
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

INTERACTION EFFECTS IN

GENERALIZED DIRAC SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

XU DOU
Norman, Oklahoma

2018



INTERACTION EFFECTS IN
GENERALIZED DIRAC SYSTEMS

A DISSERTATION APPROVED FOR THE
HOMER L. DODGE DEPARTMENT OF PHYSICS AND ASTRONOMY

BY

Dr. Bruno Barboza, Chair

Dr. Bin Wang

Dr. Kieran Mullen

Dr. Michael Santos

Dr. Arne Schwettmann



c© Copyright by XU DOU 2018
All Rights Reserved.



To

my family



Acknowledgements

I would like to first thank my advisor Bruno Uchoa for his guidance and help.

I want to thank postdocs in the group: Akbar Jaefari and Kangjun Seo. They

are also mentors in different aspects of my research projects. I want to thank

them for teaching me and answering my questions.

Thank you to my committee members and former committee members of this

thesis: Bin Wang, Kieran Mullen, Michael Santos, Arne Schwettmann, Barbara

Capogrosso-Sansone, Nikola Petrov. I benefit from their instructions.

I would like to thank many people who taught me physics during my graduate

school years. Among them, I want to especially thank Ron Kantowski and Kim

Milton.

I would like to thank my peer graduate students and other Nielsen Hall

dwellers for many interesting conversations and sharing our time here.

My life became easier with the help of our departmental staff. Thank you!

Finally, I would like to thank my mother Ying and my father Guangzhi for

their constant support and encouragement.

iv



Table of Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations and works . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Dirac systems in condensed matter physics 6

2.1 Single-layer graphene . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Berry phase and Chern number . . . . . . . . . . . . . . . . . . . 9

2.3 Dirac and Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Topological properties of Weyl materials . . . . . . . . . . . . . . 15

3 Quasiparticle renormalization in ABC-stacked trilayer graphene 18

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Trilayer graphene systems . . . . . . . . . . . . . . . . . . 19

3.2.2 Large N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Low energy Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Polarization bubble . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



3.7 Quasiparticle residue . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 Quasiparticle lifetime . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Other physical observables . . . . . . . . . . . . . . . . . . . . . . 33

4 Designing Quantum Spin-Orbital Liquids in Artificial Mott In-

sulators 35

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Mott insulator and the Hubbard model . . . . . . . . . . . 36

4.2.2 Quantum spin liquid . . . . . . . . . . . . . . . . . . . . . 38

4.3 Artificial Mott insulator and spin-orbital liquids realization . . . . 44

4.4 Coulomb impurity problem . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Impurity lattice model. . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Numerical results. . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Experimental setup. . . . . . . . . . . . . . . . . . . . . . 54

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Chiral Topological Superconductivity in CrO2 bilayers 60

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 A brief review on Chiral px + ipy superconductors . . . . . 61

5.2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 CrO2 bilayers and lattice model . . . . . . . . . . . . . . . . . . . 67

5.4 Pairing Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Topological phase transitions . . . . . . . . . . . . . . . . . . . . . 74

5.6 Chiral Majorana edge states . . . . . . . . . . . . . . . . . . . . . 76

5.7 Pairing Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion 79

A 95

A.1 Details of methods used in Chapter 4 . . . . . . . . . . . . . . . . 95

A.1.1 Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1.2 Hubbard U term. . . . . . . . . . . . . . . . . . . . . . . 97

A.1.3 Spin-orbital exchange Hamiltonian. . . . . . . . . . . . . 97

B 99

B.1 Wavefunction of the strong coupling subcritical regime . . . . . . 99

B.1.1 Solution for r > a . . . . . . . . . . . . . . . . . . . . . . . 100

B.1.2 Weak coupling regime . . . . . . . . . . . . . . . . . . . . 101

B.1.3 Strong coupling regime . . . . . . . . . . . . . . . . . . . . 102

B.1.4 Solution for r ≤ a . . . . . . . . . . . . . . . . . . . . . . . 104

B.1.5 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C 106

C.1 Topological Phase Transitions . . . . . . . . . . . . . . . . . . . . 106

C.1.1 Order of the transitions . . . . . . . . . . . . . . . . . . . 106

C.1.2 Line of quantum critical points . . . . . . . . . . . . . . . 106

C.1.3 Tc estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



List of Figures

1.1 One dimensional and two dimensional spectrums . . . . . . . . . . 3

2.1 Lattice and Brillouin zone . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 ABA and ABC stacking . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Polarization bubble in one loop . . . . . . . . . . . . . . . . . . . 25

3.3 One loop self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 On-shell scattering rate and spectral function . . . . . . . . . . . 32

4.1 Resonating valence bond state . . . . . . . . . . . . . . . . . . . . 39

4.2 Toric code model on a square lattice . . . . . . . . . . . . . . . . 41

4.3 Spinon excitations . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Coulomb impurity lattices . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Single impurity energy scales . . . . . . . . . . . . . . . . . . . . . 49

4.6 Correlations in Coulomb impurity lattices . . . . . . . . . . . . . 51

4.7 Spin-orbital color states . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Lattice and energy spectrum . . . . . . . . . . . . . . . . . . . . . 69

5.2 Phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Phase diagram and BdG Chern number . . . . . . . . . . . . . . . 75

viii



5.4 Majorana modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1 Scaling of the intra-orbital coupling and free energy . . . . . . . . 107

C.2 Fermi surface for finite µ and anisotropic gap . . . . . . . . . . . . 108

C.3 Scaling of the gapped state order parameter . . . . . . . . . . . . 109

C.4 Fermi surface at µ = 0.312 eV and the bands around the van Hove

singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



List of Tables

5.1 Classification table . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



Abstract

Interaction effects in condensed matter systems with chiral quasiparticles at low

energy are studied. A prominent example in the category of such systems is

monolayer graphene, which has low energy massless Dirac excitations near some

special points in the momentum space. We consider three generalized Dirac sys-

tems, which include ABC-stacked trilayer graphene, a superlattice of a gapped

Dirac system decorated with charged impurities, and chromium dioxide (CrO2)

bilayers. Interaction effects and interaction-induced phases are examined in these

systems. For the ABC-stacked trilayer graphene, we calculate the renormalization

properties of the chiral massless quasiparticles due to electron-electron interac-

tions. Renormalization features of several physical observables are also studied,

which may be measured in experiments. For the superlattice system of a two-

dimensional gapped Dirac system with charged impurities, we show that this

superlattice system can simulate SU(4) symmetric spin-orbital lattice models.

We study the correlations of mid-gap bound states formed around the Coulomb

impurities and propose the emergence of quantum spin-orbital liquids in this

setup. In the third part, the focus is on the system of chromium dioxide bilayers,

which also host Dirac quasiparticles at low energy. We investigate the possibility

of forming chiral p+ip superconductivity in chromium dioxide bilayers.

xi



Chapter 1

Introduction

1.1 Overview

One important research topic in condensed matter physics is the study of systems

in which exotic quasiparticle excitations appear. A particular class of materials,

the theme of this thesis, named nodal materials, is of recent research interest.

In these systems, the conduction and the top of the valence energy bands cross

at isolated points, which are called nodal points or band touching points (Fig.

1.1). These crossing points are rare. In general, when energy bands cross they

hybridize and a gap opens in the energy spectrum. If the Fermi level is tuned to

cross these points, then the low energy excitations of the system would appear

just around these points. In the definitions of electronic band theory, a material

with a very small overlap between the conduction band and the valence band is

defined as a semimetal. Nodal materials belong to semimetals.

Many examples of these systems have emerged in different spatial dimensions.

Single layer graphene, a single atom thick film consists of carbon atoms formed in

a honeycomb lattice, is a prominent example in two dimensions. At low energy,
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the dispersion relation of graphene has a relativistic form and the low energy

degrees of freedom can be described by the two dimensional Dirac equation. Few

layer graphene [1] systems and graphene-based systems (for example) are also

typical representatives of 2D nodal materials. In few layer graphene systems, the

energy spectrum depends on how graphene layers are stacked. Besides the isolated

touching points property, these materials show chiral quasiparticles with non-

trivial Berry phase [2], after moving around the touching point the wavefunction

acquires a phase factor. Very recently, semi-Dirac metals have been proposed,

where the quasiparticles have a vanishing density of states at the nodal point,

with linear dispersion in one direction and quadratic in the other [3].

