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Dedication 

In 1966, a few months before the passing of a true American idol, a video 

was assembled that documented the idea and plans for a futuristic utopia capable 

of showcasing to the rest of the world the potential and practicality of innovation. 

The city was arranged and imagined by the some of the most pioneering experts 

of design and engineering of the time. As such, this “Experimental Prototype 

Community of Tomorrow” included the planned implementation of some of the 

most technically advanced feats of architecture, planning, and engineering even 

by today’s standards. If this city’s dreamer had been alive to see it through to 

fruition, it would be an inspiration to the rest of the world and a true testament to 

the wondrous possibilities that we, as a people, can accomplish together.  

The concept behind this “World of Tomorrow” embraces creative and 

technical ideologies of current industries while also promoting the essentiality of  

both inspiration and the acquisition of knowledge for the betterment of society. 

The research presented in this document is dedicated to that idea. The idea that we 

are to not just pass on the knowledge and understanding we possess, but to 

continuously push the limits of possibility to new altitudes. And, by doing so, we 

open the door to opportunities limited only by the scope of our imagination. The 

future is rooted in imagination and curiosity, which breed new ideas, paving new 

paths toward a brighter tomorrow. As long as there are paths to explore, we can 

keep moving forward.  
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Abstract 

In 2017, the American Society of Civil Engineers released a report card 

stating that, of the 614,387 bridges in the United States, nearly 40% are past their 

design life. Within a few months of the report, the U.S. Department of 

Transportation posted that over 16% of the nation’s bridges are in “poor” or 

“structurally deficient” condition. With the growing awareness for the current 

condition of the United States’ infrastructure, the FHWA has allocated tens of 

billions of dollars towards the repair and improvement of bridge and highway 

infrastructure every year and yet, the current, subpar status is retained. Concrete 

structures account for almost half of the nation’s bridges and to fix an extensively 

damaged concrete bridge girder, it is common practice to replace the entire 

member or perform multipart repairs. Either of these options are very costly and 

can take several months to complete.  

This study serves as a continuation of two other research projects; one of 

which tested an AASHTO bridge girder, the other featured the development of 

fiber-reinforced, self-consolidating concrete (FR-SCC) as a repair material. The 

AASHTO, prestressed concrete girder used in the previous study is the subject of 

repair and repair testing for this research. The girder had been donated by the 

Oklahoma Department of Transportation after being retired from service and 

brought into the lab to be tested until failure to acquire its capacities.  The state of 

the girder was documented photographically and through computer-aided design 

software. Upon completion of the surveying, the girder was repaired using the 
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previously developed FR-SCC as a replacing, repair material. This repair method 

requires all damaged concrete to be removed from the girder and any internal 

reinforcing to be repaired or replaced, as needed. Since the girder is prestressed, 

the original stress transferred from the strands was reapplied by existing 

tensioning methods, such as internal splicing. The repair material was cast such 

that the original shape of the girder was retained, thus maintaining the same 

aesthetics and geometric properties. Once the concrete had cured and the strand 

stress reapplied, the girder was tested again to obtain comparable results to the 

original testing. By analyzing the data from the initial testing and the repair 

testing, a practical conclusion for the plausibility of FR-SCC implementation as a 

repair technique was ascertained. 

The aim of this study was to repair the girder with FR-SCC and develop a 

comparison of its capacities before and after repair. The repair material used for 

each repair yielded a comparable compressive strength to that of the existing 

concrete in both the girder and the composite deck, while also retaining the 

necessary workability properties to fully fill the repair zones. When testing the 

repaired girder, the failure mechanisms from the initial, pre-repaired testing were 

mitigated and the repair sections acted cohesively with the existing girder 

portions. Despite the limited extent of the repair zones, the girder was able to 

sustain over three-quarters of the maximum load from its initial testing. The FR-

SCC displayed comparable fresh and mechanical properties to that of existing 

self-consolidating concretes used for prestressed concrete members. 
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 Chapter 1: Introduction 

1.1 Background 

In 2017, the American Society of Civil Engineers (ASCE) released a 

report card that graded the current status of the United States’ infrastructure as 

“C+.” Within this report, ASCE found that of the 614,387 bridges in service, just 

over 9% of these bridges are deemed “structurally deficient,” which amounts to 

one of every eleven bridges. It was noted in the report that the current amount of 

these structurally deficient bridges has decreased over the past decade, although, 

almost 40% of the nation’s bridges are at or beyond their service life (ASCE, 

2017). 

The U.S. Department of Transportation released in February of 2018 a 

detailed table counting the number of bridges based on their condition. The total 

in the nation was 614,978 and, by their count, over 16% of the bridges were in 

“poor” condition or are “structurally deficient” (FHWA, 2017). Bridges reach this 

state by collecting damage over their service life. For concrete bridges, the more 

common means of obtaining this damage is by weather or chemical erosion, 

overloading or fatigue, and impact damage. Weathering and chemical erosion 

deteriorates the concrete and, over time, can wear away the protective concrete 

cover for the internal reinforcing. The capacity of the member is reduced as the 

concrete is worn away, but when the internal reinforcing becomes exposed, the 

corrosion of the section is accelerated. This is often the cause for deterioration of 

concrete structures (Guettala, 2006). Overloading and fatigue is more common in 
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bridges whose life span has exceeded the intended service life of the structure or 

have been subject of an extreme loading condition. Alternatively, impact damage 

occurs as a result of an object, often a vehicle, striking the structure. The result of 

an impact damage is unique in that it is often instantaneous, and the damage 

resembles an explosive failure, which is exemplified in Figure 1.1.  

 

 

Figure 1.1 Impact Damaged, Prestressed Concrete Bridge (Greenizan, 2017) 

 

The deteriorated state of the country’s current infrastructure has been 

gaining more attention every day, especially with public awareness and scrutiny 

for government spending. The FHWA allocated $60 billion towards this issue in 

2010 alone and every year they repeatedly put tens of billions of dollars into 

fixing bridges and highways (USDOT, 2014). In more recent years, the budget for 

bridge and highway repairs has grown by almost 65% from 2006 to 2016. Yet, it 

is still not enough to raise the infrastructure grade. ASCE estimates that the cost 

to bring all bridges up to the current standards at an additional $123 billion on top 
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of the currently allotted amount (ASCE, 2017). Moreover, in 2013, the Federal 

Highway Administration (FHWA) released that more than half of the bridges in 

the United States are constructed of either conventionally reinforced or 

prestressed concrete (NACE, 2016). 

When these bridges face structural issues with their superstructure, often 

the member in question is replaced rather than repaired, like the 2017 Rockville 

Road Bridge project in Indiana. This overpass was struck by a mobile car-crusher 

that severely damaged four of the bridges fourteen girders. Since the bridge 

crossed a busy interstate highway, fixing the damaged structure was of high 

priority and the project turnaround was expedited. The solution was to remove the 

four damaged girders and deck then replace them with a new structure. Figure 1.2 

shows the repair project at different points in the process. The Indiana Department 

of Transportation estimated the total cost of the project from impact to opening to 

be beyond $1.2 million (INDOT, 2017). Repairs can offer a more desirable 

economic solution when compared to alternatives such as replacement and 

implementing additional structural components.  
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Figure 1.2 Impact Damage Replacement Project in 2017; (a) Initial Impact 

Cleanup; (b) Damage to Interior Girders; (c) Damaged Girder Removal; (d) 

Installation of Replacment Superstructure (INDOT, 2017) 

 

For prestressed applications, self-consolidating concrete has inherent 

properties that make it an ideal repair material. Prestressed concrete practices 

become preferential for larger spanning concrete girders of which, if 

conventionally reinforced, may not be able to support their self-weight, let alone 

any additional load. However, a consequence of using prestressing to accompany 

these larger spans and larger loads, is the necessity for higher strength concrete. 

High strength, i.e. high performance, concrete is better suited to handle the higher 

internal stresses induced by larger spans and the internal prestressing forces. 

Other considerations when using prestressed applications is the bond between the 

  

  

(a) 

 

 

 

(c) 

(b) 

 

 

 

(d) 
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concrete and the prestressing tendons and the length needed to fully transfer 

stresses from the reinforcing tendons and the concrete. Self-consolidating 

concrete (SCC), however, has a very low viscosity as compared to conventional 

concrete, allowing it to flow under its own weight and to form to rough, uneven 

surfaces, such as tendons, without the need for mechanical vibrators. This in turn 

allows the concrete to be used in areas of high congestion from the internal 

components. In addition, it is currently common practice for prestressed concrete 

fabricators to incorporate the use of SCC in the production for the aforementioned 

reasons. Therefore, using a repair material that is similar to that which was 

originally cast for a damaged, structural component is rational. 

One drawback to SCC is that, like conventional concrete, it is susceptible 

to shrinkage. When applying new SCC to existing, aged concrete, the new 

concrete will undergo shrinkage cracking and often debond itself from the aged 

concrete at the interfacial boundary between the two concretes. To counter this 

shrinkage, fibers and shrinkage-compensating cement is added. Fibers help to 

reduce drying shrinkage and control cracking propagation while the shrinkage-

compensating cement is an expansive agent. When paired together, an increase in 

shrinkage resistance occurs; more so than just using one without the other. It has 

also been found that when the two are implemented, the performance of the fiber-

reinforced, self-consolidating concrete (FR-SCC) in its cured, hardened state has 

the ability to achieve upwards of ten times the overall performance of 
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conventional SCC when considering properties such as toughness, stiffness, and 

structural resilience as well as resistance from shrinkage (Kassimi, 2013).  

 

1.2 Objectives and Scope of Work 

There are two studies that are a precursor to this research, one of which 

involves the development of the FR-SCC used as the repair material hereon, the 

second encompasses the original testing for a retired, AASHTO Type II bridge 

girder with composite deck. The primary task for this research was to evaluate the 

practical application of the previously designed FR-SCC as a repair material as 

well as its effects on the structural performance of the bridge girder when 

repaired. With the aim of paralleling the initial testing of the girder, the capacity 

of the girder for each repair test will be analyzed and evaluated in comparison to 

the originally tested capacities. The anticipated outcome of the study was whether 

or not the FR-SCC was a realistic solution for industry and if the resulting repair 

would permit comparable loading behavior to the original testing. 

In order to achieve the aforementioned research goals, the following scope 

of work was put into place:  

 research and review pertinent literature, 

 design a research strategy, 

 survey and record the damage from the initial testing, 

 set extent of repair based on survey information, 

 demolish and remove damaged concrete within repair zone, 



7 

 

 repair and/or replace any damaged internal reinforcing, 

 design and build formwork for FR-SCC replacement, 

 cast repair zone with FR-SCC, 

 test the repaired girder to failure and record testing data, 

 analyze the test data and findings and develop a comparative analysis 

between the initial testing and repair testing, 

 ascertain conclusions from comparative analysis and build a list of 

recommendations, 

 then, compile the documented information of the study into a thesis.  

 

1.3 Research Plan 

The practical application of and structural performance of FR-SCC as a 

repair material for damaged, concrete structural members was evaluated for this 

study. The FR-SCC mix design was specifically developed for the purpose of 

repairing structural concrete specimens and was the focus for a previous study 

centered on the effects of direct replacement of a percentage of the cementitious 

material with a shrinkage compensating cement. A retired AASHTO Type II 

bridge girder, donated by the Oklahoma Department of Transportation (ODOT), 

was initially tested to failure in a study that was executed in advance of this 

research. The girder and its initial test data were reallocated for the use in this 

investigation upon completion of its original study.  
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When conducting the evaluation of the repair application and ensuing 

testing performance, small-scale testing and large-scale testing was utilized. 

Small-scale testing was limited to compressive strength testing of the repair 

material which was based on ASTM C39/C39M – 17a Standard Test Method for 

Compressive Strength of Cylindrical Concrete Specimens. For the large-scale side 

of the program, the evaluation encompassed a single girder with three distinct 

repair zones near the load points for testing. When testing the repaired girder, it 

was loaded in a way that each end of the girder was tested without influencing the 

other so that a total of two repair tests were performed.  

 

1.4 Outline 

Incorporated in this document are a total of seven chapters and 

appendices. This chapter, Chapter 1, provides a short explanation why repair is 

important, why FR-SCC was chosen, as well as the objective and scope of this 

research. A literature review of current repair techniques, potential approaches, 

and other research relating to this study are given in Chapter 2. Chapter 3 

provides an overview of the research and development that led to the development 

to the FR-SCC used in this program. The history of the research specimen that 

was repaired is presented in Chapter 4. Chapter 5 details the repair process, and 

the repair testing is discussed in Chapter 6. A comparative analysis, the resulting 

conclusions, and recommendations are offered in Chapter 7. The appendices 
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contain supplemental photographs of the girder throughout different stages of the 

repair process.  
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 Chapter 2: Literature Review  

2.1 Different Types of Repair 

One of the most commonly damaged structural members of a bridge are 

the girders, which are often the recipient to various damaging actions, such as 

chemical and weathering deterioration, overloading or fatigue, impact damage, 

etc. When restoring a bridge girder it is crucial to develop and evaluate all 

potential options. There are many potential solutions to addressing a damaged 

structural member; the first of which is to repair the member. Repairs are 

implemented as the member is in place, without significant impact on traffic and 

is often a more economical choice. There is a long list of repair methods that vary 

depending on the degree of damage that a concrete member has been subjected to, 

e.g. cracking or partial section loss. Some of the common methods for more 

detrimental damage to a member are: conventional placement of normal, high-

strength, rapid-set, or fiber-reinforced concrete, jacketing, preplaced-aggregate 

concrete, and applying shotcrete. 

Conventional placement involves casting new concrete in place of the 

existing, damaged concrete. This approach is viable for damaged concrete that 

extends well into the existing section. Some considerations when using this 

method are the effects of shrinkage in the replacing material and that it is not 

recommended for areas subjected to further corrosion. Further considerations 

include: preparing the face of the existing concrete to create adequate bond to the 

repair material and to ensure proper consolidation and filling of the repair zone. 
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Similar to conventional placement, jacketing is casting new concrete 

around the existing section and can be made from steel, wood, or concrete. The 

shortcomings of conventional concrete apply for jacketing as well. Preplaced-

aggregate concrete, also known as pressure grouting, is a form of conventional 

placement that involves filling the repair zone with large aggregates then pumping 

a grout mixture into the forms to fill the voids between the large aggregates and in 

tight spaces (Woodson, 2009; Zorbell, 1996). Shotcrete is the pneumatic 

application of concrete that, because its high-velocity application, results in 

“excellent bond” to the existing structure (Woodson, 2009). Although, shotcrete, 

like jacketing, is typically a superficial repair that is usually limited by the 

thickness of its application. 

