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Abstract

Measurement invariance test concerns with whether the group membership is
related to the attributes of a test. In the framework of Structural Equation Modeling
(SEM), it is implemented by the multiple-group confirmatory factor analysis (CFA).
Although this test has been widely applied in empirical studies, two research questions
still need to be explored. One is how to appropriately choose the reference indicator
(RI), the second is how to locate the non-invariant items. The challenge lies in
appropriately choosing an invariant Rl and accurately locating the non-invariant item
parameters.

In this dissertation, we used two well-designed simulation studies to answer
these two aforementioned questions. In Study I, we compared three commonly-used
methods, named MaxL, Minyx? and BSEM and evaluated their performance of reference
indicator selection. In Study Il, we employed two Bayesian methods, Bayes factor and
Bayesian estimation to locate the positions of non-invariance. All methods were applied
to empirical datasets.

We found Miny? and BSEM are superior to MaxL in correctly choosing the
reference indicator. In addition we discovered Bayes factor can more accurately locate
the non-invariant item parameters and distinguish the invariant items from the
contaminated ones. Finally, the application of Cauchy prior will help to improve Bayes

factor’s performance.
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Introduction

Measurement invariance (M) is concerned with whether the group membership
is related to the attributes of test. It often serves as an important tool in establishing
measurement equivalence across groups, particularly when scores from self-report
measures are being compared (Horn & McArdle, 1992; Meredith, 1993; Shi, Song, &
Lewis, 2017). The test helps to examine to what degree observed differences reflect
differences in the underlying, unobserved latent constructs across groups. Questions
could be addressed with this technique, for instance, does a mean difference in a
measure of depression between males and females reflect entirely the gender difference
in trait scores of depressions? Or, is the observed difference contaminated by
differences in psychometrical properties of the measure across gender groups?

In fact, if a measure indeed behaves differently across groups due to differences
in social norms, cultural norms, or response tendencies, any comparison on the
observed composites of this measure (such as t-test or ANOVA) will likely lead to
ambiguous conclusion. Research has shown that departures from measurement
equivalence weaken the accuracy of selection based on composite scores (Millsap &
Kwok, 2004), and cross-group difference in composite scores could mostly reflect the
difference in psychometrical properties of the measure in use (Steinmetz, 2011).
Without testing for measurement invariance, one cannot be certain whether observed
differences across groups truly indicate the underlying latent differences among
constructs. Establishing measurement invariance has been increasingly recognized as a

prerequisite for examining mean differences across groups or mean changes over time.



The approaches in both item response theory (IRT) and structural equation
modeling (SEM) can handle the measurement invariance test. In the current
dissertation, we mainly focus on the factorial invariance test under structural equation
modeling (SEM) context. To test for measurement invariance, the factorial invariance
tests are conducted using techniques of multiple-group confirmatory factor analysis
(CFA; Byrne, Shavelson, & Muthén, 1989; Horn, McArdle, & Mason, 1983; Joreskog,
1971; Meredith, 1993; Millsap, 2012; Steenkamp & Baumgartner, 1998; Widaman &
Reise, 1997; also see Vandenberg & Lance, 2000 for a review). Based on the multiple
group CFA model, there is a linear relationship defined between the observed scores X;
and its corresponding latent factor n; as:

Xi=t+Ami t & 1)
The observed scores X; are for an item I. Item parameter include the intercept t; the
factor loading A; and the residual term &;. Holding the presumptions that X;
multivariate-normally distributes, we use mean vector and variance and covariance
matrix to describe X;.

E(X:) = 7 + Ak (2)
Where k; is an r*1 vector of factor means and A; is a matrix of factor loadings.

Cov(X;) = 4;®;4; + 0, 3)
Where @; is the covariance matrix for latent factors and ©; is a variance-covariance
matrix among the residuals.

The procedures of factorial invariance are to test a series set of invariances on
item parameters (z;, A;, 0;). First, it starts with a baseline model, where the

configuration of factorial structure is set to be identical across groups. All parameters



are freely estimated in this model, except for those imposed with minimum constraints
for model identification. Then a series of multiple-group CFA models are fitted through
imposing an increasing number of equality constraints that correspond to increasing
levels of invariance. For example, weak factorial invariance assumes all factor loadings
A; are numerically equivalent across groups. Strong factorial invariance assumes all
intercepts 7;, along with all factor loadings A; are equal across groups (e.g., Widaman &
Reise, 1997). The strictest invariance constraints all three item parameters (z;, 4;, ;) to
be equivalent. Tenability of specific equality constraints is determined by testing the
significance of chi-square difference between the models with and without these
constraints. For instance, in the test of metric invariance, it is often to compare the less
restricted model (configural invariance) with a more restricted model in which only
loadings constrained.

In testing for factorial invariance, a common method for identification is to
constrain the factor loading (and intercept) of one particular item to be equal across
groups. The item chosen for this purpose is referred to as a reference indicator (R1). All
other parameters (except for the factor variance and mean for the selected group) are
then freely estimated in reference to the scale of the chosen RI (Cheung & Rensvold,
1998; Johnson, Meade, & DuVernet, 2009; Meade & Wright, 2012).* However, as
Rensvold and Cheung (1998, p.1022) pointed out, “This creates a dilemma. The reason
one wishes to estimate the constrained model in the first place is to test for factorial
invariance, yet the procedure requires a priori assumption of invariance with respect to
the referents.” Whether the selected RI is truly invariant is critical in detecting

invariance or non-invariance of other items. Research has shown when an inappropriate



item is chosen to be a RI, severe Type | or Type Il errors are expected in testing
factorial invariance; that is, truly invariant items could be detected erroneously as non-
invariant items and vice versa (Johnson, Meade, & DuVernet, 2009; Yoon & Millsap,
2007). Selection of a RI determines whether the true status of invariance could be
detected using the multiple-group CFA method.

Despite of its importance, RI selection has still been under-addressed and
inappropriately implemented in applied research. Using the keywords of measurement
invariance, measurement equivalence, and factorial invariance, a recent search in the
database of PsycINFO yielded a total of 192 applied studies published in 58 different
peer-reviewed journals 2017. Psychological Assessment, Developmental Psychology,
PLOS one, and European Journal of Psychological Assessment listed in order as the
first four journals in terms of number of publications on factorial invariance related
research. Surprisingly, only 13 of the reviewed studies (6.8%) mentioned RI selection.
Ten of them selected “the first item” (whichever the first item was) as the reference
indicator, and the other 3 did not state the specific method of their RI selection.

It is worth of noting that fixing factor variance of all groups to unity was found
in 15 (7.8%) reviewed studies as the way for identification of multiple-group CFA
models. This method could produce misleading results for factorial invariance tests
(Rensvold & Cheung, 1998; Yoon & Millsap, 2007, Shi, Song, Liao, Terry, & Snyder,
2017), although it works well in identifying single-group models. Research has shown
that if the imposed equality of factor variances does not hold in data, true differences in
factor variances may be shifted to be observed differences in factor loadings across

groups (Rensvold & Cheung, 1998). Results of factorial invariance tests would be



invalid in this case. Therefore, this method is not recommended for identification of
multiple groups in testing for factorial invariance (Yoon & Millsap, 2007).

Indeed, many different methods have been proposed on RI selection in recent
years. Some originated from item response theory (IRT), and some are SEM-based
approaches. However, there appears to be a large gap between methodological advances
and empirical uses of RI selection in applied research. A need is called to further
understand the imperativeness of RI selection and more importantly, to deeply
understand the advantages and disadvantages of using different methods, providing
useful guidance for future practices of factorial invariance test and its related analyses.

The goal of Study I is to meet this need by comprehensively evaluating and
comparing a three selected, commonly-used methods of RI selection. They are named
“MaxL”, “Miny?” and “Bayesian SEM”. To this end, a simulation study was conducted
in which a variety of data conditions were generated for multiple-group CFA models
with continuous indicators. Power of correctly choosing a truly invariant item as Rl
serves as a major criterion for performance evaluation. Then, a large real-world data set
of 12,811 respondents was used to empirically demonstrate and compare the uses of RI
selection methods. Lastly, recommendations and suggestions were given based on the
comparisons from both simulated and empirical investigations.

After selecting the invariant reference indicator properly, one can easily test the
invariance of item parameters in terms of standard procedures of the multiple CFA
model. However, the practice of factorial invariance on real data would not often be
tenable at certain invariance levels. For example, the strong and strict levels seldomly

hold invariance. Therefore, to correctly locate the non-invariance becomes highly



necessary for further analysis on measurement equivalence. The “location of non-
invariance” indicates the optimal separation of items with item-parameters differences
from the ones that are invariant across-group. It indicates two aspects of meanings. One
is to place the position of the non-invariant item; and the other one is to distinguish the
invariant item from those contaminated ones.

The appropriate way to locate non-invariance will greatly benefit researchers.
First, it would help them to properly conduct the partial measurement invariance test
under empirical modeling settings. Fitting the multiple-CFA with certain free estimates
can produce more accurate results than with the equally full parameter constraints (Shi,
Song & Lewis, 2017; Muthén & Asparouhov, 2013). For example, when the
measurement invariance is not held, fitting the second-order latent growth curve models
with partial constraints yielded less biased estimates than the original full constraint
model (Liao, X, 2012). Second, it would help to explore the potential causes to the non-
invariance. For example, if a pair of factor loadings differs, the association between the
item and latent construct might be stronger in one group than the other. Many reasons
might result in this inequality, such as distinct understanding, translation barriers,
cultural discrepancy and so on.

Largest modification index (M) is one common method to locate the non-
invariance in literatures (Yoon & Millsap, 2007). It starts with constraining all item
parameters as a baseline model. When consulting with the largest value of Ml (higher
than the cut-off), this method frees only one constraint on parameters estimate in the
focal group. This procedure then sequentially relaxes one constraint at a time until Ml is

no longer significant, or no larger than the cut-off 3.84, at « = 0.05 (Yoon and Millsap,



2007). The M1 value can be obtained from the likelihood ratio (LR) test on the nested
models with one degree of freedom (MacCallum, Roznowski & Neocowitz, 1992). One
can easily identify the non-invariant items which are freely estimated. This method is
also named the Sequential Max-mod. It performs well under the conditions of fewer
contaminated items, larger sample size and larger magnitude. However, it is also found
to inflate Type | error due to the potential model misspecification in the baseline model
(Yoon & Millsap, 2007; Kim & Yoon, 2011; Whittaker, 2012).

To address upon the high false positive rate, Jung and Yoon (2016) proposed
another method named Forward CI. Opposite from the largest M1 with full constraints
on the baseline, it does not hold any constraints (except the reference indicator). Instead,
the method creates a new parameter (E.g., 4; — 4,,) corresponding to the loadings or
intercepts difference. Employing the maximum likelihood estimation, the confidence
interval (Cl) is to estimate the new parameters. If CI does not include zero, non-
invariance is believed to be located on the tested parameter. Otherwise, it is believed to
have no difference on item functioning. The simulation results indicated that the
Forward CI is generally superior to the Largest MI with lower Type | and Il error rates.
Yet, this superiority is reduced when the cut off value of Largest MI adjusts to be more
conservative from 3.84 to 6.65 (Jung and Yoon, 2016).

