two linear graphs are isomorphic and listed the automorphisms of
a graph [62,63]. The method partitioned the vertices of any graph
into degree classes in which all vertices in a class have the same
degree. These classes are usedvfo define connected subgraphs which
can be treated directly. The logical expression for proposition and
logical product of two propositions are explored to determine the ver-
tex elementary matrices. The graph transformation equation in terms
of vertex-vertex incidence matrices and elementary matrices is used to
check for isomorphism.

Following the similar steps proposed by Unger, Dobrjanskyj [34,35]

co
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presented a systematic procedure to determine the isomorphism of a
pair of non-directed graphs. The incidence tables are used to check
for the local incidence relations between vertices and edges of the
graphs. The vertex and edge correspondence matrices are obtained in
matrix form and graph transformation equation in terms of vertex-edge
incidence matrices and correspondence matrices is used to check for
isomorphism. Because of lack of efficient deterministic procedure§ in
which no finite number of isomorphic possibilities aré shown, the algo-
rithm has led to insufficient computer procedures.

Corneil and Gotlieb [64,65] showed a procedure for determining
whether two graphs are isomorphic. The representative and the recorded
graphs are derived from the given graphs. The representative graphs
form a necessity condition for isomorphism; namely, if they are not
identical, then the given graphs are not isomorphic. The recorded
graphs form a sufficiency condition for isomorphism; namely, if they
are identical, then the given graphs are isomorphic. 1In the algorithm,
only undirected, unlabeled graphs are considered. The procedure is not
deterministic, since it is based upon a conjecture.

Similar to the problem of graph isomorphism test, a method con-
cerned with the computer search for non-isomorphic convex pélyhedra has
been developed by Grace [66].

In this chapter, the procedures fqr isomorphism test are developed.
These procedures take into account the linear or non-linear non-
directed graphs with different types of colored edges and colored ver-
tices. The graph transformation equation and incidence tables are used
and the total number of isomorphic possibilities are determined. The

proposed procedures are proved to provide the necessary and sufficient

.
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conditions for the isomorphism test. A general computer progrém and
two sample outputs are presented in Program G, Appendix B.
Isomorphism Test for Linear and
Non-linear Golored Graphs
In Chapter II, the formation of v-v incidence matrix for a
colored graph with different colored edges is presented. The element
of the v-v incidence matrix is aij = xy (digit ﬁumbgr) where the number
of places of the digit number is the number of types of edges in a
graph. The vertex-edge (v-e) incidence matrix which can be obtained
by assigning the edge numbers on the non-zero entries of v-v incidence
matrix is to be used to test the graph isomorphism. The element of
the v-e incidence matrix is still aij = xy. Besides the identification
of different types of edges, the vertices are also to be identified by
a digit number t, where t represents the type of vertex: t = ; for
fine vertex representing rigid link§ t = 2 for vertex representing
piston-cylinder; t = 3 for vertex representing spring;:t = 4 for ver-
tex representing pulley and t = 5 for vertex which represents the fixed
link in mechanism. Let the sum of row‘i of v-v (or v-e) incidence
matrix be Vi = dv which is the degree éf vertex i, then the new repre-
sentation of degree of verte# iis Vi'= tdv which takes into account
the fype of vertex.

Definition 1: Graphs G

= (Vl’ El) and G, = (VZ’ EZ) are said to be

1 2

isomorphic to each other if there exists 1-1 correspondence between

V1 and V2 and between E1 and E2 which preserves incidences (adjacency

properties).

Definition 2: Two incidence matrices are equivalent, if they are

1

different only by permutations of rows and columns.
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Theorem 1: If two graphs G1 and G2 are isomorphic, then there exist

two elementary matrices of rank v and e, such that the incidence matri-

ces of the graphs are transformed by the following transformation

equation.
[v,,']=[x] [v,*] [&,] (4-1)
ve v ve e
1 i .
where [Mve 1s [Mve ]: vertex-edge incidence matrices of G1 and G2
respectively.
[Ev]: vertex elementary matrix with the order of nV1 by nvz.

(nV: number of vertices in a graph)
[Ee]: edge elementary matrix with the order of ne2 by n_".
(ne: number of edges in a éraph)
Proof: If two graphs are iSomorﬁhic, then there exists one-to-one
correspondence between their vertices and edges, and the incidences are
preserved [Definition 1]. If the correspondence of vertices and edges
in two graphs is expressed in matrix form, then [EV] and [Ee] are
obtained.:
The permitations of columns and rows inia v-e incidence matrix
is equivalent to the relabelling of edges and vertices in the graph.
If [Mve2] is.postmultiplied by [Ee]3 then ?olumns of [M&ezj are per-

muted. according to the edge incidences of Cl'and G2.

[m, ] [E,] = [1]
Therefore, v-e incidence matrix [T] expresses the\adjacency
properties of vertices in G2 and edges in Gl' If [T] is premultiplied
by [EV], then rows of [T] are permuted according to the vertex inci-

dences of G1 and G2 and the resultant v-e incidence matrix expresses
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the adjacency properties of vertices and edges in G,, that is, [M&elj

1
as shown in the left side of Eq. (4-1).

Matrices [Ev] and [Ee] relate the correspondence of vertices and
edges respgctively in graph 1 and graph 2. Since [Mvelj and [M&ezj are
known, the determination of [Ev] and [Ee] is then the main part of the
problem of graph isomorphism test.

The procedures to find [Ev].and [Ee] and to check graph isomorphism
are. described below:

Step 1: Check the number of vertices and edges of two graphs, if they
are fhe same, go to step 2, if not, the two graphs are not
isomorphic.

Step 2: Check the degrees of vertices of both graphs, if they are not
equivalent, then the two graphs are not isomorphic, if they
are equivalent, go to step 3.

Step 3: Let the number of differenthdegrees of vertices be d, and the
number of vertices having the same degree of vertex be m, ,
where i = 1, ..., d, then the total number of possibilities
for the vertices of graph 1 to be correspondent to the ver-
tices Qf graph 2 is

d
n= T (m,!) (7' : product)
i=1 .

That is, there are n possible ways to form the vertex
elementary matrix [EV].
Step 4: Pick up one possibility oftverpex correspondence from step 3
and form the [Ev].
Step 5: Let the two vertices corresponding to each entry 1 in [EV] be

the leading vertices and form the incidence tables.
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Step 6: If the degrees of vertices of two graphs in the incidence

tables are not the same, go to step 4 and repeat. Otherwise,
find the edge correspondence in the two graphs, and fill out

the corresponding entries in [Ee] by 1's.

Step 7: Repeat step 5, step 6 until [Ee] is completely filled out

such that in each row and each column, there is only one en-

try with 1.

Step 8: Check by Eq. (4-1), if it is'satified, the two graphs are

isomorphic. Otherwise, go to step 4 and repeat. If all the
possibilities have been tried out and no isomorphism is found,

then the two graphs are not isomorphic.

Theorem 2: The procedures described above provide the nécessary and

sufficient conditions for the colored graph isomorphism test.

Proof:

1.

The types of colored edges in the graph are expressed in the
elements of v-v or v-e incidence matrix. The types of colored
vertices ére identified in the degrees of vertiées.

The degrees of vertices of both graphs provide the necessary con-
dition for checking graph isomorphism. If the degrees of ver-
tices of both graphs are not equivalent, they are not isomorphic
since there exists no one-to-one correspondence between the ver-
tices of both graphs [Definitioﬁ 1]. 1If they are equivalent,
there exists a finite number of.isomorphic possibilities as de-
scribed below.

The finite number of isomorphic possibilities\for the vertices in

two graphs to be correspondent is equal to

d
n= T (mi!) (71 ¢ product)
i=1
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where

n: finite number of isomorphic possibilities.

d: the number of different degrees of vertices in the graph.

m, * the number of vertices having the same degree of ver-

tex, i =1, ..., d.
For each isomorphic possibility, there exists one-to-one corre-
spondence between the vertices of both graphs, therefore, the ver-
tex elementary matrix [Ev] is completed.
By letting the two corresponding vertices in two graphs be the
leading vertices respectively, the incidence tables of two .graphs
provide the adjacency properties of vertices and edges (developed,
|

from the leading vertices) in two graphs respectively.
If the degrees of vertices of two graphs in the incidence tables
are not equivalent, then thé isomorphic possibility has to be
rejected, because no adjacency properties of the vertices and
edges are found. 1In this case, the next isomorphic possibility is
used and the procedures are repeated. If all the isomorphic
possibiiities are used and the degrees of vertices of two graphs
in the incidence tables are still not equivalent, the two graphs
are not isomorphic.
If the degrees of vertices of two graphs in the incidence tables
are equivalent, the edge correspondence in two graphs is found
according to the exist vertex-cbrrespondence. The corresponding
entries in edge elementary matrix [Ee] are filled by 1's. The
entry 1‘shows one-to-one correspondence between corresponding two
edges in two graphs.

The procedures to form the incidence tables from other leading
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vertices are continued until [Ee] is completed such that only one
entry with 1 appears on each column and each row.
9. Since [Ee] is completed and [Ev] is known for each isomorphic

possibility, the graph transformation equation

[, '1=1[e] [x %] [£]

is to be checked. If the equation is satisfied, the two graphs
are isomorphic [Theorem 1]. If it is not satisfied, the next
isomorphic possibility has to be used and procedures repeated.

If all the isomorphic possibilities are tested and no isomorphism
is found,(then the two graphs are not isomorphic.

10. The degrees of vertices of two graphs provide the necessary
condition to check graph isomorphism. The finite number of iso-
morphic possibilities and graph transformation equation provide
the sufficient condition to check graph isomorphism. Therefore,
the whole procedures described provide the necessary and suffi-
cient conditions for graph isomorphism test.

Example 4-1 Test the two graphs shown in Fig. 16 to determine if they

are isomorphic.,

(1) (2)

Figure 16. Two Linear Two-Colored Graphs
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The two v-v incidence matrices of graph 1 and graph 2 are shown

below respectively.

010 0 0 1 0 1 010 1
1 10 0 110 O 2 1 0 1 010
(M "]=1 0 1 0 110 [M “]J=]0 1 010 0O
v vv
: 010 1 0 1 10 010 0 1
1 010 1 O 110 0 1 O
By assigning the edge numbers on the non-zero entries of [Mvv1]

2 L . .
and [MVV ], the two vertex-edge incidence matrices are obtained as

follows.
10 1 0 0 0 0 O 110 1 0 0 0 O
1 10 0 110 0 0 O 5 1 0 0 110 0 O
[M, "1=] 00 1 0 110 0}, [M “]J=]0 0 0 1 010 0
0 0 010 1 0 1 010 0 0 010 1
01 0 0 010 1 0 01 010 0 1

The entries 10 and 1 designate the incidence of a heavy edge with
a vertex and a fine edge with a vertex respectively; while entry O
designates no incidence of an edge with a vertex.

The degrees of vertices of each graph are listed below:

Graph Vertex Degree of Vertex

111
121
112
112
112

112
112
111
121
112

N PP WNR O PEWON =
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The degree of vertex 1 in graph 2 is equal to the sum of the
first row of [Mvezj’ that is, 12, and preceded by the type of
vertex 1, that is, 1.

There are one 111, one 121, and three 112's in the degrees of ver-
tices in each of the graphs, therefore, there are 1! x 1! x 3! = 6
possibilities for the vertices in graph 1 and graph 2 to be correspon-

dent. Let us pick up one of the possibilities as shown below.

Graph | Vertex | Degree of Vertex| Vertex Graph

1 111 3
3 112 5
1 4 112 1 2
5 112 2
2 121 4

The entries 13, 35, 41, 52 and 24 in [Ev] are then to be filled
by 1's as shown at the end of example.
Let us pick up the vertices vl1 and v32 as the leading vertices

for the following incidence table , then

(a) v 1: e e v 2: e e
1 2 1 3 4 6
Vs v, v, v,

112 121 112 121

The first row of the incidence table is the list of edges inci-

dent with the leading vertex, the second row is the list of vertices
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which are at the other end of the edges listed in the first row. The
third row is the list of degrees of vertices for those vertices shown
in second row.

Judging from the incidence table (a) and the vertex correspon-

dence in [EV], we obtain the following edge correspondence:

Therefore, the entries 42 and 61 of [Ee] are to be filled by 1's..

Let us pick up the vertices v31 and v52 as the leading vertices

for another incidence table shown below:

1 2
(b) vyt ey e e Vgii . e,  eq eg
v, v, vs v, 2 v,
121 112 112 121 112 112

Judging from the incidence table (b) and the vertex correspon-

dence in [EV], we obtain the following edge correspondence:

2 1
€2 T &3
Q2 !
3 T %5
ez—e'l
5 T %

Therefore, the entries 73, 35, 56 of [Eejvare to be filled by 1's.

Let us pick up vertices v41 and-vl2 as the leading vertices for

the following incidence table:

(c) A es e, e, v, eq ey e,
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Judging from the incidence table (c) and the correspondence in

EEv] and [Ee], we obtain the following new edge correspondence for

[k, ]

After filling out the entries 17 and 24 of [Ee], the procedures
are completed. The vertex and edge elementary matrices [EV] and [Ee]

are shown as follows.

00100 [o 000001)
00010 0001000
[E] =l00001 0000100
M 10000 [E]={0100000
01000 € 0000010
1000000
(0010000
After checking the Eq. (4-1), we have
0 0 010 1 0 1
) 0 1 0 0 010 1
M “J[E]=]10 1 0 0 0 0 O
ve e
10 0 110 0 0 O
0 01 0 110 O
10 1 0.0 0 0 O
(5[ 2] ] 10 0 110 0 0 O [ 1]
E M E]l=| 0 0 1 0 110 0}=[M
Ve T ve € 0 0 010 1 0 1 ve
0 1 00 010 1

Since Eq. (4-1) is satisfied, graph 1 and graph 2 are isomorphic.
Example 4-2 Test the two graphs shown in Fig. 17 to determine if

they are isomorphic. \
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4 2 1
4 2 »! 5 °
5 4 1 5 4 1
3 2
300 - 2 -
(1) (2)

Figure 17. Two Non-Linear Three-Colored Graphs

The upper triangles of v-v incidence matrices of graph 1 and graph

2 are shown below respectively.

0o 1 0 1 0 1 o0 1
i 0 1 10 1 0 1 10
[M,,1] = [,,2] =
vv 0 1 0 200 vv 0 1 0200
1 10200 O 1 10200 O
By assigning the edge numbers on the non-zero entries of [Mvvlj

2 N . .
and [Mvv ], the two vertex-edge incidence matrices are obtained as

follows.
1 1 0 0 0 1 1 0 0 0
1 1 0 1 10 0 2 1 0 1 10 0
M 1=10 o0 1 o200 Med=]o 0 1 "0 200
0O 1 0 10 200 0 1 0 10 200
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The degrees of vertices of each graph are listed below:

Graph Vertex Degree of Vertex

2002
1012
4201
1211

2002
1012
1201
4211

PONRIPON R

Since the degrees of vertices in graph 1 and graph 2 are not

equivalent, the two graphs are not isomorphic.



CHAPTER V
¢

COMPUTER METHODS OF LISTING SPECIFICATIONS, SYNTHESIZING
INCIDENCE MATRICES AND TESTING ISOMORPHISM
OF COLORED GRAPHS

In Chapter III, the definition and equation of colored graph
specifications are introduced. It has also been shown that the number
of rows of the specification is equal to the number of different types
of colored edges and also equal to the number of subgraphs. Following
the introduction of colored graph specifications, the procedures to
synthesize the v-v incidence matrices of linear and non-linear colored
graphs from a given specification are presented. In Chapter IV, a
general algorithm is introduced to test the isomorphism of linear and
non-linear colofed graphs. The total number of possibilities of find-
ing the graph isomorphism is also described.

In this chapter, the computer methods of listing the specifica-
tions, synthesizing the incidence matrices and testiﬁg the graph
isomorphism are described and their corresponding computer programs are

listed in programs A, B and C in Appendix B.
Listing of Colored Graph Specifications

Program A in Appendix B is for the listing of specifications. The
program distributes the number NB into NP places. The lower bound and
upper bound of the specifications are denoted as ML and MU respectively.

Any specification which has number either less than ML. or greater than
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MU is rejected. The computer program written in Fortran IV language
consists of one main program and three subroutines.

Example 1 shown in Program A output has NB = 14, NP =6, ML= 1
and MU = 9. Such a set of specification will yield a graph with 6 ver-
tices and 7 edges (NB = 2 x number of edges of a graph). A total of 20
specifications is generated. Example 2 shows a listing of 2-colored
graph specifications. The colored-1 subgraph has NB = 6, NP = 4,

ML= 1 and MU = 3. The colored-2 subgraph has NB = 4, NP = 4, ML= 0
and MU = 2. These data can be interpreted as a colored graph having 4
vertices, 3 fine edges aﬁd 2 heavy edges. There are total 14 specifi-

cations generated.
Synthesis of Vertex-Vertex Incidence Matrices

Program B in Appendix B is to synthesize the v-v incidence
matrices of colored graphs. The given data are the number of vertices
and the specification of the colored graph. The program is written for
the general purpose which takes into account any number of vertices and
any number of different types of coiored edges. The input data of the
specifitation can be read in by arbitrary order.

