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CHAPTER I 

~NTRODUCTION 

The process of structural synthesis is a systematic rational 

approach. A great deal of work has been done to_ undertak1:L .. the task of 

structural analysis and synthesis in the fields of electrical networkst 

chemistry, transportation systems, social sciences and o~her related 

fields [1,2,3,4,5,6]~ 

Using the analogy of the symbolic notations of chemistry, Reuleaux 

in 1876 [7] attempted to develop a symbolic representation for kinemat­

ic chains. His objectives were to devise a vocabulary of symbols to 

describe a particular combination of kinematic components. A link and 

a fixed link are represented by a solid line and two parallel lines re­

spectively. The kinematic elements, which are defined by their geomet­

rical form and their kinematic function, are represented by 15 capital 

letters, for example, Sis for screw, P for prism, C for cylinder, R 

for turning joint. The superscripts+ and - after these letters indi­

cated the male and the female component forms of a kinematic pair. 

Although his symbolic representation for kinematic chains serves to 

illustrate many kinematic relationships, it has not proved generally 

applicable due to its inconvenience in use. 

1Numbers in brackets denote the references given in the Bibliogra-
phy. 
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Recently, Franke [8,9] contributed to an alternate symbolic nota­

tion of kinematic chains. In contrast to Reuleaux's approach, the 

joints of a chain are only the elements of mechanisms themselves. For 

example, a single joint chain is represented by E, a two-joint chain by 

z, a three-joint chain by D, and a four-joint chain by V. Small sub­

script letters are also used, -for example, d denotes a turning joint 

ands a sliding joint. 

Davies and Crossley [10] applied these Franke's condensed nota­

tions to chains in which a link is represented by a molecule and a 

joint connection by a line segment. They obtained the structural enu­

meration of seven, nine and eleven-link kinematic chains. This work 

represents the first application of Franke's notation to the struct~ral 

analysis of kinematic chains. 

During the period around 1930, Alt [11], Gruebler [12,13,14], 

Malytcheff [15] and Kutzbach [16,17,18] were concerned with the theo­

retical approach to the determination of the degree of mobility of the 

planar and spatial kinematic chains. . Later in 1950's, Artobolevski 

[19] and Dobrovol'ski [20] took into account th~ existence of the par­

adoxical mechanisms and introduced the concept of the general con­

straints. 

Soni [21] applied the Franke's condensed notation and concept of 

general constraint to analyze the two-loop (8- and 9- links) and three­

loop (11- and 12- links) kinematic chains which have two general_con­

straints and mobilities one and two. All the kinematic chains consid­

ered by Soni consist of helical pairs with parallel axes and random 

pitch values. 

Hain and Zielstorff [22] analyzed the sixteen parent 8-link 
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kinematic chains (see Appendix A) and tabulated all the seventy-one 

mechanisms derived from 8-link chains. A systematic analysis by them 

shows that these sixteen 8-link chains with single pair yield addition­

al forty-,four 8-link chains with multiple pairs. Kinematic inversions 

from these forty-four chains yield 264 mechanisms with 'double joints' 

and 'triple joints'. 

Assur [23,24] developed different groups of various open chains 

which would express the characteristics and the forms of kinematic 

chains. Manolescu, Haas and Crossley [25,26] used the Assur group to 

classify and study the general formula, functions and the practical ap­

plications of kinematic chains and mechanisms. Davies [27,28] extend­

ed Manolescu's classification of planar mechanisms to the mechanisms of 

mobility M>l. The mobilities of the kinematic chain and its subchains 

are studied in- terms of total and partial mobilities. 

Using the number synthesis technique and the general mobility 

equation, Harrisberger and Soni [29,30] explored 417 and 212 kinds 

respectively of one-loop space kinema~ic chains with zero and one gen­

eral constraint. They suggested the classification of kinematic pairs 

by their number of degrees of freedom. There are five classes of kine­

matic pairs as the pair can have the maximum of five and minimum. ,of one. 

degree of freedom.· 

Woo [31] applied the concepts of ''contraction map" and enumerated ,1 

the 10-link kinematic chains. The results found by Woo, coupled with 

those by Davies and Crossley [10] do confirm that the number of 10-link 

plane kinematic chains is 230. 

Since the basic schematic representations used by both Woo and 

Davies [31,10] are the same,,the approaches used hy both authors have 
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two points in common: (a) The enumeration of all possible arrangements 

of molecules or contraction maps without considering binary links and 

(b) The enumeration of the number of ways of adding the binary links 

to those arrangements. 

From the graph-theoretic point, Crossley [32] analyzed the kine-

matic chains of eight members or less. Since the lil')ks and turning 

joints of a kinematic chain are represented by vertices and edges in a 

graph, the graph shows the kinematic chain as a function of topology 

of the components. Therefore, many properties of the kinematic chain 

can be studied precisely using graph theory. 

Following the works done by Harrisberger and Soni [29,30], 

Freudenstei~ and Dobrjanskyj [33,34,35] applied the concepts of graph 

theory and combinatorial method to enumerate the single loop spatial 

kinematic chains and mechanisms with lower kinematic pairs. It is 

shown that the number of single, loop spatial kinematic chains with dif-

ferent kinematic pairs is equal to the coefficient of the weight func-

tion in the expansion of the cycle index of the dihedral group. In 

these works, no attempt is made to include mechanisms with passiv:e con-

straints or to exclude the unworkable combinations. 

The problems of kinematic synthesis which are discussed above can 

be divided into two-categories: 

(1) Synthesis of plane kinematic. chains with turning joints and 

rigid links only. The methods used are: Franke's notation 
' ' 

and contrac:,tion map [10,21,23,24,25,26,31]. 
' 

(2). Synthesis of single loop space kinematic chains with differ-

ent kinematic pairs. The methods used are: number synthesis 

technique and graph theory [29 ,30,33 ,34:,35]. 
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From the two parent 6-link chains, Hain [36] obtained 158 cam-link­

age mechanisms with one, two, three cam pairs and single and double 

joints. In his tables, the cam pair in cam linkage mechanism is the 

contact of one cam and one roller rather than the contact of two cams. 

Replacing a turning pair by a prism pair, Hain [37] derived six 

six-link chains with one prism pair from Watt's and Stephenson's six~ 

link chains. Hain also obtained 54 different screw-crank mechanisms 

with single and double joints by replacing the prism pair by a screw 

joint. Later in 1968, Hain [38] derived all the six-link kinematic 

chains with more than one prism pairs. There are 50 prism kinematic 

chains with a maximum of four prism pairs and single joint and 28 prism 

kinematic chains with a maximum of four prism pairs and double joints. 

Based on the information of prism kinematic chains, the piston­

cylinder kinematic chains with one piston-cylinder were developed by 

Hain [39] from the two 6-link chains. Four piston-cylinder kinematic 

chains with one piston-cylinder were obtained which yield eight piston­

cylinder mechanisms. Hain also displayed seven six-link double piston 

mechanisms in which two pistons are in one cylinder. 

From the two six-link chains, eight different belt-pulley mecha­

nisms are derived by Hain [40]. Hain also demonstrated that the belt­

pulley mechanism; can be t.ransformed into an equivalent rolling-contact 

(cam) mechan.ism such that both belt-pulley mechanism and cam mechanism 

have exactly the same relative motions. 

Thirteen spring kinematic chains with single and double joints 

were derived by Hain [41] from four- and six-link chains. 

The procedures to derive belt-pulley and spring mechanisms are 

combined by Hain [42] to produce a total of 16 different spring-belt 



mechanisms. 

Besides, Hain [43] derived five gear-crank mechanisms with prism 

pairs from a five-link chain and two gears. Five chain-crank mecha­

nisms derived from four-link chain were also obtained by Hain [44]. 
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Hain' s work is more or less restricted to inspection process' and 

does not depend on the mathe~atical theories. The process becomes more 

involved especially when it is required to enumerate kinematic chains 

and mechanisms with more than six links. 

Johnson and Towfigh [45] applied the number synthesis techniques 

to design the gear kinematic chains. Levai [46], Benford [47], Tuplin 

[48], Spotts [49] and Chironis [50] also used the numerical rules to 

design the various gear kinematic chains. 

Using graph theory and synthesis procedures, Buchsbaum [51,52] 

investigated the structural classification and enumeration of gear ki­

nematic chains with a maximum of 3 gear joints (commonly known as gear 

trains, speed reducers or differentials). The.enumeration of gear ki­

nematic chains. is shown to be equivalent to the enumeration of g7omet­

ric structures, that is, linear 2-colored graphs. Besides the tech­

nique of Polya'~ theory of counting [53,54] which is used to establish 

the completeness of enumeration procedure, Bushsbaum also presented two 

basic algorithms to show the local degree listing and the synthesis of 

vertex-vertex (v-v) incidence matrices for linear one-colored graph. 

The latest work by Quist [55.J includes the enumeration of 10 link 

chains with kinematic elements such as cam pairs, prism pairs, spring 

pairs and belt-pulleys. The method Quist used is called "path matrix" 

in which the links of a given kinematic chain are labelled with differ­

ent numbers, the row of "path matrix" is formed by writing the sequence 



numbers of each circuit in the kinematic chain. Unlike the mathemat­

ical approach based on graph theory, Quist's enumeration technique has 

to rely on a given list of parent kinematic chains and the method of 

"path matrix" becomes 'trial and error' for crossed- link kinematic 

chains. 

Therefore, two more categories concerned with kinematic synthesis 

can be summarized as follows: 
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(3) Synthesis of plane kinematic chains with different kinematic 

elements other than turning joints, such as cam pairs, prism 

pairs, piston-cylinders, springs and belt-pulleys [36-44,55]. 

The methods used are: inspection process and "path matrix". 

(4) Synthesis of gear kinematic chains [45-50,51,52] (linear 2-

colored graphs). The methods used are: number synthesis, 

graph theory and enumeration techniques. 

The purpose of this study is to develop procedures to apply graph 

theory to the general problems of synthesizing kinematic chains with 

different kinematic elements and their combinations. The kinematic 

elements under consideration are cam pairs, prism pairs, piston-cylin­

ders, gears, springs and belt-pulleys. 

All the graphical representations for the kinematic chains with 

different kinematic elements have been systematically established. 

The kinematic chains are represented in the form of linear or non­

linear multicolored graphs in which colored edges and/or colored ver­

tices correspond to certain types of kinematic elements. 

Using the general mathematical theories, three major general algo­

rithms are developed which take into account the whole process of syn­

thesizing the multicolored graphs. Computer programs describing the 
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three algorithms are developed. They are listed in Appendix B. 

The first algorithm generates a list of specification for n-col­

ored graph. The specification is expressed in terms of the sets of 

degrees of vertices of n subgraph. A general computer program has been 

developed to generate the listing of colored graph specifications. The 

given conditions are the numbers of vertices and edges of a graph. The 

lower and the upper bounds of the specifications can also be specified. 

The listing of specifications only provides the information about 

the numbers of ways of combining the degrees of vertices of a graph. 

It does not provide any information about the connections of the ver­

tices. Therefore, the second algorithm is developed to synthe13ize the 

linear and the non-linear colored graphs from a given specification. 

The synthesis of v-v incidence matrices of n-colored graphs can be 

accomplished by considering each subgraph (graph with same type of 

edges) specification individually. For each subgraph specification, 

the corresponding v-v incidence matrices can be synthesized. All the 

possible superpositions of the elements in the v-v incidence matrices 

of n subgraphs become the final v-v incidence matrices obtained for the 

given n-colored graph specification. 

A general computer program has been developed to synthesize the 

v-v incidence matrices of n-colored graphs. The program is written in 

such a way that it can take care of any number of types of colored 

edges and any number of vertices. 

Since not; atl v-v incidence matrices of n-colored graphs synthe­

sized are non-isomorphic, they haye to go through the process of graph 

isomorphism test. The isomorphism test is then the third algorithm to 

be described. Due to the necessity of the problemi:, defined in this 
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study, the writer has developed a general algorithm to test the isomor­

phism of a pair of linear or non-linear n-colored graphs. The method 

of incidence tables is used and the total number of possibilities of 

finding the graph isomorphism is described. A general computer pro­

gram is developed to take into account any number of colored vertices 

and colored edges in the linear or non-linear colored graphs. 

Given the number of links and turning joints of a parent kinematic 

chain and different kinematic elements, all the unequivalent·kinematic 

chains with different kinematic elements (or colored graphs) can be 

synthesized by going through the whole process of the three algorithms 

described above. 

In order to establish the completeness of the enumeration, Polya's 

theory of counting has been used. It provides the exact count of the 

total number of graphs which should be generated for a given number of 

vertices and edges. Chapter II is mainly concerned with the applic~­

tion of the Polya's theory of counting. Some illustrative examples are 

given. 

Since not all colored graphs synthesized generate the closed and 

isokinetic chains [32], the criteria are developed to reject those un­

acceptable colored graphs. 

General mobility equations in terms of colored vertices and col­

ored edges are developed for kinematic chains with different kinematic 

elements. These mobility equations are useful not only in examining 

the mobility of the kinematic chains, but also in solving the sets of 

numbers of colored vertices and colored edges required in synthesizing 

colored graphs. 

In Chapter VII, the general model is tested on eight link chains 



to generate all the colored graphs and their corresponding kinematic 

,chains with all possible kinematic pairs and elements. 

In sunnnary, the objectives of the present investigation are: 
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1. To obtain the graphical representations for the kinematic 

chains with different kinematic elements and their combina­

tions. The kinematic elements under consideration are cam 

pairs, prism pairs, piston-cylinders, gears, springs and belt­

pulleys. 

2. To develop a general mathematical model to take into account 

the synthesis procedures of linear and non-linear n-colored 

graphs. 

3. To develop the general computer programs for the mathematical 

model which include the programs of listing colored graph spec­

ifications, synthesizing v-v incidence matrices of linear and 

non-linear n-colored graphs and testing isomorphism for linear 

and non-linear n-colored graphs. 

4. To derive the general mobility equations and criteria for the 

various kinematic chains under consideration. 

5. Tt:> obtain the design tables for the colored graphs and their 

corresponding kinematic chains developed from parent 8 link 

and 10 joint chains. 



CHAPTER II 

A BRIEF REVIEW OF GRAPH THEORY AND 
POLYA'S THEORY OF COUNTING 

The necessary mathematical background is introduced and followed 

by some examples to illustrate the applications of the mathematical 

techniques. Some of the techniques co'.1cerning the combinatorial anal-

ysis, such as partitioning, combinations are described in related 

chapters and are implemented as subroutines in the programs shown in 

Appendix B. The mathematical proofs for the techniques introduced in 

this chapter are available in the literature [34,35,53,54,56,57]. 

Definitions 

Some of the definitions of graph theory used in this study are 

described below: 

1. Vertex: An endpoint of an edge. 

2. Edge: A line segment terminated by distinct end points, 

3. Graph: A collection of vertices and edges• 

4. Linear graph: A graph which has no ·slings (or self-loops) o_r 

multiple-edges. 

5. Non-linear graph: A graph which has slings and/or multiple-edges. 

6. Sling: Self-loop or a loop connecting a vertex to itself. 

7. Multiple-edge: The subgraph of a non-linear graph in which two or 

more edges appear between two vertices. 

8. Double-edge: A multiple-edge with exactly two edges between two 
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vertices. 

9. Complete graph: A graph in which every pair of distinct vertices 

are joined by an edge. 

10. Planar graph: A graph which can be drawn in the plane in such a 

way that its edges intersect only at their endpoints. 

11. Non-planar graph: A graph in which not all the edges can be drawn 

on a plane without crossing. 

rJ 12. ~:. A sequence of line segments of a graph such that the terminal 
' 

ve·rtex of each line segment coincides with the initial vertex of 

the succeeding line segment. 

13. Connected graph: A graph in which there exists at least one path 

between every pair of vertices. 

i 14. Separable graph: A connected graph in which there exists a pair of 

vertices Vj and Vk (j+k) such that all possible paths between 

these two vertices have one vertex (point of articulation) V. 
l. 

(i+j+k) in common. 

15. Non-separable graph: A connected graph in which there exists at 

least two distinct paths between any two of its vertices. 

16. Incidence: If a vertex is an endpoint of an edge, then-the vertex-

and the edge are said to be incident. 

17. Degree of verte~: The number of edges incident at that vertex. 

18. Contracted graph (or Contraction map): A graph in which all the 

vertices of degree two are deleted. 

isomorphic to each other if there exists 1-1 correspondence be-

tween v1 and v2 and between E1 .and E2 which preserre incidences. 
; •· ·1 ·' 

20. Colored graph: A graph in which vertices and/or edges are 
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distinguished from each other. 

21. Circuit (or Loop): A cyclic path from any vertex poi,'f!_t a through 

other vertices returning to a, in which no vertex is visited more 

then once. 

22. 2-isomorphism: Two graphs G1 and G2 are 2-isomorphic if they become 

isomorphic under (repeated application of) either or both of the 

following operations: 

a. Separation into components; 

b. Interchange of the names of two subgraphs (let the graph consist 

of two subgraphs H1 and H2 which have only two vertices in 

common). 

23. Tree: A connected subgraph of a connected graph which contains all 

the vertices of the graph but does not contain any circuits. 

Incidence Matrices and Their Relations in 
Graph Isomorphism 

Let an incidence number P be the number of times a certain edge 

(or loop) is incident to a given vertex (or edge). The incidence 

number Pis usually 1 or O, as the designated pair is, or is not inci-

dent. For instance, incidence number P(v.,e.)=1 or Oas vertex v. is, 
1 J - 1 

or is not incident with edge e .• Moreover, P(v.,e.) can be equal to 
J 1 J 

. 2, if e. is a double-edge. Similarly, P(J.,e.)=1 or Oas edge e. is, 
J . 1 J J 

or is not an element of loop 1.. .• 
1 

An incidence matrix can now be formed by writing the mathematical 

array of incidence ~umbers which precisely describes a given graph. 

A vertex-edge incidence matrix [M J of v rows and e columns is an ve 

array of incidence numbers P(v,e), in which each column represents a 



specific edge and each row represents a specific vertex (Fig. 1). 

l 4 
1 2 3 4 5 

1 

[~ 
0 0 1 ~] 2 

[Mve] 
2 0 1 1 -· 3 1 1 0 
4 1 0 0 2 3 

(a) (b) 

Figure 1. A Vertex-Edge Incidence Matrix 
and its Corresponding Graph 

The other incidence matrices are arranged in similar manner. 

Vertex-vertex incidence matrix [M J of v rows and v columns is a . vv 

square matrix in which the entry is one if the two vertices have an 

edge in common, otherwise, the entry is zero. Loop-edge incidence 

matrix [M1e] of£ rows and e columns is the rectangular matrix in 
I 

14 

which the entries are 1 or Oas the edges are or are not the elements 

of a specific loop. Loop-vertex incidence matrix [M J of Jl. rows and 
- Jl.v 

v columns is also a rectangular matrix in which the entries are 1 or 

Oas a specific loop does or does not pass through the vertices. 

The five different incidence matrices described above are not in-

dependent of each other. According to the modulo-2 operation [3] and 

the ordinary algebraic operation, we may transform the incidence 

matrices from one to another. Four equations which relate the inci-

dence matrices are shown in Eq. (2-1) through Eq. (2-4). The super-

script T refers to the transpose of a matrix. 
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[M ] [M ]T = 0 
l,e ve (2-1) 

(2-2) 

(2-3) 

[ Mil. ] = ( 1 / 2 ) [M ] x [ M i v ae ve (2-4) 

It should be noted that Eqs. (2-1), (2-2) and (2-3) are to be 

carried out by modulo-2 operation, while Eq. (2-4) is to be carried 

out by ordinary algebraic operation. 

Example 2-1, Express and verify the relationships of Eq. (2-1) 

'through Eq. (2-4) for the graph shown in Fig. l(b). 

Solution: 

[Mve] = [ ~ 
0 0 1 ~] 0 1 1 

[M.ee] = ( ~ 0 0 1 i] 1 1 0 1 1 0 
1 0 0 

(1) For Eq. (2-1): 

1 Or 0 1 

[M,e] [Mvef = ( ~ 0 0 1 n 0 0 1 1 

=(~ 0 0 ~] = 0 1 1 0 
0 1 1 0 

0 0 1 1 0 0 
0 1 0 1 

(2) For Eq. (2-2): 

[M ]T [M ] = [~ 

0 0 

i1 [~ 
0 0 1 

~] = 

0 1 0 1 1 
0 1 

0 1 1 
1 0 1 0 1 

1 1 0 1 0 1 1 
ve . ve 1 1 0 

1 1 0 1 0 1 0 1 
0 1 0 

1 0 0 1 1 1 1 0 

= [M ] ee 



(3) For Eq. (2-3); 

[Mve] [MvJ = [ i 0 0 1 ~] [ i 0 0 
1 [o 1 0 ~] 0 1 1 

0 1 1, 1 1 1 
1 1 0 1 1 0= 1 0 
1 0 0 1 0 0 0 

1 1 
1 0 1 1 

-[~ 1 0 

! ]-0 1 
[Mvv] - 0 1 0 1 -

1 1 1 0 

It should be noted that the diagonal entries of [M J should be vv 

equal to zeros. 0 orion diagonal entry only means that the de~ree 

of vertex is either even or odd. 

(4) For Eq. (2-4): 

1 0 0 

il ( 1/2) [M_,e] x [Mve]T = ( 1/2) [:~ 
0 0 1 u x 

0 0 1 

1 1 0 
0 1 1 
1 1 0 
0 1 0 

(1/2) ( ~ 2 0 
~] = [ ~ 1 0 n ={M ] = 2 2 1 1 .. Jv 

Two incidence matrices are equivalent, if they are different 
.J 

only by permutations of rows and columns. Two graphs are isomorphic 

if there exists 1-1 correspondence between their vertices and edges, 

and the iricidences are preserved. since vertices and edges are in-

volved in the definition of isomorphism, the vertex-edge incidence 

16 

matrix is usually used in the g:raph isomorphism test. Therefore, two 

graphs are isomorphic, if their vertex-edge incidence matrices are 

equivalent. It should be noted that vertex-vertex incidence matrix 

can be converted directly into vertex-edge incidence matrix. The 

number of non-zero entries in the upper triangle of vertex-vertex 
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incidence matrix are the number of edges or number of columns in 

vertex-edge incidence matrix. 

If the vertex-edge incidence matrices of two graphs are equivalent, 

the graphs are isomorphic [35]. However, if the edge-edge or loop-edge 

or loop-vertex incidence matrices of two graphs are equivalent, these 

facts do not guarantee that the two graphs are isomorphic. 

Fig. 2 shows two graphs whose edge-edge incidence matrices are 

the same, but which are not isomorphic. ·According to Whitney [58,59], 

this is one of a very few exceptions. 

(a) 

1 

= 1 [ 0 2 1 
3 1 

2 
1 
0 
1 

3 

1 l = [M 2] 1 ee 
0 

(b) 

Figure 2. Two Non-Isomorphic Graphs Having the Same 
Edge~Edge Incidence Matrix 



Fig. 3 shows two non-isomorphic graphs whose loop-edge incidence 

matrices are the same. These graphs are for the parent 8 link, 10 

joint kinematic chains. The two non-isomorphic graphs in Fig. 3 are 

two-isomorphic, that is, they become isomorphic under the operation 

of separation into components. 

5 

5 

2 

(a) 

1 
0 
0 

0 
1 
0 

0 
1 
0 

0 
0 
1 

0 
0 
1 

0 
1 
1 

0 
1 
1 

1 
1 
0 

4 

3 

(b) 

4 

3 

Figure 3. Non-Isomorphic Graphs (But Are Two-Isomorphic) 
Having the Same Loop-Edge Incidence Matrix 

18 
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Fig. 4 shows two non-isomorphic graphs having the same loop-ver-

tex incidence matrix. They are also two-isomorphic [35]. 

3 

2 

(a) (b) 

4 
4 

9 3 

IJ- 12 8 1 

[1 1 1 0 0 0 1 0 0 0 0 0 

1 1 0 1 1 1 0 1 0 0 0 0 0 
[M 2] [Mlv ] = ~ 0 0 0 1 1 0 1 0 0 0 1 = 

0 0 0 0 1 0 1 0 0 1 1 l.v 

0 0 0 0 0 0 1 1 1 1 0 

Figure 4. Non-Isomorphic Graphs (But Are Two-Isomorphic) 
Having the Same Loop-Vertex Incidence Matrix 
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The concepts of two-isomorphism are concerned with the relations 

of loops and edges, or loops and vertices. Therefore, two-isomorphism 

does not necessarily preserve incidences between loops, edges and 

vertices. Isomorphic graphs are also two-isomorphic, but the converse 

is not necessarily true. From the above examples, we know that edge-

edge, loop-edge and loop-vertex incidence matrices are not sufficient 

to uniquely describe a graph. 

If two graphs are isomorphic, then their vertex-edge incidence 

matrices are related by Eq. (2-5). 

= [E] [M 2] [E] v ve e 

where 

[M 1]: Vertex-edge incidence matrix of graph 1. ve 

2 [M ]: Vertex-edge incidence matrix of graph 2, 
ve 

(2-5) 

[E ]: Vertex elementary matrix which transforms the vertices in 
v 

graph 1 and graph 2. 

[E ]: Edge elementary matrix which transforms the edges in graph 
e 

2 and graph 1. 

From Eq. (2-2), we can derive an equation which relates the edge-
. 1 2 

edge incidence matrices of two isomorphic graphs, [M J and [M ]: ee ee 

[E ]T [M 2] [E ] . 
e ee e 
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Therefore, [M 1] = [E ]T [M 2] [E] ee e ee e (2-6) 

Similarly, the equation relating the vertex-vertex incidence 

matrices of two isomorphic graphs can be derived from Eq. (2-3): 

= [E] [M 2] [E ]T v vv v 

Therefore, [M 1] = [E] [M 2] [E ]T 
vv v vv v 

(2-7) 

Since loops and edges of two isomorphic graphs are in one-to-one 

correspondence and preserve adjacency, therefore, 

(2-8) 

Here [E.e] is the lopp elementary matrix which transforms the loops 

in graph 1 and graph 2. From Eq. (2-4), the relation of loop-vertex 

incidence matrices of two isomorphic graphs can be derived: 

= (1/2) [En] [Mn 2] [E] x [E ]T [M 2]T [E ]T 
~ ~e e e ve v 

Since 
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1 
[MRv J can be written as 

and therefore, (2-9) 

The derivation of Eq. (2-9) is carried out by the ordinary alge-

braic operation, while the derivations for Eqs. (2-6), (2-7) and (2-8) 

are carried out .by modulo-2 operation -(3]. 

Permutation and Cycle Index 

A sequence can be mapped into another sequence by a set of trans-

formations~ The set of these transformations is called permutation. 

For example, a sequence (a,b,c,d,e,f) is tnapped into another sequence 

(b,d,f,a,e,c) by.the following transformations. 

Permutation group: 

Transformation: 

(a b c d e f) 
b d f a e c 

(1) a-b-d-a 

(2) c-f-c 

(3). e-e 

The above transformation or permutation of the sequence is repre-
' 

sented by the cyclic representation (abd) (cf) (e). The permutation 

(abd) (cf) (e) consists of three cycles: (abd), (cf) and (e). The 

length of a cycle is the number of elements it contains. Therefore, 

in this permutation, the lengths of the three cycles are 3,2,1 respec­

tively. The~ of a permutation is the product 1Ttij for all cycles 



of the permutation. t. is the representation of a cycle with length 
1 

L j is the number of cycles with t .• For the above permutation 
1 

group, the permutation (abd) (cf) (e) can be represented by the type 

The cycle index of a permutation group is defined as the Summa-

23 

tion of the types of all permutations, divided by the number of permu-

tations or order of the permutation group [53,54]. 

Example 2-2 Let a,b,c be the elements in a sequence (a,b,c). Find 

the cycle index of the group with all possible permutations. 

Solution: A table prepared to show the permutations, cyclic represen-

tations and their.corresponding types is shown below. 

/ 

Permutation Cyclic representation Type 
of permutation 

1: (a,b,c)-(a,b,c) (a) (b) (c) 3 
tl 

2: (a,b,c)-(a,c,b) (a) (be) t1t2 

3: (a,b,c)-(b,a,c) (ab) ( c) tlt2 

4: (a,b,c) ~(b,c,a) (abc) t3 

5: (a,b,c)-+-(c,a,b) (acb) t3 

6: (a,b,c)--(c,b,a) ( ac) (b) t1t2 

The cycle index of this permutation group is then 
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Cycle Index of the Symni.etrical Group 

Symmetrical group of n objects is the set of all possible permu-

tations of n objects. The order of the symmetrical group of n objects 

is n ! • The cycle index of the symmetrical group, C, is the summation 
n 

of the types of n! permutations, divided by n!. The cycle index C is 
n 

also equal to the coefficient of Zn in the power-seriesexpansion of 

eq, where 

2 3 q ~ Zt 1 + (1/2) Z t 2 + (1/3) Z t 3 + (2-10) 

and eq = 1 + q + (1/2!) q2 + (1/3!) q3 + (2-11) 

Example 2-3 Find the cycle index of the symmetrical group of 3 objects 

by Eqs. (2-10), (2-11). 

Solution: Let us substitute q from Eq. (2-10) into Eq. (2-11) to get 

Therefore, c3 is equal to the coefficient of z3 , that is 

The expression for c3 ·derived here does conform with that in 

Example 2-2. 

Table I shows the first six cycle indices of the symmetrical 

groups for a maximum of 6 objects [57]. 



TABLE I 

THE FIRST SIX CYCLE INDICES OF 
SYMMETRICAL GROUP, C 

n 

Cycle Index of the Dihedral Group 

The dihedral group is a group of rigid-body motions which are 

performed by means of rotations and reflections of a plane regular 

polygon. The dihedral group of a plane regular polygon of n sides 

of order 2n. The order 2n is also equal to the • total number of 

25 

is 

cover~ng operations on the polygon. The number of rotations is equal 

ton (including identity) and the remainder n is the number of 
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reflections. 

Examele 2-4 Find the cycle index of the dihedral group of the penta-

gon shown in Fig. 5. 

e 

• 

a d b 

d 

Figure S. Pentagon and Its Axes 
of Synunetry 

c 

Solution: A table is presented in the following page showing the 

different covering operations, permutations of vertices and their 

corresponding types. 
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Covering Operation Vertex Permutation Type 

Identity (1)(2)(3)(4)(5) t1 
5 

72° rotation about o (12345) ts 

144° rotation about o (13524) ts 

0 

216 rotation about o (14253) ts 

0 
288 rotation about o (15432) ts 

Reflection about aa ( 1)(25)(34) t1t2 
2 

Reflection about bb (2)(13)(45) t1t2 
2 

Reflection about cc (3)(15)(24) t1t2 
2 

Reflection about dd (4)(12)(35) t1t2 
2 

Reflection about ee (5)(14)(23) t1t2 
2 

Therefore, the cycle index o5 of the dihedral group of the penta­

gon is (1/10) (t 15 + St 1t 22 + 4t5). 

The cycle index D for a plane regular polygon of n sides, for 
n 

n = 3,4, ••• ,7 is shown in Table II. 



