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Abstract 

Measurement invariance test concerns with whether the group membership is 

related to the attributes of a test. In the framework of Structural Equation Modeling 

(SEM), it is implemented by the multiple-group confirmatory factor analysis (CFA). 

Although this test has been widely applied in empirical studies, two research questions 

still need to be explored. One is how to appropriately choose the reference indicator 

(RI), the second is how to locate the non-invariant items. The challenge lies in 

appropriately choosing an invariant RI and accurately locating the non-invariant item 

parameters.  

In this dissertation, we used two well-designed simulation studies to answer 

these two aforementioned questions. In Study I, we compared three commonly-used 

methods, named MaxL, Minχ2 and BSEM and evaluated their performance of reference 

indicator selection. In Study II, we employed two Bayesian methods, Bayes factor and 

Bayesian estimation to locate the positions of non-invariance. All methods were applied 

to empirical datasets.  

We found Minχ2 and BSEM are superior to MaxL in correctly choosing the 

reference indicator. In addition we discovered Bayes factor can more accurately locate 

the non-invariant item parameters and distinguish the invariant items from the 

contaminated ones. Finally, the application of Cauchy prior will help to improve Bayes 

factor’s performance.  
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Introduction 

Measurement invariance (MI) is concerned with whether the group membership 

is related to the attributes of test. It often serves as an important tool in establishing 

measurement equivalence across groups, particularly when scores from self-report 

measures are being compared (Horn & McArdle, 1992; Meredith, 1993; Shi, Song, & 

Lewis, 2017). The test helps to examine to what degree observed differences reflect 

differences in the underlying, unobserved latent constructs across groups. Questions 

could be addressed with this technique, for instance, does a mean difference in a 

measure of depression between males and females reflect entirely the gender difference 

in trait scores of depressions? Or, is the observed difference contaminated by 

differences in psychometrical properties of the measure across gender groups?   

In fact, if a measure indeed behaves differently across groups due to differences 

in social norms, cultural norms, or response tendencies, any comparison on the 

observed composites of this measure (such as t-test or ANOVA) will likely lead to 

ambiguous conclusion. Research has shown that departures from measurement 

equivalence weaken the accuracy of selection based on composite scores (Millsap & 

Kwok, 2004), and cross-group difference in composite scores could mostly reflect the 

difference in psychometrical properties of the measure in use (Steinmetz, 2011). 

Without testing for measurement invariance, one cannot be certain whether observed 

differences across groups truly indicate the underlying latent differences among 

constructs. Establishing measurement invariance has been increasingly recognized as a 

prerequisite for examining mean differences across groups or mean changes over time.  
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The approaches in both item response theory (IRT) and structural equation 

modeling (SEM) can handle the measurement invariance test. In the current 

dissertation, we mainly focus on the factorial invariance test under structural equation 

modeling (SEM) context. To test for measurement invariance, the factorial invariance 

tests are conducted using techniques of multiple-group confirmatory factor analysis 

(CFA; Byrne, Shavelson, & Muthén, 1989; Horn, McArdle, & Mason, 1983; Jöreskog, 

1971; Meredith, 1993; Millsap, 2012; Steenkamp & Baumgartner, 1998; Widaman & 

Reise, 1997; also see Vandenberg & Lance, 2000 for a review). Based on the multiple 

group CFA model, there is a linear relationship defined between the observed scores 𝑋𝑖 

and its corresponding latent factor 𝜂𝑖 as:  

𝑋𝑖 = 𝜏𝑖 + 𝜆𝑖𝜂𝑖 + 𝜀𝑖                                                                                                           (1) 

The observed scores 𝑋𝑖 are for an item I. Item parameter include the intercept 𝜏𝑖 the 

factor loading 𝜆𝑖 and the residual term 𝜀𝑖. Holding the presumptions that 𝑋𝑖 

multivariate-normally distributes, we use mean vector and variance and covariance 

matrix to describe 𝑋𝑖.   

E(𝑋𝑖) =  𝜏𝑖 + 𝛬𝑖𝜅𝑖                                                                                                            (2) 

Where 𝜅𝑖 is an r*1 vector of factor means and 𝛬𝑖 is a matrix of factor loadings.  

Cov(𝑋𝑖) = 𝛬𝑖𝛷𝑖𝛬𝑖
′ + 𝛩𝑖                                                                                                    (3) 

Where 𝛷𝑖 is the covariance matrix for latent factors and 𝛩𝑖 is a variance-covariance 

matrix among the residuals.  

The procedures of factorial invariance are to test a series set of invariances on 

item parameters (𝜏𝑖, 𝛬𝑖, 𝛩𝑖). First, it starts with a baseline model, where the 

configuration of factorial structure is set to be identical across groups.  All parameters 
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are freely estimated in this model, except for those imposed with minimum constraints 

for model identification. Then a series of multiple-group CFA models are fitted through 

imposing an increasing number of equality constraints that correspond to increasing 

levels of invariance. For example, weak factorial invariance assumes all factor loadings 

𝛬𝑖 are numerically equivalent across groups. Strong factorial invariance assumes all 

intercepts 𝜏𝑖, along with all factor loadings 𝛬𝑖 are equal across groups (e.g., Widaman & 

Reise, 1997). The strictest invariance constraints all three item parameters (𝜏𝑖, 𝛬𝑖, 𝛩𝑖) to 

be equivalent. Tenability of specific equality constraints is determined by testing the 

significance of chi-square difference between the models with and without these 

constraints. For instance, in the test of metric invariance, it is often to compare the less 

restricted model (configural invariance) with a more restricted model in which only 

loadings constrained.  

In testing for factorial invariance, a common method for identification is to 

constrain the factor loading (and intercept) of one particular item to be equal across 

groups. The item chosen for this purpose is referred to as a reference indicator (RI). All 

other parameters (except for the factor variance and mean for the selected group) are 

then freely estimated in reference to the scale of the chosen RI (Cheung & Rensvold, 

1998; Johnson, Meade, & DuVernet, 2009; Meade & Wright, 2012).1 However, as 

Rensvold and Cheung (1998, p.1022) pointed out, “This creates a dilemma. The reason 

one wishes to estimate the constrained model in the first place is to test for factorial 

invariance, yet the procedure requires a priori assumption of invariance with respect to 

the referents.” Whether the selected RI is truly invariant is critical in detecting 

invariance or non-invariance of other items. Research has shown when an inappropriate 
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item is chosen to be a RI, severe Type I or Type II errors are expected in testing 

factorial invariance; that is, truly invariant items could be detected erroneously as non-

invariant items and vice versa (Johnson, Meade, & DuVernet, 2009; Yoon & Millsap, 

2007). Selection of a RI determines whether the true status of invariance could be 

detected using the multiple-group CFA method. 

Despite of its importance, RI selection has still been under-addressed and 

inappropriately implemented in applied research. Using the keywords of measurement 

invariance, measurement equivalence, and factorial invariance, a recent search in the 

database of PsycINFO yielded a total of 192 applied studies published in 58 different 

peer-reviewed journals 2017. Psychological Assessment, Developmental Psychology, 

PLOS one, and European Journal of Psychological Assessment listed in order as the 

first four journals in terms of number of publications on factorial invariance related 

research. Surprisingly, only 13 of the reviewed studies (6.8%) mentioned RI selection. 

Ten of them selected “the first item” (whichever the first item was) as the reference 

indicator, and the other 3 did not state the specific method of their RI selection.  

It is worth of noting that fixing factor variance of all groups to unity was found 

in 15 (7.8%) reviewed studies as the way for identification of multiple-group CFA 

models. This method could produce misleading results for factorial invariance tests 

(Rensvold & Cheung, 1998; Yoon & Millsap, 2007, Shi, Song, Liao, Terry, & Snyder, 

2017), although it works well in identifying single-group models. Research has shown 

that if the imposed equality of factor variances does not hold in data, true differences in 

factor variances may be shifted to be observed differences in factor loadings across 

groups (Rensvold & Cheung, 1998). Results of factorial invariance tests would be 
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invalid in this case. Therefore, this method is not recommended for identification of 

multiple groups in testing for factorial invariance (Yoon & Millsap, 2007).   

Indeed, many different methods have been proposed on RI selection in recent 

years. Some originated from item response theory (IRT), and some are SEM-based 

approaches. However, there appears to be a large gap between methodological advances 

and empirical uses of RI selection in applied research. A need is called to further 

understand the imperativeness of RI selection and more importantly, to deeply 

understand the advantages and disadvantages of using different methods, providing 

useful guidance for future practices of factorial invariance test and its related analyses.   

The goal of Study I is to meet this need by comprehensively evaluating and 

comparing a three selected, commonly-used methods of RI selection. They are named 

“MaxL”, “Min𝜒2” and “Bayesian SEM”. To this end, a simulation study was conducted 

in which a variety of data conditions were generated for multiple-group CFA models 

with continuous indicators. Power of correctly choosing a truly invariant item as RI 

serves as a major criterion for performance evaluation. Then, a large real-world data set 

of 12,811 respondents was used to empirically demonstrate and compare the uses of RI 

selection methods. Lastly, recommendations and suggestions were given based on the 

comparisons from both simulated and empirical investigations.   

After selecting the invariant reference indicator properly, one can easily test the 

invariance of item parameters in terms of standard procedures of the multiple CFA 

model. However, the practice of factorial invariance on real data would not often be 

tenable at certain invariance levels. For example, the strong and strict levels seldomly 

hold invariance. Therefore, to correctly locate the non-invariance becomes highly 
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necessary for further analysis on measurement equivalence.  The “location of non-

invariance” indicates the optimal separation of items with item-parameters differences 

from the ones that are invariant across-group. It indicates two aspects of meanings. One 

is to place the position of the non-invariant item; and the other one is to distinguish the 

invariant item from those contaminated ones.  

The appropriate way to locate non-invariance will greatly benefit researchers. 

First, it would help them to properly conduct the partial measurement invariance test 

under empirical modeling settings. Fitting the multiple-CFA with certain free estimates 

can produce more accurate results than with the equally full parameter constraints (Shi, 

Song & Lewis, 2017; Muthén & Asparouhov, 2013).  For example, when the 

measurement invariance is not held, fitting the second-order latent growth curve models 

with partial constraints yielded less biased estimates than the original full constraint 

model (Liao, X, 2012). Second, it would help to explore the potential causes to the non-

invariance. For example, if a pair of factor loadings differs, the association between the 

item and latent construct might be stronger in one group than the other. Many reasons 

might result in this inequality, such as distinct understanding, translation barriers, 

cultural discrepancy and so on.  

Largest modification index (MI) is one common method to locate the non-

invariance in literatures (Yoon & Millsap, 2007). It starts with constraining all item 

parameters as a baseline model. When consulting with the largest value of MI (higher 

than the cut-off), this method frees only one constraint on parameters estimate in the 

focal group. This procedure then sequentially relaxes one constraint at a time until MI is 

no longer significant, or no larger than the cut-off 3.84, at α = 0.05 (Yoon and Millsap, 
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2007). The MI value can be obtained from the likelihood ratio (LR) test on the nested 

models with one degree of freedom (MacCallum, Roznowski & Neocowitz, 1992). One 

can easily identify the non-invariant items which are freely estimated. This method is 

also named the Sequential Max-mod. It performs well under the conditions of fewer 

contaminated items, larger sample size and larger magnitude. However, it is also found 

to inflate Type I error due to the potential model misspecification in the baseline model 

(Yoon & Millsap, 2007; Kim & Yoon, 2011; Whittaker, 2012).  

To address upon the high false positive rate, Jung and Yoon (2016) proposed 

another method named Forward CI. Opposite from the largest MI with full constraints 

on the baseline, it does not hold any constraints (except the reference indicator). Instead, 

the method creates a new parameter (E.g., 𝜆𝑔 −  𝜆𝑔′) corresponding to the loadings or 

intercepts difference. Employing the maximum likelihood estimation, the confidence 

interval (CI) is to estimate the new parameters. If CI does not include zero, non-

invariance is believed to be located on the tested parameter. Otherwise, it is believed to 

have no difference on item functioning. The simulation results indicated that the 

Forward CI is generally superior to the Largest MI with lower Type I and II error rates. 

Yet, this superiority is reduced when the cut off value of Largest MI adjusts to be more 

conservative from 3.84 to 6.65 (Jung and Yoon, 2016).   