The focus of this thesis is on two dimensional systems. In three dimensional

systems, the conditions for the appearance of nodal points are different. Sub-

jected to some global constraints, these touching points are stable. Three dimen-

sional topological semimetals including Weyl and Dirac semimetals have attracted

much attention; for a convenient review see [4]. Two dimensional materials like

graphene have special lattice symmetries which ensure the appearance of the

nodal points. In three dimensional Weyl semimetals, isolated band touching

points have a topological origin. These materials are characterized by exotic

surface Fermi-arc states, which are zero energy localized states forming an arc

on the surface of the mateirals. These surface states emerge as a result of the

topological properties of the bulk. As in the quantum Hall effect, those surface

states are robust and are predicted to have unusual transport phenomena. Other

interesting systems are Dirac loop semi-metals which include both topological

and non-topological types, where the overlap between the conduction band and

the top of the valence band is a loop and Dirac-like quasiparticles form along this

loop rather than at isolated points [5] in the momentum space.

2



Figure 1.1: Left: Nodal points in one dimension; E(p) is the energy. Two bands
cross at two points, and the right one is p0. The dashed line represents the Fermi
level. Right: The energy bands of graphene shows a set of band touching points.

In this thesis we study some generalizations of two dimensional Dirac mate-

rials. Combined with atoms added to the materials and substrates, two dimen-

sional materials can be a platform for new exotic physics. For example, coupling a

graphene film to a substrate can break the original lattice symmetry of graphene.

Therefore, combinations of those systems with specially designed substrates allow

a vast number of possibilities for novel quantum phenomena. Few layer graphene

systems have larger densities of states in the low energy end of the spectrum,

and the stacking-dependent dispersion relation can provide more opportunities

for many-body effects [6].

1.2 Motivations and works

In the works presented in this thesis, we are mainly concerned with the inter-

action effects in two dimensional Dirac systems. Particularly, we examine three

systems where interactions interplay with nodal quasiparticle excitations and we

concentrate on finding effects detectable in experiments. These include:

• ABC-stacked trilayer graphene system: This system has the cubic disper-

sion, therefore the density of states are larger compared to the single layer

3



graphene systems, which may provide a good platform for many-body in-

stabilities. Electron-electron interactions are important from the points of

view of the renormalization flow. In experiments, an energy gap has been

observed, and this gap is believed to be induced by interactions. Partially

motivated by this observation, we investigate many body effects due to the

long range electron-electron interactions among charged quasiparticles in

this work. Particularly, we try to find measurable effects and focus on the

renormalization of quasiparticle properties which we may be observed in

experiments.

• Hetereostructure of single layer graphene decorated with Coulomb impurity

lattice: Quantum spin liquids are elusive states in real materials. Will

they be realized in more controllable experimental setups, for example, in

artificial superlattices? Most of the proposals in controllable systems are

based on cold atom experiments. In this part, the aim is to simulate Mott

physics in a solid state system. Bound states around charged impurities

can be used to simulate a correlated superlattice, where the states carrying

spin and valley quantum numbers interact with each other. We calculate

several parameters characterizing the superlattice system, and propose the

superlattice to be a solid-state platform for realizing spin-orbital liquids.

• Chiral topological superconductivity in chromium dioxide: Chromium diox-

ide bilayers are predicted to have four Dirac nodes in the Brillouin zone

[156]. Chromium dioxide is a well-known half-metal, which is spin-polarized

near the Fermi energy. Therefore, the superconductivity can only happen

in the spin triplet channel. Motivated by the unsual spin polarization prop-

erty, we study the possibility of a spin triplet superconductivity instability.

4



The chiral topological superconductivity property of this system is studied.

This thesis is based on the publications of [7], [8], and [9].
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Chapter 2

Dirac systems in condensed

matter physics

In this chapter, we provide some general introductions to some concepts impor-

tant to the thesis. For a better understanding and providing useful preparations

for further generalizations, we also review some concepts which can be compared

to the systems with which we are concerned here.

2.1 Single-layer graphene

We briefly review the low energy properties of single layer graphene. Graphene

is a 2D carbon material with two atoms per unit cell. A note on units: in this

chapter we set ~ = 1. In this section, we follow the notation and coordinate

choice used in the review paper [1]. The lattice vectors are (see Fig. 2.1)

~a1 = a

2(3,
√

3), ~a2 = a

2(3,−
√

3), (2.1)
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in which a is the lattice constant. The reciprocal lattice vectors are obtained

~b1 = 2π
3a (1,

√
3), ~b2 = 2π

3a (1,−
√

3). (2.2)

The tight-binding Hamiltonian model for graphene can be written as

H = −t
∑
<i,j>

(a†σ,ibσ,j + h.c.)

− t′
∑
�i,j�

(a†σ,jaσ,j + b†σ,ibσ,i + h.c.), (2.3)

where spin summation is assumed, t and t′ are hopping parameters for the nearest

neighbor and the next nearest neighbor sites. In this model, electrons can hop

(annihilation and creation operators) between nearest-neighbor and next-nearest-

neighbor. Diagonalizing the Hamiltonian, we obtain the energy spectrum

E± = ±
√

3 + f(~k)− t′f(~k), (2.4)

where f(~k) = 2cos(
√

3kya) + 4cos(
√

3
2 kya)cos(3

2kxa). In this two-band case, the

conduction band and the valence band touch at discrete points in the Brillouin

zone. By tuning the Fermi energy properly, we could get a point-like Fermi

“surface”. There are some special points in the Brillouin zone, where the low

energy excitation behaves as a massless Dirac fermion. These points are called

K points,
~K = (2π

3a ,
2π

3
√

3a
), ~K ′ = (2π

3a ,−
2π

3
√

3a
).
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Figure 2.1: The honeycomb lattice and the Brillouin one. The figure is from [1].

If the system is tuned slightly away from the zero energy point, and in the low

momentum limit |~k| = ~K + ~q with ~q ≈ 0,

E±(~q) ≈ ±vF |~q|+O((q/K)2), (2.5)

where vF is the Fermi velocity defined as vF = 3ta/2, its magnitude is vF ≈

1× 106m/s.

We have seen the linear spectrum at low energy, and it can be shown that the

low energy Hamiltonians which describe the physics near nodal points are Dirac

Hamiltonians [1]. In this effective formalism, only low energy degrees of freedom

ψ near nodal points are kept. The expansion of the original mode defined in the

lattice in terms of the effective modes are

a(~r) ∼ eikF ·~rψKA (~r) + e−ikF ·~rψK′A (~r), (2.6)

and b operator has a similar expansion. We define the new operator which com-

bines operators from two valleys

ψ = (ψKA (~k), ψKB (~k), ψK′B (~k),−ψK′A (~k))T . (2.7)

8



In terms of these operators ψσ

H =
∫

d2rψ†(~r)[−ivF~σ · ~∇]ψ(~r). (2.8)

We can also obtain the equations of motion in each valley. Consider a two com-

ponent wave function at the K(or K ′) point,

−ivF~σ · ~∇φ(~r) = Eφ(~r). (2.9)

The solutions corresponding to the two eigenvalues are

φ±,K(~k) = 1√
2

 e−iθk/2

±eiθk/2

 (2.10)

where θk is the angle of ~k with respect to the pointK, and θk ≡ arctan ky−Ky
kx−Kx . Due

to the phase factor, we can see that a 2π change makes the wave function change

sign. And this wave function is also the eigenvector of the helicity operator

h = 1
2~σ ·

~p

|~p|
, (2.11)

and hφK = ±φK . The eigenvalues characterize the helicity of these low energy

modes.

2.2 Berry phase and Chern number

The π change in the phase factor of the wave function when a 2π change is made

to θk is called the Berry phase. When discussing topological properties of Dirac

and Weyl systems, the concept of Berry phase is crucial. So in this subsection we

9



give a brief review of several facts about the Berry phase. For a thorough review

on this topic, please read [11].