Both Largest M1 and Forward ClI are proposed on the framework of well used
null hypothesis significance testing (NHST). The former one is heavily based on the p
value in null hypothesis test. If the p value for the LR test is small enough, the Chi-
square statistics difference between two nested models are significant and non-

invariance exists. The latter one profoundly depends on the confidence intervals (CI) for



model parameter estimates. If the range of CI does not contain zero, it is believed that
non-invariance occurs. However, due to the natural limitations of NHST, both methods
yield some inevitable defects. First, the non-significant results from LR test cannot be
taken as the conclusive evidence for the invariant parameters. Regarding the null
hypothesis protocol, one can identify the source of parameter non-invariance when p <
0.05. Nevertheless, one cannot accept the null nor be sure the hold of invariance when p
is > 0.05, because the interpretation of non-significant p value can be one of two
possibilities. Either there is evidence to support the null (to “accept” null), or it is the
lack of sufficient evidence that the data is insensitive to distinguish the theory from the
null (nothing follows from the data) (Dienes, 2014). As long as NHST produces only
one fixed estimate of parameter without any credibility about other parameters values,
decisions are narrowed down to be dichotomous; either to reject or failed to reject null.
(Brooks, 2003; Dienes, 2011; Kruschke, 2011; 2014; 2018).

What is more, the reliance of p value is a limited source of evaluation in
hypothesis test. It would easily reveal the problems of large sample size fallacy (Lantz,
2013; Bergh, 2015). That is a statistically significant result may be meaningless from a
study with a large sample size, because the actual difference is trivial and the effect size
is small. This problem has been quite common in the applications of NHST to locate
non-invariance. For example, simulations showed the Chi-square test of Largest Ml is
likely to reject the null in large sample size conditions, especially when the magnitude
of non-invariance is small (Bentler & Bonett, 1980; Marsh, Hau & Grayson, 2005;

Mead, 2010).



Comparing to the use of p value that decides whether or not a point parameter
value would be rejected, the confidence interval in the method of Forward CI consists
of a range in which the potential values of cross-group parameter differences might be
covered. Unfortunately, in this range, it does not provide the probability for all the
values (Kruschke & Liddell, 2018; Kruschke, 2014). We do not know how much more
probable is the null value than other values. Therefore, even if Cl contains zero, it does
not necessarily mean that the parameter invariance equally holds. The probability of
other values in CI might be higher than zero, indicating that there is still some amount
of small non-invariance on parameters. Jung and Yoon’s simulation results have shown
this problem. When the magnitude of non-invariance is small and sample size is small,
Forward CI (at 95%) has relatively large Type Il error rates (Jung & Yoon, 2016).

Concerning the limitations of current methods, the Study 11 from the Bayesian
perspective will introduce new methods which do not depend on the p value or ClI to
decide the location of non-invariance. Instead, we focus on the Bayesian hypothesis test
executed by two categories of methods: Bayesian estimation (BE) and Bayes Factor
(BF). Once we review each approach and their applications of measurement invariance,
we will center our attention on the subsume methods in each category. For BE, we will
elaborate on the method region of practical equivalence (ROPE) and its extended
version ROPE with zero (ROPE_0). Savage-Dickey will be used to calculate BF.
Furthermore, we will compare these Bayesian approaches under the context of testing
the factorial invariance. Pros and cons will be listed and we will apply each method in

real data as a pedagogical example for empirical users.



Study I: A Comparison on Methods of Reference Indicator Selection in

Testing Factorial Invariance

Methods of RI Selection

Two major categories of approaches have been proposed to aid R1 selection.
One is all-others-as-anchors (AOAA) approach, and the other is Bayesian SEM
(BSEM) approach. The AOAA approach originated from IRT, and has been considered
as perhaps the only reasonable way to empirically identify RI while invariance status of
all items is initially unknown. AOAA approach begins with fitting a baseline model in
which all parameters are constrained to be equal across groups. Then each single item
alternately serves as the target item, and parameters for the target item are to freely
estimate while the others are still constrained to be equal. Then likelihood ratio (LR)
test is used to compare the model fit between the two nested models, which is
approximately y? distributed with degrees of freedom equal to the difference in free
parameters. The significance of this test indicates the presence of cross-group item
differences.

The AOAA approach indeed subsumes two methods with different criteria for
RI selection. The first one, labeled as MaxL in this study, chooses a RI as the item that
produces non-significant LR statistics and meanwhile, has the largest factor loading
(Stark, Chernyshenko, & Drasgow, 2006; Rivas, Stark, & Chernyshenko, 2009). This
method has ever been recommended due to its high power of detecting item differences
while controlling for nominal type I error (Meade & Wright, 2012). It could also
outperform the BSEM approach in detecting item differences when large differences

exist in factor loadings (Shi, Song, Liao, Terry, & Snyder, 2017). However, there is a

10



methodological concern with this method. Woods (2009) stated that magnitude of factor
loadings does not necessarily ensure item equivalence in using MaxL approach. For
instance, when item A and item B both produce non-significant LR statistics, item A
could be chosen as the RI due to its factor loading being the largest, even though item B
is the one that indeed functions the same across groups but item A. In this case, MaxL
would make a mistake in choosing a correct RI.

The second method, labeled as Miny? in this study, selects a RI as the item that
produces the smallest LR statistic among all items (Woods, 2009). The idea behind this
approach is that the magnitude of LR statistic reflects the degree of difference in item
functioning. So the smaller LR statistic is, the smaller the item difference is. This
approach distinguishes itself from MaxL in that it does not require the smallest LR
statistic to be non-significant. Woods (2009) showed that Miny? performed well under a
variety of data conditions in identifying truly invariant items with power rates of 90%
and above.

The Bayesian SEM approach is a newly application of Bayesian method in
testing for factorial invariance (Shi, Song, Liao, Terry, & Snyder, 2017; Shi, Song,
Distefano, Maydeu-Olivares, McDaniel, & Jiang, 2018). It introduces a new parameter
D;; to represent a parameter difference across groups, which can index factor loading
difference (Djoqaing) and intercept difference (Diptercepe)- A selection index for the jth

item 4; can then be defined as a sum of standardized difference measures of Dy,q4ing

and Diptercepe for this item:

Dioads Dinterc
A' — | loadtngl | mterceptl (4)

J

SDloading SDintercept
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where Dipaaing aNd Dyprercepe are respective estimates of difference in factor loadings
and intercepts, and SD;oqqing aNd SDjntercep: represent standard deviations of those
differences.

The BSEM approach imposes informative priors with zero-mean and small-
variance for Dioading @and Dintercept, Which is referred to as “approximate identification
constraints” (Muthen & Asparouhov, 2012). It ensures latent factors to be properly
scaled and more importantly, makes Dioading and Dintercept €Stimable. Once Dioading and
Dintercept are estimated for item j, one can compute the selection index Aj and then
evaluate its posterior distribution. The item that produces the smallest posterior mean on
Aj is considered to have the largest likelihood of being invariant across groups. This
method produced high power of searching RI under a majority of simulation conditions
(Shi, et al., 2017). It performed well especially when there were fewer non-invariant
items with large magnitude of differences and large sample sizes. Power can be much
higher than 0.90 when only 20% of items function differently across groups. The
research showed that the choice of small prior variances did not significantly impact the
power rates of RI selection.

Direction Effect and RI Selection
In previous research on RI selection, a two-group CFA model was typically used
as the population model in data simulation. One group served as a reference group
where factor means and variances were set to be known, and the other group served as a
focal group where factor means and variance were freely estimated. A uniform direction
of parameter differences was often simulated for simplicity. While factor loadings were

simulated be the same for truly invariant items across groups, they were set to be
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smaller in focal group than those in reference group for items functioning differently
(e.g., Stark, Chernyshenko & Drasgow, 2006; Woods, 2009; Meade & Wright, 2012;
Shi, Song, Liao, Terry & Snyder, 2017). For instance, if the factor loadings were set to
be .8, .8, .8, and .8 for all four items in the reference group, they were set to be .8, .6, .6,
and .8 in the focal group. As a result, the truly invariant items (items 1 and 4 in the
example) happened to have larger factor loadings than the non-invariant items (items 2
and 3 in the example). RI selection methods in favor of high loadings would have high
power of selecting truly invariant items. However, such high power could just be the
artifacts of data simulation with a uniform direction.

What if the direction of parameter differences is reversed? For instance, if the
factor loadings are set to be .6, .6, .6, and .6 for all four items in the reference group,
and .6, .8, .8, and .6 in the focal group, the methods in favor of high loadings are likely
to choose either item 2 or item 3 as RI. In this case, the power of correctly selecting
invariant items as Rl would be low. Therefore, it is critical to consider the directions of
parameter differences in generating data and evaluating power of the methods for RI
selection.

In this study, we differentiated three types of directions of parameter
differences. Positive direction refers to the case where parameter values are larger in
focal group than reference group. Negative direction refers to the case where parameter
values are smaller in focal group than reference group. The third direction is the mixed
direction where certain parameters have in part larger and smaller values in one group
than the other. If the power of RI selection is influenced by the directions of parameter

differences, direction effect is said to occur.
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As follows, we first presented a comprehensive simulation study, and then
empirical applications of the three RI selection methods. A discussion will be given on
theoretical and empirical issues of RI selection. Based upon the results of our study, we
provided some guidelines on the uses of these methods for applied researchers. We also
offered some suggestions on the simulation methodology for methodological
researchers.

Monte Carlo Simulation Study
Data Conditions

The population model was a two-group CFA model with 10 items loaded on a
single factor. One group served as reference group and the other served as focal group.
The variables manipulated in the data simulation were listed as following:

Sample size: Continuous data were generated with N = 100, 200, 500 per group,
representing small, medium, and large samples in typical psychological research. Both
groups were simulated to have equal sizes in all conditions.

Location of difference: ltem differences were simulated to occur on either factor
loadings or intercepts, never on both at the same time.

Percentage of non-invariant items: Consistent with previous simulation research
(e.g., French & Finch, 2008; Meade & Wright, 2012), we simulated data with either 20%
or 40% of non-invariant items in this investigation. This corresponded to the cases
where either 2 or 4 items (out of 10 items) function differently across the two groups.

Magnitude of difference: The magnitude of cross-group differences was set to
0.2 and 0.4 for factor loadings, and 0.3 and 0.6 for intercepts. The former values for the

parameter differences were considered to be small, and the latter values were considered
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to be relatively large (Kim & Yoon, 2011; Kim, Yoon & Lee, 2012; Meade &
Lautenschlager, 2004; Shi, Song, & Lewis, 2017).

Direction of cross-group difference: Three directions were manipulated for
factor loadings and intercepts, including positive, negative, and mixed directions.

In total, 72 data conditions were generated by fully crossing 3 sample sizes, 2
locations of difference, 2 percentages of non-invariant items, 2 magnitudes of difference
in parameters, and 3 directions of differences. Each condition had 500 replications.
Data Simulation

The factor mean and variance were set respectively to 0 and 1 in reference group.
The raw factor loadings, intercepts, and unique variances were set to .8, 0, and .36,
respectively, for all items. In focal groups, factor mean and variance were set to .5 and
1.2, respectively, and uniqueness were set to .36 for all items. All factor loadings and
intercepts in focal groups were generated to be equal to those in reference groups,
except for the items that were manipulated to be different under certain conditions. An
example of two-group population CFA model is depicted in Figure 1.1 where 20% of
factor loadings were set to be different with the negative direction in across-group
differences.