) Two examples are shown in the output of Program B. Example 1
shows one colored graphs having four vertices with the specification
[3322]. Four v-v incidence matrices are generated from the given

specification. The corresponding graphs have one linear and three non-

linear graphs which are shown in the output. Example 2 is the problem

1212
2110§ °

The colored-1 subgraphs are first found from the specification [1212],

of synthesizing two-colored graphs with the specification [

and the colored-2 subgraph are then found from the specification
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]

[2110j. The superpositions of both subgraphs are the final v-v inci-
dence matrices of the two-colored graphs with [;iig] . One lin?ar
two-colored graph and two non-linear two-colored graphs are obtained
and shown in the output.

The computer program consists of one main program and five sub-

routines. They are all written in Fortran IV language.
Colored Graph Isomorphism Test

Program C which consists of one main program and five subroutines
is developed to test the colored graph isomorphism. The program takes
into account both linear and non-linear colored graphs with any numbers
of different types of vertices and edges.

The types of edges and vertices of the colored graph are repre-
sented by some digit numbers which are described in Chapter Iv.

The elements in upper triangle of the v-v incidence matrix of
each calored graph are the‘main‘input data. The preparation of the
data cards for the program is explained in Appendix B.

Two examples are shown in the output of the program. Example 1
shows two two-colored graéhs having 6 vertices, 6 fine edges and 2
heavy edges with the v-v incidence matrices shown in the output.

All the possibilities of finding isomorphism and incidence tables
are printed out. The two graphs have been shown as isomorphic to
each other. -Example 2 shows two 3-colored graphs with three dif-
ferent types of vertices. The two graphs have been shown as non-

isomorphic, since they have the different sets of degrees of vertices.



CHAPTER VI

GRAPHICAL REPRESENTATIONS, MOBILITY EQUATIONS
AND CRITERIA OF KINEMATIC CHAINS  WITH
DIFFERENT KINEMATIC ELEMENTS

The methods of graphical representations of kinematic chains with
different kinematic elements such as cam pairs, prism pairs, gear
pairs, springs, belt-pulleys and their combinations are presented in
this chapter. The enumerations of those kinematic chains with differ-
ent kinematic elements and their combinations then become the problems
of enumerating the different colored graphs with colored vertices and
colored edges. . Some enumerations of colored graphs are shown and are
verified by the Polya's theory of counting. Mobility equations in
terms of colored vertices and colored edges are developed for kine-
matic chains with different kinematic elements. One general mobility
equation is developed which takes into account any number of colored
vertices and colored edges. Since not all colored graphs synthesized
are accepted from the point of F degrees of freedoml, criteria are

developed to reject those unacceptable colored graphs.

1Isokinetic chain of F degrees of freedom is defined as a kine-
matic chain in which there exists no assembly of links and joints,
which when considered alone would form a kinematic chain with less than
F degrees of freedom [32].
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Cam Kinematic Chains

In any kinematic chain, a binary link and its two turning joints
can be replaced by a cam pair. Fig. 18 shows Watt's six-link cbain and
its corresponding graph in which rigid links and turning joints are
represented by vertices and edges respectively. A cam kinematic chain
(CKC) with one cam pair can be obtained from Fig. 18 (b) by replacing
fine edges 12, 23 by a heavy edge 13 as shown in Fig. 19 (b). The

corresponding CKC is shown in Fig. 19 (a).

(a) | (b)

Figure 18. Watt's Six-Link Chain and Its
Corresponding Graph

(b)

Figure 19. CKC with One Cam Pair and
Its Colored Graph
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From the procedure of constructing cam kinematic chains, two equa-
tions can be established to relate the number of turning joints and
links in the parent kinematic chain to the number of vertices, fine and

heavy edges in the colored graph.

j= e + 2eh (6-1)

L=v+ ey ‘ (6-2)

where
j: number of turning joints in the parent kinematic chain.
A : number of links in the parent kinematic chain.

e : number of fine edéeéhin colored graph.

f

e, : number of heavy edges in colored graph.

h
v: number of vertices in colored graph.
For example, there are 6 links and 7 joints in the parent Watt's

chain shown in Fig. 18 (a) and there are 5 vertices, 5 fine edges and

1 heavy edge in the colored graph as shown in Fig. 19 (b), therefore
7=5+2 (1)
6=5+1

The number of linear graphs having 5 vertices and 6 edges
(including fine and heavy edges) can be obtained from the coefficient
of x6y4 of the cycle index of full-pair group, R5(x,y), and is equal
to 6 [57]. iTable VI shows all the 6 linear graphs having 5 vertices
and 6 edges, the colored graphs and CKC. Some of the graphs are re-
jected using the following rules:

Rule 1: Non-connected graph is rejected. If a kinematic chain is open,

its corresponding graph is non-connected, that is, at least one
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ALL THE 6 LINEAR GRAPHS HAVING 5 VERTICES

AND 6 EDGES, COLORED GRAPHS AND CKC

Lineif
- Graphs

"Un§§u&vnlent"

Colored Graphs

Corresponding
CKC

Comment. - .

' The parent chain is
- Watt's kinematio chain.

~The pirent-chaih‘ia

e

Stephenson's kinematig

‘chain, = -

_Rejected! (Rule 2)

i VR;;_]'qcted!' '(Rulo-?) o

Thﬁvparont chain is

Stephenson's kinematic

. ohain,

'Bojected!f(Rule 2)

V'VBejaétedl (Rule 2)

Rejected! (hul_e 1

Rejeqte@[ (Rﬁle 1)

"joeaﬁkéi (ﬁuie'i)‘~,




Rule 2:

Rule 3:

Rule 4:

Rule 5:
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of the degrees of vertices in the linear graph is less than
two, or the degree of vertex at the end of the double-edge of
the non-linear graph is equal to 2.

A graph having a circuitrwhich consists of three fine vertices
and three fine edges is rejected. The kinematic chain corre-
sponding to this kind of graph is non-isokinetic. Part of the
chain when considered aloneiwould form a kinematic chain with
less than 1 degree of freedom. It has no mobility.

Neither linear nor non-linear gfaph can have more than three
consecutive vertices with degrees of vertices 2 in terms of
fine edges. The kinematic chain becomes non-isokinetic in
this case.

A non-linear graph with double-edges in which each double-edge
has one heavy edge and one fine edge is rejected. Since
between two cam surfaces, only cam pair(s) is possible to
exist, no turning joints can exist at the same time.

A non-linear graph with multiple-edges is rejected if there
are more than two edges in each multiple-edge. In general,
the kinematic chain correspondiﬁg to this kind of graph has no
mobility. Under some special geometric conditionsz, a CKC
corresponding to a non-linear colored graph with multiple

heavy edges may have constrained motion.

2 . , . . .
In this case, the relative motion between two cams is either
pure rotation or pure translation.
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For the parent kinematic chain with 6 links and 7 turning joints,
the number of vertices and edges in a graph required for CKC with two
cam pairs (two heavy edges) can be computed from Eqs. (6-1) and (6-2)‘
and are equal to 4 and 5 respectively. The number of linear graphs
having 4 vertices and 5 edges is equal to 1, also equal to the coeffi-
cient of x5y of the cycle inde* of the full pair group, R4 (x,y,z) in
Eq. (2-16). Table VII shows the linear graph having &4 vertices and
5 edges, colored graphs and CKC.

Table VIII shows the non-linear graphs and CKC developed from the
parent 6 link chain. The number of non-linear graphs can be verified
by the Polya's theory of counting. The number of non-linear graphs
having 4 vertices, 1 doubie-edge and 3 fine edges is equal to the
coefficient of x3y22 in the cycle index of the full-pair group,

R4 (x,y,2) as shown in Eq. (2-16) and is equal to 4. Similarly, the
number of non-linear graphs having 3 vertices, 1 double-edge and 2
fine edges is equal to the coefficient of xzz in R3 (x,y,2) and is
equal to 1. Note that R3 (%x,¥,2) can be obtained by substituting

t, = xi + yi + zi into the cycle index of the permutation group shown
in Example 2-2, Chapter 2. It should be noted that the cycle index
of thé full-pair group of 3 objects is the same as the cycle index of
tﬁe symmetrical group of 3 objects.

From Eqs. (6-1) and (6-2), if we let f = 10, j = 13 and e, = 6,

h

we obtain v= 4, e_ = 1, that is, the CKC with 6 cam pairs developed

f
from parent 10 link chain will have the colored graphs consisting of
4 vertices and 7 edges. Since the number of edges of a complete graph

with 4 vertices is equal to % (4) (4-1) = 6, the colored graphs con-

sist of at least one double-edge. All the graphs having 4 vertices
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TABLE VII

ONE LINEAR GRAPH HAVING 4 VERTIGES, 5 EDGES,
' COLORED GRAPHS AND CKC

Linear ~ Unequivalent '} Corresponding
. Graph : ~ Colored Graphs : CKC .
1.
2 3
1l 0 4
1 2.
2 g 0 >
1 L 1
3' 3&.
2 o y 3
196 ) 4




TABLE VIII

NON-LINEAR GRAPHS AND CKC DEVELOPED FROM PARENT 6 LINK CHAIN .

Parent Number | Number. | Number Total Number Non-Linear : .
Kinematic of'Cam OF of Numbe r of Graphs Comment Colored Correspopding
Pairs Fine of Non- Graphs CKC
Chain (heavy Edges Vertices | Edges -Linear P
edges) Graphs
1 5 5 6 0
1. - 3
<:[:::::::I
6
D
Links ’ 4
7 2.
Turning 2 3 4 5 4 Rejected
Joints (Rule 1)
3.
) Rejected
(Rule 1)
4. Rejected
(Rule 1)
)
1. :
3 1 3 4 1 b

c8



83

and 7 edges are shown in Table IX. The number of the graphs is ver-
ified by the Polya's theory of counting shown in Table V of Example
2-8. All the corresponding CKC with 6 cam pairs are shown in Table X.
Out of 15 colored graphs shown iﬁ Table IX, 5 are rejected. Graphs
7 (a), 8 (a) and 9 (a) are rejected because of Rule 1. Graphs 3 (a)
and 5 (a) are rejected because of Rule 3. Therefore, there are only 10
CKC with 6 cam pairs developed from the parent 10 link kinematic chain.
The mobility equation for the planar kinematic chain (with one

link fixed) having only rigid links and turning joints is
f=32-1)-2j (6-3)

Substituting Eqs. (6~1) and (6-2) forf{ and j into Eq. (6-3), we

obtain

f=3(v+e -1) -2 (ef + 2eh)

h

3(v-1)-2e_-c¢ (6-4)

H

Eq. (6-4) is the same form as that of Gruebler's mobility crite-
rion. Vv is corresponding to the number of links in the kinematic

chain, e_ is corresponding to the number of kinematic pairs of class 1

f

in which the degree of freedom is 1 and e, is corresponding to the

h

numbér of kinematic pairs of class 2 in which the degree of freedom is
2.

Eq. (6-4) is the mobility eduation for CKC. The equation is
expressed in terms of vertices and edges of the colored graph.

For the CKC having degree of freedom f = 1, Eq. (6-4) becomes

!

3v - 2ef -ley - 4 =0 (6-5)'

Eq. (6-5) is the equation in which the colored graph of CKG with

f = 1 should be satisfied.



TABLE IX

NON-LINEAR GRAPHS WITH 4 VERTICES AND 7 EDGES

Nomber of 1 2 3 4 s | 6 T 7 s .1 9
Non-Linear i - ; ' - ' ‘
“Graphs with
4 Vertices
and

7 Edges

Number of
‘Non=-
Equivalent
Colored
Graphs

Rejected , _ 3a 5 a | 7 a,.. ' '8 a 9a -

]

. ’ ) i ' : Against ; ' Against = -} - . Agairist Against Againsf )
Comment - o A Rﬁle 3 ) Rule 3 i 1 Rule 1 Rule 1 - “Rule 1

78
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TABLE X

CKC WITH 6 CAM PAIRS OBTAINED FROM TABLE IX
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It has been shown [35] that the maximum number of turning joints
on a link of a closed parent kinematic chain with degree of freedom £
is equal to the number of independent loops plus 1. Consequently, the
maximum degree of vertex of a colored graph of closed CKC is also equal

to the number of independent loops plus 1. Therefore,

dmax =c+1 (6-6)
where
dmax: maximum degree of vertex of a colored graph.
¢: number of independent loops.

From the well-known Euler's formula, we know
C=j=£+1 (6-—7)
Substituting Eq. (6-7) for c into Eq. (6-6),_we have

doe=3-2+2 - (6-8)

If Eq. (6-1) and (6-2) are substituted into Eq. (6-8), it becomes

dmax = eg + 2eh - (v + eh) + 2

= (ef + eh) - v+ 2=¢e~-v+2 (6-9)

Since Eq. (6-9) which is expressed in terms of vertices and edges
of a colored graph is equivalent to Eq. (6-8), it checks the correct-
ness of the Eqs. (6-1) and (6-2).

If the variable j in Egs. (6-3)'apd (6-8) is eliminated, we

obtain

L-f+1
d =
max 2

(6-10)

For the special case where kinematic chain has £ = 1, then from

Eq. (6-10), we have

d =
max

2
5= (6-11)
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Eq. (6-10) establishes the upper bound of the degree of vertex in
the colored graph of any kinematic chain with any kinematic elements

derived from parent £ link chain with degree of freedom f.
Piston-Cylinder Kinematic Chains

Piston-cylinder kinematic chain (PKC) can be obtained by re-
placing two consecutive binary links in parent kinematic chain by
piston-cylinder. Fig. 20 shows a parent 8 link kinematic chain and a
PKC with two piston-cylinders. The latter is obtained by replacing
binary links 4 and 8, 1 and 7 in parent kinematic chain by piston-
cylinders 4 and 1 respectively. The graphical representations of both
kinematic chains are shown in Fig. 21. Since a rigid link is repre-
sented by a fine vertex, the piston-cylinder which is kind of extend-
ible link can be represented by another type of vertex, say heavy
vertex as shown in Fig. 21 (b). Therefore, in the pareﬁt kinematic
graph, two consecutive fine edges can be replaced by a finé edge with
a heavy vertex at end. Since piston-éylinder is a two-terminal com-
.ponent which has two turning joints at end, the heavy vertex has to
be placed at the end of fine edge where the degree of vertex is two.
Rule 6: The degree of heavy Qertex in the colored graph of PKC should

be equal to.two. ;

The construction procedure 6f obtaining PKC from parent kinematic
chain is similar to that of obtéining CKC from parent kinematic chain.
In PKC, piston-cylinder is graphically represented by a heavy vertex,
while in CKC, cam pair is by heavy edge. Therefore, the colored graph

of PKC can be obtained directly from that of CKC.
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(a) Parent Chain

Figure 20. Parent Kinematic Chain and Piston-Cylinder
. Kinematic Chain (PKC)

(a) Parent Gfaph _ v (b) PKGC Graph

Figure 21. Graphical Representations of Parent
Kinematic Chain: and PKC
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Fig. 22 shows that colored graph (c) of PKC is obtained by re-
placing heavy edges 12 and 34 in (a) by fine edges 12 and 34 with -
heavy vertices 1 and 4 at ends where the degrees of vertices are two's.
Similarly, PKC graph can also be obtained from CKC colored graph shown
in Fig. 22 (b). |
| lFrom the ways of constructing PKC, two equations can be establish-

ed as follows.
j=e. + vV (6-12)

Ld=v_+2v | (6-13)
where |
j: number of turning joints in the parent kinematic chain.
A: number of rigid links in the parent kinematic chain.

e.: number of fine edges in the colored graph.

f
Vet number of fine vertices in the colored graph.

v. : number of heavy vertices in the colored graph.

h
Substituting Eqs. (6-12) and (6-13) into Eq. (6-3), we have

Hh
]

3 (vf + 2v, - 1) - 2 (ef + vh)

h

=3 (vf - 1) - 2 (ef - 2Vh) (6-14)

Eq. (6-14) is the mobility equation for PKC. The equation is
expressed in terms of the vertices and edges of the colored graph.
For the PKC having degree of freedom £ = 1, then Eq. (6-14)
becomes
3vf + 4Vh - 2ef -4=0 (6-15)

Eq. (6-15) is the equation in which the colored graph of PKC with

f = 1 should be satisfied.
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(a) CKC and Graph (b) CKC and Graph
5 6
4 1

(c) PKC and Graph

Figure 22. Relationship Between Colored
Graphs of CKC and PKC
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The maximum degree of vertex, dmax’ of a colored graph of a closed

KC is derived from Eq. (6-8) and equal to

dmax =j-g+2= (ef + vh) - (vf + 2vh) + 2

e - (vf’+vvh) +2=e -v+4+2 (6-16)

Prism Kinematic Chains

Prism kinematic chains (PrKC) can be obtained by simply replacing
revolﬁte pairs by prism pairs. . Fig. 23 shows two pfism kinematic
chains derived from Watt's and Stephenson's kinematic chains respec-

tively.