We start with a process that changes a quantum system adiabatically in the

parameter space. The quantum adiabatic theorem states that an initial eigen-

state of the system will evolve into the eigenstate of the time-dependent Hamil-

tonian with the same corresponding quantum number. However, the new state

would acquire two extra phase factors. One factor is the dynamical phase factor

exp(−i
∫
dt′E(R(t′))), where E(R(t)) is the energy, and R(t) is a time (t) depen-

dent parameter. This is the generalization of the evolution factor in quantum

mechanics. The other factor is defined as γn =
∫
c dR · i〈n(R)| ∂

∂R |n(R)〉. If the

contour C is a closed loop, we obtain the Berry phase,

γn =
∮

dR · i〈n(R)| ∂
∂R
|n(R)〉. (2.12)

In condensed matter physics, we are mainly concerned with the Berry phase

defined in a lattice system, where a non-interacting electron is described by Bloch

wave functions ψn(r) = eikrun(r), where n is the band index and un(r) is periodic

in space. The Berry curvature is a similar concept as the fields in electrodynamics,

which is gauge invariant. The Berry curvature is defined as

Ωn(~q) = ∇q × 〈ψn(~q)|i∇q|ψn(~q)〉, (2.13)

or to cast it in another way

Ωn
µν = i[〈∂ψn(~q)

∂qµ
|∂ψn(~q)
∂qν

〉 − (ν ↔ µ)] (2.14)

= ∂

∂qµ
Anν (~q)− ∂

∂qν
Anµ(~q). (2.15)

10



This quantity is non-trivial in many materials. The quantity ~An(~q) = 〈ψn(~q)|i∇q|ψn(~q)〉

is called the Berry connection. The Berry phase in the Brillouin zone (Zak’s

phase) is defined as

γn =
∫
BZ

dq 〈ψn(~q)|i∇q|ψn(~q)〉. (2.16)

The first Chern number is defined as the integral of the Berry curvature over

the Brillouin zone. This quantity plays an important role in the understanding

of the quantized conductivity of the integer quantum Hall effect. The Thouless-

Kohmoto-Nightingale-den Nijs paper (TKNN)[12] calculated the Hall conduc-

tivity by explicitly using Kubo formula, which is the standard way to get the

conductivity (see an explanation below).

Here we use a two band example to illustrate how to compute the Berry

curvature, then the first Chern number (the Hall conductivity). We follow the

method in [13]. We can begin with a generic two band Hamiltonian

h(k) = di(k)σi, (2.17)

where we use Einstein’s summation convention. The σi (i = 1, 2, 3) are three

gamma matrices. The basis of this model can be spin or other two-component

degree of freedom. di(k) are three functions that explicitly depend on the mo-

mentum kx, ky, and kz. For example, intrinsic graphene (µ = 0) has d1 = kx and

d2 = ky. We write Eq.(2.17) in a matrix form

h(k) =
(

d3 d1 − id2

d1 + d2 −d3

)
. (2.18)

We can diagonalize the Hamiltonian and obtain the energy spectrum, which has

11



two branches (we indicate them by + and −)

λ± = ±
√
d2

1 + d2
2 + d2

3, λ =
√
d2

1 + d2
2 + d2

3 (2.19)

and corresponding eigenvectors

φ+ = 1√
2λ+(λ+ − d3)

(
d1 − id2

λ+ − d3

)
, (2.20)

φ− = 1√
2λ−(λ− − d3)

(
d1 − id2

λ− − d3

)
. (2.21)

The Berry connection and the Berry curvature can be seen as analogous con-

cepts of gauge potential and field in electromagnetism. The definition of the

Berry connection gives

Ai = − 1
2λ(λ+ d3)(d2∂id1 − d1∂id2), (2.22)

and the Berry curvature reads

Ω = 1
2λ3 εabcda∂idb∂jdc (2.23)

= 1
2 d̂ · ∂id̂× ∂jd̂. (2.24)

where d̂ = (d1, d2, d3)/λ and εabc is the antisymmetric Levi-Civita symbol. Inte-

12



grating it over the Brillouin zone, we can get

σij = − 1
8π2

∫
BZ

d2k d̂ · ∂id̂× ∂jd̂, (2.25)

which can be shown to be the Chern number of this system [10]. The integrand

counts how many times the function d̂ rotates around the origin, so it is a winding

number, which is an integer. This quantity also appears in other branches of

physics, like Skyrmions and the analysis of the nonlinear sigma model [14].

For a generic linear 2D Hamiltonian (massive)

H(~k) = vijkiσj +mσ3, (2.26)

in which vij is a coefficient matrix with i, j = 1, 2, and m stands for a mass term.

Following the calculation procedure of the Berry phase, the Chern number can

be shown to be

σxy = 1
2sign(m)sign(det[v]). (2.27)

The TKNN paper [12] provides a direct link between the Kubo formula calcu-

lation of the conductivity and the Berry phase. This result can also be obtained

by considering electron dynamics under the influence of EM fields [11]. For the

n-th band, the energy eigenstate is |un(q, t)〉. Treating the electric field as an

perturbation, the first order wave function in the perturbative expansion is

|u′n〉 = |un〉 − i~
∑
n′ 6=n

|un′〉〈un′ |∂un/∂t〉
En − En′

. (2.28)

The velocity operator of the electron is v = ∂H/∂k. After some algebra, the first

13



order value of the velocity is

vn(q) = 〈u′n|
∂H

∂k
|u′n〉 = ∂En(q)

~∂q
− i[〈∂un

∂q
|∂un
∂t
〉 − 〈∂un

∂t
|∂un
∂q
〉]

= ∂En(q)
~∂q

− Ωn(q, t). (2.29)

The second term on the right is just the Berry curvature. Then we would see the

connection between the current and the Berry phase.

2.3 Dirac and Weyl semimetal

In the context of four dimensional relativistic quantummechanics, a Dirac fermion

can be seen as a combination of one left-handed Weyl fermion and one right-

handed Weyl fermion. In the massless case, the Dirac equation becomes [44]

 0 iσ · ∂

iσ̄ · ∂ 0


 ψL

ψR

 = 0, (2.30)

where σ̄ ≡ (1, σ).

In the condensed matter community, the solid state realizations of Dirac and

Weyl fermions in 3D attract much attention [45][47], and these materials are

called Dirac semimetals and Weyl semimetals.

In Weyl semimetals, the low energy excitations are Weyl-fermion-like quasi-

particles around several nodal Fermi points. The low energy Hamiltonian has the

form:

HW =
∑
α

a1(kα)σ1 + a2(kα)σ2 + a3(kα)σ3, (2.31)

where σi are Pauli matrices. This Hamiltonian describes two non-degenerate
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bands touching at nodal points k0’s in the Brillouin zone such that aα = 0. The

generally non-degenerate bands rely on the symmetries of the system. In Weyl

semimetals, either inversion or time-reversal symmetry is broken.

In Dirac semimetals, the system is both inversion and time-reversal sym-

metric. The bands are generally degenerate. The low-energy Hamiltonian is

Dirac-like as Eq.(2.30).

2.4 Topological properties of Weyl materials

As an illustration of the role of topology in nodal materials, we analyze some

of topological properties of a Weyl semimetal. One can compute the Berry flux

going through a closed sphere enclosing a Weyl point. The result turns out to

be 1 or −1. The common explanation is that Weyl points can be treated as

monopoles (“Berry monopole”) in the Brillouin zone. To see this, a widely used

two-band model can be a good starting point. The Hamiltonian is

H = −
∑
~k

[2tx(coskx − cosk0) +m(2− coskx − cosky)]σx

+ 2tysinkyσy + 2tzsinkzσz.

m, ti are model parameters. To calculate the spectrum of the model, on would

see two zeros located at ±k0, and there are the Weyl points of the model. The

“Berry monopole" described above can be revealed by calculating the flux of the
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Figure 2.2: Two Weyl points are shown as small red balls, and the arrows indicate
the flux of the Berry curvature. The Fermi arc is shown in the grey plane, which
is the surface Brillouin zone. The figure is from [46].

gauge field ~A and its “magnetic field” is defined as ~B

~A(~k) = −i
∑
n,filled

〈ψn,k|∇k|ψn,k〉 (2.32)

~B(~k) = ~∇k × ~A(~k). (2.33)

The flux around the two Weyl point are ±2π. Consider a 2D slice of the

system at a given kz, the two dimensional Hamiltonian Hr(kx, ky) is gapped if

kz is away from the Weyl points (the system is everywhere gapped except at

Weyl points). In a time-reversal broken gapped 2D system, one can calculate

the Chern number which characterized the Hall conductivity, which means we
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can treat this fixed kz slice as a two dimensional integer quantum Hall system.