Another alternative for regaining the capacity of a section is by applying 

fiber-reinforced polymers (FRP) to the surface of the member. FRP composites 

are comprised of two main components: the fibers, which are usually glass, 

carbon, or steel, and the binding, polymer resin. They can be attached to the 

structure as a preformed panel or applied directly to the member. Direct 

application involves the preparation of the structural surface for the wet lay-up of 

fiber sheets with resin. This method is proven effective for flexural and shear 

strengthening as well as confinement and ductility enhancement for columns. 

However, FRP systems can only be applied to the surface of a member after the 

damage has been mitigated, especially if corrosive elements were the cause. The 

interfacial bond between the concrete and FRP is “critical” to the durability of the 
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system and the strength gain of the system (Alkhrdaji, 2015). The debonding of 

the FRP occurs when the strain in the adhesive surpasses its own capacity and the 

FRP detaches from the concrete. In practice, it is preferred to keep the impact of 

the repair on traffic at a minimum, so preformed FRP panels are preferred for in 

situ applications. The issue with this is that preformed panels only come in certain 

shapes (Kasan, 2012). One advantage of the implementation of FRP is that it 

effectively lowers the rate of deterioration by corrosion by chemicals and natural 

elements. This, in addition to its structural advantages, provides for an increased 

durability of a member, which can be used in conjunction with a conventional 

repair method and lowers the costs of maintaining the structure (Nossoni and 

Harichandran, 2010).  

 

2.2 Repair Versus Replacement  

In a study conducted by the University of Minnesota, severely deteriorated 

bridge girders were repaired, removed, and tested along with identical, 

undamaged girders from the same bridge. The corroded girders were repaired in 

situ by adding reinforcement around the damage, then applying shotcrete as 

shown in Figure 2.1. All four girders were extracted (two repaired and two 

undamaged, unrepaired), then taken to the University of Minnesota for shear 

testing. Testing revealed that the repair was able to restore the capacity of the 

damaged girders to that of the undamaged, unrepaired girders. Moreover, the 

repair was able to be performed without affecting traffic and at a significantly 
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lower cost than replacement at about $5,500 and $12,500 for each repair. This 

“box end” repair method was concluded as being a viable repair method for 

deteriorated girder ends (Shield, 2018). However, the report did not provide any 

insight on its ability to restore girders at other locations along the span of the 

girder or its effect on girders with more extensive damage throughout the section.  

 

 

Figure 2.1 University of Minnesota Shotcrete Repair Project; (a) Added 

Repair Reinforcing; (b) Shotcrete Application; (c) Completed In Situ Repair 

(Shield, 2018) 

 

In 2017, the  Rockville Road bridge in Indianapolis had to have a portion 

of the bridge replaced. This job required immediate attention to address the 

structural integrity of an impact stricken superstructure. The impact, delivered by 

  

 

 (a) (b) 

 

 

 

 

 

 
  (c) 
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a mobile car-crusher traveling on the interstate below the bridge, caused four of 

the bridge’s 125-foot-long girders to suffer catastrophic localized damage.  Due to 

the necessity of the bridge and the high volume of traffic, the project was dubbed 

a “high-priority bridge repair.” The existing four damaged girders and the deck 

they supported were removed, replacement girders were installed, and a new deck 

was cast in place of the old. The project lasted nearly five months and the total 

project cost was reported to exceed $1.2 million in cost from initial impact to 

reopening (INDOT, 2017). When comparing the costs between this replacement 

and the previously mentioned shotcrete repair, the replacement was 

astronomically higher than that of the repair. This is true for nearly all repairs 

when compared to replacements. Figure 2.2 illustrates the destruction from the 

impact of the Rockville Road bridge.  

 

 

Figure 2.2 Rockville Road Bridge Damage (INDOT, 2017) 
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2.3 Repair by Material Replacement 

When considering the repair of a prestressed concrete girder or any 

prestressed concrete member, there are two stages to properly restore the section: 

repair of the reinforcement and replacement of the concrete. The former, 

reinforcing repair, should be the first to be addressed. Robert Zobel (1996) studied 

two methods of strand repair for prestressed concrete girders: internal splices and 

external post-tensioning. He found both methods could be sensitive to fatigue 

loads because the techniques that were analyzed all included wedges in the 

anchorage zones. and suggested these methods only be used to provide 

“precompression” for the repair area. Also, these repairs were found to be a way 

to extend the life of the structure instead of actually restoring the member’s 

original strength. External post-tensioning is done by prestressing tendons or high 

strength steel bars that are attached to the sides through a steel arrangement that is 

bolted to the girder. By forcing the repair zone into compression, this method 

provides for a more durable repair despite having a lower aesthetic value. Unlike 

the previous method, internal splicing would not put the surrounding concrete into 

compression immediately, but by using a combination of splicing and prestressing 

preload applications, the stress in the strands could be restored, then the patching 

material can be added (Zobel, 1996).  

Once tensioning and reinforcement is properly placed or exchanged, the 

repair concrete can be added. The replacment, repair concrete needs to fully fill 

the repair zone despite any obstacles in the zone, such as internal reinforcing, and 
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bond with the existing material. The effectiveness of a repair to restore and extend 

the service life of a structure is dependent on its individual mechanical and 

workability properties as well as its compatibility and capacity to maintain bond 

with the existing structure. In the past, achieving a concrete mixture that 

possessed the correct hardened properties meant high labor costs to ensure that the 

material was fully consolidated and placed within its set time. A concrete with 

high flow properties while still maintaining a consistent mixture with high-

strength mechanical properties is necessary for a repair material (Kassimi, 2013). 

Self-consolidating concrete (SCC) is an optimal choice for replacement 

concrete because it retains these unique capabilities. A strong bond to the existing 

concrete and internal reinforcement is essential to the performance of the member. 

SCC has better bond stresses due to its high-flowing, non-segregating nature and 

its ability to properly fill formwork, areas around reinforcement, and rough 

surfaces of existing concrete with little to no mechanical consolidation (Long et 

al., 2013).  This ability to sustain high bond strengths is owed to the low water to 

cement ratios of SCC. This high cement content is accomplished by the inclusion 

of viscosity-modifying admixtures (VMA), high-range water reducers (HRWR), 

and smaller course aggregates (Long and Feng, 2014). There are other available 

materials that can improve additional aspects of SCC, like supplementary 

cementitious materials (SCM) that provide for higher compressive strengths as 

compared to traditional, normal strength concrete. SCC also has a comparable 
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modulus of elasticity and flexural strengths to other high-performance concretes 

of similar mixtures (Long et al., 2013). 

One major drawback to SCC is that, in many cases, it is susceptible to 

shrinkage cracking during the curing process. Addressing this issue can be 

handled in a number of ways, the first being to introduce fibers to the mix design. 

The fibers help to control the cracking behavior by absorbing the energy that 

causes cracks to form. However, there is a balance to how many fibers can be 

added to the concrete in order to maintain its high workability. If this ratio is 

optimized, then the resulting fiber-reinforced, self-consolidating concrete (FR-

SCC) can achieve higher tensile strengths and increased ductility when compared 

to mixes without fibers. Alternatively, shrinkage-compensating admixtures (SCA) 

or expansive agents (EA) can be added to the concrete to reduce the effects of 

shrinkage. In a study performed by Kassimi in 2013, the effects of adding fibers, 

SCAs, and/or EAs to SCC were evaluated for the purpose of repair material 

development. Some of the results were that the EA, a powder-based material, was 

better able to resist shrinkage cracking than SCA, a liquid-based material, and 

when including  EA in FR-SCC, that mix was the best solution for alleviating 

shrinkage cracking as well as being the most efficient in terms of performance to 

cost relations (Kassimi, 2013).  
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2.4 Removal of Damaged Material  

Before the actual repair can take place, loose or structurally deficient 

concrete must be removed. As stated in previous sections, the bond between the 

repair material and existing materials is imperative to the success of the 

anticipated capacity restoration. Thus, the removal must be done in a manner that 

the replacement concrete will be able to adhere to structurally sound, existing 

concrete. Removing concrete can be done in a number of different ways, some of 

the more common approaches are by blasting, crushing, cutting, impacting, 

milling, and presplitting. 

As the name implies, blasting implements explosives to remove large 

sections of concrete. Crushing is one of the more portable methods for removing 

concrete. This method utilizes hydraulic jaws to remove the concrete. The method 

comprised of fracturing the concrete by striking the surface usually involves a tool 

such as a jackhammer. Milling is achieved, in most cases by hydromilling, high-

velocity water jets that erode the concrete, or by rotary milling. Both techniques 

are effective, but not realistic due to their tendency to cause more damage than 

intended. The last concrete removal method, presplitting, involves creating holes 

in the concrete at specific locations in order to control where cracks propagate. 

Out of the many different methods to removing concrete, one widely accepted 

method is to use “handheld impact breakers,” which are especially proficient in 

demolishing shallower segments of concrete and are highly versatile. Upon 

completion of the concrete removal, the face of the existing concreate should be 
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cleaned by compressed air or water. When the repair material is to be applied, the 

surface should be dry and thin layers of 2 inches or less should implement a 

bonding agent (Woodson, 2009).  
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 Chapter 3: Previous FR-SCC Research & Development  

A portion of this study builds on the preliminary research “Performance of 

Fiber-Reinforced Self-Consolidating Concrete for Repair of Bridge Sub-

Structures” conducted by Cory Wirkman and Dr. Jeffery Volz (2016). By 

implementing small- and full-scale testing, the study was able to develop and test 

various characteristics of the proposed fiber-reinforced, self-consolidating 

concrete (FR-SCC) mix design used in this study, which will be detailed in later 

chapters. With the aim of completeness, a brief overview of Wirkman’s research 

is presented in this chapter.  

 

3.1 Program Outline 

3.1.1 Scope of Research 

In Wirkman’s investigation, three different concrete mixtures were 

developed and tested. The constant and baseline for the study was an Oklahoma 

Department of Transportation (ODOT) Class AA mix that was used to produce 

several large- and small-scale specimens. This design was compared to two other 

FR-SCC based mix designs with differing amounts of Komponent®. Being a 

Type K, shrinkage-compensating, cementitious material, Komponent® is suitable 

when applying new concrete to preexisting concrete members. These mix designs 

call for the direct replacement of a percentage of the total cementitious material 

with Komponent®; in Wirkman’s study, this percentage and its structural effects 

were a primary focus for the development of the repair material. The replacement 
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percentages evaluated were 10% and 15% of the portland cement with shrinkage-

compensating cement. The mix design for the 15% Komponent was chosen as the 

repair material for the overall study discussed later in this document and its mix 

design is presented below, in Table 3.1 and Table 3.2. Mix designs for the 10% 

Komponent replacement and the Class AA control mix are detailed in Wirkman’s 

study (2016).  

 

Table 3.1 15% Komponent Mix Design Properties 

Water/Cementitious Material Ratio 0.39 

Fly Ash Replacement (by Mass) 30.0% 

Komponent Replacement (by Mass) 15.0% 

Volume  of Fine Aggregate 50.0% 

Volume of Fibers 0.5% 

 

Table 3.2 15% Komponent Mix Design Proportions 

Type I/II Cement 413.1 lb/yd
3
 

Class C Fly Ash  224.1 lb/yd
3
 

Komponent  113.4 lb/yd
3
 

Water  177.2 lb/yd
3
 

Fine Aggregate  1401.3 lb/yd
3
 

Course Aggregate  1223.1 lb/yd
3
 

MasterFiber MAC Matrix  7.7 lb/yd
3
 

Air-Entrainer, MB-AE 90  1.1 fl. oz/cwt 

HRWR, Glenium 7500  9.0 fl. oz/cwt 

 

3.1.2 Experimental Procedure 

Large- and small-scale specimens were constructed then tested to relate 

the performance of the FR-SCC mixes to the ODOT Class AA mix. Early in the 
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developmental stages of the repair mixes, several fresh concrete properties were 

evaluated to ensure the mixes would adhere to the design standards set by 

Wirkman and Volz for the purpose of their research. Primarily, those standards 

consisted of parameters that characterized a high-flowing, well-filling, concrete 

with a similar air content and unit weight to the ODOT Class AA mix. However, 

the highlight of those standards was a slump flow of 28 inches with no 

segregation of materials or bleeding of the concrete. The tests for slump flow, unit 

weight, air content, and a customized flow test intended to evaluate the flow and 

fill properties of the FR-SCC specifically for the large-scale applications.  

The large-scale specimens entailed three separate beams for each mix 

design: three monolithically cast control beams using the ODOT Class AA mix 

design, three “repaired” beams with the 10% Komponent FR-SCC mix design in 

the tension zone, and three “repaired” beams with the 15% Komponent FR-SCC 

mix in the tension zone. Each of the large-scale specimens measured 14’-0” in 

length, 18 inches tall, and 12 inches wide with four Grade 60, No. 6, longitudinal, 

steel reinforcing bars in the tension zone, as shown in Figure 3.1. The non-control 

beams were cast with the FR-SCC repair mix at the bottom of the specimen. This 

section of the beam had a depth of 7 inches on one end of the beam and tapered 

down to 5 inches on the opposite end, thus allowing for a better flow of the repair 

mix. A conservative shear stirrup spacing was used to guarantee a flexural failure 

mechanism. Each beam featured two 4 inch fill holes near the ends of the beam 
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and two 1 inch vent holes near the third points of the beam, both in the control 

concrete section of the beams.  