Both Largest MI and Forward CI are proposed on the framework of well used 

null hypothesis significance testing (NHST). The former one is heavily based on the p 

value in null hypothesis test. If the p value for the LR test is small enough, the Chi-

square statistics difference between two nested models are significant and non-

invariance exists. The latter one profoundly depends on the confidence intervals (CI) for 
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model parameter estimates. If the range of CI does not contain zero, it is believed that 

non-invariance occurs. However, due to the natural limitations of NHST, both methods 

yield some inevitable defects. First, the non-significant results from LR test cannot be 

taken as the conclusive evidence for the invariant parameters. Regarding the null 

hypothesis protocol, one can identify the source of parameter non-invariance when p < 

0.05. Nevertheless, one cannot accept the null nor be sure the hold of invariance when p 

is > 0.05, because the interpretation of non-significant p value can be one of two 

possibilities. Either there is evidence to support the null (to “accept” null), or it is the 

lack of sufficient evidence that the data is insensitive to distinguish the theory from the 

null (nothing follows from the data) (Dienes, 2014). As long as NHST produces only 

one fixed estimate of parameter without any credibility about other parameters values, 

decisions are narrowed down to be dichotomous; either to reject or failed to reject null. 

(Brooks, 2003; Dienes, 2011; Kruschke, 2011; 2014; 2018).   

What is more, the reliance of p value is a limited source of evaluation in 

hypothesis test. It would easily reveal the problems of large sample size fallacy (Lantz, 

2013; Bergh, 2015). That is a statistically significant result may be meaningless from a 

study with a large sample size, because the actual difference is trivial and the effect size 

is small. This problem has been quite common in the applications of NHST to locate 

non-invariance. For example, simulations showed the Chi-square test of Largest MI is 

likely to reject the null in large sample size conditions, especially when the magnitude 

of non-invariance is small (Bentler & Bonett, 1980; Marsh, Hau & Grayson, 2005; 

Mead, 2010).  
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Comparing to the use of p value that decides whether or not a point parameter 

value would be rejected, the confidence interval in the method of Forward CI consists 

of a range in which the potential values of cross-group parameter differences might be 

covered. Unfortunately, in this range, it does not provide the probability for all the 

values (Kruschke & Liddell, 2018; Kruschke, 2014). We do not know how much more 

probable is the null value than other values. Therefore, even if CI contains zero, it does 

not necessarily mean that the parameter invariance equally holds. The probability of 

other values in CI might be higher than zero, indicating that there is still some amount 

of small non-invariance on parameters. Jung and Yoon’s simulation results have shown 

this problem. When the magnitude of non-invariance is small and sample size is small, 

Forward CI (at 95%) has relatively large Type II error rates (Jung & Yoon, 2016).  

Concerning the limitations of current methods, the Study II from the Bayesian 

perspective will introduce new methods which do not depend on the p value or CI to 

decide the location of non-invariance. Instead, we focus on the Bayesian hypothesis test 

executed by two categories of methods: Bayesian estimation (BE) and Bayes Factor 

(BF). Once we review each approach and their applications of measurement invariance, 

we will center our attention on the subsume methods in each category. For BE, we will 

elaborate on the method region of practical equivalence (ROPE) and its extended 

version ROPE with zero (ROPE_0). Savage-Dickey will be used to calculate BF. 

Furthermore, we will compare these Bayesian approaches under the context of testing 

the factorial invariance. Pros and cons will be listed and we will apply each method in 

real data as a pedagogical example for empirical users.  
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Study I: A Comparison on Methods of Reference Indicator Selection in 

Testing Factorial Invariance 

Methods of RI Selection 

Two major categories of approaches have been proposed to aid RI selection. 

One is all-others-as-anchors (AOAA) approach, and the other is Bayesian SEM 

(BSEM) approach. The AOAA approach originated from IRT, and has been considered 

as perhaps the only reasonable way to empirically identify RI while invariance status of 

all items is initially unknown. AOAA approach begins with fitting a baseline model in 

which all parameters are constrained to be equal across groups. Then each single item 

alternately serves as the target item, and parameters for the target item are to freely 

estimate while the others are still constrained to be equal. Then likelihood ratio (LR) 

test is used to compare the model fit between the two nested models, which is 

approximately χ2 distributed with degrees of freedom equal to the difference in free 

parameters. The significance of this test indicates the presence of cross-group item 

differences.  

The AOAA approach indeed subsumes two methods with different criteria for 

RI selection. The first one, labeled as MaxL in this study, chooses a RI as the item that 

produces non-significant LR statistics and meanwhile, has the largest factor loading 

(Stark, Chernyshenko, & Drasgow, 2006; Rivas, Stark, & Chernyshenko, 2009). This 

method has ever been recommended due to its high power of detecting item differences 

while controlling for nominal type I error (Meade & Wright, 2012). It could also 

outperform the BSEM approach in detecting item differences when large differences 

exist in factor loadings (Shi, Song, Liao, Terry, & Snyder, 2017). However, there is a 
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methodological concern with this method. Woods (2009) stated that magnitude of factor 

loadings does not necessarily ensure item equivalence in using MaxL approach. For 

instance, when item A and item B both produce non-significant LR statistics, item A 

could be chosen as the RI due to its factor loading being the largest, even though item B 

is the one that indeed functions the same across groups but item A.  In this case, MaxL 

would make a mistake in choosing a correct RI.    

The second method, labeled as Minχ2 in this study, selects a RI as the item that 

produces the smallest LR statistic among all items (Woods, 2009). The idea behind this 

approach is that the magnitude of LR statistic reflects the degree of difference in item 

functioning. So the smaller LR statistic is, the smaller the item difference is. This 

approach distinguishes itself from MaxL in that it does not require the smallest LR 

statistic to be non-significant. Woods (2009) showed that Minχ2 performed well under a 

variety of data conditions in identifying truly invariant items with power rates of 90% 

and above.  

The Bayesian SEM approach is a newly application of Bayesian method in 

testing for factorial invariance (Shi, Song, Liao, Terry, & Snyder, 2017; Shi, Song, 

Distefano, Maydeu-Olivares, McDaniel, & Jiang, 2018). It introduces a new parameter 

𝐷𝑖𝑗 to represent a parameter difference across groups, which can index factor loading 

difference (𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔) and intercept difference (𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡). A selection index for the jth 

item 𝛥𝑗 can then be defined as a sum of standardized difference measures of 𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔 

and 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 for this item:   

Δ𝑗 =  
|𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔|̂

𝑆𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔
+  

|𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡|̂

𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
                                                                                             (4) 
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where 𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔
̂  and 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

̂  are respective estimates of difference in factor loadings 

and intercepts, and 𝑆𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔 and 𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 represent standard deviations of those 

differences.  

          The BSEM approach imposes informative priors with zero-mean and small-

variance for Dloading and Dintercept, which is referred to as “approximate identification 

constraints” (Muthen & Asparouhov, 2012). It ensures latent factors to be properly 

scaled and more importantly, makes Dloading and Dintercept estimable. Once Dloading and 

Dintercept are estimated for item j, one can compute the selection index Δj and then 

evaluate its posterior distribution. The item that produces the smallest posterior mean on 

Δj is considered to have the largest likelihood of being invariant across groups. This 

method produced high power of searching RI under a majority of simulation conditions 

(Shi, et al., 2017). It performed well especially when there were fewer non-invariant 

items with large magnitude of differences and large sample sizes. Power can be much 

higher than 0.90 when only 20% of items function differently across groups. The 

research showed that the choice of small prior variances did not significantly impact the 

power rates of RI selection.  

Direction Effect and RI Selection 

In previous research on RI selection, a two-group CFA model was typically used 

as the population model in data simulation. One group served as a reference group 

where factor means and variances were set to be known, and the other group served as a 

focal group where factor means and variance were freely estimated. A uniform direction 

of parameter differences was often simulated for simplicity. While factor loadings were 

simulated be the same for truly invariant items across groups, they were set to be 
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smaller in focal group than those in reference group for items functioning differently 

(e.g., Stark, Chernyshenko & Drasgow, 2006; Woods, 2009; Meade & Wright, 2012; 

Shi, Song, Liao, Terry & Snyder, 2017). For instance, if the factor loadings were set to 

be .8, .8, .8, and .8 for all four items in the reference group, they were set to be .8, .6, .6, 

and .8 in the focal group. As a result, the truly invariant items (items 1 and 4 in the 

example) happened to have larger factor loadings than the non-invariant items (items 2 

and 3 in the example). RI selection methods in favor of high loadings would have high 

power of selecting truly invariant items. However, such high power could just be the 

artifacts of data simulation with a uniform direction.  

What if the direction of parameter differences is reversed? For instance, if the 

factor loadings are set to be .6, .6, .6, and .6 for all four items in the reference group, 

and .6, .8, .8, and .6 in the focal group, the methods in favor of high loadings are likely 

to choose either item 2 or item 3 as RI. In this case, the power of correctly selecting 

invariant items as RI would be low. Therefore, it is critical to consider the directions of 

parameter differences in generating data and evaluating power of the methods for RI 

selection.  

In this study, we differentiated three types of directions of parameter 

differences. Positive direction refers to the case where parameter values are larger in 

focal group than reference group. Negative direction refers to the case where parameter 

values are smaller in focal group than reference group. The third direction is the mixed 

direction where certain parameters have in part larger and smaller values in one group 

than the other. If the power of RI selection is influenced by the directions of parameter 

differences, direction effect is said to occur. 
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As follows, we first presented a comprehensive simulation study, and then 

empirical applications of the three RI selection methods. A discussion will be given on 

theoretical and empirical issues of RI selection. Based upon the results of our study, we 

provided some guidelines on the uses of these methods for applied researchers. We also 

offered some suggestions on the simulation methodology for methodological 

researchers.  

Monte Carlo Simulation Study 

Data Conditions 

The population model was a two-group CFA model with 10 items loaded on a 

single factor. One group served as reference group and the other served as focal group. 

The variables manipulated in the data simulation were listed as following:  

Sample size: Continuous data were generated with N = 100, 200, 500 per group, 

representing small, medium, and large samples in typical psychological research. Both 

groups were simulated to have equal sizes in all conditions.  

Location of difference: Item differences were simulated to occur on either factor 

loadings or intercepts, never on both at the same time.  

Percentage of non-invariant items: Consistent with previous simulation research 

(e.g., French & Finch, 2008; Meade & Wright, 2012), we simulated data with either 20% 

or 40% of non-invariant items in this investigation. This corresponded to the cases 

where either 2 or 4 items (out of 10 items) function differently across the two groups.  

Magnitude of difference: The magnitude of cross-group differences was set to 

0.2 and 0.4 for factor loadings, and 0.3 and 0.6 for intercepts. The former values for the 

parameter differences were considered to be small, and the latter values were considered 
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to be relatively large (Kim & Yoon, 2011; Kim, Yoon & Lee, 2012; Meade & 

Lautenschlager, 2004; Shi, Song, & Lewis, 2017). 

Direction of cross-group difference: Three directions were manipulated for 

factor loadings and intercepts, including positive, negative, and mixed directions.  

In total, 72 data conditions were generated by fully crossing 3 sample sizes, 2 

locations of difference, 2 percentages of non-invariant items, 2 magnitudes of difference 

in parameters, and 3 directions of differences. Each condition had 500 replications.  

Data Simulation 

The factor mean and variance were set respectively to 0 and 1 in reference group. 

The raw factor loadings, intercepts, and unique variances were set to .8, 0, and .36, 

respectively, for all items. In focal groups, factor mean and variance were set to .5 and 

1.2, respectively, and uniqueness were set to .36 for all items. All factor loadings and 

intercepts in focal groups were generated to be equal to those in reference groups, 

except for the items that were manipulated to be different under certain conditions. An 

example of two-group population CFA model is depicted in Figure 1.1 where 20% of 

factor loadings were set to be different with the negative direction in across-group 

differences. 

Data Analysis 

Three methods were used to analyze the simulated data, including MaxL, Minχ2, 

and BSEM. In all analyses, the factor mean and variance were fixed to be 0 and 1, 

respectively in the reference groups. All the other parameters were freely estimated 

except for those required to be constrained by the procedures.   
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In using the MaxL method, the baseline model constrained all items to be equal 

across the focal and reference groups. Then, the equality constraints were relaxed for 

one item at time, yielding the reduced model. The differences in the target item were 

then examined using likelihood ratio test. This procedure was repeated for testing each 

of the other items in the model. Eventually, a reference indicator was chosen as the item 

that produced non-significant LR statistic and had the largest factor loading as well. 