TABLE II 

THE CYCLE INDICES OF DIHEDRAL GROUP 
Dn (t 1 , ••• , tn), n = 3,4, •• ,7 

Cycle Index of the Full Pair Group 

The full pair group is a group of permutations of all the point 

28 

pairs\ v(v-1) of v vertices. This group is in one-to-one correspon-

dence with the symmetrical group [54,88]; that is, for a given type in 

the cycle index of a symmetrical group, C, there always exists a 
n 

corresponding type in the cycle index of the full pair group, R. The 
n 

full group plays an important role in the enumeration of graphs having 

v vertices and e edges. Any graph with v vertices and e edges can be 

represented by multicolored full pair group. For example, a linear 

. graph with 4 vertices and 5 edges can be represented by bi-colored 

full pair group in which one color is for the 5 existing edgers, the 

other color for the non~existing edges. The total number of point 

pairs in a complete graph is\ v(v-1) = \ 4(3) = 6, this number is 
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equai to the sum of the existing and non-existing edges in that graph. 

An example of the full pair group having 4 vertices is used to 

illustrate the procedures to obtain the cycle index of the full pair 

group R from that of synmetrical group C and is shown in Table III. 
n n 

It should be noted that for a given type in c4 , there always 

exists a corresponding type in R4 regardless of the particular permu­

tation chosen for that type. example, for the type t 1t 2 in c4,j 
or (1)(3)(24) will re:ult :n the same~ 

R4 • From Table III, t 1 , t 1 t 2 , ••• ar 

For 

either permutation (1)(2)(34) 

2 
corresponding type t 1t 2 in 

6 2 2 substituted by t 1 , t 1 t 2 , in the cycle index c4 and it becomes 

the cycle index of full pair group R4 : 

(2-12) 

Cycle Index of Polyhedral Group 

The polyhedral group is the group of three-dimensional motion of 

a rigid body. The motion consists of rotations of the rigid body about 

the rotational axes in space. The cycle index of polyhedral group is 

the sunmation of the types of permutations about the rotational axes 

in space, divided by the number of permutations. 

The cycle index of a pyramid with respect to the faces, and that 

of a cube with respect to the vertices are obtained by first con-

structing the rotational axes of the rigid body and then finding the 

types of permutations. The procedures for finding the cycle indices 

of these two cases are described in the following two examples: 



Unpermuted edge 

Point pair 

a.= (v, v) 
1. m n 

a1 = (1,2) 

a2 = ( 1,3) 

a1 = (1,4) 

a4 = (2,3) 

as= (2,4) 
' 

a6 = (3,4) 

Cyclic representation 
of permutation 

Corresponding Types 
in cycle index of 
full pair group (R4) 

TABLE III 

PROCEDURES FOR OBTAINING THE CYCLE INDEX 
OF FULL PAIR GROUP, R4 

Permutation types of c4 operating on ai 

tl 
4 2 

tl t2 t1t3 t 2 
2 

(1)(2)(3)(4) (1)(2)(34) (1)(234) (12)(34) 

(1,2) = a 1 (1,2) = a1 ( 1,3) = a2 (2,1) = a1 

( 1,3) = a2 (1,4) = a3 ( 1,4) = a3 (2,4) = as 

(1,4) = a 
3 

(1,3) = a2 (1,2) = a1 (2,3)=a4 

(2,3) = a4 (2,4) ==: ~:5 (3,4) = a6 (1,4) = a3 

(2,4) = as (2,3) = a4 (3,2) = a4 ( 1,3) = a2 

(3,4) = a6 (3,4) = a6 (4,2) = as (4,3) = a6 

( a 1 )( a2 )( a3 ) (al)(a6) (al a2a3) (a1)(a6) 

(a4Has)(a6 ) (a2a3)(a4aS) (a4a6aS) ( a2 a S) ( a3 a 4) 

6 2 2 t 2 2 2 
tl tl t2 tl t2 3 

t4 

(1234) 

(2,3) = a4 

(2,4) = as 

(2,1) = a1 

(3,4) = a6 

(3, 1) = a2 

(~, 1) = a3 

(a2aS) 

(a1a4a6a3) 

t2t4 

----; 
I 

w 
0 
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Example 2-5 Find the cycle index of the pyramid with respect to the 

four faces shown in Fig. 6. 

Solution: The pyramid has four faces 1,2,3 and 4 with face 4 as base. 

The rotational axis XX is passing through point. o and perpendicular to 

the base. The types of permutations are obtained as follows: 

Covering Operation Face Permutation Type 

Identity (1)(2)(3)(4) 4 
t1 

120° rotation about xx ( 123 )(4) t1t3 

240° rotation about xx (132)(4) t1t3 

Therefore, the cycle index of the pyramid with respect to the 

faces is (2-13) 

Example 2-6 Find the cycle index of a cube with respect to the 8 

vertices shown in Fig. 7. 

Solution: A table prepared to show the operations of rotations about 

1 
different axes is presented on page 33. 

Therefore, the cycle index of a cube with respect to 8 vertices 

is (2-14) 

1 P45_27 is the axis crossing edges 45,27. R25 is the axis 

passing through vertices 2 and 5. 



1 4 

(a) (b) 

Figure 6. A Pyramid and lts Axis of Rotation 

x z 

(a) (b) 

R 
(c) 

Figure 7. A Cube and Its Axes of Rotation 
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Rotating Operation Vertex Permutation Type 

Identity (1)(2)(3)(4)(5)(6)(7)(8) 8 
t1 

90° about xx r (1234)(5678) t4 
2 

180° about xx (13)(24)(57)(68) 4 
t2 

270° about xx , (1432)(5876) t4 
2 

90° about YY ( 16 72) ( 4583) t4 
2 

180° about YY ( 17)(26)(48)(35) 4 
t2 

270° about YY ( 1276)(4385) 2 
t4 

90° about zz (2783 )( 1654) 
2 

t4 

180° about zz ' (28) (37)( 15) ( 46) 4 
t2 

270° about zz 11 (2387)(1456) 2 
t4 

180° about p45-27 (45)(27)(18)(36) 4 
t2 

180° about p16-38 ( 16)(38)(25)(47) 4 
t2 

180° about p23-56 (23) (56) (18) ( 47) t2 
4 

180° about p14-78 (14)(78)(25)(36) 4 
t2 

180° about p12-58 (12)(58)(36)(47) 4 
t2 

180° about p67-43 (67)(43)(18)(25) 4 
t2 

120° about R25 (2)(5)(137)(486) 2 
t1 t3 

2 

120° about R18 (1)(8)(264)(375) 2 2 
t1 t3 

120° about R47 (4)(7)(153)(268) 2 
t1 t3 

2 

120° about (3 )( 6 )(248 )( 157) 2 2 
R36 t1 t3 .. 

'1,.-~0 2 2 
.--12-(f about R25 (2)(5)(173)(468) t1 t3 

240° about R18 (1)(8)(246)(357) 2 2 
t1 t3 

240° about !-,47 
.-· 2 2 (4)(7 )( 135)(286) t1 t3 

0 
240 about R36 (3)(6)(284)(175) 2 

t1 t3 
2 
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Polya's Theory and Its Application 

Polya's theory: The total of all unequivalent colored patterns is 

K i 
obtained by substituting the weight function ~ W. for t 1. in the 

j =1 J 

cycle index of a permutation group, where k is the number of color 

elements and i is the length of cycle t. For a two-color pattern, 

i i 
k = 2 and t. = x + y; for a three color pattern, k = 3 and 

l. 

t. =xi+ yi + zi and so ,forth [51,52,53,54]. 
l. I 

The problem of the enumeration of linear graphs is equivalent to 

finding the number of unequivalent ways of coloring"· the \ v(v-1) edges 

of the complete graph of v vertices with two colors (say red for one 

edge, black for no edge). The cycle index of the full pair group R 
v 

is to be applied to show the application of the theory and an example 

is shown below. 

Example 2-7 Enumerate the linear graphs having 4 vertices. 

Solution: The complete linear graph having 4 vertices has 

\ v(v-1) = \ 4(4-1) = 6 edges. From Eq. (2-12), the cycle index of 

full pair group of 4 vertices is 

substituting i i 
ti = x + y ' 

into R4 , it becomes 

i = 1,2,3,4 

(2-15) 

The coefficients of each term in Eq. (2-15) represent the number 

of unequivalent patterns having the same weight. For the total number 
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of unequivalent patterns, the sum of all coefficients is computed as 

follows. 

R4 (x,y) = R4 (1,1) = 11 

All the eleven unequivalent patterns are shown in Table IV. 

If double-edges are permitted between any two vertices, then the 

enumeration becomes a 3-color problem, that is, between any two ver-

tices of a graph, there exist three types of edges: no edge, one edge 

and double-edge. The enumeration of 3-colored graphs with v vertices 

is obtained by substituting t. =xi+ yi + zi into the cycle index of 
i 

the full pair group R. 
' v 

Example 2-8 Enumerate the numbers of non-linear graphs having 4 ver-

tices with the following weights: 

(1) 
5 no edge y z x: 

(2) 
3 2 

where one edge xy z y: 

(3) 2 3 double-edge x yz z: 

Solution: Let 
i 

+y 
i 

+ 
i i = 1,2,3,4 t. = x z ' i 

and substitute t. into Eq. (2-12) which is the cycle index of full 
i 

pair group of 4 vertices, Eq. (2-12) becomes 

R4 (x,y,z) 6 5 4 2 3 3 2 4 5 6 
= (x + x y + 2x y + 3x y + 2x y + xy + y) + 

4 3 2 2 3 4 2 
2(x + 2x y + 3x y + 2xy + y )z + 

( 3 4 2 2 . 3) 3, 3x + x y + 4xy + 3y z + 

(2-16) 
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TABLE IV 

ALL THE LINEAR GRAPHS HAVING 4 VERTICES 

Graph Coeffi-Patterns Weight cient 

Vertices Edges 

0 0 

0 
6 

1 x 

0 0 

1 ~ 5 1 x y 

2 x \l 4 2 
2 x y 

4 3 ~ x: ~ 3 3 
3 x y 

4 D 1Z 2 4 
2 x y 

5 IZI 5 1 xy 

6 ~ 6 1 y 

Total Number of Linear Graphs 11 



37 

There are seven t.erms in Eq. (2-16), the first term is same as 

Eq. (2-15) which is the equation for the enumeration of linear graphs, 

the remainder of the terms represent the number of non-linear graphs 

having different weights with the number of double-edges ranging from 

one to six. 

Table Vis prepared to show the number of non-linear graphs having 

5 •. 3 2 2 3 
4 vertices with weights y z' xy z and x yz 

The applications of the cycle index of the polyhedral group are 

shown by the following two examples: 

Example 2-9 Find the distinct ways of painting the four faces of the 

pyramid shown in Example 2-5 with two colors. 

Solution: The cycle index of the pyramid with respect to the four 

faces has been found in Example 2-5 as 

Let i i 
t.=x +y, 

1. 
i = 1,3 

substituting ti into P4 , it becomes 

( ) 4 2 3 2 2 2 3 4 
P4 x,y = x + x y + x y + 2xy + y 

Let the two colors be x (red) and y (green), then the number of 

ways of painting the four faces of the pyramid with three reds and one 

green is equal to the coefficient of x3y, that is 2. The total number 

of ways of painting the four faces of the pyramid with two colors is 

equal to 

p4 (1,1) = 1 + 2 + 2 + 2 + 1 = 8 
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TABLE V 

NON-LINEAR GRAPHS HAVING 4 VERTICES WITH 
5 3 2 2 3 WEIGHTS y z, xy z and x yz 

Weights 

Vertices x: no edge Coeffi- Patterns 
y: one edge cient 
z: double-

edge 

1. 

5 
1 1X1 y z 

2. 3. 

4 3 2 
4 4. xy z 5. 

(0) ~ 
6. 7. 

rD 
2 3 

4 x yz 
8. 9. 

~ ~ 



Example 2-10 Find the distinct ways of painting the eight vertices 

of a cube with two colors. 

Solution: The cycle index of a cube with respect to the a vertices 

has been obtained in Example 2-6 as 

substituting 
i i 

t.=x +y, 
]. 

i = 1,2,3,4 

into Pa, it becomes 

a 7 6 2 5 3 4 4 
PB (x,y) = x + x y + 3x y + 3x y + 7x y 

3 5 2 6 7 a + 3x y + 3x y + xy + y 

39 

The total number of distinct ways of painting the eight vertices 

of a cube with two color~ is equal to 

Pa (1,1) = 23 



CHAPTER III 

SYNTHESIS OF LINEAR AND NON-LINEAR 
COLORED GRAPHS 

The specifications of linear and non-linear colored graphs and 

the listing of specifications with certain number of vertices and edges 

are described. A general scheme is developed to synthesize the vertex-

vertex incidence matrices of colored graphs from a given specification. 

A general computer program which takes into account any number of ver-

tices and any number of different colored edges has been developed and 

shown in Program B, Appendix B. In the last section, a method of cut-

set matrix with modulo-2 operation is applied to enumerate exclusively 

the linear two-colored graphs with trees. 

Specifications of Colored Graphs 

The specification of a colored graph is defined as the set of 

. j j j . 
degrees of vertices of each subgraph [s 1 s2 ••• Sm], or [siJJ, 

where S.j is the degree of vertex i of subgraph j and mis the number 
l. 

of vertices of the colored graph. The colored graph having n types of 

colored edges is called n-colored graph. n-colored graph has n sub-

graphs. For the case of 1-colored graph, the colored graph itself is 

the subgraph. For the case of two-colored.graph, the specification is 

formed as follows. 



[ s/ 
s 2 

1 

s 1 
2 

s 2 
2 

The first and second rows of the specification represent the 

degrees of vertices of first and second subgraphs of the two-colored 

graph respectively. 

In general, two graphs having the same specification are not 

necessary to be isomorphic. This is because the specification of a 
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graph only shows the listing of degrees. of vertices of the graph, the 

listing itself does not take into account the connections between ver-

tices. Fig. 8 shows two one-colored graphs having the same specifi-

cation [322322] but are not :i,somorphic. Although the two two-colored 

h h . F' 9h h. 'f' . [12221] h grap s sown in ig. ave t e same speci ication 21111 , t ese 

graphs are not isomorphic. 

Given the number of vertices and edges of a colored graph, its 

specification has to satisfy the following equation: 

where 

IT • • 
~ S. J = 2 x eJ 
[:1 ;L 

S.j: degree of vertex i of subgraph j. 
1 

v: number of vertices of colored graph. 

ej: number of edges of subgraph j. 

(3-1) 

For the two-colored graphs shown in Fig. 9, we have e 1 (fine 

edges) = 4 and e 
2 

(heavy edges) = 3, therefore 

s 1 1 2 + 2 2 + 1 8 2 
1 

2 x 4 ~s. = + + = = x e = 
t:1 1 

and s S 2 2 + 1 + 1 + 1 + 1 6 2 x 2 2 x 3 ~· = = e = 
i..•.1 1 



6 

5 

[3 2 

1 
.1 

2 

5 6 

3 

2 3 2 2] [3 2 2 3 

(a) (b) 

Figure 8. Two One-Colored Graphs Having 
the Same Specification But 
Are Not Isomorphic 

(a) (b) 

Figure 9. Two lwo-dolored Graphs Having 
the Same Specification But 
Are Not Isomorphic 
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2 

3 

2 2] 

4 

3 



It should be noted that Eq.~(3-1) is also valid for the non-

linear colored-graphs. Fig. 10 shows a non-linear two-colored graphs 

having 4 vertices and its specification. 

Figure 10. A Non-Linear Two­
Colored Graph 
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The listing of the specifications of a colored graph is the set 

of solutions of S.j of Eq. (3-1). Therefore, given the number of ver-
1. 

tices v and edges ej of subgraph j, the list of specifications can be 

obtained. A computer program has been developed to generate the list-

ing of specifications and is shown in Program A, Appendix B. The 

detail usage of this program is also described in Appendix B. 

In the next section, the procedures to synthesize the vertex-

v.~rtex incidence matrices of colored graphs from a given specification 

will be presented. 
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Synthesis of Vertex-Vertex Incidence Matrices 

A vertex-vertex incidence matrix (v-v incidence matrix) is a 

square and symmetrical matrix with all zeros in diagonal elements, 

The sum of the elements in row i (or column i) is the degree of vertex, 

S., The element a .. of the matrix is the number of edges between ver-
i 1J 

tex i and vertex j, For the general case, there are different types 

(or colors) of edges in a graph, For example, a graph with fine and 

heavy edges has two types of edges, Therefore, in order to represent 

a .. by a digit number in terms of different types of edges, a method 
1J 

of representation of a .. is developed as follows, 
1J 

a = xy (digit number) 
ij 

The number of places of the digit number is the n~mber of types 

of edges in a graph, Then each place of the digit number represents 

the number of certain type of edge, In the case of having two types 

of edges in a graph, say fine and,heavy edges, the ones place is for 

the number of fine edges and tens place is for the number of heavy 

edges, It should be noted that the sum, of the numbers in different 

places of the digit number of a .. is the total number of edges between 
1J 

vertex i and vertex j, 

Example 3-2 Form the v-v incidence matrix for the graph shown in 

Fig, 11. 

Solution: The v-v incidence matrix is formed as follows. 

0 1 10 10 
) 
I 

1 0 1 0 
[Mvv] = 

10 1 0 1 

10 0 1 0 
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1 2 

(~ 2 2 !] 0 1 

4 3 

Figure 11. A Linear Two-
Colored 
Graph 

Since v-v incidence matrix is symmetrical, it is sufficient to 

consider only the upper triangle of the matrix in order to synthesize 

the v-v incidence matrix from a given specification. A general form 

of v-v incidence matrix is shown below with all diagonal elements 

equal to zeros and a .. = a ..• 
l.J Jl. 

The sum of the elements in row i (or 

column i) i~ the degree of vertex i, s .. 
]. 

0 a12 a13 al m.;.1 a1m 

a21 0 a23 a2 m-1 a2m 

a31 a32 0 a3 m-1 a3m 

[Mv) = 

0 

0 

(3-2) 
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For an-colored graph, there are n subgraphs. If we consider the 

Eq. (3-2) as the v-v incidence matrix of subgraph j' then 

j 
a12 + a13 + ... + + s., = al alm m-1 (3-3) 

b22 = s j - a12 = a23 + a24 + a2 + a2m 2 m .. 1 (3-4) 

(3-5) 

Eqs. (3-3), (3-4), (3-5) and so forth show the relationship be-

tween the elements of a v-v incidence matrix and the degrees of ver-

tices. 

The synthesis of v-v incidence matrices of n-colored graphs can 

be accomplished by considering each subgraph individually. Given a 

n-colored graph specification, the v-v incidence matrices for each 

subgraph specification are to be synthesized first, then all the 

possible combinations (or superpositions) of the v-v incidence matri-

ces of n subgraphs become the final v-v incidence matrices synthesized 

for the given n-colored graph specification. 

The procedures to synthesize the v-v incidence matrices of sub-

graph j are presented as follows. 

Procedures: 

1. Given the specification of subgraph j, [s1j's2j 

2. According to Eq. (3-3), find the all possible distributions 

(submatrices) of s1j among columns 2,3, ••• m. For 1-colored 

graph, the number of distributions of s1j should not include 

the sets of repetitions. This is to exclude the introduction 

of isomorphic graphs. For n-colored graph, where n > 1, all 
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possible distributions should be included. This is to intro-

duce the non-isomorphic graphs due to the superpositions of 

all subgraphs. (See Example 3-3 and 3-4). 

3. For each possible distribution, subtract 8 12' 8 13' •••, 8 1m 
j j s j to get b22 , b23 , b2m• from s2 , 83 ' ... ' m ... ' 

4. According to Eq. (3-4), find the all possible distributions of 

b22 among columns 3,4, • • •, m. 

5. For each possible distribution, subtract a23' a24' ... ' a2m 

from b23 , b24 , ••• , b2m to get b33 , b34 , ... ' b3m· 

6. The procedures of distribution are continued until the number 

to be distributed is for the last column. 

7. If the distribution becomes impossible, then the corresponding 

incidence matrix does not exist. 

8. Form the v-v incidence matrix of subgraph j by combining the 

different submatrices, completing lower triangle of matrix and 

filling out the diagonal elements with zeros. 

The procedures described above end up with a problem of collecting 

tree branches. The technique to collect the tree branches has been 

developed and shown in the main program of computer program B 

(Appendix B). 

Example 3-JI' Synthesize all possible v-v incidence matrices of linear 

1-colored graphs with the specification [332222]. 

Solution:' According to the procedures described above, we obtain the 

following submatrices. 

(I) Al: 3 3 2 2 2 2 
3 x 1 0 0 1 1 

(11) A2: 3 3 2 2 2 2 
3 x O O 1 1 1 



(I): All: 2 2 2 1 1 
2 x 1 1 0 0 

A13: 2 2 2 1 1 
2 x O O 1 1 

A15: 2 2 2 1 1 
2 x 1 0 0 1 

- A111: 1 1 1 1 
1 x O O 1 

A113: 1 1 1 1 
1 x 1, Q_ 0 

A131: 2 2 0 0 
2 x 2 0 0 

(rejected) 

A142: 1 2 0 1 
1 x O O 1 

A152: 1 2 1 0 
1 x O 1 0 

A1111: 1 1 0 
1 x 1 0 

(completed) 

A1131: 0 1 1 
O x O O 

A1421: 2 0 0 
2 x --
(rejected) 

A1521: 2 0 0 
2 x --

(II): A21: 3 2 1 1 1 
3 x 1 0 1 1 

A23: 3 2 1 1 1 
3 x 1 1 0 1 

A211: 1 1 0 0 
, 1 x 1 0 0 

(completed) 

A12 J 2 2 2 1 1 
2 x O 1 0 1 

A14: 2 2 2 1 1 
2 x 1 0 1 0 

A16: 2 2 2 1 1 
2 x O 1 1 0 

A112: 1 1 1 1 
1 x O 1-0 

A121: 2 1 1 0 
2 x 1 l O 

(completed) 

A141: 1 2 0 1 
1 x 1 0 0 

A151: 1 2 1 0 
1 x 1 0 0 

A161: 2 1 0 1 
2 x 1 0 1 

(completed) 

A1121: 1 0 1 
1 x O 1 

(completed) 

A1411: 1 0 1 
1 x O 1 

(completed) 

A15l1: ..!_1_Q 
1 x 1 0 

(completed) 

A22: 3 2 1 1 1 
3 x O 1 1 1 

A24: 3 2 1 1 1 
3 x 1 1 1 0 

A221: 2 0 0 0 
2 _x __ _ 

(rejected) 
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A231: 1 0 1 0 A241: 1 0 0 1 
1 x O 1 0 1 x O O 1 

(c6rn,pleted) (completed) 

Let the v-v incidence matrices of the different combinations of 

the submatrices be: 

[M 1] =Al+ All+ A111 + A1111 . vv 

[M 2] = Al + All + A112 + A1121 vv 

[M 3] =Al+ All+ A113 + A1131 + A11311 vv 

[M 4] =Al+ A12 + A121 vv 

[M 5] =Al+ A14 + A141 + A1411 vv 

[M 6] =Al+ A15 + A151 + A1511 vv 

[M 7] =Al+ A16 + A161 vv 

[M 8 ] = A2 + A21 + A211 vv 

[M 9] = A2 + A23 + A231 vv 

[M lO] = A2 + A24 + A241 
vv 

There are ten v-v incidence matrices obtained from the given 
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specification [332222]. Among them, only four v-v incidence matrices 

are non-isomorphic to each other, they are 

(1) 

(2) [M 3.J 
vv 

(3) [M 4] = [M 5] = [M 6] = [M 7] 
vv vv -"" 'f vv 

(4) [M 8] = [M 9] = [M 10] 
vv vv vv 

Fig. 12 shows the four v-v incidence matrices and their 

corresponding graphs. 



[M 1] = 
vv 

(1) 

5 

4 

[M 4] = 
vv 

(3) 

6 

0 1 0 0 1 1 0 1 0 0 1 1 
1 0 1 1 0 0 1 0 1 1 0 0 
0 1 0 0 0 1 [M 3] = 0 1 0 1 0 0 
0 1 0 0 1 0 vv 0 1 1 0 0 0 
1 0 0 1 0 0 1 0 0 0 0 1 
1 0 1 0 0 0 1 0 0 0 1 0 

1 (2) 

6 

6 

3 

2 

0 1 0 0 1 1 0 0 0 1 1 1 
1 0 0 1 0 1 0 0 1 0 1 1 
0 0 0 1 1 0 [M 8] = 

0 1 0 1 0 0 
0 1 1 0 0 0 vv 1 0 1 0 0 0 
1 0 1 0 0 0 1 1 0 0 0 0 
1 1 0 0 0 0 1 1 0 0 0 0 

(4) 

3 6 5 

Figure 12. Four V-V Incidence Matrices and 
Their Corresponding Graphs 
Obtained from [332222] 
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Example 3-4 Synthesize all possible v-v incidence matrices of linear 

and non-linear 2-colored graphs for the specification [~i!~]. 
Solution: According to the procedures, the subgraphs for [1212] will 

be synthesized first. 

A. Subgraphs for [1212]: 

(I). Al: 1 2 1 2 (II). A2: 1 2 1 2 (III). A3: 1 2 1 2 
1 x 1 0 0 1 x O 1 0 1 x O O 1 

(I): All: 1 1 2 A12: 1 1 2 All 1: 0 2 
1 x 1 0 1 x O 1 O x 

(rejected) 

A121: 1 1 
1~ 

(completed) 

(II): A21: 2 0 2 (III): A31: 2 1 1 
2 x O 2 2 x 1 1 

(completed) (completed) 

Therefore, [M 1] 1 =Al+ A12 + A121 vv 

[M 2J1 = A2 + A21 vv 

The three v-v incidence matrices and their subgraphs for [1212] 

are shown.in Fig. 13. 

The subgraphs for [2110] are then to be synthesized. 

B. Subgraphs for [2110]: 

(I). Al: 2 1 1 0 
2 x 1 1 0 

All: 0 0 0 
O x O O 

(completed) 

Therefore, [M 1] 2 = Al + All vv 

, The v-v incidence matrix and its subgraph are shown in Fig. 13. 
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[o 1 o o] 
1 1 0 0 1 

[Mvv ]1 = 0 0 0 1 
0 1 1 0 

lo o 2 

4cf' o3 

[Mvvl] = [. 
0 11 

11 0 
10 0 
0 1 

[M 2] = 0 0 [
o o 

vv 1 1 O 

1 0] 0 2 
0 0 
0 0 

10 0 J 0 1 
0 1 
1 0 

0 2 

1 

4 

[M 2] -vv -

2 

3 

[ lg 
11 

0 

( 0 0 0 1] 
3 0 0 1 1 

[Mvv ]1 = 0 1 0 0 
. 1 1 0 0 

1 

4 

10 11 0] 
0 0 2 
0 0 0 
2 0 0 

2 

3 

1.S %, 2 a ,q 2 

3l!) b4 3 4 

[ 0 1 1 OJ 
[M 1] = 1 0 0 0 

vv 2 1000 
0 0 0 0 

1Q o 2 

[M 3] -vv . -
[ 

0 10 10 
10 0 1 
10 1 0 

1 1 0 

3 

n 
ia..: 0 4 

3 a ~2 

Figure 13. Subgraphs and Two-Colored Graphs Obtained from ( !i!~] 
Lil 
"-> 
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The superpositions of the incidence matrices of two subgraphs are 

then the final v-v incid·ence matrices for the 2-colored graph specifi-

. ( 1212] cation 2110 • It should be noted that the elements of the incidence 

matrices for the colored-2 specification [2110] are to be multiplied 

by 10, since they represent another type of colored edge. 

[M 1]1 + 10 [M 1]2 vv vv 

[M 2] = 
vv 

[M 3] = [M 3]1 + 10 [M 1]2 vv vv vv 

The three 2-colored graphs and their v-v incidence matrices have 

been shown on page 52. 

Cut-Set Matrix with Modulo-2 Operation 

In this section, a method called cut-set matrix with modulo-2 

operation is presented to enumerate the colored graphs with trees. 

The method used is developed by Malik and Lee [60]. The principal ad-

vantages of this method are its compact notations and a high degree of 

organization. The method organizes the tree-finding problem in such a 

manner that it lends itself to determine the subsets of the set of trees 

of a graph. For example, it permits one to find the set of all trees 

which contain only a given set of edges. 

The fundamental system of cut-sets with respect to a tree Tis the 

set of v-1 cut-sets (v is number .of vertices), one for each branch, in 

which each cut-set includes exactly one branch of T. The cut-set 

matrix of distance 1 is an array of bx c where bis the number of 

branches or number of cut-sets and c is the number of chords in a graph. 
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The element a ... of the cut-set matrix of distance 1 is 1 if chord j is 
l. J 

incident with branqh i, otherwise, a .. = 0. The cut-set matrix of 
. l.J 

di stance i is an array ,of. b Ci x c Ci, where bci -~nd c Ci are the i-combi-

nation of b things and i-combination of c things respectively. If bis 

greater than or equal to c, the maximal distance of the cut-set matrix 

is c, otherwise, the maximal distance of the cut-set matrix is b. The 

element of the cut-set matrix with distance greater than one is the 

determinant of the corresponping submatrix of the cut-set matrix with 

distance 1. 

Giveµ a starting tree, the cut-set matrices with distance k can 

be formed. The total possible number of trees is then equal to the 

sum of the number of the element 1's in the cut-set matrices with 

different distances and the starting tree. An example is shown to 

illustrate the application of this method. 

Example 3-5 Find all the other number of tree graphs from the starting 

graph shown in Fig. 14. 

1 

a b 

4 2 

c 
3 

(a) (b) 

Figure 14. Graph and Its Cut-Sets 



Solution: A graph with a tree should satisfy the following two 

equations: 

c = e - v + 1 

b = v - 1 

where c: number of chords in a graph. 

b: number of branches in a graph. 

e: number of edges in a graph. 

v: number of vertices in a graph. 
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(3-6) 

(3-7) 

Let the starting tree be T which contains branches 3,4,5 of the 

given graph as shown in Fig. 14 (a). Therefore, if the cut-sets a,b,c 

are chosen as shown on page 54, then the cut-set matrices of distances 

one and two are obtained as follows. 

Q(1) = ![nl 
5 1 1 

12 

Q(2) = ;! [ ! l 
45 1 

The algebra of the field modulo-2 was used to find the entries of 

cut-set matrix of distance 2,. Q( 2). The basic modulo-2 operation is 

listed below: 

1 + 1 = :J 1 + 0 = 
exclusive or 

1 x 1 = 

:] 1 x O = 

O x 0= 

and 

For example, the entry (34, 12) in Q( 2) is obtained by finding the 

determinant. 

1 2 
D = 3 [ 0 1]= 0 x O + 1 ~ 1 = 0 + 1 = 1 

4 1 0 
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(1) 
A non-zero entry such as the entry (3,2) of Q corresponds 

to the tree 245 of distance one which is obtained by replacing branch 

3 by chord 2 as shown in Fig. 15 (b). Using this procedure, the other 

three trees of distance one from Tare found to be: 315, 341, 342. 

Similarly, from Q( 2), the three trees of distance two are found to 

be: 512, 412, 312. 

Therefore, the complete set of'trees of the graph are the eight 

trees listed above including the starting tree T shown in Fig. 15 (a). 

It should be noted that among the eight graphs with trees, there 

are only three graphs which are non-isomorphic to each other, they are 

1. (a)= (f) 

2. (b) = (c) 

3. (d) = (e) = (g) = (h) 

The graph isomorphism test is presented in the next chapter. 
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4 

4 

4 

1 

3 

(a) T: 345 

1 

3 
(c) 315 

1 

3 

(e) 342 

1 

2 

2 

2 

2 

4 

4 

4 

4 

1 

3 

(b) 245 

1 

3 
(d) 341 

1 

3 
(f) 512 

1 

3 3 
(g) 412 (h) 312 

Figure 15. Graphs with Complete Set of Trees 
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CHAPTER IV 

AIGORITHM OF COLORED GRAPH 
ISOMORPHISM TEST 

Two graphs are isomorphic, if and only if the vertices and edges 

of the two graphs can be placed in one-to-one correspondence and the 

incidences are preserved. 