The‘graphical representation of a PrKC is basically similar to .
that of a parent kinematic chain except that»the prism pair which re-
places the revolufe pair in parent chain is represented by‘another
type of fine edge, say fine dash edge. Therefore, the schematic
drawings of PrKC shownvin Fig.l23 (a) and (b) can be graphically
represented by kinematic graphs as shown in Fig. 24.

Since both revolute pair and prism pair belong to class 1 kine-
matic pair with one degree of freedom, the number of fine edges and
fine dash edges should be counted by the same designation ec.

In constructing PrKC, ﬁhe revolute pair in parent kinematic chain
is replaced by prism pair. The replacement of rotational motion of
revolute pair by translational motion of prism pair may change the
constrainafnwtign in PrKC.' Therefore, the following three rules‘should
be observed in‘order that P}KC has a constrained motion.
Rule 7: No link of the chain may contain only prism pairs whose direc-

tions of motion are parallel to each other.



(b) Stephenson's Chain and PrKC

Figure 23.

Prism Kinematic Chains (PrKC)
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(a) PrKC and Its Graph

(b) PrKC and Its Graph

Figure 24. Graphical Representation of PrKC
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Fig. 25 illustrates the restriction by Rule 7. The PrKC is
derived from parent four link chain. Link 2 has 2 prism pairs whose
directions vamotion are parallel to each other. Therefore, link 2
can have moéion independent of the motions of links 1, 3 and 4.

Consequently, there is no constrained motion in the chain.

Figure 25. PrKC against Rule 7

Rule 8: Two consecutive binary links of the chain can not have only
prism pairs.

Fig. 26 serves to illustrate the restriction by Rule 8. Links 3
and 4 are binary links connected to each other and have only prism
pairs. Without moving links 1, 2, 5 and 6, links 3 and 4 can still be
moved to positions 3" and 4'. Therefore, the chain does not have

constrained motion.
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Figure 26. PrKC against Rule 8

Rule 9: Minimum number of revolute pairs in a kinematic loop of the
chain is two. (or maximum number of prism pairs in a kinematic
loop of the chain is n-2, where n is number of links in that
loop.)

Fig. 27 illustrates the restriction by Rule 9. 1In the upper
kinematic loop, there are four links 2, 3, 4 and 5, three prism pairs
25, 23 and 45. The prism pair 25 constrains the links 2 and 5 to make
constant angle to each other. Due to the presence of prism pairs 23
and 45, links 3 and 4 also form a constant angle to each other.
Therefore, despite of revolute pair 34, there is no relative motion
between links 3 and 4. Thus, links 3 and 4 form a single rigid link,

and the chain does not have constrained motion.
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Figure 27. PrKC against Rule 9

The maximum number of prism pairs in a kinematic chain is a
function of kinematic loops. A 4-link chain with one kinematic loop
can have maximum of two prism pairs; a 6-link chain with two kinematic
loops can have maximum of four prism pairs and an 8-link chain with
three kinematic loops can have maximum of six prism pairs, therefore,

by inductive process, we obtain

Pmax = 2¢ (6717)

where

%naxz maximum number of prism pairs in a kinematic chain.

c: number of kinematic loops in the kinematic chain.
Substituting ¢ from Eq. (6-7) into Eq. (6-17), we obtain

Prﬁax =2 v(j -+ 1) (6-18)
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If the variable j in Eqs. (6-3) and (6-18) is eliminated, we getb‘

P =[Q-f-1 (6-19)

max
For the special case where kinematic chain has f = 1, Eq. (6~19)

then becomes

P =4 -2 (6-20)

Gear Kinematic Chains

A gear kinematic chain (GKC) is a special form of a cam kinematic
chain (CKC). The gears considered here are spur gears. Fig. 28 shows

a CKGC and its colored graph.

(a) CKC with £ =0 (b) Colored Graph

Figure 28. A CKG and Its Colored Graph
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From Eqs. (6-1), (6-2) and Fig. 28 (b), we have

j er + 2eh =2+ 2x2=6

L=v+ e, = 3+2=25
Substituting the values of { and j into Eq. (6-3), we have

f=3(f-1)-2j=3((55-1)-2x%x6=0

Therefore, the CKC shown in Fig. 23 (a) has no mobility. But,
if we impose a geometric condition on the cam surfaces such that the
common normals through the contact points intersect on a line through
pivots (or turning joints) as shown in Fig. 29, then the CKC has
constrained motion. It has the constant angular velocity ratio be-

tween bodies 2 and 3. Therefore, the CKC becomes a GKC.

Figure 29. A CKC Becomes A Gear
Kinematic Chain
(6KC)
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The schematic and graphical representations of the GKC are shéwn
in Fig. 30 (a) and (b) respectively. . The graphical representation of
GKC is somehow similar to that of CKC. The gear joint is represented
by another type of heavy edge. shown in Fig. 30 (b). Vertex 1-in Fig.
30 (b) is called a transfer vertex [67] which is equivalent to the
gear carrier 1 in GKC. For a special type of GKC whose 2-colored
graphs contain*trees3,lthe reader is refered to the referénces,[Sl, 52,
67]. 1In this special type of GKC, every gear has the motion of

complete rotation.

1

(a) (b)

Figure 30. Schematic and Graphical
‘ Representation of GKGC

3A tree in a 2-colored graph is the set of fine edges. The
remainder of the heavy edges constitute the chord set.
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Some colored graphs of GKC m;st be rejected because of Rule 10
and Rule 11.

Rule 10: A colored graph of GKC whose subgraph is a triangle with three
heavy edges is rejected. 1In general, a GKC having the kind of
colored graph described in Rule 10 has no mobility.

Under certain geometric conditionms, the GKC whose colored graph
violates Rule 10 may have a constrained motion. One paradoxical GKC
shown by Freudenstein and Yang4 is a typical example (Fig. 31). There
are 4 vertices, 3 fine edges and 3 heavy edges in the‘2-colored graph

shown in Fig. 31 (a).

4 ‘ 30T 1= T 20T
2 20T T 3 L
20T T 30T
1 3 T j 2 T
0 .
(a) Colored Graph 20T

(b) Paradoxical GKC

Figure 31. A Colored Graph and Its Paradoxical GKC

4Given in the lecture of NSF advanced training workshop in
mechanisms in Oklahoma State University, Aug., 1971,
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The geometric constraint imposed on the paradoxical GKC is

N12 N23 N31 =1 (6-21)
where
Nij: the gear ratio of gear i to gear j.
A typical GKC satisfying the constraint is shown in Fig. 31 (b)

= 2/3 and

31

in which N12 = -1, N21 = -3/2, N

N12 N23 N31 = (-1) (-3/2) (2/3) =1

Vertex 4 in Fig. 31 (a) is the transfér.veffex and ié equivalent

to the gear box shown in Fig. 31 (b).

Rule 11: Any gear pair should have a gear carrier associated with it.
In the case of GKC whose colored graph contains a tree, the
gear carriers can be found by the determination of transfer
vertices [67].

The mobility equations and maximum degree of vertex equation for
the colored graph of GKC are the same as those Egs. (6-4), (6-5) and

(6-9) for the colored graph of CKC.
Spring Kinematic Chains

Spring kinematic chain (SKC) can be obtained by replacing two
consecutive binary links in a parent kinematic chain by a spring.
fig. 32 shows a parent 4 link chain, SKC and its corresponding colored
graph. The spring element is represented graphically by another type
of heavy vertex shown in Fig. 32 (c).

From the point of structural synthesis of kinematic chains, SKC
has the same properties as PKC does. The rules and equations for PKC

are also valid for‘SKC.
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3
2
2 \4 2 3
1 1 1 o) 3
(a) Parent Chain (b) SKC (c) Colored Graph

Figure 32. Parent Four-Link Chain, SKC
and Its Colored Graph

Belt-Pulley Kinematic Chains

A belt-pulley kinematic chain (BKC) can be obtained by réplacing
a ternary link and its associated two binary links in a parent kine-
matic chain. The ternary link is replaced by a pulley and each of the
binary links is replaced by a section of belt rolling on fhe pulley.
The BKC shown in Fig. 33 (b) is obtained by replacing ternary link
1 and its associated two binary links 2, 6 in the parent chain shown
in Fig. 33 (a) by a ﬁelt-pulley. The colored graph of BKC shown in
Fig. 33 (c¢) is obtained by representing graphically the pulley and belt

with a double vertex and a type of heavy edge respectively.
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4

(a) Parent Chain

4

(b) BKC (c) Colored Graph

Figure 33. Parent Six-Link Chain, BKC
and Its Colored Graph
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Since the pulley should have a belt around it and a turning joint
acting as the axis of the pulley, we obtain Rule 12.
Rule 12: The double-vertex of the colored graph of BKC should have two
heavy edges and at least one fine edge incident with it.
Two equations are proposed to relate the parent kinematic chain
to BKC,

\L + vy + ey (6-22)

SN
i

j=e_. + 2e

£ h (6-23)

Where ﬂ: number of rigid links in the parent kinematic chain.
j* number of turning joints in the parent kinematic chain.

Vel number of fine vertices in the colored graph.

\ZE number of double~vertices in the colored graph.

ect number of fine edges in the colored graph.
e’ number of heavy edges in the colored graph.

Substituting Eqs. (6-22) and (6-23) into Eq. (6-3), we have

f

3 (vf +v, +e -1) -2 (ef + 2eh)

d h

=3 (vf +v, - 1) - 2ef>- e (6-24)

d h
Eq. (6-24) is also in the same form as that of Gruebler's
mobility criterion. (vf + vd) is corresponding to the number of links

in the parent kinematic chain, e_ is corresponding to the number of

f
kinematic pairs of class 1 in which the degree of freedom is 1 and e
is corresponding to the number of kinematic pairs of class 2 in which
the degree of freedom is 2.

Eq. (6-24) is the mobility equation for BKC. The equation is

expressed in terms of vertices and édges of the colored graph. It

should be noted that Eq. (6-24) is similar to Eq. (6-4) for CKGC in
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which (vf.+ vd) in Eq. (6-24) is equivalent to v in Eq. (6-4). For the

BKC having degree of freedom f = 1, then Eq. (6-24) becomes

3 (vf + vd) - 2e‘f - e - 4 =0 (6-25)

Eq. (6-25) is the equation iﬁ which the colored graph of BKC with
f = 1 should be satisfied.

The maximum degree of vertex, dmax’ of a colored graph of a closed
BKC is also equal to e - v + 2 which can be derived by substituting

Eqs. (6-22) and (6-23) into Eq. (6-8).

dmax=j—'e+2

(ef + Zeh) - (vf + v, + eh) + 2

d

= (ef + eh) - (vf + vd) + 2

= e - v+ 2 ' (6-26)

Kinematic Chains with Combination of
Different Kinematic Elements

The different kinematic chains discussed so far are CKC (with cam
pairs), P KC (with prism pairs), GKC (with gears), PKC (with piston-
cylinders), SKC (with springs) and BKC (with belt-pulleys). The
general formula and mobility equation of the kinematic chains with the
combination of the different kinematic elements are to be discussed in
this section.

Two general equations which relate the parent kinematic chain to

the general colored graph are described.below:

i

£ Ve e + vy + 2v (6-27)

h d h

j=e.+ 2e +v (6-28)

f h h
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where
f: number of rigid links in the parent kinematic chain.
js number of turning joints in the parent kinematic chain.

v_.: number of fine vertices in the colored graph (for rigid

f
links).

v, ¢ number of heavy vertices in the colored graph (for
piston-cylinders and springs)

v ,: number of double-vertices (for pulleys).

ec: number of fine edges (for revolute and prism pairs)

e, : number of heavy edges (for cam pairs, gears, belts).

h
Substituting the Eqs. (6-27) and (6-28) into Eq. (6-3), it becomes

f=3 (vf +e, +v, +2v, - 1) -2 (ef + 2e

h T Vg h + vy)

h

=3 (vf + v, - 1) + 4v e (6-29)

d h " 2% " °
Eq. (6-29) is the general mobility equation for the kinematic
chains with a combination of different kinematic elements. The equa-
tion is expressed in terms of the vertices and edges of the general
colored graph.
For the kinematic chain having degree of freedom f = 1, Eq. (6-29)

becomes

3 (vf + vd) + 4 (vh - 1) -V2ef - e = 0 (6-30)
Eq. (6-30) is the equation in which the colored graph of kinematic
chain should be satisfied.
The maximum degree of vertex;, dmax’ of a general colored grgph of
a closed kinematic chain with a combination of different kiﬁematic

elements is also equal to e - v + 2 which can be derived by substi-

tuting Eqs. (6-27) and (6-28) into Eq. (6-8).
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dmax=J-’e + 2
= (ef + Zeh + vh) - (vf + en + vy + 2vh) + 2
= (ef + eh) - (vf + Vi + vd) +2=e «v+2 (6-31)

As an example, a colored graph and its corresponding kinematic

chain are shown in Fig. 34.

4 @ -9 1 X
3 W@a |
: 2 2,” T
(a) Colored Graph (b) Kinematic Chain

Figure 34. A Colored Graph and Its Corresponding
Kinematic Chain '

From the colored graph, we have

vf = 2 e, = 3
vy = 1 ey = 3
vd =1

Substituting these values into Eqs. (6-27) and (6-28), we have



108

f=2+3+1+2x1=38
j=34+2x3+1=10

Therefore, we know the colored graph is developed from a parent
8 link, 10 joint kinematic chain. When one of the links of the kine-
matic chain shown in Fig. 34 (b) is fixed, it has constrained motion

and can be verified from Eq. (6-29).

)
I

3(2+1-1)+4x1-2x3-3
=6+ 4 -6 -3=1
The maximum degree of vertex in the colored graph can be found
from Eq. (6-31).
d =e=-v+2=6-4+2=4
max
That is, dmax is the degree of vertex 4 of the colored graph

shown in Fig. 34 (a).



CHAPTER VII

COLORED GRAPHS AND THEIR CORRESPONDING
KINEMATIC CHAINS DEVELOPED FROM -
PARENT EIGHT-LINK CHAIN

In this chapter, all the colored graphs and their corresponding
kinematic chains developed from parent 8 link, 10 joint chains are
presented in three tables. Due to the large number of prism kinematic
chains (PrKC), the listing of PrKC is separately shown in Appendix C,
and the combination of prism pairs with other kinematic elements are
not considered. Table XI shows the kinematic chains with different
number of kinematic elements. Since spring kinematic chain (SKC) is
structurally similar to the piston-cylinder kinematic chain (PKC),
kinematic chains having springg are not shown in the tables, except in
the case where both springs and piston-cylinders appear in the kine-
matic chains.

The maximum number of different kinématic elements inéluded in
the kinematic chains developed from parent 8 link chains is three.
Therefore, only three tables are prepared for kinematic chains having
one, two and three different kinematic elements. The total number of
colored graphs shown in three tables is 652. The number of prism

kinematic chains with 1 up to 6 prism pairs is 3309 (Appendix C).



TABLE XI

KINEMATIC CHAINS WITH DIFFERENT NUMBER
OF KINEMATIC ELEMENTS

Kinématic Chains with

One Two Three Four Five
I. Kinematic I1. Kinematic I1I. Kinematic I1V. Kinematic V. Kinematic
Element Elements Elements Elements Elements
Cam
I-1 (pair II-1 C-P III-1 C-P-G V-1 C-P-G-8 | v-1 C-P-G-S-B
1-2 | p(Fiston- 4 ly1) c-G  |1II-2 c-P-s | 1v-2 | c-P-G-B -
cylinder . _ ;
1-3 G(Gear) 1I-3 C-S I1II-3 C-P-B IV-3 P-G-S-B
1-4 S(Spring) 1I-4 C-B I1II-4 P-G-S IV-4 C-P-S-B
1-5 p(Belt- 1I-5 P-G 111-5 | P-G-B 1V-5 C-G-S-B
pulley :
11-6 P-S III-6 G-S-B
1I-7 P-B I111-7 C-G-S
11-8 G-s |11I-8 C-G-B
1I-9 G-B 11I1-9 C-S-B
1I-10 s-B. |I11-10| P-S-B

01T
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Colored Graphs and Kinematic Chains
with One Kinematic Element -~

The colored graphs and their corresponding kinematic chains with
one kinematic element are shown in Table XII,

The numbers of kinematic chains are shown below:

Kinematic Chain Number
CKG 143
PKC 20
GKC 65
BKC 50
Total: ' | 278

Colored Graphs and Kinematic Chains
with Two Kinematic Elements-
The colored graphs and their corresponding kinematic chains with
two kinematic elements are shown in Table XIII.

The numbers of kinematic chains are shown on next page.



Kinematic Chain

C-P

C-G

P-B

G-B

KC

KC

KC

KC

KC

KC

KC

112

Number

49

112

83

34

17

31

Total:

335

Colored Graphs and Kinematic Chains
with Three Kinematic Elements

The colored graphs and their corresponding kinematic chains with

three kinematic elements are shown in Table XIV.