When using the Minχ2 approach, the significance of LR statistic was not a concern; 

instead, the values of LR statistics were rank ordered for all items. A reference indicator 

was chosen as the item yielding the smallest LR.2 

    When using the BSEM method, the parameter 𝐷𝑖𝑗 was computed for each 

factor loading (𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔) and each intercept (𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) across groups. After imposing 

the normal priors of zero-mean and small-variance of 0.001 on the parameter𝐷𝑖𝑗, 

MCMC was run a minimum of 50,000 and maximum of 100,000 iterations. The 

estimates at every 10th iteration retained to form posterior distributions for factor 

loadings and intercepts. The means and standard deviations of these posterior 

distributions were then computed. Consequently, each item had a selection index 𝛥𝑗 

computed, indicating the summary of standardized difference in both factor loading and 

intercept. The item with the smallest value of 𝛥𝑗 was selected as the reference indicator.  

Results 

We used power rates to evaluate the performance of each method. Power rate 

was calculated as the percentage of correctly identifying a truly invariant item as RI 

among 500 replications under each condition. In addition, ANOVAs were performed on 

power rates to test the main effects and interaction effects of all the six data variables.  
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The power rates under all data conditions were summarized in Table 1.1. An 

ANOVA was performed on these power rates to test the main effects of all the six data 

variables. As shown in Table 1.2, the main effects (see ANOVA 1) were not significant 

for location, sample size, and magnitude of difference (all ps > .05). However, the effect 

of method was significant (F(2, 206) = 25.507, p < .001), with Minχ2 and BSEM 

performing better than MaxL (ps < .001). Figures 1.2 to 1.5 also showed that under 

multiple conditions, MaxL produced low power rates, and some of those were even 

lower than the power rates of selecting a random item as RI. This occurred in 50% of 

the conditions (12 of 24 in Table 1.1) when the direction of parameter differences was 

positive. However, this was not the case for Minχ2 and BSEM. Neither of these two 

methods was associated with lower-than-random power rates.  

The effect of direction was significant (F(2, 206) = 19.623, p < .001), and average 

power rate in positive condition was lower than that in negative and mixed conditions 

(ps < .001). The direction effect was evident. However, Figures 1.2 to 1.5 indicated that 

a) the direction effect was greater for MaxL than for Minχ2 and BSEM, and b) factor 

loadings were more subjective to such direction effect than intercepts, suggesting the 

possibility of interaction among these data variables.   

The effect of percentage was significant (F(1, 206) = 33.608, p < .001). Table 1.1 

showed that 40% of items being different produced lower power rates than 20% of 

being different (p < .001). This occurred on factor loadings (as shown by differences 

between Figures 1.2 and 1.3) as well as on intercepts (as shown by differences in 

Figures 1.4 and 1.5).  
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Have examined the main effects, we now ran a full ANOVA model to include 

all main effects, two-way interactions, and three-way interactions among the six data 

variables. Our focus here was the significance of the interaction effects. In this model, 

four-way interactions cannot be examined due to the limitation of the dada; that is, there 

were very few scores in each cell without enough variation among them. Thus, this 

ANOVA was performed on power rates without four-way interactions being included. 

In total, there were 6 main effects, 15 two-way interactions, and 20 three-way 

interactions in this model. The results were presented as ANOVA 2 in Table 1.2. 

However only certain effects that bears direct importance were reported and interpreted 

in the following.  

We first looked at the three-way interactions involving two-way interaction of 

method × direction. For a significant three-way interaction, we examined the two-way 

interaction at each level of the third variable. If a two-way interaction was significant at 

a certain level of the third variable, we then tested for simple effects of the data 

variables. Pairwise comparisons were made thereafter by using Bonferroni correction to 

adjust for the level of significance. 

Table 1.2 showed that the following three-way interactions were significant:  

method × direction × percentage (F(4, 110) = 9.84, p < .001), method × direction × 

sample size (F(8, 110) = 3.779, p < 0.001), method × direction × magnitude (F(4, 110) = 

7.964, p < .001), and method × direction × location (F(4, 110) = 5.529, p < .001). Then the 

two-way interaction of method × direction (Table 1.3) was significant at each level of 

percentage (20% and 40%), sample size (N = 100, 200, 500), magnitude (small and 

large), and location (loadings and intercepts). The interaction effects were displayed in 
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Figures S1.1-S1.4 in the in the supplementary appendix. As reported in Table 1.4, the 

subsequent pairwise comparisons showed that a) under positive condition, Minχ2 and 

BSEM consistently outperformed MaxL at all levels of percentage, sample size, 

magnitude, and location; b) however, this was true only for percentage = 40% and 

magnitude = large under negative condition; and c) under mixed condition the three 

methods did not performed differently.  

We then examined the three-way interactions involving the two-way interaction 

of method × magnitude. Table 1.2 showed that all three-way interactions were 

significant: method × magnitude × percentage (𝐹(2,110) = 9.400, p < .001), method × 

magnitude × sample size (𝐹(4,110) = 7.642, p < .001), method × magnitude × direction 

(𝐹(4,110) = 7.964, p < .001), and method × magnitude × location (𝐹(2,110) = 7.056, p = 

0.001). Figures S1.5 to S1.8 in the supplementary appendix display the two-way 

interactions of method × magnitude (Table 1.5) at each level of percentage, sample size, 

direction, and location. Table 1.6 showed the results from pairwise comparisons with 

Bonferroni correction for p values. When the between-group differences in parameters 

were small, Minχ2 and BSEM outperformed MaxL at percentage = 40%, sample size = 

100, direction = positive, and location = loadings, and they did not perform differently 

under other conditions. When the parameter differences were large, Minχ2 and BSEM 

outperformed MaxL at percentage = 40%, sample size = 500, direction = positive & 

negative, and location = intercepts, and they did not perform differently under other 

conditions. 
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A Pedagogical Example 

    To demonstrate the empirical uses of the three methods, we applied all of 

them to select RIs using data from a large-scale project (12,811 participants) --

Psychological Wellbeing of Children of Rural-to-Urban Migrant Workers in China. The 

measurement chosen for this demonstration was from the Revised Child Anxiety and 

Depression Scale (RCADS, Chorpita, Yim, Moffitt, Umemoto & Francis, 2000). This 

self-report scale contains 47 items in total. However, only the items (18 items) related to 

generalized anxiety were used here for demonstration. Responses were scored on a 

Likert-scale of 1 to 4, corresponding to “Never”, “Sometimes”, “Quite Often”, and 

“Always”. The Cronbach’s α was 0.897 in this sample.  

    There were 7,356 male (57.4%) and 5,455 female (42.6%) child respondents 

in this sample. A two-group CFA was fitted to data, and MaxL, Minχ2, and BSEM were 

used to find RIs. Eventually MaxL and Minχ2 each produced 18 different values of LR 

statistics when comparing the baseline model and each reduced model. Then all 18 

values were rank ordered from the smallest to largest. As shown in Table 1.7, item 7 in 

this scale was associated with the smallest LR statistic so that Minχ2 chose this item as 

RI. For those items that yielded with non-significant LR statistic, item 7 was the one 

that had the largest factor loading in the baseline model. Thus MaxL chose Item 7 as the 

RI.   

Then we used BSEM method to select a RI by specifying a two-group CFA 

model with the commands knownclass = c (g = 1 2) under Variable, and type = mixture; 

estimator = bayes; under Analysis (Muthen & Asparouhov, 2012). The parameter 𝐷𝑖𝑗, 

representing a summarized difference of each item across groups, was set under model 
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constraint. We imposed the normal prior of zero-mean and small variance (N (0, 0.001)) 

on each 𝐷𝑖𝑗 through the DIFF option under Model Priors. We let MCMC run for a 

minimum of 50,000 and a maximum of 100,000 iterations with thin = 10. The Mplus 

output contained the necessary information for the posterior distribution of 𝐷𝑖𝑗 

(including 𝐷𝑓𝑎𝑐𝑡𝑜𝑟_𝑙𝑜𝑎𝑑𝑖𝑛𝑔 and 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡). Table 1.8 showed the estimates 

for 𝐷𝑓𝑎𝑐𝑡𝑜𝑟_𝑙𝑜𝑎𝑑𝑖𝑛𝑔, 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 , and their standard deviations. The selection index 𝛥𝑗 

was then calculated using Equation 4 for each item. Eventually item 7 was chosen to be 

the RI because it produced the smallest 𝛥𝑗 (= 0.646) out of 18 items.  

Discussion 

  Inappropriate selection of reference indicators would jeopardize the outcome of 

factorial invariance test using multiple-group CFA approach. Unfortunately, the 

importance of RI selection has still not been fully aware among researchers (only 13 out 

of 198 reviewed articles mentioned something on RI selection). Meanwhile, pros and 

cons of current RI selection methods have not been well understood, which in part 

hinders the uses of these methods. In the present study, we aimed to address this issue 

by comparing a few commonly-used RI selection approaches, thereby providing certain 

guidelines on RI selection for applied researchers.  

The simulation study revealed that Minχ2 and BSEM performed better than 

MaxL in selecting correct item as reference indicator. This was particularly true under 

the positive condition where parameter values for functionally-different items were 

higher in the focal group than the reference group, regardless of the levels of all other 

conditions under investigation. Under the negative condition, MaxL performed much 

better than itself in the positive condition, and showed equivalent power as the other 
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two under certain circumstances, such as small percentage of functionally-different 

items and small magnitude of cross-group difference in parameters. Under mixed 

condition, no significance differences were found for the three methods of being 

compared; however, MaxL appeared to be slightly inferior when the sample size and the 

loading difference were small.  

The direction effect was evident in using MaxL approach. This was consistent 

with the expectation stated earlier in this article, that is, methods in favor of high 

loadings such as MaxL tend to perform poorly under conditions where truly invariant 

items happened to be the items with low factor loadings (i.e., positive condition). 

However, they would perform decently in most of cases when truly invariant items 

happened to be the items with high factor loadings (i.e., negative condition). This may 

in part explain why MaxL showed high power of correctly selecting RI in previous 

research where only negative condition was simulated (e.g., Meade & Wright, 2012). It 

appeared that non-uniformed direction of parameter differences (i.e., mixed condition) 

would remedy the drawback of favoring high loadings using MaxL approach. In this 

case, the power rates of detecting truly-invariant items were comparable among the 

three methods.  

Another key feature of MaxL approach lies in the utility of LR statistic in testing 

for the significance of item difference between groups. Research has shown that the 

power of LR test is highly influenced by sample size and consequently, even very small 

difference in item parameters would lead to significant LR test when N is large 

(Ankenmann, Witt, & Dunbar, 1999; Meade, 2010). We found in our simulation 

analyses that when the percentage of functionally-different items was small, increasing 
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sample size increased the power of detecting truly-invariant items. However, power 

decreased substantially or behaved inconsistently as sample size increased (to 500 for 

instance), particularly when both were large at the same time for the percentage of 

functionally-different items and the magnitude of item difference. This was true 

regardless whether the direction was positive or negative, and whether the difference 

occurred on factor loadings or intercepts. Thus high sensitivity to sample size makes 

MaxL approach not plausible to use in applied research.  

Minχ2 and BSEM approaches did not show any significant differences in their 

performance across all data conditions. However, when there were 40% of functionally-

different items, the power rates of these two approaches were noticeably higher in 

negative condition than those in positive condition, which was only true for differences 

occurring in factor loadings. Our observation could be explained by the reliability 

paradox (see Hancock & Mueller, 2011). That is, when fitting SEM models, for a given 

level of model misspecification, better measurement quality is associated with poorer 

model fit (Heene, Hilbert, Draxler, & Ziegler, 2011; McNeish, An, & Hancock, 2018; 

Shi, Maydeu-Olivares, & Distefano, 2018; Shi, Lee, Maydeu-Olivares, 2018). In other 

words, the model misspecification (e.g. non-invariance) is “weighed” more heavily as 

the standardized factor loading becomes larger. It is also noted that the legitimacy of the 

Minχ2 and BSEM approaches depends on certain assumptions; namely, the latent 

variables in multiple-group CFA model should be scaled in the way that the metric of 

the model parameters can be considered as a good approximation to the metric 

otherwise set by truly invariant parameter(s) only (see Shi et al., 2017). Therefore, the 

ideal condition for the Minχ2 and BSEM approaches is when the majority of the tested 
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items are invariant, and/or the non-invariant items are given lighter weights (i.e., with 

smaller factor loadings). Under the positive condition, the non-invariant items were 

simulated to have larger standardized factor loadings (than the truly invariant items); 

thus, given that the non-invariant items are more heavily “weighed”, the power of 

selecting the proper RI is expected to be suboptimal, especially when the number of 

non-invariant items is large (e.g., 40%). Future studies are needed to explore the role of 

the measurement quality (i.e., the size of the standardized factor loadings) on the 

accuracy of RI selection.  