Unger [61] showed a heuristic method for a pair of directed lin-

ear graphs. The procedures attempt to express the inward and outward 

degrees of vertices and the partitioning, on the basis of degrees of 

vertices, for possible matches. The method is able to handle a fairly 

complex graphs in a relatively short time, but may not work in all 

cases due to its heuristic nature,. 

Goodman and Cummins presented a method to determine whether or 

not two linear graphs are isomorphic and listed the automorphi~ms of 

a graph [62,63]. The method partitioned the vertices of any graph 

into degree classes in which all vertices in a class have the same 

degree. These classes are used to define connected subgraphs which 

can be treated directly. The logical expression for proposition and 

logical product of two propositions are explored to determine the ver-

tex elementary matrices. The graph transformation equation in terms 

of vertex-vertex incidence matrices and element-ary matrices is used to 

check for isomorphism. 

Following the similar steps proposed by Unger, D?brjanskyj [34,35] 

co 
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presented a systematic procedure to determine the isomorphism of a 

pair of non~directed graphs. The incidence tables are used to check 

for the local incidence relations between vertices and edges of the 

graphs. The vertex and edge correspondence matrices are obtained in 

matrix form and graph transf<Yrmation equation in terms of vertex-edge 

incidence matrices and correspondence matrices is used to check for 

i~omorphism. Because of lack of efficient deterministic procedures in 

which no finite number of isomorphic possibilities are shown, the algo.­

rithm has led to insufficient computer procedures. 

Corneil and Gotlieb [64,65] showed a procedure for determining 

whether two graphs are isomorphic. The representative and the recorded 

graphs are derived from the given graphs. The representative graphs 

form a necessity condition for i'somorphism; namely, if they are not 

identical, then the given graphs are not isomorphic. The recorded 

graphs form a sufficiency condition for isomorphism; namely, if they 

are identical, then the given graphs are isomorphic. In the algorithm, 

only undirected, unlabeled graphs are considered. The procedure is not 

deterministic, since it is based upon a conjecture. 

Similar to the problem of graph isomorphism test, a method con­

cerned with the computer search for non-isomorphic convex polyhedra has 

been developed by Grace [66]. 

In this chapter, the p;rocedures for isomorphism test are developed. 

These procedures take into account the linear or non-linear non­

directed graphs with different types of colored edges and colored ver­

tices. The graph transformation equation and incidence tables are used 

and the total number of isomorphic possibilities are determined. The 

proposed procedures are proved to provide the necessary and sufficient 



conditions for the isomorphism test. A general computer program and 

two sample outputs are presented in Program C, Appendix B. 

Isomorphism Test for Linear and 
Non-linear Colored Graphs 

In Chapter II, the formation of v-v incidence matrix for a 
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colored graph with different colored edges is presented. The element 

of the v-v incidence matrix is a .. = xy (digit number) where the number 
]. J 

of places of the digit number is the number of types of edges in a 

graph. The vertex-edge (v-e) incidence matrix which can be obtained 

by assigning the edge numbers on the non-zero entries of v-v incidence 

matrix is to be used to test the graph isomorphism. The element of 

the v-e incidence ma~rix is still a .. = xy. Besides the identification 
' l.J 

of different types of edges, the vertices are also to be identified by 

a digit number t, where t represents the type of vertex: t = 1 for 

fine vertex representing rigid link; t = 2 for vertex representing 

piston-cylinder; t = 3 for vertex representing spring; t = 4 for ver~ 

tex representing pulley and t = 5 for vertex'which represents the fixed 

link in mechanism. Let the sum of row i of v-v (or v-e) incidence 

matrix be V. = dv which is the degree of vertex i, then the new repre­
l. 

sentation of degree 

the type of vertex. 

of vertex i is V. ·= tdv which takes into account 
]. 

Definition 1: Graphs G1 = (V1 , E1) and G2 = (v2 , E2 ) are said to be 

isomorphic to each other if there exists 1-1 correspondence between 

v1 and v2 and between E1 and E2 which preserves incidences (adjacency 

properties). 

Definition 2: Two incidence matrices are equivalent, if they are 

different only by permutations of rows and columns. 
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Theorem 1: If two graphs G1 and G2 are isomorphic, then there exist 

two elementary matrices of rank v and e, such that the incidence matri-

ces of the graphs are transformed by the following transformation 

equation. 

where 

[M 1] = [E] [M 2] [E] ve v ve e 
( 4-1) 

[M 1] [M 2]· 
ve ' ve • 

vertex-edge incidence matrices of G1 and G2 

respectively. 

[E ]: v 

[E ]: 
e 

1 2 
vertex elementary matrix with the order of n by n 

v v 

(n: number of vertices in a ~raph) 
v 

2 1 edge elementary matrix with the order of n by n 
e e 

(n: number of edges in a graph) 
e 

Proof: If two graphs are isomorphic, then there exists one-to-one 

correspondence .between their vertices and edges, and the incidences are 

preserved [Definition 1]. If the correspondence of vertices and edges 

in two graphs is expressed in matrix form, then [E J and [E J are · v e 

obtained. 

The permutations of columns and rows in;a v-e incidence matrix 

is equivalent to the relabelling of edges and :vertices in the graph. 

If [M 2] is postmultiplied by [E ], then columns of [M 2J are per-ve e ve 

muted,according to the edge incidences of G1 and G2 • 

[m 2] [E] = [T] ve e 

Therefore, v-e incidence matrix [TJ expresses the adjacency 

properties of vertices in G2 and edges in G1• If [T] is pxemultiplied 

by [E ], then rows of [T] are permuted according to the vertex inci-
v 

dences of G1 and G2 and the resultant v-e incidence matrix expresses 
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the adjacency properties of vertices and edges in G1, that is, 

as shown in the left side of Eq. (4-1). 

Matrices [E J and [E J relate the correspondence of vertic.e.s and v e 

edges respectively in graph 1 and graph 2. Since [M 1] and [M 2] are ve ve 

known, the determination of [E J and [E J is then the main part of the 
v e 

problem of graph isomorphism test. 

The procedures to find [E J and [E J and to check graph isomorphism 
v e 

are described below: 

Step 1: Check the number of vertices and edges of two graphs, if they 

are the same, go to step 2, if not, the two graphs are not 

isomorphic. 

Step 2: Check the degrees of vertices of both graphs, if they are not 

equivalent, then the two graphs are not isomorphic, if they 

are equivalent, go to step 3. 

Step 3: Let the number of different degrees of vertices bed, and the 

number of vertices having the same degree of vertex be m., 
1 

where i = 1, ••• , d, then the total number of possibilities 

for the vertices of graph 1 to be .correspondent to the ver-

tices of graph 2 is 

d 
n = Tr (m. ! ) 

i=1 1 
(lT: product) 

That is, there are n possible ways to form the vertex 

elementary matrix [E ]. 
v 

Step 4: Pick up one possibility of vertex correspondence from step 3 

and form the [E ]. 
v 

Step 5: Let the two vertices corresponding to each entry 1 in [Ev] be 

the leading vertices and form the incidence tables. 
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Step 6: If the degrees of vertices of two graphs in the incidence 

tables are not the same, go to step 4 and repeat. Otherwise, 

find the edge correspondence in the two graphs, and fill out 

the corresponding entries in [E J by l's. 
e 

Step 7: Repeat step 5, step 6 until [E J is completely filled out 
.e 

such that in each row and each column, there is only one en-

try with 1. 

Step 8: Check by Eq. (4-1), if it is satified, the two graphs are 

isomorphic. Otherwise, go to step 4 and repeat. If all the 

possibilities have been tried out and no isomorphism is foun~ 

then the two graphs are not isomorphic. 

Theorem 2: The procedures described above provide the necessary and 

sufficient conditions for the colored graph isomorphism test. 

Proof: 

1. The types of colored edges in the graph are expressed in the 

elements of v-v or v-e incidence matrix. The types of colored 

vertices are identified in the degrees of vertices. 

2. The degrees of vertices of both graphs provide the necessary con-

dition for checking graph isomorphism. If the degrees of ver-

tices of both graphs are not equivalent, they are not isomorphic 

since there exists no one,-to-one correspondence between the ver-

tices of both graphs [Definition 1]. If they are equivalent, 

there exists a finite number of.isomorphic possibilities as de-

scribed below. 

3. The finite number of isomorphic possibilities for the vertices in 

two graphs to be correspondent is equal to 

d 
n = 1f (m. ! ) (rr: product) 

i=l 1 

' 
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where 

n: finite number of isomorphic possibilities. 

d: the number of different degrees of vertices in the graph. 

m. : the number of vertic.es having the same degree of ver-
1. 

tex, i = 1, ••• , d. 

4. For each isomorphic possibility, there exists one-to-one corre-

spondence between the vertices of both graphs, therefore, the ver-

tex elementary matrix [E J is completed. 
v 

5. By letting the two corresponding vertices in two graphs be the 

leading vertices respectively, the incidence tables of ;wo graphs 

provide the adjacency properties of vertices and edges (developed 

from the leading vertices) in two ~raphs respectively. 

6. If the degrees of vertices of two graphs in the incidence tables 

are not equivalent, then the isomorphic possibility has to be 

rejected, because no adjacency properties of the vertices and 

edges are found. In this case, the next isomorphic possibility is 

used and the procedures are repeated. If all the isomorphic 

possibilities are used and the degrees of vertices of two graphs 

in the incidence tables are still not equivalent, the two graphs 

are not isomorphic. 

7, If the degrees of vertices of two graphs in the incidence tables 

are equivalent, the edge correspondence in two graphs is found 

according to the exist vertex correspondence. The corresponding 

entries in edge elementary ·matrix [E J are filled by 1' s. The 
e 

entry 1 ·shows one-to-one correspondence between corresponding two 

edges in two graphs. 

8. The procedures to form the incidence tables from other leading 
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vertices are continued until [E J is completed such that only one 
e 

entry with 1 appears on each column and each row. 

9. Since [E J is completed and [E J is known for each isomorphic 
e v 

possibility, the graph transformation equation 

is to be checked. If the equation is satisfied, the two graphs 

are isomorphic [Theorem 1]. If it is not satisfied, the next 

isomorphic possibility has to be used and procedures repeated. 

l;f all the isomorphic possibilities are tested and no isomorphism 

is found, then the two graphs are not isomorphic. 

10. The degrees of vertices of two graphs provide the necessary 

condition to check graph isomorphism. The finite number of iso-

morphic possibilities and graph transformation equation provide 

the sufficient condition to check graph isomorphism. Therefore, 

the whole procedures described provide the necessary and suffi-

.cient conditions for graph isomorphism test. 

Example 4-1 Test the two graphs shown in Fig. 16 to determine if they 

are isomorphic. 

2 5 2 5 

3 7 4 7 

3 4 3 4 

(1) (2) 

Figure 16. Two Linear Two-Colored Graphs 



The two v-v incidence matrices of graph 1 and graph 2 are shown 

below respectively. 

0 1 I 10 0 
1 10 
0 1 
1 0 

[M 2] = I ! ~ ! :~ 1~ 
vv 10 0 10 0 1 

1 10 0 1 0 

By assigning the edge numbers on the non-zero entries of [M 1] vv 

and [Mvv2J, the two vertex-edge incidence matrices are obtained as 

follows. 

I 10 

1 0 0 0 0 0 I 1 10 

1 0 0 0 

!] 
l 10 0 1 10 0 0 0 1 0 0 1 10 0 

[M ] = 0 0 1 0 1 10 0 [M 2 ] = 0 0 0 1 0 10 ve O 0 0 10 1 0 1 ve O 10 0 0 0 10 
0 1 0 0 0 10 1 0 0 1 0 10 0 
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The entries 10 and 1 designate the incidence of a heavy edge with 

a vertex and a fine edge with a vertex respectively; while entry O 

designates no incidence of an edge with a vertex. 

The degrees of vertices of each graph are listed below: 

Graph Vertex Degree of Vertex 

1 111 
2 121 

1 3 112 
4 112 
5 112 

1 112 
2 112 

2 3 111 
4 121 
5 112 



The degree of vertex 1 in graph 2 is equal to the sum of the 

2 first row of [M ], that is, 12, and preceded by the type of ve 

vertex 1, that is, 1. 
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There are one 111, one 121, and three 112's in the degrees of ver-

tices in each of the graphs, therefore, there are 1! x 1! x 3! = 6 

possibilities for the vertices in graph 1 and graph 2 to be correspon-

dent. Let us pick up one of the possibilities as shown below. 

Graph Vertex Degree of Vertex Vertex Graph 

1 111 3 
3 112 5 

1 4 112 1 2 
5 112 2 
2 121 4 

The entries 13, 35, 41, 52 and 24 in [E J are then to be filled 
v 

by l's as shown at the end of example. 

Let us pick up the vertices v11 and v32 as the leading vertices 

for the following incidence table, then 

(a) 

112 121 112 121 

The first row of the incidence table is the list of edges inci-

dent with the leading vertex, the second row is the list of vertices 
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which are at the other end of the edges listed in the first row. The 

third row is the list of degrees of vertices for those vertices shown 

in second row. 

Judging from the incidence table (a) and the vertex correspon-

dence in [E ], we obtain the following edge correspondence: v 

2 1 
e4 = e2 

2 1 
e6 = el 

Therefore, the entries 42 and 61 of 

Let us pick up the vertices v31 and 

for another incidence table shown below: 

[E J are to be filled by l's. 
e 
2 v5 as the leading vertices 

dence 

(b) 

121 112 112 121 112 112 

Judging from the incidence table (b) and the ve~tex correspon-

in [E ], we obtain the following edge correspondence: v . 

2 1 
e7 = e3 

2 1 
e3 = es 

2 1 
es = e . 

6 

Therefore, the entries 73, 35, 56 of [E J are to be filled by l's. e . 

Let us pick up vertices v41 and v12 as the leading vertices for 

the following incidence table: 

(c) 
1 2 

v4: es e7 e4 vl : e3 el e2 

v3 vs v2 vs v2 v4 

112 112 121 112 112 121 



Judging from the incidence table (c) and the correspondence in 

[E J and [E J, we obtain the following new edge correspondence for 
v e 

[E] e 

= 

= 

After filling out the entries 17 and 24 of [E ], the procedures 
e 
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are completed. The vertex and edge elementary matrices [E J and [E J 
v e 

are shown as follows. 

[E] v =[g n nJ 1 0 0 0 0 
0 1 0 0 0 

0 0 0 0 0 0 1 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 

[E] = 0 1 0 0 0 0 0 
e 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 
0 0 1 0 0 0 0 

After checking the Eq • ( 4- 1 ) , we have 

[M 2J[E] =[ J 
0 0 10 1 0 

I] 
1 0 0 0 10 
1 0 0 0 0 

ve e 10 0 1 10 0 0 
0 0 1 0 1 10 

[ 10 
1 0 0 0 0 

gl = [M 1] 
10 0 1 10 0 0 

[E] [M 2] [E] = 0 0 1 0 1 10 v ve e O 0 0 10 1 0 1 ve 

0 1 0 0 0 10 1 

Since Eq. (4-1) is satisfied, graph 1 and graph 2 are isomorphic. 

Example 4-2 Test the two graphs shown in Fig. 17 to determine if 

they are isomorphic. 
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5 5 

(1) (2) 

Figure 17. Two Non-Linear Three-Colored Graphs 

The upper triangles of v-v incidence matrices of graph 1 and graph 

2 are shown below respectively. 

and 

lo 
1 0 1] [o 

1 0 1] 1 1 0 1 10 2 1 0 1 10 

[Mvv J = ~ 1 0 20~ [Mvv J = ~ 1 0 20~ 
10 200 10 200 

By assigning the edge numbers on the non-zero entries of [M 1] vv 

[ M 2] the two vertex-edge incidence matrices are obtained as 
vv ' 

follows. 

[M 1] = [ ! 
ve O 

0 

1 
0 
0 
1 

0 
1 
1 
0 

O OJ [ 1 10 0 2 1 
0 200 [Mve J = 0 

10 200 0 

1 
0 
0 
1 

0 
1 
1 
0 

O OJ 10 0 
0 200 

10 200 
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The degrees of vertices of each graph are listed below: 

Graph Vertex Degree of Vertex 

1 2002 
2 1012 

1 3 4201 
4 1211 

1 2002 
2 1012 

2 3 1201 
4 4211 

Since the degrees of vertices in graph 1 and graph 2 are not 

equivalent, the two graphs are not isomorphic. 



CHAPrER V 
{j 

COMPUTER METHODS OF LISTING SPECIFICATIONS, SYNTHESIZING 
INCIDENCE MATRICES AND TESTING ISOMORPHISM 

OF COLORED GRAPHS 

In Chapter III, the definition and equation of colored graph 

specifications are introduced. It has also been shown that the number 

of rows of the specification is equal to the number of different types 

of colored edges and also equal to the number of subgraphs. Following 

the introduction of colored graph specifications, the procedures to 

synthesize the v-v incidence matrices of linear and non-linear colored 

graphs from a given specification are presented. In Chapter IV, a 

general algorithm is introduced to test the isomorphism of linear and 

non-linear colored graphs. The total number of possibilities of find-

ing the graph isomorphism is also described. 

In this chapter, the computer methods of listing the specifica-

tions, synthesizing the incidence matrices and testing the graph 

isomorphism are described and their corresponding computer programs are 

listed in programs A, Band C in Appendix B. 

Listing of Colored Graph Specifications 

Program A in Appendix Bis for the listing of specifications. The 

program distributes the number NB into NP places. The lower bound and 

upper bound of the specifications are denoted as ML and MU respectively. 

Any specification which has number either less than ML.or greater than 
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MU is rejected. The computer program written in Fortran IV language 

consists of one main program and three subroutines. 

Example 1 shown in Program A output has NB= 14, NP= 6, ML= 1 

and MU= 9. Such a set of specification will yield a graph with 6 ver-

tices and 7 edges (NB= 2 x number of edges of a graph). A total of 20 

specifications is generated. Example 2 shows a listing of 2-colored 

graph specifications. The colored-1 subgraph has NB= 6, NP= 4, 

ML = 1 and MU = 3. The colored-2 subgraph has NB = 4, NP = 4, ML = 0 

and MU= 2. These data can be interpreted as a colored graph having 4 

vertices, 3 fine edges and 2 heavy edges. There are total 14 specifi-

cations generated. 

Synthesis of Vertex-Vertex Incidence Matrices 

Program Bin Appendix Bis to synthesize the v-v incidence 

matrices of colored graphs. The given data are the number of vertices 

and the specification of the colored graph. The program is written for 

the general purpose which takes into account any number of vertices and 

any number of different types of colored edges. The input data of the 

specification can be read in by arbitrary order. 

Two examples are shown in the output of Program B. Example 1 

shows one colored graphs having four vertices with the specification 

[3322]. Four v-v incidence matrices are generated from the given 

specification. The corresponding graphs have one linear and three non-

linear graphs which are shown in the output. Example 2 is the problem 

f h . . 1 d h . h h · fi · [ l2 l2] o synt esizing two-co ore grap s wit t e speci cation 2110 • 

The colored-1 subgraphs are first found from the specification [1212], 

and the colored-2 subgraph are then found from the specification 
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[2110]. The superpositions of both subgraphs are the final v-v inci-

. ( 12121 dence matrices of the two-colored graphs with 2110 • One linear 

two-colored graph and two non-linear two-colored graphs are obtained 

and shown in the output. 

The computer program consists of one main program and five sub-

routines. They are all written in Fortran IV language. 

Colored Graph Isomorphism Test 

Program C which consists of one main program and five subroutines 

is developed to test the colored graph isomorphism. The program takes 

into account both linear and non-linear colored graphs with any numbers 

of different types of vertices and edges. 

The types of edges and vertices of the colored graph are repre-

sented by some digit numbers which are described in Chapter IV. 

The elements in upper triangle of the v-v incidence matrix of 

each colored graph are the main input data. The preparation of the 

data cards for the program is explained in Appendix B. 

Two examples are shown in the output of the program. Example 1 

shows two two-colored graphs having 6 vertices, 6 fine edges and 2 

heavy edges with the v-v incidence matrices shown in the output. 

All the possibilities of finding isomorphism and incidence tables 

are printed out. The two graphs have been shown as isomorphic to 

each other. -Example 2 shows two 3-colored graphs with three dif-

ferent types of vertices. The two graphs have been shown as non-

isomorphic, since they have the different sets of degrees of vertices. 



CHA.PrER VI 

GRAPHICAL REPRESENTATIONS, MOBILITY EQUATIONS 
AND CRITERIA OF KINEMATIC CHAINS WITH 

DIFFERENT KINEMATIC ELEMENTS 

The methods of graphical representations of kinematic chains with 

different kinematic elements such as cam pairs, prism pairs, gear 

pairs, springs, belt-p~lleys and their combinations are presented in 

this chapter. The enumerations of those kinematic chains with differ-

ent kinematic elements and their combinations then become the problems 

of enumerating the different colored graphs with colored vertices and 

colored edges •. Some enumerations of colored graphs are shown and are 

verified by the Polya's theory of counting. Mobility equations in 

terms of colored vertices and colored edges are developed for kine-

matic chains with different kinematic elements. One general mobility 

equation is developed which takes into account any number of colored 

vertices and colored edges. Since not all colored graphs synthesized 

are accepted from the point of F degrees of freedom1, criteria are 

developed to reject those unacceptable colored graphs. 

1Isokinetic chain of F degrees of freedom is defined as a kine­
matic chain in which there exists no assembly of links and joints, 
which when considered alone would form a kinematic chain with less than 
F degrees of freedom [32]. 
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Cam Kinematic Chains 

In any kinematic chain, a binary link and its two turning joints 

can be replaced by a cam pair. Fig. 18 shows Watt's six-link chain and 

its corresponding graph in which rigid links and turning joints are 

represented by vertices and edges respectively. A cam kinematic chain 

(CKC) with one cam pair can be obtained from Fig. 18 (b) by replacing 

fine edges 12, 23 by a heavy edge 13 as shown in Fig. 19 (b). The 

corresponding CKC is shown in Fig. 19 (a). 

3 

2 

(a) (b) 

Figure 18. Watt's Six-Link Chain and Its 
Corresponding Graph 

5 3 

(a) (b) 

Figure 19. CKC with One Cam Pair and 
Its Colored Graph 

5 

6 

5 

6 
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From the procedure of constructing cam kinematic chains, two equa-

tions can be established to relate the number of turning joints and 

links in the parent kinematic chain to the number of vertices, fine and 

heavy edges in the colored graph. 

(6-1) 

(6-2) 

where 

j: number of turning joints in the parent kinematic chain. 

). : number of links in the parent kinematic chain. 

ef: number of fine edg;es'in colored graph. 

eh: number of heavy edges in colored graph. 

v: number of vertices in colored graph. 

For example, there are 6 links and 7 joints in the parent Watt's 

chain shown in Fig. 18 (a) and there are 5 vertices, 5 fine edges and 

1 heavy edge in the colored graph as shown in Fig. 19 (b), therefore 

7 = 5 + 2 (1) 

6 = 5 + 1 

The number of linear graphs having 5 vertices and 6 edges 

(including fine and heavy edges) can be obtained from the coefficient 

6 4 of x y of the cycle index of full-pair group, R5(x,y), and is equal 

to 6 [57]. Table VI shows all the 6 linear graphs having 5 vertices 

and 6 edges, the colored graphs and CKC. Some of the graphs are re-

jected using the following rules: 

Rule 1: Non-connected graph is rejected. If a kinematic chain is open, 

its corresponding graph is non-connected, that is, at least one 
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TABLE VI 

ALL THE 6 LINEAR GRAPHS HAVING 5 VERTICES 
AND 6 EDGES, COLORED GRAPHS AND CKC 

.. 

Uneqti:v11.lAD.t Corresponding 
,,_ 

Colored Graphs CKC Comment 
·-··,62 

~' 
'?he parent chain ie 
Watt•e kineaatic chai•• 

.. 
4 . . .· . . . 3 

~\er 2 ·-
. ·~ 

'?he parent chain is . . l StepheJt.eon'• kiJ&••ti.o . . . . . . ' . . ~ . 

4 . 3 5 · · . 4 
chain. 

.· . . . . . . 

o. 

·t=] . Rejected.I (Rule 2) . . 

.. .. t=J 
...• < 

Rej~oted.l cau1,.2> 

·-:r:~ ~ z . '?he parent chain ie 

2 
Stepbeneo11.•e Jd.Jt.••atio 

3 
chain. 

f. 
.. 

~ :t?ejectedl . (Rule 2) 

g. 

~ ~ejected.I (Rule 2) 

Reje·ctedl (Rule l) 

Rejecte41 (Rule l) 

.· Rejected.I (Rule l) 

.. ~ 

,. 
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of the degrees of vertices in the linear graph is less than 

two, or the degree of vertex at the end of the double-edge of 

the non-linear graph is equal to 2. 

Rule 2: A graph having a circuit which consists of three fine vertices 

and three fine edges is rejected. The kinematic chain corre-

spending t.o this kind of graph is non-isokinetic. Part of the 

chain when considered alone would form a kinematic chain with 

less than 1 degree of freedom. It has no mobility. 

Rule 3: Neither linear nor non-linear graph can have more than three 

consecutive vertices with degrees of vertices 2 in terms of 

fine edges. The kinematic chain becomes non-isokinetic in 

this case. 

Rule 4: A non-linear Praph with double-edges in which each double-edge 

has one heavy edge and one fine edge is rejected. Since 

between two cam surfaces, only cam pair(s) is possible to 

exist, no turning joints can exist at the same time. 

Rule 5: A non-linear graph with multiple-edges is rejected if there 

are more than two edges in each multiple-edge. In general, 

the kinematic chain corresponding to this kind of graph has no 

mobility. Under some special geometric conditions2 , a CKC 

corresponding to a non-linear colored graph with multiple 

heavy edges may have constrained motion. 

2rn this case, the relative motion between two cams is either 
pure rotation or pure translation. 
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For the parent kinematic chain with 6 links and 7 turning joints, 

the number of vertices and edges in a graph required for CKC with two 

cam pairs (two heavy edges) can be computed from Eqs. (6-1) and (6-2) 

and are equal to 4 and 5 respectively. The number of linear graphs 

having 4 vertices and 5 edges is equal to 1, also equal to the coeffi-

5 cient of x y of the cycle index of the full pair group, R4 (x,y,z) in 

Eq. (2-16). Table VII shows the linear graph having 4 vertices and 

5 edges, colored graphs and CKC. 

Table VIII shows the non-linear graphs and CKC developed from the 

parent 6 link chain. The number of non-linear graphs can be verified 

by the Polya's theory of counting. The number of non-linear graphs 

having 4 vertices, 1 double-edge and 3 fine edges is equal to the 

ff · · f 3 2 · h 1 . d f h f 11 . coe icient o x y z int e eye e in ex o t e u -pair group, 

R4 (x,y,z) as shown in Eq. (2-16) and is equal to 4. Similarly, the 

number of non-linear graphs having 3 vertices, 1 double-edge and 2 

fine edges is equal to the coefficient of x2z in R3 (x,y,z) and is 

equal to 1. Note that R3 (x,y,z) can be obtained by substituting 

i i i t. = x + y + z into the cycle index of the permutation group shown 
i 

in Example 2-2, Chapter 2. It should be noted that the cycle index 

of the full-pair group of 3 objects is the same as the cycle index of 

the symmetrical group of 3 objects. 

From Eqs. (6-1) and (6-2), if we let i= 10, j = 13 and eh= 6, 

we obtain v = 4, ef = 1, that is, the CKC with 6 cam pairs developed 

from parent 10 link chain will have the colored graphs consisting of 

4 vertices and 7 edges. Since the number of edges of a complete graph 

with 4 vertices is equal to~ (4) (4-1) = 6, the colored graphs con-

sist of at least one double-edge. All the graphs having 4 vertices 



TABLE VII 

ONE LINEAR GRAPH HAVING 4 VERTICES, 5 EDGES, 
. COLORED GRAPHS AND CKC 

· Linear• 
. _Graph·· 

1. 

. 2. 

Unequivalent 
Colored Graphs . · 

2 

1 

la. 

2a • 

Corresponding 

CKC. 

3 

1 

l 
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4 



TABLE VIII 

NON-LINEAR GRAPHS AND CKC DEVELOPED FROM .PARENT 6 LiNK CHAIN·. 

Pa~nt . I Number Number. Number Total Number Non-Linear 
of Cam of of 

Num,ber of Graphs I comnent I Colored 1· Corresponding 
Kinematic p. airs Fine of Non-
Chain (heavy Edges Vertices Edges .Linear 

Graphs CKC 

edges) Graphs 

l 5 5 6 0 
I 

1. 2 3 

6 
[] [] 

Links 

~ 
. 1 4 

7 2 3 4 5 4 
Turning I Rejected, 
Joints . (Rule n· 

'.·~ I Rejected' 
(Rule 1) 

.. ZZl I Rejected 
(Rule 1) 

3 I 1 I 3 I 4 I 1 ·O>I lq::> I c r , r r c :g 00 
1 N 
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and 7 edges are shown in Table IX. The number of the graphs is ver­

ified by the ~olya's theory of counting shown in Table V of Example 

2-8. All the corresponding CKC with 6 cam pairs are shown in Table X. 

Out of 15 colored graphs shown in Table IX, 5 are rejected. Graphs 

7 (a), 8 (a) and 9 (a) are rejected because of Rule 1. Graphs 3 (a) 

and 5 (a) are rejected because of Rule 3. Therefore, there are only 10 

CKC with 6 cam pairs developed from the parent 10 link kinematic chain. 

The mobility equation for the planar kinematic chain (with one 

link fixed) having only rigid links and turning joints is 

f = 3 (~ - 1) - 2j (6-3) 

Substituting Eqs. (6-1) and (6-2) for.fl and j into Eq. (6-3), we 

obtain 

f = 3 (v + eh 1) - 2 (ef + 2eh) 

= 3 (v - 1) - 2ef - eh (6-4) 

Eq. (6-4) is the same form as that of Gruebler's mobility crite­

rion. vis corresponding to the number of links in the kinematic 

chain, ef is corresponding to the number of kinematic .pairs of class 1 

in which the degree of freedom is 1 and eh is corresponding to the 

number of kinE;\matic pairs of class 2 in which the degree of freedom is 

2. 

Eq. (6-4) is the mobility equation for CKC. The equation is 

expressed in terms of vertices and edges of the colored graph. 

For the CKC having degre.e of freedom f = 1, Eq. ( 6-4) becomes 

3v - 2ef -l eh - 4 = 0 (6-5) 

Eq. (6-5) is the equation in which the colored graph of CKC with 

f = 1 should be satisfied. 



Number _of 
Non-Linear 
Graphs with 
4 Vertices 

and 
7 Edges 

Number of 
·Non­
Eq1,1ivalent 
Colored 
Graphs 

Rejected 

Comment. 

TABLE IX 

NON-LINEAR GRAPHS ~ITH 4 VERTICES AND 7 EDGES 

1 2 3 4 5 6 7 .8 .9 

~l~l~fazol~lOl~ ~la2 
1 _ _ 2 1 _ _ 2 1 - 2 1 _ 2 1 2 1 2 i-- -- irT~ _ 2 1 _ 2 

al~ ·~. ]Sl} 0 ~ .a:o.· ~ ··~····~. 
4 3 4 3 4 3 4 3 4 3 4 ·. 3 4 3 4 - -3 4 - ·3 

b I ~fl fLDl iSDl® ~2 

- 3 4 3 4 31 4 

c 

31 4 

3 a 

Against 
Rule.] 