The number of kinematic chains are shown below:

Kinematic Chain

C-P-G

C-P-S

" C-P-B

P-G-S

C-G-B

KC

KC

KC

KC

KC

Number

18

Total’:

39 |
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TABLE XII.

COLORED GRAPHS AND KINEMATIC CHAINS
WITH ONE KINEMATIC ELEMENT
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TABLE XII (CONTINUED)
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TABLE XII (CONTINUED)
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TABLE XII (CONTINUED)
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TABLE XII (CONTINUED)
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TABLE XII (CONTINUED)
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TABLE XII (CONTINUED)
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TABLE XII1

COLORED GRAPHS AND KINEMATIC CHAINS
WITH TWO KINEMATIC ELEMENTS
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CHAPTER VIII
SUMMARY AND CONCLUSIONS

The greéent work is devoted to exploring the application of graph
theory in strucﬁpral synthesis of kinematic chains with all types of
kinematic elements. The present study develops a general mathematical
model which pérmits one to undertake the structural synthesis of kine-
matic chains with different kinematic elements and their combinations.
The kinematic elements under consideration are cam pairs, prism pairs,
gears, springs, belt-pulleys and piston~cylinders.

The general mathematical model includes three general algorithms,
which are:

(1) Listing of specifications of n-colored graphs. The specification
is expressed in terms of the sets of degrees of vertices of n-sub-
graphs. Given tﬁe number of vertices and edges in a colored graph,
the listing of the specifications can be generated. A computer
program has been developed to list all the possible specifications
and is shown in Program A, Appendix B. The lower and the upper
bounds of the spgdificati&ns can also be specified in the program
in order to reject those unacceptable specifications. The listing
of specifications only provides the information about the number
of ways of combining the degrees of‘vertices, it does not provide
the ways of connecting the vertices in a graph, therefore, the

following algorithm is required.



(2)

(3)
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Synthesis of vertex-vertex (v-v) incidence matrices of linear and
non-linear n-colored graphs from a given specification. The syn-
thesis of v-v incidence matrices of linear and non-linear n-colored
graphs can be accompli;hed by éonsidering each éubgraph specifica-
tion’individually. The procedures to synthgsize the v-v incidence
matrices for each subgraph have been presented in Chapter IIT.

All the possible wé&s of superposing the v-v incidence matrices of
n subgraphs become the final v-v incidence matrices of n-colored
graphs. A general computer program which consists of one main
program and five subroutines has beeﬁ developed and is shown in
Program B, Appendix B. Since not all v-v incidence matrices
synthesized are non-isomorphic, they have to go through the process
of isomorphism test;

Isomorphism test for a pair of linear or non-linear n-colored
graphs. An algorithm for testing isomorphism of a pair of linear
or non-linear n-colorgd graphs with colored vertices and colored
edges has been p;esented in Chapter IV. The method of incidence
tables is used and the total number of possibilities of finding
the graph isomorphism is described. A general computer program,
Program C, thch consists of'oﬁe main program and five subroutines
has been developed and is presented in Appendix B.

Before applying the mathematical model to synthesize kinematic

chains, the graphical representations for the kinematic chains with

different kinematic elements should be first created. 1In general,

the kinematic chains with different kinematic elements are graphically

represented by the linear and non-linear colored graphs with colored
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vertices and colored edges. All the different colored graph represen-
tations for different kinematic chains have been proposed and shown in
Chapter VI.

The relationships between the number of rigid links and turning
joints of a parent kinematic chain and the number of vertices and edges
of colored graphs have been established as general mobility equations.
The mobility equations are useful ﬁot only in examining the mobility
of kinematic chains, but also in éolving the sets of numbefs of colored
vertices and colored edges required in synthesizing colored graphs.

Given the number of rigid links and turning joints of a parent
chain, the sets of numbers of colored vertices and colored edges can
be generated from the mobility equations. Since the number of vertices
and edges in colored graphs has been found, all the non-isomorphic
colored graphs can be obtained by going through the synthesis proce-
dures established by the general mathematical model.

The total number of colored graphs synthesized for a given number
of vertices and edges in colored graphs can be checked by the applica-
tion of Polya's theory of couﬁting. The theory provides the exact
count of colored graphs for a given number of vertices and edges in
the colored graphé;

Since not all colored graphs synthesized generate the closed and
isokinetic chains [32] (non-isokinetic chains are also called frac-
tionated chains [1017]), the criteria a;e deﬁeloped.to reject those
unacceptable colored graphs.

Since the general mathematical model is based on the theoretical
approach, it can be applied, without loss of generality, to enumerate

systematically all the colored graphs and their corresponding kinematic
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chains. The general_mathematical model has been extensively tested

and proved to be correct. The model has been tested on the kinematic

chains with different kinematic elements developed from parent 8 link
and 10 joint chains. The design tables consisting of colored graphs
and their corresponding kinemétic chains have been shown in Chapter

VII. |

In summary, the present study provides the following technical
contributions to the field of kinematics: |

1. Colored graph representaﬁiOns for the kinematic chains with differ-
ent kinemaéic elements have been established. The kinematic ele-
ments under consideration are cam pairs, prism pairs, piston~cylin-
ders, gears,-springs and belt-pulleys. In general, the colored
graph possesses colored vertices and colored edges. The kinematic
elements such as pi;ton-cylinder, spring and pulley have been
represented by different colored vertices. The kinematic elements
such as cam pair, prism pair, gear and belt have been represented
by different colored edges.

2. General mobility equation for the kinematic chains with different
kinematic elements has been set up which is expressed in terms of
degree of fréedoﬁ, different colored vertices and colored edges.
The mobility equation not only provides the examination of the
mobility of kinematic chains, but also provides the solution of sets
of numbers of:éoiored verticés and edges required in synthesizing
colored graphs.

3. A general mathematical model which takes into account the synthesis
procedures of colored graphs has been set up and implemented on

general computer programs. The model consists of three general
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algorithms, they are (1) Listing of colored graph specifications
(2) Synthesis of v-v incidence matrices of colored graphs from a
given specification, and (3)vColored graph isomorphism test.

4. Criteria have been develqged‘t; reject those unacceptable colored
graphs which correspond/to the dpen kinematic chains or non-
isokinetic chains.-

5. The model has been testedbon the kinematic chains with different
kinematic elements which are developed from parent 8 link and 10
joint chains. The design tables with colored graphs and their
corresponding kinematic chains are presented.

Since the mathematical mddei developed in this study is based
upon graph theory, it may be ;f interest to all those who are éon-
cerned with the mathematical ;nalysis and synthesis of structures in
the fields of system science.

In the field of mechanical networks particularly, the following
research subject appears to be most promising.

Structural synthesi; of kihematic chains with arbitrary numbers
of |

(1) Kinematic loops, XN = 2, 3, 4, 5.

(2) General constraints, m = O, 1,'é, 3, 4.

(3) Degrees of freedom, £ = -1, 0, 1, 2, 3.

(4) Different kinematic pairs, Pk, k=1, 2, 3, 4, 5.

It should be noted that the enumeration of spatial kinematic
chains for the following cases has been undertaken by several authors

as have been mentioned in Chapter I.
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1. Soni and Harrisberger [29, 30]

(DX =1 2)m=0, 1

3) £f =1 (4) P,k=1, 2, 3, 4, 5
2. Dobrjanskyj and Freudenstein [33, 34, 35] .

(1) N =1 | (2) m=0

3) £ =1 (4)Pk,k=1,2,3
3. «SOni\[21:| | |

(1) x=2,3 ) m=1, 2

(35‘f =1, 2 (4) P1 (helical pairs only)

The structural synthesis of spatial kinematic chains is essential-
ly same as thaf of planar kinematic chains. Both spatial and planar
kinematic chains can be graphically represented by colored graphs.

The enumeration of colored graphs can be accomplished by the use of

the general mathematical model developed in this study. After applying
criteria and rejecting those unacceptable colored graphs (unworkable
combinations), one is able to obtain all the acceptable colored graphs
and the corresponding spatiélykinematic chains with the four con--

straints described above.

1
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APPENDIX A

KINEMATIC GRAPHS OF PARENT
EIGHT LINK CHAINS
There are sixteen parent constrained éight link chains [22, 32,
68, 69]. The kinematic graphs of these kinematic chains are grouped
together according to their specifications and are shown in Table XV.
Among the sixteen kinematic graphs, there are twelve kinematic
graphs which can be obtained by adding the subgraph dyads (3 consec~
utive edges with two vertices in between) to the parent six link
.chains. They are shbwn as follows.
(1) Those obtained by adding subgraph dyad (1234) to the Watt's
kinematic g;aph (145678) are graphs (2), (6), (7), (10), (12),
(15).

(2) Those obtained by adding subgraph dyad (1234) to the
Stephenson's kinematic graph (145678) are graphs (1), (3),
(4), (11), (13), (14)..

The remaindér of the graphs (5), (8), (9), (16) are called un-
peelable kinematic gréphs. They can not be obtained by adding sub-
graph dyad to either Watt's or Stephenson's kinematic graph.

All the sixteen kinemaﬁic graphs‘have also been obtained by the
use of the three general computer programs developed by the writer
which are shown in Appendix B:

The lower bound of the degrees of vertices of a connected
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TABLE XV

SIXTEEN KINEMATIC GRAPHS OF PARENT 8 LINK CHAINS

L (1)
1. (44222222)

| 2. (43322222)

3. [ 33332222)
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”graphl is 2, and the upper bound of the degrees of vertices is equal
to half the number of rigid links, that is, £/2 = 8/2 = 4. Therefore,
the listing of the specifications can be found from computer program
A.

Since the different spécifications have been found, the v-v
incideﬁce matriées can be synthesized by using computer program B.
The combuter program C is then used to check the isomorphism between
those v-v incidence matrices. All the nén-iSOmorphic v-v incidence
matrices aré the representations of the non-isomorphic graphs needed

for parent 8 link chains.

1The graph of a closed kinematic chain is always a connected
graph.



. APPENDIX B
COMPUTER PROGRAMS

Three general computer programs listed on the following pages are
based on the méthods described in Chapter III and IV. Six examples
and their outputs are explained in Chapter V.

The three computer programs are

(I) Program A: Listing of GColored Graph Specifications.
| There are one maiﬁ program and three subroutines, 1, 2 and
3 as shown below.
(II) Program B: Synthesis of Vertex-Vertex Incidence Matrices of
Colored Graphs..
There are one main program and five subroutines, 1, 2, 3,
4 and 5 as shown below.
(III) Program C: Colored Graph Isomorphism Test.
There are one main program and five subroutines, 1, 6, 7, 8
and 9 as sﬁown below.

There are total 9 different subroutines used in the three pro-
grams, they are |
1. PERMU: PERMU finds all the possible permutations for a given number

of objects. The total number of permutations for given j objects
is j?.
2. PERMU1l: PERMU1 finds the total permutations for a set of specifi-

cations. The number of NP objects having I, J, ... like terms is
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NP!/I! x J! X «os « NI is the number of different specificatiomns,

IP contains each of the specifications, IB1 contains the total

. permutations from the different specifications and NC is the number

of permutations.

COM@: COMB finds the combinations of objects in &, B, C, ... (total
K items). Let Al,vBl, Cl, ... be the number of objects in A, B, G,
«esy then the-totalbnumber of combinations is Ni = Al x Bl x C1 x
cee » Output is stored at IQ (NI, K)..

DIST: DIST is 5 modified version of the main program in Program A.
DIST distributes the number NB into NP places. Output is stored at
IP (NR, NP), NR is the total number of distributions.

POSSil: POSSI1 forms all the possible arrangements (combinations) of
the numbers which are stored~at IB1 (NC, NP) according to the
decreasing number of IY (1, NP). Output is stored at IH (IK, NP),
IK is number of arrangements.

ORDER: ORDER rearranges the numbers in K (2, N) in increasing order.
The sets of data in IS (2, 2, N) are aléo rearranged according to
the new order of K (2, N). N is the number of data. ID =1 is‘for

one set of data in IS (2, 1, N), ID = 2 for two sets of data in IS

» k2, 2, N). JJ = 0 means the numbers in K (1, N) are the same as

those in K (2, N).‘ JJ = 1, the numbers in two groups are not same.
TABLE: TABLE finds the incidence table with the degrees of vertices
in increasing order. Input data: one vertex number in Graph 1 and
another vertex number in Graph 2 stored in IS1 (1, 1, 1) and IS1

(2, 1, 1) respectively. Return data: IV1, IS1, KW, JJ. IVl stores
the degrees of vertices in increasing order. IS1 (IG, 1, KW) stores

the vertex numbers of incidence table of Graph IG, IS1 (IG, 2, KW),
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the edge numbers. KW is the number of vertices (or edges) in
incidence table. JJ = 0 me;ns the degrees of vertices in two groups
of incidence table are same. JJ = 1, not same.

POSSI: POSSI forms all the possible arrangements of the vertices in
Graph 1 according to their degrees of vertices (in increasing order).
IY (1, NV) stores the degrees of vertices of Graph 1. 181 (1, 1,
NV) stores the‘corresponding vertex numbers. All the possible
arrangements are stored at IP (NI, NV), where NI is the total number
of arrangements, NV is number of vertices.

CHECK: CHECK checks whether the edge elementary matrix is completed
and whether the transformation equation is satisfied. MM = 1 means
edge elementary matrix has not completed yet, tests should be con-
tinued. MM = 2, transformation equation is not satisfied, go to
pick up another isomorphic possibility. MM = 3,?two graphs ;re
isomorphic.

The preparations of the data cards for the three computer programs
- i

are explained below:

(I) Program A:
Card 1: NEX, number of examples. (I5)
Card 2: NCO, number of diffefent colors. (I5)
Card 3: NB: number to be distributed, NP: number of places in
spetification; ML: lower‘bound of specification, MU:
upper bound,df;spécificafion. (415)
Card 4: Repeat NB, NP, ML, MU for other colored subgraphs.

Card 5: Repeat from Card 2, if NEX > 1.
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(I1) Program B:

Card 1: NEX, number of examples. (I5)

Card 2: NCO, number of types of colored edges. (I5)

Card 3: NV, number of vertices. (I5)

éard by vee specificafions for each colored subgraph. (1615)

Cérd «e+ : Repeat from Card 2, if NEX > 1.

(ITI) Program C:

Card 1: NEX, number of examples. (I5)

Card 2: NV, number of vertices. (I5)

Card 3? NT, number of types of colored edges. (I5)

Card 4: KV (I), I =1, ... , NV, fypes of vertices of first
graph. (16I5) (1: fine vertex (rigid link), 2: vertex
for piston-cylinder, 3: vertex for spring, 4: vertex for
pulley (wheel), 5: vertek for the fixed link in
mechani sm)

Card 5, ..., (total NV - 1 cards), each card is for each row of
v-v matrix. Only the elements on the upper triangle of
matrix are readwin (egcluding the zeros in diagonal).
(1615)

Repeat from Card 4 for the data.of second graph.

Repeat from Card 2, if NEX> 1.



50
52

33

217
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PROGRAM A: LISTING OF SPECIFICATIONS OF COLORED GRAPHS.
COMMON IP (250,60 IH( L2045)y IB1130,5) 4NPERMU

OIMENSIGN IP1(5,5046)9IN(10),IP2{1+50461),1Q(200,5)
DIMENSION 12(8),1 CK!ZOOJ

FORMAT (415) :

FORMAT (' NUMBER NB=‘.I3. s%»? NUMBER OF PLACES NP=',]13,/,
1 LOWER BOUND ML=%3134* +'y*' UPPER BOUND - MU=%413,/)
FORMAT (¢ * DATA OF COLURED=*,12,¢ SUBGRAPH *¥0,7)

FORMAT{I3,%.%,1015)

FORMAT (/,? SPEClFlCATlUN'nIQt |//04X B{3Xy114'a¥),/)
FORMAT (1H1 o' * EXAMPLE®, 13, *'p/, :

FORMAT(//,* THE NUMBER UF SPECIFICATIONS =¥,[3,/)

CO 130 1=1,8 .