The properly choosing RI will let the item parameters be estimable in reference 

to the scale of an invariant item. Then, the standard procedures of factorial invariance 

test can be executed by a series set of invariant constraints. However, in the real 

empirical applications, the invariance of each item parameter are more often failed to be 

tenable. The normal procedures of factorial invariance can show whether the non-

invariance exists, according to the significant results from likelihood ratio test. 

Unfortunately, it is not able to specify the exact positions of those contaminated 

parameters. Therefore, the methods to locate the non-invariance become highly 

necessary.  In the following Study II, we employed three up-to-day methods from 

Bayesian hypothesis test, trying to answer the research question: how to locate the non-

invariance?  
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Study II: An Investigation of Bayesian Analysis in Factorial Invariance 

Test 

Introduction of Bayesian Analysis for Hypothesis Test 

 Previous literatures have discussed the difference between Bayesian and 

traditional NHST in performing hypothesis tests. (Brooks, 2003; Bayarri, M. J., & 

Berger, 2004; Dienes, 2011; Gelman, Carlin, Stern, Dunson, Vehtari & Rubin, 2013; 

Stegmueller, 2013; Kruschke, 2011; Kruschke, 2014; Kruschke & Liddell, 2018) The 

primary difference is the parameter is treated as a fixed constant for NHST but as a 

random variable for Bayesian approach. NHST aims at the probability of getting only 

the best-fitting parameter value, although such a parameter value depends heavily on 

the p value assuming the null is true. In contrast, Bayesian analysis focuses on the 

probabilities of all candidate parameter values. Given the observed data, it updates the 

prior to the posterior distribution of the credibility over all possible parameter values.  

 More specifically, suppose a model m with unknown candidates of parameters θ 

given by data D, the Bayesian theorem produces the posterior distribution of θ. It is 

𝑝(𝜃𝑚│𝐷, 𝑚) =
𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)

∑ ∫ 𝑑𝜃𝑚𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)𝑚
                                                                    (5) 

The equation can also be extended as: 

𝑝(𝜃1, 𝜃2, … , 𝑚│𝐷) =
𝑝(𝐷|𝜃1,𝜃2,…,𝑚)𝑝(𝜃1,𝜃2,…,𝑚)

∑ ∫ 𝑑𝜃𝑚𝑝(𝐷|𝜃1,𝜃2,…,𝑚)𝑝(𝜃1,𝜃2,…,𝑚)𝑚
                                                    (6) 

The numerator 𝑝(𝐷|𝜃1, 𝜃2, … , 𝑚) is the likelihood function for the data conditioning on 

the parameters of models and 𝑝(𝜃1, 𝜃2, … , 𝑚) is the prior probability of parameter θ. 

The nominator is the integration representing the average of marginal likelihood 

𝑝𝑚(𝐷|𝜃𝑚, 𝑚) based on the model across all values of θ, weighted by the prior 
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probability of θ. After taking the data into account, the posterior distribution 

𝑝(𝜃𝑚│𝐷, 𝑚) therefore has been updated from the prior state of belief on parameters by 

the likelihood function.  

 Nevertheless, to properly obtain the posterior distribution 𝑝(𝜃𝑚│𝐷, 𝑚) is 

typically difficult by the traditional numerical integration. As the number of model 

parameters increases, the high dimensional parameter space involves the combinations 

of all possible parameter values. It requires assessing the likelihood function for each 

combination of parameter values and letting them combine with the prior to derive the 

posterior analytically (Van Ravenzwaaij, Cassey and Brown, 2018).  However, no such 

computation is available in practice. Fortunately, this problem has been solved by the 

application of Markov Chain Monte Carlo (MCMC). It is a computer-based sampling 

method which repeatedly draws the random samples from the posterior distribution and 

summarizes the statistics of each draw. MCMC greatly benefits users particularly in 

Bayesian inference, as it approximates the property of posterior distributions. 

 MCMC procedure begins with an initial sample from the distribution, and then 

generates a proposal sample with some added random noise. Based on the plausibility, 

MCMC then needs to decide to accept or reject the newly proposed sample. If the 

proposal draw has a higher posterior value than the initial sample, MCMC accepts the 

proposal as the new sample for the next iteration. If the proposal draw is not higher, 

then it is designed to either accept or reject the sample by random chance. If the 

proposal is rejected, MCMC only needs to copy the initial sample use it for the next 

iteration. It will repeatedly run this procedure until enough samples are available. 
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Previous studies have described this process of MCMC as the Metropolis algorithm 

(Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, 1953).  

Although Metropolis algorithm has been useful in practice, it is less efficient for 

the proposal distribution which is usually too broad or too narrow (Kruschke, 2014). In 

other words, Metropolis algorithm will tend to reject the proposal sample frequently 

when parameters are strongly correlated. Consequently, in order to get the right 

posterior, the algorithm must run continuously with a larger number of samples. To 

improve its efficiency, a new method called Gibbs sampling was introduced, (Geman & 

Geman,1987, Gelfand & Smith, 1990; Smith & Roberts, 1993) which follows most of 

the same steps of Metropolis except drawing samples from the parameters’ conditional 

distributions (Van Ravenzwaaij, Cassey & Brown, 2018). Each sample would not be 

drawn randomly, but instead from the probability distribution of parameter that depends 

on the value of another parameter. Therefore, it improves the efficiency to generate the 

posterior distribution. In this study, we used Gibbs sampling to run the MCMC chain.  

 Keeping the general Bayesian rules in mind, we will introduce its applications in 

Bayesian hypothesis test. There are two main approaches recommended in recent 

literature, Bayesian estimation (BE) and Bayes factor (BF).  

Bayesian Estimation 

Bayesian estimation focuses on the space of all possible parameter values. 

Taking the data into account, it starts with updating the belief (prior) on each parameter 

value to a posterior distribution based on Bayes’ rules. Then, by using the posterior 

distribution, it makes the inferential statements for the parameter θ of interest (Rouder, 

Haaf and Vandekerckhove, 2018). 
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The highest density interval (HDI) can be used for the parameters inference. It 

provides a range of highly credible values for parameter θ. The estimate point inside the 

interval has a higher credibility than those outside. As a summary statistic, 95% of 

probable parameter values of HDI is often used to test the null (or other interested 

value). For example, one can simply reject the null value that falls outside a posterior 95% 

HDI. However, this method is not able to determine whether the null value should be 

accepted or withdraw. To address upon this problem, Kruschke (2011, 2014, 2018) 

proposed a new decision rule which employs a small range of parameter values around 

the null called the region of practical equivalence (ROPE). The values within this range 

are taken as equivalent as null value.  If the entire ROPE lies outside the 95% HDI of 

posterior distribution of parameters, one can reject null. If the entire ROPE completely 

contains 95% HDI, contrast to the traditional NHST, one can truly “accept” null. 

However, if ROPE and HDI partially overlap, ROPE cannot completely cover 95% HDI, 

and no more concrete decisions can be made. The presented data are insufficient to 

make any decisions between reject or accept null, but “uncertain” for the hypothesis 

testing. Therefore, the size of ROPE matters. A wide ROPE range will increase the 

probability to accept the null and Type II error. Yet, a too narrow ROPE might be more 

likely overlap the HDI, increasing the uncertainty rate. There are no standard rules to 

specify the size of ROPE, because the range of ROPE highly depends on its practical 

purposes (Serlin & Lapsley, 1993; Kruschke, 2014). For example, to test measurement 

invariance, the set of ROPE range is indeed associated with how trivial the error in 

which the invariance can be defined. The range of [-0.1, 0.1] indicates that cross-group 
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parameters are still consider to be invariance, even if they have 0.1 amount of 

functioning difference.  

Shi, Song, Distefano, Maydeu-Olivares, McDaniel & Jiang (2018) provided a 

new logic to improve the practice of ROPE. Holding the same decisions when ROPE 

either completely includes 95% HDI or completely not, they extended two more 

situations as ROPE partially overlaps with 95% HDI. The first situation is when the 

point of zero is included within the 95% HDI, but is still inconclusive on the tested 

parameters. The second situation zero is excluded and is conclusive to reject null. Back 

to the example of measurement invariance, when 95% HDI does not contain zero, even 

if it partially overlaps with ROPE interval, they take the parameters to be non-

invariance. Since this method is related with the point of zero, we named it ROPE with 

zero (ROPE_0).  

 The approach of Bayesian estimation is insensitive to the choice of prior 

distribution (Rouder, Haaf and Vandekerckhove, 2018) because when its incorporated 

with data it can gain the sufficient information and "overwhelms" the initial belief on 

parameters. In addition, because Bayesian estimation plays as a role to compromise 

between prior information and the data, therefore posterior distribution is heavily 

impacted to a greater extent by the data if the sample size is large (Gelman, et al., 2013).   

Bayes Factor 

 Bayes factor (BF) was initially proposed by Sir Harold Jeffreys (1935, 1961) 

who contributed in the field of Bayesian hypothesis testing. The method was designed 

to test the null from the perspective of the Bayesian model comparison. It compares the 

probability of the data between two models, in which one model sets the parameter to 
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zero (can also be other interested values), as the null hypothesis (𝐻0). The other model 

allows all possible parameters that are not equal to zero as the alternative hypothesis 

(𝐻1). More specifically, given the data, D, we have two models m = 1 and m = 2. The 

likelihood function p(D|m = 1) and p(D|m = 2), the priors are p(m = 1) and p(m = 2) for 

model 1 and model 2 respectively. Following the Bayes’ rules in Equation 5, the 

posterior probability for model 1 and 2 can be taken as:  

𝑝(𝜃𝑚=1│𝐷, 𝑚 = 1) =
𝑝𝑚=1(𝐷|𝜃𝑚=1,𝑚=1)𝑝𝑚=1(𝜃𝑚=1|𝑚=1)

∑ ∫ 𝑑𝜃𝑚𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)𝑚
                                                 (7) 

𝑝(𝜃𝑚=2│𝐷, 𝑚 = 2) =
𝑝𝑚=2(𝐷|𝜃𝑚=2,𝑚=2)𝑝𝑚=2(𝜃𝑚=2|𝑚=2)

∑ ∫ 𝑑𝜃𝑚𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)𝑚
                                                 (8)  

Let Equation 7 be divided by Equation 8.  

𝑝(𝜃𝑚=1│𝐷,𝑚=1)

𝑝(𝜃𝑚=2│𝐷,𝑚=2)
=  

𝑝𝑚=1(𝐷|𝜃𝑚=1, 𝑚 = 1)𝑝𝑚=1(𝜃𝑚=1|𝑚 = 1)/ ∑ ∫ 𝑑𝜃𝑚𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)𝑚  

𝑝𝑚=2(𝐷|𝜃𝑚=2, 𝑚 = 2)𝑝𝑚=2(𝜃𝑚=2|𝑚 = 2)/ ∑ ∫ 𝑑𝜃𝑚𝑝𝑚(𝐷|𝜃𝑚,𝑚)𝑝𝑚(𝜃𝑚|𝑚)𝑚
   

The denominator of Equation 7 and 8 are the integrations of the likelihood function 

weighted by the prior over the all possible parameter values within hypothesis (Myung, 

2003; Ly, Verhagen and Wagenmakers, 2016). The ratio of the two integrations is equal 

to 1, because the space of potential parameter values from both models are expected to 

be the same. Therefore, the following Equation 9 has three components: 

𝑝(𝜃𝑚=1│𝐷,𝑚=1)

𝑝(𝜃𝑚=2│𝐷,𝑚=2)
=  

𝑝𝑚=1(𝐷|𝜃𝑚=1, 𝑚 = 1) 

𝑝𝑚=2(𝐷|𝜃𝑚=2, 𝑚 = 2)
×

𝑝𝑚=1(𝜃𝑚=1|𝑚 = 1)

𝑝𝑚=2(𝜃𝑚=2|𝑚 = 2)
                                                     

(9) 

 Prior odds:   
𝑝𝑚=1(𝜃𝑚=1|𝑚 = 1)

𝑝𝑚=2(𝜃𝑚=2|𝑚 = 2)
 represents the researchers’ initial belief on 

each hypothesis before the data is given. 