31 4 

~f 
4 3'' 

5 a 

Against 
Rule 3 

-· 

7 a I 8 a I ,9 a 

-Against I Against ) Against 
Rule 1 · Rule 1 · Rule 1 

00 
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TABLE X 

CKC WITH 6 CAM PAIRS OBTAINED FROM TABLE IX 

2 2 2 

2 l 

?a 

~ 
1 2 1 
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It has been shown [35] that the maximum number of turning joints 

on a link of a closed parent kinematic chain with degree of freedom f 

is equal to the number of independent loops plus 1. Consequently, the 

maximum degree of vertex of a colored graph of closed CKC is also equal 

to the number of independent loops plus 1. Therefore, 

where 

d = c + 1 max 

d : maximum degree of vertex of a colored graph. 
max. 

c: number of independent loops. 

From the well-known Euler's formula, we know 

Substituting Eq: (6-7) for c into Eq. (6-6), we have 

d =j-n+2 max X. 

(6-6) 

(6-7) 

(6-8) 

If Eq. (6-1) and (6-2) are substituted into Eq. (6-8), it becomes 

(6-9) 

Since Eq. (6-9) which is expressed in terms of vertices and edges 

of a colored graph is equtvalent to Eq. (6-8), it checks the correct-

ness of the Eqs. (6-1) and (6-2). 

If the variable j in Eqs. (6-3) and (6-8) is eliminated, we 

obtain 
.Jl'.'"f+1 

d :::::: 
max 2 

(~-10) 

For the special case where kinematic chain has f = 1, then from 

Eq. (6-10), we have 

d i. 
max =2 (6-11) 
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Eq. (6-10) establishes the upper bound of the degree of vertex in 

the colored graph of any kinematic chain with any kinematic elements 

derived from parent 1. link chain with degree of freedom f. 

Piston-Cylinder Kinematic Chains 

Piston-cylinder kinematic chain (PKG) can be obtained by re­

placing two consecutive binary links in parent kin.ematic chain by 

piston-cylinder. Fig. 20 shows a parent 8 link kinematic chain and a 

PKG with two piston-cylinders. The latter is obtained by replacing 

binary links 4 and 8, 1 and 7 in parent kinematic chain· by piston­

cylinders 4 and 1 respectively. The graphical representations of both 

kinematic chains are shown in Fig. 21. Since a rigid link is repre­

sented by a fine vertex, the piston-cylinder which is kind of extend­

ible link can be represented by another type of vertex, say heavy 

vertex as shown in Fig. 21 (b). Therefore, in the parent kinematic 

graph, two consecutive fine edges can be replaced by a fine edge with 

a heavy vertex at end. Since piston-cylinder is a two-terminal com­

p9nent which has two turning joints at end, the heavy vertex has to 

be placed at the end of fine edge where the degree of vertex is two. 

Rule 6: The degree of heavy vertex in the colored graph of PKG should 

be equal to two. 

The construction procedure of obtaining PKG from parent kinematic 

chain is similar to that of obtaining CKC from parent kinematic chain. 

In .PKG, piston-cylinder is graphically represented by a heavy vertex, 

while in CKC, cam pair is by heavy edge. Therefore, the colored graph 

of .PKG can be obtained directly from that of CKC. 



4 

3 

·2 

(a) Parent Chain (b) PKC 

Figure 20. Parent Kinematic Chain and Piston-Cylinder 
Kinematic Chain (PKC) 

5 6 5 

4 

3 2 3 

(a) Parent Graph (b) PKC Graph 

Figure 21. Graphical Representations of Parent 
Kinematic .Chain· and PKC 
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Fig. 22 shows that colored graph (c) of PKC is obtained by re­

placing heavy edges 12 and 34 in ( a) by fine edges 12 and 34 with -

heavy vertices 1 and 4 at ends where the degrees of vertices are two's. 

Similarly, PKO graph can also be obtained from CKG colored graph shown 

in Fig. 22 (b). 

From the ways of constructing PKG, two equations can be estabtish­

ed as follows. 

where 

j: 

1: 

ef: 

vf: 

vh: 

j = ef + vh 

J. = vf + 2vh 

number of turning joints 

number of rigid links in 

number of fine edges in 

number of fine vertices 

number of heavy vertices 

in the parent kinematic 

( 6-12) 

(6-13) 

chain. 

the parent kinematic chain. 

the colored graph. 

in the colored graph. 

in the colored graph. 

Substituting Eqs. ( 6-12) and (6-13) into Eq. (6-3), we have 

f = 3 (vf + 2vh - 1) - 2 (ef + vh) 

= 3 (vf - 1) - 2 (ef - 2vh) (6-14) 

Eq. (6-14) is the mobility equation for .PKG. The equation is 

expressed in terms of the vertices and edges of the colored graph. 

For the .PKG having degree of freedom f = 1, then Eq. (6-14) 

becomes 

3vf + 4vh - 2ef - 4 = 0 (6-15) 

Eq. (6-15) is the equation in which the colored graph of PKG with 

f = 1 should be satisfied. 
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5 6 5 6 

1 4 

4 

6 6 

(a) CKC and Graph (b) CKC and Graph 

5 6 

4 1 

1 

(c) .PKC and Graph 

Figure 22. Relationship Between Colored 
Graphs of CKC and .PKC 
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The maximum degree of vertex, d , of a colored graph of a closed max 

FKC is derived from Eq. (6-8) and equal to 

(6-16) 

Prism Kinematic Chains 

Prism kinematic chains (P KC) can be obtained by simply replacing . . r 

revolute pairs .by prism pairs. Fig. 23 shows two prism kinematic 

chains derived from Watt's and Stephenson's kinematic chainsrespec-

tively. 

The graphical representation of a P KC is basically similar to.· 
. . r 

that of a parent kinematic chain except that the prism pair which re-

places the revolute pair in parent chaJI!_is represent~d by another 

type of fine edge, say fine dash edge. Therefore, the schematic 

drawings of P KC shown in Fig. 23 (a) and (b) can be graphically 
r 

represented by kinematic graphs as shown in Fig. 24. 

Since both revolute pair and prism pair belong to class 1 kine-

matic pair with one degree of freedom, the number of fine edges and 

fine dash edges should be counted by the same designation ef. 

In constructing P KC, the revolute pair in p~rent kinematic chain 
r 

is replaced by prism pair. The replacement of rotational motion of 

revolute pair by translational motion of prism pair may change the 

constrainfclmotion in P KC. Therefore, the following three rules should 
r 

be observed in order that P KC has·a constrained motion. r . . 

Rule 7: No link of the chain ~y contain. only prism pairs whose direc-

tions of motion are parallel to each other. 



1 

(a) Watt's Chain and P KC 
r 

(b) Stephenson's Chain and P KC 
r 

Figure 23. Prism Kinematic Chains (P KC) 
r 
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Figure 24. 

6 

5 

(a) P KC and Its Graph 
r 

5 

(b) P KC and Its Graph 
r 

1 

' ' \ 
' ~,l_~_ 

Graphical Representation of P KC 
r 

93 

2 

3 

2 

3 



Fig. 25 illustrates the restriction by Rule 7. The P KC is 
r 

derived from parent four link chain. Link 2 has 2 prism pairs whose 

directions of motion are parallel to each other. Therefore, link 2 
I 

can have motion independent of the motions of links 1, 3 and 4. 

Consequently, there is no constrained motion in the chain. 

Figure 25. 

2 

4 

P KC against Rule 7 
r 

Rule 8: Two consecutive binary links of the chain can not have only 

prism pairs. 

Fig. 26 serves to illustrate the restriction by Rule 8. Links 3 

and 4 are binary links connected to each other and have only prism 
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pairs. Without moving links 1, 2, 5 and 6, links 3 and 4 can still be 

moved to positions 3' and 4 1 • Therefore, the chain does not have 

constrained motion. 



1 

Figure 26. 

1 

P KC against Rule 8 
r 

---1 3 

I 
6 I 

I 
I ___ -J4 

95 

Rule 9: Minimum number of revolute pairs in a kinematic loop of the 

chain is two. (or maximum number of prism pairs in a kinematic 

loop of the chain is n-2, where n is number of links in that 

loop.) 

Fig. 27 illustrates the restriction by Rule 9. In the upper 

kinematic loop, there are four links 2, 3, 4 and 5, three prism pairs 

25, 23 and 45. The prism pair 25 constrains the links 2 and 5 to make 

constant angle to each other. Due to the presence of prism pairs 23 

and 45, links 3 and 4 also form a constant angle to each other. 

Therefore, despite of revolute pair 34, there is no relative motion 

between links 3 and 4. Thus, links 3 and 4 form a single rigid link, 

and the chain does not have constrained motion. 



34 

Figure 27. 

1 

6 

P KC against Rule 9 
r 

I 

2 
.... _ 

3 

4 

The maximum number of prism pairs in a kinematic chain is a 

function of kinematic loops. A 4-link chain with one kinematic loop 
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can have maximum of two prism pairs; a 6-link chain with two kinematic 

loops can have maximum of four prism pairs and an 8-link chain with 

three kinematic loops can have maximum of six prism pairs, therefore, 

by inductive process, we obtain 

where 

.P . = 2c max (6-17) 

.P : maximum number of prism pairs in a kinematic chain. 
max 

c: number of kinematic loops in the kinematic chain. 

Substituting c from Eq. (6-7) into Eq. (6-17), we obtain 

p·· = 2 (j - 1 + 1) 
max (6-18) 
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If the variable j in Eqs. (6-3) and (6-18) is eliminated, we get 

p =1-f-1 max (6-19) 

For the special case where kinematic chain has f = 1, Eq. (6-19) 

then becomes 

p =i.-2 max 
(6-20) 

Gear Kinematic Chains 

A gear kinematic chain (GKC) is a special form of a cam kinematic 

chain (CKC). The gears considereq here are spur gears. Fig. 28 shows 

a CKC and its colored graph. 

2 3 

1 

(a) CKC with f = 0 (b) Colored Graph 

Figure 28. A CKC and Its Colored Graph 
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From Eqs. (6-1), (6-2) and Fig. 28 (b), we have 

j = ef + 2eh = 2 + 2 x 2 = 6 

1 = v + eh = 3 + 2 = 5 

Substituting the values of P and j into Eq. (6-3), we have 

f = 3 ( J. - 1) - 2j = 3 ( 5 - 1) - 2 x 6 = 0 

Therefore, the CKC shown in Fig. 23 (a) has no mobility. But, 

if we impose a geometric condition on the cam surfaces such that the 

connnon normals through the contact points intersect on a line through 

pivots (or turning joints) as shown in Fig. 29, then the CKC has 

constrained motion. It has the constant angular velocity ratio be-

tween bodies 2 and 3. Therefore, the CKC becomes a GKC. 

1 

Figure 29. A CKC Becomes A Gear 
Kinematic Chain 
(GKC) 
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The schematic and graphical representations of the GKC are shown 

in Fig. 30 (a) and (b) respectively. The graphical representation of 

GKC is somehow similar to that of CKC. The gear joint is represented 

by another type of heavy edge. shown in Fig. 30 (b). ve:rtex 1· in Fig. 

30 (b) is called a transfer vertex [67] which is equivalent to the 

gear carrier 1 in GKC. For a special type of GKC whose 2-colored 

3' 
graphs contain•trees, the reader is refered to the references [51, 52, 

67]. In this special type of GKC, every gear has the motion of 

complete rotation. 

3 

2 

(a) (b) 

Figure 30: Schematic and Graphical 
Representation of GKC 

A tree in a 2-colore.d graph is the set of fine edges. The 
remainder of the heavy edges constitute the chord set. 
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Some colored graphs of GKC must be rejected because of Rule 10 

and Rule 11. 

Rule 10: A colored graph of GKC whose subgraph is a triangle with three 

heavy edges is rejected. In general, a GKC having the kind of 

colored graph described in Rule 10 has no mobility. 

Under certain geometric conditions, the GKC whose colored graph 

violates Rule 10 may have a constrained motion. One paradoxical GKC 

shown by Freudenstein and Yang4 is a typical example (Fig. 31). There 

are 4 vertices, 3 fine edges and 3 heavy edges in the 2-colored graph 

shown in Fig. 31 (a). 

4f~ 30T 
20T 1 

3 2 
1 

I 20T 30T 

3 1 
2 

20T 
(a) Colored Graph 

(b) Paradoxical GKC 

Figure 31. A Colored Graph and Its Paradoxical GKC 

4Given in the lecture of NSF advanced training workshop in 
mechanisms in Oklahoma State University, Aug., 1971. 

r 
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The geometric constraint imposed on the paradoxical GKC is 

(6-21) 

where 

N .. : the gear ratio of gear i to gear j. 
l. J 

A typical GKC satisfying the constraint is shown in Fig. 31 (b) 

in which N12 = -1, N21 = -3/2, N31 = 2/3 and 

N12 N23 N31 = (-1) {,-3/2) (2/3) = 1 

Vertex 4 in Fig. 31 (a) is the transfer vertex and is equivalent 

to the gear box shown in Fig. 31 (b). 

Rule 11: Any gear pair should have a gear carrier associated with it. 

In the case of GKC whose colored graph contains a tree, the 

gear carriers can be found by the determination of transfer 

vertices [67]. 

The mobility equations and maximum degree of vertex equation for 

the colored graph of GKC are the same as those Eqs, (6-4), (6-5) and 

(6-9) for the colored graph of CKC. 

Spring Kinematic Chains 

Spring kinematic chain (SKC) can be obtained by replacing two 

consecutive binary links in a parent kinematic chain by a spring. 

Fig. 32 shows a parent 4 link chain, SKC and its corresponding colored 

graph. The spring element is represented graphically by another type 

of heavy vertex shown in Fig. 32 (c). 

From the point of structural synthesis of kinematic chains, SKC 

has the same properties as .PKC does. The rules and equations for .PKC 

are also valid for SKC. 



3 
2 

1 1 

(a) Parent Chain (b) SKC (c) Colored Graph 

Figure 32. Parent Four-Link Chain, SKC 
and Its Colored Graph 

Belt-Pulley Kinematic Chains 
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3 

A belt-pulley kinematic chain (BKC) can be obtained by replacing 

a ternary link and its associated two binary links in a parent kine-

matic chain. The ternary link is_ replaced by a pulley and each of the 

binary links is replaced by a section of belt rolling on the pulley. 

The BKC shown in Fig. 33 (b) is obtained by replacing ternary link 

1 and its associated two binary links 2, 6 in the parent chain shown 

in Fig. 33 (a) by a belt-pulley. The colored graph of BKC shown in 

Fig. 33 (c) is obtained by representing graphically the pulley and belt 

with a double vertex and a type of heavy edge respectively. 



1 

4 

(a) .Parent Chain 

1 

3 

4 

(b) BKC (c) Colored Graph 

Figure 33. Parent Six-Link Chain, BKC 
and Its Colored Graph 
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Since the pulley should have a belt around it and a turning joint 

acting as the axis of the pulley, we obtain Rule 12, 

Rule 12: The double-vertex of the colored graph of BKC should have two 

heavy edges and at least one fine edge incident with it, 

Two equations are proposed to relate the parent kinematic chain 

to BKC, 

(6-22) 

(6-23) 

Where J.: number of rigid links in the parent kinematic chain. 

j: number of turning joints in the parent kinematic chain, 

vf: number of fine vertices in the colored graph, 

vd: number of double-vertices in the colored graph, 

ef: number of fine edges in the colored graph, 

eh: number of heavy edges in the colored graph, 

Substituting Eqs, (6-22) and (6-23) into Eq, (6-3), we have 

= 3 (v + v - 1) - 2e - e 
f d f. h 

(6-24) 

Eq, (6-24) is also in the same form as that of Gruebler's 

mobility criterion, (vf + vd) is corresponding to the number of links 

in the parent kinematic chain, ef is corresponding to the number of 

kinematic pairs of class 1 in which the degree of freedom is 1 and eh 

is corresponding to the number of kinematic pairs of class 2 in which 

the degree of freedom is 2, 

Eq, (6-24) is the mobility equation for BKC, The equation is 

expressed in terms of vertices and edges of the colored graph, It 

should be noted that Eq, (6-24) is similar to Eq, (6-4) for CKC in 
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which (vf + vd) in Eq. (6-24) is equivalent to v in Eq. (6-4). For the 

BKC having degree of freedom f = 1, then Eq. (6-24) becomes 

(6-25) 

Eq. (6-25) is the equation in which the colored graph of BKC with 

f = 1 should be satisfied. 

The maximum degree of vertex, d , of a colored gr~ph of a closed max 

BKC is also equal toe - v + 2 which can be derived by substituting 

Eqs. (6-22) and (6-23) into ~q. (6-8). 

d =j-,l+2 max 

= e - v + 2 

Kinematic Chains with Combination qf 
Different Kinematic Elements 

(6-26) 

The different kinematic chains discussed so far are CKC (with cam 

pairs), P KC (with p.rism pairs), GKC (with gears), .H<C (with piston­
r 

cylinders), SKC (with springs) and BKC (with belt-pulleys). The 

general formul~ and mobility equation of the kinematic chains with the 

combination of the different kinematic elements are to be discussed in 

this section. 

Two general equations which relate the parent kinematic chain to 

the general colored graph are de~cribed below: 

(6-27) 

(6-28) 
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where 

JI.: number of rigid links in the parent kinematic chain. 

j: number of turning joints in the parent kinematic chain. 

vf: number of fine vertices in the colored graph (for rigid 

links). 

vh: number of heavy vertices in the colored graph (for 

piston-cylinders and springs) 

vd: number of double-vertices ( for pulleys). 

ef: number of fine edges (for revolute and prism pairs) 

eh: number of heavy edges (for cam pairs, gears, belts). 

Substituting the Eqs. (6-27) and (6-28) into Eq. ( 6-3), it becomes 

(6-29) 

Eq. (6-29) is the general mobility equation for the kinematic 

chains with a combination of different kinematic elements. The equa-

tion is expressed in terms of the vertices and edges of the general 

colored graph. 

For the kinematic chain having degree of freedom f = 1, Eq. (6-29) 

becomes 

(6-30) 

Eq. (6-30) is the equation in which the colored graph of kinematic 

chain should be satisfied. 

The maximum degree of vertex, d , of a general colored graph of 
max 

a closed kinematic chain with a combination of different kinematic 

elements is also equal toe - v + 2 which can be derived by substi-

tuting Eqs. (6-27) and (6-28) into Eq. (6-8). 
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d =j-1+2 max 

(6-31) 

As an example, a colored graph and its corresponding kinematic 

chain are shown in Fig. 34. 

(a) Colored Graph (b) Kinematic Chain 

Figure 34. A Colored Graph and Its Corresponding 
Kinematic Chain 

From the colored graph, we have 

v - 2 f -

v - 1 h-

v = 1 d 

e = 3 f 

e = 3 h 

Substituting these values into Eqs. (6-27) and (6-28), we have 
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l=2+3+1+2x1=8 

j = 3 + 2 x 3 + 1 = 10 

Therefore, we know the colored graph is developed from a parent 

8 link, 10 joint kinematic chain. When one of the links of the kine-

matic chain shown in Fig. 34 (b) is fixed, it has constrained motion 

and can be verified from Eq. (6-29). 

f = 3 (2 + 1 - 1) + 4 x 1 - 2 x 3 - 3 

= 6 + 4 - 6 - 3 = 1 

The maximum degree of vertex in the colored graph can be found 

from Eq. (6-31). 

d = e - v + 2 = 6 - 4 + 2 = 4 max 

That is, d is the degree of vertex 4 of the colored graph 
max 

shown in Fig. 34 (a). 



CHA.Pl'ER VII 

COIDRED GRAPHS AND THEIR CORRESRJNDING 
KINEMATIC CHAINS DEVEID~ED FROM 

PARENT EIGHT-LINK CHAIN 

ln this chapter, all the colored graphs and their corresponding 

kinematic chains developed from parent 8 link, 10 Joint chains are 

presented in three tables. Due to the large number of prism kinematic 

chains (P KC), the listing of P KC is separately shown in Appendix C, 
r r 

and the combination of prism pairs with other kinematic elements are 

not considered. Table XI shows the kinematic chains with different 

number of kinematic elements. Since spring kinematic chain (SKC) is 

structurally similar to the piston-cylinder kinematic chain (PKC), 

kinematic chains having springs are not shown in the tables, except in 

the c.ase where both springs and piston-cylinders appear in the kine-

matic chains. 

The maximum number of different kinematic elements included in 

the kinematic chains developed from parent 8 link chains is three. 

Therefore, only three tables are prepared for kinematic chains having 

one, two and three different kinematic elements. The total number of 

colored graphs shown in three tables is 652. The number of prism 

kinematic chains with 1 up to 6 prism pairs is 3309 (Appendix c). 



One 
I. Kinematic 

Element 

I-1 C(Ca~) 
i 

,pair 

I-2 P( Pis~on- ) 
cylinder 

I-3 G(Gear) 

I-4 S(Spring) 

I-5 B(Belt-) 
pulley 

TABLE XI 

KINEMATIC CHAINS WITH DIFFERENT NUMBER 
OF KINEMATIC ELE~NTS 

Kinematic Chains with 

Two Three Four 
II. Kinematic III. Kinematic IV. Kinematic 

Elements Elements Elements 

II-1 C-P III-1 C-P-G IV-1 C-P-G-S 

· II-2 C-G III-2 C-P-S IV-2 C-P-G-B 
" 

II-3 c;;.s III-3 C-P-B IV-3 P-G-S-B 

II-4 C-B III-4 P-G-S IV-4 C-P-S-B 

II-5 P-G III-5 P-G-B IV-5 C-G-S-B 

II-6 P-,S III-6 G-S-B 

II-7 P-B lII-7 C-G-S 

II-8 G-S IU-8 C-G-B 

II-9 G-B I.II-9 C-S-B 

II-10 S-B Ifn-10 P-S:-B 

Five 
V. Kinematic 

Elements 

V-1 C-P-G-S-B 

-

...... 

...... 
0 



Colored Graphs and Kinematic Chains 
with One Kinematic Element 

111 

The colored graphs and their corresponding kinematic chains with 

one kinematic element are shown in Table XII. 

The numbers of kinematic chains are shown below: 

Kinematic Chain Number 

CKC 143 

PKC 20 

GKC 65 

BKC 50 

Total: 278 

Colored Graphs and Kinematic Chains 
with Two Kinematic Elements· 

The colored graphs and their corresponding kinematic chains with 

two kinematic elements are shown in Table XIII. 

The numbers of kinematic chains are shown on next page. 



Kinematic Chain Number 

C-P KC 49 

C-G KC 112 

C-B KC 83 

P-G KC 34 

P-S KC 9 

P-B KC 17 

G-B KC 31 

Total: 335 

Colored Graphs and Kinematic Chains 
with Three Kinematic Elements 

112 

The colored graphs and their corresponding kinematic chains with 

three kinematic elements are shown in Table XIV. 

The number of kinematic chains are shown below: 

Kinematic Chain Number 

C-.P-G KC 18 

C-.P-S KC 6 

C-P-B KC 7 

P-G-S KC 5 

C-G-B KC 3 

Total:: 39 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

The .p,resent work is devoted to exploring the application of graph 

theory in structpral synthesis of kinematic chains with all types of 

kinematic etements. The present study develops a general mathematical 

model which permits one to undertake the structural synthesis of kine-

matic chains with different kinematic elements and their combinations. 

The kinematic elements under consideration are cam pairs, prism pairs, 

gears, springs, belt-pulleys and piston-cylinders. 

The general mathematical model includes three general algorithms, 

which are: 

(1) Listing of specifications of- n-colored graphs. The specification 
" 

is expressed in tefms of the sets of degrees of vertices of n-sub­

graphs. Given the number of vertices and edges in a colored graph, 

the listing of the specifications can be generated. A computer 

program has been developed to list all the possible specifications 

and is shown in frogram A, Appendix .B. The lower and the upper 

bounds of the spec,ificati.ons can also be specified in the program 

in order to reject those unacceptable specifications. The listing 

of specifications only provides the information about the number 

of ways of combining the degrees of vertices, it does not provide 

the ways of connecting the vertices in a graph, therefore, the 

following algorithm is required. 
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(2) Synthesis of vertex-vertex (v-v) incidence matrices of linear and 

non-linear n-colored graphs from a given specification. The syn­

thesis of v~v incidence matrices of linear and non-linear n-colored 

graphs can be accomplished by considering each subgraph specifica­

tion individually. The procedures to synth~size the v-v incidence 

matrices for each subgraph have been presented in Chapter III. 

All the possible ways of superposing the v-v incidence matrices of 

n subgraphs become the final v-v incidence matrices of n-colored 

graphs. A g_eneral computer program which consists of one main 

program and five subroutines has been developed and is shown in 

Program B, Appendix B. Since not all v-v incidence matrices 

synthesized are non-isomorphic, they have to go through the process 

of isomorphism test. 

(3) Isomorphism test for a pair of linear or non-linear n-colored 

graphs. An algorithm for testing isomorphism of a pair of linear 

or non-linear n-colored graphs with colored vertices and colored 

edges has been presented in Chap'ter IV. The method of incidence 

tables is used and the total number of possibilities of finding 

the graph isomorphism is described. A general computer program, 

Program C, which consists of one main program and five subroutines 

has been developed and is presented in Appendix B. 

Before applying the mathematical model to synthesize kinematic 

chains, the graphical representations for the kinematic chains with 

different kinematic elements should be first created. In general, 

the kinematic chains with different kinematic elements are graphically 

represented by the linear and non-linear colored graphs with colored 
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vertices and colored edges. All the different colored graph represen­

tations for different kinematic chains have been proposed and shown in 

Chapter VI. 

The relationships between the number of rigid links and turning 

joints of a parent kinematic chain and the number of vertices and edges 

of colored graphs have been established as general mobility equations. 

The mobility equations are useful not only in examining the mobility 

of kinematic chains, but also in solving the sets of numbers of colored 

vertices and colored edges required in synthesizing colored graphs. 

Given the number of rigid links and turning joints of a parent 

chain, the sets of numbers of colored vertices and colored edges can 

be generated from the mobility equations. Since the number of vertices 

and edges in colored graphs has.been found, all the non-isomorphic 

colored graphs can be obtained by going through the synthesis proce­

dures established by the general mathematical model. 

The total number of colored graphs synthesized for a given number 

of vertices and edges in colored graphs can be checked by the applica­

tion of Polya's theory of counting. The theory provides the exact 

count of colored graphs for a given number of vertices and edges in 

the colored graphs. 

Since not all colored graphs syi;ithesized generate the closed and 

isokinetic chains [32] (non-isokinetic chains are also called frac­

tionated chains [101]), the criteria are developed to reject those 

unacceptable colored graphs. 

Since the general mathematical model is based on the theoretical 

approach, it can be applied, without loss of generality, to enumerate 

systematically all the colored graphs and their corresponding kinematic 
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chains. The general,,111athematical model has been extensively tested 

and proved to be correct. The model has been tested on the kinematic 

chains with different kinematic elements developed from parent 8 link 

and 10 joint chains. The design tables consisting of colored graphs 

and their corresponding kinematic chains have been shown in Chapter 

VII. 

In summary, the present study provides the following technical 

contributions to the field of kinematics: 

1. Colored graph representatidns for the kinematic chai,ns with differ­

ent kinematic elements hav~ been established. The kinematic ele:­

ments under consideration are cam pairs, prism pairs, piston-cylin­

ders, gears,·springs and belt-pulleys. In general, the colored 

graph possesses colored vertices and colored edges. The kinematic 

elements such as piston-cylinder, spring and pulley have been 

represented by di~ferent color.ed vertices. The kinematic elements 

such as cam pair,_ prism pair, gear and belt have been represented 

by different colored edges. 

2. General mobility eq'uation for the kinematic chains with different 

kinematic elements has been set up which is e~pressed in terms of 

degree of freedom, di·fferent colored vertices and colored edges. 

The mobility equation not only provides the examination of the 

mobility of kinematic chains, but also provides the solution of sets 

of numbers o( coloreq vertices· a'nd edges required in synthesizing 

colored graphs. 

3. A general mathematical model which takes into account the synthesis 

procedures of colored graphs has been set up and implemented on 

general computer programs. The model consists of three general 



algorithms, they are (1) Listing of colored graph specificatio~s 

(2) Synthesis of v-v incidence matrices of colored graphs from a 

given specification, and (3) Colored graph isomorphism test. 
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4. Criteria have been develope~ to reject those unacceptable colored 

graphs which correspond to the open kinematic chains or non­

isokinetic chains. 

5. The model has been tested on the kinematic chains with different 

kinematic elements which are developed from parent 8 link and 10 

joint chains. The design tables with colored graphs and their 

corresponding kinematic chains are presented. 

Since the mathematical model developed in thts study is based 

upon graph theory, it may be of interest to all those who are con­

cerned with the mathematical analysis and synthesis of structures in 

the fields of system science. 

In the field of mechanical networks particularly, the following 

research subject appears to be most promising. 

of 

Structural synthesis of kinematic chains with arbitrary numbers 

(1) Kinematic loops, ;;>-.. = 2, 3, 4, 5. 

(2) General constraints, m = O, 1, 2, 3, 4. 

(3) Degrees of freedom, f = -1, O, 1, 2, 3. 

(4) Different kinematic pairs, Pk, k = 1, 2, 3, 4, 5. 

It should be noted that the enumeration of spatial kinematic 

chains for the following cases has been undertaken by several authors 

as have been mentioned in Chapter I. 
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1. Soni and Harrisberger [29, 30] 

(1) )... = 1 (2) m= o, 1 

(3) f = 1 ( 4) Pk, k = 1, 2, 3, 4, 5 

2. Dobrjanskyj and Freudenstein [33, 34, 35] 

(1) )',... = 1 (2) m = 0 

(3) f = 1 (4) Pk, k = 1, 2, 3 

3. Soni [21] 

(1) >-.. = 2, 3 (2)m=1,2 

(3) f = 1, 2 (4) P1 (helical pairs only) 

The stru~tural synthesis of spatial kinematic chains is essential~ 

ly same as that of planar kinematic chains. Both spatial and planar 

kinematic chains can be graphically represented by colored graphs. 

The enumeration of colored graphs can be accomplished by the use of 

the general mathematical model developed in this study. After applying 

criteria and rejecting those unacceptable colored graphs (unworkable 

combinations), one is able to obtain all the acceptable colored graphs 

and the corresponding spatial kinematic chains with the four con~· 

straints described above. 
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APPENDIX A 

KINEMATIC GRAPHS OF .PARENT 
EIGHT LINK CHAINS 

There are sixteen parent constrained eight link chains [22, 32, 

68, 69]. The kinematic graphs of these kinematic chains are grouped 

together according to their specifications and are shown in Table XV. 

Among the sixteen kinematic graphs, there are twelve kinematic 

graphs which can be obtained by adding the subgraph dyads (3 consec-

utive edges with two vertices in between) to the parent six link 

.chains. They are shown as follows. 

(1) Those obtained by adding subgraph dyad (1234) to the Watt's 

kinematic graph (145678) are graphs (2), (6), (7), (10), (12), 

(15). 

(2) Those obtained by adding subgraph dyad (1234) to the 

Stephenson's kinematic graph (145678) are graphs (1), (3), 

(4), (11), (13), (14) •. 

The remainder of the graphs (5), (8), (9), (16) are called un-

peelable kinematic graphs. They can not be obtained by adding sub-

graph dyad to either Wa_tt I s or Stephenson's kinematic graph. 

All the sixteen kinematic graphs have also been obtained by the 

use of the three general computer programs developed by the writer 

which are shown in Appendix a. 