 1201)=I]

READ (5,50) NEX

00 100 IKZ=1,NEX
WRITE(6,120) IKZ
READ(5,50) NCO

€0 37 KC=1,NCGC
WRITEL6453) KC .
REAC(5950) NBsNP ML, MU
WRITE(6,52) NBsNPyML MU
IF(NCO.EWe Lo OR.KCaTo 1) GO TO 33
CALL PERMUINP)

APl =NP~1

NP2=NP-2

ICl=NPL

DG 27 J=1,200

DO 27 I=1l.NP1
IPUJ,1)=ML

IPL1 NP ) =NB-MLENPL
NR=(IP(LsNPI-ML}/2¢+]
IFANR.LTS2) GO TG 30

© DO 21 I=24NR

25
21

lo

56

23

47

45

12

J=[-1

DO 25 K=]1,NP2

IPCI oKI=IP[ JyK)
IPLIyNP)=IP(JyNP)-1
IP(IsNPLI=IP(JyNPL)+]
IF(NP.LE.2) GO TO 30
IF(IP(NR.NPl) LELIPINRyNP))} GO TO 56
NR=NR~-1

GO T0O 30

IC1=ICl-1

IFCICl.LT.1) GO TO 30
NR=NR+}1

CO 23 I=ICl NP1
IP(NRsI)=1+ML
IPINR,NP)=NB-ML*1ICLl=1)- lNPl-ICl#ll*(1+HL)
16=NP1

NR=NR+1

NR1=NR~1

CC 45 I=1,I16
IPINR41I=IPINRL,I)
IPINRy IG)=IPINRL1, IG)+1]
DO 12 I=IG.NP1 :
IPENRy 1 )=IPINR,IG)
IPINRyNP)=NB

DO 14 I=1,4NP]
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IP(NR.NP)*IP(NR NP)-IPINRy I)

IFUIPINRIG ) «LT.IPINRsNP)). GO TO 10
IFUIPINReIG )+EQ. IP(NR.NP)) ‘GO TO 40

" NR=AR-1

40
10

18

30

62
60

64

31

112
11¢€

80
135
140

31

102

126
210

16=1G-1

IF(IG.LT.IC1l) GO TO 16

GO TO 44

NR=NR+1

MNR1=NR-1

DO 18 [=1,NP2

IPUNR:I9=1P{NR1,4I)

IP(NRyNPI=IP (NRLyNP)~1
IPINRyNPL)=IP(NRL,NPL)+Ll

IF{ IPINRyNPL1)LT.IP(NRsNP)) GO TO 10
IF(IP(NR)NPL)EQ.IP(NReNP}) GO TO 47
NR=NR-1

GO TO 47

NRU=0

NRI=0Q

NRU=NRU+1’

IFINRU.GT+NR)} GO TQ 31

IF(IP(INRU, NPl.GT MU) GO TGO 62
NRI=NRI+1 ‘
00 64 I=1,NP .
IPUNRI ¢1)=IP(NRU,4I)

GG TG 62

IF(NCO.GT.1) GO TO 110
WRITEL6,300) NRI

0o 112 I=1, NRI
WRITE(6499) .(lZ(IQ)»l9=l.NP)
WRITE(6,98) NCOy (IPIIyJ)sJslyNP)
GO TG 100

IFINCO«LE, 24AND.KC.EQ.1),.GO TO 135
CALL PERMULINP¢NRIyNC) :

IN(KC)=NC

DO 80 I=1,NC

CO 80 J=1l,yNP

IPL(KC sl 4Jd)=1IBL(I,44)

GO0 10 37

00 140 I=1yNRI

00 140 J=l4NP

IPLILy14d)=IP(I,4J)

IN(1)=NRI

CONTINUE

JC=0

D0 102 1=l ,NLO

JB=IN(I)

w

00 102 J=1,J8

JC=JC+l
DO 102 Il1=14NP

IP2U1,dCyILI=1PL(1,d,11)

CALL CCMBINCOsINsIQ/NI) .
DO 126 I=1,NI

ICK(1)=0

NIC=0

NIC=NIC+1

IFINIC.GE.NI) GO TO 170

IF (ICKINIC) .EQ.1) GO TO 210

NID=NIC
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230
228
128
170

134
132

1C6
100
39

30

31

38

36

40

42

44

NID=NID+]

IFINID.GT.N1) GO TO 210
IF(ICK(NID).EQ.1) GO TO 150
D0 228 I=1,NPERMU v

00 230 K=14NCO-

DG 230 J=1,NP
IFCIP2(, IQINIC oKD o J ) eNEIP2L Lo IQINID oK) yIH(L+3))) GO TO 228
CONTINUE

GQ To 128

CONTINUE

GO TG 150

ICKINID) =)~

GO -TO 150

NQA=0

00 132 I=1,NI

IF (ICK(1).EQ.1) GO TO 132
NQA=NQA+]

00 134 K=14NCO

DO 134 J=1,NP

IP1IK, NQA.J)‘IPZ(I.IQ(I.KI.J)
CONT INUE

WRITE(6+300) NQA

DO 1C6 1=1,NQA

WRITE(6y99) l.(lZ(l9)ol9=lvNP)
00 106 J=1,4NCO

WRITE(6,98) J, (lPl(Jv[lll.vll‘l NP)
CONT INUE

STOP

END

SUBROUT INE PERHUI(NP-NI NCY
COMMCN IP(250¢6 )4 1H(L2005)y 1B1(3045)9 NPERMU
ODIMENSION IB(10,5045) ,1G140).

" KC=NPERMU

NC=0

CO 32 I=1NI

0O 30 J=1,KC

DO 30 K=1,4NP

IBUIyJ oK )=IP {19 IH{J 1K)}
00 37 LH=1l+KC

IGILH)=0

LH=0

LH=LH+]

IF{LH.GT.KC) GO TO 44
IFCIGILH) EQ.L1) GO TOU 38
IHL=LH ’
IH1=IH1+1

IF(IHL.GT.KC) GO TO 38
IF(IG(IHL) .EQ.1) GO TO 36
NP1=0

NPL=NP1 +1

IF(NPL.GT.NP) GO TO 42
IFCIBCI,LH)NPL) LEQ. lBlllelvNPl’) GO0 70 40
GO TO 36

I6(IH1) =]

GO TO 36

LH=0

LH=LH+1 :
IFILH.GT «KC) GO TO 32
IFCIGILH) . EQ.L) GO TO 45
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46

32

30

22

10

25

17
23

20

NC=NC+]

D0 46 11=1,NP

IBLINCy II)=IB(I,LH 11}~

GO TO 45

CONTINUE

RETURN

END

SUBROUTINE PERMU(J)

COMMON lP(ZSO.b).IH(lZO-S).lBl(30u5).NPERHU
ODIMENS ION IT(5)

[T(l)=1

O 30 I=2,5

ITUL) =p*1TUI-1)

IH{ 1,1) =]

IH(1,2)=2

IH(2,1)=2

1H( 292)=1

NPERMU= 2

IF{J.EQe2) RETURN

K=3

Kl=K-1

KT=] T(KL)

DO 10 I1=1,4KT

IH(114K )=K

KC=KT

DO 20 I5=1,K1.

12=K1~[5+1

DO 20 [4=1,KT

KC=KC+1

IH(KCyK)=]2

KM=1 ’ .
lF(lh(lé.KM).NE 12) GO TO 17
IH(KCyKM)=K :

GO 10 23

IHIKC, KM)le(IA.KM:

KM=KM+]

IFIKM.GT.K1) GO TO 20

GO TO 25

CUONTINUE

K=K+1

IF(K.LE.J) GO TO 22
NPERMU=KC

RE TURN

ENOD

SUBROUT INE COMBI(Kjs IN, IQ.NI) -
COMMON IP(25046) ¢1H(120+5) ¢1B1(3045) » NPERMU
DIMENSION IN(10)5% 10(200.5).1R(5.24).1u(72.2)
KC0=0

DU 3 IK=14K -

IsINCIK)

DO 3 J=1,1

KCO=KCO+1

IR(IKsd )=KCD
IW(KCO,1) =IK
IW(KCO, 2) =J

CONT INUE

NR=1

K1=K-1

IF(K1.LT.2) GO TO 32
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D0 4 I=2,Kl
NR=NR*IN{I) "
M1=NR

“MT=IN(L ) *INIK)

DO 6 Il=22,4KLl°
Ml=M1/IN(IL) .
MC=NR/ (ML*IN{I1))
NI=0 ‘

DO 6 15=1,MT

DO 6 12=l4MC
MN=IN(IL)

DO 6 I[3=1,MN

DO 6 14=1,M]
NI=N[+]
IQINIZILI=IR{I1,13)
CONT INUE

Nl =0

Nl= IN{1)
NK=IN{K)

DO 8 Il=l,N1l
DO 8 [2=14NK
DO 6 I3=1sNR
NI=NI+1 :
IQINL,KI=IRIK,I2)
TQINL,L)=IRI1,11)
CONTINUE

RETURN

END

'
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* EXAMPLE 1 *
# DATA OF COLORED-1

¢

NUMBER NB= 14,

SUBGRAPH ¥

LOWER BOUND ML= e

THE NUMBER OF SPECIFICATIONS = 20

SPECIFICATION 1.
1. 2.. 3.
1. 1 11

SPECIFICATION 3.
) 2. 3.
Lo 1 1 1

SPECIFICATION 5,
le. 2 3'._
i. 1 1 1

SPECIFICATION 7.
1. 2. 3.
l. 1 1 1

SPECIFICATION 9.
l. 2. 3.
l. 1 1l 1

"SPECIFICATION 11,
1. 2. 3. .
1. 1 12

SPECIFICATION 13,
l. 2. 3.
l. 1 1 2

SPECIFICATION 15.
I 2. 3.
l. i 1l 3

SPECIFICATION 17.
l. 2. 3.
le 1 2 2

SPECIFICAT JON 19.
1. 2. 3.
Lle 2 2 2

NUMBER OF PLACES NP=

UPPER BOUND

; MU=

6
9
© SPECIFICATION
le 2.
1 .1 1
SPECIFICAT ION
e 2.
L. 1 1
SPECIFICATION
1. 2.
1. 1 1
SPECIFICATION
1. 2.
1. 11
SPECIFICAT ION
1. 2.
1. 1 1
SPECIFICATION
1. 2.
1. 1 1
SPECIF ICATION
1. 2.
1. 1 1
SPECIFICATION
. : ' ln 2.‘
1. 1 2
SPECIFICATION
1. 20
1. 12
SPECIFICATION
1. 2.
L 2 2

“2e

4
3.

- B
3.

8.
3.

10.

3.

12.
3.

4.
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* EXAMPLE 2 *

# DATA UF COLOKED-1

S

NUMBER NB= 6,

LOWER BOUND ML= 1,
* DATA OF COLORED-2

NUMBER Ng= 4,
LOWER BOUND ML= O,

o

THE NUMBER OF SPECIFICATIONS = 14

8

SPECIFICATION 1.
le 2. 3.

l. 1 1 1
2. 0 0 2

SPECIFICATIUON 3.

l. 2. 3.
1. 1 1 )|
2. 0 1 1

SPECIFICATION 5.
"l 2e 3.

l. 1 l 1
2e 2 1 1

SPECIFICATION 7.
-l. 2. 3‘

l. 1 1 . 2
ra 0 0 2

SPECIFICATION 9.

1' 2‘ 3.
l. 1 1 2
2. 2 2 0

SPECIFICATION 11.

le 2. 3.
l. 1 1 2
2. 1 1 0

SPECIFICAT ION 13.
1. 2. 3.

le 1 12

e 2 1 0

S

UBGRAPH #*

NUMBER OF PLACES NP= 4

UPPER BOUND

UBGRAPH =

My= 3

NUMBER OF PLACES NP= 4

UPPER BUUND

MU= 2
SPECIFICATION
le 24
le .1 1
2. 0 2
SPECIFICATION .
- l. 2.
l. 11
2. o 1
SPECLFICAT ION
1. 2.
1. 11
2. 1 1
SPECIFICAT ION
l. 2.
1. 1 .1
2. 0 2
 SPECIFICATION
1. 2.

l. 1 1
24 0 1

SPECIFICATION
: le 2e
l. 1 1
20 (] 2

SPECIFICATION
' l. 2.
il. 1 1

2. 1 1

l4.

"3

1
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c PROGRAM B: SYNTHESIS OF VERTEX~-VERTEX INCIDENCE MATRICES.
COMMON 1P(S50,10),IW(25,2),IT(S)
DIMENSION TA(30,5),NT(5), IB1(30, 5'.l"(3095|vl(30)'|Z(5)v!l1(105)0
1MM 6) s MT(3006) oLSE30) yND(6) ¢ME(20) ¢yMT(3420,545) ¢TH(24,5) .
DIMENS ION NQQ(10), IQ(20,5),MIC( 20,5,5),1CK(20), NE(Q) INB(Q)
10 FORMAT(101S)
56 FORMAT(/,* = SPECIFICATION FOR COLORED-'.![.' SUBGRAPH:*,813)
5T FORMAT(/,* * SPECIFICATION FOR THE®, 12, *-COLORED GRAPH:',813)
87 FORMAT(®* NO INCIDENCE MATRIX EXISTS FOR THE GIVEN SPECIFICATION®)
95 FORMAT(//4* MATRIX NUMBER',I13)
98 FORMAT(13,'.*,1015)
99 FORMAT(/+4Xe8(3Xs11,%,),/)
201 FORMAT{ ¢ EXAMPLE®, 13, (°,12,'=-COLORED GRAPH HAVING®,12,
1* VERTICES 1¢,/)
300 FORMAT(//,* THE NUMBER OF VERTEX-VERTEX INCIDENCE MATRICES =',13)
IT(1)=] :
00 31 [=2,5
31 IT(I)=0*IT(1-1)
00 100 I=1, 5
100 12{(1)=] '
READ({S5,10) NEX
DO 200 IEX=]1,NEX
READ(S5,10) NCO
READ{5,10) NV
WRITE(T7,201) IT1EX,NCO,NV ‘
DD 4 KKK=1,NCO s
READ(5,10) (1A{1,IK), IK=1,NV) )
IF(NCO.GE.2) GO TD 2
NV1i=NV=-1 -
DO 8 J=1,NV1l
LL=NV=J+1
DD 8 I=2,LL
IF(TA(Y,I-1)-1A(1,1)) 3,8,8
3 IMAX=IA(1,1)
IA{Yl,1)=1AL1,1~1)
TA(Y,1=-1)=IMAX
8 CONTINUE
WRITE(T,57) NCOy (TA(1, 1K),y IKx1,NV)
GO YO 55
2 WRITELT:56) KKKolIA(LoIK) IK=1,yNV)
55 JVs0
NA=1
NY=]1
NT (NY) =]
36 NP=NV-NY
IFINPJLEs1) GO TO 60
NY=NY +1
NY1=NY~1
JC=NTINY1)
NTY(NY ) =0
00 50 [J=1,J4C
ISU=NT(NY)
TYy=1Y+¢}
N3=TA{IY,l)
IF(NR.NEJ.O) GO TO 38
NC1 =1
Nl =1
00 40 I=1,NP
40 I81(1,1)=0
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.60 T0 18
38 CALL DIST [NBsNPsNR)
CALL PERMUL (NPyNR, 181,NC)
" IF{NCO.GE<2) GO TO 42
IF(INYL.NE.1) GO TO 42
00 5 [=2,NV
5 IAL(1,I=1)=IAL1,0)
CALL POSSIL(IAL,IB1,NPyNCyIHsNI)
. NC#NI ‘
DO 6 'I=1,NI : : ' !
) DO 6 J=1,NP :
6 181(1,4)=IH(I,J)
42 NC1=0
13 NC1=NCl+l
IFINCL.GT.NC) GO TO 22
NP1=0
16 APL3NPL+1
IFINPL.GT.NP) GO TO 18
J=NPLl+]l 5
IF(IEL(NCLoNPL).GT.IACIY,J)) GO TO 13
- 6D T0 16
18 NA=NA+]
NAl=NA-1
NTUNY)=NTINY)+1
00 14 I=1,NP
IMINAL, 1)=IBLINCLLI)
J=1+1
14 TAU(NAy [)=IACIY,J )= 1B1INCL, 1)
G0 10 13
22 LUIY)=NTINYI)-ISU
50 CONTINUE
IF(NY.LT.3) GO TO 36
U=1vy
INB (NY)=0
430 IF(L(IU).NE.O) GO TO 36
INBINY )=INB(NY)+1]
1U=1u-1
GO . TO 430
.60 NZINYL)=NTI(NY1)=INBINY)
NS=1 .
NF=NT{ 2)
D0 33 I=1,NF
33 LstI)=1
CO 61 I=3,NY
J=1-1
NFL=NTLJ)
00 61 IX=1yNF1l
AS=NS+]
JI=LINS)
IF(J1.LE.O) GO TO 61
DO 82 1Y=1,J1
NF=NF+1
82 LSI(NF)=NS
€1 CONTINUE
NDI{NY)=NAL-NT(NY)}=-INBI(NY)
IF(NY.LE.3) GO TO 81
NDENYL) =NDI{NY)I-NZ{NY1)
IFINY1.EQ.3) GO .TO 81
DO 66 J2=5,NY



66
81

70

63

65

J=NY=J2+4

Jil=ad=1

ND( J1)=ND( J)~ NT(JI)
NN=NA

MNENY) =NAL

DO 70 J2=3,4NY

JahY-J2+3

Ji=J-1-

MMUJ L)=MMLJ )=NT(J)

IF(TIA(NA)1).EQ. IA(NA.Z).AND IAINA, 1).LE 1) GO T0O 65

-KS=NTINY)~-1

NN=NAL

£LO 63 KS1=1,KS

IFCIACNNSL) JEQ. FAINN,2) AND.IA(NN 1) LE.1l) GO TO 65
NNaNN-1

WRITE(7,87)

G0 10 200

MT(lyLld=NN~1

ME(L1)=IA(NN,1)

" MT{ 1y 2)=ND(NY)- (LS(HH(NY]) LS(HT(I,I))I

DO 68 J2=4,NY

. J=NY=J2+3

68

71

MT(1:J2-1)=NOD(J)- (LS(HM(J)) LS(MT(I.JZ-Z))) INBLJ)

'NN=AN-1

NQ=1

ICH=NA-NT(NY)01

IFINN.LT.ICH) GO TO 76
IFCTACNNSL) NETAINN,2)) GO TO 74
IFCIA(NNy 1) GT.1l) GO TO 74
NQ=NC+]

'ME(NU)=IA(NN91)

75
74

76

S0

94

92

MT{NQy Ll )=NN=-1
PT(NQ.Z)-ND(AY)—(LS(MM(NY))-LS(HT(NQol)l)
DO 75 J2=4,NY .