 

 
Figure 3.1 Large-Scale Specimen Reinforcing Schematic 

 

In order to test the plausibility of the repair mixes as a true repair solution, 

the top portions of the non-control beams were originally cast inverted with the 

control concrete on the bottom. After curing for 28 days, the beams were flipped 

over so that the repair section was now on the bottom and the control concrete 

was at the top, then placed back into the forms. This arrangement is shown in 

Figure 3.2. The FR-SCC mixes were added to the appropriate beams through the 

fill holes until the mix began to escape through the vent holes, the finished result 

is shown in Figure 3.3. These beams were allowed to cure for another 28 days 

before testing.  All the large scale beams were tested using a third-point loading 

method as in  Figure 3.4 and the performance was monitored visually and through 

deflection and strain gauges.  
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Figure 3.2 Repair Beam After Control Concrete & Before FR-SCC 

(Wirkman, 2016) 

 

 

Figure 3.3 Three Finished FR-SCC Repair Beams (Wirkman, 2016) 

 

The small-scale testing incorporated the standard material property testing 

such as slump/slump flow, unit weight, and air content for fresh concrete. Other 

material property tests included bond strength, compressive strength, splitting 

tensile strength, modulus of rupture (MOR), and modulus of elasticity (MOE). 

For the flexural testing, monolithic MOR prisms as well as composite prisms 
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were developed with the same material as the full-scale specimens. All tests were 

conducted in accordance with the appropriate ASTM standards. The small-scale 

flexural testing utilized a third point loading system, ensuring a constant moment 

section just as with the full-scale specimen tests. Bond strength testing for the FR-

SCC mix designs was based on ASTM C 882, Standard Test Method for Bond 

Strength of Epoxy Resin Systems Used With Concrete By Slant Shear (2013). The 

specimens used in these tests were 6 inch x 12 inch cylinders with half of the 

specimen consisting of the FR-SCC mix design. 

 

 
Figure 3.4 Full-Scale Beam Loading Diagram 

 

3.2 Results & Conclusions 

3.2.1 Small Scale Testing & Material Properties 

Small scale and material property testing results fell within a reasonable 

tolerance of the target values while exceeding a few of them. The target values for 

the concrete properties of the repair mixes were a slump flow of 28 inches, an air 

FR-SCC 

Control 

Concrete 

FR-SCC Fill 
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content of 6%, and a compressive strength of at least 4000 psi. The results for the 

10% Komponent FR-SCC mix yielded a slump flow of 32 inches, 9% for the air 

content, a compressive strength of 4740 psi, a MOE of 3952 ksi, and a splitting 

tensile strength of 406 psi, all at an age of 28 days. Results for the 15% 

Komponent FR-SCC mix design are listed in Table 3.3 and Table 3.4, some of the 

key values are as follows: a slump flow of 30 inches, 10.5% for the air content, a 

compressive strength of 6010 psi, a MOE of 4081 ksi, and a splitting tensile 

strength of 511 psi, all at 28-days.  

 

Table 3.3 Material Properties for 15% Komponent Mix 

Properties (Units) 
Target 

Value 
Achieved 

Slump Flow (inch) 28.0 30.0 

Air Content 6.0% 10.5% 

Unit Weight ( lb/ft
3
) - 138.7 

Compressive Strength  

(28-day, psi) 
4000 6010 

Splitting Tensile Strength 

(28-day, psi) 
- 511.4 

Modulus of Rupture (psi) - 548.4 

Modulus of Elasticity (ksi) - 4081 
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Table 3.4 Small-Scale Comparative Data 

Strength Test Control 
10% 

Komp. 

15% 

Komp. 

Compressive Strength 

(28-day, psi) 
6740 4740 6010 

Splitting Tensile Strength 

(28-day, psi) 
459.1 406.3 511.4 

Composite Modulus of 

Rupture (psi) 
- 693.0 693.0 

Bond Strength (psi) - 475.9 569.8 

 

3.2.2 Large Scale Testing 

The results of the large-scale testing showed that the repair mixes had 

ultimate moments that were “statistically equivalent” to the Class AA mixture. All 

of the experimental ultimate moments were within 5% of the calculated 

capacities. The cracking moments for the control beams and 10% Komponent mix 

beams were equivalent to the theoretical values. However, the 15% Komponent 

mix beams only withstood 81% of the calculated value for the cracking moment. 

Average values for the three sets of beams tested are shown in Table 3.5 and load 

versus deflection plots for all nine beams are shown in Figure 3.5. The three sets 

of beams performed with a consistent load-deflection response for each mix type. 

Deflections for the control beams were marginally less than the deflections of the 

repaired beams for both the uncracked and cracked periods of testing. Once the 

beam loadings reached the point where the steel was beginning to yield, the 

deflection response for all the beams were nearly identical. Crack propagation and 

the extent of cracking were virtually the same between all beams and all concrete 
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types. It was noted, though, that there were a limited number of cracks on the 

repair beams that did follow the concrete interface for a short distance and then 

those cracks trended upward, toward the load point.  

 

Table 3.5 Table 3.5 Full-Scale Beam Testing Comparative Data 

Mix 

Avg. 

Cracking 

Load (kips) 

Avg. 

Ultimate 

Load (kips) 

Avg. Cracking 

Moment (k-ft) 

Avg. Ultimate 

Moment (k-ft) 

Contol 17.2 94.2 33 189 

10% Komp. 16.9 91.2 33 182 

15% Komp. 13.1 90.1 25 180 

 

 

Figure 3.5 Full-Scale Beam Testing Load vs. Deflection Plots 
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3.2.3 Results, Findings, & Conclusions 

On the whole, the testing and performance of the two repair mixes and 

their cast specimens performed identically to the Class AA mixture. As for the 

full-scale testing, the two sets of repaired beams withheld similar ultimate 

moments, had similar load versus deflection plots, and exhibited similar cracking 

behaviors. Yet, one of the noted differences was that with the dosage increase of 

Komponent®, there were lower cracking moments values. This was believed to 

be due to the shrinkage plane along the old and new concrete bond interface. The 

other major difference, as mentioned previously, was the cracking pattern for the 

repair mixes where the cracks followed the old and new concrete interface for a 

small distance before continuing their trend toward the load point. This was 

interpreted to mean that there was a possibility of debonding or slipping between 

the repair material and the originally cast concrete. The small-scale specimens 

revealed that when cast as a monolithic prism, the repair mixes had a marginally 

lower modulus of rupture when compared to the Class AA prisms. Higher 

Komponent® replacement levels brought higher bond strengths and it was 

believed to be owed to the lower shrinkage allowed by the shrinkage-

compensating cement. 
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 Chapter 4: Initial Testing of AASHTO Girder 

The study on the bridge girder preceding this research was carried out by 

Cameron Murray, a PhD. student during the following study, and Dr. Royce 

Floyd at the University of Oklahoma (2017). In partnering with the Oklahoma 

Department of Transportation (ODOT), Murray was able to perform multiple tests 

on two retired, prestressed, concrete bridge girders, one of which was used in this 

overall study as the specimen to be repaired and retested. This chapter details the 

history of that member and its original testing.  

 

4.1 Program Outline 

4.1.1 Scope of Research 

In Murray’s study, he utilized two AASHTO Type II bridge girders in his 

research as full-scale test specimens, comparing the test results to values from an 

Excel spreadsheet developed to analyze the shear capacity. This program took 

into account several differing analysis approaches, including: AASHTO’s 1973 

Standard Specifications, the AASHTO modified compression field theory 

(MCFT) load factor and resistance design (LFRD) using the beta-theta tables 

from the sixth edition bridge code, the AASHTO MCFT LFRD simplified 

technique, and the ACI method based on the 2014 version of ACI 318. The 

assessment of the “residual” shear performance of the retired bridge girders was 

the intention of the full-scale study in addition to the effects caused by corroded 

ends, composite decks, and diaphragms.  
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4.1.2 Research Specimen Description 

There were two AASHTO Type II girders utilized in Murray’s research, 

the first was a 32-foot-long girder, denoted as “girder A” and the second was the 

46-foot-long girder that was used in this study, labeled “girder C” in Murray’s 

literature. These members were salvaged from an existing bridge in Tulsa, OK, 

that was to be replaced in 2013. The name connotations originate from the 

construction drawings provided by the ODOT, where the superstructure of the 

bridge was supported by six girders designs which were detailed as “beam A” 

through “beam F,” shown in Figure 4.1. One “beam A” and one “beam C” were 

selected as the two representative samples of the four reinforcing arrangements 

used for the bridge. ODOT donated the girders with the intention of facilitating 

full-scale testing as part of research projects from 2014 to 2016 in conjunction 

with the University of Oklahoma. Originally, the girders were constructed in the 

1960’s as a part of the eastbound I-244 bridge crossing the Arkansas River just 

west of downtown Tulsa. Girder C was removed from the structure in September 

of 2013 with a 3-foot-wide section of the deck and diaphragms at each end and at 

midspan. When removing the member, the deck was not cut centered on the 

vertical axis of the girder, thus requiring construction of a 10-inch-wide section of 

deck that was added later in order to maintain a symmetrical cross-section. 

(Details on this addition are discussed in Section 4.2.1 Test Preparation of Girder 

C.) The girders were transported to the University of Oklahoma in October of 
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2013, and more information related to the transportation of girder C can be found 

in the dissertation by Murray (2017).  

 

 

Figure 4.1 Girder “C” Location in Original I-244, Arkansas River Bridge 

 

4.2 Testing of AASHTO Type II Girder 

4.2.1 Test Preparation of Girder C 

At the University of Oklahoma, Donald G. Fears Structural Engineering 

Lab, the girder was painted white and a reference grid was marked on the face of 

the girder on 6” intervals both vertically and horizontally to enhance the visibility 

of cracks during testing. The aforementioned, 10-inch-wide deck addition was 
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constructed using a concrete mixture designed to mimic the properties of the 

existing deck and its design was based on core samples that were taken from the 

deck portion of girder A. Holes were drilled horizontally into the existing deck at 

the interface between the supplemental concrete and the existing deck. No. 4 

transverse bars were forced into the holes and anchored with epoxy in a manner 

that left enough of the bar protruding into the deck extension so as to facilitate the 

carrying of the compressive forces across the interface into the deck extension. 

Also, four longitudinal reinforcing bars, matching the original deck reinforcing, 

were placed in the extension, one in each corner of the cross-section. The deck 

extension along with the reinforcing details are shown in Figure 4.2. 

 

 

Figure 4.2 Girder C Cross-Sectional Dimensions & Reinforcing Diagram at 

Midspan 

 



34 

 

4.2.2 Loading Conditions 

The testing regions were defined by a/d ratios of 3.0 and 3.83, which were 

selected in order to observe quarter-point loading behavior with the support 

conditions chosen based on eliminating the influence of one test region on 

another. That is to say, the supports were arranged in each test so that both test 

regions would not be loaded but one would be cantilevered beyond one of the 

supports. The a/d ratios were chosen based on inducing maximum shear stresses 

in the region of the girder that resides well outside of the discontinuity region. 

The intention was to achieve an arrangement in which the tested section of the 

beam would be a minimum distance d from the support and from the load point. 

Additionally, in order to replicate on-site conditions, the supports featured 

neoprene bearing pads with identical dimensions of those detailed on ODOT’s 

original drawings. The load/support locations for each test are as follows: 

Murray’s first test (C1, shown in Figure 4.3) which coincides with the  south end 

of the girder has a support at the end of the beam, a load point 9 feet from the 

centerline of the end support, and the second support is centered at 16 feet beyond 

the load point. The second test (C2, shown in Figure 4.4) conducted on the north 

end of the girder also had a support at the end with the load point 11.5 feet from 

the centerline of the end support, then the second support is centered at 16.5 feet 

from the load point.  
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Figure 4.3 Test C1 Support Conditions (West View) 

 

 

Figure 4.4 Test C2 Support Conditions (West View) 

 

4.2.3 South End Test (C1) 

For the testing of Girder C, Murray used linear variable differential 

transformers (LVDTs) to gauge the strand slippage for all but two of the straight 

strands along with four LVDTs at the bearing locations to record the vertical 

deformation of the bearing pads during testing. Wire potentiometers were utilized 

for deflection at the location of the point load, and several strain gauges, varying 

in type, were used in multiple locations. No preload was applied for the first test 

of the girder (C1) and loading increments were kept at 10 kips with the intention 

of monitoring crack propagation. As these cracks appeared, they would be traced 

with a black marker for the extent of the crack that would be visible to the naked 

eye. The end of the trace would then be marked with a perpendicular line 

signifying the extent of the crack under the current load, then the load would be 
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recorded next to the perpendicular line. Spalling behavior began at 90 kips of 

applied load where the girder bears on the southernmost support and continued 

until the loading reached 110 kips. It was noted that the extent of the corrosion 

accompanied by the bearing force was causation for cracks formed before testing 

to reopen and small sections of concrete to spall off the bottom bell of the girder. 

Web-shear cracking was first recorded at 160 kips of applied load and the initial 

propagation of flexural cracks were logged at 195 kips. At this load point, 

cracking in the bottom bell began to progress in a manner that suggests a bond-

shear failure was occurring, an example of which is shown in Figure 4.5. This 

progress continued to 260 kips of load where the cracks were observed to follow 

the length of the straight strands in the bottom bell. Beyond the 300 kip load 

increment, the girder began to display signs of plastic deformation. Murray 

described the performance just before failure as increased deflection per load 

complemented by further spread of shear cracking in the bottom bell. This shear 

cracking is believed to be the source for the ultimate failure by contributing to 

debonding of the prestressing strands leading to compressive failure of the 

concrete in the deck at an applied load of 318 kips. The compressive failure in the 

deck led to partial delamination of the 2-inch-thick wearing layer on the topside 

of the deck, and the result is shown in Figure 4.6. Figure 4.7 shows the full extent 

of the damaged received during test C1.  
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Figure 4.5 Shear & Horizontal Cracking in the Bottom Bell 

 

 

Figure 4.6 Deck Compressive Failure & Wearing Layer Delamination 

 

 

Figure 4.7 East Elevation of Damage Received During Test C1 
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4.2.4 North End Test (C2) 

The second test (C2) featured a loading location at the quarter-span of the 

original girder length. This location was predetermined to be the critical section 

for shear, although, with an a/d ratio of 3.83, flexural failure was anticipated to be 

a controlling factor. Cracking was initially recorded at 150 kips of load in the 

form of web shear cracks at a location approximately 2 feet from the north 

support. Flexure cracks first propagated at a load of 160 kips and continued to 

develop until reaching the deck at a load of 190 kips, roughly. Shear cracks in the 

web started to expand into the bottom bell forming flexure-shear cracks at 195 

kips of applied load. A number of these cracks began to traverse laterally, in the 

direction of the strands as more load was applied, suggesting bond failure along 

the tendons. Figure 4.8 illustrates the various types of cracking behaviors in test 

C2. Load was continuously applied until ultimate failure at which the compressive 

forces in the deck caused the longitudinal steel to buckle (Figure 4.9), the two-

inch overlay to delaminate, and the deck itself to buckle. Murray noted this as 

either a compression-shear failure, which is the result of shear cracks entering the 

compressive zone leading to failure by compression, or simply a flexural failure. 