Data Analysis

Three methods were used to analyze the simulated data, including MaxL, Miny?,
and BSEM. In all analyses, the factor mean and variance were fixed to be 0 and 1,
respectively in the reference groups. All the other parameters were freely estimated

except for those required to be constrained by the procedures.
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In using the MaxL method, the baseline model constrained all items to be equal
across the focal and reference groups. Then, the equality constraints were relaxed for
one item at time, yielding the reduced model. The differences in the target item were
then examined using likelihood ratio test. This procedure was repeated for testing each
of the other items in the model. Eventually, a reference indicator was chosen as the item
that produced non-significant LR statistic and had the largest factor loading as well.
When using the Miny? approach, the significance of LR statistic was not a concern;
instead, the values of LR statistics were rank ordered for all items. A reference indicator
was chosen as the item yielding the smallest LR.2

When using the BSEM method, the parameter D;; was computed for each

factor loading (D;pqaing) and each intercept (Diptercepe) aCross groups. After imposing

the normal priors of zero-mean and small-variance of 0.001 on the parameterD,;,
MCMC was run a minimum of 50,000 and maximum of 100,000 iterations. The
estimates at every 10" iteration retained to form posterior distributions for factor
loadings and intercepts. The means and standard deviations of these posterior
distributions were then computed. Consequently, each item had a selection index 4;
computed, indicating the summary of standardized difference in both factor loading and
intercept. The item with the smallest value of 4; was selected as the reference indicator.
Results

We used power rates to evaluate the performance of each method. Power rate

was calculated as the percentage of correctly identifying a truly invariant item as RI

among 500 replications under each condition. In addition, ANOVAs were performed on

power rates to test the main effects and interaction effects of all the six data variables.
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The power rates under all data conditions were summarized in Table 1.1. An
ANOVA was performed on these power rates to test the main effects of all the six data
variables. As shown in Table 1.2, the main effects (see ANOVA 1) were not significant
for location, sample size, and magnitude of difference (all ps > .05). However, the effect
of method was significant (F, 206) = 25.507, p < .001), with Miny? and BSEM
performing better than MaxL (ps < .001). Figures 1.2 to 1.5 also showed that under
multiple conditions, MaxL produced low power rates, and some of those were even
lower than the power rates of selecting a random item as RI. This occurred in 50% of
the conditions (12 of 24 in Table 1.1) when the direction of parameter differences was
positive. However, this was not the case for Miny? and BSEM. Neither of these two
methods was associated with lower-than-random power rates.

The effect of direction was significant (F, 206) = 19.623, p < .001), and average
power rate in positive condition was lower than that in negative and mixed conditions
(ps < .001). The direction effect was evident. However, Figures 1.2 to 1.5 indicated that
a) the direction effect was greater for MaxL than for Miny? and BSEM, and b) factor
loadings were more subjective to such direction effect than intercepts, suggesting the
possibility of interaction among these data variables.

The effect of percentage was significant (F, 206) = 33.608, p <.001). Table 1.1
showed that 40% of items being different produced lower power rates than 20% of
being different (p < .001). This occurred on factor loadings (as shown by differences
between Figures 1.2 and 1.3) as well as on intercepts (as shown by differences in

Figures 1.4 and 1.5).
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Have examined the main effects, we now ran a full ANOVA model to include
all main effects, two-way interactions, and three-way interactions among the six data
variables. Our focus here was the significance of the interaction effects. In this model,
four-way interactions cannot be examined due to the limitation of the dada; that is, there
were very few scores in each cell without enough variation among them. Thus, this
ANOVA was performed on power rates without four-way interactions being included.
In total, there were 6 main effects, 15 two-way interactions, and 20 three-way
interactions in this model. The results were presented as ANOVA 2 in Table 1.2.
However only certain effects that bears direct importance were reported and interpreted
in the following.

We first looked at the three-way interactions involving two-way interaction of
method X direction. For a significant three-way interaction, we examined the two-way
interaction at each level of the third variable. If a two-way interaction was significant at
a certain level of the third variable, we then tested for simple effects of the data
variables. Pairwise comparisons were made thereafter by using Bonferroni correction to
adjust for the level of significance.

Table 1.2 showed that the following three-way interactions were significant:
method x direction x percentage (F, 110) = 9.84, p < .001), method x direction x
sample size (F, 1100 = 3.779, p < 0.001), method % direction x magnitude (F, 110) =
7.964, p <.001), and method x direction x location (F, 1100 = 5.529, p <.001). Then the
two-way interaction of method x direction (Table 1.3) was significant at each level of
percentage (20% and 40%), sample size (N = 100, 200, 500), magnitude (small and

large), and location (loadings and intercepts). The interaction effects were displayed in
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Figures S1.1-S1.4 in the in the supplementary appendix. As reported in Table 1.4, the
subsequent pairwise comparisons showed that a) under positive condition, Miny? and
BSEM consistently outperformed MaxL at all levels of percentage, sample size,
magnitude, and location; b) however, this was true only for percentage = 40% and
magnitude = large under negative condition; and c) under mixed condition the three
methods did not performed differently.

We then examined the three-way interactions involving the two-way interaction
of method x magnitude. Table 1.2 showed that all three-way interactions were
significant: method x magnitude x percentage (F(; 110y = 9.400, p <.001), method x
magnitude x sample size (F4 110y = 7.642, p <.001), method x magnitude x direction
(Fea,110) = 7.964, p <.001), and method x magnitude x location (F; 110y = 7.056, p =
0.001). Figures S1.5 to S1.8 in the supplementary appendix display the two-way
interactions of method x magnitude (Table 1.5) at each level of percentage, sample size,
direction, and location. Table 1.6 showed the results from pairwise comparisons with
Bonferroni correction for p values. When the between-group differences in parameters
were small, Miny? and BSEM outperformed MaxL at percentage = 40%, sample size =
100, direction = positive, and location = loadings, and they did not perform differently
under other conditions. When the parameter differences were large, Miny? and BSEM
outperformed MaxL at percentage = 40%, sample size = 500, direction = positive &
negative, and location = intercepts, and they did not perform differently under other

conditions.
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A Pedagogical Example

To demonstrate the empirical uses of the three methods, we applied all of
them to select RIs using data from a large-scale project (12,811 participants) --
Psychological Wellbeing of Children of Rural-to-Urban Migrant Workers in China. The
measurement chosen for this demonstration was from the Revised Child Anxiety and
Depression Scale (RCADS, Chorpita, Yim, Moffitt, Umemoto & Francis, 2000). This
self-report scale contains 47 items in total. However, only the items (18 items) related to
generalized anxiety were used here for demonstration. Responses were scored on a
Likert-scale of 1 to 4, corresponding to “Never”, “Sometimes”, “Quite Often”, and
“Always”. The Cronbach’s a was 0.897 in this sample.

There were 7,356 male (57.4%) and 5,455 female (42.6%) child respondents
in this sample. A two-group CFA was fitted to data, and MaxL, Miny?, and BSEM were
used to find Rls. Eventually MaxL and Miny? each produced 18 different values of LR
statistics when comparing the baseline model and each reduced model. Then all 18
values were rank ordered from the smallest to largest. As shown in Table 1.7, item 7 in
this scale was associated with the smallest LR statistic so that Miny? chose this item as
RI. For those items that yielded with non-significant LR statistic, item 7 was the one
that had the largest factor loading in the baseline model. Thus MaxL chose Item 7 as the
RI.

Then we used BSEM method to select a RI by specifying a two-group CFA
model with the commands knownclass = ¢ (g = 1 2) under Variable, and type = mixture;
estimator = bayes; under Analysis (Muthen & Asparouhov, 2012). The parameter D;;,

representing a summarized difference of each item across groups, was set under model
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constraint. We imposed the normal prior of zero-mean and small variance (N (0, 0.001))
on each D;; through the DIFF option under Model Priors. We let MCMC run for a
minimum of 50,000 and a maximum of 100,000 iterations with thin = 10. The Mplus
output contained the necessary information for the posterior distribution of D;;
(including Dfqctor 10ading @Nd Dintercept)- Table 1.8 showed the estimates
for Dractor toading: Dintercepe » @nd their standard deviations. The selection index 4;
was then calculated using Equation 4 for each item. Eventually item 7 was chosen to be
the RI because it produced the smallest 4; (= 0.646) out of 18 items.
Discussion
Inappropriate selection of reference indicators would jeopardize the outcome of

factorial invariance test using multiple-group CFA approach. Unfortunately, the
importance of RI selection has still not been fully aware among researchers (only 13 out
of 198 reviewed articles mentioned something on RI selection). Meanwhile, pros and
cons of current RI selection methods have not been well understood, which in part
hinders the uses of these methods. In the present study, we aimed to address this issue
by comparing a few commonly-used RI selection approaches, thereby providing certain
guidelines on RI selection for applied researchers.

The simulation study revealed that Miny? and BSEM performed better than
MaxL in selecting correct item as reference indicator. This was particularly true under
the positive condition where parameter values for functionally-different items were
higher in the focal group than the reference group, regardless of the levels of all other
conditions under investigation. Under the negative condition, MaxL performed much

better than itself in the positive condition, and showed equivalent power as the other
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two under certain circumstances, such as small percentage of functionally-different
items and small magnitude of cross-group difference in parameters. Under mixed
condition, no significance differences were found for the three methods of being
compared; however, MaxL appeared to be slightly inferior when the sample size and the
loading difference were small.

The direction effect was evident in using MaxL approach. This was consistent
with the expectation stated earlier in this article, that is, methods in favor of high
loadings such as MaxL tend to perform poorly under conditions where truly invariant
items happened to be the items with low factor loadings (i.e., positive condition).
However, they would perform decently in most of cases when truly invariant items
happened to be the items with high factor loadings (i.e., negative condition). This may
in part explain why MaxL showed high power of correctly selecting RI in previous
research where only negative condition was simulated (e.g., Meade & Wright, 2012). It
appeared that non-uniformed direction of parameter differences (i.e., mixed condition)
would remedy the drawback of favoring high loadings using MaxL approach. In this
case, the power rates of detecting truly-invariant items were comparable among the
three methods.

Another key feature of MaxL approach lies in the utility of LR statistic in testing
for the significance of item difference between groups. Research has shown that the
power of LR test is highly influenced by sample size and consequently, even very small
difference in item parameters would lead to significant LR test when N is large
(Ankenmann, Witt, & Dunbar, 1999; Meade, 2010). We found in our simulation

analyses that when the percentage of functionally-different items was small, increasing
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sample size increased the power of detecting truly-invariant items. However, power
decreased substantially or behaved inconsistently as sample size increased (to 500 for
instance), particularly when both were large at the same time for the percentage of
functionally-different items and the magnitude of item difference. This was true
regardless whether the direction was positive or negative, and whether the difference
occurred on factor loadings or intercepts. Thus high sensitivity to sample size makes
MaxL approach not plausible to use in applied research.