The lower bound of the degrees of vertices of a connected 
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TABLE XV 

SIXTEEN KINEMATIC GRAPHS OF PARENT 8 LINK CHAINS 

1. ·l "222222) 
(1) (2) 

2 7 ~ 

' 8 ' 
2. (a.:,,m~) 

<,) 

2 2 

6 ,., 
' ' 

(?) 
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1 _graph is 2, and the upper bound of the degrees of vertices is equal 

to half the number of rigid links, that is, i./2 = 8/2 = 4. Therefore, 

the listing of the specifications can be found from computer program 

A. 

Since the different specifications have been found, the v-v 

incidence matrices can be synthesized by using computer program B. 

The computer program C is then used to check the isomorphism between 

those v-v incidence matrices. All the non-isomorphic v-v incidence 

matrices are the representations of the non-isomorphic graphs needed 

for parent 8 link chains. 

1The graph of a closed kinematic chain is always a connected 
graph. 



APPENDIX B 

COMPUTER PROGRAMS 

Three general computer programs listed on the following pages are 

based on the methods described in Chapter III and IV. Six examples 

and their outputs are explained in Chapter v. 

The three computer programs are 

(I) Program A: Listing of Colored Graph Specifications. 

There are one main program and three subroutines, 1, 2 and 

3 as shown below. 

(II) Program B: Synthesis of Vertex-Vertex Incidence Matrices of 

Colored Graphs •• 

There are one main program and five subroutines, 1, 2, 3, 

4 and 5 as shown below. 

(III) Program C: Colored Graph Isomorphism Test. 

There are one main program and five subroutines, 1, 6, 7, 8 

and 9 as shown below. 

~here are total 9 different subroutines used in the three pro­

grams, they are 

1. PERMlJ: PERMlJ finds all the possible permutations for a given number 

of objects. The total number of permutations for given j o~jects 

is j ! • 

2. PERMU1: PERMlJ1 finds the total permutations for a set of specifi~ 

cations. The number of NP objects having I, J, .•• like terms is 
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NP!/1! x J! x •••• NI is the number of different specifications, 

IP contains each of the specifications, IB1 contains the total 

permutations from the different specifications and NC is the number 

of permutations. 

3. COMB: COMB ·finds the combinations of objects in A, B, C, ••• (total 

K items). Let Al, Bl, Cl, ••• be the number of objects in A, B, c, 

••• , then the total number of combinations is NI= Al x Bl x Cl x 

Output is stored at IQ (NI, K). 

4. DIST: DIST is a modified version of the main program in Program A. 

DIST distributes the number NB into NP places. Output is stored at 

IP (NR, NP), NR is the total number of distributions. 

5. POSSI1: .POSSI1 forms all the possible arrangements (combinations) of 

the numbers which are stored at IB1 (NC, NP) according to the 

decreasing number of IY (1, N.P). Output is stored at IR (IK, NP), 

IK is number of arrangements. 

6. ORDER: ORDER rearranges the numbers in K (2, N) in increasing order. 

The sets of data in IS (2, 2, N) are also rearranged according to 

the new order of K (2, N). N is the number of data. ID= 1 is for 

one set of data in IS (2, 1, N), ID =,2 for two sets of rlata in IS 

(2, 2, N). JJ = 0 means the numbers in K (1, N) are·the same as 

those in K (2, N). JJ = 1, the numbers in two groups are not same. 

7. TABLE: TABLE finds the incidence table with the degrees of vertices 

in increasing order. Input data: one vertex number in Graph 1 and 

another vertex number in Graph 2 stored in 181 (1, 1, 1) and 181 

(2, 1, 1) respectively. Return data: IV1, 181, KW, JJ. IV1 stores 

the degrees of vertices in increasing order. 181 (IG, 1, KW) stores 

the vertex numbers of incidence table of Graph IG, 181 (IG, 2, KW), 
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the edge numbers. KW is the number of vertices (or edges) in 

incidence table. JJ = 0 means the degrees of vertices in two groups 

of incidence table are same. Jj = 1, not same. 

8. POSSI: POSSI forms all the possible arrangements of the vertices in 

Graph 1 according to their degrees of vertices (in increasing order). 

IY (1, NV) stores the degrees of vertices of Graph 1. IS1 (1, 1, 

NV) stores the corresponding vertex numbers. All the possible 

arrangements are stored at IP (NI, NV), where NI is the total number. 

of arrangements, NV is number of vertices. 

9. CHECK: CHECK checks whether the edge elementary matrix is completed 

and whether the transformation equation is satisfied. :MM= 1 means 

edge elementary matrix has not completed yet, tests should be con-

tinued. :MM= 2, transformation equation is not satisfied, go to 

pick up another isomorphic possibility. i :MM= 3, two graphs are 

isomorphic. 

The preparations of the data cards for the three computer programs 
I 

are explained below: 

(I) Program A: 

Card 1: NEX, number of examples. (15) 

Card 2: NCO, number of different colors. (15) 

Card 3: NB: number to be d-istributed, NP: number of places in 

specification, ML: lower bound of specification, MU: 

upper bound oL specification. (415) 

Card 4: Repeat NB, NP, ML, MU for other colored subgraphs. 

Card 5: Repeat from Card 2, if NEX > 1. 



(II) Program B: 

Card 1: NEX, number of examples. (15) 

Card 2: NCO, number of types of colored edges. (15) 

Card 3: NV, number of vertices. (15) 
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Card 4, , specifications for each colored subgraph. (1615) 

Card •••• Repeat from Card 2, if NEX> 1. 

(III) Program C: 

Card 1: NEX, number of examples. (15) 

Card 2: NV, number of vertices. (15) 

Card 3: NT, number of types of colored edges. (15) 

Card 4: KV (I), I= 1, ••• , NV, types of vertices of first 

graph. (1615) (1: fine vertex (rigid link), 2: vertex 

for piston-cylinde_r, 3: vertex for spring, 4: vertex for 

pulley (wheel), 5: vertex for the fixed link in 

mechanism) 

Card 5, ••• , (total NV - 1 cards), each card is for each row of 

v-v matrix. Only the elements on the upper triangle of 

matrix are read in (excluding the zeros in diagonal). 

(1615) 

Repeat from Card 4 for the data of second graph. 

Repeat from Card 2, if NEX > 1. 



C PROGRAM A<: LISTING OF SPECIFICATIONS Of COLORED GRAPHS. 
COMMON IP 1250,bl, IHl 120, 5).181130, 51,NPERMU 
OIMENSION I Pl cs ,50,6), INUO J, 1P2C 1,50,61, HU200, 51 
DIMENSION IZC81,ICKC2001 . 

50 .fQAMAT Cit 15 I 
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52 FORHATC 1 NUMBER N8= 1 ,I3, 1 ,•,• NUH:BER OF PLACES NP= 1,13,/, 
1 1 LOWER BOUND ML= 1 ,I3, 1 ,•,.• UPPER BOUND HU=1 ,13,/I 

53 FORMAH• .• DATA OFCOLORE0-•,12,• SUBGRAPH *',II 
98 FURMAH 131'•' ,10151 
99 FORMATl/, 1 SPECIFICATION 1 ,14, 1 ,. 1 1//,4X,8C3X,11, 1 .•),I) 

120 FORMA·T C lHl ,• * EXAMPLE', 13 ,• *·',/I 
300 FURMATC //, 1 THE NUMBER Of SPECIFICATIO.NS ,., ,13,l) 

CO 13Q I=l,8 
130 IHil=I' 

READ C ~' 50 I NEX 
00 100 IKZ=l, N1:X 
lidH 1 H6 , 12 0 I I Kl 
REAO I 5; 50 J NCO . 
CO 37 KC='l , NCO 
WR I 1 EC 6, 531 KC 
REACl5,501 NB,NP,ML,HU 
wRITEl6,521 NB,NP,HL,fo\J. 
lf(NCO.EQ.l.OR.KC.GT.11 GO ro 33 
CALL PERMU'CNP I . . . 

33 t,,Pl :NP-1 
NP2:sNP-2 
ICl=NPl 
DO 27 J=l,200 
00 27 I= 1,NP·l 

2 7 I P l J t I I = ML 
JPCl,NPl=NB-ML*NPl 
N.R=I IPC 1,NPI-Hl 1/2+1 
lf.l"'R.LT .21 GO TO 30. 
DO 21 I =2,NR 
J= 1-1 
DO 25 K=l ,NP2 

25 IP(l,Kl~IPCJ,KI 
IP(I,NPl=IPCJ,NPJ-1 

21 lPCl,NPlJ=IPIJ,NPl)+l 
IFC NP .• LE .2 I GO TO JO 

16 IFCIPINR,NPU.LE.IPINR,NPU GO TO 56 
NR-=NR_:l 
GO TO 30 

56 ICl=ICl-1 
IFIICloLT.11 G0·10 30 
NR=NR+l 
CO 23 l=ICl ,NPl 

23 IPlNR,I J=l+HL 
IPCNR,NP J=NB-HL*I ICL"" u-·CNP 1-IC l+ u•c l+HL) 

't7 IG=f\Pl 
ltlt NR=NR+l 

NRl-=NR-1 
CO 't5 1=1,IG 

It 5 IP I NR , IJ = I PC NR 1 , I I 
IPCNR, IGl=IPCNRl,IGIH 
DO 12 l=IG,NPl 

.12 IP(NR,Il=IP(NR,IGI 
IP(NR, NPl-=N6 
DO 14 I::1,NPl 



14 lPINR,NPl•lPCNR,NPJ~IPINR,Jl 
.IFCIP(NRilG 1.LT.IPCNR,NPU GO TO 10· 
IFI lPINR,IG 1.EQ.IPINR,NPU GO TD 40 

· NR•~R-1 . 
40 IG•IG-1 

IF( IG.LT .1cu GO TO 16 
GO.TO 44 

10 NR='NR+ l 
"iU=~R-1 
00 18 1=1,NPZ 

18 IP(NR~ll~lPCNRl,11 
IP I NR,;NPl• IP t NRl, NP 1-1 
IP(~Rt~Pl)~IPtNRl,NPlJ+l . 
IF( IPCN'R,NPll.LT.IPINR,NPll GO TO 10 
IFIIPCNR,NPlJ.EQ.IPINR,NPJI GO TO 47 
NR=NR-l 
GO TO 47 

30 NRU=O 
NRl-=O 

62 NRU-=NRU+l' . . 
60 IFINRU~GT.NRJ .GO TO 31 

IFllPINRU,NP)~GT.HUl GO TO 62 
NRl=NRIH 
DO 64 l=l,NP 

64 IPCNRl,ll=IPC.NRU,il 
GO TO 62 . 

31 JFINCO.GT.1) GO TO 110 
WRlTEI 6, 300) NIH . 
00 112 1'= 1, NRI 
hRITEl6,991 l,UZCl91,l9•1,NP.J 

112 WRITEC6,981 NCO~IIPll-,J),J=l,NPI 
GO TO 100 ... 

llC IF(NCO.LE.2~ANO.KC.EQ.U,GO TO 13!:i 
CALL PERHUlCNP,NRI,NCI, 
lNlKCl="C . . 
DO 80 1=1,NC 
00 80 J=l,NP 

80 IPllKC,l,J)~llilll,JI 
GO TO .37 

135 00 140 l= 1, N.RI. 
DO HtO J=l ,NP 

140 lPlCl,1,J)=IP(I,JI 
IN.ll l=NRJ 

.31 CONTINUE 
JC:O 
DO 102 l=l ,NCO 
JB ... lNC I ) 
00 102 J=l,JB 

. JCo:JC+l 
DO 102 11•1,NP 

102 IP2Cl,JC•llJ•IPlC1,J,11J 
CALL CCMBlNCO,IN,IQ,NJI. 
00 126 I=l,Ni 

J26 ICK l-U=O 
M<>•O 

210 NIC'=NIC+l 
iF(NlC.GE~NII GO TO 170 
lFClCKINIC).EQ.11 GO TO 210 

.NlD=.NlC 
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lSC NID:aNIO+l 
IFCNIO.GT.NI) GO TO 210. 
l·FCJCKCNJOI.EQ.1) GOT() 150 
00 228 I• 1,NPERMU 
00 230 K=l,NCO · 
00 230 J•l,NP 
IFCIP2C l, IQCNIC,KJ,JI.NE.JP211,IQINID,KI ,IHll,JI U GO TO 228 

230 CONTINUE 
GU 10 128 

228 CONTINUE 
GO TO 150 

128 ICKCNIDl.:cl 
GO TO 150 

170 MIA=O 
00 132 l=l,Nl 
IF C ICKC I> .E.Q.U GO TO 132 
NQA=NQA+l 
DO 134 K=l ,NCO 
DO 134 J:al,NP 

134 IPllK,NQA,Jl=IPZ(l,IQCl,Kl,J) 
132 CONT lNUE ' 

WRHE(6,300) NQA 
DO l C6 I :a.l , NQA 
~RITEl6,991 J,l1Zl191,19=1,NPI 
DO 106 J:1 ,NCO , 

106 WRJTEC6,981 J,llPllJ,1,111,11.sl,NP) 
100 CONTINUE 
39 STOP 

ENO 
SUBROUTINE PERMUllNP,Nl,NCI. 
COMMCN lPC250,61,IH(l20,51,181(30,Sl,NPERMU 
DIMENSION 18(10,50,5) ,1Gl401. 

'KC:aNPERMU 
NC:mO 
DO 32 I= 1, NI 
00 30 J=l,KC 
00 30 K::l ,NP 

30 18(1,J,Kl=IPCl,IHCJ,KU· 
00 37 LH=l,KC. 

31 lG(LHl=O 
LH=O 

38 LH=LH+l 
lf(LH.GT.KC) GO TO 44 
IF(lGllHI.EQ.U GO TO 38 
IHl=LH 

36 IHl=IHl+l 
If( IHl.GJ .• KCI GO TO 38 
lfCIG(lHll.EQ.11 GO TO 36 
NPl=O 

40 t\Pl=NPl +l 
IF(NPl.GT.NP) GO TO 42 
If( IIH 1,LH,NPU .EQ.16Cl ,1Hl,NPU I GO TO 40 
GO TO 36 

lt2 IGCIHll=l 
GU· TO 36 

44 LH=O 
ltS LH=LH+l 

IFILH.GT.KCI GO TO 32 
lf(IGCLH).EQ.11 GO TO 45 
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f\C=f\C+l 
DO 46 l I al ,NP 

"6 IBllNC,II)=IBCI,LH,IU ·. 
GO TO 45 

32 CONTINUE 
RETURN 
ENO 
SUBROUTINE PERHUCJ) 
COMMON 1PC250,6J,IHC120,5i,I8ll30,51,NPERMU 
OIME~SION ITC51 . 
I H U=l 
co 30 1•2,5 

30 ITCl):l*ITCI-1) 
IHI 1, U :sl 
IHCl,21=2 
IHC2 ,U =2 
lHC 2,2).al 
NPERHU:2 
lf(J.EQ.2J RETURN 
K.::3 

22 l<l=K-1 
Kfsl TC KlJ 
DO 10 11=1,KT 

10 lH( 11,K J:K 
KC•KT 
DO 20 15:1,Kl. 
12=Kl-15+1 
DO 20 14=1,KT 
KC=KC+l 
IHIKC,Kl 3 12 
l<M=l 

25 lf(lh(14,KHJ.NE.l21 GO TO 17 
UH KC, KM I =K 
GO 10 23 

17 lH(KC,KHJ:o:IHll4,KMJ 
23 KM=K.-+1 

lFIKM.GT.Kll GO TO 20 
GO TO 25 

20 COI\TINUE 
K=K+l 
IF(K.LE.JJ GO TO 22 
NPERMU=KC 
RETURN 
ENO 
SUBROUTINE COMSCK;IN,IQ,NII 
COMMON IP( 250,61' ,lH( 120 ,5) ,181 '30 ,5 I ,NPERHU 
DIMENSION lNClOJ~IQC200,51,IRC5,241,1Wl72,21 
KCO:O 
00 3 l K= l ,K 
l= INC lK ) 
003J=l,1 
KCO.::KCO+l 
IR l IK,J )=KCO 
IW(KCO,ll=IK 
1 Wl KCO, 2J=J 

3 COM INUE 
t-.R=l 
K l=K-1 
IFCKl.LT.21 GO TO 32 
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DO t+ 1•2 ,Kl 
It NR•NR*lNCU ·. 

Ml•NR 
. MT• IN Cl I *lNCKJ 
00 6 UaZ,Kl. ' 
Ml•Ml/lNI Ill 
MC~NR/ I Ml*lNCll I I 
Nl=O 
DO b. 15=1,MT 
DO b 12•1,MC 
MN=INI-I U 
DO 6 13;;;:l;MN 
DO 6 14=1,Ml 
NI=Nl+l 
11.11 Nl, 1 U= IRC tl,131 

6 CONTINUE 
32 Nl.::O 

Nl:s IN( 11 
NK=INlKI 
DO 8 11=1,Nl' 
00 8 12=1,NK 
DO ij 13 =1,NR 
hl=Nl+l 
IQlNJ,Kl=IRlK,121 
llJ(Nl,l)=lRll,111 

8 CONTINUE 
RETURN 
ENO 
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• EXAMPLE 1 • 

• DATA OF COLORED-1 SUBGRAPH•· 

NUMBER NB• 14, NUMBER OF PLACES NP• .6 
.. OWER BOUND MLa 1, UPPER BOUND I MU• 9 

THE NUHBE.R OF SPECIFIC.AT IONS '"' 20 

SPEClfICAT ION 1. · SPECIFICATION 2. 
1. 2 •. 3. 4. s. 6. 1. 2. 3. 4. 5. 6.· 

1. 1 1 ~. 1 l 9 1. 1 1 1 l 2 8 

SPECIF !CA TI ON 3. SPECIFIC.AT ION 4. 
1. 2. 3. 4. s • . 6. 1. z. 3. ,. . 5 .• t,. 

1. 1 1 1 1 3 7 1. 1 1 1 1 4 6 

SP EC If ICA TION s. SPECIFICATION . 6. 
1. 2. 3;, 4. 5. 6. 1. 2. 3. 4. s. oo 

1. 1 1 1 l 5 5 1. 1 1 1 2 2 7 

SPECIF !CAT .ION 1. SPEC IF IC.U ION a. 
1. 2. 3. '*· 5. 6. 1. z. 3~ 4. 5. 60 

1. l 1 1 2 3 6 1. 1 1 l 2 4 5 

SPECIF IC.A TI ON 9. 
4. ( 

SPECIFICATION 10 • 
1. 2. 3. 5. 6. 1. z. 3. 4. 5. 6. 

1. 1 1 1 3 3 5 1. 1 1 1 3 4 4 

. SP EC IF ICAT ION 11 • SPECIFICATION 12. 
1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 

1. 1 l 2 2 2 6 1. 1 l 2 2 3 5 

SPECIFICATION 13. SPECIFICATION 14. 
1. 2. 3. 4. s. . 6. 1. z. 3 •. 4. s. 6. 

1. 1 l 2 2 4 4 1. 1 1 2 3 3· 4 

SPEClFICA TION 15. SPECl.FICATION 16. 
1. 2. 3. 4. s. . o;, 1. z. 3. ft. 5. 6. 

1. 1 1 3 J 3 3 1. 1 2 2 2 2 5 

SP EC If ICA T ION 11. SPECIFICATION 18. 
1. 2. 3. 4. s. o. 1. 2. 3. 4. s. t,. 

1. 1 2 2 2 3 4 1. l .2 2 3 3 3 

SPECIFIC.AT ION 19. SPEC IF ICA TION 20. 
1. 2. 3. 4. s. 6. 1. z. 3. 4. s. 6. 

1. 2 2 2 2 2 4 1. 2 2 2 2 3 3 
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• EXA~PL E 2 • 
* OATA uf COLOREO-l SUBGRAPH • 

"4UMBER NB= o, NUMBER Of PLACES NP• 4 
LOWER BOUND ML= 1' UPPER BOUND MU• 3 

• OATA OF COLORE0-2 SUBGRAPH• 

NUMBER N~= 4, NUMBER OF PLACES NP• 4 
LOWER BOUND ML= O, UPPER BOUND HU::r 2 

(l. 

THE NUMtiER Of SPECIFICATIONS '"'lit 

SPECIFICATION 1. SPECIFlCA HON 2. 
1. 2. 3. 4. 1. 2. 3. 4. 

1. l 1 1 3 1. l l 1 3 
2. 0 0 2 2 2. 0 2 2 0 

SPEC l F lCA TION 3. SPECIF 1 CA Tl ON 4. 
1. 2. 3. 4. 1. 2~ 3. It. 

1. l 1 1 3 1. l 1 l 3 
2. 0 1 l 2 2. 0 1 2 l 

SPECIFICATION 5. SPECIFICATION 6. 
1. 2. 3 •. 4. 1. 2. 3. 4. 

1. l l 1 3 1. 1 1 1 3 
2. 2 1 1 0 2. 1 1 l 1 

SPEClFICAT ION 1. SPECIFICATION a. 
1. 2. 3. 4. 1. 2. 3. 4. 

1. l l 2 2 1. 1 ·. 1 2 2 
2. 0 0 2 2 2. 0 2 0 2 

SP EC 1 FICA T ION 9. SPECIF I CATION 10. 
l • 2. 3. 4. 1. 2. 3. 't. 

1. l l 2 2 1. l 1 2 2 
2. 2 2 0 0 2. 0 1 1 2 

SPEC.IF ICA TI ON u. SPECIFICATION 12 • 
1. 2 .• 3. 4. 1. 2. .3. It. 

1. l l . 2 2. 1. l 1 2 2 
2. 1 l 0 2 2. 0 2 l 1 

SPECIFICATION 13. SP EClf lCAT l'ON 14. 
1. 2. 3. 4. 1. 2. . 3. "· l \0 1 l 2 2 1. l l 2 2 ~. 2 l 0 l 2. l 1 l 1 
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C PROGfUM 8: SYNTHESIS OF VERTEX-VERTEX INCIDENCE MATRICES. 
COMMON IPC50,lOl,tWC25,21, ITC 5t 
DI MENS.ION IA(30,51,NTC6 ,, IB1130,5t, IM(30,51,U301, rzc 51,IAlC 1,5t, 

lMMC61,MT(30,61,LSC30l,ND(61,ME(20t,Ml(3,20,5,51,tHC24,5t 
DI MENS ION NQQCIOI, IQ( 20, 5 t,HICU0,5,51 ,ICKC 20t, t,U(q);ZN8(q) 

10 FORMAT (l 015 t . 
56 F!lPMATCI,• • SPECIFICATION FOR COLORE0-•,11,' SUBGRAPH: 1 ,813t 
51 FORMATC/,• • SPECIFICATION F!lR 'THE',12, •-COLORED GUPH:•,813t 
87 FORMAT(' NO INCIDENCE MATRIX EXISTS FOR THE GIVEN SPECIFICATION't 
95 F!lRMATC/1,' MATRIX NUMBER 1 ,131 
98 FOR.MATC13 ,, •' ,1015 I 
99 FORMATC/,4X,8(3X,Il,'.'t,/I 

231 FORMAT( • EXAMPLE',13,' c•,12,•-CoLOREO GRAPH HAVING 1 ,12, 
1 1 VERTICES I' ,II 

300 FORMATCII,• THE NUMBER OF VERTEX-VERTEX INCIDENCE MATRICES • 1 ,13t 
IT Cl Im:.) 
00 ~1 1•2,5 

31 ITlll=l•ITCI-U 
00 100 1•1,5 

100 Ill I I"'' 
READ15,101 NEX 
00 200 IEX•l ,NEX 
READ( 5, t'ot NCO 
REAOC5,101 NV 
WRJTE(7,2011 IEX,NCO,NV 
D!l 4 KKK=l,NCO 
REAOl5,101 (tACl,IKl,IK•l,NVI 
JF(NCO.GE.21 GO TO 2 
NVl=~V-1 
DO 8 J~l ,NVl 
LLzNV-J+l 
DO 8 1•2,LL 
JF(TAll,t-ll-IAC1,tlt 3,8,8 

3 IMAX•IACl,11 
IA(l,J)=IAll,1-lt 
JA(l, 1-U =I MAX 

8 CONTINUE 
WRJTE(J,571 NCO,(IA(l,IKl,JK•l,NVt 
GO TO 55 

2 WRITEIT,561 KKK,CIAU,IKl,IK=l,NVI 
55 Jy:o 

NA=l 
NY=l 
NT I NY I =l 

36 NP•NV-NY 
IF(NP.LEel I GO TO 60 
NY=NY+l 
NYl=NY-1 
JCsNTI NVl I 
NTCNYJaO 
00 50 IJ•l,JC 
ISU='ITINYI 
IY•IY+l 
N,=JA( IY,11 
IFC~R.Ne.o, GO TO 38 
NCl ,.l 
N:: o:t 
00 40 1•1,NP 

40 1811 l ,O•O 



GO TO 18 
38 CALL DIST IN8,NPtNR) 

CALL PERHUlCNP,NR,181,NCI 
IFINCO.GE.2) GU TO 't2 
IFCNYl.NE.U GO TO 't2 
00 5 J:s2,NV 

5 IAlll,1-l)zlAll,lJ 
CALL POSSllllAl,IBl,NP,NC,IH,NII 
NC•td 
00 6 1=1,NI 
DO 6 J:sl,NP 

6 18lll•Jl•IHll,J) 
lt2 NCl=O 
13 f\Cl=NCl +l 

IFINCl.GT.NC) GO TO 22 
NPl=O 

16 t.Pl,.hPl+l 
lfCNPl.GT.NP) GO TO 18 
J=NPl+l 
IFClf!llNCl,NPU.GT.IAIIY,JU GO T.O 13 
GO TO 16 

18 NA=NA+l 
f\Al-=hA-1 
NTCNYJ=NHNYJ+l 
00 lit 1=1,NP 
IHI f\Al ,U=I Bl INCl ,I) 
J:.: J+l 

14 IAINA,l)=IAIIY,J)-16llNCl,I) 
GO TO 13 

22 Lll~)=NTINYI-ISU 
50 CONTINUE 

IflNY.LT.3) GO TO 3b 
IU= IY 
INS( NY I =O 

lt30 IF(LIIUJ.NE.01 GU TO 36 
INB(NYJ=INBINYJ+l 
IU=IU-1 
GO TO 430 

60 f\ZU1Yl l=NT INYl >-INS(Nvt 
NS=l 
NF=NH 2 J 
DO 33 1=1,NF 

33 LSCI) =l 
CO 61 1=3,NY 
J=l-l 
NF l=NT I J). 
CO 61 IX= 1,NF l 
t.S=NS+l 
Jl=ll NSJ 
IFIJI.LE.O) GO TO 61 
DO 82 I Y=l , JI 
NF=NF+ 1 

82 LSlt.FJ=NS 
U CONTINUE 

NDINY)=NAl-NT(NYJ-lNSCNYJ 
lflf\Y.LE.3J GO TO 81 
NOINYll=NDINY)-NllNYl) 
IFlNYl.EQ.3) GO TO 81 
CO bb J2=5, NY 
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J•hY-J2+4 
JlaJ-1 

66 NOC JU..;NO( J)-NHJU 
81 NN•NA 

~MC f\'t) "'NAl 
· DO 70 J2=3,NY 

J•f\Y-J2 +3 
Jl•J-1 

70 MMlJl)•HMIJ)-N~IJ) 
IFllA(NA,1).EQ.IACNA,21.ANO.IAINA,1).LE.1) GO TO .65 
KS•NT( NYl-1 
N~NAl 
CO 63 KS1al 1KS 
lF( IA( NN,U .EQ. IAC NN,2) .AND. IACNN,1) .LE.l) .GO TO 65 

63 NN:sNN-l 
loilRITE(7 ,87 I 
GO to 200 

65 MT( 1, U•NN-1 
MEU)•lACNN,U 
HT(l~2)•ND1NY)-(LSlHH(NYl)-LSCMTCl,l))l 
DO 68 J2=4;Nv 
J•NY-J2+3 

68 HH l,J2-H=NOIJ 1-( LSI MM( JU-LSI MTU ,J2-2U 1-INBCJ) 
NN=I\N-1 
NQzl 
IC 11=NA-Ntc NY H l 

71 lFINN.tT.lCHJ GO TO 76 
IF(IAINN,11.NE.IAINN,211 GU TO 74 
IFllAINN,lJ.GT.U GO TO 74 
Ml==t.:<;;+l 
ME I N IJ t "' l A I NN , U 
~HNQ, ll=NN-l ... 
fill ( NQ,2) =NDlN'O-ll S lMMINY I l~LS( MT( NQ, 1))) 
DO 7 5 J 2= 4, N 't . 
J=I\Y-J2+3 
MH Ml,J2-U =NO( JI-U.S&HM&JI )-LS (HHNQ,J2-ZI 11-INB&J I 

75 CONTINUE 
74 t.:N=NN-l 

GO TO 71 
76 NYl=NY-1 

CO 90 K=l ,NQ 
DO c;o 1=1,5 

90 Ml(KKK,K~l,1)=0 
f\Ql=O 

94 NQ l=NQ l+ l 
lFCNQl.GT.NQ) Gu TO 93 
JV:I\ V 
JV:aJIJ-1 
Ml(KKK,NQl,JV,NV)=ME(NUl) 
DO 92 I K=l ,NYl 
NPP= IK+l 
JV=JV-1 
DO c;z I J=l ,NPP 
KJ=JV+IJ 

92 MI (KKK, NQl, JV, KJ )• IH( HT ( NQ 1, IK 1,.IJ I 
NVl=NV-1 
CO 96 1=1,NVl 
1 J.: l + 1 
00 96 J=IJ,NV 
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96 M. IIKKK ,NQl,J, ll•MII KKK, NQl, I ,JI 
. GO TO 94 
93 DO 126 1•1,NQ 

lH ICIC C I t•O 
NQC•O 

110 .. NQC •NOC +1 
IF~NQCeGT.NQt GO TD 130 
IFUCK(NQCJ.EQ.11 GO TD no 
NQB•NOC 

120 NQB•NQB+l 
IFINOBeGTeN-Qt GO TO 110 
l•O , 

122 1•1+1 
IFCleGEeNYt GO TO 128 
J• I 

124 J•J+1 
IFfJ.GTeNYt GO TO 122 
IFIMICKKK-,NOC,1,JleEQ.MICKKK,NQB,1,JU GO TO 12't-
GO TO 120 . 

128 ICKf NOB t •1 
GO TD 120 

130 NQA•O 
DO 132 1•1,NQ 
IF f ICK I I t. eo.1 t GO TO 132 
NQA=NOA+l 
DO. 134 11•1,NY . 
DO 134 Jl•l,NY 

134 Ml f KKK ,NQA, 11,Jl t•MI (KKK, 1, 11,Jl t 
132 CONTINUE . . 

IFCNCO.GTelt GO TO 302 
WRITEC7,300) NOA 

302 OD 97 K•l,NQA 
WIUTEf7,95 t K 
WRtTEU,991 C IZC 19t.19'!'1 tNYt 
00 97 1•1,NV . 

97 WRJTEC7,98t 1,CMHKKK,K,1,J),J•l,NY.I 
NOOCKKKt•NQA 

4 CONTINUE 
IF C NCO. eo.H GO TO 200 
JC.•NOOC lJ 
00 102 1•2,NCO 
JB=NQQ(l t . 
DO 102 J•l,JB 
JCa:JCH 
DO 102 tl •1 ,NV 
DO 102 Jl•l,NV 

102 Ml Cl, JC, 11, JlJ =M.IC lt.-J, 11, Jl t•to••cr-tt 
CALL tOMB( NCO,NQQ;IQ,Nlt . 
WRfTEU,300t NJ 
DO .107 1=1,NI . 
00 105 ll•l,NV 
00 105 Jl•l, NV 

105 Ml C Cl , 11 ; Jll a:0 . 
on 104 J• 1,NCO 
00 l 06 11 = l , NV 
00 106 Jl•l,NV 

106 MJCft,11,JltaMtCCl,11,Jlt+MICt,IOCl,Jl,11,Jll 
104 CONTINUE '. .. 

WRITFC7,95) I 
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~RITEC7,991 CIZCl91,.'1~:st,NVI 
CO 112 Uz 1,NV . .. 