This observation can be used as an argument to see the existence of the exotic

surface states of Weyl semimetal. An integer quantum Hall system hosts chiral

edge states moving along the edge. If the Weyl semimetals are seen as a stack

of integer quantum Hall systems, then the Weyl semimetal hosts surface states

due to the chiral modes in 2D. These 2D surface states of the Weyl semimetal

are named “Fermi arc”.

Weyl semimetals have special transport properties due to Weyl points and the

chiral anomaly. A very nice thing about Weyl semimetals is that they provide a

condensed matter demonstration of a chiral anomaly. The Jacobian introduced

by the chiral transformation adds a new term into the Lagrangian [50]

Sθ = − e2

8π2

∫
dt d3x ∂µθ ε

µνρσAν∂ρAσ (2.34)

where θ = 2bmuxµ, bµ characterizes the distance between kR/L in the Brillouin

zone. This term introduces current which has the following effects, for more

details see [50][51]:

• the anomalous Hall effect: jν = e2

2π2 bµε
µνρσ∂ρAσ

• the chiral magnetic effect: jν = e2

2π2 b0ε
0νρσ∂ρAσ

For the experimental aspects, in 2015 Weyl semimetal and Fermi arcs were ob-

served in tantalum arsenide(TaAs) by ARPES measurements [48, 49]. Transport

properties are also intensively investigated [52, 53].
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Chapter 3

Quasiparticle renormalization in

ABC-stacked trilayer graphene

3.1 Overview

The low energy spectrum of a few-layer graphene sample strongly depends on

how single graphene layers are stacked. For trilayer graphene, a particularly

interesting stacking pattern is the ABC stacking. In ABC trilayer graphene, the

low energy dispersion is cubic in momentum and quasiparticles have a 3π Berry

phase. We study the many-body effects due to Coulomb interactions in an ABC

graphene trilayer in the large N limit. Using renormalization group techniques,

we obtain the renormalization of the dynamical exponent, which is renormalized

to z = 3 + α1/N , with α1 ≈ 0.5 and N is the number of fermionic species.

We also analyze the properties of the quasiparticles, including the lifetime and

quasiparticle residue. The quasiparticles are robust but acquire non-Fermi liquid

renormalization effects which lead to possible signatures in experiments. We also

calculate how other physical observables, such as the electronic compressibility
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and the specific heat, are affected by Coulomb interactions.

3.2 Background

3.2.1 Trilayer graphene systems

Multilayer graphene systems have quite distinct electronic properties from a single

layer graphene film. This is largely due to the inter-layer couplings and the pat-

tern of stacking graphene layers. There are two kinds of stacking forms which are

known in the bulk graphite: ABA form (also called Bernal) and ABC form (also

called rhombohedral). These two stacking patterns are shown in Fig. 3.1(from

[18]).

For the ABA multilayer, the two adjacent layers can be seen as being displaced

horizontally by a vector ~rAB which points from the sublattice A to the sublattice

B in a single graphene layer. In ABC multilayers, three successive layers can be

seen as being displaced by two different vectors pointing to B sub-sites from the

A sub-site. The energy spectrum properties of these two multilayers are different.

In ABA graphene multilayers, the Hamiltonian can be decomposed around the K

point into a set of AB-stacked graphene bilayers and graphene monolayers. For a

ABA trilayer, the Hamiltonian can be decomposed into one graphene monolayer

and one graphene bilayer. Here we set γ0 to be the nearest-neighbor hopping

constant in the plane, and γ1 is the perpendicular hopping. The eigenvalues of

the single layer part are ε0 = svp, and the eigenvalues of the bilayer part are

ε2 = s[µγ1cosκ2 +
√

(γ1cosκ2)2 + (vp)2], where µ = ±1, s = ±1, p =
√
p2
x + p2

y,

and κ2 = π/4.

For the ABC-stacked trilayer, the focus of this chapter, the low energy degrees
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Figure 3.1: ABA stacking pattern and ABC stacking pattern. This figure is from
[18]

of freedom are those on the top and the bottom layer of the system [18][19][24].

The low energy Hamiltonian around the K point is

Htri = v3

γ2
1

 0 (π†)3

π3 0

 , (3.1)

where π = px + ipy. For the ABC case, generalization to N layers is straightfor-

ward: the energy band grows as ε ≈ sγ1(vp/γ1)N . The band becomes flatter. By

using this simplified model for the low energy degrees of freedom, the density of

states grows as D(ε) ∼ ε(2−N)/N . For N > 2, the density of states D(ε) diverges

as ε goes to zero.

From the perspective of experiments, the ABC-stacked trilayer graphene has

some attractive properties [15], such as a gap observed which may provide promis-

ing guidance for future applications. Depending on the stacking pattern, the elec-
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tric structures of graphene trilayer can be quite different. While an ABA-stacked

graphene trilayer always exhibits a gapless metallic phase in the presence of an

external electric field, the ABC-stacked trilayer is found to possess a tunable gap

[16][17]. Interactions among quasiparticles in graphene trilayer are critical to its

electric properties. Without external fields, a 6meV gap was reported in [17],

which is believed to be induced by the interactions in the ABC-stacked graphene

trilayer.

3.2.2 Large N

In this section, I briefly review the largeN technique used in the calculation in this

chapter, and the main references of this part are [20][21] . In the study of strong

coupling field theories, the perturbative calculations in the successive orders of

the coupling constant break down. For example, in asymptotic free theories like

QCD, the coupling grows as the energy scale increases, which hinders the use

of a perturbative method in the coupling constant in the high energy regime.

One route is looking for another parameter other than the coupling constant to

perform the perturbative calculation.

One class of such method is the 1/N expansion, where N comes from the sym-

metry group of the theory, for example SU(N) or SO(N) groups. In statistical

mechanics, for O(N) symmetric systems, the large N limit results are better than

the mean field level results. The large N analysis can be summarized in several

steps. First, one should choose a proper parameter t0, such that t0 = Ng2
0. g0 is

the coupling constant of the theory. The large N limit corresponds to N → ∞,

g0 → 0. Second, introducing an ancillary field which serves as a Lagrangian mul-

tiplier. This field helps to count the 1/N powers. Third, we integrate out the
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original fields and obtain the effective Hamiltonian of the ancillary field. Fourth,

diagrammatic calculations in the ancillary field are carried out, while in this cal-

culation the propagator is always proportional to 1/N . For more details, see [20]

and [21].

In this work, we use the large N expansion to organize the diagrammatic

calculations. In this calculation about graphene, a simplified structure of the

polarization function can also be obtained. In the large N approximation, the

dressed Coulomb interaction scales as 1
N

which helps the bookkeeping of the

expansion terms. The polarization function in one loop can be calculated as

Π(0)(q, ω) = −2N
β

∑
ipn

∫ d2p

(2π)2
1

iω + ipn − E(p + q)
1

ipn − E(p) , (3.2)

where the prefactor N is the flavor of the fermions. For single layer graphene

after tracing out the sublattice indices, this number is N = 4, i.e. two valleys,

and two spins.

The effective interaction function is

Ṽ (q, ω) = V (q)
1− Π(q, ω)V (q) , (3.3)

If N is large, the effective interaction becomes

Ṽ (q, ω) ∼ − 1
Π(q, ω) , (3.4)

which no longer depends on the bare interaction V (q). In each order of 1/N , an

infinite numbers of diagrams are taken into account.
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3.3 Interactions

In this chapter we study the effect of Coulomb interactions and polarization ef-

fects on the behavior of the quasiparticles at small but finite temperature, when

the many-body gap is zero. Because of the scaling of the kinetic energy, Coulomb

interactions are relevant operators in the renormalization group (RG) sense, and

can strongly renormalize different physical quantities. Different spontaneous bro-

ken symmetry ground states have been already proposed for trilayer graphene

[25, 26, 27]. Very recently, transport experiments revealed a robust many-body

gap of ∼40 meV at temperatures below Tc ∼ 34K [139].