Miny? and BSEM approaches did not show any significant differences in their
performance across all data conditions. However, when there were 40% of functionally-
different items, the power rates of these two approaches were noticeably higher in
negative condition than those in positive condition, which was only true for differences
occurring in factor loadings. Our observation could be explained by the reliability
paradox (see Hancock & Mueller, 2011). That is, when fitting SEM models, for a given
level of model misspecification, better measurement quality is associated with poorer
model fit (Heene, Hilbert, Draxler, & Ziegler, 2011; McNeish, An, & Hancock, 2018;
Shi, Maydeu-Olivares, & Distefano, 2018; Shi, Lee, Maydeu-Olivares, 2018). In other
words, the model misspecification (e.g. non-invariance) is “weighed” more heavily as
the standardized factor loading becomes larger. It is also noted that the legitimacy of the
Miny? and BSEM approaches depends on certain assumptions; namely, the latent
variables in multiple-group CFA model should be scaled in the way that the metric of
the model parameters can be considered as a good approximation to the metric
otherwise set by truly invariant parameter(s) only (see Shi et al., 2017). Therefore, the

ideal condition for the Miny? and BSEM approaches is when the majority of the tested
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items are invariant, and/or the non-invariant items are given lighter weights (i.e., with
smaller factor loadings). Under the positive condition, the non-invariant items were
simulated to have larger standardized factor loadings (than the truly invariant items);
thus, given that the non-invariant items are more heavily “weighed”, the power of
selecting the proper RI is expected to be suboptimal, especially when the number of
non-invariant items is large (e.g., 40%). Future studies are needed to explore the role of
the measurement quality (i.e., the size of the standardized factor loadings) on the
accuracy of RI selection.

The properly choosing RI will let the item parameters be estimable in reference
to the scale of an invariant item. Then, the standard procedures of factorial invariance
test can be executed by a series set of invariant constraints. However, in the real
empirical applications, the invariance of each item parameter are more often failed to be
tenable. The normal procedures of factorial invariance can show whether the non-
invariance exists, according to the significant results from likelihood ratio test.
Unfortunately, it is not able to specify the exact positions of those contaminated
parameters. Therefore, the methods to locate the non-invariance become highly
necessary. In the following Study Il, we employed three up-to-day methods from
Bayesian hypothesis test, trying to answer the research question: how to locate the non-

invariance?
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Study I1: An Investigation of Bayesian Analysis in Factorial Invariance

Test

Introduction of Bayesian Analysis for Hypothesis Test

Previous literatures have discussed the difference between Bayesian and
traditional NHST in performing hypothesis tests. (Brooks, 2003; Bayarri, M. J., &
Berger, 2004; Dienes, 2011; Gelman, Carlin, Stern, Dunson, Vehtari & Rubin, 2013;
Stegmueller, 2013; Kruschke, 2011; Kruschke, 2014; Kruschke & Liddell, 2018) The
primary difference is the parameter is treated as a fixed constant for NHST but as a
random variable for Bayesian approach. NHST aims at the probability of getting only
the best-fitting parameter value, although such a parameter value depends heavily on
the p value assuming the null is true. In contrast, Bayesian analysis focuses on the
probabilities of all candidate parameter values. Given the observed data, it updates the
prior to the posterior distribution of the credibility over all possible parameter values.

More specifically, suppose a model m with unknown candidates of parameters &

given by data D, the Bayesian theorem produces the posterior distribution of 6. It is

Pm(D10m,m)pm (Om|m)
_ 5
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The equation can also be extended as:

D) = — PP161.82,.-m)p(61,6,...7) .
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The numerator p(D |64, 6, ..., m) is the likelihood function for the data conditioning on
the parameters of models and p(6;, 9,, ..., m) is the prior probability of parameter 6.
The nominator is the integration representing the average of marginal likelihood

pm(D|6,,, m) based on the model across all values of 8, weighted by the prior
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probability of 6. After taking the data into account, the posterior distribution

(6 | D, m) therefore has been updated from the prior state of belief on parameters by

the likelihood function.

Nevertheless, to properly obtain the posterior distribution p(6,, | D,m) is
typically difficult by the traditional numerical integration. As the number of model
parameters increases, the high dimensional parameter space involves the combinations
of all possible parameter values. It requires assessing the likelihood function for each
combination of parameter values and letting them combine with the prior to derive the
posterior analytically (Van Ravenzwaaij, Cassey and Brown, 2018). However, no such
computation is available in practice. Fortunately, this problem has been solved by the
application of Markov Chain Monte Carlo (MCMC). It is a computer-based sampling
method which repeatedly draws the random samples from the posterior distribution and
summarizes the statistics of each draw. MCMC greatly benefits users particularly in
Bayesian inference, as it approximates the property of posterior distributions.

MCMC procedure begins with an initial sample from the distribution, and then
generates a proposal sample with some added random noise. Based on the plausibility,
MCMC then needs to decide to accept or reject the newly proposed sample. If the
proposal draw has a higher posterior value than the initial sample, MCMC accepts the
proposal as the new sample for the next iteration. If the proposal draw is not higher,
then it is designed to either accept or reject the sample by random chance. If the
proposal is rejected, MCMC only needs to copy the initial sample use it for the next

iteration. It will repeatedly run this procedure until enough samples are available.
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Previous studies have described this process of MCMC as the Metropolis algorithm
(Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, 1953).

Although Metropolis algorithm has been useful in practice, it is less efficient for
the proposal distribution which is usually too broad or too narrow (Kruschke, 2014). In
other words, Metropolis algorithm will tend to reject the proposal sample frequently
when parameters are strongly correlated. Consequently, in order to get the right
posterior, the algorithm must run continuously with a larger number of samples. To
improve its efficiency, a new method called Gibbs sampling was introduced, (Geman &
Geman,1987, Gelfand & Smith, 1990; Smith & Roberts, 1993) which follows most of
the same steps of Metropolis except drawing samples from the parameters’ conditional
distributions (Van Ravenzwaaij, Cassey & Brown, 2018). Each sample would not be
drawn randomly, but instead from the probability distribution of parameter that depends
on the value of another parameter. Therefore, it improves the efficiency to generate the
posterior distribution. In this study, we used Gibbs sampling to run the MCMC chain.

Keeping the general Bayesian rules in mind, we will introduce its applications in
Bayesian hypothesis test. There are two main approaches recommended in recent
literature, Bayesian estimation (BE) and Bayes factor (BF).

Bayesian Estimation

Bayesian estimation focuses on the space of all possible parameter values.
Taking the data into account, it starts with updating the belief (prior) on each parameter
value to a posterior distribution based on Bayes’ rules. Then, by using the posterior
distribution, it makes the inferential statements for the parameter 6 of interest (Rouder,

Haaf and VVandekerckhove, 2018).
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The highest density interval (HDI) can be used for the parameters inference. It
provides a range of highly credible values for parameter 6. The estimate point inside the
interval has a higher credibility than those outside. As a summary statistic, 95% of
probable parameter values of HDI is often used to test the null (or other interested
value). For example, one can simply reject the null value that falls outside a posterior 95%
HDI. However, this method is not able to determine whether the null value should be
accepted or withdraw. To address upon this problem, Kruschke (2011, 2014, 2018)
proposed a new decision rule which employs a small range of parameter values around
the null called the region of practical equivalence (ROPE). The values within this range
are taken as equivalent as null value. If the entire ROPE lies outside the 95% HDI of
posterior distribution of parameters, one can reject null. If the entire ROPE completely
contains 95% HDI, contrast to the traditional NHST, one can truly “accept” null.
However, if ROPE and HDI partially overlap, ROPE cannot completely cover 95% HDI,
and no more concrete decisions can be made. The presented data are insufficient to
make any decisions between reject or accept null, but “uncertain” for the hypothesis
testing. Therefore, the size of ROPE matters. A wide ROPE range will increase the
probability to accept the null and Type 1l error. Yet, a too narrow ROPE might be more
likely overlap the HDI, increasing the uncertainty rate. There are no standard rules to
specify the size of ROPE, because the range of ROPE highly depends on its practical
purposes (Serlin & Lapsley, 1993; Kruschke, 2014). For example, to test measurement
invariance, the set of ROPE range is indeed associated with how trivial the error in

which the invariance can be defined. The range of [-0.1, 0.1] indicates that cross-group
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parameters are still consider to be invariance, even if they have 0.1 amount of
functioning difference.

Shi, Song, Distefano, Maydeu-Olivares, McDaniel & Jiang (2018) provided a
new logic to improve the practice of ROPE. Holding the same decisions when ROPE
either completely includes 95% HDI or completely not, they extended two more
situations as ROPE partially overlaps with 95% HDI. The first situation is when the
point of zero is included within the 95% HDI, but is still inconclusive on the tested
parameters. The second situation zero is excluded and is conclusive to reject null. Back
to the example of measurement invariance, when 95% HDI does not contain zero, even
if it partially overlaps with ROPE interval, they take the parameters to be non-
invariance. Since this method is related with the point of zero, we named it ROPE with
zero (ROPE_0).

The approach of Bayesian estimation is insensitive to the choice of prior
distribution (Rouder, Haaf and VVandekerckhove, 2018) because when its incorporated
with data it can gain the sufficient information and "overwhelms" the initial belief on
parameters. In addition, because Bayesian estimation plays as a role to compromise
between prior information and the data, therefore posterior distribution is heavily
impacted to a greater extent by the data if the sample size is large (Gelman, et al., 2013).

Bayes Factor

Bayes factor (BF) was initially proposed by Sir Harold Jeffreys (1935, 1961)
who contributed in the field of Bayesian hypothesis testing. The method was designed
to test the null from the perspective of the Bayesian model comparison. It compares the

probability of the data between two models, in which one model sets the parameter to
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zero (can also be other interested values), as the null hypothesis (H,). The other model
allows all possible parameters that are not equal to zero as the alternative hypothesis
(H,). More specifically, given the data, D, we have two modelsm=21and m = 2. The
likelihood function p(D|m = 1) and p(D|m = 2), the priors are p(m = 1) and p(m = 2) for
model 1 and model 2 respectively. Following the Bayes’ rules in Equation 5, the

posterior probability for model 1 and 2 can be taken as:

Onm=1|D,m=1) = Pm=1(D[0m=1.Mm=1)Pm=1(0m=1Im=1) 7
p( m—1| ) Ym [ A0mDm(D]0m,m)pm (6m|m) "

_ — Pm=2(D|Om=2M=2)Pm=2(Om=2|m=2)
P(Om=2 |D ym=2) Y | A0mDm (D]6m,m) Py (Bn|m) ®)

Let Equation 7 be divided by Equation 8.

POm=11Dm=1) _ Pm=1(D|0m=1,M = D)pm=1(Om=1|m = 1)/ Sm [ d6mpm(D|6m m)pm 6mIm)
P(8m= | D.m=2) Pm=2(D|Om=2, M = 2)pm=2(Om=2IMm = 2)/ Zm [ d0mpm(D|0m,m)pm(Om|m)

The denominator of Equation 7 and 8 are the integrations of the likelihood function
weighted by the prior over the all possible parameter values within hypothesis (Myung,
2003; Ly, Verhagen and Wagenmakers, 2016). The ratio of the two integrations is equal
to 1, because the space of potential parameter values from both models are expected to

be the same. Therefore, the following Equation 9 has three components:

P(9m=1 |D:m=1) — pm=1(D|9m=1,m = 1) X pm:l(emzllm = 1)
P(Om=2 |D,m=2) pm=2(D|9m=2'm = 2) pm=2(0m=2|m = 2)

9)

Pm=1(Om=1/m = 1)

e Prior odds: s (gL = 2)

represents the researchers’ initial belief on
each hypothesis before the data is given.