The extent of the damage caused by test C2 is shown in Figure 4.10.  
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Figure 4.8 Cracking During Test C2 

 

 

Figure 4.9 Buckled, Longitudinal No. 8 Reinforcing Bar in the Top Bell of 

the Girder 
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Figure 4.10 West Elevation of Damage Received During Test C2 

 

4.3 Results & Conclusions 

4.3.1 Material Testing Results 

Upon completion of testing, a total of six cores were extracted from the 

web of the girder in addition to three cores from the deck for evaluating 

compressive strength and modulus of elasticity. Two samples of prestressing 

strand were also tested from a similar girder (girder “A” in Murray’s study) for 

tensile strength as well as modulus of elasticity. Compressive testing results from 

the web and deck core samples bore average strengths of 7,180 psi and 6,060 psi, 

respectively. The samples of prestressing strand were confirmed to be Grade 270 

with average tensile strengths of 283 ksi and an average modulus of elasticity of 

26,350 ksi. Furthermore, samples of shear reinforcing used in the beam were 

tested to determine the yield stress, ultimate strength, and modulus of elasticity. 

The average resulting values illustrated that the steel matched the drawings issued 

by ODOT in that the steel was, in fact, Grade 40.  
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4.3.2 Load-Deflection Test Results 

Figure 4.11 and Figure 4.12 illustrate the load versus deflection plots for 

the C1 (south end) and C2 (north end) Tests, respectively. Complications during 

test C1 and C2 led to multiple loadings for each test. Each of the loadings for test 

C1 and test C2 are plotted with the exception of the first loading for test C1. That 

test, C1a, was stopped before cracking and the girder maintained its linear-elastic 

behavior. At an applied load of nearly 230 kips, the wire potentiometers began to 

record inaccurate deflections for test C2 and, thus, manual measurements had to 

be logged. These supplemental measurements have been accounted for in the plot. 

The results of tests C1 and C2 are detailed in Table 4.1. Ultimately, the failure 

mechanism that was pinpointed for the C1 Test was bond-shear failure and the C2 

Test was found to be a compression-shear failure. It was believed that the visible 

corrosion at the ends may have contributed to the debonding of the strands in test 

C1 at the south end. Murray continues with a comparison of the calculated 

capacities compared to the several design methods stated previously. These 

comparisons are excluded here but are discussed thoroughly in Murray’s 

dissertation (Murray, 2017). Elevation drawings mapping the scope of damage 

from testing can be found in Appendix A.   
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Figure 4.11 Load vs. Deflection Plot for Test C1 

 

 
Figure 4.12 Load vs. Deflection Plot for Test C2 
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Table 4.1 Testing Results for Girder C 

Properties C1 C2 

Span 25 ft. 28 ft. 

Cracking Load 160 kips 150 kips 

Observed Cracking 

Moment 
904 kip-ft. 1030 kip-ft. 

Max Load 318 kips 301 kips 

Max Shear 204 kips 179 kips 

Max Moment 1832 kip-ft. 2040 kip-ft. 
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 Chapter 5: Repair of AASHTO Girder 

Upon conclusion of the studies performed by Murray on the girder 

described in the previous chapter, the research and application of the repair 

process began.  The process and development of the repair for each section is 

discussed in this chapter. There are three main areas of repair for the girder: the 

core-sampled web section just south of the diaphragm at midspan, the south end, 

and the north end.  

 

5.1 Core-Sampled Web Repair  

5.1.1 Extent of Damage & Concrete Removal 

Before any of the large repair sections were recast, a pilot repair section 

was conducted on an area of the girder that was used to retrieve core samples for 

the previous testing. Previous researchers, in an attempt to attain acceptable core 

samples, inadvertently cored through the shear stirrups in the web of the girder. 

Upon retrieving acceptable core samples, the web section was left with seven 

holes about 4” in diameter and a single half-drilled hole of the same diameter. A 

rectangular zone of 4 feet, 5 inches in length (in the direction of the span) by 1 

foot in height was marked out. This size was used in order to encapsulate all the 

borings into a single repair (see Figure 5.1 for pre-repaired elevation). Concrete 

within that zone was removed using a grinder and hammer-drill. It was found that 

because of the arbitrary location of the corings and their proximity to the upper 

and lower bounds of the web, the initially allocated zone needed to be expanded 
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to allow for proper splice lengths for the reinforcing steel that was severed. Some 

of the corings did not fully sever some of the reinforcing bars. The damaged area 

of these bars were removed by grinding just above and below the damaged area. 

The final removal area measured 4 feet, 7 inches in length and the total height of 

the web section, 1 foot, 3 inches, with seven damaged stirrup legs.  

 

 

Figure 5.1 West Elevation of Core-Sampled Web Section 

 

5.1.2 Formwork Design & Construction 

Formwork for the repair was predesigned using a three-dimensional 

modeling software called SketchUp. Once a formwork design was accepted, it 

was constructed using 3/4-inch plywood and standard 2x4 (nominal) lumber that 

was cut to specified lengths. Supporting 2x4s lined the edges of the plywood and 

vertical rib supports were spaced at 12 inches on center. All lumber was fastened 

to the formwork using 3-inch wood screws spaced at 12 inches on center. The east 

side form had two 1 inch deep holes cut in the top edge of the form so that air 
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could escape and the concrete level could be monitored during the pour. The 

plywood surface exposed to the repair concrete was coated with polyurethane to 

help preserve the formwork. After the polyurethane dried for 24 hours, they were 

braced against the repair area to determine placement for the threaded rods that 

would fasten the forms together. The threaded rods were 18 inches long, 1/4-inch 

diameter stainless steel with matching nuts and washers. Wooden blocks were cut 

and drilled to act as an additional washer and to keep the formwork from 

deforming around the rods. To place the new concrete into the formwork, 4 inch 

diameter PVC was selected as the fill neck for the formwork (Figure 5.2). This 

PVC size was chosen based on the mix design study discussed in Chapter 3. A 

single section of pipe with an angle joint at each end was used as the fill neck. A 

wooden base was constructed around the lower end of the fill neck so that it could 

be fastened to the formwork using screws. A bead of silicone was added to the 

edges of the formwork and top end of the PVC fill neck to maximize containment 

of the concrete.  
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Figure 5.2 Assembled Formwork, Core-Sampled Web Repair 

 

5.1.3 Repair of Internal Reinforcing 

The existing shear stirrups were constructed using Gr. 40, No. 4, deformed 

steel bars and the splicing steel was of the same type and grade. The splicing bars 

were connected to the existing reinforcing using BARSPLICE™ couplers 

specifically sized for the reinforcing bars being used. Figure 5.3 shows the 

installed couplers for the repair. Additionally, the couplers are designed to meet 

the ASTM requirements for bar splicing. Before these couplers were fully 

secured, they were test fit to allow for the maximum distance between splicing 

materials and the surface of the formwork. The couplers’ tightening mechanism 

featured snap-off bolts that sheared off once the bolts were tightened to the 
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manufacturer’s specified torque of 720 inch-lbs. To ensure consistency, the bolts 

were tightened using a torque wrench set to match the specified capacity 

previously mentioned.  

 

 

Figure 5.3 Core-Sampled Web Replacement Reinforcing 

 

5.1.4 Placing the Repair Concrete 

The initial pour of the pilot repair section was performed during the first 

week of August of 2016. The ambient temperature during this time ranged from 

the upper 90° F up to and occasionally beyond 100° F. It was decided that, since 

this temperature range falls outside of the ASTM recommended temperature 

range for mixing and placing concrete, the mix materials had to be chilled 

overnight before mixing. The materials were batched into 5-gallon buckets with 

rubber-sealed lids. The buckets that held aggregates were placed into large water 

troughs, covered with transparent trash bags, then ice was added to the troughs as 

shown in Figure 5.4. The troughs, along with the remaining materials, were 

housed in an environmental chamber that maintains a consistent temperature of 

70° F.  
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Figure 5.4 Mix Materials Chilled with Ice 

 

On mix day, a mixture of ice and water was placed in the mixer and 

agitated for 20 minutes to cool the mixing drum and saturate the surface of the 

mixer. The ice water mixture was drained while the lever-operated, concrete 

dispensing bucket was rinsed out with a water hose. The materials were then 

removed from the environmental chamber and added into the mixer in accordance 

with ASTM C192/C192M-16a (2016). Upon adding the fine aggregates, it was 

discovered that some of the ice had melted in the troughs and the water had 

leaked into some of the buckets. To counter the unanticipated water, the sample 

was weighed and the weight difference between the original weight of the 

aggregate and the weight with the water was recorded. That difference was used 

to reduce the appropriate amount of water to be added later. 

During the final stages of mixing, when adding the admixtures, the 

concrete started to experience signs of premature setting along with segregation of 
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the aggregate and cementitious paste. This became more evident when 

transferring the mix to the dispensing bucket and when adding it to the formwork. 

The quicker set time and segregation caused the aggregates and the fibers to 

collect at the bottom of the bucket and clogged the fill neck despite trying to 

consolidate the mix using a tamping rod. It was decided to abandon this mix and 

try again. As a result, the remaining concrete was disposed of and the formwork 

removed and cleaned. Figure 5.5 shows how much the form was able to be filled. 

Any concrete material in the form and fill neck was removed and the surface was 

cleaned with a wet towel and compressed air. It is believed that multiple factors 

played into the failure of the mix: extreme temperatures, unanticipated leaking of 

ice water into the aggregate buckets, abnormal absorption by the aggregates in 

those buckets, but the most likely cause was the use of a different high-range 

water reducer than used in previous mixes. 

 

 

Figure 5.5 Extent of Flow for First Pour of Core-Sampled Web 

 

 The second pour for the pilot repair section used the same proportions of 

materials as the previous pour (see Chapter 3, Table 3.3) with one exception: a 
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higher dosage of citric acid was used (the adjusted proportions are given in the 

following section). Moreover, at the time of the second pour, the ambient air 

temperature was much cooler and no extra measures needed to be taken to 

maintain an ASTM approved mixing temperature. The mixing was performed in 

accordance with ASTM C192/C192M-16a and added to the formwork until the 

concrete filled the forms. It was observed that this pour also had a faster set time 

than anticipated. However, the forms were filled, leaving only a small 1/8 inch 

gap or less on the tops of each side of the web (see Figure 5.6). This could be due 

to the quick set time of the concrete and/or because the fill neck was connected 

toward the mid-height of the forms, forcing the mixture to have to fill the form 

from the midsection upwards.  

The formwork was removed after the concrete was allowed to cure for 24 

hours. Since there was concrete trapped inside the fill neck, a grinder was used to 

cut away the fill neck piece by piece until the side forms could be removed. The 

stainless steel threaded rods that were used to hold the formwork to the beam 

were cut at the face of the concrete and the section of concrete where the fill neck 

connected to the forms was ground flat to match the surface of the web section. 

Several months later mortar was added to the gap at the top of the repair section 

between the bottom of the existing beam and the top of the new, repair concrete. 

The mortar mixture was based on the traditional 3-2-1 mix design: 3 parts fine 

aggregate, 2 parts cement, and 1 part water. The mortar mix was placed into the 

gaps using putty knives and allowed to cure several days before grinding the 
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excess mortar flat, matching the surface of the beam. No additional test specimens 

were made at the time of casting.  

 

 

Figure 5.6 Core-Sampled Finished Repair (Without Mortar Patch) 

 

 5.2 Repair Mix Design Modifications 

After the Core-Sampled Web Repair, Dolese, a local materials provider, 

ceased to carry MasterGlenium 7500 produced by BASF, the Type A/Type F 

high-range water reducing admixture that was used in the original research and 

development of the fiber-reinforced, self-consolidating concrete (FR-SCC). This 

forced the research team to select a new admixture based on Dolese’s availability. 

The new high-range water reducer (HRWR), MasterGlenium 7920 also by BASF, 

is a verified Type A/Type F admixture in accordance to ASTM C 494. The 

original mix design that utilized the MasterGlenium 7500 called for 9.0 fl. oz/cwt, 

which was the nearest, whole unit of measure to the median for the manufacturers 

Location for Mortar Patch 



53 

 

recommendation for dosage of the admixture (2 to 15 fl. oz/cwt). Similarly, the 

proportions of the MasterGlenium 7920 were originally selected based on the 

recommended dosage by the manufacturer of 2 to 12 fl. oz/cwt. Using the original 

target slump flow of 28 inches, the proportions of the new HRWR were refined 

by conducting trial mixes. The resulting dosage of MasterGlenium 7920 that 

yielded a 28-inch slump flow was 8.25 fl. oz/cwt. Final mix design proportions 

are listed in Table 5.1 and Table 5.2.   

 

Table 5.1 FR-SCC Mix Design Specifications 

Cementitious Amount, lb./yd
3 

750 

Class C Fly Ash Replacement (by mass), % 30 

Komponent Replacement (by mass), % 15 

w/c Ratio 0.38 

Amount of Fine Aggregate (by volume), % 50 

MasterFiber MAC Matrix (by volume), % 0.5 

Target Slump Flow, in. 28.0 

 

 

Table 5.2 FR-SCC Mix Design Proportions, Saturated, Surface-Dry 

Type II Cement, lb./yd
3 

412.5 

Class C Fly Ash, lb./yd
3
 225.0 

Komponent, lb./yd
3
 112.5 

Water, lb./yd
3
 281.5 

Fine Aggregate, lb./yd
3
 1403.6 

Coarse Aggregate, lb./yd
3
 1261.3 

MasterFiber MAC Matrix, lb./yd
3
 7.7 

Air Entrainment Master Builders AE-90, oz/cwt 1.1 

Water Reducer Glenium 7920, oz/cwt 8.25 
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5.3 South End Repair  

5.3.1 Extent of Damage & Concrete Removal 

Once surveying and documenting of the initial, failed state of the girder 

was completed, shown in Figure 5.7, preparation started for the south end to be 

repaired. Using the survey data, an extent of concrete was designated for 

demolition and repair. The original extent measured 8 feet from the southern face 

of the girder and one foot perpendicular from the bottom face of the girder. The 

aim in doing so was to maintain an area defined by 6 inch increments of the 

preexisting grid mapped on the girder in previous testing and to reduce the 

number of irregular shapes in the repair section. This area to be demolished 

encapsulated the entire bottom bell of the girder for the 8-foot section. 