We investigate the analytical structure of the polarization bubble and the lead-

ing self-energy corrections due to dynamically screened Coulomb interactions. In

the gapless regime, we show that the dynamical critical exponent is renormalized

to

z = 3 + α1/N +O(N−2),

where α1 ≈ 0.52 and N = 4 is the number of fermionic flavors. Although

the quasiparticle residue is suppressed by interactions, the scattering rate has

a sublinear scaling with energy and the quasiparticles remain well defined. We

predict the renormalization of several physical observables in the metallic phase,

such as the electronic compressibility, the specific heat, the density of states

(DOS) and the spectral function, which can be measured with angle resolved

photoemission spectroscopy (ARPES) experiments.
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3.4 Low energy Hamiltonian

We start with a simplified two-band model where the high energy bands are

separated in energy by interlayer hopping processes, which set the ultraviolet

cut-off for the excitations in the low-energy bands, t⊥ ∼ 0.4eV. We will assume

a temperature regime above the ordering temperature T & Tc ∼ 4 meV, where

the band structure is gapless. The infrared cut-off of the model is the trigonal

warping energy ∼ 10 meV, below which the bands disperse quadratically [24].

The low energy physics of the non-interacting ABC-trilayer in the gapless

regime is described by the 2× 2 Hamiltonian H0 = ∑
p Ψ†pĤ0(p)Ψp, where Ψk =

(a,k, b̄,k) is a two component spinor defined in terms of one annihilation operator

in sublattice A of the top layer (ap) and another in sublattice B for the bottom

layer (b̄p). The total degeneracy is N = 4, including spin and valley degrees of

freedom. The Hamiltonian density operator is [169, 24], which is introduced in

Eq. (3.1)

Ĥ0 = (~v)3

t2⊥

 0 (π)3

(π†)3 0

 , (3.5)

where ~v ≈ 6 eVÅ is the Fermi velocity, and π = px− ipy is defined by the x and

y components of the in-plane momentum of the quasiparticles measured away

from the neutrality point. In a more compact notation, Ĥ0(k) = γ|k|3ĥ0(k) with

ĥ0(k) = cos(3θk)σ1 + sin(3θk)σ2, (3.6)

where σi (i = 1, 2) are Pauli matrices, and tanθk = ky/kx. The constant γ ≡

(~v)3/t2⊥, is proportional to the velocity of the quasiparticles v0 = ∂kEk, which

have the energy spectrum ±Ek = ±γ|k|3.
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Figure 3.2: Left: Polarization bubble in one loop calculated numerically. The real part
(black curve) has a logarithmic singularity at the edge of the particle-hole continuum,
at ω = γq3/4, shown in detail in the inset. Red curve: imaginary part. Right panel:
Polarization in imaginary frequencies, which is a purely real function. For ω/γq3 � 1,
Π(0)(q, iω)→ −3Nq2/(16ω) (see text).

In ABC trilayers, Coulomb interactions are relevant in the RG flow at the tree

level, and hence standard perturbation theory is not possible. We organize the

expansion of the self-energy corrections in powers of the dynamically screened

Coulomb interaction, which can be rigorously justified in the large N limit. At

long wavelengths, k � 1/d, where d ∼ 2.4Å is the interlayer distance, the bare

Coulomb interaction is

HI = 1
2
∑

q
V (q)n̂(q)n̂(−q), (3.7)

with n̂(q) a density operator and V (q) ≈ 2πe2/q, as in a 2D sys-

tem. In the long wavelength regime where this approximation is valid, the

DOS scales as ρ(q) = (6πγ)−1/q and the screened Coulomb interaction is

Ṽ (q, ω) = V (q)/ [1− V (q)Π(q, ω)] , where Π(q, ω) is the dynamical polarization

function. In trilayers, the large N approximation becomes asymptotically exact

at small momentum, where the DOS diverges and screening becomes strong.

25



3.5 Polarization bubble

In order to address the screening effects, we consider the bare polarization func-

tion, which is defined as Π(0)(q, ω) = 1
β
tr∑iν

∑
p Ĝ0(p, iν)Ĝ0(p + q, iω + iν),

where

Ĝ0(q, iω) = 1
2
∑
s=±

1 + sĥ0(q)
iω − sγq3 (3.8)

is the fermionic Greens function, described by a 2×2 matrix. After performing

the sums over the Matsubara frequencies, the polarization function is given by

Π(0)(q, ω) = −N2

∫ d2p

(2π)2

∑
s=±

1− cos(3θpq)
Ep+q + Ep − sω

(3.9)

where θpq = θp+q− θp is the angle between vectors p + q and p. By sending the

ultraviolet cut-off to infinity, a simple dimensional analysis reveals the functional

form of the polarization function to be γqΠ(0)(q, iω) = −Nf(iω/(γq3)). After

some algebra, the scaling function f(z) can be written in the form

f(iz) = 1
2

∫ 2π

0
dθ
∫ ∞

0

dx x
(2π)2

∑
s=±

s

iz + s [x3 + h3(x, θ)]

×

1− 4
(

1 + xcosθ
h(x, θ)

)3

+ 3
(

1 + xcosθ
h(x, θ)

) , (3.10)

where z = ω/(γq3) and h(x, θ) ≡
√

1 + x2 + 2xcosθ. f(z) is a well-defined func-

tion in imaginary frequency but has branch cuts related to the edge of the particle-

hole continuum on the real axis. Due to the cubic dispersion, it is difficult to

come up with a closed form solution for the polarization function. However the

analytical structure of f(z) near the particle-hole threshold z = 1/4 can be ex-
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tracted in the collinear scattering approximation, which dominates the processes

near that region [30]. We consider the singular contribution of the integrand

around the momenta p + q ≈ −p. Within this window it is safe to assume

1 − cos(3θpq) ≈ 2. After expanding cos θ around θ = π to the second order, we

arrive at the following integral representation for f(z),

f(z) ∼=
∫ xdx

(2π)2

∫ dθ

x3 + (1− x)3 + 3
2x(1− x)θ2 − z

. (3.11)

Considering the rapid fall of the integrand with respect to θ around π, one can

conveniently extend the upper limit of the angular integral to infinity, θ ∈ [0,∞[.

After performing the integrals, we arrive at the most dominant part of f(z) near

z ∼ 1/4,

f(z) = − 1
6
√

2π
ln (1− 4|z|) + regular terms, (3.12)

which describes a logarithmic divergence near the edge of the particle hole con-

tinuum. Exploring the two asymptotic regimes, in the z → 0 regime, f(0) =

c0 ≈ 0.12 is a constant [11, 31] and in the z � 1 limit, f(z)→ −ic∞/z is purely

imaginary, with c∞ = 3/16.

In Fig. 3.2, we show the behavior of the real and imaginary parts of f(z)

calculated numerically from Eq. (A.3). The scaling function has only one singu-

larity near z ∼ 1/4. For z < 1/4, f(z) is purely real and diverges logarithmically

at z = 1/4, in agreement with the analytical expression (3.12), as shown in the

inset of Fig. 3.2. For z > 1/4, f(z) has also an imaginary part, which decays

with 1/z. The right panel of Fig. 3.2 shows f(iz) in imaginary frequency, which

is a real and well behaved monotonic function.

In the optical regime, for z � 1, where Π(0)(q, ω) → iNc∞q
2/ω, the optical
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conductivity can be calculated directly from the charge polarization,

σ(ω) = e2

~
lim
q→0

iω

q2
Π(0)(q, ω)

1− V (q)Π(0)(q, ω) = 3
4
e2

~
, (3.13)

which is proportional to the Berry phase 3π. In the general case, σ(ω) = νe2/(2h),

with ν = π for graphene single layer and ν = 2π for bilayers.

3.6 Self-energy

The leading self energy correction due to the screened Coulomb interaction is

diagrammatically shown in Fig. 3.3. In imaginary time, the self-energy is given

by

Σ̂(1)(q, iω) = − 1
β

∑
ν

∫ d2p

(2π)2 Ṽ (p, iν)Ĝ(0)(q − p, iω − iν). (3.14)

Through power counting, the leading divergences appear at long wavelengths,

where the large N limit is a good approximation. At large N , the dynamically

screened potential is approximated by Ṽ (q, iω) ≈ γq/[Nf(iω/γq3)] + O(N−2)

[33, 34, 35]. Since f(iz) is a well behaved function, with no singularities or

branch cuts, the self energy in one loop can be calculated directly in the zero

temperature limit. The leading contribution is logarithmically divergent,

Σ(1)(q, iω) = 1
2π2N

[
αdiω + αoγq

3ĥ(q)
]

ln
(

Λ
q

)
, (3.15)

where t⊥ = γΛ3 defines the ultraviolet cut-off in momentum, namely Λ = t⊥/(~v).