% quantifies the relative plausibility of two
m=2 yIHt=

e Posterior odds:
models after receiving data.

30



pm=1(D|em=1,m = 1)

e Bayes Factor: pmea(D[Om—g, M = 2)

indicates how much change would be

from the “prior odds” to “posterior odds”.

BF is straightforward for the hypothesis test. When BFo1 > 3, it is three times
likely for the data under H, than H, and accept the null. While BFo1 < 1/3, the data is
three times more likely under H, than Hy, as the evidence to reject null®. If BFou is
between 1/3 and 3, it is uncertain for any decision. Some literatures also suggest to
consider a strong cut-off, say BFo1 > 10 strongly supports for H, (Jeffreys, 1961; Kass
and Raftery, 1995).

As a new alternative to NHST and p value, Bayes factor has been increasingly
used not only in the forms of various applications in psychology area (Matzke,
Nieuwenhuis, Rijn, Slagter, Molen, and Wagenmakers, 2015; Van Den Hout, Gangemi,
Mancini, Engelhard, Rijkeboer, Dams, and Klugkist, 2014, 2017; Wong, & Schoot,
2012; Kary, Taylor, & Donkin, 2016; Mou, Berteletti, & Hyde, 2018) but also in the
tutorial for common practices (Klugkist, Wesel & Bullens, 2011; Hoijtink, Béland, &
Vermeulen, 2014; Mulder & Wagenmakers, 2016; Van De Schoot, Zondervan-
Zwijnenburg and Depaoli, 2017). In addition, psychological applications are
particularly in support of BF as it is especially suitable for testing a point null
hypothesis (Williams, Baath & Philipp, 2017). Imagine the model Ho for null
hypothesis gathers the probability mass exactly at point of zero, while Hy holds the
remainder of the probability spreading out across the range of the alternative values. It
would be easy to compare the two hypotheses in terms of the ratio of their marginal

likelihood (BF).
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BF has several exceptional advantages for empirical practice. First, it is able to
evaluate the information when the data is in favor of accepting null. If the result of p
value is non-significant in the classical NHST, it fails to reject the null (but does not
mean it can equally accept null). The p value is simple criteria which tends to
overestimate the evidence against null but lacks the evidence for null (Mulder &
Wagenmakers, 2016). However, results of BF can provide the evidence for acceptance
of null hypothesis. The following literatures will provide a better understanding about
BF’s superiority on the aspect of accepting null in hypothesis testing. Bem (2011)
conducted nine experiments to demonstrate the existence of psi in which future events
effect on people’s responses. In addition, Wagenmakers, Wetzels, Borsboom and Maas
(2011) reanalyzed the data using Bayesian t-test. One of Bem’s experiments tested the
retroactive induction of boredom on neutral stimuli. They hypothesized that the test
subjects who are high in stimulus seeking would also be significantly decreasing their
liking for the target. However, their results indicated that t(199) =-1.31, p =0.096, d =
0.09 which failed to reject null, but still no evidence to accept the null. Nevertheless,
Wagenmakers et al. later used BF to substantially support the null, as BF,,; was 7.6.
Therefore, those test subjects high in stimulus seeking showed no difference in liking
for the target from those who were not.

Second, Bayes factor is able to provide the information of uncertainty. Recall
NHST cannot distinguish the “non-significant” results of the null hypothesis, either
accepted or withdrawn for uncertainty. In comparison, BF does not have this issue.
Several cut-off values defined the BF values clearly into three decision categories:

reject, accept, or uncertain the null. To get a better sense of this feature, let us review
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some additional published articles that used NHST and BF respectively. Gollwitzer and
Melzer (2012) tested the “Macbeth effect” which indicated the desire for people to
cleanse themselves physically (called “moral cleansing”) when their moral selves have
been threatened. The test subjects included both experienced and inexperienced
participants to play one of two violent video games. One, in which, involved the
violence against other humans and the other one was against an object. After the game,
they were asked to pick up gifts in which half of them were hygiene products.
Researchers accounted the number of choosing hygiene products as the measurement to
test “Moral cleansing”. By applying ANOVA, the results indicated the inexperienced
player chose more hygiene products after playing the violent game against humans
rather than the objects t(34) =-2.03, p = 0.05, d = 0.68. Yet, no significant results (a =
0.05) were found for experienced players t(32) = 1.49, p = 0.15, d = 0.51. However,
Konijin, Schoot, Winter and Ferguson (2015) used Bayes factor to re-analyze the data.
The results of BF about experienced player was BF = 0.87. It was an anecdotal evidence
for the alternative, according to Jeffreys’ classification scheme of BF (Jefreys, 1961).
The data was only 0.87 times as likely to have occurred under Hi, leaving some
uncertainty and researchers cannot make any concrete decisions. Such ambiguity does
not literally mean the results are unclear, but instead gives us a more profoundly insight
of the relationship between the magnitude of uncertainty and statistical decisions.

Like other statistical methods, Bayes factor has its own fallacies. Most critics
complain about the cut-off values (Dienes, 2014; Gigerenzer & Marewski, 2015;
Kruschke & Liddell, 2018). Since BF is incapable of providing the direct evidence for

probabilities of hypothesis, it needs some form of criteria to make decisions instead.
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Jeffreys (1961) suggested 3 (1/3), 10 (1/10), and 100 (1/100) to divide the values of BF
into several categories of hypothesis decisions. Unfortunately, these arbitrary cut-offs
might easily allow BF slip away and back to the suffering of old tendency to interpret p
value. It may only give us another new looking but old rough tools only for
dichotomous yes or no decisions. For example, Konijn et al (2015) is concerned about
the results of BF are too similar to the hacking-behaviors which p-values possess. That
is BF 3.01 is considered as substantial evidence, while 2.99 becomes anecdotal
evidence. In fact, “God would love a Bayes factor of 3.01 nearly as much as BF of 2.99”
(Rosnow and Rosenthal, 1989). Therefore, researchers have suggested being cautious
on BF’s interpretations (Konijn et al, 2015).

In addition, Bayes factor has been also under the criticism about its severe
sensitivity to the choice of priors (Myung & Pitt, 1997; Kruschke, 2011; Kruschke,
2014; Kruschke & Liddell, 2018). BF essentially is the ratio of marginal likelihood.
Unlike Bayesian estimation in which the data can provide sufficient information to
overwhelm the impact from priors, marginal likelihood is highly sensitive to the prior
distribution (Liu and Aitkin, 2008). For example, when the prior is able to provide more
probability mass around the place where the likelihood distribution peaks, the marginal
likelihood will increase. Yet, if the prior comes up with little probability mass on
likelihood distribution, the marginal likelihood will be small (Kruschke, 2014). Liu et al.
(2008) performed a simulation study which found the bias of BF heavily depends on the
prior distribution for Hi. They used informative priors which express specific and
defined information on parameters. They also used non-informative priors in which the

distributions are diffused in a broad range. The results revealed the differences of priors
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impacting on BF10. Comparing to the non-informative priors (Uniform, Jeffreys and
Haldane), BF is highly biased in favor of Hi when it is with an informative prior,
The Bayesian Applications in Measurement Invariance Test

In recent years, more applications of Bayesian approaches have been in the
research area of measurement invariance (M) test. For example, Shi et al. (2017) used
the Bayesian Structural Equation Modeling (BSEM) under the multiple-group CFA
model to locate the non-invariance. They introduced a new parameter D; ;, representing
a parameter difference. It can index both factor loading difference (D;yq4ing) and
intercept difference (Dipercepe)- A selection index (in Equation 4) for the ™ item 4; can
then be defined as a sum of standardized difference measures of Dyyq4ing aNd Dintercept

for this item:

A |ch:t;ng| |Dm;:;ept

J

SDloading SDintercept

where Dlﬂng and D”;e;ept are respective estimates of difference in factor loadings
and intercepts, and SDjoqqing @Nd SDjntercepe are standard deviations of those
differences. By imposing the informative priors with zero-mean and small-variance, the
method let Diocading and Dintercept OF €ach item to be estimable. The invariance tests are

carried out by 95% HDI across all D;;, given the selected reference indicator. If HDI for

j
D;; fails to contain zero, the corresponding item parameters are not equal across groups.
This method is a great application of informative and small variance priors to locate

non-invariance. In this chapter, we will pay more attention on the studies which focus

on the applications of Bayesian hypothesis test for MI.

35



Dr. Verhagen and her colleagues (2016) were the first to introduce Bayes factor
to MI through the multiple group IRT models. To test invariance by null hypothesis,
they took the difference between item parameter across groups to be zero as the null (a
point, Hy: d; = 0, for all j items) while the rest of all possible non-zero values were for
the alternative hypothesis (an area, Hy: d; # 0). BF is the ratio of the marginal
likelihoods for the results of two hypotheses.

BF.. = PHO(D|9H0; HO) _ PHO(D|dj = O)
01 le(D|9H1,H1) prl(D|d] * 0)p1(dj)ddj

(10)

where p;(d;) is the prior distribution for alternative hypothesis. Instead of doing the
integration for the marginal likelihood of all plausible values for alternative hypothesis
weighted by priors, they practiced the Savage-Dickey density ratio (Dickey, J. M., &
Lientz, 1970; Dickey, 1971; Wagenmakers, Lodewyckx, Kuriyal and Grasman, 2010):

BF.. = pHO(D|9Ho’HO) _ P(d] = O|H1, D)
" e (DlOuy Hi)  p(d; = O[Hy)

(11)

The standard computation of BF asks for the analytical integration out of all possible
model parameter for H;. Compared to that, the calculation of Savage-Dickey is simple.
At the point of interest, BF only considers H; when dividing the height of the posterior
by the height of the prior for parameters (Wagenmakers, et al, 2010). To apply Savage-
Dickey in M, the parameter invariance should be tested simultaneously within the
MCMC sampling scheme. BF is the probability distribution of null hypothesis under the

posterior P(d; = O|H,, D) divide the prior P(d; = 0|H;) under the alternative H;. For
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more details about the mathematical calculation of the Savage-Dickey ratio, please read
Wagenmakers, et al (2010).

Verhagen et al (2016) used both multivariate normal and multivariate Cauchy
priors in their simulation. The BF,; value equal to three was taken as a cut-off. Fifty
replications were generated for each condition which included three different sample
sizes plus two priors. Non-invariance was generated on five out of ten items difficulties,
with the magnitude from 0, 0.1, 0.3 to 0.7. The results of their simulation indicated that
conditions in which BF with Cauchy prior generally perform better than Normal prior.
For example, about 91% to 97% of the invariant items with Cauchy were successfully
identified as invariance. From 78% to 91%, items with Normal priors were able to be
identified. In addition, the power rate of BF locating non-invariance was higher when
the magnitude was large. BF, at 95% and above, accurately figured out the 0.7 amount
of difference when sample size increased to more than N = 500 each group. However,
the rate dropped down even less than 60% for the same conditions, when the magnitude
of non-invariance decreased to 0.1. Finally, the rate of uncertainty (no concrete
evidence) followed the same patterns across conditions. The point in which uncertainty
reached the highest peak was when the non-invariance magnitude varied between 0.3
and 0.5. Neither small nor large amount of parameter differences could increase the rate
of uncertainty.