 Posterior odds:   
𝑝(𝜃𝑚=1│𝐷,𝑚=1)

𝑝(𝜃𝑚=2│𝐷,𝑚=2)
 quantifies the relative plausibility of two 

models after receiving data.  
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 Bayes Factor:  
𝑝𝑚=1(𝐷|𝜃𝑚=1, 𝑚 = 1) 

𝑝𝑚=2(𝐷|𝜃𝑚=2, 𝑚 = 2)
 indicates how much change would be 

from the “prior odds” to “posterior odds”.  

 BF is straightforward for the hypothesis test. When BF01 > 3, it is three times 

likely for the data under 𝐻0 than 𝐻1 and accept the null. While BF01 < 1/3, the data is 

three times more likely under 𝐻1 than 𝐻0, as the evidence to reject null3. If BF01 is 

between 1/3 and 3, it is uncertain for any decision. Some literatures also suggest to 

consider a strong cut-off, say BF01 > 10 strongly supports for 𝐻0 (Jeffreys, 1961; Kass 

and Raftery, 1995).  

 As a new alternative to NHST and p value, Bayes factor has been increasingly 

used not only in the forms of various applications in psychology area (Matzke, 

Nieuwenhuis, Rijn, Slagter, Molen, and Wagenmakers, 2015; Van Den Hout, Gangemi, 

Mancini, Engelhard, Rijkeboer, Dams, and Klugkist, 2014, 2017; Wong, & Schoot, 

2012; Kary, Taylor, & Donkin, 2016; Mou, Berteletti, & Hyde, 2018) but also in the 

tutorial for common practices (Klugkist, Wesel & Bullens, 2011; Hoijtink, Béland, & 

Vermeulen, 2014; Mulder & Wagenmakers, 2016; Van De Schoot, Zondervan-

Zwijnenburg and Depaoli, 2017). In addition, psychological applications are 

particularly in support of BF as it is especially suitable for testing a point null 

hypothesis (Williams, Bååth & Philipp, 2017). Imagine the model H0 for null 

hypothesis gathers the probability mass exactly at point of zero, while H1 holds the 

remainder of the probability spreading out across the range of the alternative values. It 

would be easy to compare the two hypotheses in terms of the ratio of their marginal 

likelihood (BF).    
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BF has several exceptional advantages for empirical practice. First, it is able to 

evaluate the information when the data is in favor of accepting null. If the result of p 

value is non-significant in the classical NHST, it fails to reject the null (but does not 

mean it can equally accept null). The p value is simple criteria which tends to 

overestimate the evidence against null but lacks the evidence for null (Mulder & 

Wagenmakers, 2016). However, results of BF can provide the evidence for acceptance 

of null hypothesis. The following literatures will provide a better understanding about 

BF’s superiority on the aspect of accepting null in hypothesis testing. Bem (2011) 

conducted nine experiments to demonstrate the existence of psi in which future events 

effect on people’s responses. In addition, Wagenmakers, Wetzels, Borsboom and Maas 

(2011) reanalyzed the data using Bayesian t-test. One of Bem’s experiments tested the 

retroactive induction of boredom on neutral stimuli. They hypothesized that the test 

subjects who are high in stimulus seeking would also be significantly decreasing their 

liking for the target. However, their results indicated that t(199) = -1.31, p = 0.096, d = 

0.09 which failed to reject null, but still no evidence to accept the null.  Nevertheless, 

Wagenmakers et al. later used BF to substantially support the null, as 𝐵𝐹01 was 7.6. 

Therefore, those test subjects high in stimulus seeking showed no difference in liking 

for the target from those who were not.   

Second, Bayes factor is able to provide the information of uncertainty. Recall 

NHST cannot distinguish the “non-significant” results of the null hypothesis, either 

accepted or withdrawn for uncertainty. In comparison, BF does not have this issue. 

Several cut-off values defined the BF values clearly into three decision categories: 

reject, accept, or uncertain the null. To get a better sense of this feature, let us review 
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some additional published articles that used NHST and BF respectively. Gollwitzer and 

Melzer (2012) tested the “Macbeth effect” which indicated the desire for people to 

cleanse themselves physically (called “moral cleansing”) when their moral selves have 

been threatened. The test subjects included both experienced and inexperienced 

participants to play one of two violent video games. One, in which, involved the 

violence against other humans and the other one was against an object. After the game, 

they were asked to pick up gifts in which half of them were hygiene products. 

Researchers accounted the number of choosing hygiene products as the measurement to 

test “Moral cleansing”. By applying ANOVA, the results indicated the inexperienced 

player chose more hygiene products after playing the violent game against humans 

rather than the objects t(34) = -2.03, p = 0.05, d = 0.68. Yet, no significant results (α = 

0.05) were found for experienced players t(32) = 1.49, p = 0.15, d = 0.51. However, 

Konijin, Schoot, Winter and Ferguson (2015) used Bayes factor to re-analyze the data. 

The results of BF about experienced player was BF = 0.87. It was an anecdotal evidence 

for the alternative, according to Jeffreys’ classification scheme of BF (Jefreys, 1961). 

The data was only 0.87 times as likely to have occurred under H1, leaving some 

uncertainty and researchers cannot make any concrete decisions. Such ambiguity does 

not literally mean the results are unclear, but instead gives us a more profoundly insight 

of the relationship between the magnitude of uncertainty and statistical decisions.  

 Like other statistical methods, Bayes factor has its own fallacies. Most critics 

complain about the cut-off values (Dienes, 2014; Gigerenzer & Marewski, 2015; 

Kruschke & Liddell, 2018). Since BF is incapable of providing the direct evidence for 

probabilities of hypothesis, it needs some form of criteria to make decisions instead. 
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Jeffreys (1961) suggested 3 (1/3), 10 (1/10), and 100 (1/100) to divide the values of BF 

into several categories of hypothesis decisions. Unfortunately, these arbitrary cut-offs 

might easily allow BF slip away and back to the suffering of old tendency to interpret p 

value. It may only give us another new looking but old rough tools only for 

dichotomous yes or no decisions. For example, Konijn et al (2015) is concerned about 

the results of BF are too similar to the hacking-behaviors which p-values possess. That 

is BF 3.01 is considered as substantial evidence, while 2.99 becomes anecdotal 

evidence. In fact, “God would love a Bayes factor of 3.01 nearly as much as BF of 2.99” 

(Rosnow and Rosenthal, 1989). Therefore, researchers have suggested being cautious 

on BF’s interpretations (Konijn et al, 2015).  

 In addition, Bayes factor has been also under the criticism about its severe 

sensitivity to the choice of priors (Myung & Pitt, 1997; Kruschke, 2011; Kruschke, 

2014; Kruschke & Liddell, 2018). BF essentially is the ratio of marginal likelihood. 

Unlike Bayesian estimation in which the data can provide sufficient information to 

overwhelm the impact from priors, marginal likelihood is highly sensitive to the prior 

distribution (Liu and Aitkin, 2008). For example, when the prior is able to provide more 

probability mass around the place where the likelihood distribution peaks, the marginal 

likelihood will increase. Yet, if the prior comes up with little probability mass on 

likelihood distribution, the marginal likelihood will be small (Kruschke, 2014). Liu et al. 

(2008) performed a simulation study which found the bias of BF heavily depends on the 

prior distribution for H1. They used informative priors which express specific and 

defined information on parameters. They also used non-informative priors in which the 

distributions are diffused in a broad range. The results revealed the differences of priors 



35 

impacting on BF10. Comparing to the non-informative priors (Uniform, Jeffreys and 

Haldane), BF is highly biased in favor of H1 when it is with an informative prior. 

The Bayesian Applications in Measurement Invariance Test 

In recent years, more applications of Bayesian approaches have been in the 

research area of measurement invariance (MI) test. For example, Shi et al. (2017) used 

the Bayesian Structural Equation Modeling (BSEM) under the multiple-group CFA 

model to locate the non-invariance. They introduced a new parameter 𝐷𝑖𝑗, representing 

a parameter difference. It can index both factor loading difference (𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔) and 

intercept difference (𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡). A selection index (in Equation 4) for the jth item 𝛥𝑗 can 

then be defined as a sum of standardized difference measures of 𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔 and 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

for this item:   

Δ𝑗 =  
|𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔|̂

𝑆𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔
+  

|𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡|̂

𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
  

where 𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔
̂  and 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

̂  are respective estimates of difference in factor loadings 

and intercepts, and 𝑆𝐷𝑙𝑜𝑎𝑑𝑖𝑛𝑔 and 𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 are standard deviations of those 

differences. By imposing the informative priors with zero-mean and small-variance, the 

method let Dloading and Dintercept of each item to be estimable. The invariance tests are 

carried out by 95% HDI across all 𝐷𝑖𝑗, given the selected reference indicator. If HDI for 

𝐷𝑖𝑗 fails to contain zero, the corresponding item parameters are not equal across groups. 

This method is a great application of informative and small variance priors to locate 

non-invariance. In this chapter, we will pay more attention on the studies which focus 

on the applications of Bayesian hypothesis test for MI.  
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Dr. Verhagen and her colleagues (2016) were the first to introduce Bayes factor 

to MI through the multiple group IRT models. To test invariance by null hypothesis, 

they took the difference between item parameter across groups to be zero as the null (a 

point, 𝐻0: 𝑑𝑗 = 0, for all j items) while the rest of all possible non-zero values were for 

the alternative hypothesis (an area, 𝐻1: 𝑑𝑗 ≠ 0). BF is the ratio of the marginal 

likelihoods for the results of two hypotheses.  

𝐵𝐹01 =  
𝑝𝐻0(𝐷|𝜃𝐻0

, 𝐻0) 

𝑝𝐻1(𝐷|𝜃𝐻1
, 𝐻1)

=  
𝑝𝐻0(𝐷|𝑑𝑗 = 0)

∫ 𝑝𝐻1(𝐷|𝑑𝑗 ≠ 0)𝑝1(𝑑𝑗)𝑑𝑑𝑗

                                                             

(10) 

where 𝑝1(𝑑𝑗) is the prior distribution for alternative hypothesis. Instead of doing the 

integration for the marginal likelihood of all plausible values for alternative hypothesis 

weighted by priors, they practiced the Savage-Dickey density ratio (Dickey, J. M., & 

Lientz, 1970; Dickey, 1971; Wagenmakers, Lodewyckx, Kuriyal and Grasman, 2010): 

𝐵𝐹01 =  
𝑝𝐻0(𝐷|𝜃𝐻0

, 𝐻0) 

𝑝𝐻1(𝐷|𝜃𝐻1
, 𝐻1)

=  
𝑃(𝑑𝑗 = 0|𝐻1, 𝐷)

𝑃(𝑑𝑗 = 0|𝐻1)
                                                                            

(11) 

The standard computation of BF asks for the analytical integration out of all possible 

model parameter for 𝐻1.  Compared to that, the calculation of Savage-Dickey is simple. 

At the point of interest, BF only considers 𝐻1 when dividing the height of the posterior 

by the height of the prior for parameters (Wagenmakers, et al, 2010). To apply Savage-

Dickey in MI, the parameter invariance should be tested simultaneously within the 

MCMC sampling scheme. BF is the probability distribution of null hypothesis under the 

posterior 𝑃(𝑑𝑗 = 0|𝐻1, 𝐷) divide the prior 𝑃(𝑑𝑗 = 0|𝐻1) under the alternative 𝐻1. For 
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more details about the mathematical calculation of the Savage-Dickey ratio, please read 

Wagenmakers, et al (2010).  

 Verhagen et al (2016) used both multivariate normal and multivariate Cauchy 

priors in their simulation. The 𝐵𝐹01 value equal to three was taken as a cut-off. Fifty 

replications were generated for each condition which included three different sample 

sizes plus two priors. Non-invariance was generated on five out of ten items difficulties, 

with the magnitude from 0, 0.1, 0.3 to 0.7. The results of their simulation indicated that 

conditions in which BF with Cauchy prior generally perform better than Normal prior. 