The coefficients

αo =
∫ ∞

0
dz

1
f(iz)

z2(10− 16z2 + z4)
(1 + z2)4 , (3.16)
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and

αd =
∫ ∞

0
dz

1
f(iz)

1− z2

(1 + z2)2 , (3.17)

can be found though numerical integration using the exact f(iz). Although αo

and αd both diverge logarithmically with the upper limit of integration at large

z, we will postpone their regularization for the moment, since these divergences

cancel exactly in the renormalization of γ and hence have no consequence to the

renormalization of the spectrum.

The self-energy can be separated in two terms, Σ̂(q, iω) = iωΣdσ0+Σ0q
3ĥ0(q),

where Σd is the diagonal term, and Σo describes the off-diagonal matrix elements.

The diagonal part of the self-energy has frequency dependence and defines the

quasiparticle residue renormalization,

Z−1
ψ = 1− ∂Σ̂/∂(iω) = 1− Σd. (3.18)

The renormalized Green’s function is Ĝ(q, iω) = Zψ[iω − γĥ0(q)Zψ(1 + Σo)]−1.

In one loop, the renormalized energy spectrum is

γ(q)
γ

= 1 + Σo

1− Σd

≈ 1− α1

N
ln
(

Λ
q

)
+O(1/N2), (3.19)

where

α1 = α0 + αd
2π2 =

∫ ∞
0

dz
2π2

1
f(iz)

17z4 − 11z2 − 1
(1 + z2)4 ≈ 0.52 (3.20)

is a finite well defined quantity.

The logarithmic renormalization of the quasiparticle velocity in one loop dic-
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Figure 3.3: One-loop correction to the self-energy with the dressed Coulomb interac-
tion.

tates the RG equation of γ,

βγ ≡
dγ
dl = −γα1

N
, (3.21)

where l = ln(Λ/Λ′), with Λ′ < Λ the renormalized cut-off, whose solution is

γ(q) = γ × [(~v/t⊥)q]α1/N . (3.22)

The energy spectrum acquires an anomalous dimension η = α1/N , which

leads to the renormalization of the dynamical exponent, ω ∝ qz, with

z = 3 + α1/N +O(N−2). This result can be related with the graphene bilayer

case, where η = 0.078/N [36] and with the large N limit of the single layer case,

where η = −4/(π2N) [33, 34].

This analysis can be explicitly verified by checking the two loop correction

in the self energy. The RG equation describes a resummation of leading logs

to all orders in 1/N . The N−2 log2 terms cancel exactly in the vertex correc-

tion diagram at two loop, and hence vertex corrections do not renormalize in

the RG flow [36]. The leading logarithmic terms appear in the remaining dia-

grams of the same order, and lead to a second order correction to Eq. (3.19),

γ(2)(q)/q = 1
2α

2
1/N

2 ln2(Λ/q), in agreement with the result of the RG equation up
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to 1/N2 order.

3.7 Quasiparticle residue

To calculate the quasiparticle residue renormalization Zψ through Eq. (3.18),

one needs to regularize integral (3.17). That can be done introducing an up-

per cut-off zc which accounts for the condition where the large N limit breaks

down, namely −V (p)Π(0)(p, iν) = 2πNe2Λ2/(~vp2)f(izc) ∼ 1. At large z, where

f(iz) → 3/(16z), the leading contribution is αd ∼ −16 ln(Λ/p). Replacing

ln(Λ/q) →
∫ Λ
q dp/p in Eq. (3.15) and carrying out the momentum integration,

the quasiparticle residue Zψ is given by

Z−1
ψ → 1 + 4

π2N
ln2(Λ/q) +O(1/N2), (3.23)

in one loop, and is suppressed logarithmically in the infrared.

In the RG spirit, we now reestablish the bare value of the quasiparticle

residue Z0 in the bare Green’s function Ĝ0 ∝ Z0 [158], and set Z0 → 1

at the end. Since δĜ = Ĝ0Σ̂Ĝ0 ∝ δZψ in lowest order in the Dyson

equation, then δZψ = Z2
0 Σ̂d ∝ Z0 in large N . Eq. (3.23) then becomes

δZψ = −4Z0/(π2N)δ ln2(Λ/q), which corresponds to the RG equation

βψ = dZψ
dl = − 8

π2N
lZψ, (3.24)

with l = ln(Λ/Λ′), whose solution is

Zψ(q) = exp
[
−4/(π2N) ln2(Λ/q)

]
, (3.25)
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Figure 3.4: a) On-shell scattering rate τ(ω) vs energy in units of t⊥ ∼ 0.4eV. b)
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(q/Λ). Solid black line: bare energy spectrum. White line: renormalized one. Light
regions indicate higher intensity.

in agreement with Eq. (3.23) up to 1/N order.

3.8 Quasiparticle lifetime

In real frequency, the polarization function has a logarithmic branch cut. To

calculate the quasiparticle scattering rate τ = ZψImΣ̂, we use the method in

ref. [38] to separate the self-energy into the line part and the residue part,

Σ̂ = Σ̂line + Σ̂res. The line part is obtained by performing Wick rotation iω →

ω + i0+ in the self-energy (3.14), and is purely real. The residue part follows

from the residue calculated around the pole of the Green’s function,

Σ(1)
res(q, ω) = −1

2
∑
s=±

∫ d2p

(2π)2 Ṽ (|q|, ω)[1 + sĥ(q − p)]

× [θ(ω − sγ|q − p|3)− θ(−sγ|q − p|3)], (3.26)

32



with θ a step function. The scattering rate is given by τ(q, ω) = ZψImΣres(q, ω).

In the on-shell region, near ω ∼ γq3, τ(ω) = ωZψg(ω/t⊥), where

g(y) = 1
2N Im

∫
|x|<1

d2x

(2π)2
|q̂ − x|

ᾱy2/3|q̂ − x|2 + f
(

1−x3

|q̂−x3|

) (3.27)

is a scaling function in one loop, with y = ω/t⊥, ᾱ = ~v/(2πNe2) is a dimension-

less constant and q̂ = q/q. The function g(y) has a very slow variation, as shown

in Fig. 3.4 a, and as a consequence τ(ω) ∼ ωZψ[(ω/γ)1/3] has a sublinear scaling

with energy within logarithmic accuracy. In the large N limit (ᾱ→ 0), which is

valid at low energy, g(y) ≈ 0.043 is a constant. Since the ratio τ(ω)/ω � 1, the

quasiparticles are well defined even in the ω → 0 limit.

The spectral function is given by A(q, ω) = −2tr ImGR(q, ω), where

ĜR(q, ω) = 1
2
∑
s=±

Zψ(q)[1 + sĥ0(q)]
ω − sγ(q)q3 − iτ(ω) + i0+ (3.28)

is the retarded part of the renormalized Green’s function. The spectral function

is shown in Fig. 3.4b. The solid black line describes the bare energy spectrum,

while the light region describes the renormalized one, which corresponds to the

pole of the renormalized Green’s function. There is a clear deviation of the two

curves, which could be observed with ARPES experiments.

3.9 Other physical observables

The renormalization of the quasiparticle velocity encoded in the RG flow of γ

leads to the renormalization of many physical observables. For instance, the

specific heat for non-interacting particles with cubic dispersion in 2D scales with
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C ∼ (T/γ)2/3, where T is the temperature. From Eq. (3.22), the scaling of γ

with energy is γ ∼ ωα1/(3N). At ω ∼ T , the temperature scaling of the specific

heat is renormalized to

C ∼ T 2(1−α1/(3N)]/3 ≈ T 2/3−0.1/N , (3.29)

neglecting slower logarithmic corrections due to the scaling of Zψ, with

T & T0, where T0 is defined by the infrared energy cut-off of 10 meV due

to trigonal warping effects [24]. In the same way, the renormalized DOS is

ρ(q) = [6πγ(q)]−1/q ∼ q−(1+α1/N), which can be measured directly on surfaces

with scanning tunneling spectroscopy experiments [150, 40]. In scanning tunnel-

ing spectroscopy experiments, the variation of the tunneling current with respect

to the bias voltage is related to the surface density of states.