However, due to the presence of large cracks at the intersection of the 

eight foot marker from the end of the girder and one foot boundary from the base 

of the girder, the area was expanded to include these cracks in the repair section. 

Expanded boundaries of the repair were moved to 8 feet, 2 inches from the 

southern face of the girder and the top boundary was raised from one foot to 1 

foot, 3 inches only from the 6 foot mark from the southern face until the 8 foot, 2 

inch boundary. The southern face of the girder features an 8-inch-thick diaphragm 

that was cast onto the member during its original installation within the bridge 

structure. When the 10-inch-thick deck addition was fabricated in Murray’s study, 

the addition did not extend fully to the end of the girder. Rather, the addition was 

cast up to 8 inches shy of the end of the girder. The missing 8 inches of deck on 
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the west side was utilized as the planned fill hole for the FR-SCC repair material. 

Since the diaphragm was cast onto the girder post-installation with no roughening 

of the interface between the girder and diaphragm, removal of the west side of the 

diaphragm was achieved with relative ease in comparison to the concrete on the 

girder itself. In order to provide for a better bond to the surface of the girder and 

west-side deck extension, the surfaces were roughened using a hammer-drill. An 

illustration of the final, fully demolished South end is shown in Figure 5.8.  

 

 

Figure 5.7 South End Damage From Original Testing 

 

 

Figure 5.8 South End With Damaged Concrete Removed 

 



56 

 

5.3.2 Formwork Design & Construction 

Subsequent to the demolition of the south end, formwork for the 

corresponding area was designed and constructed. The design was conceived 

using SketchUp in conjunction with the actual measurements from the girder and 

known, available lumber sizes. In the best interest for section continuity, the 

decision was made to try to retain the original shape and aesthetics of the girder 

for the repair volume with minimal exceptions. The only exception was that the 

south end diaphragm would be the full height of the girder as opposed to the 

original diaphragm size that extended down from the deck to the top of the bottom 

bell section of the girder with a 45-degree angle extending from the mid-height of 

the bell up to the diaphragm section. Figure 5.9 shows the formwork rendering 

that was created using SketchUp. The total volume of replacing concrete to fill the 

formwork was 15.20 cubic feet, not accounting for the volume of reinforcing 

material in the section. 

To properly brace this amount of material, standard 2x4 sawn lumber and 

3/4-inch-thick plywood were the base materials to construct the formwork. Each 

panel of the formwork was constructed with 2x4’s fastened to the perimeter of the 

plywood using screws. All formwork pieces for the girder featured vertical, 

intermediate bracing at 12 inches on center. Vertical, intermediate bracing varied 

depending on the shape and protrusions of the diaphragm forms. Upon completion 

of the formwork construction, the faces of the individual sections were coated 

with a single, thick coat of polyurethane and a form release agent. The 
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polyurethane coat acted as a protective layer to preserve the formwork for reuse 

later in the project while also allowing for a smoother concrete surface. The form 

releasing agent reacts with the alkalinity of the concrete during casting to create a 

film-like layer of foam, preventing any bond between the concrete and forms. 

 

Figure 5.9 South End Formwork SketchUp Design 

 

5.3.3 Repair of Reinforcing 

As part of the repair solution, the prestressing strands originally housed in 

the bottom bell needed to be re-tensioned. Achieving the reapplication of this 

prestressing force was performed by post-tensioning the existing tendons. 

However, the tendons in the girder were terminated at the ends of the girder, 

making it impossible to have sufficient length of material to post-tension with the 
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existing strands. Furthermore, the ends of the strands showed signs of corrosion to 

the extent that they would have been inadequate for restressing. As a result, the 

existing strands were cut to a shorter length, within the repair section, and new 

strands were connected using Sure-Lock® 1/2 inch splice chucks. Due to limited 

availability, the replacing tendons are 1/2 inch special as opposed to the existing, 

1/2 inch tendons in the girder. Splice locations depended on the layout and fitment 

of the splice chucks with their housings; by staggering the splice chucks, all ten 

strands were able to be spliced within the bottom bell of the repair volume, which 

is shown in Figure 5.10. Existing tendons were cut at a dimension that allowed for 

them to protrude 1/2 inch beyond the wedges within the splice chuck (Figure 

5.11). The remaining lengths of exposed existing and replacement strands were 

coated in a thin layer of automotive grease, then sleeved with a 1/2 inch plastic 

irrigation line. This grease-and-sleeve arrangement, shown in Figure 5.12, is 

similar to monostrand post-tensioning tendons and allows for movement during 

the post-tensioning stage. 

A special housing was created using a clear, acrylic sheet and foam 

cutouts to permit movement of the splice chucks during tensioning. Construction 

of the housings began with forming the acrylic sheets to a cylindrical shape by 

heating them in a uniform manner, minimizing warping. A 2-inch-diameter PVC 

pipe was used as the template for molding the curvature of the sheets. Once 

cooled, a splice chuck was placed in the now cylindrical, acrylic sheet, and the 

sheet was clasped tight around the chuck and secured by wrapping it with clear 
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packing tape. The result was a transparent tube for the splice chuck to slide 

through. Each end of the tube was filled with foam to prevent concrete from 

entering the tube. The foam used for the ends was a heavy grade floral foam and 

was chosen for its resilience under moderate pressure but would still compress 

under higher pressure. 

 

 

Figure 5.10 Assembled Post-Tensioning Splice Chucks  
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Figure 5.11 Splice Chuck Assembly for Existing Strand 

 

 

Figure 5.12 Post-Tensioning, Grease-and-Sleeve Arrangement 

 

The aforementioned assembly of strand components for post-tensioning 

was a methodological procedure. To start, the greased-and-sleeved segments were 

marked for the existing and replacing strands. These segments extended from the 

face of the existing concrete to the face of the splice chuck, then from the opposite 
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face of the splice chuck to the inside face of the post-tensioning anchors.  

Following the greasing and sleeve placement on the existing strand, one of the 

foam pieces were slid over the sleeve and one end of the splice chuck was 

attached and seated to the end of the existing tendons. The shaft of the splice 

chuck was then assembled to the end of the splice chuck that was attached to the 

existing tendon and the replacing strand with the other end of the splice chuck 

was subsequently attached to the splice chuck shaft. Tongue-and-groove pliers 

were required for tightening the two ends of the splice chuck due to the internal, 

spring-loaded mechanics of the splice chucks, but, consequently, ensured proper 

seating of the wedges on both strands before tensioning. Grease was applied to the 

replacing strand and sleeved before the acrylic tube and other foam piece was slid 

over the sleeve and splice chuck, completing the housing assembly. Figure 5.13 

shows the full post-tensioning assembly.  

 

 

Figure 5.13 Fully Installed Post-Tensioning with Partial Formwork 
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The final preparation before assembling the formwork and pouring the 

repair section was to add bursting steel. Bursting steel is used to resist the 

Poisson’s effect that can lead to failure during the post-tensioning of a section. As 

opposed to pretension applications were the stress from the tendons is transferred 

to the concrete throughout the length of the member, post-tension applications 

collectively apply the full force of the tendons at the anchored ends. High 

concentrations of compressive stresses in a single direction causes expansion in 

the perpendicular directions, which has the ability to be somewhat explosive for 

concrete applications. Thus, the use of additional, confining reinforcement just 

inside of the anchored regions is essential. Using various iterations of strut-and-tie 

modeling, a conservative calculation for the appropriate amount of steel was 

selected. Four pairs of closed loop, No. 3 bars with two inches of clear spacing 

were added to the section for a total of eight bars. To maximize the area of 

confinement, the bars were bent in the same shape as the bottom bell while 

permitting for one inch of cover on all sides. Addition of the bursting steel, shown 

in Figure 5.14, marked the completion for reinforcing the interior of the south 

end. The final preparation step for the prestressing tendons involved installation 

of monostrand anchorages for each strand, which were threaded over the strands 

and nailed to the inside face of the form end.  
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Figure 5.14 Bursting Steel for Post-Tensioning 

 

5.3.4 FR-SCC Monitoring Formwork Additions 

The final measure of preparation for casting was to assemble the forms 

and seal them for the FR-SCC. As mentioned previously, the fill location is 

located at the south diaphragm and the FR-SCC would then be allowed to flow 

through the diaphragm, down the length of the repair section and up 3 inches into 

the web section. Figure 5.15 illustrates the general passage for the FR-SCC. To 

accommodate this rise, a single, 2-inch-diameter vent hole was created on one 

side of the web form. The vent was located at the midpoint of the top edge of the 

raised section. On the opposing side a small window was added to monitor the 

FR-SCC height during casting. The window was also 2 inches in diameter and 

made from a sheet of acrylic. Two 12-inch-long LED light strips were 
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countersunk into the interior face of the web form featuring the window, 

providing for enhanced viewing inside the forms. Included with the packaging of 

the light strip was a toggle button to activate the lights, this was mounted to the 

exterior side of the form for use while looking through the window (Figure 5.16).  

 

 

Figure 5.15 South End Repair Concrete Flow 
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Figure 5.16 Observation Window for Monitoring Flow (Left) and View 

Through the Window (Right) 

 

5.3.5 Placing the Repair Concrete 

A total amount of concrete chosen for casting was 16 cubic feet. This 

amount would be able to fill the repair volume with almost an extra cubic foot of 

contingency. The capacity of the available onsite mixer is 17 cubic feet of normal 

concrete and, therefore, it was concluded that the small-scale specimens would be 

cast at a later date. The ensuing days before casting, all the materials were batched 

into large crane-hoisted, buckets and 5-gallon buckets. The coarse and fine 

aggregates were collected in the larger buckets, both were covered with a plastic 

tarp over the top and sealed with tape. As the materials were batched, small 

samples of each were obtained for a representative moisture content testing of 

each aggregate. All cementitious materials, fibers, and water were placed into 5-

gallon buckets with sealed lids. Citric acid, the set-retarding admixture, was 

batched into multiple small plastic containers with a single dosage per container.  
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On casting day, but before mixing, the air entraining admixture was 

poured into the fine aggregate and the HRWR was gathered into large graduated 

cylinders. As the mixer was turning, the aggregates were added, first course, then 

fine aggregate was added. Half of the water was poured into the mixer followed 

by all the cementitious material. The consistency of the mix at this point is very 

thick and tends to turn in the mixer as a solid mass. The rest of the water is 

immediately added to the mix, allowing the mix to appear like a stiff, low slump 

concrete. It should be noted that in the research performed by Wirkman, the 

concrete was mixed for 4 minutes preceding the addition of the high-range water-

reducer, however, it was found in early trials of this study that this step was 

unnecessary and excluded in the interest of preserving time for this study. 

The high-range water-reducer was added at approximately 50 mL per 

second and was distributed evenly in the mixer. The remaining citric acid, diluted 

in water, was added followed by the fibers. After the fibers were sprinkled into 

the mixer, the materials were allowed to mix for 3 minutes, rest for 3 minutes, 

then mix again for a final 2 minutes following conditions set by ASTM 

C192/C192M – 16a. An additional dosage of citric acid was added at the end of 

this period and permitted to mix for 1 minute before the concrete was dispensed 

into a crane-hoisted bucket for transport to the repair section. Monitoring the FR-

SCC through the fill location and the window in the web, the mix was able to 

flow around the internal reinforcing filling the entire form. After the form was 

filled, a slump flow test was performed and 3 cylinders were cast with the excess 
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concrete. The slump flow results yielded a 26.5 inch slump flow and the cylinders 

were set aside for compression testing when the repaired girder was tested. Upon 

completion of casting, the top of the form and the small specimens were covered 

with a plastic sheet for seven days, then the forms were removed. Figure 5.17 

shows the seven-day-old repair section following form removal.  

 

 

Figure 5.17 South End Repair with Forms Removed 

 

5.3.6 Post-Tensioning the Repaired Section 

Upon removal of the formwork of the south end, it was observed that 

some of the FR-SCC repair material had seeped into the holes of the anchor plates 

through which the strand passes (Figure 5.18). This volume is the conical region 

where the wedges would set for post-tensioning; thus, it was important for this 

location to be cleared of obstructions, allowing for proper seating of the wedges. 
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To remove the excess concrete, a hammer and various small chisels and picks 

were used to break away some of the existing concrete. In an effort to expedite the 

clearing of the anchor plates, an alternative approach was conceived that included 

prying the anchor plates away from the concrete to better remove the excess 

concrete. In doing so, concrete was spalled off the bearing area for the only two 

anchor plates removed, shown in Figure 5.19. It was decided to cease progress 

with this approach and instead utilize a high-velocity pressure washer to clean-out 

the remaining concrete in the anchor plates. 

Once the excess concrete was removed, a mixture of mortar was used to 

patch the spalled concrete behind the two anchor plates removed previously. This 

mixture included sand, Type III portland cement, hydrated lime, and water. The 

material mix ratio was three parts sand, one part cement, one-fifth part hydrated 

lime, and one-third part water. The mixing method closely followed the ASTM 

recommended procedure for test specimens in the lab (ASTM C192). All 

materials excluding water were mixed together, thoroughly. Water was added to 

the mixture and hand mixed for 3 minutes. The mixture was allowed to rest for 3 

minutes while water was brushed on the application area of the girder, then mixed 

again for 2 minutes. The mortar was applied by hand initially and spread with a 

putty knife. Immediately, the anchor plates were pressed against the girder and 

tapped with a rubber mallet to provide for consolidation of the mortar. The plates 

were clamped in-place and allowed to cure for 7 days until post-tensioning was 

performed on the section.  
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Figure 5.18 Anchor Plates After Casting the South End Repair 

 

 

Figure 5.19 Damaged Area After Removal of Anchor Plate 
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Post-tensioning was performed by stressing individual strands up to the 

originally specified 28.8 kip load per the ODOT construction documents. In doing 

so, the inner most strands were stressed first, alternating from each strand group 

on each side until the outermost strands were the last to be tensioned. Figure 5.20 

illustrates the pattern in which the strands were tensioned, and Figure 5.21 shows 

the tensioning setup. Stressing was achieved by using a monostrand post-

tensioning jack manufactured by Precision-Hayes International that was attached 

to a motorized, hydraulic pump featuring a pressure gauge. A load calibration test 

was conducted with the same equipment before post-tensioning to determine the 

gauge reading that coincides with a 28.8 kip force in the strands. Since the 

monostrand jack includes a power-seating device, very minimal seating losses 

occurred and all strands were successfully re-tensioned. The strand tensioner 

achieves re-tensioning by pushing against the anchor plate and pulling the strand. 