For example, about 91% to 97% of the invariant items with Cauchy were successfully 

identified as invariance. From 78% to 91%, items with Normal priors were able to be 

identified. In addition, the power rate of BF locating non-invariance was higher when 

the magnitude was large. BF, at 95% and above, accurately figured out the 0.7 amount 

of difference when sample size increased to more than N = 500 each group. However, 

the rate dropped down even less than 60% for the same conditions, when the magnitude 

of non-invariance decreased to 0.1. Finally, the rate of uncertainty (no concrete 

evidence) followed the same patterns across conditions. The point in which uncertainty 

reached the highest peak was when the non-invariance magnitude varied between 0.3 

and 0.5. Neither small nor large amount of parameter differences could increase the rate 

of uncertainty.   

 Several advantages should be greatly emphasized as BF is applied in MI. First, it 

provides the convincing evidence to distinguish the decisions of truly invariant from 

uncertainty, letting researchers be more comfortable choosing invariant items. What is 

more, the item parameters when BF is between 1/3 and 3 do not literately mean the un-



38 

sureness to make any decisions. Instead, it provides a general picture on how likely the 

parameter in focal group might deviate from the reference group. For instance, if 𝐵𝐹01 

is 1.5, it means the observed data is still in favor of 𝐻0 and 1.5 times more likely than 

𝐻1. What it implies is the corresponding item might be possible to maintain the 

invariance if more information can be handed over. Second, BF is able to provide 

acceptable good power rates, particularly when the magnitude of parameter difference 

increases to the extent on upper-middle level. For instance, the simulation compared the 

BF with Wald test (for more details read Langer, 2008; Woods, Cai and Mang, 2012), a 

common method in Frequentist to test the non-invariance under IRT framework. The 

results showed neither BF nor Wald were superior to the other, when the magnitude of 

parameter difference was either 0.3 below or 0.5 above. However, when the difference 

was between 0.3 and 0.5, BF had relatively higher power rate than Wald test with 

critical level at 0.016.  

 However, there are some limitations of this study we should not ignore. First, as 

an alternative method, Bayesian estimation had not been taken into account. Only Bayes 

factor was applied in this study. What is more, the usage of BF was limited under IRT 

context. No more applications for testing factorial invariance under SEM framework. 

Second, Verhagen et al (2016) merely focused on the invariance of item difficulties. 

They did not design the test on item discriminations. Less information was provided 

about BF’s performance both on item difficulties and discriminations. In addition, they 

used an insufficient number of replications in Monte Carlo simulation. With only 50 

replications, it might be possible to produce biased estimates, since some particular 

samples might be more likely to arise than others (Bandalos, 1997). Finally, the study 
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had no options for Uniform prior, a special form of ignorance about the true rate and 

assigns the prior probability equally on each possible count (Liu and Aitkin, 2008). On 

one hand, the density of Uniform is low around zero. It is therefore expected to convey 

less information about parameter difference than Cauchy. On the other hand, since its 

distribution spreads out within a certain range, the previous simulation indicated BF 

was slightly more in favor of 𝐻1 over 𝐻0, comparing to other non-informative priors 

(Liu and Aitkin, 2008).  

 In the current study, we introduce both Bayes factor and Bayesian estimation to 

locate the non-invariance under SEM framework. Our main purpose is to provide a 

more comprehensive Bayesian perspective to locate non-invariance. The methods will 

show common users how they function under the multiple-CFA models for factorial 

invariance test. We specifically show how Bayesian approaches make decisions on 

accepting the invariance, detecting the uncertainty, and locating the non-invariance on 

item parameters.  

Monte Carlo Simulation Study 

 The current simulation study went through three steps. First, we generated data 

into different conditions according to the study design. Then, we applied both Bayes 

factor and Bayesian estimation on the generated data and tested null hypothesis. The 

methods produced three decisions: accept null (the parameter is invariant across groups), 

deny null (non-invariance exists), or show no evidence to conclude. Finally, based on 

the decisions, we evaluated the results by calculating the power rate, uncertainty rate 

and rate of correctly locate invariant items (rate of invariance).  

Data Conditions 
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 We used a two-group CFA population model to generate the multivariate normal 

data. Ten items loaded on a single latent factor for each group. One group served as the 

reference group, and the other one served as the focal group. The variables manipulated 

in the simulation were listed as following conditions: 

Sample Size: Continuous data were generated with balanced N = 100, 200, 500 

each group and unbalanced N = 250 and N = 500 for reference and focal group 

respectively. The sample size increased from 100 to 500, representing small, medium 

and large samples in typical psychology research.  

Non-invarianct items: Eight out of ten items (80%) were generated with non-

invariance. The non-invariant variable started from the second item in the model. The 

first and the last item kept the invariance. The magnitudes of rest 8 items increased in 

the order of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (Figure 2.1).  

Location of difference: Item differences were simulated to occur on either factor 

loadings or intercepts, never both at the same time. 

Prior: there were 3 different non-informative prior distributions used: Uniform, 

Cauchy and Normal distributions. The Uniform prior (range between -100 and 100) is 

the distribution that equally assigns probability to each of the counts (Liu and Aitkin, 

2008). The normal density distributes with a mean zero and a variance of two. And the 

Cauchy (0, 1) is transformed as a t distribution with 1 degree of freedom, for the easy 

execution in JAGS.   

Therefore, 192 data conditions were totally generated by fully crossing 4 sample 

sizes, 2 locations of difference, 8 magnitudes of difference on parameters and 3 prior 

distributions.  
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Data Simulation 

The factor mean and variance were generated to 0 and 1 respectively in the 

reference group. The raw factor loadings, intercepts and unique variance were set to 0.8, 

0 and 0.36 accordingly for all items. All factor loadings and intercepts in focal groups 

were generated to be equal to those in reference groups, except for the items that were 

manipulated to be different under certain conditions. However, the 8 magnitudes of 

non-invariance were generated starting from the second to the ninth item 

simultaneously (Figure 2.1). Therefore, 80% of observed variables obtained the 

differences between groups. There were total 500 replications in each condition. Mplus 

7.1 was used to generate the data, given its higher operation speed. JAGS 4.3 was 

practiced under R-3.4.2 to analyze and summarize the results. We also applied other R 

packages to complete this study. They mainly included: “R2jags”, “runjags”, “MBESS”, 

“MCMCpack”, “logspline”, “HDInterval” et al.  

Data Analysis 

 Both Bayes factor and Bayesian estimation (ROPE and ROPE_0) were used to 

analyze the simulated data. In the analysis, we fixed the factor mean and variance to be 

0 and 1 only for the reference group. The 10th variable was taken as the reference 

indicator for model identification. The 10th factor loading, and intercept therefore were 

fixed to be same across groups. The rest of other parameters were freely estimated 

simultaneously.  

 For each factor loading and each intercept, the parameter 𝐷𝑖𝑗 was computed as 

the parameter difference between groups. Applying the non-informative prior 

distribution, each of three MCMC chains ran with 10,000 iterations after 500 burins. 
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The posterior distribution for each estimated parameter were finally constructed by 

these 10,000 draws. By examining the posterior distribution of parameterD𝑖𝑗, both 

Bayes factor and Bayesian estimation were used to evaluate the invariance. Specifically, 

for Bayes factor, we used Savage-Dickey density ratio to get the 𝐵𝐹01 value (Dickey, 

1971). If 𝐵𝐹01 was equal or larger than 3, we accepted the null, believing invariance had 

been held. If 𝐵𝐹01 was equal or less than 0.33, we rejected null and non-invariance 

existed on the item parameter. If 𝐵𝐹01 was between 0.33 and 3, we failed to make any 

concrete decisions. For Bayesian estimation, 95% HDI can be obtained from the 

posterior distribution. We set the ROPE limits between -0.1 and 0.1. There were two 

ways to make decisions. The first used the ROPE limits only. When the ROPE fully 

contained the 95% HDI, we accepted null. When ROPE was completely outside the 95% 

HDI, we rejected null. When ROPE had partially overlapped with 95% HDI, it was 

uncertain to make any decisions. The second one was to use both [-0.1, 0.1] limits and 

the point of zero. When 95% HDI completely fell into ROPE, we accepted the null and 

the invariance had been held, but if not, non-invariance was on parameter. However, if 

95% HDI partially overlapped with ROPE, we followed the new logic (Shi, et al., 2018). 

95% HDI contained zero, it was inconclusive. If not, we still believed the non-

invariance existed though it was with the uncertain practical importance to some extent.  

 We used three criteria as the index to evaluate each method on parameter 

(non)invariance: the power rate, the rate to identify invariant item, and the uncertainty 

rate. The power rate was calculated as the percentage of accurately reject null (for non-

invariant parameters) among 500 replications under each condition. The power 

computation of method ROPE with zero is based on two parts. One part was the rate of 
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95% HDI completely outside range of ROPE and the other part of rate was 95% HDI 

partially overlap with ROPE but exclude zero. We summed up two parts together as the 

final power. For the rate to correctly identify invariant item, it was the percentage of 

accurately accepting the null (for invariant parameters) among 500 replications. Since 

the first item was generated to be the same across groups, the rate would be calculated 

only from this item. For the uncertainty rate, it was the percentage of uncertain 

decisions among 500 replications under each condition. We expected the higher the 

power rate and the higher rate to identify invariant but lower uncertainty rate, the better 

the method could locate the non-invariance or detect the invariance.   

To further investigate the main effects and interaction effects of all conditions 

on three criteria, we performed the Bayesian ANOVAs using the software package 

JASP (Wagenmakers, Love, Marsman, Jamil, Ly, Verhagen et al, 2018). It ran with 

default Cauchy prior (0, 0.5), in which the distribution centered in 0 with interquartile 

range r = 0.5. We also used R package “ggplot2” to visualize the results.  

Results 

Power Rate of Bayes Factor 

 Table 2.1 and Table 2.2 summarize the original rate of BF to reject and accept 

null hypothesis. The first column of Table 2.2 represents the rate to successfully 

identify invariant parameters. From the second to the ninth columns of Table 2.1, it 

shows the power to correctly locate non-invariance. The method BF represents several 

features. First, its power rate increases when the magnitude of non-invariance expands. 

In addition, the rate improves more rapidly on loadings than on intercepts, which 

generally leads the power of loadings (M = 0.609, SD = 0.366) to be higher than 
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intercepts (M = 0.442, SD = 0.411). For example, the power of BF with Cauchy prior on 

loadings reaches to 0.75, when non-invariance difference is 0.3. On intercepts, the 

power approaches 0.75 until magnitude extends up to 0.5.  

What is more, Figure 2.2 shows Bayes factor is highly sensitive to the choices of 

priors. The power rates of three priors vary from one another. Among them, the Cauchy 

presents the best, but the Uniform condition displays the worst on each level of non-

invariance magnitudes.  For instance, the power of Uniform prior on average is 0.446 

across conditions, while it is 0.576 and 0.555 for Cauchy and normal prior respectively. 

Further investigation by Bayesian two-way ANOVA provides us more information in 

Table 2.35. The first column named “Models” lists five models: the “Null model” only 

has the grand mean without any predictors. The second row “prior” model add only one 

predictor “prior” in the model. It is the same for the third row model with single 

“magnitude”. The forth model contains both prior and magnitude main effect alone. The 

final full model, not only keeps both the main effect but also interaction effect between 

prior and magnitude. Column “P(M)” is prior model probabilities, which has been set to 

be equal across all models. Column “P(M|data)” indicates the posterior model 

probability given by updated observed data. The next “𝐵𝐹𝑀” column is the most useful 

because it shows the change from prior to posterior model odds. The larger the value, 

the more likely the data supports the model by increasing the model credibility. For 

example, 𝐵𝐹𝑀 yields the highest value 35.709 for the model with two main effects on 

loadings, indicating this model with two main effect priors and magnitude receives the 

support from data. As evidence, the main effect of prior difference clearly represents 

BF’s sensitivity. The following “𝐵𝐹10” column provides the Bayes factor of each row 
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model against the first row null model. It is 1.714e +33 (we mark it “>10.000”) in favor 

of the two main effects model, with 0.986 in the final “% error” column. This error is 

similar to the coefficient variation in frequentist analysis. It provides the size of error in 

the integration relative to the Bayes factor (Wagenmakers, Love, Marsman, Jamil, Ly, 

Verhagen et al, 2018).  