In 2D systems, the electronic compressibility can be characterized with single

electron transistor measurements [41]. By dimensional analysis, the free elec-

tronic compressibility scales with temperature as κ ∼ γ−2/3T−1/3 [42]. In the

same spirit, interactions renormalize the scaling of the inverse compressibility,

κ−1 ∼ T [1+2α1/(3N)]/3 ≈ T 1/3+0.1/N , (3.30)

which strongly deviates from the non-interacting result.

In summary, we derived the effect of electron-electron interactions in the

renormalization of a variety of different physical observables in the metallic phase

of ABC graphene trilayers.
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Chapter 4

Designing Quantum Spin-Orbital

Liquids in Artificial Mott

Insulators

4.1 Overview

Quantum spin-orbital liquids are experimentally elusive strongly correlated states

of matter that emerge from quantum frustration between spin and orbital degrees

of freedom. A promising route towards the observation of those states is the

creation of artificial Mott insulators where antiferromagnetic correlations between

spins and orbitals can be designed. We show that Coulomb impurity lattices on

the surface of gapped honeycomb substrates, such as graphene on SiC, can be

used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the

property that massive Dirac fermions form mid-gap bound states with spin and

valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic

repulsion, the antiferromagnetic correlations of the impurity lattice are driven
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by a super-exchange interaction with SU(4) symmetry, which emerges from the

bound states degeneracy at quarter filling. We propose that quantum spin-orbital

liquids can be engineered in artificially designed solid-state systems at vastly

higher temperatures than achievable in optical lattices with cold atoms. We

discuss the experimental setup and possible scenarios for candidate quantum

spin-liquids in Coulomb impurity lattices of various geometry.

4.2 Background

4.2.1 Mott insulator and the Hubbard model

The concept of Mott insulators plays a vital role in the physics of high tempera-

ture superconductors and quantum spin liquids. We give a brief review of Mott

insulators, and some of the discussions follow [54][55].

Electrons in crystals move in the background of periodic potentials provided

by the positive charges from atomic nuclei. For weakly interacting systems, free

electron band theory is a good approximation to describe electron behaviors in

crystals. For a band insulator, the highest band is separated by a finite energy

gap from the lower completely filled valence bands. When strong interactions

between electrons are considered, the situation can be quite different. There is

a new class of insulator, Mott insulators, appearing. In a Mott insulator, the

opening of a band gap is due to the large interaction strength. We begin with a

lattice model

H = H0 +HI , (4.1)

H0 = −t
∑
ij

(c†iαcjα + h.c.)− µ
∑
i

ni, (4.2)
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HI = 1
2
∑
ij

Vijninj. (4.3)

where α =↑, ↓ is the spin index, the density operator is ni = c†ici. The non-

interacting Hamiltonian H0 can be used to describe a metal, where there is only

one electron on each lattice site (half-filling). In the interaction Hamiltonian, Vij

is the interaction strength for a long-ranged Coulomb interaction, V (|r|) = e2

4π
1
|r| .

To model the Mott insulator, the Hubbard model is often used, where a short-

ranged interaction is considered. The Hubbard on-site repulsive interaction term

is

HU = U
∑
i

ni↑ni↓. (4.4)

We can see in the U → ∞ limit, the H0 term is ignored and electrons cannot

jump to other sites because this would cost a large amount of energy, so the

system is insulating due to interaction. The model has two parameters t and U ,

and the competition between the hopping constant t and the Hubbard term U

determines the behavior of the model. For the intermediate value of t/U ∼ 1,

the analysis of the model is highly non-trivial. For large U and small t/U , the

hopping terms can be treated as a perturbation, and the Hubbard model can be

written in a spin interaction form which is very helpful for looking at the spin

physics of the model. In this limit, the model is called t− J model which, in the

second order in the hopping constant t, can be written as [55]:

HtJ = 1
2
∑
ij

J(~Si · ~Sj −
ninj

4 ), (4.5)

where J = 4t2/U . Hence, in the large U limit and up to the order of t2/U , the

Hubbard model is equivalent to an antiferromagnetic Heisenberg model. The job

of studying the Hubbard model is mapped to the study of the antiferromagnetic
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model: a spin model. There are many questions concerning this spin model. An

important one is what is the ground state of this antiferromagnet model? If the

spins are actual classical vectors, the ground state of the antiferromagnet consists

of two sublattices with opposite spin orientations (ignoring frustration for the

moment). This ground state is called Néel state. It seems that quantum effects

would prohibit such kind of “static” spin configuration. However, experiments

find that Cu2+ ions have the Néel antiferromagnetic ground state. [56]

4.2.2 Quantum spin liquid

Other states are proposed to be the ground states of the quantum Heisenberg

antiferromagnets. The leading aim is to find non-magnetic ground states which

break no symmetries, leading to the concept of quantum spin liquids. Philip

Anderson proposed [57] the concept of the resonating valence bond state in the

triangular lattice, in which geometric frustration may prevent the formation of

Néel state. Consider any two spins belonging to two sites, and pair them into

a spin singlet state. If every spin is paired with another spin in the system, we

have a configuration of these “bond states”, but this configuration breaks the

space symmetry of the underlying lattice. To restore the symmetry, one needs

to have a set of many configurations, which include every symmetry operation

counterparts (the summation of different configurations is the process of “res-

onating”). Because every spin singlet in such configurations has the magnetic

quantum number m = 0, the system is not magnetic. However, in experiments

[58] a spiral Néel state called 120◦ Néel state is found in frustrated triangular

lattices, for example on monolayer Mn on Ag(111) [59]. The 120◦ Néel state has

in-plane spins which are rotated 120◦ relative to their neighbors in a triangular
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Figure 4.1: An pictorial representation of the resonating valence bond state in
the edge-sharing triangular lattice. This figure is from [61].

lattice.

Although in some antiferromagnetic models defined on a triangular lattice the

experiments show ground states are not spin liquids, the theory of quantum spin

liquids has been developed further, since they may be realized in other systems.

The modern understanding of the quantum spin liquid, particularly its connection

with topological phases, has become a core research topic in condensed matter

theory. The search for generic spin liquids in real materials is progressing rapidly.

For a thorough review which emphasizes the theory aspects, see [60]. A short

overview on this topic is given in [61].

From the construction of the resonating valence bond state, we can see two

important defining properties of quantum spin liquids: a disordered ground state

and quantum entanglement. In quantum spin liquids, spins do not arrange them-

selves in an ordered way like in a ferromagnet. In a ferromagnet, the SU(2) rota-
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tional symmetry of spins is broken: a particular orientations of spins is chosen.

Order parameters and the Ginzburg-Landau paradigm of describing the dynam-

ics of order parameters are the standard language for broken symmetry phases.

The rotational symmetry of spins persist even in the zero temperature limit in

quantum spin liquids. (Notice there is a special class of the quantum spin liq-

uid, the chiral spin liquid, which can violate the time reversal symmetry and the

inversion symmetry spontaneously [62].)

The entanglement properties of quantum spin liquids are fundamental for

understanding these phases in the sense of topological phases. The key point is the

connection between the non-local excitation and quantum entanglement. Because

subsystems are entangled, one can not define local excitations in one subsystem

without the interference from others. Consequently, quantum spin liquids support

non-local excitations: an excitation is created by non-local operators. These

excitations involve a string of local degrees of freedom, but the interplay among

these excitations is still like quasiparticles.

Let us take two examples: one is the toric code from the perspective of topo-

logical phases; the other is an antiferromagnet. In the toric code model [63][64],

spin 1/2 operators are definded on the bonds of a square lattice (Fig. 4.2), the

Hamiltonian is

HT = −Je
∑
s

As − Jm
∑
p

Bp, (4.6)

where s labels all vertices of the lattice and p means plaquette of the square

lattice. Two operators are As = ∏
j∈s σ

x
j and Bp = ∏

j∈p σ
z
j . Because As and Bp

commute (can be proved by calculating the commutator straightforwardly), the

ground states are defined by As = Bp = 1. For the ground state degeneracy, the

original article is [63].
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Figure 4.2: Two operators are defined: As is defined on the vertices, and Bp is
defined on plaquettes. The figure is from [64].