Once fully tensioned, a second internal cylinder seats the wedges in place, 

approximately maintaining the desired strand force of 28.8 kips.  
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Figure 5.20 Post-Tensioning Stressing Order 

 

 

Figure 5.21 Post-Tensioning Strand Stressing 
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5.4 North End Repair  

5.4.1 Extent of Damage & Concrete Removal 

In the best interest of safety, major demolition of concrete did not start 

until the south end was cast and the strands re-tensioned. Upon initial surveying 

of the north end (Figure 5.22), the beam did not appear to have significant damage 

and that the repair would have been limited to the deck and bottom bell where 

horizontal cracks showed signs of possible debonding. However, during the 

demolition, it was discovered that beyond the surface, the north end had major 

damage to the concrete that extended from the top of the deck to the bottom bell. 

The concrete in this zone was loose enough that portions of it fell off without 

agitation. This damage, as illustrated in Figure 5.23, followed a 45-degree angle 

extending from the load point diagonally down to the north support (the closest 

support to the load point). As a result, the demolition area was expanded to where 

the southern boundary for the girder was along the 11 foot gridline (measured 

from the midpoint of the girder) and the southernmost boundary for the deck was 

four inches north of the 10 foot gridline. The northern boundary for the deck was 

along the 16 foot gridline as well as the top bell portion of the girder. The 

northern boundary for the web of the girder coincided with the 16.5 foot gridline 

and the bottom bell boundary was 18 inches to the north of that at the 18 foot 

gridline. Figure 5.24 shows the full extent of the concrete demolition.  

 



73 

 

 

Figure 5.22 North End Damage from Original Testing 

 

 

Figure 5.23 Further Damaged Concrete Uncovered During Demolition 
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Figure 5.24 North End with Damaged Concrete Removed and Loose, 

Existing Reinforcing Steel 

 

5.4.2 Formwork Design & Construction 

The formwork that was used for the south end repair was able to be reused 

for the north end due to the special care for constructability that was taken into 

account during its design. New formwork was only needed for the top bell of the 

girder and the deck. Using the same techniques for construction as previously 

discussed, the top bell and deck forms were built so that the girder would be cast 

first, then the deck cast at a later date. The window that was included in the south 

end repair happened to be covered by existing concrete on the girder, so it was not 

used for this placement. Additionally, since this placement did not require the 

concrete to travel down through the formwork and back up like the south end 

repair, it was deemed unnecessary to have a window in the formwork, nor was it 

necessary to have vent holes. An illustration of the forms for the north end via 

SketchUp is shown in Figure 5.25.  
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Figure 5.25 North End Formwork SketchUp Design (West Side) 

 

5.4.3 Repair of Girder Reinforcing 

Originally, the girder was cast with two grade 40, Z-bar stirrups at spacing 

that is specified in the original ODOT drawings. A typical arrangement for the 

internal reinforcing is shown in Figure 5.26. As the area of repair features the 

entire height of the girder and deck for at least 5 feet, almost all the existing 

reinforcing was either replaced or altered in some way. The original 

reinforcement for the girder for this section included two Z-bar stirrups at 8 

inches on center, since the repair area falls within the 0.3*L, or 14 feet, from the 

end of the girder. The height of the draped strands are approximately 1 foot, 8 and 

3/8 inches on the high side (north boundary of the repair) and 1 foot, 1 and 7/8 

inches on the low side (south boundary of the repair) measured from the base of 

the bottom bell to the center of the two lowest, draped strands. Within the area of 
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the top bell there are two longitudinal No. 8 reinforcing bars that buckled away 

from the center of the cross section in the original testing. 

The deck reinforcing was a collection of longitudinal and transverse 

reinforcing bars that were not symmetric to the vertical axis of the girder. All the 

longitudinal deck reinforcing bars were No. 4 bars, while the transverse bars were 

No.5 bars. The east side of the deck contained two longitudinal bars placed at 

about a quarter of the deck width and one above the other. The west side also only 

had two longitudinal No. 4 bars about 2 inches from the west face of the original 

deck. However, with the deck extension that was added before the original 

testing, four additional reinforcing bars were included in the west side of the deck, 

one in each corner of the extension cross section. 

Figure 5.27 shows the north boundary of the repair with the longitudinal 

bars of the deck and girder. The transverse bars, according to ODOT’s drawings, 

were alternating bar shapes that were No.5 bars spaced at 10 inches on center (5 

inches on center between bar types). The two bar types were one grouping of two 

straight No. 5 reinforcing bars, one at the bottom of the deck and the other placed 

at the top of the deck in line with the bottom bar. The second bar type was a bent 

No. 5 bar where the shape allowed for the bar to be a top bar over the girder and a 

bottom bar in the span between girders. A diagram for the layout of a typical 

section of the deck is shown in Figure 5.28, and Figure 5.29 illustrates a partially 

demolished deck portion with the original transverse reinforcement.  
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Figure 5.26 Original ODOT Reinforcing Diagram for Girder 
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Figure 5.27 North Boundary of North End Repair 

 

 

 

Figure 5.28 ODOT Typical Deck Reinforcing Diagram 
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Figure 5.29 Original Deck Reinforcement with Partial Concrete Demo 

 

The first internal reinforcing repair was made to the straight strands at the 

bottom of the section. It was noted during the demolition of the north end, that all 

sixteen strands were in compression to some degree. The bottom strands were 

believed to be in compression due to either strand slip or from yielding in the 

original testing (Figure 5.30). To relieve the compression in the straight strands, 

GRABB-IT Cable Splices were installed. Before installing, thorough 

measurements of the hardware were taken and a model, shown in Figure 5.31, 

was constructed to configure a best-fit arrangement for the cable splices. Similarly 

to the south end repair, the cable splices needed to be offset in order to fit within 

the section. Once an arrangement was chosen, installation was conducted in 

accordance with the manufacturer’s instructions. Initially, the manufacturer calls 
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for approximately 14 3/4 inch section of strand to be cut away and for the strand 

to be test-fitted into the “anchor body” of the assembly without the wedges in 

place so as to mark where the outer face of the “anchor body” lines up on the 

strand. That extent was marked on the strand and used as a datum to place the 

wedges. Once the wedges were placed, the spring was added and the threaded rod 

screwed into the “anchor body.” The threaded coupler and other threaded rod 

were added to the assembly and installed to the manufacture’s specified spacing 

and the “anchor body” for the other end was screwed into the threaded rod. This 

process was repeated for each of the ten straight strands. Once installed the 

assembly was tightened in the same sequence that the post-tensioning was applied 

in Section 5.3.6 until snug-tight.  

 

 

Figure 5.30 Prestressing Tendons in Compression 
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Figure 5.31 Internal Reinforcing SketchUp Model  

 

After installing the cable splices, the replacement stirrups were 

constructed and mounted within the section. It was decided to not attempt to 

restore the prestressing to the harped strands and since the straight strands are 

only snug-tight, the repaired section would no longer be prestressed. 

Consequently, it was expected that there would be a drop in flexural and shear 

resistance that would have to be accounted for. With the previous failure 

mechanism being partially due to shear, an important aspect to the repair was to 

restore the shear resistance. Therefore, the loss in shear resistance from the loss in 

prestressing was calculated and would be accounted for in the replacement stirrup 

arrangement. The resulting setup was two Gr. 60, No. 5, Z-bars, identical to the 
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original stirrup shape, at 7 and 1/2 inches on center. The final arrangement of 

stirrups is shown in Figure 5.32. 

 

 

Figure 5.32 North End Girder Internal Reinforcing 

 

After the stirrups were placed, the final alteration to the internal 

reinforcing was to provide more concrete cover for the top longitudinal 

reinforcing bars in the girder. To achieve this, the bars were wrapped in single 

gauge wire, then a long steel rod was used to twist the wire, cinching the two bars 

towards each other. In doing so, the bars were bowed inward so that there would 

be at least one inch of cover over the buckled portion. Two No. 3 bars were bent 

into a C-shape around the top bars, securing them in place.  
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5.4.4 Placing the Girder Repair Concrete 

In an effort to keep the original geometric properties of the girder, it was 

decided to cast the girder portion of the north end separate from the deck section. 

Originally, the deck was cast onto girders once they were in place and the top inch 

of the girder and the top of the Z-bars also extended into the deck. To mimic this 

process, the girder would be cast first, then the deck a few days later. The total 

volume of the girder repair is approximately 15.6 cubic feet of concrete, not 

accounting for the internal reinforcing. A total volume of 18 cubic feet was 

decided for casting day so that small scale cylinders could be cast in addition to 

the repair. Just as with the south end repair, all the materials were pre-batched and 

representative moisture samples were collected from the aggregates. All materials 

were sealed in their containers until mixing. The mixing procedure follows the 

steps previously outlined in Section 5.3.5 and conforming to ASTM C192. The 

formwork for the girder is open at the top, providing for easy access to pour the 

FR-SCC into the form. After the concrete was added to the repair section, six 6 

inch by 12 inch cylinders were cast and a slump flow test was performed. The 

slump flow yielded 28.5 inches, which was the closest value to the target slump 

flow achieved in this study. At approximately one hour after casting, the top 

surface of the girder was roughened using masonry trowels to provide for 

improved bond between the girder and the deck (Figure 5.33). 
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Figure 5.33 Roughened Surface of North End Girder Portion 

 

5.4.5 Repair of Deck Reinforcing 

As the girder portion of the north repair was curing, the deck was prepared 

for casting. Using the formwork that was currently still attached to the girder as a 

brace, the deck form was attached and secured to the girder using threaded rods 

and two-inch-wide tow straps. The original transverse reinforcement was removed 

from the section and new No. 5 bars were their replacement. These new bars 

followed the same spacing as the original reinforcement; however, they featured 

180° hooks at each end as opposed to being terminated at the face of the concrete 

as they were previously. On the east side, two longitudinal No. 4 bars were added 

in the corners of the transverse reinforcing bars. Figure 5.34 shows the final 

arrangement of internal reinforcing for the deck portion of the north repair.  
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Figure 5.34 Deck Reinforcing of North Repair  

 

5.4.6 Placing the Deck Repair Concrete 

The final stage for repairing the north end was to add the FR-SCC to the 

deck portion. The total repair volume for the deck portion was 15.1 cubic feet not 

accounting for the internal reinforcement. Since this amount is close to the 

volume for the girder portion, the mix for the girder portion was repeated. 

Material for 18 cubic feet of concrete was batched and mixed for the deck and 

another six 6 inch by 12 inch cylinders. Following the same mixing procedures as 

previously, the FR-SCC was placed into the deck forms and smoothed flat with 

trowels. After a few hours, the surface of the deck was resilient enough to place 



86 

 

wet burlap over the deck and a tarp over the burlap. This allowed the deck to 

moist cure for seven days, at which point the burlap was removed as well as the 

forms. Figure 5.35 shows the repair after removal of the formwork for the deck 

and girder.  

 

 

Figure 5.35 West Side of Completed North End Repair 
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 Chapter 6: Repaired Girder Testing & Results 

With the girder repairs completed, the next step was to test the repaired 

sections and evaluate their performance. This chapter discusses the test 

preparations, arrangements, and performances of each test. The two tests 

performed follow the same conditions as the testing previously conducted by 

Murray as described in Chapter 4. A summary of the results of the load tests and 

the material strength tests are also presented at the end of the chapter.  

 

6.1 South End Testing 

6.1.1 Test Arrangement  

In preparation for the girder’s second set of testing, several aesthetic 

measures were put into place to both replicate original testing and to better 

identify the repair areas of the girder. First, the girder’s west façade was repainted 

with a watered-down mixture of white latex paint. The coverage of the paint 

mixture was sufficient enough to coat the repaired areas, but thin enough to easily 

view the cracking from the original loading discussed in Chapter 4. White paint is 

a standard color and provides for better viewing conditions of propagating cracks 

during loading while also keeping to the aesthetics of Murray’s testing. Next, the 

original, 6 inch gridlines were retraced and the centerline (midpoint of the girder 

span) was labeled along with each whole-foot gridline measured from the 

centerline. In Wirkman’s research, discussed in Chapter 3, the repair beams had a 

red line marking the interface of the repair material and the control concrete. 
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Similarly, for this study, the interface between the repair material and the existing 

concrete was outlined with a red line on the west façade of the girder as shown in 

Figure 6.1. A full, photo elevation of the girder with the previously detailed 

enhancements is shown in Appendix B.  

 

 

Figure 6.1 South End Repair Section Before Testing 

 

The testing layout for the south end coincided with Murray’s conditions 

for his “C1” test. The girder was supported at the southernmost end in such a way 

that the neoprene bearing pad aligned with the end diaphragm. The other support 

was positioned just past the midspan support, centered at 3.5 feet north of the 

centerline. And the load point was located 13.5 feet south of the centerline 

providing for a 9 foot length between the load point and southernmost support 

(Figure 6.2). This, again, matching the original test’s a/d ratio of 3.0. Once the 

supports were in place, the girder was leveled by first placing a bubble level 

against the web in various locations along the girder to gauge how far 
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out-of-plumb the vertical axis of the girder was. Sieved sand was placed under the 

supports by placing a jack under the girder near the support and lifting the girder 

off the support temporarily until the sand could be added. A level was utilized to 

check orientation of the top surface of the concrete bearing block, then the girder 

was lowered back onto the bearing pad and the web was verified whether plumb 

or not a second time. 

 

 

Figure 6.2 South End Test Support Conditions (West View) 

 

Load was applied to the girder from a hydraulic ram mounted to a steel 

frame. This frame was fully adjustable in the vertical and horizontal axes by 

raising or lowering the cross members connecting the columns or by bolting the 

column bases to the strong floor which runs parallel to the length of the girder. 

Each test had the load frame positioned so that the ram was able to apply load 

without exceeding the stroke of the ram. The arrangement of the load transfer 

system is shown in Figure 6.3 and features a one-inch-thick steel plate that was 

leveled on a bed of sieved sand, then a load cell placed on top of the plate, and 

above the load cell was a load-leveler with a 4 inch, steel spacer.  