112 WRITEC7,981 11,CMICCl,11,Jll~Jl•l,NVI 
1C7 CONTINUE 
2 00 CONTINUE 

STOP. 
ENO 
SUBROUTINE DISTINB,NP,NRI 
COMMON IPl50,10t,IWl25,2t,ITC5t 

. DO 29 l=l,200 
CO 29 Jzl,6 

29 IP( I,Jt=O 
NR=NB/2+1 
II Pl =NP-1 
NP2=NP-2 
ICl=NPl 
tP(l,NPt=NB 
IF(NR.LT.21 RETURN 
CO 21 1=2,NR 
IPI I ,NP) =IPfl-,.1,NPt-l 

21 IPI 1, NPH.=I Pl 1-1,NP 11 +l 
IFIIIP.LE.2) RETURN 

16 IF(IPINR,NPlt.LE.IP(NR,NPII GO TO 56 
NR=NR-1 . 
RETURN 

56 ICl=ICl-1 
IFCICl.LT.11 RETURN 
NR=NR+l 
DO 23 I=ICl,NPl 

23 IPINR, I>=l 
IPINR,NPl=NB-INPl-lCHl I 

47 IG=NP 1 
44 IIR=NR+l 

DO 45 1=1,IG 
45 IP(NR,lt=IP(NR-1,11 

IPINR, IGt=IPINR-1, IGl+l 
DO 12 I=IG,NPl 

12 IP C NR, I I= IP I NR, I GI 
IP(NR,NPt=NB 
00 14 I =1,NPl 

14 IPCNR,NPl=IPCNR,NPt"."IPINR,11 
IF(IP(NR,IG I.LT.tP1NR,NPft GO TO 10 
tFIIPCNR,tG t.EQ.IPCNR,NPII GO TO 40 
NR=NR-1 

40 IG=IG-1 
IF(IG.LT.tCll GO TO 16 
GO TO 44 

10 NR=NR+l 
DO 18 1=1,NP2 

18 I P ( N R, I t = I P IN R-1 , I ) 
IP(NR,NPl=IP(NR-1,NPt-l 
IPCNR,NPll=IP(NR-1,NPll+l 
IFIIP(NR,NPll.LT.IPINP.,NPII GO TO 10 
IFIIPINR,NPl).EQ.IPINR,NPlt GO TO 47 
NR=NR-1 
GO TO 47 
ENO 
SUBROUTINE PERMUl(NP,Nl,IBl,NCt 
COMMON. IPl50,101,IWl25,21,ITC5t 
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:it: . 

. DIMENSION 18tt0,30,51,IQC24,51,IGC401,IB1C30,51 
Clll PERMUCNP,IQ,KCt 

. NC•O 
. DO 32 1•1,NI 

DO 30 J•l,KC 
DO 30 K•l,NP 

30 1811,J,Kl•IPCl,IQCJ,Klt 
DO 37 IH•l, KC 

37 IGCIHI •0 
IH•O 

38 IH,..IH+l 
IFCIH.GT.KCI GO TO 44 
IFCIG(IHt.EQ.11 GO TD 38 
IHl•IH 

36 IHlalHl+l 
IFCIHl.GT.KCt GD TO 38 
IFCIG(tHlt.eo.1, GO TO 36 
NPl•O 

40 NPl=NPl+l 
IF(NPl.Gf.NP) GO TO 42 
IF( IBC I, IH,NPl ,.eo.lBCl ,IHl,NPlU GO TO 40 
GO TO 36 

42 IGIIHlt al 
GO TO 36 

44 IH•O 
45 IH•IH+l 

IFCIH.GTeKCt GO TO 32 
IF(IGftH).EQ.lt GO TO 45 
NC=NC+ 1 
DO 46 Il•l,NP 

46 IBlfNC,ll)•IBCl,IH,llt 
GO TO 45 

32 CONTINUE 
RETURN 
fND 
SUBROUTINE POSSll~IY,181,NV,NC,IH,IKI 
COMMON IPC50,10t,IW(25,21,ITC5t .. 
DIMENSION INtlOI ,IQC20,51~1Bl(30,5t•KLC101, 

1LVC5,5t,IVAC5,24,51,IY( 1,5t,IHC24,~t,188i20,15,51,ICKt40J 
K=O 
KCO=O 

13 l•O 
K=K+l 
KLCK )=1 

11 KCOzKCO+l 
I =t+l 
lf(KCO.GE.NV1 GO TO 15 
tFCIY(t,KCO).NE.IYCt,KCO+ltt GO TO 13 
KUKl=l+l 
GO TO 11 

15 DO 52 IJK=l,NC 
KK•O 
on 21 I• 1, K 
Kls:KUII 
DO 21 Jl•l,Kl 
KKs:KK+l 
LVCt ,Jtt:sJBlflJK,KKI 

21 CONTHIUE 
00 19 IK•l,K 
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Kl•KLC IK t 
JF(KleGTel t GO TO 17 
JV'I IK,1,1 )•LVCIK,U 
GO TD 19 

17 CALL PERMU(Kl, IH,Ktl 
DO 20 J•l ,KT 
00 20 Jl•l,Kl 
IVACIK,J,Jlt•LVCIK,IHCJ,Jl)) 

20 CONTINUE 
19 CON'tf NUE 

00 2. I •1 , K 
2 INCit•IT(.KL(ltt 

CALL COMB(K,IN,IQ,NI) 
00 50 11=1,·NI 
N2=0 
00 50 12=1,K 
Kl=KUI21 
0'.) 50 Jl=l,Kl 
N2=N2+1 
I K= I we IQ c. I 1, I 2 t , U 
J: IW( JQC ll, 121, 21 
IBB(IJK,11,N21=IVA(IK,J,Jl) 

50 CONTINUE 
52 CONTINUE 

00 60 IJK•l,NC 
60 I:KCIJKt=O . 

00 61 I JK=l, N.C 
I JA =I JK 
IFCICK(IJK).EQ.11 GO TO 61 

66 JJA•IJt.~1 
IF( IJAeGT.NCt GO TO 61 
IK=O 

62 IK=JK+l 
JF(IK.GTeNI) GO TO 66 
K 1=1 

65 NP•O 
63 NP•NP+l 

JFCNP.GT.N21 GO TO 64 
IFCIBBCJJK,IK,NPt.EQ.tBBCtJA,Kl,NPtt GD TO 63 
KI=Kl+l 
IF(KleGT.Nit GO TO 62 
GO TO 65 

64 JCKCIJAt:l 
GO TO 66 

61 CONTINUE 
IK•O 
DO 70 JJK=l, NC· 
IF(JCK(IJKt.EO.lt GO TO 70 
IK=IK+l 
DO 71 I L•l, N2 

71 IH(tK,tLtsJBB(IJK,1,Ilt 
70 CONTINUE 

RETURN 
END 
SUBROUflNE PERMUCJ,IH,KC) 
C:0"1MON IPC50,10t,IWC25,2), IT(5) 
DIMENSION IHC24,5t 
IHCl, 11•1 
IH C 1,2t .. 2 
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IH(2 ,1 t•2 
' IH(2,2t•l 

KC•2 
IF(J.EQ.2t RETURN 
K•3 

22 K 1•1<-1 
KT•IT(Klt 
DO 10 11•1,KT 

10 IH( 11,Kt•K 
KCzKT 
DO 20 15•1,Kl 
12•Kl-15+1 
DO· 20 t4st ,KT 
KCaKC + 1 
IH(KC,KJ=t2 
l<M=l 

25 IF(IHfl4,KMt.NE.12) GO TO 17 
IHCKC,KMl•K 
GO TO 23· 

17 IH(KC,KMt=IHll4,KMt 
23 KM=KM+l 

IF (KM.GT• Kl t GO TO 20 
GO TO 25 

20 CONTINUE 
K:;.K+l 
IFCK.LE.JJ GO TO 22 
RETURN 
ENO 
SUBRJUTINE COMB(K,IN,IQ,Nlt 
COMMON IP(50,10t,IW(25,2t,ITC5t 
DIMENSION tN(10t,IQC2D,5t,IR(5~24t 
l<CO=O 
003 IK•l,K 
l=INCIKt 
DO 3 J=l,1 
KCO=KCO+l 
IR(lK,JJsKCO 
IW(KC0,1 J=IK 
IW( KCO ,2 I aJ 

3 CONTINUE 
NR=l 
K l=K-1 
lFCKl.LT.21' GO TO 32 
DO 4 I =2 ,Kl 

4 NR=NR*iNCIJ 
Ml=NR 
MT=JN(l l*INCKJ 
DO 6 11=2,Kl 
Ml=Ml/lN C fl I 
MC:a:NR/C Ml*IN( 11 t t 
NI=O 
DO 6 f5•1,MT 
DO 6 12=1,MC 
MN= IN( 11 I 
006 13=1,MN 
DO 6 14= 1, Ml 
Nl=Nt+l 
TQ(Nt,JlJzlRCll,131 

6 CONTINUE 
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32 Nl•O 
Nt•INfl I 
NK•I NC Kl 

· DO 8 11•1,Nl 
DO 8 12•1,NK 
DO 8 J3al ,NR 
Nt•Nl+l 
IQCNl,KlaJR(K,121 
IOI NI, 11 .. JR fl , 111 

8 CONT.INUE 
RETURN 
ENO 
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. EXAMPLE 1 ( 1-COLOREO GRAPH HAVING 4 VERTICES t 

* SP EC I FI CAT ION FOR THE .1-COLOREO GRAPH: 3 3 2 2 

THE NUMBER OF VERTEX-VERTEX INCIDENCE MATRICES• 4 

MATRIX NUMBER 1 

1. 2. 
1. 0 1 
2. . 1 0 
3. 1 l 
4. l l 

MATRIX NUMBER 2 

3. 4. 
1 l 
l 1 
0 0 
0 0 

1. 
1.· 0 

2. 3. 4. 
1 
0 
1 
0 

2 O 
2. 2 0 1 
3. 0 l O 
4. 1 0 1 

MATRIX NUMBER 3 

1. 
2. 
3. 
4. 

1. 2. 
0 1 
1 0 
0 2 
2 0 

3. 4. 
O 2 
2 O 
0 0 
0 0 

MATRIX NUMBER 4 

1. 2. 3. 4. 
1. 
2. 
3. 
4. 

EXAMPLE 

0 3 0 0 
3 O O O 
0 0 0 2 
0 0 2 0 

2 ( ?.-COLORED GRAPH 

* SPECIFICATION FOR COLO~E~l 

MATRIX NUMBER l 

1. 2. 3. 4. 
1. 0 1 0 0 
2. l 0 0 l 
3. 0 0 0 1 
4. 0 l 1 0 

HAVING 4 VERTICES , 
$UBGRAPH: .1 2 1 2 

1 2 

4 3 
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MATRIX NUMBER . 2 

1. 
2. 
3. 
4. 

1. 2. 
0 0 
0 0 
1 0 
0 2 

3. 4. 
·1 0 
0 2 
0 0 
0 0 

MATRIX NUM8E~ 3 

1. 
2. 
3. 
4. 

1. 2. . 3. 4. 
0 0 0 1 
0 .··. 0 1. 1 
0 1 0 0 
1 1 O O 

1 

4 

* SPECIFICATION FOR COLORED-2 SUBGRAPH: 2 1 1 ·o 

MATRIX NUMBER 1 

1. 
2. 
3. 
4. 

1. · 2. 3. ·.4. 
0 1 1 0 
1 O O O 
1 0 0 O 
0 0 0 0 

THE NUMBER OF VERTEX-VERTEX I NCI DENCE MAT.RICES = 3 

MATRIX NUMBER 1 

1. 
2. 
3. 
4. 

1. 2. 
O 11 

11 0 
10 0 

0 1 

3. 4. 
10. O 

0 1 
0 1 
1 O 

MATRIX NUMBER 2 

1. 
2. 
3. 
4. 

1. 
0 

10 
11 

0 

2. 3. 4. 
10 11 O 

O O 2 
0 0 0 
2 O · 0 

MATRIX NUMBER 3 

1. 
2. 
3. 
4. 

1. 
0 

10 
10 

l 

2. 3. 4. 
10 10 1 

O 1 1 
1 0 0 
1 0 0 
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C PROGRAM C: COLORED GRAPH ISOMORPHISM TEST. 
COMMJ~ IVEC2,10,151,KEEC1~,151,IAC2rl0,101,KVEC10,lOI, 

llBC2,15,2J,tCC2,101,IVC2,101,ITClOl,NV,KE . 
D I ME NS ION KV C fo , U , I V VI l O , l O I , I S l f 2 , 2 , 1 0 I , I V5 f 2 , 10 I , I P ( 40 , 10 J , 

1 llU 15t,11,1Ec 2J, IS2C 2, 2·, 101 
CJ FORMATllOX, 1 VERTEX .NUMBER 1 ,5X,10161 

20 FORMAT( / 1 1 DEGREE OF VERTEX•••' ,1016,/J 

180 

21 FORMAT(//,' THE NU~BER OF ARRANGEMENTS OF VERTICES IN GRAPH 1 rs• 
1,13,, :• r 

22 FORMAT(• POSSIBILITY' ,15,'•••' ,10161 
25 FORMAT(//,' GRAPH 1 ,13,' DEGREE OF VER.TEX 1 ,10I6,/J 
38 FORMATC//, 1 TWO GRAPHS ARE lS0MORPHIC 1 ,/ 1 1 ISOMORPHISM IS FOUND 

lAT.PJSSIBILtTY',13,' OUT OF TOTAL 1 ,t3,' POSSIBILITIES 1 J 
39 FORMATC/1,' TWO GRAPHS ARE ISOMORPHIC',/, 1 • ISOMORPHISM IS FOUND 

lAT POSSIBILITY',13,' OUT OF TOTAL 1 ,13,' POSSIBILITY') 
6l FOPMAT(/, 1 POSSIBILITY 1 ,15,' :•) 
63 FORMATC/, 1 THE DEGREES OF VERTICES IN TWO GRAPHS ARE DIFFEREll,IT') 
81 FOR"IATC7X; •LEADING VERTEX :• ,161 
82 FORMAT I 7X, 'EDGE NUMBER 1 ,6X, •: '• 10161 
83 FORMATC7X, 1 VEPTEX NUMBER 1 ,4X,~:•,lOl6J 
84 FOP~AT(7X,'DEGREE OF VERTEX : 1 ,10161 
90 FORMAT Cl,' ( 1 , 12, • 18, • INCIDENCE TABLE 1 ) 

91 FORMATC/,7X, 1 GRAPH',I3, 1 :I) 
97 FDPMAT(l, 1 THE DEG!'EES OF VERTICES IN TWO GRAPHS ARE SAME 1 1 

100 FORMATl1615) 
105 FOP.MI\T(tB, 1 • ',15151 
111 FORMAT(!/,' THF TWO GRAPHS AR.E NOT ISOMORPHIC') 
lt;2 FnRMAT(///,7X,'VERTEX ELEMENTARY MATRIX 1 ,/J 
156 FORMATC///,7X,'EDGE EL.EMENTARV MATRIX',/1 
190 FORMAT (l 2X ,15J 14, t •').III) 
l'n FORMUl//, 1 GRAPH• ,I3,' VERTEX-EDGE INCIDENCE MATRIX',//) 
193 FORMAT(//,' GRAPH',13,' .VERTEX-VERTEX INCIDENCE MATRIX• .. ,//) 
36!i FORMAT I i * EXAMPLE•, 13, 1 *' J 

DO 47 I=t,15 
4 7 IW ( I >= t 

JT(l,=l 
no 40 1 = 2, 1 o 

',O TT(lt=t*ITfT·U 
PEAD(5,1001 NEX 
DO 3 50 I J K= 1, NE X 
WRITE(7,3651 IJK 
DO 36 I=l,Z 
00 36 J=l,10 
DO 36 K:i•l, 15 

36 IVF( 1,J.,Kl=O 
READC5,lOOJ NV 
READ(5,l00) NT 
DD 110 IG=l,2 
READC5,100J ((KVCI,11,1::::1,rW). 
NVl =NV-1 
KC0=2 
KF=O 
00 35 l=l,NV 

35 IVV Cl, 1' 2 0 
00 l 02 T =1 , NVl 
READ( o;, 1001 CI VVI I, JI ,J=KCO,NV) 
00 37 L*KCO, NV 

37 IVV(l,l)=IVV(f,L) 
DO 104 K=KCO,NV 



IFCIVVf.l~KI.EQ.OI GO TO'l04 
KE•KEH · 
IVECIG,1,KEl~IVVCl,KI 
IVE(IG,K,KEl•IVYCJ,KI, 
.IBCIG,KE,11•1 
IBC IG, KE ,2 l=K 

104 CONTINUE 
KCOaKC 0+1 

102 CONTINUE 
WRITE( 7,193) JG 
WRITEl7,190t CIW(ll,1•1,NYI 
D~ 130 L=l,NV . 

130 WRITEC7,1051 l,IIVVCL,M) ,M•l,NVI 
NEC IGl•KE 
WRITE C7 ,192 I IG 
WRITEC7,190t CIWCll,1•1,KE) 
00 106 M=l,NY . 

106 WRITE17,1051 M,CIYEIIG,M,Ll,l•l,KEI 
00 108 I• l,NY 
IVIIG,It=KVll,11*10**NT· 
DO 108 K-=1,KE 
IVIIG,ll=IVIIG,ll+IVECIG,1,KI 

108 CONTINUE 
110 CONTINUE 

IF(NEC1t.EQ.NE(2)) GO TO 112 
114 WRITE(7,1111 

GO TD 350 
112 CONTINUE 

00 120 IG=l ,2 
00 120 J-= 1, NV 
IV5CIG,Jl=IV(IG,JI 
TSU IG ,1,Jl=J 

120 CONTI'lilUE 
CALL OROERCIV5,IS1,NV,1,JJI 
OD 10 IG= 1, 2 
WRITFC7,25 I IG, ( IV5C iG-, 11, 111 1,NYI 

10 WRI TEC7,91 flSlCIG,1,tt ,t...,1,NVI ... 
IFCJJ.EQ.01 GO to'6o 
WRITEC7,63) 
GO TO 114 

60 CALL POSSIC IV5,IS1,IP,NII 
WRITEC7,211 NI 
WRI TEI 7,201 CI V51ltl I ,1 .. 1,NVI 
DO 7 1•1,NI 

7 WRITEC7,221 I,CIPCI,Jl,J•l,NY) 
O'.J 117 IG•l,2 
00 117 l•l,NV 
KN=O . 
DO 116 J=l,KE 
tFCIVECIG,1,Jt.EO.OI GO TO 116 
KN=KN+ 1. 
JAi JG, 1,KNl=J 

116 C ONTt NUE 
tCCIG;llsKN 

117 CONT HIUE 
NI 1 •0 

50 Nll=Nll+l 
IFtNtl.GT.NII GO TO 114 
WRITEf7,6U Nil 
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DO 30 I•l,10 
DO 30 J=l,10 

30 KVE( I,J )"'0 
DO 31 Jal,15 
DO 31 J•l,15 

31 KEE( 1,J l=O 
DO 32 I"'l,NV 

3 2 K VE ( IP C N 11 , I ) , I Sl C 2 , l , I I I •1 
1 .. 0 

52 , .. 1+1 
IFCt.GT.NV) GO TO 50 
NEC 1 )z IPCNiltl I 
NEC2,z1Slf2,1,tl 
IS2( 1, 1, U•IPC NI 1,11 
IS2(2,1,1)=1Slf2,1,II 
CALL TA8LEflV5,IS2,KW,JJt 
WRITEC7,90, I , 
DO 95 L=l,2 
WRI TF.( 7,91 l L 
WRITEC7,81, NF.CL) 
WPITE17,82) CIS2CL,2,KWW,,KWW•l,KW, 
WR I TEC 7,83, CI S2 C L,l ,KWWI ,KWW•l ,KWI 

CJ5 WPITF.17,84, (IV5CL,KWW,,KwW•l,KWI 
IF(JJ.Eo.o, GO TO 93 
WRtTI=( 7,63) 
GO TO 50 

93 WRITE (7, 97' 
l<Wl=O 

51 KWl=KWl+l 
IFCKWl,f.T.KW) GO TO 54 
KW2=0 

53 KW2=KW 2+1 
IF(KW2.GT.KWI GO TO 51 
JF(KVFCIS?.(1,l,KWU,IS2(2,1,KW2),.Eo.o, GO TO 53 
KF:E(IS212,2,KW21, IS2( 1,2,KWU,,,.l 
GO TO 51 

54 CALL CHECKCMM) 
GO TO (52,50,41, MM 

4 tF(Nt.EQ.tl GO TO 5 
WRITF.17,381 Nil,NI 
GO TO 300 

5 WPITEC7,391 Nll,NI 
3!10 WRITFl7,152) 

WRITE I 7, l 90 l I lW I I), tzl, NV, 
00 150 1=1,NV 

150 WRITEC7,105) 1,CKVECl,Jl,J•l,NVI 
WRITEf7,156) 
WRITE17,l90) I IW(ll,1.,1,KE) 
00 154 1=1,KE 

154 WRITE( 7,105) 1,CKEE(J ,J) ,J=l,KE) 
350 CONTINUE 

STOP 
ENO 
SUBRJUTTNE ORDER (K,IS,N,10,JJ) 
Cf1MMOM IVF.(2,10,151,KEEC15,15t,IAC2,J0,10),KVEC10,101, 

11 BC 2, 1 5, 21 , IC I 2, l. 0) , I Vf 2, 10) , IT fl O I ,NV, KE . 
DIMENSION Kl2,Nl,IS(2,2,NI 
M=N-t 
00 R IG=l,2 
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DO 8 J•l,M 
l•N-J+l 
DO 8 t •2 ,l 
tFIKltG,tl-KltG,1-111 3,8,8 

3 tMAX•KIIG,t-lt 
KIIG,t-ll•KCIG,11 
KC I G, I I• I MAX 
DO 9 IJ•l, ID 
IMAX•ISCIG,IJ,1-11 
ISltG,tJ~t-lJ•tSIIG,IJ,11 
IS ( IG, IJ, I I• IMAX 

9 CONTINUE 
8 CO\ITJNUE 

JJ=O 
K:•O 

10 KC•KC+l 
IFCKC.GT.N) RETURN 
IFC KC l',KCI.EO. KC2,KCI) GO TO 10 
JJ•l 
PFTUPN 
END 
SUBRJUTINE TABLE(IVl,ISl,KW,JJI 
COMMON. [VE C2 ,10, 151,KEEl 15, 151, IAC2, 10, 101,KVEI l0, 10), 

11 SC 2, 15, 21 ,·IC ( 2, 10) , I VCz, 1OJ,lT(101 ,NY.,.KE . 
DIMENSION IVtc2,101,tSU2,2,101 
DO 122 lG=l ,2 
KT= IS 1( I G, 1, 11 
KW=ICC TG,KT t 
DP 122 I =-1 , KW 
KY= IA( rc,KT, 11 
IS 1 ( I G, 2 , t I= KY 
IFCIBCIG,KY,11.EO.KTI GO TO 124 
TS 1C IG, 1, I I= 18( IG,KY, U 
GO TO 126 . 

124 ISlC IG,1,l)::JBCIG,KY,21 
126 MN=ISl ( JG, 1, It 

IVl(IG,lt=IV(IG,~NI 
122 CONTINUE 

CALL ~PDE~(IVl,ISl,KW,2,JJI 
PETUPN 
fND 
SUBROUTINE POSSl(IV,IS1,IP,NII 
COMMON IVEi2,l0,15),KFEC15,151,tA·C2,l0,1~1,KVE(l0,101, 

1IBC2,15,2t,ICC2,101,IV(2,101,ITC101~NV,KE 
OIMENSIO~ INl101,IA15,241,IWC50,21,10150,101,IS112,2,101, 

1LV(5,~t,IVA(5,24,51,IY(2,10li1P(40,101,KL~10. 
K=O 
KCO=O 

13 I=O· 
K=K+l 
KU Kt =1 

t1 KC("l=KCl)tl 
l=l+l 
IF(KCQ.GE.NVI GO TO 15 
IFCIYll,KCOt.NE.IYCl,KCO+lll GO TO 13 
KUKl=l+l 
GO TO l1 

15 KK=O 
DO 21 I =1,K 
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Kl•KU.(I · .. 
ocr u ··Jt':U , Kl ·· 

, l(K•KK+·t·· , . · ... ,·;"" 

. l,{f~f;,.J.}~-t,a~J.S·i:r-1.,-1,K~J -'·' .( 
21 CON .. TIN;UE . .. 
'~ . OJ t9 JK~J.,K'. 

·.Kl';KU'JKI ... 
", .:t1H K 1,·G t.··l) G'Cr TO 17. 
·,. JVA·c· 11<{1, U•lVC ti<~ 11 
'.GO TO 19'" , 

11·.~T•I.TCl<'t I, .· ,' 
-CJLL . PJ?"l'tM,U CKl'i IPJ 
oo· 20/J~·f·,KT . . 
DO io" J''1=•'t,·1<:1 . -, ; 
1vt1c itt!,i,J't l=LVI IK, IPU,JlJ), / 

20 CON'MNUE • '.: ... 
19 CONT'IN'UiE • 

00 2 H=l ,K 
2. INCi i=ll'tKLIII I 

KCO=O ' . 
00 3 tK:;;l ,K 
l=INIIKI 
OJ 3 Ji: 1, r , 
KCO=KCO+l 
IP C I K , J l :: ~CO 
IW( KCO, 1,1.sl·K 
IW(KC0,21.;.J· 

3 CONTINUE 
NP=l 
Kl=K-1 

·,. 

IF(Kl.L T.t) ,GO ,Tf.J. 3'Z 
00 4 T = 2, Kl ,, 

4 NR =NR• IN Cl I'. 
M 1= 'IR 
MT='Hllll*INlKl · ~· 
00 6 .11=2,Kt: I" • ~ \?1. 

M 1 = M 11 IN I 11 I~ ·. : (:' ',/ 
MC=NP/ ( Ml * IN I H I I' ·.·, 
NI =O .) 
DO 6 t 5= 1, MT 
DO & 12=1,~C 

"MN= IN.I l J I ,; : . 
:oo 6 · J3:i·1,MNI 
90 '6;r40:1,~1 .: 
N'ls:iNJ+·tt ' 
IQINl, 11 l=IRIH,131 

6 CONTINUE 
32 Nl=O 

Nl=INl11 
NK=INIKI 
00 8 ll= l ,Ni 
00 8 (J:2t·i ,,NK 
DD. A 13=1 ,NR', 
Nl=Nl+l 
IOINY ,Kl=IRIK,121 
IQ(NJ,lt~tRCl,111 

8 C'.ONT INUE 
DO 50 I1 =1, NI 
N2=0 
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DO 50 12•1,K 
K l•l<LI 12) 
DO 50. Jl •l ,Kl 
N2•N2+1 
Jl(•IWC IQC11,12J,1J 
j.1wcroc11~12,,2, 
JP C 11 , N2 J •IVA C I K, J, Jl t 

50 CONTINUE,. 
RETURN 
E"D 
SU.BROUT INE PERMUCJ, IP I 
C~MMDN IVE12,10,15J,KEEC15,15J,IAC2,10,10J,KVEC10,10J, 

1J B C 2, l 5, 2t , IC C 2, 10 J , l VC 2, 10 J , I T( 10 I , NV, KE 
DIMF.NSION JPC40,101 
IP C 1, 1 I =1 
JPCl,21=2 
IP f 2 ,H =2 
IP( 2 ,?I =l 
IFCJ.EQ.2) RETURN 
1('113 

22 K l=l<-1 
KT• ITC Kl J 
00 10 Jl:t ,KT 

10 JP(tl,Kl=K 
KC=KT 
DO 20 15:1,Kl 
I 2=K 1- I 5+ 1 
00 20 14=1,KT 
KC-=KCH 
IP(KC,K!=l2 
KM=l 

25 JFCIPII4,KMI.NE.t21 GO TO 11 
JPCKC,KMl=K 
GO TO 23 

17 JP(KC,KMl=IPCI4,KMJ 
23 K"=KM+ 1 

tF(KM.GT.Kll GO Tci io 
GO Tn 25 

20 CONTINUE 
K=K+l 
IFIK.lF.JI GO TO 22 
P ET:JR"l 
FND 
SlllROUTINE CHECK(MMI 
C1M~J~ IVE12,l0,151,KEEl15,15J,IAC2,10,101,KVE(lO,lOJ, 

1 t 812 , l':i, 2 J, IC ( 2, 10 I, IV C 2, 10 I, IT ClO )., NV, KE. 
DIMENSION Ml(l~,151,M2(10,151 
M'l=l 
LC=O 

24 lt=LC + 1 
JFILC.GT.KF.I GO TO 26 
LR=O 
l SlJM::O 

22 LR=LR +~ 
IF(LP.GT.KF) GO TO 20 
ISU'l=ISUM+KEEILR,LCI 
1.-0 ro 2.2 

20 IF (I SUM. EQ. OI RETURN 
(iO TO 24 
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26 LC•O 
66 LC•LC+l 

IFILC.GT.t<Et GO TO 68 
llhO 

62 LR•LR+l 
tFCLR.GT.KEt GO TO 66 
IF I KEE (LR, LC t • E Q. 0 t GO TO 62 
DO 64 1=1,NV 

64 Mlfl,LCl=lVEC2,I,LRt 
GO TD 66 

68 LC•O 
61 LC-=LC+l 

IFC LC.GT.NV) GO TO 6l 
LR=O 

63 LR=LR+l 
IFIL~,GT.NVt GO TO 61 
IFCKVf!LR,LCI.EQ.OI G:l TD 63 
DO 65 I =1 , KE 

65 M21LR,ll:Ml(LC,II 
GO TO 61 

67 LR=O 
52 l.P=LR+l 

IF IL R. GT. NV t GO TO 56 
LC=O 

54 LC=LC+l 
IFILC.GT.KEt GQ TO 52 
I~CIVFfl,LR,LCt.EQ.M2(LR,LCtt GO TO 54 
Ml1= 2 
PETURN 

56 MM=3 
P fTUR'I 
nm 
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* EXAMPLE 1 * 
GRAPH 1 VERTEX-VERTEX INCIDENCE MATRIX 

1. 2. 3. It. 5. 6. 1 

1. 0 10 1 0 0 1 
6 2, 10 0 10 0 0 1 3 

3. 1 10 0 1 0 0 
4-. .0 0 1 0 1 0 8 2 6 
5. 0 0 0 1 0 1 
6. 1 1 0 0 1 0 5 .. 