J=NY=J2+3
MTINGyJ2-L)=NO(JI=(LSIMM(J) )-LS (MT(NQ,J2~2)) )~ lNB(J)
CONT INUE

AN=NN-1

GO T0 71

NY1=NY-1

CO 90 K=14¢NG

DO S0 I=1,5

Ml(KKKnKulol) 0

NQLl =0

NQ1=NQl+1l Q .

IFINGL.GT «NQ) GU TO 93

JV=AYV

JvaJyv-1

MI{KKKy)NQLoJV,y NV)=ME(N01)

DO S2 IK=1,NYl

NPP=IK+1

JVv=Jv-1

DO S2 IJ=l,.NPP

KJd=JV+IJd

MI(KKK 9 NQL y JV oKJ )= IMIMT (NQ1y IK ) 1J}
NV1=NV-1

O 96 I=1yNV1

1Jd=I+1

00 96 J=lJyNV
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96

93
128

110

120

122

124

128

130

134
132

302

97

102

105

106
104

MIIKKK ¢NQL1oJdoI)sMI{KKKyNQLT,J)
GO YO 96
DO 126 1=1,NQ
1CK(1)=0
NQC=0
NQC=NQC+1
IF{NQC.GT<NQ) GO TD 130
IF{ICK(NQC)+EQ.1) GO TO 110
NQR=NOC
NQB=NQB+1
1F (NQB,GT.NQ) GO TO 110
1=0 -
I=14} .
IF{1.GE.NV) GO YO 128
J=1
J=Je}
lF‘J.GToNV) GO YO 122
TIF(MI(KKK, NOC'!'J’.EO."'(KKKONQBO"J" GO TO 124
G0 Y0 120
ICK(NQB) =)
GD TO 120
NQA=0
DO 132 1=1,NQ
IFLICK{1)eEQal) GO TD 132
NQA=NQA+1
134 11=1,NV .
DO 134 Jl=1,NV
MI { KKK ¢ NQA, lloJl)'Hl(KKKolvlloJl’
CONTINUE .
IF(NCO.GY.l) GO TD 302
WRITE(7,300) NQA
DO 97 K=1,NQA
WRITE(7,95) K
WRITE(7,99) (lZ(l9’olql11NV’
PN 97 I=1,NV
WRITE(7,98) 'O(Nl(KKKoKole’oJ'l NV)
NQQ( KKK) =NQA
CONTINUE
IFINCO.EQe1) GO TO 200
JC=NOOQ( 1)
DO 102 1=2,NCO
JB=NQQO(I?} .
DD 102 J=1,J8
JC=JC+1
DD 102 11=1,NV
D3 102 J1=1,NV
Ml(l'JCv!lel’=Hl(lkolloJl"lo*‘(l -1)
CALL COMBINCOyNQQ,IQ,NI)
WRITE(T7,300) NI
DO 107 I=1,N1
DD 105 I1=t,NV
DD 105 J1=1,NV
MIC(I,I1,Jd1)=0
DD 104 J=1,NCD
D0 106 11=1,NV
DO 106 J1=],NV
MICIT,I1,J1)=M1IC(TI,I1, Jl,‘Ml(l'!Q(loJ’llloJl’
CONTINUE
WRITE(7,95) 1
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WRITE(7,99) (ll(loi,l9=1.nv1
€O 112 Il=1,NV .
112 KRITE(T,98) 11, (MICCT,110310331=1,NV)
1C7 CONTINUE
200 CONT INUE
STOP. -
END
SUBROUT INE DISTINB,NP,NR)
COMMON TP(50,10) yIW(2542),IT(5)
D0 29 1=1,200
Lo 29 J=1,6
29 IP(1,4)=0
NR=NB/2+1
AP1=NP-1
NP 2=NP-2
IC1=NP1
IP(1,NP)=NB
IF(NR.LT.2) RETURN
00 21 I=2yNR.
CIPLI4NP)=IP(I=1,NP)~1
21 IPCT,NPL)=IP(I-1,NP1)+1
IF(NP.LE.2) RETURN
16 TF(IP(NR,NP1).LE.IP(NR,NP}} GO TO 56
NR=NR-1
RETURN
€6 IC1=1C1-1
IF(ICl.LT.1) RETURN
NR=NR +1
DO 23 I=IC1,NP1
23 IP(NR, I)=1
1P (NR yNP) =NB- (NP1-IC141)
47 16=NP1
44 NR=NR+1
DO 45 1=1,IG
45 IPINR,1)=IP(NR=1,1)
IP(NR, IG)=TP(NR=1, IG)+1
DO 12 1=1G,NP1
12 IPINR, [)=1P(NR, IG)
IP(NRyNP)=NB
DO 14 I=1,NP1
14 IP(NR,NP)=IP(NR,NP)-T1P(NR,I)
IFCIP(NR, 16 ).LT.IPINR,NP)) GO TO 10
IF(IPINR,IG ).EQ.IPINR,NP}) GO TO 40
NR=NR~1
40 16=16-1 ‘
IF(IG.LY.IC1) GO TO 16
GO TO 44
10 NR=NR+1 :
DO 18 I=1,NP2
18 IP(NR,T)=IP(NR-1,1)
IPINR,NP) =1 P(NR-1 ,NP)~1
IP(NR,NP1)=TP(NR~1,NP1)+1
IFCIP(NR,NPL).LT.IPINR,NP}) GO TO 10
IF(IP(NR,NP1) .EQ.IPINR,NP)) GO TO 47
NR=NR-1
GO TO 47
END
SUBROUT INE PERMUL(NP,NI, [B1,NC)
COMMON. IP(50,10),IW(25,2),IT(5)
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,DIHENSlON leIUoBOvS'olQ(ZQ,S'.IG(QO, 151(3005,
- CALL PERHU(NPlevKC'
"NC=Q -
D0 32 1Is1,N1
DO 30 J=1,KC
D0 30 K=1,NP
30 IB(1sJdeK)=IP(1,1Q00,K))
. DO 37 1K=1,KC
37 IG(IH) =0
IH=0
38 IH=IH+)
‘ IF(THsGTeKC) GO TO 44
IF(IG(IH).EQ.1) GO TO 38
: THl =1IH
36 IH1=1H1+1
IF(IH1,GT.XKC) GO TO 38
IFCIG(IHL) . EQ. Y1) GO TD 36
NP1=0
40 NP1=NP1+1 :
IF(NP1.GTiNP) GO TO &2
IFCIB({ I, IH,NPL1).EQeIBI(Y, lHl’NPl” GO TO 40
GO0 TD 36
42 1G(IH1) =1
GO T0 36
44 IH=0
45 TH=IH+1
IF(THeGT oKC ) GO TO 32
IFUIG(IHIZEQ.1) GO TO 45
NC=NC+1
D0 46 II=1,NP
46 IBLINC,I1)=1IB(1,IH,I1)
GO TO 45
32 CONTINUE
RE TURN
END
SUBRDUT INE POSSIN(1Y, lBlvNVtNColHolK,
COMMON IP(50,10),IW(2542),IT(5). ..
DIMENS ION INL10O) . 010(2005,olBl(BOoS'OKL(lO’v
1LV(5+95)9IVA(5424,5),1VL lo5’vIH(24v5’oIBB(20015’5’ 1CK( 40)
XK=0 -
XC0=0 )
13 I=0
K=K+l
KL{K)=1
11 KCO=KCO+¢1
I=1+1
IF(KCDeGEJNV) GO TO 15
IF(IY(1,KCO), NE.IV(I.KCOOI)) GO0 10 13
KL(K)=1¢1
GO TO 11
15 DO 52 TJK=1,NC
KK=0
DO 21 (=]1,K
K1 =KL{Il)
DD 21 J1=1,K1
KK=KK+1
LVIT 4J1 ) =181 (1JK,KK)
21 CONTINUE
DO 19 IK=1,K



17

20
19

50
52

60

65

62

65
63

64

61

7
70

K1=KL{ 1K)

IF(K1eGTol) GO TO 17
IVACIK,Y 92 12LV(IKe1)

Gd TD 19 _
CALL PERMU(KL ¢ TH,KT)
DO 20 J=1,KT

DO 20 J1=1,K1

TVALIK, JoJ1)=LV(IKe TH(SoJ1 D)
CONTINUE
CONT INUE
DO 2, 131,K

INCT)=ITEKLIT))
CALL COMB(K,IN,T1Q,NI)
DD SO I11=1,NI
N2=0
DO 50 12=1,K

K1=KL(T2)

DI SO Jl=1,K1

N2=N2+1 -
IK=1W(1Q(TI1,12),1)
J=IW(T1Q(11,12),2)
IBBITJK,T1,N2)=IVA(IK, JyJ1)
CONTINUE ;
CONT INUE
DO 60 IJK=1,NC

1ZK(1JK)=0
DO 61 1JK=1,NGC

1JA=1JK

IF(ICK( 1JK)+EQ.1) 6O TO 61
TJA=TJr+1

IF(1JALGT.NC) GO TO 61
IK=0

IK=1K+1
IF(IK<GT.NI) GO TO 66
KI=1
NP=0
NP =NP+1

IF(NP.GT.N2) GO YO 64
IFLIBB(1JK,IKoNPY, EQ.!BB(IJA'K!.NPDD G0 TO 63
KIsKI+1

IF(KI.GT.NI) GO TO 62
GO TO 65

1CK(1JA)=1
GO TO 66
CONTINUE

IK=0
D0 70 TJK=1,NC.
IF(ICK(TJK).EQ.1) GO TO 70
1K= 1K +1
D0 T1 TL=1,N2
THOIKGTL)=1BB(TJK,1,TL)
CONT INUE
RE TURN
END
SUBROUT INE PERMU(J, IH,KC)
COMMON TP(50,10),IN(2542), IT(5)
DIMENSTION TH{24,5)
TH(1,1)=1
TH(1,2) =2
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TH(2,1)=2
TH(2,42) =]
KC=2
IF(JeEQe2) RETURN
K=3
22 K1=K-1
KT=IT (K1)
: D0 10 11s=1,KT
10 TH(I1,K)=K
KC =KT
DO 20 I5=1,K1
12=K1-15+1
DO 20 14=]1,KT
KC=KC+¢1
TH(KC,K)=12
KM=1
25 IF(IH(14,KM). NE,T2) GO TO 17
TH(KCy KM )=K
GO0 Y0 23
17 THOKC KM)=TH(TI &4,KM)
23 KM=KM+1
IF{KM.GTeK1) GO TO 20
GO Y0 25
20 CONTINUE
K=K¢1
IFIK.LELJ) GO TO 22
RETURN _
END :
SUBRIUTINE COMBI(K, IN,IQsNI)
COMMDN IP{50,10),IW(25,2), IT(5)
DIMENSION IN(10),1Q(20,45),IR(5424)
KCO0=0 L
DO 3 I1K=l,K
I=INCIK)
D0 3 J=1,1
KC 0=KC0¢1
IR(IK,J)=KCO
IW(KCO,1 )1=IK
IW(KCD,2)2)
3 CONTINUE
NR=1
K1=K-1
TF(KleLT42)Y GO TO 32
DO & 1=2,K1
4 NR=NR*IN(I)
M1=NR
MT=IN(1D)*IN(K)
DD 6 11=2,K1
M1=M1/INC(I1)
MC=NR/(ML*IN(I1))
NI=0O
DO 6 I5=1,MT.
DO 6 12=1,MC
MN=IN(T1)
DO 6 [3=]1,MN
D0 6 [4=1,M1
NI=NT+1
TQINI,I1)=IR(I1,13)
6 CONTINUE

-
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32 NI=0
N1=IN(1)
NK=TN{K)
-DD B8 Il=1,N1
DO B 12=1,NK
DD 8 I3=1,NR
NI=NT1+1
TQINTK)=TR (K, 12}
TQ(NI 1) =IR{1,I1)
B8 CONTINUE
RETURN
END
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EXAMPLE 1 ( 1-COLORED GRAPH HAVING 4 VERTICES )
* SPECIFICATION FOR THE 1-COLORED GRAPH: 3 3 2 2
THE NUMBER OF VERTEX-VERTEX INCIDENCE MATRICES = &
MATRIX NUMBER 1 | o |

1 3
lo‘ . 20 3. 40 '
1. 0 1 1 1
22 1 o0 1 1
3. 1 1 0 0
4 1 1 -0 0 b 2
MATRIX NUMBER 2
' | 1 2
le  2¢ 3¢ 4.
1. 0 2 0 1
2. 2 0 1 0
3. 0 1 0 1
4 1 0 1 0 4 3
MATRIX NUMBER 3 -
lo . 20 ' 30 40
1« O 1 0 2
2. 1 0 2 0
3, 0 2 0 0
4, 2 0 0 0
MATRIX NUMBER 4
le  2¢ 3 4
1. 0 3 0 o
2. 3 0 0 0
3, 0 0 0 2
4 0 0 2 0

EXAMPLE 2 ( 2-COLORED GRAPH HAVING & VERTICES )
# SPECIFICATION FOR COLORED-1 SUBGRAPH: 1 2 1 2

MATRIX NUMBER 1

1 2
le  2¢ 30 4 .
1. o 1 o0 ©
26 1 o0 0 1
3, 0 o0 0 1
4 0 1 1 0 b 3



"MATRIX NUMBER .

1.
2¢
3
b4e

1. 2e
0 0
0 0
1 0
0 2

MATRIX NUMBER

1.
2.
"3,
&4,

* SPECIFICATION FOR COLORED-2 SUBGRAPH:

1 2

=O000e
O 0e

MATRIX NUMBER

1.
2,
3.
be

THE

1

1. 2.
0 1
1 0o
1 0
0 0
NUMBER OF

MATRIX NUMBER

1.
- 2e
3.
be

1. 20
0 11
11 0
10 0
0 1

MATRI X NUMBER

1,
2.
3.
be

1. 2.
0 10
10 0
11 0
0 2

MATRIX NUMBER

1.
2
3,
b4

1. 2e
0 10
10 0
10 1
1 1

1

3.

10 .