Several advantages should be greatly emphasized as BF is applied in MI. First, it
provides the convincing evidence to distinguish the decisions of truly invariant from
uncertainty, letting researchers be more comfortable choosing invariant items. What is

more, the item parameters when BF is between 1/3 and 3 do not literately mean the un-
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sureness to make any decisions. Instead, it provides a general picture on how likely the
parameter in focal group might deviate from the reference group. For instance, if BF,;
is 1.5, it means the observed data is still in favor of H, and 1.5 times more likely than
H,. What it implies is the corresponding item might be possible to maintain the
invariance if more information can be handed over. Second, BF is able to provide
acceptable good power rates, particularly when the magnitude of parameter difference
increases to the extent on upper-middle level. For instance, the simulation compared the
BF with Wald test (for more details read Langer, 2008; Woods, Cai and Mang, 2012), a
common method in Frequentist to test the non-invariance under IRT framework. The
results showed neither BF nor Wald were superior to the other, when the magnitude of
parameter difference was either 0.3 below or 0.5 above. However, when the difference
was between 0.3 and 0.5, BF had relatively higher power rate than Wald test with
critical level at 0.01°.

However, there are some limitations of this study we should not ignore. First, as
an alternative method, Bayesian estimation had not been taken into account. Only Bayes
factor was applied in this study. What is more, the usage of BF was limited under IRT
context. No more applications for testing factorial invariance under SEM framework.
Second, Verhagen et al (2016) merely focused on the invariance of item difficulties.
They did not design the test on item discriminations. Less information was provided
about BF’s performance both on item difficulties and discriminations. In addition, they
used an insufficient number of replications in Monte Carlo simulation. With only 50
replications, it might be possible to produce biased estimates, since some particular

samples might be more likely to arise than others (Bandalos, 1997). Finally, the study
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had no options for Uniform prior, a special form of ignorance about the true rate and
assigns the prior probability equally on each possible count (Liu and Aitkin, 2008). On
one hand, the density of Uniform is low around zero. It is therefore expected to convey
less information about parameter difference than Cauchy. On the other hand, since its
distribution spreads out within a certain range, the previous simulation indicated BF
was slightly more in favor of H; over H,,, comparing to other non-informative priors
(Liu and Aitkin, 2008).

In the current study, we introduce both Bayes factor and Bayesian estimation to
locate the non-invariance under SEM framework. Our main purpose is to provide a
more comprehensive Bayesian perspective to locate non-invariance. The methods will
show common users how they function under the multiple-CFA models for factorial
invariance test. We specifically show how Bayesian approaches make decisions on
accepting the invariance, detecting the uncertainty, and locating the non-invariance on
item parameters.

Monte Carlo Simulation Study

The current simulation study went through three steps. First, we generated data
into different conditions according to the study design. Then, we applied both Bayes
factor and Bayesian estimation on the generated data and tested null hypothesis. The
methods produced three decisions: accept null (the parameter is invariant across groups),
deny null (non-invariance exists), or show no evidence to conclude. Finally, based on
the decisions, we evaluated the results by calculating the power rate, uncertainty rate
and rate of correctly locate invariant items (rate of invariance).

Data Conditions
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We used a two-group CFA population model to generate the multivariate normal
data. Ten items loaded on a single latent factor for each group. One group served as the
reference group, and the other one served as the focal group. The variables manipulated
in the simulation were listed as following conditions:

Sample Size: Continuous data were generated with balanced N = 100, 200, 500
each group and unbalanced N = 250 and N = 500 for reference and focal group
respectively. The sample size increased from 100 to 500, representing small, medium
and large samples in typical psychology research.

Non-invarianct items: Eight out of ten items (80%) were generated with non-
invariance. The non-invariant variable started from the second item in the model. The
first and the last item kept the invariance. The magnitudes of rest 8 items increased in
the order of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (Figure 2.1).

Location of difference: ltem differences were simulated to occur on either factor
loadings or intercepts, never both at the same time.

Prior: there were 3 different non-informative prior distributions used: Uniform,
Cauchy and Normal distributions. The Uniform prior (range between -100 and 100) is
the distribution that equally assigns probability to each of the counts (Liu and Aitkin,
2008). The normal density distributes with a mean zero and a variance of two. And the
Cauchy (0, 1) is transformed as a t distribution with 1 degree of freedom, for the easy
execution in JAGS.

Therefore, 192 data conditions were totally generated by fully crossing 4 sample
sizes, 2 locations of difference, 8 magnitudes of difference on parameters and 3 prior

distributions.
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Data Simulation

The factor mean and variance were generated to 0 and 1 respectively in the
reference group. The raw factor loadings, intercepts and unique variance were set to 0.8,
0 and 0.36 accordingly for all items. All factor loadings and intercepts in focal groups
were generated to be equal to those in reference groups, except for the items that were
manipulated to be different under certain conditions. However, the 8 magnitudes of
non-invariance were generated starting from the second to the ninth item
simultaneously (Figure 2.1). Therefore, 80% of observed variables obtained the
differences between groups. There were total 500 replications in each condition. Mplus
7.1 was used to generate the data, given its higher operation speed. JAGS 4.3 was
practiced under R-3.4.2 to analyze and summarize the results. We also applied other R
packages to complete this study. They mainly included: “R2jags”, “runjags”, “MBESS”,
“MCMCpack”, “logspline”, “HDInterval” et al.
Data Analysis

Both Bayes factor and Bayesian estimation (ROPE and ROPE_0) were used to
analyze the simulated data. In the analysis, we fixed the factor mean and variance to be
0 and 1 only for the reference group. The 10" variable was taken as the reference
indicator for model identification. The 10™" factor loading, and intercept therefore were
fixed to be same across groups. The rest of other parameters were freely estimated
simultaneously.

For each factor loading and each intercept, the parameter D;; was computed as
the parameter difference between groups. Applying the non-informative prior

distribution, each of three MCMC chains ran with 10,000 iterations after 500 burins.
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The posterior distribution for each estimated parameter were finally constructed by

these 10,000 draws. By examining the posterior distribution of parameterD;;, both

ij
Bayes factor and Bayesian estimation were used to evaluate the invariance. Specifically,
for Bayes factor, we used Savage-Dickey density ratio to get the BF,, value (Dickey,
1971). If BFy; was equal or larger than 3, we accepted the null, believing invariance had
been held. If BF,; was equal or less than 0.33, we rejected null and non-invariance
existed on the item parameter. If BF,; was between 0.33 and 3, we failed to make any
concrete decisions. For Bayesian estimation, 95% HDI can be obtained from the
posterior distribution. We set the ROPE limits between -0.1 and 0.1. There were two
ways to make decisions. The first used the ROPE limits only. When the ROPE fully
contained the 95% HDI, we accepted null. When ROPE was completely outside the 95%
HDI, we rejected null. When ROPE had partially overlapped with 95% HDI, it was
uncertain to make any decisions. The second one was to use both [-0.1, 0.1] limits and
the point of zero. When 95% HDI completely fell into ROPE, we accepted the null and
the invariance had been held, but if not, non-invariance was on parameter. However, if
95% HDI partially overlapped with ROPE, we followed the new logic (Shi, et al., 2018).
95% HDI contained zero, it was inconclusive. If not, we still believed the non-
invariance existed though it was with the uncertain practical importance to some extent.

We used three criteria as the index to evaluate each method on parameter
(non)invariance: the power rate, the rate to identify invariant item, and the uncertainty
rate. The power rate was calculated as the percentage of accurately reject null (for non-
invariant parameters) among 500 replications under each condition. The power

computation of method ROPE with zero is based on two parts. One part was the rate of
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95% HDI completely outside range of ROPE and the other part of rate was 95% HDI
partially overlap with ROPE but exclude zero. We summed up two parts together as the
final power. For the rate to correctly identify invariant item, it was the percentage of
accurately accepting the null (for invariant parameters) among 500 replications. Since
the first item was generated to be the same across groups, the rate would be calculated
only from this item. For the uncertainty rate, it was the percentage of uncertain
decisions among 500 replications under each condition. We expected the higher the
power rate and the higher rate to identify invariant but lower uncertainty rate, the better
the method could locate the non-invariance or detect the invariance.

To further investigate the main effects and interaction effects of all conditions
on three criteria, we performed the Bayesian ANOVAs using the software package
JASP (Wagenmakers, Love, Marsman, Jamil, Ly, Verhagen et al, 2018). It ran with
default Cauchy prior (0, 0.5), in which the distribution centered in O with interquartile
range r = 0.5. We also used R package “ggplot2” to visualize the results.

Results
Power Rate of Bayes Factor

Table 2.1 and Table 2.2 summarize the original rate of BF to reject and accept
null hypothesis. The first column of Table 2.2 represents the rate to successfully
identify invariant parameters. From the second to the ninth columns of Table 2.1, it
shows the power to correctly locate non-invariance. The method BF represents several
features. First, its power rate increases when the magnitude of non-invariance expands.
In addition, the rate improves more rapidly on loadings than on intercepts, which

generally leads the power of loadings (M = 0.609, SD = 0.366) to be higher than
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intercepts (M = 0.442, SD = 0.411). For example, the power of BF with Cauchy prior on
loadings reaches to 0.75, when non-invariance difference is 0.3. On intercepts, the
power approaches 0.75 until magnitude extends up to 0.5.

What is more, Figure 2.2 shows Bayes factor is highly sensitive to the choices of
priors. The power rates of three priors vary from one another. Among them, the Cauchy
presents the best, but the Uniform condition displays the worst on each level of non-
invariance magnitudes. For instance, the power of Uniform prior on average is 0.446
across conditions, while it is 0.576 and 0.555 for Cauchy and normal prior respectively.
Further investigation by Bayesian two-way ANOVA provides us more information in
Table 2.3°. The first column named “Models” lists five models: the “Null model” only
has the grand mean without any predictors. The second row “prior” model add only one
predictor “prior” in the model. It is the same for the third row model with single
“magnitude”. The forth model contains both prior and magnitude main effect alone. The
final full model, not only keeps both the main effect but also interaction effect between
prior and magnitude. Column “P(M)” is prior model probabilities, which has been set to
be equal across all models. Column “P(M|data)” indicates the posterior model
probability given by updated observed data. The next “BFy,” column is the most useful
because it shows the change from prior to posterior model odds. The larger the value,
the more likely the data supports the model by increasing the model credibility. For
example, BF,, yields the highest value 35.709 for the model with two main effects on
loadings, indicating this model with two main effect priors and magnitude receives the
support from data. As evidence, the main effect of prior difference clearly represents

BF’s sensitivity. The following “BF;,” column provides the Bayes factor of each row
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model against the first row null model. It is 1.714¢ +33 (we mark it “>10.000") in favor
of the two main effects model, with 0.986 in the final “% error” column. This error is
similar to the coefficient variation in frequentist analysis. It provides the size of error in
the integration relative to the Bayes factor (Wagenmakers, Love, Marsman, Jamil, Ly,
Verhagen et al, 2018).