 Furthermore, we notice that power rates are positively associated with sample 

sizes. The larger the sample size, the higher the power along with magnitude increasing 

(Figure 2.3). Generally, along with magnitude increasing, the power of larger sample 

size rises up much more quickly and stays in the higher level than small sample size 

conditions. For instance, the average power of sample N = 500 is 0.678. It is much 

higher than the average power (0.329) of a sample of only one hundred. What is more, 

we note this association is consistent across three prior conditions. However, the 

distinctions among three prior conditions needs further attention. First, the choices of 

Cauchy and Normal prior are considerably superior to Uniform prior, because the 

power of both prior conditions are much higher than Uniform condition on each level of 

sample size. For example, holding on the same 0.3 amount of parameter difference, the 

average power in larger sample size (N = 500) conditions is 0.677 with Uniform prior, 

but it is 0.942 with Cauchy and 0.936 with Normal priors. Similarly, for the same 0.3 

non-invariance with small sample size (N = 100), the power mean is 0.119 with 

Uniform, yet it is 0.275 with Cauchy and 0.219 with Normal prior. Second, there is an 

interaction effect between magnitude and sample size in the Uniform condition. The 

power of the large sample is not improving as much with smaller samples, when 

magnitudes of differences increase. However, the interactions effects are absent in the 
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other two priors conditions (Table 2.4). Be noticed, Figure 2.3 also supports that power 

of unbalanced sample is better than larger sample (N = 500) to some certain extent.  

Power Rate of Bayesian Estimation 

 Table 2.5 and Table 2.6 provide the original rate of ROPE to reject and accept 

null hypothesis. Table 2.7 and Table 2.8 are about the rate of method ROPE_0. Figure 

2.4 and Figure 2.5 display the power of two methods Bayesian estimation. Similar to 

BF, both ROPE and ROPE_0 increase the power when the magnitude expands. Unlike 

BF, power on loadings increases much slower and stays at a lower level than on 

intercepts. In addition, being consistent with the previous literatures, both methods are 

insensitive to the choice of priors. They exhibit a very similar power rate for each prior 

condition. Although the Uniform prior conditions obtain slighter higher power rate on 

intercept, further investigation indicates that it is not statistically superior to other two 

priors (Table 2.9). The data is not in support of any models with the effect prior for 

both non-invariance placing on loadings and intercepts. For instance, only 𝐵𝐹𝑀 of 

single main effect magnitude model obtains the largest values (𝐵𝐹𝑀_𝑅𝑂𝑃𝐸_𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 

9.360; 𝐵𝐹𝑀_𝑅𝑂𝑃𝐸_0_𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 9.550, indicating the data increases its probability mostly 

on these models. The “𝐵𝐹10” column provide the Bayes factor of each row model 

against the first row null model. ALL 𝐵𝐹10 of models for main effect prior are smaller 

than the cut-off 1/3, meaning that data is highly in favor of null model than the 

alternative. In other words, the power rate of prior conditions does not differ from each 

other. 

 Both methods share the similar patterns of BF that larger the sample size, higher 

the power rate (Figure 2.6 & Figure 2.7). Further analysis of Bayesian ANOVA shows 
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more features of two methods (Table 2.10). First, the main effect of sample size has not 

been supported by the data. For instance, 𝐵𝐹10_𝑅𝑂𝑃𝐸 is 0.162 for Uniform condition, 

representing this model obtains only 0.162 times more likely to the alternative model 

than null, given the observed data. Second, data are in favor of different models across 

prior conditions. For Uniform, the model with single magnitude main effect has been 

supported (𝐵𝐹𝑀_𝑅𝑂𝑃𝐸 = 15.514, 𝐵𝐹𝑀_𝑅𝑂𝑃𝐸_0 = 15.968), while the model with two main 

effects is instead preferred for Cauchy (𝐵𝐹𝑀_𝑅𝑂𝑃𝐸 = 7.425, 𝐵𝐹𝑀_𝑅𝑂𝑃𝐸_0 = 5.271) and 

Normal priors (𝐵𝐹𝑀_𝑅𝑂𝑃𝐸 = 7.173, 𝐵𝐹𝑀_𝑅𝑂𝑃𝐸_0 = 5.385). Third, the data does not 

support the model with interaction effect, but the corresponding 𝐵𝐹10 values are mostly 

larger than the cut-off value 3. Though this model has its faults, it is still quite different 

from the null model.  

Uncertainty of Bayes Factor and Bayesian Estimation 

 Uncertainty rate (Table 2.11 to Table 2.13) is another important criterion to 

determine the performance of methods. The lower the uncertainty, the better the method 

performs. First, Figure 2.8 demonstrates the uncertainty of method BF, showing the 

uncertainty has been controlled well in a low level (less than 0.4), no matter where the 

non-invariance locates. A bell curve appears roughly along with the horizontal 

magnitude scales. Moreover, a clear interaction effect between priors and magnitude 

exist on loadings. The rate of Uniform is much lower than the other two priors when 

magnitude is small, yet it overwhelms them as magnitude is getting larger. In addition, 

we also noticed the interaction effect disappears when intercepts have been 

contaminated. Data support the probability of the model with two main effects alone 

without any interaction effect (Table 2.14).  
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 Unlike the BF, the uncertainty rate is much higher for Bayesian estimation. 

Figure 2.9 and Figure 2.10 display the rate across the levels of magnitude for method 

ROPE and ROPE_0 respectively. First, the uncertainty rate of both methods is much 

higher on loadings (𝑀 𝑅𝑂𝑃𝐸= 0.857, 𝑆𝐷𝑅𝑂𝑃𝐸 = 0.100; 𝑀𝑅𝑂𝑃𝐸_0 = 0.825, 𝑆𝐷𝑅𝑂𝑃𝐸_0 = 

0.089) than on intercepts (𝑀 𝑅𝑂𝑃𝐸= 0.586, 𝑆𝐷𝑅𝑂𝑃𝐸 = 0.417; 𝑀𝑅𝑂𝑃𝐸_0 = 0.475, 𝑆𝐷𝑅𝑂𝑃𝐸_0 

= 0.417). The uncertainty drops significantly on intercepts as magnitude of non-

invariance increases. What is more, further Bayesian ANOVA (Table 2.15) shows the 

data is in favor of the single main effect magnitude model both on loadings (𝐵𝐹M_ROPE 

= 6.598, 𝐵𝐹M_ROPE_0 = 9.282) and intercepts (𝐵𝐹M_ROPE = 9.410, 𝐵𝐹M_ROPE_0 = 7.482). 

It indicates Bayesian estimation can locate the non-invariant items well especially when 

the magnitude is large.  Finally, we noticed that data does not support the models with 

prior. It means uncertainty rate is quite similar among prior conditions.  

Comparisons of Three Methods 

 To understand how well each method locates the non-invariance, we compare 

three methods by the criteria of both power and uncertainty rate. We will recommend 

the method with high power, rate of invariance and low uncertainty rate to common 

users in testing factorial invariance. Figure 2.11 and Figure 2.12 display the 

comparisons of power and uncertainty respectively. First, we find that BF functions 

better than Bayesian estimation on contaminated loadings, for its markedly higher 

power rate. However, on intercepts, the power of Bayesian estimation is superior to BF 

instead. ROPE_0 is higher (𝑀𝑅𝑂𝑃𝐸_0 = 0.588, 𝑆𝐷𝑅𝑂𝑃𝐸_0 = 0.400) than BF (𝑀𝐵𝐹  = 0.442, 

𝑆𝐷𝐵𝐹 = 0.411) on average. In addition, we noticed that interaction effect is on loadings 
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but not intercepts. The full model with both main and interaction effect is approved of 

data with the highest 𝐵𝐹𝑀 (Table 2.16).  

Second, BF controls the uncertain rate much lower than Bayesian estimation, no 

matter where the non-invariance locates. On loadings, uncertain of BF (𝑀BF = 0.134, 

𝑆𝐷BF = 0.1127) is far lower than ROPE (𝑀ROPE = 0.857, 𝑆𝐷ROPE = 0.100) or ROPE_0 

(𝑀ROPE_0 = 0.825, 𝑆𝐷ROPE_0 = 0.089). On intercepts, though the differences of 

uncertainty between methods shrinks as the magnitudes increase, the gap is still large 

which BF holds the uncertainty significantly lower when magnitude is small. Moreover, 

the interaction effect has been supported by the data from both loadings and intercepts 

conditions (Table 2.17).  

 Third, we concentrate on the choice of prior on each method. Examining the 

conditions in which each prior applied for the methods to detect the non-invariance, BF 

is completely superior to the others. Figure 2.13 and Figure 2.14 presents the power and 

uncertainty rate. BF constantly holds the higher power and lower uncertainty rate. 

Though the power of ROPE_0 is slightly higher than BF under uniform conditions, its 

superiority stops at 0.4 magnitude of non-invariance. As the size of non-invariance 

continuously expands, BF re-gains the higher power and remains much higher. 

Moreover, we find that no matter what prior BF has chosen, its power rate (Figure 2.15) 

usually sustains the highest value (except with uniform prior on intercept). Furthermore, 

its uncertainty rate holds back to be the lowest among all methods (Figure 2.16). Both 

ROPE and ROPE_0 yield much higher uncertainty rate, even though they can quite 

successfully discover the non-invariance on intercept.  
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 Finally, BF is exclusively better than Bayesian estimation in detecting the 

invariant items from the contaminated variables. Figure 2.17 shows the rate of which 

correctly identified invariance as well as the uncertainty rate of invariant parameters. 

On the left side, the rate of Bayesian estimation seems to be missing, but they are 

indeed zero across prior conditions. On the right side, the uncertainty rate of Bayesian 

estimation keeps very high. It means that Bayesian estimation fails to detect the 

invariant items.  

A Pedagogical Example 

To demonstrate the empirical application of Bayesian method, we use BF, 

ROPE and ROPE_0 to locate the non-invariance on the same data from Study I (N = 

12,811) -- Psychological Wellbeing of Children of Rural-to-Urban Migrant Workers in 

China. The measurement chosen for this demonstration is from the Revised Child 

Anxiety and Depression Scale (RCADS, Chorpita, Yim, Moffitt, Umemoto & Francis, 

2000). This self-report scale contains 47 items in total. However, only 18 items relate to 

generalized anxiety are used here for demonstration. Responses are scored on a Likert-

scale of 1 to 4, corresponding to “Never”, “Sometimes”, “Quite Often”, and “Always”. 

The Cronbach’s α is 0.897 in this sample.   

There are 7,356 male (57.4%) and 5,455 female (42.6%) child respondents in 

this sample. A two-group CFA is fitted to data, using the 7th variable as the reference 

indicator. We follow the same procedures in simulation to identify the model and put 

the Cauchy prior (0, 1) to use in Bayesian methods: Bayes factor, ROPE and ROPE_0. 

The parameter 𝐷𝑖𝑗 is computed as the parameter difference between groups. Three 

MCMC chains run 10,000 iterations after 500 burins to get the posterior distribution of 
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parameter 𝐷𝑖𝑗. MCMC is carried out for both loadings and intercepts simultaneously. 

Based on the posterior, both Bayes factor and 95% HDI are easily obtained. The Bayes 

factor is computed by Savage-Dickey density ratio and 3 as the cut-off value.  

To achieve ROPE and ROPE_0, we also follow the procedures in our simulation 

study. For example, if 95% HDI completely excludes the interval between [-0.1, 0.1], 

we believe that non-invariance exists on the parameter. However, if 95% HDI partially 

overlaps with the interval but contains zero point, both method of “ROPE” and 

“ROPE_0” takes it inconclusively. While, if 95% HDI overlaps with the interval in 

which the point of zero excluded, the method “ROPE_0” believes the non-invariance is 

still on the parameters. Finally, if 95% HDI has been entirely contained within the 

interval, both methods agree to accept the null that invariance has been sustained.  

 Table 2.18 summarizes the results of three methods. We notice that they do not 

agree with each other in most of the time. According to BF, none of the factor loadings 

are invariant. 𝐵𝐹01 produces the small values in which data is in favor of supporting the 

alternative hypothesis. However, this conclusion is not verified by either ROPE or 

ROPE_0. Except for item 10, 95% HDI contains the value zero as well as the range [-

0.1, 0.1]. Therefore, both methods of Bayesian estimation are able to accept or reject 

null for the rest 16 loadings. On item 10, they agreed it to be non-invariant across 

groups. For the decisions on intercepts, Bayes factor accepts them to be invariance 

(except item 10), since 𝐵𝐹01 values are larger than 3. Yet, the two methods of Bayesian 

estimation still fail to get any concrete conclusions. The intercept of item 10 is also non-

invariant, as both Bayes factor and Bayesian estimation show the evidences for the 

alternative hypothesis.  
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 In summary, regarding Bayes factor as a better method in simulation study, we 

decide to adopt its conclusions in current pedagogical example. None of the factor 

loadings are invariant, and most of intercepts (except item 10) are invariant between 

groups.  