 



90 

 

 

Figure 6.3 Load Cell Arrangement  

   

A few differences in the test set up, however, should be noted about the 

instrumentation used in the repair testing. In the original testing, linear variable 

differential transformers (LVDTs) were used to measure the end slip in the 

strands and the deflection of the bearing pads under load. Additionally, two wire 

potentiometers were attached to each side of the bottom bell directly in line with 

the plane of load, thus measuring the deflection during the test. This research 
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abandoned the use of LVDTs and only utilized the wire potentiometers in the 

same locations as was used in Murray’s study. Not using the LVDTs should have 

minimal impact on the load-deflection plots during testing since the maximum 

recorded differential height of the bearing pads recorded in the original testing 

was approximately 1/16 inch. Attaching the wire potentiometers was achieved by 

shaping 12-gauge copper wire into a hook that was to hang from a 90 degree steel 

bracket. This steel bracket was epoxied to the face of the girder in such a way that 

the angle extending perpendicular to the girder surface was aligned with the 

bottom, horizontal gridline. Figure 6.4 displays the west façade of the girder with 

the aforementioned wire potentiometer set up. As a final measure, a scale was 

adhered to the west face of the deck accompanied by a laser-level mounted to the 

load frame to further gauge the vertical deflection throughout testing. An example 

of this is shown in Figure 6.5.  
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Figure 6.4 Wire Potentiometers for South End Test 

 

 

Figure 6.5 Laser Level Deflection Base Measurement 
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6.1.2 Testing Procedure 

Load was incrementally applied in 10 kip increments in order to track the 

propagation of cracks throughout the section. Cracking was marked according to 

changes in the section that were visible to the naked eye. That is to say, if existing 

cracks appeared to be reopening, they were traced with a black marker for the 

length that they were reopening. Likewise, the same method would be followed 

for new cracks. Monitoring the reopening of existing cracks was best identified by 

observing when the newly-applied, thin layer of paint began to split. Being that 

there were many pre-existing cracks outside the repair zone, it is difficult to 

pinpoint when the section first began to crack or, rather, when cracks began to 

reopen. Yet, at 60 kips of applied load, existing cracks near the middle diaphragm 

began to spread into the web repair and a new crack began to form at the vertical 

interface of the south repair section and the existing concrete at an applied load of 

80 kips. Existing cracks continued to reopen up to 130 kips, at which point the 

existing shear cracks in the web started to expand into the repair section at the 

south end of the girder. As the specimen continued to take load, more pre-existing 

shear cracks expanded into the repair area without trending along the interface of 

the repair. Some existing cracks lengthened to form fresh cracks in the existing 

concrete. The crack at the vertical interface located at the north end of the repair 

continually widened up to 3/4 inch at 249 kips, the maximum load, see Figure 6.6, 

at which point the girder ceased to take any additional load and the test was 
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stopped. Figure 6.7 illustrates the range of cracking for the testing of the south 

end repair.  

 

 

Figure 6.6 Crack Width of Repair Interface  

 

 

Figure 6.7 Extent of Damage for South End Repair 
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6.1.3 Results 

The maximum load, as mentioned previously, reached 249 kips at 

approximately 2 and 1/4 inches of average deflection, and load was continuously 

applied without actually increasing, until the maximum average deflection 

reached 2 and 5/8 inches under the same applied force. Testing was concluded at 

this deflection, as it seemed apparent that because the deck was not crushing, the 

strands were yielding. The vertical crack at the interface of the repair continued to 

grow, as discussed previously, confirming the elongation of the strands. The 

repair zone had several web-shear cracks that spread down, into the bottom bell, 

but did not fully extend to the bottom of the repair. Accordingly, it follows that 

the failure mechanism was purely flexural. Figure 6.8 shows the fully deflected 

state of the girder at the peak of testing.  

 

 

Figure 6.8 South End Test at Maximum Deflection 

 

Reference Line 
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6.2 North End Testing 

6.2.1 Test Arrangement  

Similarly with the relation between Murray’s test “C1” and the south end 

testing, recreating the exact loading conditions as test “C2” was imperative to this 

study. The support conditions for the north end were selected based on a total 

span of 28 feet and an a/d ratio of 3.83. At the north end of the girder, a 

reinforced concrete block with dimensions of 18 inches x 24 inches x 12 inches (l 

x w x h) with a 8 inch x 18 inch x 1 inch neoprene bearing pad served as the 

support. This arrangement is typical of all supports for each test. Once the 

supports were in the correct location, they were leveled using sieved sand passing 

through a No. 16 sieve as previously described in Section 6.1.1. The support was 

centered on the north diaphragm and the load point was centered 11.5 feet south 

of the north support centerline. Figure 6.9 illustrates the support conditions for the 

north end test from a western vantage point. Similar to the south end test, the 

north end was only instrumented with two wire potentiometers and a load cell, no 

strain gauges or LVDT’s were employed in the repair test. A photo of the test 

arrangement is shown in Figure 6.10.  

 

Figure 6.9 North End Test Support Conditions (West View) 
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Figure 6.10 North End Test Instrumentation  

 

6.2.2 Testing Procedure 

Following the same procedure as outlined in Section 6.1.2, 10 kip load 

increments were applied with crack propagation recorded between each step. 

Existing cracks were first recorded as reopening at 40 kips of applied load, which 

happens to be the load that the repair section exhibited its first cracks. These 

appeared to be flexural cracks due to their vertical trends through the bottom bell 

and web portion as shown in Figure 6.11. At an applied load of 80 kips, the 

flexural cracks in the repair zone began to orient themselves toward the load 

point, indicating flexure-shear behavior, however, most of the cracks in the repair 

appeared to traverse a limited lateral distance and tended to propagate more in a 
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vertical direction as opposed to the typical 45 degrees associated with shear 

behavior. As the load continued to increase, the quantity of flexure-shear cracks in 

the web of the repair grew. A large number of cracks formed in the bottom 6” of 

the girder following the 80 kip load increment and most spread in a direction 

parallel to the bottom strands (Figure 6.12). The interfaces of the repair with the 

existing concrete showed no signs of cracking and a few new and existing cracks 

crossed the interfacial plane without noticeable changes in orientation. Flexural 

cracks extended into the deck at 100 kips of applied load and continued to 

lengthen until the maximum recorded load but ceased to expand at the mid-height 

of the deck. The deck showed no signs of compressive failure despite having 

reopened a horizontal crack in the existing deck at the wearing layer interface on 

the east façade of the deck at an early load (Figure 6.13).  
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Figure 6.11 First Cracks in the Repair Zone 

 

 

Figure 6.12 Shear-Bond Cracking in North Repair  
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Figure 6.13 Delamination of Wearing Layer During Repair Testing 

 

6.2.3 Results 

Under the maximum load able to be sustained by the girder, the deflection 

at the load point was 2 and 5/8 inches and continued to deflect under the same 249 

kip load until the deflection reached approximately 3 and 1/8 inches of maximum 

deflection. After deflecting this additional 1/2 inch without an increase in 

resistance, the test was stopped and load was removed. Just as with the south end 

test, this end showed no signs of crushing in the deck and no signs of direct shear 

failure. Thus, it follows that the failure mechanism was flexural in nature. Within 

the repair zone most, if not all, of the cracks began as vertical, flexural cracks 

that, under increasing load, began to reorient themselves towards the load point as 

shown in Figure 6.14. Figure 6.15 shows the fully deflected girder during testing.  
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Figure 6.14 Post-Testing West Elevation of North End 

 

 

Figure 6.15 North End Test at Maximum Deflection 
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6.3 Summary of Results 

6.3.1 Material Testing Results 

For each repair section, compressive strength cylinders were cast so as to 

acquire the strength of the repair on the test date. The strengths for the south end 

repair yielded an average value of 7735 psi, though, it should be noted that when 

casting the south end only two cylinders were able to be cast at the ASTM 

acceptable size (6 inch by 12 inch) due to the lack of material. A third cylinder 

was cast, but it was the smaller 4 inch by 8 inch cylinder and the compressive 

strength from that cylinder was 864 psi below the next lowest strength obtained 

from the 6x12 cylinders. Consequently, the smaller cylinder and its strength data 

was excluded from the study.  

The north end repair was a two-part construction in which the girder 

portion was cast first and the deck portion cast within a week after. The average 

compressive strength on the test day for the girder portion was 7614 psi and the 

deck returned an average of 6144 psi. The strength data for the material 

specimens is shown in Table 6.1.  

 

Table 6.1 Repair Material Strength Data 

Repair Section 
28-Day 

Strength 

Test Date 

Strength 

Test Strength 

COV 

South End Girder - 7736 psi 3.10% 

North End Girder 7662 psi 7614 psi 1.74% 

North End Deck 6287 psi 6144 psi 2.16% 
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6.3.2 Load-Deflection Test Results 

The load-deflection plots for both the south end and north end repair are 

shown in Figure 6.16 and Figure 6.17, respectively. The maximum loads for both 

tests was 249 kips with slightly different maximum deflections. A summary of the 

results are presented in Table 6.2 and post-repair testing elevations are provided 

in Appendix C.  

 

 

Figure 6.16 Load-Deflection Plot South End Repair Test 
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Figure 6.17 Load-Deflection Plot North End Repair Test 

 

Table 6.2 Testing Results for Repaired Girder 

Properties South End North End 

Span 25 ft. 28 ft. 

Cracking Load (Repair 

Zone) 
80 kips 40 kips 

Observed Cracking 

Moment 
461 kip-ft. 271 kip-ft. 

Max Load 249.0 kips 248.7 kips 

Max Shear 159 kips 147 kips 

Max Moment 1434 kip-ft. 1685 kip-ft. 
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 Chapter 7: Comparative Analysis, Conclusions, & 

Recommendations 

The primary goal for this study was to implement the previously 

developed fiber-reinforced, self-consolidating concrete (FR-SCC) presented in 

Chapter 3 as the repair material for a damaged AASHTO, Type II, bridge girder. 

This especially suited FR-SCC utilizes partial replacement of the cement with 

shrinkage compensating cementitious material without compromising strength or 

flow properties that are essential for repair and replacement of damaged concrete. 

After repairing the retired bridge girder, it was tested again and its performance 

comparatively analyzed based on its initial testing results. This chapter presents 

the comparative analysis between the original testing performed by Mr. Murray, 

as discussed in Chapter 4, and the repaired testing that is discussed in Chapter 6. 

Then, following the comparative analyses, conclusions of the study and 

recommendations for further studies relating to this research are given.  

 

7.1 Comparative Analysis of Testing 

7.1.1 South End & Test “C1” 

The testing for the south end of the girder featured the same loading 

conditions as the original test, denoted by Murray as “Test C1,” meaning that the 

load point and the support locations coincided with each other for both tests at the 

south end. A difference between the two tests were the instrumentation used. For 

the original testing, Murray utilized linear variable differential transformers 
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(LVDTs) to measure strand slip and the vertical deflection of the neoprene pads at 

the support. These parameters were not vital to this current study and, therefore, 

were not measured in the repair testing. Murray also employed wire 

potentiometers that were placed on each face of the girder at the load point to 

gauge the girder deflection as load was applied. This wire potentiometer 

arrangement was adopted for the repair testing, thus maintaining a consistent 

methodology in data collection.  

Loading for both tests was applied in a series of 10 kip increments until 

failure. Negating the spalling at the south end support that occurred at 90 kips of 

applied load, the first cracks for the original testing of the south end appeared at 

160 kips. The first sign of cracking for the repaired beam was difficult to pinpoint 

since there were pre-existing cracks outside of the repair zone, however, existing 

cracks first expanded into the repair zone at 60 kips, or approximately 38% of the 

cracking load in Murray’s testing. First cracks for both tests appeared near the 

base of the top bell, just south of the middle diaphragm in the girder (Figure 7.1). 

During the original testing, each load increment beyond the cracking load 

saw new or expanding web-shear cracks, whereas, for the repair test mostly 

existing web-shear cracks were observed to be reopening until the load reached 

120 kips. At this load (approximately 48% of the maximum load for the repair 

testing), a majority of the flexural cracks began to reopen outside of the repair 

zone and the web-shear cracks directly above the south end repair zone started to 

extend down into the repair. It should be noted, though, that the crack at the 
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vertical interface of the repair and existing concrete continued to open at a 

consistent rate throughout loading. Flexural cracks were not observed in the 

original testing until the load reached 185 kips (approximately 58% of the 

maximum load) and the shear cracks were first observed to be entering the bottom 

bell region at this load. Then, upon reaching an applied load of 265 kips the shear 

cracks in the bottom bell propagated transversely, in the direction of the bottom 

straight strands in the area that was to be replaced by the repair. Murray states that 

this progression of cracking points to a bond failure for the bottom strands.  

Conversely, the repair test displayed no signs suggesting bond failure and, 

furthermore, a majority of the shear cracks that did penetrate the repair zone did 

not reach the depth where the straight strands were located. The existing web-

shear cracks in the repair girder did feature new extensions outside the repair zone 

as well but were not believed to be the source of failure. At failure, the original 

testing, as described by Murray, encompassed strand slip instigated by further 

propagation of shear cracking at the straight strand’s depth. This, in turn, caused 

the deck to crush and delaminate resulting in increased deflection without an 

increase in load. The repaired girder, at failure, was observed to be an immediate 

increase in deflection at a consistent load with no crushing in the deck which is 

characteristic of an under-reinforced, flexural failure. The comparative results of 

the south end testing are listed in Table 7.1 and cracking plots for each test are 

located in the Appendix. The shear and moment values in Table 7.1 are calculated 
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from a simply supported arrangement of the girder in which the overhanging 

portion of the girder, beyond the northern support is ignored.  

 

 

Figure 7.1 (a) First Cracks For South End Repair Beam Test (60 kips, West 

View); (b) First Cracks For Murray’s “C1” Testing (160 kips, East View, 

Courtesy of Cameron Murray) 
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Table 7.1 South End Comparative Test Results 

Properties Test “C1” 
South End 

Repair Test 

Span 25 ft. 25 ft. 