1 
GRAPH 1 VERTEX-EDGE· INCIDENCE 1'1A.TR IX 

le 2, 3, 4. 5. 6. 1. e. 
1. 10 1 1 0 0 0 0 0 
2. 10 0 0 10 1 0 0 0 
3, 0 1 0 10 0 1 0 0 
4. 0 0 0 0 0 1 1 0 
s. 0 0 0 0 0 0 1 1 
6, 0 0 1 0 1 0 0 1· 

GRAPH 2 VERTEX-VERTEX INCIDENCE MATRIX 

1. 2. 3, 4, 5. 6, 6 3 
1. 0 10 10 -0 0 1 
2. 10 0 1 0 0 1 8 6 
3, 10 1 0 1 0 0 2 
4, 0 0 1 0 1 0 5 ,. 
5, 0 0 0 1 0 1 7 
6. 1 1 0 0 1 0 

GRAPH 2 VER TEX-EDGE lNC I DENCE MATRIX 

1. 2. 3, 4, 5, 6, 1. e. 
1. 10 10 1 0 0 0 0 0 
2. 10 0 0 1 1 0 0 0 
3. 0 10 0 1 0 1 0 0 
4, 0 0 0 0 0 1 1 0 
5. 0 0 0 0 0 0 1 1 
6. 0 ·o 1 0 1 0 0 1 

GIUPH 1 DEGREE OF VER:TEX 102 102 103 112 112 121 
VERTEX NUMBER 4 5 6 1 3 2 

GRAPH 2 OE GREE OF VERTEX 102 102 103 112 112 121 
VERTEX NUMBER 4 5 6 2 3 1 

THE NUMBER OF ARRANGEMENTS OF VERTICES IN GRAPH 1 IS ,. 
DEGREE OF VERTEX, •• 102 102 103 .112 112 121 
POSSI Bl LI TV 1 ••• 4 5 6 1 3 2 
POSSI81LITY 2 ••• 4 5 6 3 1 2 
POSSJBIUTV 3 ••• 5 4 6 1 3 2 
POSS I Bl LI TY 4 ••• 5 4 6 3 1 2 
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POSSI Bl LI TY l . . 
( 1J INCIDENCE TABLE 

GRAl>H l . . 
LEADING VERTEX . 4 . 
EDGE NUMBER 7 6 
VERTEX NUMBER . , 5 3 •, 
DEGREE OF VERTEX 102 112 

GRAl>H 2 . . 
'LEADING VERTEX 4 
EDGE NUMBER 7 .6 
VERTEX NUMBER : 5 3 
DEGREE OF VERTEX 102 112 

THE DEGRF.ES OF VERTICES IN.TWO GRAPHS ARE SAME 

2) I NC IDENC-E TAB LE 

GRAPH l : 
LEADING VERTEX 5 
EDGE NUMBER 7 8 
VERTEX NUMBER 4 6 
DEGREE OF VERTEX 102 103 

GRAPH 2 : 
LEADING VERTEX '5 
EDGE NUMBER 7 8 
VERT EX NUMBER : -4 6 
DEGRFE OF VERTEX: , 102 103 

THE DEGREES OF v FRT re ES 1111 TWO GRAPHS ARE SAME 

f 3) INCIDENCE TABLE 

GRAPH 1 : 
LE AD IMG' VE RTE X 6 
EDGE NUMBER 8 3 5 
VfRTEX NUMBER 5 l 2 
DEGREE OF VERTEX 102 112 121 

GRAPH 2 : 
LEADY NG VERTEX 6 
EDGE NUMBER 8 5 3 
VERTEX NUMBER 5 2 l 
DEGREE OF VERTEX 102 112 121 

THE DEGREES OF VERT ICES IN TWO GRAPHS ARE SAME 

( 4) INCIDENCE TABLE 

GRAPH 1 : 
LEADING VERTEX 1 
EDGE NUMBER 3 2 l 
VERTF. X NUMBER 6 3 2 
DEGREE OF VERTEX 103 112 121 
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GRAPH 2 : 
. LEAD! NG VERTEX I 2 

EDGe NUMBER . 5 4 l . 
VERTEX NUMBER : 6. 3 l 
DEGREE OF VERTEX s 103 lU 121 

THE DEGREES OF VERTICES IN TWO GRAPHS ARE. SAME 

c 5t l~tlDENCE TABLE 

GRAPH' l : 
LEADING VERTEX I 3 
EDGE NUMBER : 6 2 4 
VERTEX NUMBER : 4 l 2 
DEGREE OF VERTEX : 102 : 112 121 

GRAPH 2 I 
LEADING· VERTEX . 3 • 
EDGE NUMBER : 6 4 2 
VERTEX NUMfiER . 4 2 1 . 
DEGREE OF VERTEX t 102 112 121 

THE DEGREES OF VERTICES IN TWO GRAPHS ARE SAME 

TWO GRAPHS ARE ISOMORPHIC 
ISOMORPHISM IS FOUND AT POSS IBU ITV l OUT OF TOTAL 4 POSSIBIL.ITIES 

VERTEX ELEMENTARY MATRIX 

, . 2. 3. 4. 5. 6. 
1. 0 l 0 0 0 0 
2. 1 0 0 0 0 0 
3. 0 0 l 0 0 o. 
4. 0 0 0 l 0 0 
5. 0 0 0 0 l 0 
6. 0 0 0 0 0 l 

EDGE ELEMENTARY MATRIX 

1. 2. 3. 4. s. 6. 1. e. 
1. 1 0 0. 0 0 0 0 0 
2. 0 0 0. l 0 0 .. 0 0 
3. 0 0 0 0 1 0 0 0 
4. 0 l 0 0 o· 0 0 0 
5. 0 0 1 0 0 0 0 0 
6. 0 0 0 0 0 1 0 0 
1. 0 0 0 0 0 0 1 0 
e. 0 0 0 0 0 0 0 1 

• EXA~PLE 2 • 

GRAPH l VERTEX-VERTEX 1~c1oe~ce MATA t X 4 1 

1. 2. '3, 4. 
1. 0 1 0 1 

5 1 
2. 1 0 1 10 
3. 0 1 0 200 
4. l 10 2.00 0 

2 

' 
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GRAPH 1 VERTEX-EDGE INC.I DENCE MATRIX 

1. 2. 3. 4. 5. 
1. l l 0 0 0 
2. 1 0 l 10 0 
3. t, 0 l 0 200 
4. 0 1 0 ·10 200 

GRAPH 2 VERTEX-VERTEX INCIDENCE MATRIX 1 

1. 2. 3. 4. 
1. 0 l 0 1 

' 
1 

2. l 0 l 10 
3. 0 l 0 200 
4. l 10 200 0. 

2 
GRAPH 2 VERTEX-EDGE INCIDENCE MATRIX 

1. 2. 3. 4e .-5. 
1 .. l l 0 0 0 
2. 1 . 0 l 10 0 
3. 0 0 1 0 200· 
4. 0 1 o· 10 200 

GRAPH 1 DEGREE OF VERTEX ·• 1012 2002 1211 ·4201 
VERTE)f NUMBER 2 1 .4 3 

GRAPH 2 DEGRF.I: OF VERTEX 1012 2002 1201 4211 
VERTEX NUMBER 2 1 .. 3 4 

THE DEGREES OF VERTICES IN TWO GRAPHS ARE DIFFERENT 

THE TWO GRAPHS ARE NOT ISOMORPHIC 



APPENDIX C 

LISTING OF FRISM KINEMATIC CHAINS 

The basic kirie.matic graph of prism kinematic chain (P KC) is 
r 

similar to that of parent kinematic chain. The prism pair in P KC is 
. r 

represented by another type of fine edge, say fine dash edge (see 

Chapter VI) in the kinematic graph. The number of prism pairs in 

kinematic chain is equal to that of fine dash edges in kinematic 

graph. 

Based on the 16 kinematic graphs of parent kinematic chains 

shown in Appendix A, the kinematic graphs of F KC's are listed with 
r 

only the fine dash edge numbers shown in the listing. For example, 

there are 24 P KC's with three prism pairs with configuration of #1 
r 

parent kinematic graph as shown in Appendix A. The 24 numbers right 

after the heading "#1 = 24:" are the corresponding numbers shown at 

the end. 2 is corresponding to 000124, where 124 are the fine dash 

edge numbers 1, 2 and 4 in the #1 parent kinematic graph. 



TOTAL .NO. 
CU NUMBER 

# l• 3: 
II 2• 3: 
11 3,.. a: 
" 4• 0:· 
# Sa 4: 
# 6= 5: 
# 7,,,. 10: 
# ea 3: 
# 9.. 6: 
#10= 6: 
# 11::o 5: 
# 12= 6: 
#13.s J.O: 
1H4= 3: 
IH 5.. 4: 
#lb"' 4: 

1. 
4. 
7. 

10. 

0 
0 
0 
0 

t21 NUMBER 
# 1.. 12: 
# 2= s: 
# 3= 30: 

24 25 
# 4= 31: 

32 33 
·" 5 .. 12: 
# t:= 25: 

19 20 
# 72 45: 

lb 19 
37 38 

I# 8:s 8: 
# 9= 23: 

34 35 
#10= 25: 

29 30 
#11= HI: 

41 
#12= 25: 

29 30 
#13= 45: 

18 l 'ii 
37 38 

#14= 12: 
-·#_15= 16: 

#16.,; 15: 

1. 
4. 
1. 

10. 
13. 
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OF KINEMATIC CHAINS WITH 1 UP TO 6 PRISM PAIRS• 3309 
OF KINEMATIC CHAINS WITH 1 PRISM PAIR= 88 

1 · .Z 7 
1. 2 7 
1 2 3 
1 2 5 
1 2 3 
1 2 3 
1 2 3 
l 2 3 

.1 2 5 
-i 2 4 

.I. 5 6 
l 2 4 
1 2 3 
l 2 7 
l 2 5 
l 2 3 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

O l 
0 4 
0 7 
0 10 

OF KINEMATIC 
1 2 3 
l 2 3 
1 2 3 

26 27 30 
l 2 3 

34 35 36 
l 2 3 
1 2 3 

23 24 25 
l 2 3 

20 21 22 
39 40 41 

l 2 3 
l 2 3 

40 41 42 
1 2 3 

31 33 34 
1 2 3 

l 2 3 
31 33 34 

1 2 3 
20 2! 22 
39 40 41 

l 2 3 
l 2 3 
l 2 3 

4 5 6 
6 7 8 
4 
4 9 
4 5 6 

7 9 10 
5 8 10 
7 9 
5 6 10 
4 5 6 

9 
6 

2:. 
5. 
8. 

0 
0 
0 

CHAINS WITH 
4 5 6 
4 5 9. 
4 5 6 

31 J2 35 
4 5 6 

37 Hl 39 
4 5 6. 
4 5 6 

29 30 4:> 
'4 5 6 
23. 24 25 
42 43 '. 44 

4 5 6 
4 5 6 

45 
4 5 6 

35 . 43 44 
4 5 6 

7 10 
9 10 

7 8 

7 8 

0 
0 
0 

0 
0 
0 

2 PRISM 
7 12 

12 17 
9 10 

36 .H 
7 8 

.:.o 41 
7 10 
7 8 

7 8 
2b 27 
45 

7 20 
7 8 

1 a 

7 8 

4 5 a 7 8 
3~ 38 39 

4 5 6 7 8 
2J 24 25 26 27 
42 43 44 45 

4 6 8 11 12 
4 s 6 1 a 
~ 5 6 7 8 

0 
0 
0 

9 10 

9 10 

0 
0 
0 

2 
5 
8 

PAIRS= 350 
14 40 41 

11 12 13 
38 39 42 

9 10 12 
42 43 44 
11 12 15 

9 10 11 

9 10 11 
21:l 29 30 

9 10 12 

9 11 12 

9 31 32 

9 11 12 

9 10 11 
28 29 30 

14 40 41 
9 11 13 
9 10 11 

2. 
5. 
a. 

11. 
14. 

0 0 0 0 l 
0 0 0 0 1 
0 0 0 0 l 
0 0 0 0 2 
0 0 0 0 2 

3 
6 
9 
4 
7 

3. 
6. 
9. 

42 

0 
0 
0 

14 17 

13 14 
45 
18 
12 13 

12 13 
31 32 

13 14 

15 17 

33' 34 

13 17 

12 13 
31 32 

42 
16 17 
13 15 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

18 19 20 

15 16 17 

14 16 17 

lit 15 16 
33 34 35 

15 16 17 

25 26 27 

35 36 37 

25 26 27 

14 15 16 
33 34 35 

28 29 45 
17 20 

3 
6 
9 

21 

31 

18 

17 
36 

33 

28 

38 

28 

17 
36 

3. 
6. 
9. 

12·. 
15. 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

l 4 
1 7 
l 10 
2 5 
2 8 
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16. 0 0 0 0 2 9 11. 0 0 0 0 2 10 18. 0 0 0 0 3 4 
19. 0 0 0 0 3 5 20. 0 0 

'. 
0 0 3 6 21. 0 0 0 0 3 7 

22. 0 0 0 0 ,3 8 23. 0 0 0 0 3 9 24. 0 0 0 0 3 10 
25. 0 0 0 0 4 5 26. 0 0 0 0 4 6 27. 0 0 0 0 4 7 
28. · 0 0 0 0 4 8 29. 0 0 0 0 4 9 30. 0 0 0 0 4 10 
.31. 0 0 0 0 5 6 12. 0 0 0 0 5 7 33. 0 0 o: 0 5 8 
34. 0 0 0 0 5 9 35. 0 0 0 0 5 10 36. 0 0 0 0 6 7 
37. 0 0 0 0 6 8 38. o· 0 0 0 6 9 39. 0 0 0 0 6 10 
40. 0 0 0 0 7 B 41. 0 0 0 0 7 ., 9 42. ,. 0 0 0 0 7 10 
43. 0 0 0 0. 8 9 44. 0 0 C) 0 8 10 4.5. 0 0 0 0 9 10 

Cll NUH8ER OF Kl Nl:HA Tl C CHAINS WITH 3 PRISM PAIRS• 810 
# l• 24: 2 3 4 5 6 9 10. 12 13 l.b 18 19 2.3 24 27 28 31' 

32 33 l4 51 59 60 61 
I 2• H: 2 3 4 9 10 19 21 ,23 24 26 27 30 52 54 
# 3• 70: 2 3 4 5 9 10 11 12 16 17 18 21 22 23 26 27 28 

29 30 32 33 37 38 39 40 44 45 46 49 50 51 54 55 56 57 58 
60 61 65 66 67 70 71 72 75 76 77' 78 79 81 82 86. 87 90 91 
92 93 94 96 .97 101 102 103 104 106 107 113 115 116 119 

" It• 73: 3 4 5 6 7 8 10 11 12 13 15 16 17 18 19 20 21. 
22. 23. 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 40 41' 
42 43 , 50 51 52 53 Sit 55 56 57 58 59 60 61 62 63 6't 101 102 

103 104 105 106 107 l 08 109 110 111 112 113 ll't 115 i16 117 118 119 14 

" 5• 22: l 2 3 9 10 11 12 13 16 18 23 24 25 26 27 37 39· 
41 47 52 4 19 

# 6• 57: 2 3 ·4 5 6 7 9 10 11 12 13 lit 15 16 17 18 19 
20 21 22 23 ·25 26 27 29 30 32 33 34 36 37 38 39 40 42 44 
45 46 48 49 )o 53 5lt 57. 58 60 64 65 66 69 70 74. 75 78 85. 
89 10() 

# 7•111: 2 3 ' 4 5 6 7 9 10 11 12 13 14. 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
40 4 l 42 44 45 46 47 48 -49 so 51 52 53 54 55 56 57 58 59 
60 61 62 63 6't 65 bb 67 68 .69 70 71 72. 13 74 75 76 77 78 
79 80 81 82 83 84 as: 86 87 88 89 90 91 92 93 'lit 95 96 97 

102 103 104 105 (06 io1 108 109 110 111 112 113 114 115 116 11'7 118 119 
# 8:z 12: l 2 9 10 11 12 13 18 . 19. 22 23 27 
# 9• 62: 119 1 2 3 4 5 6 7 8 10 11 12 13 14 15 .16 18 

. 20 21 22' 23 2't 25 26 27 28 29 30 31 32 33 34 35 36 38 40 
42 43 50 51 52 53 54 55 56 57 58 59 60 61 62, 63 64 103 104 

106 107 108 109 110 117 118 
#lOa 59: 2 3 4 5 6 7 8 9 10 13 15 16 17' 18 19 20 21 

22 23 24 25 26 27 28 29 30 31 32 33 34 , 35 36 44 45, 't6 47 
48 49 50 52 53 54 62 63 86 87 88 92 93 94 95 97 98 99 102 

104 10.8 109 120 
tll l• 39: 3 4 5 7 10 11 12 14 16 17 18 19 20 108 110 112 2.1 

22. 23 24 25 26 27 28 29 30 31 32 33 34 35 36 iOl 102 103 104 
105 106 107 

#12:s 58: 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 21 
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 44 45 46 47 
48 49 50 52 53 54 57 513 8b 87 88 91 92 93 94 97 98 99 102 

103 109 116 
'13=115: 2 3 4 5 6 7 8 9 10 11 12 ll 14 15 16 17 20 

· 21 22 23 24 25 2b 27 2.8 29 30 31 32 33 34 35 36 37 38 39 
40 41 .42 43 44 45 4b 47 48 ''49 50 51 52 53 54 55 Sb 57 58 
59 bO 61 62 6.1 bit b5 b6 67 68 69 70 71 72 73 74 75 7b 77 
18 79 BO 81 82 83 84 85 88 9.0 92 94 95 96 98 99 100 102 103 

104 lOb 107 108 110 111 112 lU ll't 115 116 117 118 119 120 18 19 89 93 
97 105 109 

# l't• 27: 2 3 5 '1 9 10 12 16 17 18 19 20 21 . 23. 25 31 32 \ 
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33 36 44 45 46 47 51 59 60 61 
115 .. :n: 2 3 't 5 6 8 9 10 11 12 15 17 18 19 20 21 25 

28 29 30 31 32 lit 35 36 't5 47 't8 49 57 64 
. tl 6• 36: 1 2 3 4 5 6 1 8 9 10 u 12 13 H 15 17 18 

19 20 21 22 23 24 27 28 29 30 35 37 39 41 43 45 47 56 58 

lo 0 0 0 1 2 3 2. 0 0 0 1 2 4, 3. 0 0 0 1 2 5 
4. 0. 0 0 1 2 6 5. 0 0 0 1 2 1 6. 0 0 0 1 2 8 
1. 0 0 0 1 ··2 9 8. 0 0 0 1 2 10 9. 0 0 0 1 3 4 

10. 0 0 0 l 3 ? 11. 0 0 0 1 3 6 12. 0 0 0 1 3. 1 
13. 0 0 0 1 3 8 . 14. 0 0 0 1 3 9 15. 0 0 0 1 3 10 
16. 0 0 0 1 4 5 17. 0 0 0 1 4 6 18. 0 0 0 1 4 7 
19. 0 0 0 1 4 8 20. 0 0 0 1 4 9 21. 0 0 0 l 4 10 
22. 0 0 o. l 5 6 21. 0 0 0 1 5 7 24. 0 0 0 l 5 8 
25. O· 0 0 1 5 9 26. 0 0 0 1 5 10 21. 0 0 0 l 6 1 
28. 0 0 0 l b 8 29. 0 0 0 1 6 9 30. 0 0 0 l 6 10. 
31. 0 0 0 1 7 8 .32. 0 0 0 1 7 9 33. 0 0 0 l 1 10 
34. 0 0 0 1 8 9 35. 0 0 0 l· 8 10 36. 0 0 0 1 9 10 
37. 0 0 0 2 3 4 38. 0 0 0 2 3 5 39. 0 0 0 2 3 b 
40. 0 0 0 2 3 1 41. 0 0 0 2 3 8 42. 0 0 0 2- 3 9 
43. 0 0 0 2 3 10 44. 0 0 0 2 4 5 't5o 0 0 0 2 4 6 
't6o 0 0 0 2 4 7 47. 0 0 0 2 4 8 't8o 0 0 0 2 4 9 
49. 0 0 0 2 4 10 50. 0 0 0 2 5 6 51. 0 0 0 2 5 ·1 

. 52. 0 0 0 2 5 8 53. 0 0 0 2 5 9 54. 0 0 0 2 5 10 
55. 0 0 0 2 6 7 56-. 0 0 0 2 6 8 57. 0 0 0 2 6 9 
58. 0 0 0 2 6 10 59. 0 0 0 2 7' 8 60. 0 0 0 2 1 9 
61. 0 0 0 2 7 10 62. 0 0 0 2 8 .9 63. 0 0 0 2 8 10 
64. 0 0 0 2 9 10 65. 0 0 0 3 4 5 66. 0 0 0 .3 4 6 
67 •. 0 0 .o 3 4 1 68. 0 0 0 3 4 8 69. 0 0 0 3 It 9 
10. 0 0 0 3 4 10 11. 0 0 0 3 5 6 12. 0 0 0 3 5 7 
7.3. 0 0 0 3 5 8 74 •. 0 0 0 3 5 9 75. 0 0 0 3 5 10 
16. 0 0 0 3 b 1 11. 0 0 .0 3 6 8 78 • 0 0 0 3 6 9 
79. 0 0 0 3 6 10 so. 0 0 0 3 7 a· 81. 0 0 0 3 1 9 
82 • 0 0 0 3 1 ·10 5'3,. 0 0 0 3 8 9 84. 0 0 0 3 8 10 
ES. 0 0 0 3 9 10 86. 0 0 0 4 5 6 87. 0 0 0 4 5 7 
88 • · 0 0 0 4 5 8 89. 0 0 0 4 5 9 90. 0 0 0 \ 5 10 
91. 0 0 0 4 6 7 92. 0 0 0 4 6 8 93. 0 0 .0 4 6 9 
.94. 0 0 0 4 6 10 95. 0 0 0 4 7 8 96 • 0 0 0 4 1 9 
97. 0 0 0 4 7 10 98. 0 0 0 4 8 9 99. 0 0 0 4 8 10 

1 oo. 0 0 0 4 9 10 101 • 0 0 0 5 6 7 102. 0 0 0 5 6 8 
103. 0 0 0 5 6 9 l 04. 0 0 0 5 6 10 105. 0 0 0 5 1 8' 
106. 0 0 0 5 1 9 107. 0 0 0 5 1 10 108. 0 0 0 5 8 9 
1 C9. 0 0 0 5 8 10 110. 0 0 0 5 9 1.0 111. 0 0 0 6 7 8 
112. 0 0 0 6 7 9 113. 0 0 0 6 7 10 114. 0 0 0 6 8 9 
115. 0 0 0 6 8 10 116. 0 0 0 6 9 10 117. 0 0 0 1 8 9 
q8. 0 0 0 1 8 10 119. 0 0 0 1 9 10 120. 0 0 0 8 9 10 · 

(4t NUMBER Of KINEMATIC CHAINS ~ITH 4 PRISM PAIRS = 1157 
# 1= 44: 8 9 10 11 14 15 lb 1~ 20 24 25 26 27 30 31 32 35 

lb 3.7 45 46 48 53 54 55 56 59 60 60 61 62 65 66 to 71 72 
. 73 75 76 17 78 125 l2b 12 7 

# i,a 21: 8 9 10 11 12 14 15 16 19 JO 31 · 32 33 37 61 63 64 
71 73 11 129 

# J= ,; 8: 8 9 10 14 15 19 20 21 2't 29 30 31 35 36 40 41 42 
45 50 51 54 55 56 57 58 bO 61 65 66 67 68 10 71 77 79 80 
83 85 86 87 91 92 9b 97 98 10 l 106 107 110 111 112 113 114 116 117 

121 122 123 124 126 127 133 135 136 139 141 142 145 146 147 148 149 151 152 
156 157 158 159 161 162 168 170 171 174 177 178 181 190 191 194 196 197 198 
200 201 204 20 7 208 



•· ~' ... 1.• ·u u 20 21 2i 23 21t 25 26. 21 28 35 
ltO 41 lt2 .lt3.. 'tit 1t5 46 U • 48 . lt9 SO 51 52 53. 54 
59 · 60 . 61 62 208 63 64 66 67 6.8 69 70 · 11 ', 72 .13 
18 .79 80 81 82 83 91 92 93 9lt 95 96 97. 98 · 99 

. 103 104 105. 122 123 124 125 1Z6 127 128 129 130. Ul 132 133 
138 139 196 197 198 202 203 204 207 

t 5• 34: 1 2 . 3 8 9 lit 17 18 21 29 30 · 31 32 
lt.O ltl 42 51 . 52 54· 55 70 1l. 72 73 76 85 88 93 

, 6• n: 8 9 10 · u .12 11t 1s 16 u 19 20 · 21 22 
30 31 32 . 33 35 36 37 . 31 40 ltl lt2 .45 47 · 50 51 
60 '61 '62 '63 65 .67 6.8 70 71 77 80 83 84 85 86 
94 96 98 101 106 107 109 113 114 U6 117 123 Ult. 136 139 

t 7•150: .8 9 10 11 12 1't 1S 16 . 17 19 20 21 23 
31 32 · 33' 35 36 37 38 40 lt1 42 44 45 lt7 50 51 
56. 57 58 59 60 61 b6 67 68 69 70 71 72 73 74 
79· 80 81 82 .·· 83 85 86 8.7 88 89 91 92 93 94 96 

103 10~ 107 108 109 110'111 112 113 114 115 116 117 118 119 
12s 126 121128 ·129. 130 131132133 134 135 136 131 138 139 
145 146 147 148 149 150 151 152 157 158 159 160 161 162 163 
16.8 169 110 171 172 173. 1-74 177 178 180 181 186 187 200 201 

i S- 21: 1 2 3 . 4 8. 12 13 30 31 . 32 33 . lit 35 
.. 60 .61 . 63 71 

195 

36 31 . 38 39 
55 56 ·. 5.7• 58 

·· n_. 15 1:6 · 11 
206 100 101 10Z 
Ult us. 136 137 

36 37 38 39 
95 129 
23 24 26 29 
52 55 57 58, . 
81 89 91 92, , 

141 148 149 111 · 
Zit 26 29 JO ' 

.52 53 51t 55 
75 76 77 78 
97 98 100 101 

120 122 123 124 
lltl 142 llt3 lltlt 
164 165 166 167 
203 204 207 208 
36 37 40 41' 

# 9• 92 ~ 1 2 3 4 5 6 7 8 9 
18. 19 20 21 22 23 26 27 35 3.6 31 
46 47 . 48 49 !10 51 52 53 54 59 .60 
76 77 . 78 79 . 80 _: 81 82 84 9.1 · 92 9.3 

10 11 ·1z 13 lit 15 16 17 
38 39 40 'tl 42 ~3 'tit 45 · 
61 .. 67 68 70 71 72 73 74 
94 95 100 101 102 123 124 126 

121 128 129 uo · 112 1i1 il1t 135 · u6 137 138 
110~ 81: 8 9 io 11. 12 i.3. 11t 15 16 

25 26 27 28 29 .so 31 32 33 34 35 
56 57 58 59 .60 61 6.2 63 64. 65 66 
80 81 83 84 106 107 108 112 U.3 Ult 115 

176 177 180 189 192 199 69 

lltO 201 20't 205 210 61t 105. 
U 18 1"9 20 21 22 23 
37 38 39 lt8 50 51 52 
67 68 70 71 72 73 7~ 

117 118 119 122 1Z4 128, 129 

21t 
55 
78 

140 

till• 50: 14 15 16 19 20 21 24 35 36 37· 38 39 40 41 42 45 50 
51 . 52 53 5't, 55 · 56 57· 58 59 60 61 62 63 6lt 6.5 66 67 .68 69 · 
·10 71 72 73 11 19 · 80 82 Sit ln 200 201 204 83 

#12:a 83: 8 9 10 11 1.2 13 · H · 15 .16. 11 18 19 20· 21 22 23 2lt 
lt2 43 50 51 52 
69 70 71 72 73 

25 26 27 28 29 30 31 32 3J 34 35 37 38 39 
. 55 56 · 57 58 59 • 60" ,1 62 63 64 65 . 66 67 68 

76 78 80 81 83 84 106 107 108 111 112 113 114 117 118.119 120 122 123 
124 129 136 176 177 180 187 189 199 

#lJ-165: 8 9 10 11 . 12 13 · 14. 15 
26 27 28 29 30 31 32 33 34 35 

· 45 48 47 49 52 53 54 56. 57 58 
~9 to 11 12 11 .. J4 75 76. 11 78 
81 88 ~o 91 92 93 94 95 96 97 

110 112 113 ll't 115 116 117 118 119 120 
130 l.31 132 133 134 135 136 1.37 138 139 
155 157 i5Q 159 160 161 162 163 165 166 
185 189 19() 191 202 203 Z01t, 206 207 208 

· #14• 1t7: 8 9 . 10 11 12 13 15 17 
45 51 52 53 "54 55 57 ·59 60 61 

111 115 116 117 118 121122 125 126 127 
115• ltl: 8. 9 10 11 U 14 15 16 

31 32 .34 3,6 39 lt3 52. 53 5lt 56 
81 83 112 113 119 

16 17 18 19 20 
36 37 38 .3, .40 
59 60 61 62 63 
79 80 81 82 83 
98 99 100 101 103 

172 122 123 124 125 
lltO 143 lit5 147 149 
lb7 169 170 171 173 
l44 148 152 164 168 

23 24 25 28 29 
62 63 64 69 70 
36 . 

21 22 23 Zit 
41 42 lt3 44 
64 66 67 68 
84 85 89 86 

lOlt 105 108 109 
i26 127 128 129 
150 151 153 154 
174 175 183 184 

30 31 32 . 44 . 
11 11t 101 1oa· 

18 19 20 22 ~3 25 27 29 30 
57 58 59 .60 61 '74 78 79 80 

116• 5,4; 3 It 5 
24 25 26 27 28 
56,, 57 58 60 61 

6 7 9 
30 31 32 
62 63 6lt 

10 11 12 13 14 .15 16 17 18 21 22. 
3) 3lt 35 36 37 40 41 lt2 43 48 _j5 
65 66 70 73 86 88 97 . 99 112 119 . 