Discussion 

The ability to locate the non-invariance ahead would notably benefit empirical 

users before they correctly conduct the partial invariance test. It can also aid in the 

search for the potential causality to non-invariance. Most methods applied in this area 

however, were monopolistically from the traditional Frequentist. The unavoidable 

defects of NHST prevent them from accepting the null in which parameters are 

invariant. Furthermore, they also suffer from the large sample size fallacy. The 

employment of new methods thereby becomes necessary. In the present study, we 

introduced the innovative approaches from Bayesian perspective. Bayesian estimation 

and Bayes factor were particularly applied to locate the sources of non-invariance. The 

Bayesian estimation is a general category for two subsume methods: ROPE and 

ROPE_0. Using the Gibbs sampling to run MCMC, Bayesian estimation can summarize 

the posterior distribution of cross-group parameter differences in terms of 95% HDI. 

Based on the relationship between 95% HDI and ROPE, both methods make decisions 

for hypothesis test. Depending on the same posterior distribution, we used the approach 

called Savage-Dickey density ratio to calculate Bayes factor. After performing the 

suggested cut-off value three, we decide to accept, reject or keep uncertain for 

hypothesis.   
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Our simulation study revealed that Bayes factor functions generally superior 

than Bayesian estimation. First, it yields higher power but lower uncertainty rate in 

most conditions. Particularly, as the magnitude of non-invariance increases, its power 

rate improves more rapidly and still maintains a low level of uncertainty. In addition, it 

is better to control the uncertainty rate under some circumstances in which non-

invariance locates on loadings or the application of uniform prior. The power of BF 

essentially represents the features of shrinkage estimation7. That is the estimates are 

more likely towards value zero when a small observed effect size corresponds well with 

the null hypothesis. Yet, when the effect size becomes large (e.g., large magnitude), it 

will heavily impact the estimation by increasing the likelihood to accept the alternative.  

Second, being consistent with previous literatures, BF is highly sensitive to the 

choices of priors. The values of BF vary with different priors. We chose three different 

non-informative priors: Normal, Cauchy and Uniform, because each of them represents 

some uniqueness of probability distribution. For example, Cauchy distribution has the 

longest tails on two sides. Uniform has the lowest density around zero, though it is 

limited within a certain probability range. Comparing to other two priors, the results of 

Cauchy provide higher power and lower uncertainty. Though, its density around null is 

higher than both Uniform and Normal priors, its heavy tails help it be less informative. 

In other words, BF is in favor of Cauchy to detect the non-invariance.  

Third, BF is able to distinguish the invariant item much more accurately from 

those contaminated ones. It produces the extraordinarily high power rate with a well-

controlled uncertainty rate. It will benefit researchers to accept the null when 

parameters are invariant. Differing from NHST that fail to reject null hypothesis has 
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been mistakenly taken as an evidence for parameters’ invariance, Bayes factor (𝐵𝐹01 > 

3, or 𝐵𝐹10 < 1/3) can indeed confirm the cross-group parameter invariance. Though 

most critiques about BF are its cut-off values, the current study still applied value three 

and obtained satisfactory results. However, these concerns about cut-off values are 

completely understandable from methodological perspectives. That is why we should 

not take BF as the only way of Bayesian application. Instead, both Bayes factor and 

Bayesian estimation should be applied like our pedagogical example. Ideally, the results 

from both are consistent. If not, we suggest to accept the BF’s results alone.  

On the perspective of Bayesian estimation, we used the methods ROPE and 

ROPE_0 to test the hypothesis of item parameters. The main distinction between the 

two methods is whether the value zero has been included in the range of 95% HDI, 

when 95% HDI overlaps with ROPE. If yes, both methods regard it as part of uncertain 

situation. If not, the method ROPE_0 takes the corresponding item to be non-invariant, 

while method ROPE still considers it to be uncertainty. For the current study, both 

ROPE and ROPE_0 represent the similar patterns on power and uncertainty rate. They 

share several characteristics including the insensitivity on the choice of prior. Consistent 

to the previous literatures, both power and uncertainty rate do not show a statistical 

difference among three non-informative priors. Second, even though the power is 

higher than Bayes factor under several conditions such as the non-invariance on 

intercepts, it is much lower in most cases. Due to the high posterior variance on item 

differences, the range of 95% HDI becomes much wider than ROPE, leading to the high 

uncertainty rate. Especially when the sample size is small, and the observed data cannot 

sufficiently provide the useful information, the posterior variations would remain high.   
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Future studies are still called for the area of factorial invariance test. For 

methodological researchers, a comparison between Bayesian and Frequentist 

approaches on testing the factorial invariance will be necessary. It should include either 

the largest modification index or forward confidence interval as the representative 

methods of frequentist. Therefore, a broader picture about the pros and cons for two 

sides will be clearly provided. For the empirical researchers, however, the most 

challenge is the applications of statistical packages in Bayesian area. It is now 

considerably difficult for common users to apply a customized model on JAGS. Further 

studies from both software developments and generalized practical utilization are 

needed.    

Summary 

Based on the findings in both Study I and Study II, a few suggestions may be 

offered to researchers. First, it is not wise to use MaxL to identify reference indicator. 

Although this approach could perform equally under certain conditions, it is impractical 

to identify those conditions in empirical data analysis. In addition, MaxL could behave 

poorly in large samples due to the sensitivity of LR test to sample size. Second, Minχ2 

and BSEM are both recommended for empirical studies; however, different theoretical 

backgrounds are required for their implementation. While Minχ2 involves fitting a series 

of multiple-group CFA models and computing LR statistics for each individual item, 

BSEM is implemented through fitting a single model for identifying invariant and non-

invariant items simultaneously (Shi, et al., 2017). In addition, we recommend 

methodological researchers to consider the direction of parameter differences as a 

studied variable involving simulation of multiple-group CFA models; otherwise the 
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results could be cofounded or misleading. Furthermore, for the purpose of locating the 

non-invariance, it is recommended to take Bayes factor into account. With the non-

informative of Cauchy prior, its superiority is high accurate to detect non-invariant item 

parameters. Furthermore, Bayes factor is able to distinguish the invariant items from 

these contaminated ones. Finally, the anticipation of user-friendly software packages 

would greatly improve further development in Bayesian methods. 
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Table 1.2: Effects of Studied Variables on Power Rates in the Simulation Study. 

 ANOVA 1 ANOVA 2 

 df F p df F p 

Location (LO) 1 3.297 0.071 1 11.736 0.001 

Percentage (PE) 1 33.608 <.001 1 119.617 <.001 

Magnitude (MA) 1 0.690 0.407 1 2.455 0.120 

Direction (DI) 2 19.623 <.001 2 69.842 <.001 

SampleSize (SS) 2 0.583 0.559 2 2.074 0.131 

Method (ME) 2 25.507 <.001 2 90.782 <.001 

ME × MA    2 0.232 0.794 

ME × LO    2 1.198 0.306 

ME × PE    2 37.235 <.001 

ME × DI    4 28.154 <.001 

ME × SS    4 0.215 0.930 

PE × MA    1 2.794 0.097 

PE × LO    1 0.299 0.585 

PE × DI    2 36.894 <.001 

PE × SS    2 0.722 0.488 

LO × MA    1 10.055 0.002 

LO × DI    2 12.984 <.001 

LO × SS    2 5.464 0.005 

DI × MA    2 3.946 0.022 

DI × SS    4 2.825 0.028 

MA × SS    2 36.894 <.001 

ME × MA × PE    2 9.400 <.001 

ME × MA × LO    2 7.056 0.001 

ME × MA × DI    4 7.964 <.001 

ME × MA × SS    4 7.642 <.001 

ME × DI × PE    4 9.840 <.001 

ME × DI × LO    4 5.529 <.001 

ME × DI × SS     8 3.779 0.001 

ME × SS × PE    4 4.060 0.004 

ME × SS × LO    4 3.000 0.022 

ME × LO × PE     2 1.638 0.199 

LO × PE × DI    2 3.506 0.033 

LO × PE × MA    1 0.223 0.638 

LO × PE × SS    2 0.721 0.489 

LO × MA × DI    2 0.291 0.748 

LO × MA × SS    2 1.604 0.206 

LO × DI × SS    4 0.640 0.635 

PE × MA × DI    2 2.151 0.121 

PE × MA × SS    2 4.322 0.016 

PE × DI × SS    4 0.973 0.426 

MA × DI × SS    4 1.062 0.379 

residuals 206   110   
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Table 1.5: The Interaction Effect of Power between Methods and Magnitudes 

  Small Magnitude Large Magnitude 

  df F p df F p 

PE 20% 2 2.330 0.100 2 0.050 0.956 

 40% 2 9.400 <.001 2 23.67 <.001 

SS N = 100 2 5.980 0.003 2 0.990 0.374 

 N = 200 2 3.020 0.051 2 2.630 0.074 

 N = 500 2 0.820 0.441 2 9.060 <.001 

DR Positive 2 21.530 <.001 2 15.870 <.001 

 Negative 2 0.030 0.966 2 5.830 0.004 

 Mix 2 1.880 0.155 2 0.000 0.998 

LO loadings 2 8.600 <.001 2 3.750 0.025 

 intercepts 2 1.480 0.230 2 7.050 0.001 

Note: PE = Percentage of Non-invariance; SS = Sample Size; DR = Direction; LO = 

Location of Non-invariance. 
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Table 1.8: Values of Selection Index in Choosing RI Using BSEM in the Empirical 

analysis 

 𝐷𝑓𝑎𝑐𝑡𝑜𝑟_𝑙𝑜𝑎𝑑𝑖𝑛𝑔
̂  (SD) 𝐷𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

̂  (SD) 𝛥𝑗 

Item 1 0.011 (0.014) 0.044 (0.014) 3.929 

Item 2 0.017 (0.015) 0.007 (0.015) 1.600 

Item 3 0.027 (0.016) 0.023 (0.015) 3.221 

Item 4 0.019 (0.016) 0.016 (0.015) 2.254 

Item 5 0.024 (0.015) 0.01 (0.015) 2.267 

Item 6 0.036 (0.016) 0.027 (0.015) 4.050 

Item 7 0.005 (0.016) 0.005 (0.015) 0.646 

Item 8 0.01 (0.016) 0.024 (0.015) 2.225 

Item 9 0.023 (0.016) 0.012 (0.015) 2.238 

Item 10 0.017 (0.016) 0.037 (0.015) 3.529 

Item 11 0.03 (0.013) 0.039 (0.013) 5.308 

Item 12 0.018 (0.015) 0.041 (0.014) 4.129 

Item 13 0.013 (0.015) 0.106 (0.015) 7.933 

Item 14 0.019 (0.015) 0.03 (0.015) 3.267 

Item 15 0.011 (0.014) 0.002 (0.014) 0.929 

Item 16 0.016 (0.015) 0.022 (0.015) 2.533 

Item 17 0.016 (0.015) 0.001 (0.015) 1.133 

Item 18 0.007 (0.016) 0.007 (0.015) 0.904 

Note: SD is standard deviation. 
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Appendices  

Appendix A: Footnotes 

1. Alternatively, one can begin such tests by fitting a model with all the parameters 

constrained to be equal, and then progressively relaxing certain equality 

constraints. Further information on this approach can be found in Stark, 

Chernyshenko, and Drasgow (2006), Yoon and Milsap (2007), and Kim and 

Yoon (2011). In addition, non-invariance can also be detected by applying the 

iterative procedures (Cheung & Rensvold, 1998), in which each single item 

serves, in turn, as an RI (see also Cheung & Lau, 2012). 

2. Woods (2009) ranked order the items based on their LR/Δdf. In our study, we 

used LR instead of ratio of LR/Δdf, because Δdf  (=2)  was constant across all 

conditions.  

3. Please pay attention to the notation of BF. BF10 > 3 indicates the data is in favor 

of alternative H1.  

4. Within the same range, the power rate of BF were generally lower than Wald at 

p<0.05 level in most of conditions.  

5. We followed the way by Wagenmakers et al (2018) to interpret the results from 

JASP. All the models take the power rate as outcome. Data has been divided to 

two parts based on the location of non-invariance.  

6. The only agreement that Both BF and Bayesian estimation got was on Item 10. 

7. The concept of shrinkage estimation originally from hierarchical models.  
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Appendix B: Supplement Figures 
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