Cracking Load 160 kips 60 kips 

Observed Cracking Moment 922 kip-ft 346 kip-ft 

Max Load 318 kips 249 kips 

Max Shear 204 kips 159 kips 

Max Moment 1832 kip-ft 1434 kip-ft 

 

With each iteration of testing, the toughness of the girder dropped and the 

slope of the load-deflection plot became more horizontal, which correlates to a 

decreasing stiffness, shown in Figure 7.2. That is to say, the stiffness for test 

“C1b” is higher than that of test “C1c” as well as the repair test. Thus, the 

toughness for test “C1b” is the highest, then “C1c,” and the repair test with the 

lowest toughness as well as the lowest stiffness.  
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Figure 7.2 Load vs. Deflection Plot of Original and Repair Testing of South 

End of Girder 

 

7.1.2 North End & Test “C2” 

The support and loading conditions for the north end repair test were 

identical to Murray’s original “C2” test conditions; and just as with the testing for 

the south end, the north end repair test featured only the two wire potentiometers 

at the location the load was applied and none of the LVDTs that the original 

testing included. Again, the strand slip and deflection of the neoprene pads were 

not relevant to this research and, therefore, excluded from the repair testing.  

Both the repair test and Murray’s tests were loaded 10 kips at a time in 

order to monitor crack propagation. The first recorded cracks for the original 

testing appeared at an applied load of 150 kips (about 50% of the maximum load). 

For the repair test, the first cracks in the repair zone were recorded at 40 kips 
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(approximately 16% of the maximum load of the repair test), equating to about 

27% of the cracking load for the original testing. These cracks were flexural, 

located in the bottom bell of the repair section and the first cracks for Murray’s 

tests appeared as web-shear cracks near the northern support as shown in Figure 

7.3. 

Then, at the next load increment, 160 kips (53% of the maximum load), 

flexural cracks first appeared and continued to multiply and grow until their 

extension reached the deck at 190 kips (63% of the maximum load). A majority of 

the initial cracking of the north end repair test were flexural, though, there were a 

few web-shear cracks that formed after 60 kips (about 24% of the maximum 

repair load). Also, just as with the south end repair test, the north end repair test 

had existing cracks that reopened outside of the repair zone throughout the test. At 

80 kips (32% of the maximum load) the flexural cracks reached the deck in the 

repair zone and web-shear cracks outside the repair began to penetrate the repair. 

At approximately 110 kips, horizontal cracks began to form at the depth of the 

straight strands and continued to develop during the remainder of testing along 

with flexure and web-shear cracks in the repair section. Then, when approaching 

failure for the repaired girder, there was the presence of numerous flexural, web-

shear, and horizontal debonding cracks and increased deflection as the load 

reached its maximum value. The plot for the repair test shows an identical plot 

trend to the repair test for the south end suggesting that the failure mechanism is 

also flexural. The original testing failure mechanism was recorded as being either 
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a compression-shear failure or a flexural failure. Although, when performing the 

demolition of the north end, it was uncovered that there was a clearly defined 

plane of shear that extended through the deck to the load point. This shear plane 

was defined by the presence of large cracks and buckling of the longitudinal bars 

exactly in line with the shear plane shown in Figure 7.4.  

 

 

Figure 7.3 First Cracks for Murray’s North End Testing (150 kips, East 

View, Courtesy of Cameron Murray) 
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Figure 7.4 North End Shear Plane (Yellow Line) Discovered Mid-Demolition 

 

Analogous to the south end testing, Figure 7.5 illustrates that with each 

progression of testing, the stiffness and toughness of the girder decreases. Test 

“C2a” exhibited the highest stiffness and, thus, the dominating value of 

toughness; the repair test matched the stiffness of test “C2b” until the cracking 

load, at which point the stiffness changed to a linear plot much like the repair 

testing for the south end repair. It should be noted that both repair tests, north and 

south, attained their maximum load at approximately the same deflection as each 

end’s original testing that was conducted by Murray. The comparative testing 

results for the north end are given in Table 7.2 and a plot of the extent of cracking 

for the original and repair testing are presented in the Appendix. The values in 

Table 7.2 are derived from a simply supported arrangement, neglecting the 

influence of the overhanging portion of the girder.  
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Figure 7.5 Load vs. Deflection Plot of Original and Repair Testing of North 

End of Girder 

 

Table 7.2 North End Comparative Test Results 

Properties Test C2 
South End 

Repair Test 

Span 28 ft. 28 ft. 

Cracking Load 150 kips 40 kips 

Observed Cracking Moment 771 kip-ft 271 kip-ft 

Max Load 301 kips 249 kips 

Max Shear 177 kips 147 kips 

Max Moment 2040 kip-ft 1685 kip-ft 
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7.2 Conclusions 

7.2.1 Material Properties 

The reported average strengths from Murray’s analysis were 7,180 psi for 

the girder and 6,060 psi for the deck. Likewise, for the repair, the average 

strengths were reported on testing day as 7,736 psi for the south end repair, 7,614 

psi for the north end girder portion, and 6,144 psi for the deck. The strength 

differences of the repair materials are all within 7.7% of the specimen’s originally 

tested average strengths, which is within the acceptable range for “single-operator 

precision” as defined by ASTM C39/C39M – 17a, the “Standard Test Method for 

Compressive Strength of Cylindrical Concrete Specimens.” Hence, it follows that 

the FR-SCC repair material was of an acceptable and comparable compressive 

strength to that of the originally cast concrete for the girder and deck. Table 7.3 

shows the relationship for strengths between the existing concrete strength and the 

repair material strengths. Additional information on the material strengths for the 

girder and the internal reinforcement are covered in Chapter 4 for Murray’s 

testing and Chapter 6 for the repair material strengths.  
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Table 7.3 Comparative Girder Concrete Compressive Strengths 

Location\
Property

 
Average Test 

Day Strength 

Difference From Existing 

Concrete Strength 

Existing Concrete, 

Girder 
7180 psi -- 

Existing Concrete, 

Deck 
6060 psi -- 

South End Repair 

Concrete 
7736 psi 7.74% 

North End Repair 

Concrete, Girder 
7614 psi 6.04% 

North End Repair 

Concrete, Deck 
6144 psi 1.39% 

 

An imperative aspect of this study that also was a focal point for the 

research and development that was a precursor to this study was the applicability 

of the FR-SCC as a viable repair material in the field. In Wirkman’s study, he 

found that the mix used in this study was able to flow under its own weight much 

like conventional self-consolidating concrete mixtures and that its passing and fill 

abilities were well equipped for repair applications. When considering the flow 

passage and obstacles of the repair zones in this study (see Chapter 5 for 

additional details pertaining to the repair process), the aforementioned mix 

characteristics were reverberated for this research.   

 

7.2.2 Performance of the Repaired Girder 

In addition to the individual properties of the FR-SCC, another essential 

aspect to the study and evaluation of the repair material was its influence on the 

performance of testing conducted on a previously tested AASHTO, Type II, 
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bridge girder with a composite deck. During the south end repair test, a crack at 

the vertical interface between the repair concrete and the existing concrete formed 

at the cracking load, which was just south of the applied load. According to 

Figure 7.2, this is the point in the loading that the load-deflection plot changes 

slope, and proceeds to increase linearly as load is applied. When taking into 

account that this linear stiffness continues until failure and that the crack that 

appeared at the vertical interface of the repair and existing concrete widened 

throughout testing, it is clear that the strength of the strands were key to the 

overall capacity, i.e., the strands were responsible for taking the full tension force 

of the internal moment; that with the increase in load, the strands were elongating, 

elastically, until they reached their elastic limit and began undergoing plastic 

elongation. This can be supported by calculating the stress in the strands from the 

maximum load attained from the test and using the strain compatibility method 

equations along with stress/strain relationships. 

The maximum load for the south end repair test was 78% of the maximum 

load recorded for the original testing and each of the failure mechanisms were 

different. Murray’s testing of the south end resulted in a bond-shear failure that 

resulted in a large volume of concrete dislodging from the girder, whereas, the 

failure mechanism for the repair test was flexural and the failure occurred at the 

boundary of the repair, not in the repair zone. The repair testing of the south end 

left the girder in a fractured, but intact state that, when unloaded, the permanent 

deflection of the girder was 1/2 inch below the pretested, non-deflected state. And 
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so it draws that the repair was able to mitigate the shear stresses while providing 

for a ductile failure. Granted that, in Murray’s discussion of the south end testing, 

he states that once the bond of the straight strands was lost, the shear capacity of 

the girder was solely dependent on the resistance of the shear stirrups or the 

capacity dwindles. Because the repair included post-tensioning that was anchored 

at the southernmost end of the girder, the repaired girder was likely to have never 

experienced the same bond-induced, shear failure that the original testing 

exhibited. As the girder was loaded for each repair test, it appeared that the 

internal stresses of loading were redirected to the repair zone and other sections of 

the girder that were less cracked. This was due to the flexible nature of a cracked 

section adjacent to a stiff, uncracked section. It is possible that if the repair zone 

had terminated farther from the load point, that the girder could have achieved a 

higher stiffness for the same loading. Still, the maximum load would be identical 

once the cracks fully penetrated the repair section since the unrepaired portion of 

the girder was already cracked.  

Similarly to the load-deflection plot for the south end repair, the north end 

repair test features a clear change in slope at the cracking load, shown in Figure 

7.5. The plot also shows that before this stiffness change, the slope of the plot for 

the repair test closely aligns with the slope of the “C2b” test plot. After the 

stiffness change, the plot increases linearly until failure much like the repair test 

for the south end. This leads to suggest that when the cracks propagated, the 

strands debonded from the concrete creating a similar resisting internal moment to 
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the south end. This internal moment is characterized by an under-reinforced 

section where the ten straight strands at the bottom are taking the full tensile 

stress. It can be concluded that this points to a flexural failure, but it is believed 

that the horizontal cracks at the depth of the straight strands were causation for 

debonding of the strands that, in turn, resulted in a flexural failure. When 

comparing the slope of both repair tests beyond the cracking load, the stiffness for 

the north end is less than that of the south end. This can be accounted for when 

considering the effects of a larger span for the north end than the south end.  

All things considered, each repair test successfully restored the capacity of 

the girder to approximately 80% of its previously tested capacities. This equates 

to a shear value that is on average 65 kips higher than the original demand for 

both the North and South end tests. Thus, the repair was able to restore the girder 

to 175% the original demand (Floyd et al, 2016). Moreover, the repair was able to 

mitigate the original shear-based, failures that resulted from the first testing even 

though the load conditions were designed to incite shear failure. The crack 

propagation of the repair material was evenly dispersed and there were no signs of 

delamination at the boundaries of the repair (excluding the vertical interface of the 

south end repair). Therefore, the FR-SCC is a viable solution for a repair material 

that exhibits comparable mechanical properties to existing self-consolidating 

concrete mixes used for existing structures.  
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7.3 Recommendations 

Currently there are a finite number of published studies detailing the 

potential for structural repair of concrete using FR-SCC, despite the necessity for 

solutions to the subpar status of current infrastructure. In addition to this study, it 

comes as a recommendation that further attention to be brought to the method of 

application for FR-SCC as a repair material as well as the mixture of the FR-SCC, 

itself.  

 

7.3.1 Application Recommendations  

First and foremost, it is suggested that more full-scale testing be 

performed on damaged, structural members. A wider variety of damage such as 

lateral impact damage and corrosion should be investigated as potential specimens 

for repair. In addition to these other methods of damage, the location of the 

applied damage and the effects of where along the span of the member should be 

analyzed. Axially loaded members could be subjected to damage and should be 

investigated for the use of FR-SCC as a repair material.  

This study limited the repair area to only replace a designated extent of 

damage received during the original testing without regard to the loading location. 

As mentioned in the previous sections, the farther the boundary of the repair was 

from the load, there could be a potential of a stiffer performance of the section. As 

such, it is suggested that variable lengths of repairs be evaluated to determine 
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what axial length from the load should the repair extend, if any, to provide the 

best performance.  

 

7.3.2 Continued FR-SCC Development Recommendations 

With the FR-SCC design that was used for this study, there was a very 

small 10 minute window of use before additional set-retarder must be added. 

However, this window was only possible for ideal weather conditions. If the 

ambient weather was particularly dry, hot, or a combination of the two, then the 

set-up time for the mix was shorter, limiting the workability time. If the mix was 

not in place before reaching the end of its window of workability, then it 

displayed an exponential decrease in its characteristic self-consolidating 

properties. The method used for this study to extend the workability time was to 

re-dose the retarder (citric acid) to the volume of concrete still in the mixer. Thus, 

to provide for a wider window of workability, the investigation of other set-

retarding admixtures should be evaluated with a secondary goal of producing a 

less environmentally-sensitive mix design. 

In the research and development of the FR-SCC design, Wirkman 

suggested further exploration of various other fibers and their effects on the mix. 

Due to changing markets and continual refinement and development of concrete, 

there are numerous fibers available. There is probability that the fibers currently 

used will be replaced or withdrawn from manufacturing. For the sake of mix 

versatility and to minimize performance variability between different fibers, 
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research exploring the effects of other substitutions of reinforcing fibers comes as 

a recommendation.  
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 Appendix B – Photos of Concrete Removal 
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Figure B.1 Loose Concrete Removed From South End With Hammer 

 

 

Figure B.2 One-Inch Boundary Line Cut With Hand Grinder (South End) 

 



132 

 

 

Figure B.3 North End Bottom Bell & Loose Concrete Removal 

 

 

Figure B.4 Removal of Deck Concrete Using an Impact Hammer 
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   Appendix C – Photos of Internal Reinforcing Repair 

  



134 

 

 

Figure C.1 Coupler Housing Construction; (a) PVC Mold ; (b) Acrylic Sheet 

Before Molding; (c) Crushable Foam Cutouts; (d) Final Product 

 

 

Figure C.2 Post-Tensioning Anchorage Installed to Formwork With 

Insulating Foam to Seal the Backside 

(a) 

(b) 

(d) 

(c) 
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Figure C.3 Bent Longitudinal Reinforcing of North End Repair 
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Figure C.4 Turnbuckle Splices for North End Straight Strands 
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   Appendix D – Supplemental Repair Photos 

  



138 

 

 

Figure D.1 Post-Tensioning Anchor Head  

 

 

Figure D.2 Adding Cementitious Material During the Mixing Process 
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Figure D.3 Adding the FR-SCC Repair Material to the South End 

 

 

Figure D.4 Slump Flow Test Results of FR-SCC 

 