Furthermore, we notice that power rates are positively associated with sample
sizes. The larger the sample size, the higher the power along with magnitude increasing
(Figure 2.3). Generally, along with magnitude increasing, the power of larger sample
size rises up much more quickly and stays in the higher level than small sample size
conditions. For instance, the average power of sample N =500 is 0.678. It is much
higher than the average power (0.329) of a sample of only one hundred. What is more,
we note this association is consistent across three prior conditions. However, the
distinctions among three prior conditions needs further attention. First, the choices of
Cauchy and Normal prior are considerably superior to Uniform prior, because the
power of both prior conditions are much higher than Uniform condition on each level of
sample size. For example, holding on the same 0.3 amount of parameter difference, the
average power in larger sample size (N = 500) conditions is 0.677 with Uniform prior,
but it is 0.942 with Cauchy and 0.936 with Normal priors. Similarly, for the same 0.3
non-invariance with small sample size (N = 100), the power mean is 0.119 with
Uniform, yet it is 0.275 with Cauchy and 0.219 with Normal prior. Second, there is an
interaction effect between magnitude and sample size in the Uniform condition. The
power of the large sample is not improving as much with smaller samples, when

magnitudes of differences increase. However, the interactions effects are absent in the

45



other two priors conditions (Table 2.4). Be noticed, Figure 2.3 also supports that power
of unbalanced sample is better than larger sample (N = 500) to some certain extent.
Power Rate of Bayesian Estimation

Table 2.5 and Table 2.6 provide the original rate of ROPE to reject and accept
null hypothesis. Table 2.7 and Table 2.8 are about the rate of method ROPE_0. Figure
2.4 and Figure 2.5 display the power of two methods Bayesian estimation. Similar to
BF, both ROPE and ROPE_0 increase the power when the magnitude expands. Unlike
BF, power on loadings increases much slower and stays at a lower level than on
intercepts. In addition, being consistent with the previous literatures, both methods are
insensitive to the choice of priors. They exhibit a very similar power rate for each prior
condition. Although the Uniform prior conditions obtain slighter higher power rate on
intercept, further investigation indicates that it is not statistically superior to other two
priors (Table 2.9). The data is not in support of any models with the effect prior for
both non-invariance placing on loadings and intercepts. For instance, only BF,, of
single main effect magnitude model obtains the largest values (BFy ropk intercept =
9.360; BFy ropE 0 10aaing = 9-550, indicating the data increases its probability mostly
on these models. The “BF;,” column provide the Bayes factor of each row model
against the first row null model. ALL BF;, of models for main effect prior are smaller
than the cut-off 1/3, meaning that data is highly in favor of null model than the
alternative. In other words, the power rate of prior conditions does not differ from each
other.

Both methods share the similar patterns of BF that larger the sample size, higher

the power rate (Figure 2.6 & Figure 2.7). Further analysis of Bayesian ANOVA shows
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more features of two methods (Table 2.10). First, the main effect of sample size has not
been supported by the data. For instance, BFyy ropg 1S 0.162 for Uniform condition,
representing this model obtains only 0.162 times more likely to the alternative model
than null, given the observed data. Second, data are in favor of different models across
prior conditions. For Uniform, the model with single magnitude main effect has been
supported (BFy rope = 15.514, BFy ropE o = 15.968), while the model with two main
effects is instead preferred for Cauchy (BFy ropr = 7.425, BFy ropg 0 = 5.271) and
Normal priors (BFy rope = 7.173, BFy ropr o = 5.385). Third, the data does not
support the model with interaction effect, but the corresponding BF,, values are mostly
larger than the cut-off value 3. Though this model has its faults, it is still quite different
from the null model.
Uncertainty of Bayes Factor and Bayesian Estimation

Uncertainty rate (Table 2.11 to Table 2.13) is another important criterion to
determine the performance of methods. The lower the uncertainty, the better the method
performs. First, Figure 2.8 demonstrates the uncertainty of method BF, showing the
uncertainty has been controlled well in a low level (less than 0.4), no matter where the
non-invariance locates. A bell curve appears roughly along with the horizontal
magnitude scales. Moreover, a clear interaction effect between priors and magnitude
exist on loadings. The rate of Uniform is much lower than the other two priors when
magnitude is small, yet it overwhelms them as magnitude is getting larger. In addition,
we also noticed the interaction effect disappears when intercepts have been
contaminated. Data support the probability of the model with two main effects alone

without any interaction effect (Table 2.14).
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Unlike the BF, the uncertainty rate is much higher for Bayesian estimation.
Figure 2.9 and Figure 2.10 display the rate across the levels of magnitude for method
ROPE and ROPE_O0 respectively. First, the uncertainty rate of both methods is much
higher on loadings (M ropg= 0.857, SDropr = 0.100; Mropg o = 0.825, SDropr o =
0.089) than on intercepts (M ropg= 0.586, SDropr = 0.417; Mpopg o = 0.475, SDropE o
= 0.417). The uncertainty drops significantly on intercepts as magnitude of non-
invariance increases. What is more, further Bayesian ANOVA (Table 2.15) shows the
data is in favor of the single main effect magnitude model both on loadings (BFy ropk
=6.598, BF\ ropE o = 9-282) and intercepts (BFy rope = 9.410, BFy ropE o = 7.482).
It indicates Bayesian estimation can locate the non-invariant items well especially when
the magnitude is large. Finally, we noticed that data does not support the models with
prior. It means uncertainty rate is quite similar among prior conditions.

Comparisons of Three Methods

To understand how well each method locates the non-invariance, we compare
three methods by the criteria of both power and uncertainty rate. We will recommend
the method with high power, rate of invariance and low uncertainty rate to common
users in testing factorial invariance. Figure 2.11 and Figure 2.12 display the
comparisons of power and uncertainty respectively. First, we find that BF functions
better than Bayesian estimation on contaminated loadings, for its markedly higher
power rate. However, on intercepts, the power of Bayesian estimation is superior to BF
instead. ROPE_O is higher (Mgopg o = 0.588, SDgppE o = 0.400) than BF (Mpr = 0.442,

SDgr = 0.411) on average. In addition, we noticed that interaction effect is on loadings
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but not intercepts. The full model with both main and interaction effect is approved of
data with the highest BF,, (Table 2.16).

Second, BF controls the uncertain rate much lower than Bayesian estimation, no
matter where the non-invariance locates. On loadings, uncertain of BF (Mg = 0.134,
SDgr = 0.1127) is far lower than ROPE (Mgopg = 0.857, SDgopg = 0.100) or ROPE_O
(MRropg o = 0.825, SDropg o = 0.089). On intercepts, though the differences of
uncertainty between methods shrinks as the magnitudes increase, the gap is still large
which BF holds the uncertainty significantly lower when magnitude is small. Moreover,
the interaction effect has been supported by the data from both loadings and intercepts
conditions (Table 2.17).

Third, we concentrate on the choice of prior on each method. Examining the
conditions in which each prior applied for the methods to detect the non-invariance, BF
is completely superior to the others. Figure 2.13 and Figure 2.14 presents the power and
uncertainty rate. BF constantly holds the higher power and lower uncertainty rate.
Though the power of ROPE_O is slightly higher than BF under uniform conditions, its
superiority stops at 0.4 magnitude of non-invariance. As the size of non-invariance
continuously expands, BF re-gains the higher power and remains much higher.
Moreover, we find that no matter what prior BF has chosen, its power rate (Figure 2.15)
usually sustains the highest value (except with uniform prior on intercept). Furthermore,
its uncertainty rate holds back to be the lowest among all methods (Figure 2.16). Both
ROPE and ROPE_0 yield much higher uncertainty rate, even though they can quite

successfully discover the non-invariance on intercept.
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Finally, BF is exclusively better than Bayesian estimation in detecting the
invariant items from the contaminated variables. Figure 2.17 shows the rate of which
correctly identified invariance as well as the uncertainty rate of invariant parameters.
On the left side, the rate of Bayesian estimation seems to be missing, but they are
indeed zero across prior conditions. On the right side, the uncertainty rate of Bayesian
estimation keeps very high. It means that Bayesian estimation fails to detect the
invariant items.

A Pedagogical Example

To demonstrate the empirical application of Bayesian method, we use BF,
ROPE and ROPE_0 to locate the non-invariance on the same data from Study | (N =
12,811) -- Psychological Wellbeing of Children of Rural-to-Urban Migrant Workers in
China. The measurement chosen for this demonstration is from the Revised Child
Anxiety and Depression Scale (RCADS, Chorpita, Yim, Moffitt, Umemoto & Francis,
2000). This self-report scale contains 47 items in total. However, only 18 items relate to
generalized anxiety are used here for demonstration. Responses are scored on a Likert-
scale of 1 to 4, corresponding to “Never”, “Sometimes”, “Quite Often”, and “Always”.
The Cronbach’s a is 0.897 in this sample.

There are 7,356 male (57.4%) and 5,455 female (42.6%) child respondents in
this sample. A two-group CFA is fitted to data, using the 7 variable as the reference
indicator. We follow the same procedures in simulation to identify the model and put
the Cauchy prior (0, 1) to use in Bayesian methods: Bayes factor, ROPE and ROPE_0.
The parameter D;; is computed as the parameter difference between groups. Three

MCMC chains run 10,000 iterations after 500 burins to get the posterior distribution of
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parameter D;;. MCMC is carried out for both loadings and intercepts simultaneously.
Based on the posterior, both Bayes factor and 95% HDI are easily obtained. The Bayes
factor is computed by Savage-Dickey density ratio and 3 as the cut-off value.

To achieve ROPE and ROPE_0, we also follow the procedures in our simulation
study. For example, if 95% HDI completely excludes the interval between [-0.1, 0.1],
we believe that non-invariance exists on the parameter. However, if 95% HDI partially
overlaps with the interval but contains zero point, both method of “ROPE” and
“ROPE_0” takes it inconclusively. While, if 95% HDI overlaps with the interval in
which the point of zero excluded, the method “ROPE_0” believes the non-invariance is
still on the parameters. Finally, if 95% HDI has been entirely contained within the
interval, both methods agree to accept the null that invariance has been sustained.

Table 2.18 summarizes the results of three methods. We notice that they do not
agree with each other in most of the time. According to BF, none of the factor loadings
are invariant. BF,; produces the small values in which data is in favor of supporting the
alternative hypothesis. However, this conclusion is not verified by either ROPE or
ROPE_0. Except for item 10, 95% HDI contains the value zero as well as the range [-
0.1, 0.1]. Therefore, both methods of Bayesian estimation are able to accept or reject
null for the rest 16 loadings. On item 10, they agreed it to be non-invariant across
groups. For the decisions on intercepts, Bayes factor accepts them to be invariance
(except item 10), since BF,; values are larger than 3. Yet, the two methods of Bayesian
estimation still fail to get any concrete conclusions. The intercept of item 10 is also non-
invariant, as both Bayes factor and Bayesian estimation show the evidences for the

alternative hypothesis.
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In summary, regarding Bayes factor as a better method in simulation study, we
decide to adopt its conclusions in current pedagogical example. None of the factor
loadings are invariant, and most of intercepts (except item 10) are invariant between
groups.