196 

1. 0 0 , 1 2 3 4 2. 0 0 l 2 3 5 3. 0 0 l. 2 3 6 
4. 0 0 1 2 3 1 s. ·o 0 ,l 2 3 a 6. 0 0 l 2 3 9 
1. 0 0 1 2 3 10 a. 0 0 1 2 4 5 9. 0 0 l 2 4 6 

10 • 0 0 1 2 4 1 11. 0 0 1 2 4 a 12. 0 0 l 2 4 9 
11. 0 0 l 2 ·4 10 14. 0 0 ,l 2 5 6 15. 0 0 1 2 5 7 
16. 0 0 1 2 5 a 17. 0 0 l 2 5 9 1a. 0 0 1 2 5 10 
19. 0 0 , l 2 6 1 20. 0 0 l 2 b 8 21. 0 0 l 2 6 9 
22. 0 0 l 2 6 10 23. 0 0 l 2 7 8 24 • 0 0 1 2 7 9 
25. 0 0 1 2 7 10 lb. 0 0 J. 2 8 ·9 27. 0 0 l 2 8 10 
2a. 0 0 l .2 9 10 2.,. 0 0 1 3 4 5 JO. 0 0 1 3 4 6 
31. ·o 0 l 3 4 1. J2. 0 0 1 3 4 8 33. 0 0 l 3 4 9 
34~ 0 0 1 3 4 10 35. 0 0 1 j 5 6 36. 0 0 l 3 5 7 
37. 0 0 1 3 5 a 38. 0 0 1 3 5 9 39. 0 0 1 3 5 10 
.. o. 0 0 1 3 6 7 41. 0 0 1 3 6 8 42. 0 0 1 3 6 9 
43. 0 0 1 3 6 10 44. 0 0 l 3 7 8 45. 0 0 1 3 7 9 
'tbo 0 0 1 3 7 10 47. 0 0 1 3 6 9 48 • 0 0 l 3 8 10 
49 • 0 0 l 3 9 10 so. 0 0 l 4 5 6 51. 0 0 1 4 5 7 
52. 0 0 1 .4 5 8 53. 0 0 1 4 5, 9 54. 0 0 1 4 5 10 
55. 0 0 l 4 6 7 So. 0 0 1 4 6 a 57. 0 0 1 4 6 9 
58. 0 0 1 4 6 10 59. 0 0 1 4 7 8 60. 0 0 1 4 7 9 
61. 0 0 l 4 7 10 o2. 0 0 1 4 d 9 63. 0 0 l 4 d 10 
64. 0 0 1 4 9 10 65. 0 0 1 5 b 7 66. q 0 1 5 6 l:l 
67. 0 0 1 5 6 9 68. 0 0 l 5 6 10 69. 0 0 1 5 7 d 
10. 0 0 1 5 7 9 71. 0 0 1 5 7 10 72 • 0 0 l 5 d 9 
73. 0 0 1 5 ti 10 74. 0 0 l 5 9 10 75. 0 0 1 6 7 8 
76. 0 0 1 6 7 9 77. 0 0 l 6 1 lO 76. 0 0 l 6 8 9 
79. 0 0 1 6 8 10 ao. 0 0 l 6 9 10 a 1. 0 0 l 7 8 9 
82. 0 0 l 7 8 10 63. I) 0 J. 7 9 10 84'. 0 0 1 8 9 10 
ES. 0 0 2 3 4 5 ijb. 0 0 2 3 4 6 IJ7 • 0 0 2 3 4 7 
88. 0 0 2 3 4 8 d9. 0 0 2 3 4 9 90. 0 0 2 3 4 10 
91. 0 0 2 3 5 6 9i. 0 0 2 3, 5 7 93. 0 0 2 3 5 a 
94. 0 0 2 3 5 9 95. 0 0 ,!. 3 5 10 96 • 0 0 2 3 6 7 
97. 0 0 2 3 6 8 91:l. 0 0 .:: 3 6 9 99. 0 0 2 3 6 10 

100. 0 0 2 3 7 8 .1.01. 0 0 " 3 7 ~ 102. 0 0 2 3 7 10 
l 03. 0 0 2 3 8 9 1.0 ... 0 0 2 3 8 10 105. 0 0 2 3 9 10 
106. 0 0 2 4 5 6 J.0 7. 0 0 2 4 5 7 106. 0 0 2 4 5 8 
109. 0 0 2 4 5 9 l~J. I.) 0 2 4 5 10 J.Ll. 0 0 2 4 6 7 
112. 0 0 2 4 6 8 113. 0 0 2 4 0 

., 114 • 0 0 2 4 6 10 
115 • 0 0 2 4 1 8 l.16. 0 0 2 4 7 9 111. 0 0 2 4 7 10 
118. 0 0 2 4 8 9 11'1. 0 0 " 4 8 10 120. 0 0 2 4 9 10 

. 121. 0 0 2 5 6 7 122. a Q 0 2 5 6 8 123. 0 0 z 5 b 9 
124. 0 0 z 5 6 10 1.:,5. 0 0 2 5 7 a 126. 0 0 2 5 7 9 
121. 0 0 2 5 7 10 ' J. 28. 0 0 2 5 8 9 129 • 0 0 2 5 8 10 
130. 0 0 2 5 9. 10 131, 0 0 2 b 7 ij 132. 0 0 2 6 7 9 
133. 0 0 2 6 t J.,o LH. 0 0 z 6 ij 9 135 • 0 0 2 b 8 10 
136. 0 0 2 6 9 10 13 7, 0 0 2 7 8 9 13tl. 0 0 2 7 8 10 
139. 0 0 2 7 9 1() J.40. 0 0 2 8 9 10 141. 0 0 3 4 5 6 
142 •. 0 0 3 4 5 7 14.:>o 0 0 3 4 5 8 144 • 0 0 3 4 5 9 
145. 0 0 3 4 5 10 140. 0 0 3 4 6 7 147. 0 0 3 4 6 8 
148. 0 0 3 4 6 9 14',, • 0 0 3 4 6 10 150. 0 0 l 4 1 8 
151. 0 0 3 4 7 9 1,2. 0 0 3 4 7 10 153. 0 0 3 It 8 9 
154. 0 0 3 4 8 10 l :i!>. 0 0 3 4 9 10 156. 0 0 3 5 6 7 
157. 0 0 3 5 6 8 t 51J •. 0 0 3 5 6 9 159. Q 0 3 5 6 10 
160. 0 0 3 5 7 8 lol. 0 0 3 5 7 9 162. 0 0 3 5 7 10 
163. 0 0 3 5 8 9 J.b<t. 0 0 j 5 8 10 lo 5. 0 0 3 5 9 10 
l t:6. 0 0 3 6 7 8 lb 7. 0 0 j b 7 9 168 • 0 0 3 6 7 10 
169. 0 0 3 6 8 9 l 70. 0 0 3 6 ti 10 111. 0 0 3 6 9 10 
l u. 0 0 3 7 8 9 J. 7 3 • 0 0 3 7 8 10 174; 0 0 3 7 9 10 
1 15. 0 0 3 6 9 10 r 7b. 0 0 4 5 6 7 111. 0 0 4 5 6 8 



118. 
181~ 
184. 
1n. 
190. 
193. 
19.6. 
199. 
202. 
205. 
.20s. 

0 0 4 ·5 6 9 
C) 0 ·4 5 1 9 
0 0 4 5 a 10 
o: 0 4 6 7' 9 
0046810 
004.7810 
0 0·56'''7·1 
0 0 5 6 8 9 
0 ·~. 5' 1 8 9 
o · a· s e , 10 
0 0-6 1 .. 91.0 

179. ·.O . 0 ft 5 6 10 
182. 0 0 4 5 1 10 
185. 0 0 4· 5 9 10 
188. 0 0 4 6 110 
191. 0 0 4 6 9 10 
194. 0 0 4 1 9 10 
197~ 0 0 · 5 6 7 9 
200. o o s 6 ·8 to 

· 203 ~ 0 0 5 . 1 8 lQ 
206. 0 0 6 7 8 9 
209. o. a 6 8 9 10 

180. 
l83· 
186. 
189. 
192~. 
195. 

· 198. 
201. 
204. 
207~. 
210. 

151 NUMBER Of',KlNEHATIC CHUNS WITH 5 PRISM PAIR'S • 730 

0 0 4 5 1 8 
0 0 4 5 8 9, 
0 0 4 . 6 1 8 
0 0 4 6 8 9 
0 0 4 1 8 9 
o o 4 9· 9 10 
0 0 5 6 1 10 
0 0 5 6 9 10 
0 0 5 1 .9 10 
0 0 6 1 8 lO 
0 0 1 8 9 10 

197 

I 1• 24: . 23.: 27 .28 29 32 33 34 37 38 42 43 44 45 48 49 50 58 
59 62 '61 68 69 .· 77 78 

I 2• 10: 24. 2, 27 28 29 31 37 38 62 63 
I 3• 59: 22. 23 27 28 . 29 32 37 38 39 42 57 58 62. 63 64 67 72 

73 lit 11 93', .94 97 106 107 110 116 ·117 120 127 128 132 133 Ult 135 137. 
138 1"2 l'tl 1-44 1"7 163 164 167 176 177 uo 186 187 190 198 199 202 211 212 
215 221 222 225: 

• 4:3 u:1t :: . ::-, :;. :: :~ :~ !! !! !~ 
i04105 106 1'07 108-109 uo 118 119 .120 122 

.149 15'0 151 l.52 153 lH 155 156 157 158 159 
I 5• 18: 16 11 ·'14 '25 26 29 ~8 59 61 

75 
96 

123 
160 

62 

76 
91 

124 
188 

63 

11 18 79 80 
98 · 99 100 101 

i43 144 145 140 
189 190 192 193 

11 19 80 85 

81 82 
102 103 
147 148 
l9ft 
100 129 

150. . . 

I (j. 34: 27. 28 29 .31 32 34 37 38 39 42 57 58 59 
69 1Z 74 77 79 9Z 104 114 .127 128 l32 l34 137 147 22 

# 1• 92i . 22 23 Zit · 25 27 28 29 31 32 38 39 "1 42 
53 57 58 59 60· 62 63 61t i,6 67 73 74 76 77 79 
93 . 91t 95 96 97 102 103 116 117 119 120 123 124 127 128 

134 U6 137 143 144 146 147 149 u2 1.53 155 158 163 164 166 
187 189 190 193 194 198 199 201 202 207 208 221·222 224 225 

ti Sz 11: . .5 6 11: · 62 67' 68 69 70 72 78 114 

62 63 61t 67 
23 Zit 
44 47 48 50 
82 83 85 88 

129 130 13 2 133 . 
167 168 17 2 186 
228 229 173 

ti 9a 69: 5 6 8 . 9 1 0 11 · 12 13 1 It l 5 16 19 
27 28 29 30 .34 35 39 40 44 45 ·50 51 74 75 
83 84 85 86 87 .88 89 94 'iS 91 98 99 100 101 

·122 125 144 145 147 148 14~ 150 151 158 159 187 191 195 

20 23 24 25 26' 
77 78 79 80 81 

108 109 110 117 121 

HO~ 49: 22 l3 24 27 28 29 .JO 31 32 33 35 37 38 39 40 41 42 
43 45 48 49 52 55 57 58 59 63 64 65 66 68 70 , 75 80 92 93 
96 103 105 108 113 115 118 lb2 163 166 175 178 185 

Ill• 30: . 37 38 41 43 72 73 lit 75 76 11 18 : 19 92 9.3 94 95 96 
97 9;.8 99 100 104 106 107 108 109 110 111 114 116 

112:s 56: 23 .24 27 28 · 29 ,30 Ji 32 33 34 35 37 38 39 40 'tl 42 
43 44 ·45 48 50 52 53 55 56 58 59 62 63. 64 65 68 69 70 73 
74 75 80 81 92 93 96 103 105 108 ~13 115 116 ll8 162 163 166 173 175 

185 
'13=112: 24 25 26 28 29 30 31 32 35 Jo 38 39 40 41 42 44 45 

46 47 4B 50 51 52 53 56 59 · 60. 61 63 64 65 66 67. 70 71 73 
74 7.5 76 11 19. 80 81 t12 83 as. 86. 87 88 91 99 1.00 101 105 106, 

107 118. 119 120 122 123 124 129 130 131 133 134 135 136 137 139 140 14-1 l't3 
144 145 146 149 i5o 1s1 1s2 153 155 156 157 158 161 169 110 111 175 116 111 
188 189 190 192. i9l 194 204 205 206 210 2ll 212 223 224 225 227 228 229 147 

,i4a .3U 23 2.4 . 25 26 2 7 31 32 34 36 41 42 46 53 58 59 62 66 
67 69 J6 17 88. 97 98 99 103 lOlt 167 168 169 173 174 

115• 20: 22 23 ~4 26 27 28 30 '31 33 41 45 47 51 54 58 59 61. 
63 65 68 

#16• 41: 17 18 19 20 29 30 32 33 34 35 36 3'} 40 .42 43 44 45 · 
46 62 63 64 65 67 68 69 70 72 73 77 - 80 86 lOj .104 105 106 113 



198 

Uta 133 140 156 176 

1. 0 1 2 3 '4 5 , 2. ·o 1 2 3 It 6 , 3~ 0 1 2 .3 ·4 7 
4. 0 1 2 3 4 8 5. 0 1 2 3 4 9 6,. 0 1 2 3 4 10 

, 1., 0 1 2 3 5. b' a. 0 1 2 3 5 7 9. 0 1 ·2 3 5 8 
10 •. 0 1 2 3 5 9 11. 0 1 2 3 5 10 12. 0 1 2 3 & 7 
13. 0 1. 2 3 6 8 14. 0 1 2 3 6 9 15. 0 1 2 3 b 10 
16. o, .1 2 3 ,, t 8 n. 0, l 2 3 7 9 18 • 0 ·l 2 3 7 10 
19. 0 1 2. . 3 8 9 . 20. 0 1 2 3 8 10 21. ·o 1 2 3 9 10 

. 22. 0 1 2 4 5 6 23. 0 1 2 4· 5. 1 24. 0 1 2 4 5 8 
25. ·o l 2 4 5 9. lb. 0 l 2 4 5 10 21. 0 1 2 4 6 7 
28. 0 1 2 4 6 8 29. 0 l 2 4 6 9 30. 0 1 2 4 b 10 
31~ 0 1 ·2 4 7 8 32 .• 0 l 2 4 7 9 33. 0 l 2 4 7 10 
34. 0 1 2 4 8 9 35. 0 1 2 4 8 10 36. 0 1 2 4 9 10 
37. 0 ' 1 , 2 5 6 7 38 • 0 1 2 5 6· a 39. 0 1 2 5 6 9 
ltO. 0 1 2 5 6 .10 41. 0 1 2 5 1 a 42 • 0 1 2 5 7 9 
43. · 0 1 2 5. 1 10 44. 0 1 2 5 8 9 45. 0 1 2 5 a 10 
46. 0 1 2 5 9 10 47 •. 0 1 2 6 1· 8 48. 0 l 2 6 7 9 
49. 0 l 2 6 i 10 50. 0 l 2 6 8 9 51. 0 1 2 6 8 10 
52. 0 1 2 6 9 10 53. 0 1 2 7 8 9 54. 0 l 2 7 8 10 
55. 0 1 2 7 9 10 56. 0 1 2 8 9 10 57. 0 1 3 4 5 b. 
58. -0 1 3 4 5 7 59. 0 l 3 4 5 8 60. 0 1 3 4 5 9 
61. 0 1 3 4 5 10 62. 0 1 3 4 6 7 63. 0 l 3 4 6 6 
64. 0 l 3 4 6 9 65. 0 1 3 4 6 10 66. 0 1 3 4 7 8 
bl. 0 l 3 4 7 9 6d. 0 , 1 3 4 7 10 69. 0 1 3 4 8 9 
10. ·o 1 3 4 a 10 71. 0 l 3 4 9 10 72. 0 l 3 5 6 1 
13. 0 , 1 3 5 6 a 74. 0 1 3 5 6 9 75, 0 l 3 5 6 10 
76. 0 1 3 5 7 a · 11. 0 l 3 5 7 9 1fl. 0 1 3 5 7 10 
19. 0 1 3 5 a 9 80. 0 1 3 5 8 10 81. 0 1 3 5 9 10 
82. 0 1 3 6 1 8 83. 0 l 3 6 7 9 84. 0 l 3 6 7 10 
85. 0 1 3 6 8 9 86 • 0 l 3 6 8 10 87. 0 1 3 6 9 10 
ea. 0 1 3 7 8 9 89. 0 l 3 7 8 10 90. 0 1 3 7 9 10 
91. 0 l 3 8 9 10 92. 0 1 4 5 6 1 93. 0 1 4 5 6 8 
94. 0 1 4 5 b-9 9'5. 0 1 4 5 6 10 96. 0 l 4 5 7 8 
'i7. 0 1 4 5 1 9 98. 0 1 4 5 1 10 99. 0 l 4 5 8 9 

100 •. 0 1 4 5 8 10 101. 0 1 4 5 9 10 102. 0 1 4 6 1 8 
103. 0 1. 4· 6 1 9 104. 0 1 4 6 7 10 105. 0 1 4 6 8 9 
106. 0 1 4 6 8 10 107. 0 1 4 6 9 10 108 • 0 l 4 7 8 9 
109 • 0 1 4 1 8 10 110. 0 1 4 7 9 10 111. 0 l 4 8 9 10 
112. 0 l 5 6 7 8 113. 0 1 5 6 7 9 114. 0 l 5, 6 7 10 
115. 0 1 5 6 8 9 116. 0 1 5 6 8 10 117. 0 l 5 6 9 10 
118 • 0 l 5 7 8 9 119. 0 1 5 7 8 10 120. 0 l 5 7 9 10 
121· 0 1 5 8 910 122. 0 1 6 7 8 9 123. 0 1 6 1 8 10 
124. 0 1 6 1 9 10 125 •. 0 1 6 8 9 10 126. 0 1 7 8 9 10 
12·1. 0 2 3 4 5 6 l 2tl. 0 2 3 4 5 7 129. 0 2 3 4 5 8 
13C. 0 2 3 4 5 9 131. 0 2 3 4 5 10 uz. 0 .2 3 4 6 7 
133. 0 2 3 4 6 8 J.34. 0 2 3 4 6 9 135. 0 2 3 4 6 10 
136. 0 2 3 4 7 8 137, 0 2 3 4 7 Ii 138. 0 2 3 4 7 10 
139. 0 2 3 4 6 9 140. 0 2 3 4 8 10. 141. 0 2 3 4 9 10 
142. 0 2 3 5 6 7 143. 0 2 3 5 6 8 144. 0 2 3 5 6 9 
145. 0 2 3 5 ,6 10 l4bo 0 2 3 5 1 8 147. 0 2 3 5 7 9 

, . 
14.8. 0 2 3 5 7 10 149. 0 2 3 5 6 9 150. 0 2 3 5 8 10 
151. 0 2 3 5 9. 10 152~ 0 2 3 6 7 8 153. Q 2 3 6 7 9 
154. 0 2 3 6 7 10 155. 0 2 3 6 8 9 15(». 0 2 3 6 8 10 
157. 0 2 3 6 9 10 156. 0 2 3 7 8 9 159. 0 2 3 7 ·8 10. 
160. 0 2 3 7 9 10 161. 0 2 3 8 9 10 162. 0 2 4 5 6 7 
163. 0 2 4 5 6 6 164. 0 2 4 5 6 9 lb5. 0 2 4 5 6 10. 
166. 0 2 4 5 7 a 167. 0 2 4 5 7 9 . 168. 0 2 4 5 1 10 
lo9. 0 2 4 5 8 9 170. 0 2 4 5 8 10 111. 0. 2 4 5 9 10 



,. 

. 112. ··'<,·· 2 It . 6 7 . 8 
115. 0 , 2 o\ .. 6> 8 . 9 

· 178 • 0 • 2 .It 1 · 8 ·ct 
181.~ 0 . 2 4 • 9 10 
18',o O 2 '5 6 7 10 
187. 0, 2 5 6 1 9·10 
190'. 0 2 .· 5 7 9 10 
1 u. ·o 2 " . 1 ··:a u 
ti:: ~· t r ·:,::: 1~ 
202 • · :o 3' 4 5 7 9 
20,- >o 1 .,. , :a 10··. 
2·ca o 3. -~····· L. 7· , 

· • · ·3 · .. ;..: 1' ··a 10 .. iu. o .... 
214., o .J ~- ,.,, io· 
z n. • o , s 4 'i a 
220. 0 .3 5 6 : 8 '9 
223 •. 0 3 5 J. 8 9 
226. 0 3 5 8 9 10 
229. 0 3 6 :1 ' 9 10 
232. O .,. 5 . 4· 7 8 
235- o ,. s · 6. a 9 
Ha. o ,. ·, t Jr 9 zu. 0 't 5 . 8 . :, 10 
244 o· •· 6 · t • 10 
24,7; 0 5 6: 1 8 9 
zso. o 5 .. 6 a·.910 

1u .• · .o 2 4 . 6 7 9 
U6~ . 0 2 4 .·· 6 8 · 10 

· .. 119. >o · 2 1t: 1 a 10 
182~ .o. 2 . 5 . 6 7 8 
·1 as. o · 2 s 6 a · 9 
u·a. o 2 s 1 a , 
191, 'o·:2· 5 .. a , 10 
19'',, . o. 2 6 1 9 10 
197. 0 3 4 5 6 1. 
ioo. ;O' 3 ,.. s ·· , 10 
203. 0 I ~ 5 1 10 
206~ o. 3 .. 4 5 9 .10 
2 09. 0 l It 6 1 10 
212.·. 0 '3 .• 6· 9 10· 
21s •. o · · 3· .4. •1 .,1 ~: 
218. 0,, 3 5 6 
Ul~ 0 3 5 6 · 8 10 
224. o.,. 3 5 "7 (I· 10 
227~ 0 . 3 . 6 1 ,· 8 9 
230.. 0 '3 6 8 9 ·· 10 
2.33. 0 It 5 6 7 9 
236. 0 4 5 6 8 10 
239. 0 4 5 7 8 10 
2 42 ~ 0 ; It 6 1 8 9 
245. 0 4 · 6 8. 9 10 

, 2 4.8 • 0 5 6 7 . 8 10 
251. 0 .. , 1 8 9 10 

171t. O 2 
111. 0 2. uo. 0 2 
183 .. 0 2 
186;. 0 2 
l.89. · 0 2 
19·2. : 'O 2 
195. 'O ' 2 
198.· 0 3 
201.. 0 3 
204 .. 0 l 
207. 0 3 
2.10. Q 3 
·213. 0 3 
216· 0 3 
2i.9. 0 3 
222. 0 .3 
225· 0 3 
228. 0 3 
231. 0 3 

.. 234. 0 4 
.237. O It 

. 240. · 0 4 
243. ·o ,. 
246.; 0 4 
249. 0 5 
252. 0 .6 

i61 .N"HBER OF Kl NeMA°tlt CH.A INS WUli 6 PRJSH PA IRS = 174 
·, 1• 10: · · 1t1 .· 42. 47 4a · ,., H se 59 82 83 

I 2• 8: 40 'tl If) ltf> 'H . 5i:i·: 57 82 

4 6 7 .10 
It 6 9 10. 
It . 1 9. 10. 
5 6 7 9 
S 6 8 l:> 
5 7 8 10 
6 7 8 9 
6 8 9 10 
4 5 6 8 

.It· 5 7 8. 
It. 5. 8. 9 
It 6 ·7 8 
It 6 8 9 
,. 1 a , 
It 8 9 10 
5 6 1 10 
5 6 9 10 
5 7 9 10 
6 1 ·9 10 
7 8 9 10 
5 6 1 10 
5 6 ., 9 10 
5 7 9 10 
6 7 .. 8 10 
1 8 9 10 
6 7 9 10 
1 a , 10 

11 3* 8: 37 38 · 41 12. n · 76 1211 12,. 
I ·it-. 18a .97 98 ~9.lOf 102 103 li:2;113 .U4 U6·U7 118 .153154155 157 159 

158 
• ~· 1: 
# .(la . 61 
ii 1~ 22: 

132. u1 
" . a- 5: 
II 9•/U: ·. 
00• 12: 
11 l• . 7: 
#12• 11: ,u:.· zii: 

us 136 
ll't;.. . 6: . 
US= It: 
116.s u: 

lo '1 
·4. l 
1. 1 

10. 1 
13. l: 
16. 1. 
19. 1 
22~ l 
25. l 
28. l 
31. 1 

l6 76 77 78. 79 '8.l. U5 
36 31 1to n 12 121 
37 l8 40 41 .46 47 72 73 

138 140 143 
75· lb 81 82 97 101 12~ 129 131 

ai ·.al· 85 9.3 94 " 50 96 111 152 
61 65 69 72 75 

. 23 24 29 30 43 44 49 
37 40 47 49 53 57 59 
92 93 95 98 1.08 110 lll 
40 47. 49. 52 57 59 62· 
.'-~ ,it: 45 . 49 so 51 62 

140 l'tl 142 .1 S,l lS4 US 157 
•1 43 47 76 7~ 82. 

75 87.28. 84. 94: 
66 79· 80 '84 15 86 97,· 101 134 

158 159 

37 40 46 75 
54 55 .. 64. 82 JU 114 '85. 92. , 95 l'tl 

2 · 3 It S ~ 2, 1 2 3 ·4 5· 7 
2 3 It 5 9 s. 1 2 i It 5 10 
2 l 4 b .a a~ 1 2 3 ·1t 6 9 
2 -~ It 7 8 11~ 1 .2 3 4 7 9. 
2 3 .· It. 8 .9 14;. 1 · i ·· 3 ·4 a .10 
2 3 '5, ~ 7 17. 1 2 ·3'. ·5 6 ·S 
2 3 S 6 10 20. 1 2 3 5 7 ~ 
2 3 5 110 23. l ·~ 3 .5 8 9 
2 3 S .9 10 26. 1 2 3 6 7 8 
2 3 6 110 29. i 2 3 6 8 9 
2 3 6 9 ll>· 32~ 1 2 3 1 8 9 

151 
3. 
6~ 
9o 

12. 
15. 
18• 
21. 
~It. 
27. 
30~ 
33. 

1 2 
1 2 
1 2 
l 2 
1 2 
l z 
1. 2 
1 2 
·1 2 
l z 
·1 .2 

3 ·• 5 8. 
3 It 6 7 
3 It 6 10 
3 4 7 · 10 
3 't 9 10 
3 5 6 9 

. 3 . 5 ·7 9 
3. 5 8 10 
3 61 1 9. ·. 
3 6 8 10 
.) · 1 a 10. 

199 



200 

3't. 1 2 3 1 9 10 · 35. 1 2 3 8 9 10 36. 1 2 4 5 b 7 
31. 1 2 4 5 6 ·a 38 • . 1 .. 2 't 5 6 9 39. 1 2 4 5 6 10 
40. 1 ·2 ,. 5 7 8 'tl. 1 2 4 5 1 9 42. 1 2 4 5 1 10 
lt3 • 1 2 4 5 8 9 lt4. 1 z 4 5 8 10 45. 1 2 4 5 9 10 
46. 1 2 4 b 1 8 lt1. 1 2 4 6 7 9 't8. 1 2 It 6 7 10 
49. 1 2 4 6 8 9 so. 1 2 4 6 8 10 51. 1 2 It 6 9 10 
52. 1 ·2 4 1 8 9 53. 1 2 . 4 1 8 10 54 • 1 2 4 7 9 10 
55. l 2 It 8 9 10 So• l 2 5 6 1. 8 57. 1 z 5 6 7 9 
58. l 2 5 6 7 10 59. l 2 5 6 8 .9 60. 1 2 5 6 8 10 .. 
61. l 2 5 6 9 10. 62. 1 2 5 1 8 9 63. 1 2 5 1 8 10 .. 
64. ·l 2 5 1 9 10 b5. 1 2 5 8 9 10 . 66 • l 2 6 7 8 ·9 
b1. 1 2 6 1 8 10 68. · 1 2 6 7 9 10 69. 1 2 6 8 9 10 
10. 1 2 .7 8 . 910 71. ' l 3 4 5 6 7 12. 1 3 4 5 6 8 
73. 1. 3 4,.; 5 6 9 74. 1 3 4 5 6 10 75. l 3 4. 5 7 8 
76. 1 3 4 5 1 9 · 11. 1 3 4 5 7 10. ·1a. l 3 4 5 8 9 
79. 1 3 4 5 8 10 80. l 3 4 5 9 10 81. l 3 4 6 7 8 
82. 1 3 It 6 7 9 83. 1 3 4 6 7 10 84. l 3 4 6 8 9' 
85. 1 3 4 6. 8 10 86. 1 3 4 6 9. 10 87. l 3 4 7 8 9 
88. 1 3 4 7 8 10 89. l 3 4 7 9 10 90. 1 3 4 8 9 10 
91. l 3 5 6 1 8 92. l 3 5 6 1 9 93. 1 3 5 6 7 10 
94. 1 3 5 6 8 9 95. 1 .3 5 6 8 10 96. l 3 5 6 9 10 
97. l 3 5 7 .8 9 98 •. 1 3 5 .7 8 10 99. 1 3 5 7 9 10 

100. 1 3 5 8 9 10 101. 1 3 6 7 8 9 102. 1 3 6 7 8 10 
103. l 3 6 1 9 10 104. l 3 b 8 9 10 105. 1 3 1 8 9 10 
106. 1 4. 5 6 1 8 l 07. 1 4 5 b 7 9 108. 1 4 5 6 7 10 
109. . 1 4 5 6 8 9 110. 1 4 5 6 8 10 111. l 4 5 6 9 10 
i 12. l 4 5 7 8 9 1p. 1 4 5 7 8 10 114. l 4 5 7 9 10 
115. l 4 5 8 9 10 116. l, 4 0 7 8 9 117,. l 4 6 7 8 10 
118. l 4 6 7 g 10 119. 1 4 6 8 9 10 120. l 4 7 8 9 10 
121. 1 5 6 7 8 9 122. l 5 6 7 8 10 123. 1 5 6 1 9 10 
124. 1 5 6 8 9 10 125. 1 5 7 8 9 10 126. 1 6 7 8 9 10 
121. 2 3 4 5 b 1 128. 2 3 4 5 6 a 129. 2 3 4 5 6 9 
130. 2 3 4 5 6 10 131. 2 3 4 5 1 8 132. 2 3 4 5 7 9 
133. 2 3 4 5 1 .10 134. 2 3 4 5 8. 9 135. 2 3 4 5 8 10 
136. 2 3 4 5 '9 10 137. 2 3 4 6 7 a 138. 2 3 4 6 7 9 
139. 2 3 4 6 7 10 140. 2 3 4 6 8 9 141· 2 3 4 b 8 10 

" 

142. 2 3 4 6 9 10 l4j. 2 3 4 1 8 9 144. 2 3 4 7 8 10 
us. 2 3 4 7 9 10 l4t,. 2 3 4 8 9 10 147. 2 3 5 6 7 8 
148. 2 3 5 6 7 9 149. 2 3 5 6 7 10 150. 2 3 5 6 8 9 
151. 2 3 5 6 8 10 152. 2 3 5 b 9 10 153. 2 3 5 7 8 9 
154. 2 3 5 7 8 10 155. 2 3 5 7 9 10 156 • 2 3 5 8 9 10 
157 • 2 3 6 7 8 9 158. 2 3 b 1 a 10 159. 2 3 6 7 9 10 
160. 2 3 6 8 9 ~o 161. 2 3 7 8 9 10 162. 2 4. 5 b 7 8 
lb3,. 2 4 5 6' 1 9 l.64. 2 4 5 6 7 10 165. 2 4 5 6" 8 9 
166. 2 4 5 6 8, 10 167. 2 4 5 6 9 10 168. 2 4 5 7 a 9 
169. 2 It 5 7 a 10 170. 2 4 5 1 9 10 111. 2 4 5 8 9 10 
112. 2 It 6 7 8 9 173. 2 4 6 7 a 10 . 174. 2 4 6 7 9 10 
175. 2 It 6 8 9 10 176. 2 4 7 8 9 10 111. 2 5 6 1 8 9 
178. 2 5 6 7 8 10 l 79. 2 5 6 7 9 10 180. 2 5 6 8 9 10 
181. 2 5 7 8 'g 10 182. 2 6 7 8 9 10 183. 3 4 5 6 1 8 
18.4. 3 4 5 6 1 9 185. 3 4 5 6 7 10 186. 3 4 5 6 8 9 
1117. · 3 4. 5 6 8 10 188. 3 4 5 6 9 10 189. 3 4 5 1 8 9 
190. 3 4 5 7 8 10 191. 3 4 5 7 9 LO 192. 3 4 5 8 9 10 
193. 3 4 6 7 8 9 194 • . 3 4 b 7 8 10 195. 3 4 6 7 9 10 
196. 3 4. 6 8 9 10 197. 3 It 7 8 9 10 198. 3 5 6 7 8 9 
199. 3 5 6 7 a 10 200. 3 5 b 7 9 10 201. 3 5 6 8 9 10 
202. 3 5 1 8 9 10 203. 3 6 1 8 9 10 204. .4 5 6 1 8 9 
205. 4 5 6 1 8 10 206. 4 5 6 7 9 10 207. 4 5 6 8 9 10 
208. 4 5 7 8 9 10 209. 4 6 7 8 9 10 210. 5 6 7 8 9 10 
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