3.
10
1
0
0

OO e

ooNnO*

D Oe

OQONDOe

4

ko

1l

VERTEX~-VERTEX INCIDENCE MATRICES = 3
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c ~PROGRAM C: COLORED GRAPH ISOMORPHISM TEST,
COMMIN IVE(2,10,15),KEE(15,15),1A(2410,100,KVE(10,10),
11B(241542),1C(2,100,1V(2,10), IT(10),NV,KE
DIMENSION KV(10,1) ,1VV(10, 10).lSl(2.2.10).!V5(2.10).lp(40 10),
LIdE15),NE(2),152(2,2,10)
9 FORMAT(10X,* VERTEX NUMBER',5X,1016)

20 FORMAT( /,* DEGREF OF VERTEXees'+1016,4/)

21 FORMAT(//+' THE NUMBER OF ARRANGEMENTS OF VERTICES IN GRAPH 1 IS*
1,13,¢ st} .

22 FORMAT(' POSSIBILITY! ,I5,%..¢?91016)

25 FORMATA(//,* GRAPH',13,* DEGREE OF VERTEX *y1016,4/)

38 FORMAT(//4* TWOD GRAPHS ARE TSOMORPHIC',/,' [ISOMORPHISM IS FOUND
1AT "POSSIBILITY', 13, DUT OF TOTAL'*,I13,* POSSIBILITIES*)

39 FORMAT(//,+' -TWO GRAPHS ARE. ISOMORPHIC®y/," 6 ISOMDRPHISM IS FOUND
1AT POSSIBILITY',13," OUT OF TOTAL?',13,' POSSIBILITY®)

61 FORMAT(/,*' POSSIBILITY",I5,% :*)

63 FORMAT(/,!? THE DEGREES OF VERTICES IN TWO GRAPHS ARE DIFFERENT?)

81 FDORMAT(T7X; 'LEADING VERTEX sV 4161

82 FORMATLU 7X,'EDGE NUMBER®,6X, *: 7y 1016)

83 FORMAT(7Xy? VERTEX NUMBER? 44X ,%2%,1016)

84 FORMAT(7X, "DEGREE OF VERTEX :',1016)

90 FORMAT (/4"  (*412,%)%,¢ INCIDENCE TABLE®*)

91 FORMATU/,7TX,'GRAPH® 413, 2¢)

97 FORMAT (/" THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME?')

100 FOPRMAT(1615) - -

105 FORMAT(18,"', ‘4 1515)

111 FORMATL//,' THF TWD GRAPHS ARE NOT ISOMORPHIC®)

152 FORMAT(///+TXy" VERTEX ELEMENT ARY MATRIX?',/)

156 FORMAT{///747TXy 'EDGE ELEMENTARY MATRIX®,/)

190 FORMAT (12X 415(T144%4)5//77)

192 FORMATI//,* GRAPHY ,13,¢ VERTEX~EDGE INCIDENCE MATRIX',//)

193 FDRMAT{(//,* GRAPH'yI3,* VERTEX-VERTEX INCIDENCE MATRIX?,//}
365 FORMATI * & EXAMPLE', 13,¢ %)

DO 47 1=1,15
47 IN(I)=1

1T(1) =1
noO 40 1=2,10

40 IT(I)=I*IT(I~1)
READ(S,1000 NEX
DD 350 IJK=1,NEX
WRITE(T,365) 1JK
DO 36 1=1,2
DO 36 J=1,10
00 36 K=1,15

36 IVE(1,J4K)=0
READ(5,100) NV
READ(5,100) NT
DD 110 16=1,2
READ(S5,100) (IKV(141),I=1,NV) "
NV1 =NV=-1
KCO=2
KE=0
DO 3% T=1,NV

35 IVWWI(I,1)=20
DO 102 I=1,NV]
READ(S5,1001 (IVV(I,J) ¢J=KCOyNV)
DO 37 L=KCD, NV

37 Tvvit,1)=Ivv(I,L)
DO 104 K=KCO,NV



- TELIVVII 1K) EQ.0) GO YO 104

104
102

130

106

108
110

114

112

120
10

60

117
S0

KE=KE+1

IVE(IGy 14KE)=IVV(I,K)

IVE(IG ¢KyKE)=IVV(I4K) .
IB(IGyKEy1)=1

IB(IGyKEs2 1=K

CONTINUE

KCO=KLC O+1

CONTINUE

WRITECLT,193) 16

WRITE(T7,190) (IN(I)yI=1,NV}
DO 130 L=1,NV

WRITE{7+:105) L {IVVIL M) M=1,NV)
NE(IG)=KE

WRITE(T7,192) 1IG

WRITE(7,190) (IW(I),I=1,KE)

DO 106 M=1,NV

WRITE(T7+105) Mye(IVE(IGyM,L),L=1,KE)
DD 108 I=1,NV

IVIIG, I }=KV (1,1 )%10%*NT -

DO 108 K=1,KE

IVIIGy 1)=1IV(IG, I)+IVE(IG, I4K)
CONTINUE

CONTINUE

IFINE{1).FQ.NE(2)) GO TO 112
WRITE(T7,111)

GO TOD 350

CONT INUE

DO 120 16=1,2

DD 120 J=1,NV

IVS (1G4 J)=1IV(IGsJ}

1S 1G,1,J)=J

CONT INUE

CALL ORDER(IVSo'SloNV’loJJ'

DD 10 IG=1,2 .
WRITE(T,25) IG.(IVS(IGaI,oIBIoNV’
WRITE(T7,9) (IS1CIG,141)41=1,NV). ..
1F(JJ«EQ.0) GO YD 60
WRITE(T7,63)

G0 TO 114

CALL POSS[(IVS.!SI’IPoNl)
WRITE(T,21) NI

WRITE(7,20) (lV5(lol)oI*loNV,
D0 7 I=1,NI :
WRITE(T,22) T1,(IP(14J0),0=1,NV)
D) 117 16=1,2

00 117 I=1,NV

KN=0

DD 116 J=1,KE
IFCIVEUIG,[4J)e€EQ.D) GO T0 116
KN=KN+ 1 .
TA(IGy I,KN)=J

CONTTNUE

1C(1G6,1)1=KN

CONT INUE

NIl =0

NI1=NI1+1

IF(NI1,GT.NI) GO TO 114
WRITE(T,61) NIl
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30

31
32
52

95

93

51

53

54

300

150

154
350

00 30 I=1,10
DD -30 J=1,10
KVE( 1,J)=0

DO 31 I=1,15

- DD 31 J=1,15

KEE(1,J)=0

DO 32 I=1,NV

KVE(IPINIL 1),1S1(2,1,1))=1

1=0

1=1+1

IF(1.GT.NV) GO TO 50
NE(1)=TIP(NIY, 1)

NE(2)=1S1(¢2,1,1) )

1S20 1414 1)=1P(NI1,1)
1S2(2,141)=1S1(2,1,1)

CALL TABLE(TIVS5 4152 +KWyJJ)
WRITE(7,90) I

DO 95 L=1,2

WRITE(7,91) L

WRITE(7,81) NE(L)

WRITE(7,82) (lSZ(Lv?oKHH’,KNH*l:KN,
WRITE(T7983) (1S2(Lsl oKWW) KWW =] 4KHW)
WRITE(T,84) (lVS(LvKNN’oKNH‘l.KH)
IF(JJ. EQe0) GO TO 93 .
WRITFE(7,63)

GO YO 50

WRITE(T7,97)

KW1=0

KWl=KWl+1

IFIKWL.GToeKW) GO TO S5¢&

KW2=0

KH2=KW2+1

IF{KWZ2.GT,KW) GO TO S1
TF(KVE(IS2(1,1,KW1),152(2,1,KW2)).EQ.0) GO TO 53
KEE(IS2(242+,KN2)51S2(1,2,KW1))=1 ;
G0 YO 51

CALL CHECK(MM)

GO 7O (52,5054)y MM

IF{NIL.EQ.2Y GO TO 5

WRITE(T7,38) NI1,NI

GO 70O 300

WRITE(7439) NI1,NI

WRITE(T7,152) )

WRITE(74190) (IW(I)yI=1,NV)

DD 150 I=1,NV ‘

WRITE(T,105) Ly (KVE(1,J)eJ=1,NV)
WRITE(7,156)

WRITE(7,190) (IW(1),I=n]l,KE}

DO 154 1=1,KE

WRITE( 75105) I ,(KEE(T] 4J) 9J=1,KE)
CONTINUE

sTOP

END

SUBRIUTINE DRDER (KyISsNyIDJI)
COMMON IVE(2,10,415),KEE(15,15),1A(2,)0,10)4KVE( 10,100,
11802915421 ,1C(2,10),1V(2,10)417(10) yNV,KE
DIMENSTON K{2¢N)},1S(2y24N)

M=N-1 . -
DO 8 1G=1,2
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10

124
126

122

13

11

15

DD 8 J=1,M

L=N=-J+1

DO 8 I=2,L

1F(K(15'l,'K(lG'l°l,, 34848
IMAX=K (IGy I=1)

K(IG,I-1)=K{IG,1I)

K{IG,1)=IMAX

D0 9 1J=1,1D

IMAX=1S(1G,1J,1~1)
IS{IGe1JsI-1)=1S(IGy1J,1)
1S(1Gy 1Jy 1 )= IMAX

CONTINUE '

CONTINUE

JJ=0

KZ =0

KC=KC+1

IF{KCeGTeN) RETURN

IFIK(TyKG)oEQe K{2,KC)) GO TO 10

Jd=1 :

RETURN

END

SUBRIUTINE TABLE(IV1,1S1:KHeJJ)

COMMON IVE(2,10,415),KEE{15,15), 1A{2,10,10),KVE(10,10),
113(2115v2)v!C(Z.lO’.‘V(Z 10),1T(10) yNV,KE
DIMENSION IV1(2,10),1S1(242410)

DO 122 1G=1,2

KT=1S1(IGy1,y1)

KW=IC (1G4 KT)

DD 122 1I=1,KW

KY=TA(ICyKTy 1)

IS1(1Gy2,4 1)=KY

IF(IB(IGIKY,1),EQ,KT) GO TO 124
IS1(1G,1,1)=1B(1G,KY, 1)

GO T0 126

1S1CIG,1,1)=IB(IG,KY,2)

MN=1S1(1Gy1,1)

IVI(IG,I)=IV(IG,MN)

CONTINUE

CALL ORDER(IV1, IS1,KWe2,JJ)

RETURN

EMD

SUBRNUT INE POSSI(IY,1S1,IP,NI)

COMMON IVF(2.10-15).KFE(15.15).lA(Z.lo.lo) KVE(10,10),
118(2,15,2),1C(2,100,1V(2,10),1T(10) 4NV,KE
DIMENS ION !N(lo’v!R(5024)'!H(50'2,'IQ(SOOIO’QISI(ZOZOIO’)
1LVI5+5) yTIVA(5,24,5),1Y(2,10), !P(40'IO)QKL(10,
K=0

KC0O=0

I=0

K=K+1

KL(K) =1

KCO=KCN+1

I=1+1 '

IF(KCO.GEsNV) GO TO 15
IF{IY(1,KCO).NE.IY(1,KCO+1)) GO TO 13
KLIK)=1+1

Gh 1 11

KK=0

DO 21 1=1,K
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KI=KLLT) :
DO 21 -Jl=1,Kl
KK=KK 1,
LV(I.Jl)sISl(l.!.KK)
CONTINUE
L DI 19 IK=1,K-

KI=KL{TK). .
CAR(KLaGTe1) 60" TO 17’
FVACIK, 1i1)= LV(tK.l)
6O TD 197 -
KT=LT(KI) <.
CALL PERMU(KLy IP}
DO 20; “J=l KT S
DO 20 J1=1,K1 L

20
19

IVA(IK, JyJ1)= LV(!K.!P(J.JID)rf oA

CONTINUE

CONT INUE

DO 2 I=1,K
INCII=TYEKLIT))
KCD=0

DO 3 IK=1,K
I=IN(IK)

D1 3 J=1,T

KCO=KC O+l
IR(IK,J)=KED
TWIKCO, 1)= 1K
INIKCO,2) 24"
CONTINUE

NR=1

Kl=K-1

IF(K1.1 T, 2) GD TO 32
DO & 1=2,K1 .
NR=NR&IN(T )
M1=NR
MT=TN(1)*IN(K )
DO 6 11=2,K1_ ~
M1=M1/IN{TY)
MC=NR/ (ML*IN{T1))
NI=0

DD 6 I5=1,MT
DO & 12=1,MC

MN=ENCTLY Do
‘D0 6 13=1,MN/ .
DD 6 14=1, M1~; C

NT=NT+1’
TQ(NT, 11 )=IR(11,13)
CONTINUE

NI=0 el
N1=1IN(1) S
NK=TN(K)
DO 8 f1l=1,N1

DO 8 {1231 4NK

DO .8 13=1,NR-
NI=NT+1

TQINT ,K) =T R (K, 12)
IQINT, 1)=TR(1,11)
CONT INUE

DO 50 I1=1,NI
N2=0
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D0 50 12=),K

Kil=ki{f12)

DO 50. J1=1,K1

N2=N2+1

IX=TW(IQ(T1,12),1)

J=IW(IQ(Il,412),2)

1P(11, NZ)-IVA(IK-Jle’

CONTINUE ~

RE TURN

END

SUBROUT INE PERMU(J, IP)

COMMON IVE(2,10415)4KEE(1541515T1A(2410910)4KVE(10510),
11B(2,1542)y IC1 29100 4IVI2,10),17(10) 4NV, KE

22

10

25

17
23

20

DIMENS 1ON IP(
IP{1,1)=1
IP(1,2)=2
IP(2,1)=2
1P(2,2)=1

40,10}

IF{J+EQ.2) RETURN

K=3

Kl=K~1
KT=1T(K1)

DO 10 I1=1,KT
IPLT1,K)=K
KC=KT

DO 20 15=1,K1
12=K1-T15+1

DO 20 T&4=1,KTY
KC=KC+1
IP(KC,K}=T2
KM=1

IF(IP(T4,KM},NELTI2) GO TO 17

TP(KC y KMY =K
GO TO 23
IPIKC, KM) =] P{
KM=KM+ 1
TF{KMoeGT oKY)
GO TO 25
CONTINUE
K=K+1

14,KM}

G0 TO 20

IF(K.LELJ) GO TO 22

RETURN
FND
SUBROUTINE CH

ECK{MM)

CIMMIN TVE( 2, 10.15).KEE(15.15).!A(2.10.10).KVE(10 100,
11B(2+15,2)41C(2,10)41V{2410), IT(10),NV,KE.

DIMENSION M1(10,15),M2(10,15)

MM=1 {
LC=0

LE=tC+1

TFLLCL.GT.KE) GO TD 26

LR=0

1SUM=0
> LR=LR+1

IF(LR.GT.KE) GO TO 20

ISUM=T SUM+KEE (LR, LC)

60 To 22

IF(ISUM.£Q, 0) RETURN
g0 TO 24



26
66

62

64

68

61

63

65

67

52

54

56

LC=0

LC=LC+)

IFILC.GTKE) GO TD &8
LR=0

LR=LR+1

IF(LR.GT.KE) GO TO 66
[FIKEE(LR,LC)sEQs0) GO TO 62
DD 64 I=14NV
MI(I4LCY=TIVE(2,1,LR)
GO TO 66

LC=0

LC=LC+] —_—
IF{LC.GTeNV) GO TD 67
LR=0

LR=LR+1

IFILR.GT.NV) G0N TO 61
IF(KVE(LR,LCY.EQeO) GD TN 63
D0 65 1=1,KE
M2(LR,T)=M1(LC,I1)

GO T0 61

LR=0

LR=LR+1

IF(LR.GT4NV) GO TO 56
LC=0

LC=LC+1 :
IFILC.GY.KE)} GO. TO 52
YF(IVF(lpLR Lc). EQ-HZ(LR.LC" GU T0 54
MM=2

PRETURN

MM=3

RETURN

FND
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% EXAMPLE
GRAPH 1

le
2
3.
&
5
6. -

GRAPH 1

GRAPH 2

1.
2
3.
4
Se
6o

GRAPH 2

GRAPH 1

GRAPH 2

1 %=

VERTEX~VERTEX INCIDENCE MATRIX

1. 20 3. & Se (.18
] 10 1 ] ] 1
10 0 10 0 0 1
1 10 0 1 0 0
.0 0 1 4] 1 0
0 0 0 1 0 1
1 1 0 0 1 0
VERTEX-EDGE INCIDENCE MATRIX

1. 2e 3, 4. S, 6o
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0 ] 0 0 0 ]
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VERTEX=-VERTEX INCIDENCE MATRIX
1. 2e 3. 4e 5 Ge
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1. 2e 3. . be Se 6o
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0 0 0 0 ] 1
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0
0
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1
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112
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THE NUMBER OF ARRANGEMENTS OF VERTICES IN GRAPH 1 1S

DEGREE OF VERTEXsae 102 102 103 112
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- POSSIBILITY 1 2
{ 1) INCIDENCE TABLE .

GRAPH 1 :
LEADING VERTEX H 4
. .  EDGE NUMBER : 7 6
© VERTEX. NUMBER H 5 3
" DEGREE OF VERTEX = 102 112
GRAPH 2 2 _
‘LEADING VERTEX : 4 )
EDGE NUMBER H 7 6
VERTEX NUMBER T 5 3.
DEGRFE OF VERTEX 3 102 112

THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME
{ 2) INCIDENGE TABLE I

! GRAPH 1 =

LEADING VERTEX : 5

EDGE NUMBER : 7 -

VERTEX NUMBER : 4 6

DEGREE OF VERTEX : . 102 103

GRAPH 23

LEADING VERTEX : 5

EDGE NUMBER : 7 8

VERTEX NUMBER : .4 6
: 102 . 103

DEGREFE OF VERTEX

+

THE DEGREES OF VERT!CES IN TWD GRAPHS ARE SAME

( 3) INCIDENCE TABLE

GRAPH 1

LEADING VERTEX H & o

EDGE ‘NUMBER : 8 3. © 5.
VERTEX NUMBER - = 5- 1 2
DEGREE OF VERTEX : 102 112 121
GRAPH 2. :

LEADING VERTEX H 6

EDGF . NUMBER - H 8 .5 .3
VERTEX NUMBER 3 5 2 1
DEGREE OF VERTEX 2 102 112 121 .

THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME

( 4) INCIDENCE TABLE

GRAPH 1 :

LEADING VERTEX 3 1 :

EDGE NUMBER H] 3. 2 o1

VERTE X NUMBER : 6 3 2
: 103

DEGREE OF VERTEX 112 121
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GRAPH 2

" LEADING VERTEX H] 2
EDGE NUMBER : 5 4 1
VERTEX NUMBER H 6’ 3 1

DEGREE OF VERTEX : 103 112 121
THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME
( 5) INCIDENCE TABLE '

GRAPH 1

LEADING VERTEX H] 3

EDGE NUMBER 3 & 2 4
VERTEX NUMBER H 4 1 2
DEGREE OF VERTEX : 102 112 121
GRAPH 2 :

LEADING VERTE X H 3

EDGE NUMBER 3 [ 4 2
VERTEX NUMBER : 4 2 1

DEGREE OF VERTEX 102 112 121
THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME

TWO GRAPHS ARE I1SOMORPHIC
ISOMORPHISM IS FOUND AT POSSIBILITY 1 OUT OF TOTAL 4 POSSIBILITIES

VERTEX ELEMENTARY MATRIX
2

) 3. 4o 5

[ ] [ ] [ ] 6.
1. 0 1 0 0 0o o0
2. 1 0 0 0 0 0
3, 0 0 1 0 0 0.
4, 0 0 0 1 0 0
5, 0 0 0 0 1 0
' 0 o o o0 0 1
EDGE ELEMENTARY MATRIX
le 2¢ 3¢ 4o 5. 64 Te Be
1. 1 0 0 0 0 o 0 0
2e 0 0 0 1 o 0 0 )
3, 0 0 0 0 1 o 0 0
4. 0 1 0 0 0o o 0 0
5e 0 0 1 0 o o 0 0
6o 0 0 0 0 o 1 0 0
Te 0 0 0 o o0 o0 1 0
Be 0 0 0 0 0 0 0 1
* EXAMPLE 2 *
GRAPH 1  VERTEX-VERTEX INCIDENCE MATRIX 4 2 1
1. 2« 3. 4, ‘
1. 0 l 0 l 1
2. 1 0 1 10 5
3, 0 1 0 200
4 10 200 0
. 1 5 2
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VERTEX-EDGE INCIDENCE MATRIX

1. 2 3. 4o 56

®
1 1 0 0 0
1 0 1 10 0
0 0 1 0 200
0 1 0 10 200
VERTEX-VERTEX INCIDENCE MATRIX 4 2 1
le 2. 3. 4
0 1 0 1 5 1
1 o 1 10
0 1 0 200
0 20 A
1 10 200 0 | 3 5 2
VERTEX-EDGE INCIDENCE MATRIX
le 20 3¢  &s 5
1 1 0 0 0
1 0 1 10 0
0 0 1 0 200
0 1 0 10 200
DEGREE OF VERTEX -1012 2002 1211 4201
VERTEX NUMBER 2 1 4 3

1012 2002 1201 4211
NUMB ER 2 1.. 3 4

DEGRFE OF VERTEX
VERTEX

THE DEGREES OF VERTICES IN TWO GRAPHS ARE OIFFERENT

THE THO GRAPHS ARE NOT ISOMORPHIC



APPENDIX C
LISTING OF PRISM KINEMATIC CHAINS

The basic kinematic graph of prism kinematic chain (PrKC) is
similar to that of parent kinematic cﬁain. The prism pair in PrKC is
represented by another type of fine edge, say fine dash edge (see
Chapter VI) in the kinematic graph. The number of prism pairs in
kinematic chain is equal to that of fine dash edges in kinematic
graph. '

Based on the 16 kinematic graphs of parent kinematic chains
shown in Appendix A, the kinematic graphs of PrKC's are listed with
only the fine dash edge numbers shown in the listing. For example,
there are 24 PrKC's with three prism pairs with configuration of #1
parenﬁ kinematic graph és‘shown in Appendix A. The 24 numbers right
after the heading "#1 = 24:"’a;e the corresponding numbers shown at

the end. 2 is corresponding to 000124, where 124 are the fine dash

edge numbers 1, 2 and 4 in the #1 parent kinematic graph.



TOTAL :NO. OF KINEMATIC CHAINS WITH 1L UP TO 6 PRISM PAIRS = 3309
IC CHAINS WITH 1 PRISM PAIR = 88

(1) NUMBER OF Kl

1= 33
2= 3%
3= g3
4= 8¢
5= 4
6= 52
7= 103
8= 33
9= 63

#10= . 6:
#ll= 5:
#l2=. o6:

10:

#le=  3:
#15= 43
#lo= 43

F
)
OooOo

t2) NUMBER

#

#
#
#

* x

1= 123

2= 83
3= 30:
24 25

IC CHAINS WITH 2 PRISM PAIRS = 350
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1 -2 1 .
1 2 1
1 2 3 4
1 2 5 6
1 2 3 4
1 2 3 4
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1 2 3
1.2 5 1
1 2 4 5
i 5 6 1
1 2 4 5
1 2 3 4
1 2 7
1 2 5 9
1 2 3 6
0o ¢ 0 0 1
0 0.0 0 &
0 0 0 0 7
0 0 0 010
OF KINEMAT
1 2 3 4
l 2 3 4
1 2 3 4
26 27 30 3l
1 2 3 4
34 35 36 37
1 2 3 4
1 2 3 4
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1 2 3 4,
20 21 22 23
39 40 41 42
1 2 3 4
1 2 3 4
40 41 42 45
1 2 3 4
31 33 34 357
T2 3 4
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31 33 34 45
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20 21 Q2 ¢4
39 40 41 42
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42
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18.

16 0 0 0 0 2 9 17 0 0 0 0 210 0 0 0 0 3
19. 0 0 0 0 3 5 200 0 0 0 0 3 6. 21. 0 0 0 O 3 7
22 0 0 0 0' 3 8 23, 0 0 0-0 3 9 24« 0 0 0 0 310
25, 0 0 0.0 4 5 260 0 0 0O O 4 & 27T. 000 0 0 4 7.
26. 0 0 0 0 4 8 29. 0 0 00 4 9 30 0 0.0.0 410
3. 6 0 0 0 5.6 32, 0 -0 0-0 5 7 - .33. 0 0 0.0 5 8
3%. 0-0.0 0 5 9 35, 0 0-0 0 510 3%, 0 0 0 0 & 7
37. 0 0 0 0 & 8 38. 0°0 0 0 6 9 39. 0 0 0 0 610
4. 0 0 0 0 7 8 4l. 0 0 0 0 79 42..0 0 0 0 710
43, 0 0 0 0 8 9 44, 0 0 0 0 810 45. 0 0.0 0 9 10

(3) NUMBER OF KINEMATIC CHAINS WITH 3 PRISM PAIRS = 810" _

# 1= 245 2 3 4 5 6 9 10 12 13 16 18 19 23 24 271 28 31°
32 33 34 51 59 60 61 . - . '

#2= 143 2 3 4 .9 10 19 21 123 24 26 21 30 52 54

# 3= 70: 2 374 5 9 10 11 12 16 17 18 21 22 23 26 21 28
29 30. 32 33 37 38 39 40 44 45 46 49 50 51 54 55 56 57 58
60 61 65 66 67 70 71 72 .15 76 .77 78 79 81 82 86 87 90 91
92 93 94 96 97 101 102 103 104 106 107 113 115 116 119 o

# 4= 73: 3 4 5 6 7 8 1011 12 13 15 16 17 18 19 20 21
22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 38 39 40 41
42 43 '50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 101 102
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 14 '

# 5= 22¢ 1 2.3 9 10 11 12 13 16 18 23 24 25 26 21 371 38
41 41 52 4 19 R A

¥ 6= 573 2 3 4 5 6 1 9 10 11 12 13 14 15 ‘16 17 18 19

20 21 22 23 25 .26 27 29 30 32 33 34 36 37 38 39 40 42 44
45 46 48 49 50 53 54 57. 58 60 64 65 66 69 70 T4 75 78 85°
89 100 S .

# T=111: 2 3 4 5 6 T 9 10 11 12 13 14 16 17 18 19 20
21 22 23 264 25 26 ‘27 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 44 45 46 4T 4B 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64. 65 66 61 68 69 70 7T1. 72 713 14 15 76 11 18 .
79 80 8l 82 83 84 85 86 87 88 89 90 91 92 93 % 95 96 97
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

¥ 8= 12: 1 2 9 10 11 12 13 18 .19 22 23 21 - v

#9262 119 12 3 4 56 7. 8 10 11 12 13 14 15 .16. 18

L20 21 22 23 24 25 26 271 28 29 30 31 32 33 34 35 36 38 40
42 43 50 51 52 53 54 55 56 57 58 59 60 61 62, 63 64 103 104
106 107 108 109 110 117 118 » _ ,

#10= 593 2 3 4 5 6 71 8. 9 10 13 15 16 17°18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 .35 36 44 45. 46 47
48 49 50 52 53 54 62 63 86 87 B8 92 93 9 95 97 98 99 102
104 108 109 120 ‘ : S

#ll= 39: 3 4 5 7 10 11 12 14 16 17 18 19 20 108 110 112 21
22. 23 24 25 26 27 28 29 30 31 32 33 34 35 36 101 102 103 104
105106 107 . o ; ' -

#12= 58: 2 3 4 5 6 1 8 9 10 11 15 16 17 18 19 20 21
2223 24 25 26 21 28 29 30 31 32 33 34 35 36 44 45 46 47
48 49 50 ‘52 ‘53 54 57 58 86 87 88 91 92 93 94 97 98 99 102
103 109 116 :

#13=115:. 2 3 .4 S5 6 1 8 .9 10 11 12 13 14 15 16 17 20
21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 5S4 55 56 57 58
59 60 61 62 63 64 65 66 67 68 69 70 TL 12 13 74 15 16 17
76 75 80 81 82 83 84 B5 B8 90 92 94 95 96 98 99 100 102 103
104 106 107 108 110 111 112 113 114 115 116 117 118 119 120 18 19 89 93
97 105 109 : ' ‘ , .

#14=27: - 2 3 5 T 9 10 12 16 17 18 19 20 21 23 25 31 32 !
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OF KINEMAT IC CHAINS WITH

8
45
76

8
17

8
51
86

123
158

9 10
46 48
17 78

9 10

129

9 10

54 55
87 91
124 126
159 161

204 207 208

174 177 178 181 190.191

47 51 60 61
5 6 8 9 10 11 12 15 17
34 35 36 45 47 48 49 51 64
4 5 6 1T 8 9 10 11 12
24 21 28 29 30 35 37 -39 4l
3. 2. 0 0 0 1 2 4 3.
6 5« 0 0 0 1 2 7 6
9 8. 0-0 0 1 210 9
5 11. 6 0 0 1 3 & 12.
‘8 vl‘l‘ 0 0 0 1 3 9 _ 15-
5 . 17, 0.0 0 1 4 6 18.
8 200 0 0 0 1 4 9 21,
6 23, 0 0 0 1 5 1. 24,
9 26 .0 0 0 1 510 27.
8 29« 0 0 0 1 6 9 3o.
8 32, 0 0 0 1 7 9 33,
9 35, 0-0 0 1- 810 36,
4 38- O O 0' 2 3 5 39.
7 4. 0 0 0 2 3 &8 42,
10 4, 0 0.0 2 4 5 454
7 ) 47, 0 0 0 2 4 8 - 48,
10 5. 0 0 0 2 5 & "51a
8 3. 0 0 0 2 5 9 54,
7 56 0 0 0 2 & 8 57,
10 59, 0 0 0 2 7T 8 60,
10 62. 00 0 2 8.9 63,
10 65, 0 0 0 3 4 5 66,
7 68, 0 0 0 3 ¢4 8 69.
10 - 7l. 06 0 0 3 5 6 12.
8 74 0 0 0 3 5 9 75.
7 77. 0 0 0 3 6 8 78.
10 80.. 0 0 0 3 7 &8 8l.
‘10 63, 0 0 0 3 8 9 84,
10 86 0 0 0 4 5 6 87.
8 69, 0 0 0 4 5 9 90,
7 92, 0 0 0 4 6 8 93,
10 95, 0 0 0 4 7 8 9.
10 98, 0 0 0 4 8 9 99,
10 101. 0 0 O 5 6 7 102,
9 104. 0 0 0 5 6 10 105.
9 107, 0. 0 O 5 710 108,
10 110. 0 0 0 5 910 - 1l1.
9 113, 0 0 0 6 710 114,
10 116 0 0 0 6 910 117.
10 119¢ 0 0 0 7 9 10 120.
4 PRISM PAIRS = 1157
1l 14 15 16 19 20 24 25 26
53 54 55 56 59 60 60 61 62
125 126 127
11 12 14 15 16 19 30 31 -32
14 15 19 20 21 24 29 30 31
56 57 58 60 61 65 66 61 68
92 96 97 98 101 106 107 110 111
127 133 135 136 139 141 142 145 146
162 168 170 171

18 19 20
13 14 15
43 45 47
00 0 1
0 0 01
00 01
0 0 01
00 01
0 0 01
00 0 1
0 0 0 1
00 01

‘000 0 1
0 0 0 1
0 001
0 0 0 2
0 0 0 2
0 0 0 2
000 0 2
0 0 0 2
0 0 0 2
0 0 0 2
00 0 2
0 0 0 2
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 3
0 0 0 4
0 0 0 &
0 0 0 4
0 0 0 4
0 0 0 4
0 0 0 5
00 0 5
0 00 5
0 0 0 o
0 0 0 6
0 0 0 7
0 0 0 8
21 30 31
65 66 10
33 371 61
35 36 40
70 117

112

147

194

21 25
17 18
56 58
2 5

2 8

3 4
3.17"
310 -
4 1
4 10

5 8

6 7

6 10.
710

9 10

3 6
39

4 6

4 9
5 -7

5 10

6 9

7 9

8 10

4 6

4 9
5. 7 .
5 10

6 9

7 9

8 10

5 1

5 10

6 9

7 9

8 10

6 8

7 8’
8 9

7 8

8 9

8 9

9 10
32 35
71 712
63 64
41 42
79 80

113 114 116 117
148 149 151 152
194 196 197 198
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59 - 60
78 .19
103 104
138 139
# 5= 343
. 40 41
# 6= T43
30 31
60 61
94 96
¥ T=150s
31 32
56
19
103
125
145 l46
168 169
# 8= 213
60 61
# 9= 923
~18. 19
46 47
76 17
127 128
#10= 81:
25 26
56 57
80 81
176 117
#11= 508
51 .52
70
#12= 83:
‘ 25 26
.55 56
76 18
124 129
#13=165:
26 27
45 48
69 170
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110 112
130 131
155 157
185 189
#léa= 472
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111 115
#15= 413
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113 114
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158 159
‘190 191
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52 53
116 117
8 9
34 36
112 113
3 4
26 21
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43.
197
2

51
33
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44
208
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123
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10
35
65
106
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36
60
83
109

129.

149
172

.22
50
80

‘132
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29
60
106
192
16
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77
10
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83
177
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30
52

73.
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115
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160
202
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119

28
61
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45
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83
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202 203
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61
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11
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61 66

85 86

110111

130 131

150 151

173 174

4 8
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12
37
68
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12
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4 5
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26
52
82
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69
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12
31
6l
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187
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54
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94
117
136
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204
12
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52

31
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55

12

3T

22
47
66
92
126
204
14
70
14
38
70
113
14
40
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87
112
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1717
12

21
53

84

135

13,

32
63
112

21

58

13 -

32
62
107
189

13-

33
56
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118
137
163
206

59
125
14

53

32
64

23
48
617
93
127
207
17
71
15
40

71

114
15
41
68
88

113

133

157

178

108

138
165
207
15
60
126
54
10

33
65

24
.49
68
94
128

18
12
16
41
77
116
16
42
69
89
114
134
158
180
30

198
15
34
64
111

" 15

35
58
78

120
139
166
208
17
61
127
16
56

11
34
66

25
50
69
95
129

21
73
17
42
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117
17
44
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91

115
135
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181
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35
65

112

16
36
59
79
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172
140
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l44
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36
18
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113

17
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36
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47
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72
93
117
137
161
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39
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201
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68
118
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204
18
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61
8l
100
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145
170
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20
59

14
37
86

28

53

72
98

‘132

31
88
21
- 50
85
136
21
50
73
94
118
138
162
200
34

‘12
40
68
100
204
19
39
70
119

39
64
83
19
39
68
117

19

.39

62

82

101
124
147
171
164

28

69

22
60

15
40
88

35
54
73

99

133

32
93
22
51
86
139
23
51
74
96
119
139
163
201
35

13
41
70
101
205
20
48
71
122

40
65

20

42
69
118

20
40
63
83
103
125
149
173
168
29
70

23
61

16
41
97

119

36 317
55 56
T4, 15
206 100
134

36
95
23
52
87
141
24
.52
75
97
120
141
164
203
36

317
129
24
55
89
148
26
53
76
98
122
L42
165
204
317

14
42
n
102
210
21
50
72
124

15
43
72
123
b4
22
51
73
128

41
66

42
67

21
43
70

22
50
71
120

21
4l
64
84

104

126

150

174

22
42
66
85
105
127
151
175
30
71

31

25
‘T4

27
78

17
42
99

18
43
112

135

T4

195

38 39
- 57. 58
Te 17
101 102
136 137
38 39
26
57
91
149

29
58 .
92

n

54
17
100
123
143
166
207
40

55

78
101
124
144
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41

17

45"

74
126

16
44
73
124
105
23
52
76
129

24
55
78
140

45
68

50

24
52
73
123

23
51.
72
122
23 24
43
67
89
108
128
153
183
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86
109
129
154
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44
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32
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29
19

30
80
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48
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