Discussion

The ability to locate the non-invariance ahead would notably benefit empirical
users before they correctly conduct the partial invariance test. It can also aid in the
search for the potential causality to non-invariance. Most methods applied in this area
however, were monopolistically from the traditional Frequentist. The unavoidable
defects of NHST prevent them from accepting the null in which parameters are
invariant. Furthermore, they also suffer from the large sample size fallacy. The
employment of new methods thereby becomes necessary. In the present study, we
introduced the innovative approaches from Bayesian perspective. Bayesian estimation
and Bayes factor were particularly applied to locate the sources of non-invariance. The
Bayesian estimation is a general category for two subsume methods: ROPE and
ROPE_0. Using the Gibbs sampling to run MCMC, Bayesian estimation can summarize
the posterior distribution of cross-group parameter differences in terms of 95% HDI.
Based on the relationship between 95% HDI and ROPE, both methods make decisions
for hypothesis test. Depending on the same posterior distribution, we used the approach
called Savage-Dickey density ratio to calculate Bayes factor. After performing the
suggested cut-off value three, we decide to accept, reject or keep uncertain for

hypothesis.
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Our simulation study revealed that Bayes factor functions generally superior
than Bayesian estimation. First, it yields higher power but lower uncertainty rate in
most conditions. Particularly, as the magnitude of non-invariance increases, its power
rate improves more rapidly and still maintains a low level of uncertainty. In addition, it
IS better to control the uncertainty rate under some circumstances in which non-
invariance locates on loadings or the application of uniform prior. The power of BF
essentially represents the features of shrinkage estimation’. That is the estimates are
more likely towards value zero when a small observed effect size corresponds well with
the null hypothesis. Yet, when the effect size becomes large (e.g., large magnitude), it
will heavily impact the estimation by increasing the likelihood to accept the alternative.

Second, being consistent with previous literatures, BF is highly sensitive to the
choices of priors. The values of BF vary with different priors. We chose three different
non-informative priors: Normal, Cauchy and Uniform, because each of them represents
some uniqueness of probability distribution. For example, Cauchy distribution has the
longest tails on two sides. Uniform has the lowest density around zero, though it is
limited within a certain probability range. Comparing to other two priors, the results of
Cauchy provide higher power and lower uncertainty. Though, its density around null is
higher than both Uniform and Normal priors, its heavy tails help it be less informative.
In other words, BF is in favor of Cauchy to detect the non-invariance.

Third, BF is able to distinguish the invariant item much more accurately from
those contaminated ones. It produces the extraordinarily high power rate with a well-
controlled uncertainty rate. It will benefit researchers to accept the null when

parameters are invariant. Differing from NHST that fail to reject null hypothesis has
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been mistakenly taken as an evidence for parameters’ invariance, Bayes factor (BFy; >
3, or BF;, < 1/3) can indeed confirm the cross-group parameter invariance. Though
most critiques about BF are its cut-off values, the current study still applied value three
and obtained satisfactory results. However, these concerns about cut-off values are
completely understandable from methodological perspectives. That is why we should
not take BF as the only way of Bayesian application. Instead, both Bayes factor and
Bayesian estimation should be applied like our pedagogical example. Ideally, the results
from both are consistent. If not, we suggest to accept the BF’s results alone.

On the perspective of Bayesian estimation, we used the methods ROPE and
ROPE_0 to test the hypothesis of item parameters. The main distinction between the
two methods is whether the value zero has been included in the range of 95% HDI,
when 95% HDI overlaps with ROPE. If yes, both methods regard it as part of uncertain
situation. If not, the method ROPE_0 takes the corresponding item to be non-invariant,
while method ROPE still considers it to be uncertainty. For the current study, both
ROPE and ROPE_0 represent the similar patterns on power and uncertainty rate. They
share several characteristics including the insensitivity on the choice of prior. Consistent
to the previous literatures, both power and uncertainty rate do not show a statistical
difference among three non-informative priors. Second, even though the power is
higher than Bayes factor under several conditions such as the non-invariance on
intercepts, it is much lower in most cases. Due to the high posterior variance on item
differences, the range of 95% HDI becomes much wider than ROPE, leading to the high
uncertainty rate. Especially when the sample size is small, and the observed data cannot

sufficiently provide the useful information, the posterior variations would remain high.
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Future studies are still called for the area of factorial invariance test. For
methodological researchers, a comparison between Bayesian and Frequentist
approaches on testing the factorial invariance will be necessary. It should include either
the largest modification index or forward confidence interval as the representative
methods of frequentist. Therefore, a broader picture about the pros and cons for two
sides will be clearly provided. For the empirical researchers, however, the most
challenge is the applications of statistical packages in Bayesian area. It is now
considerably difficult for common users to apply a customized model on JAGS. Further
studies from both software developments and generalized practical utilization are

needed.
Summary

Based on the findings in both Study | and Study 11, a few suggestions may be
offered to researchers. First, it is not wise to use MaxL to identify reference indicator.
Although this approach could perform equally under certain conditions, it is impractical
to identify those conditions in empirical data analysis. In addition, MaxL could behave
poorly in large samples due to the sensitivity of LR test to sample size. Second, Miny?
and BSEM are both recommended for empirical studies; however, different theoretical
backgrounds are required for their implementation. While Miny? involves fitting a series
of multiple-group CFA models and computing LR statistics for each individual item,
BSEM is implemented through fitting a single model for identifying invariant and non-
invariant items simultaneously (Shi, et al., 2017). In addition, we recommend
methodological researchers to consider the direction of parameter differences as a

studied variable involving simulation of multiple-group CFA models; otherwise the
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results could be cofounded or misleading. Furthermore, for the purpose of locating the
non-invariance, it is recommended to take Bayes factor into account. With the non-
informative of Cauchy prior, its superiority is high accurate to detect non-invariant item
parameters. Furthermore, Bayes factor is able to distinguish the invariant items from
these contaminated ones. Finally, the anticipation of user-friendly software packages

would greatly improve further development in Bayesian methods.
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Table 1.2: Effects of Studied Variables on Power Rates in the Simulation Study.

ANOVA 1 ANOVA 2

df F p df F p
Location (LO) 1 3.297 0.071 1 11.736  0.001
Percentage (PE) 1 33.608 <.001 1 119.617 <.001
Magnitude (MA) 1 0.690 0.407 1 2.455 0.120
Direction (DI) 2 19.623 <.001 2 69.842 <.001
SampleSize (SS) 2 0.583 0.559 2 2.074 0.131
Method (ME) 2 25.507 <.001 2 90.782 <.001
ME x MA 2 0.232 0.794
ME x LO 2 1.198 0.306
ME x PE 2 37.235 <.001
ME x DI 4 28.154  <.001
ME x SS 4 0.215 0.930
PE x MA 1 2.794 0.097
PE x LO 1 0.299 0.585
PE x DI 2 36.894  <.001
PE x SS 2 0.722 0.488
LO x MA 1 10.055  0.002
LO x DI 2 12.984  <.001
LO x SS 2 5.464 0.005
DI x MA 2 3.946 0.022
DI x SS 4 2.825 0.028
MA x SS 2 36.894  <.001
ME x MA x PE 2 9.400 <.001
ME x MA x LO 2 7.056 0.001
ME x MA x DI 4 7.964 <.001
ME x MA x SS 4 7.642 <.001
ME x DI x PE 4 9.840 <.001
ME x DI x LO 4 5.529 <.001
ME x DI x SS 8 3.779 0.001
ME x SS x PE 4 4.060 0.004
ME x SS x LO 4 3.000 0.022
ME x LO x PE 2 1.638 0.199
LO x PE x DI 2 3.506 0.033
LO x PE x MA 1 0.223 0.638
LO x PE x SS 2 0.721 0.489
LO x MA x DI 2 0.291 0.748
LO x MA x SS 2 1.604 0.206
LO x DI x SS 4 0.640 0.635
PE x MA x DI 2 2.151 0.121
PE x MA x SS 2 4.322 0.016
PE x DI x SS 4 0.973 0.426
MA x DI x SS 4 1.062 0.379
residuals 206 110
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Table 1.5: The Interaction Effect of Power between Methods and Magnitudes

Small Magnitude

Large Magnitude

df F p df F p

PE 20% 2 2.330 0.100 2 0.050 0.956
40% 2 9.400 <.001 2 23.67 <.001

SS N=100 2 5.980 0.003 2 0.990 0.374
N=200 2 3.020 0.051 2 2.630 0.074
N=500 2 0.820 0.441 2 9.060 <.001

DR Positive 2 21.530 <.001 2 15.870 <.001
Negative 2 0.030 0.966 2 5.830 0.004

Mix 2 1.880 0.155 2 0.000 0.998

LO loadings 2 8.600 <.001 2 3.750 0.025
intercepts 2 1.480 0.230 2 7.050 0.001

Note: PE = Percentage of Non-invariance; SS = Sample Size; DR = Direction; LO =

Location of Non-invariance.
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Table 1.8: Values of Selection Index in Choosing Rl Using BSEM in the Empirical

analysis

Dfactor_loadmg (SD) Dmtercept (SD) Aj
ltem 1 0.011 (0.014) 0.044 (0.014) 3.929
ltem 2 0.017 (0.015) 0.007 (0.015) 1.600
ltem 3 0.027 (0.016) 0.023 (0.015) 3.221
ltem 4 0.019 (0.016) 0.016 (0.015) 2.254
ltem 5 0.024 (0.015) 0.01 (0.015) 2.267
ltem 6 0.036 (0.016) 0.027 (0.015) 4.050
ltem 7 0.005 (0.016) 0.005 (0.015) 0.646
ltem 8 0.01 (0.016) 0.024 (0.015) 2.225
Item 9 0.023 (0.016) 0.012 (0.015) 2.238
ltem 10 0.017 (0.016) 0.037 (0.015) 3.529
ltem 11 0.03 (0.013) 0.039 (0.013) 5.308
ltem 12 0.018 (0.015) 0.041 (0.014) 4.129
Item 13 0.013 (0.015) 0.106 (0.015) 7.933
ltem 14 0.019 (0.015) 0.03 (0.015) 3.267
ltem 15 0.011 (0.014) 0.002 (0.014) 0.929
ltem 16 0.016 (0.015) 0.022 (0.015) 2.533
ltem 17 0.016 (0.015) 0.001 (0.015) 1.133
ltem 18 0.007 (0.016) 0.007 (0.015) 0.904

Note: SD is standard deviation.
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Appendices

Appendix A: Footnotes

. Alternatively, one can begin such tests by fitting a model with all the parameters
constrained to be equal, and then progressively relaxing certain equality
constraints. Further information on this approach can be found in Stark,
Chernyshenko, and Drasgow (2006), Yoon and Milsap (2007), and Kim and
Yoon (2011). In addition, non-invariance can also be detected by applying the
iterative procedures (Cheung & Rensvold, 1998), in which each single item
serves, in turn, as an RI (see also Cheung & Lau, 2012).

. Woods (2009) ranked order the items based on their LR/Adf. In our study, we
used LR instead of ratio of LR/Adf, because Adf (=2) was constant across all
conditions.

. Please pay attention to the notation of BF. BF1o > 3 indicates the data is in favor
of alternative H; .

. Within the same range, the power rate of BF were generally lower than Wald at
p<0.05 level in most of conditions.

. We followed the way by Wagenmakers et al (2018) to interpret the results from
JASP. All the models take the power rate as outcome. Data has been divided to
two parts based on the location of non-invariance.

. The only agreement that Both BF and Bayesian estimation got was on Item 10.

. The concept of shrinkage estimation originally from hierarchical models.
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Appendix B: Supplement Figures
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