Let us say a little bit about the excitations. There are two kinds of excitations

appearing in toric code: the electric charge and the magnetic vortices. The

electric particle is defined by

W e(L) =
∏
j∈L

σzj , (4.7)

and this is a string of operators defined along a path L. Let us consider L is

just a single bond, W e(L) = σzj . We see two As are flipped. For a long string,

the two ends are flipped and the energy increased is 2Je. The point is that

one can not flip a single As operator. A similar magnetic particle can be defined:

Wm(L∗) = ∏
j∈L∗ σ

x
j , where L∗ is defined in the dual lattice. The mutual statistics

of the electric charges and the magnetic vertices are semion-like, a signature of

many-body entanglement [65][66].

Now we turn to the second example, the antiferromagnet. In the Néel state,
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Figure 4.3: Spinon excitations in a 1D antiferromagnet. One spin flip creates
domain walls (indicated by ovals), which can move without paying energy costs.
The figure is from [61].

flipping one spin would change two bonds, so the energy is increased by 2J(J

is the bond energy). These two bonds can be seen as domain wall excitations

which can propagate separately, and it costs no energy to move domain walls.

The progress of spinon excitation and domain walls movement is shown in Fig.

4.3. These excitations can only be created in pairs and each of them carry spin

1/2, since one spin flip creates two domain walls. Proliferation of spinons in the

antiferromagnetic state can lead to quantum frustration, which could stabilize a

spin liquid as the ground state. This scenario contrasts with the classical spin

case, where spin flips are not allowed, since they cost too much energy. For the

later, the low energy excitations are classical Goldstone modes in the form of spin

waves.

We comment on some spin liquid models. Based on the Hamiltonian

H = Jij
∑
ij
~Si · ~Sj, Heisenberg SU(N) antiferromagnet systems on different lat-
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tices have been extensively studied, like in square lattices, triangular lattices,

and kagomé lattices. In kagomé lattice, Sp(N) symmetric antiferromagnet was

investigated by using the large N technique [68][69]. Two ground states are found

in two different limits of the control constant κ = nb
N
, here nb is the boson density

on each lattice site. For large κ, the ground state is magnetic-ordered. Classical

state degeneracy is lifted by quantum fluctuations. This is the so-called order by

disorder. For small values of κ, the ground state is argued to be a quantum spin

liquid which is quantum-disordered, and symmetries are not broken.

By using projective symmetry groups proposed by Wen [67], hundreds of

symmetric spin liquids have been constructed, but the question one must ask is:

how can we find them? There are some experiment measurements which pro-

vide evidences of quantum spin liquids. A subset of these experiment methods

includes specific heat measurement, neutron scattering, and magnetic susceptibil-

ity measurement. The specific heat measurements help elucidate the low energy

excitation properties of the system. [70] reports the thermodynamic properties

of an organic Mott-insulator EtMe3Sb[Pb(dmit)2]2 (dmit represents 1,3-dithiole-

2-thione-4,5-dithiolate). A temperature-linear heat capacity is found below 1K,

which provides evidence supporting a gapless spin liquid. One important physi-

cal observable quantity is the structure factor, which is defined by the spin-spin

correlation function:

S(~k) = 1
N

∑
i,j

〈Si · Sj〉ei
~k·(~ri−~rj) (4.8)

This quantity can be used to characterized the ground state of an antiferro-

magnetic system and provide indirect signatures of a quantum spin liquid state

[116]. Inelastic neutron scattering measurements in kagomé antiferromagnet

ZnCu3(OD)6Cl2 (herbertsmithite) are reported in [71]. They give insights be-
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cause the neutron scattering cross section is proportional to the structure factor.

4.3 Artificial Mott insulator and spin-orbital liq-

uids realization

Spin-orbital liquids result from systems that have not only spin degeneracies but

also orbital degeneracies [139, 73]. Those states are strongly correlated, have

non-local excitations, but nevertheless do not break any symmetries. In spite of

mounting theoretical effort [74, 75, 76, 77, 78], a significant difficulty in finding

viable candidates for quantum spin-orbital liquids is the fact that normally the

interactions governing spin and orbital degrees of freedom have very different en-

ergy scales [79, 80, 81]. Consequently those degrees of freedom are decoupled at

sufficiently low temperatures, hindering the quantum frustration that is required

to entangle orbitals and spins. Very recently, x-ray scattering studies in mag-

netic honeycomb based BaCuSb2O9 crystals reported indications of spin-orbital

entanglement at low temperature [82, 83].

An alternative to identifying crystals where spins and orbitals are strongly

coupled would be instead to create artificial crystals where spin and orbital

quantum numbers become interchangeable. Such a property appears in mag-

netic Hamiltonians that display SU(4) symmetry [150]. Recent experiments with

cold atoms reported spectroscopic quantum simulations in small artificial mag-

netic systems with SU(N ≤ 10) symmetry at ultra low temperature [85, 86].

Mott physics with SU(2) spins has been observed in optical lattices with ultra-

cold atoms inside a parabolic potential [87]. In those systems, strong correla-

tions emerge only at extremely low temperatures, making a possible detection of
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quantum spin-liquids challenging [88]. Solid-state systems where antiferromag-

netic interactions have SU(4) symmetry are not common, since in real materials,

anisotropies and off-diagonal hopping matrix elements in the degenerate orbital

space usually lower that symmetry [89].

We propose a solid-state system that can be experimentally designed with

scanning tunneling microscopy (STM) tips by positioning Coulomb impurity

adatoms in a periodic array on top of an insulating honeycomb substrate. The

electrons in those substrates can be described by massive Dirac fermions, which

form bound states around the impurities [90, 91, 92]. Those bound states have

spin and valley degeneracies, which are dual to spin-orbital degrees of freedom.

We theoretically construct an artificial lattice where each impurity site is quarter

filled with valley and spin polarized states. The problem has an emergent SU(4)

symmetry that follows from the orthogonality between the two different valley

spaces. In systems like graphene, SU(4) symmetry is known to emerge in the

quantum Hall regime [93]. Electronic interactions lead to a variety of broken

symmetry states in both spins and valleys [94, 95, 96, 138, 98, 99].

The spin-orbital exchange interactions are calculated in three different im-

purity lattice geometries: triangular, square and honeycomb, shown in Fig. 1.

We find the constraints on the impurity lattice in the regimes where the sys-

tem is expected to behave as a Mott insulator dominated by antiferromagnetic

interactions between sites. We propose the experimental conditions for the ob-

servation of those states. For honeycomb substrates such as graphene grown on

SiC [100, 101], we show that the Mott regime of entangled spins and orbitals is

experimentally accessible and that the superexchange interaction can be as large

as Js/k ∼ 60− 120 K. The experimental signatures of strongly correlated states

are discussed based on possible scenarios predicted for SU(4) spin-orbital models
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Figure 4.4: Honeycomb substrate with unequal sublattices decorated with a su-
perlattice of charged impurities. In the three configurations, triangular (a), square
(b) and honeycomb (c), the impurities are separated by a superlattice constant
L, and sit at a distance d away from the plane of the substrate (d). All impurities
interact with electrons via Coulomb, 1/r potential.

[102, 103, 104, 105], including quantum spin-orbital liquids.

4.4 Coulomb impurity problem

The wavefunction of the Coulomb impurity bound states for 2D massive Dirac

fermions, Ψ(r), can be derived from the Dirac equation

(−i~vσ ·∇ + V (r) +mv2σz)Ψ(r) = εΨ(r). (4.9)

σ = (σx, σy) is a vector with off-diagonal Pauli matrices, σz is the diagonal Pauli

matrix, v is the Fermi velocity and m is the mass term of the substrate, that

describes a gap in the electronic spectrum, ∆ = 2mv2. V (r) = −Ze2/κ
√
r2 + d2

is the Coulomb impurity potential, where Z is the number of charges of the

impurity, e is the electron charge, κ the dielectric constant of the surface, and

d ≈ 2 − 3Å is the out-of-plane distance between the impurity and the plane of

the substrate.

The impurity potential decays as V (r) ∼ 1/r in the r � d limit and saturates
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into a constant in the opposite limit. The potential can be written as

V (r) = −Z e
2

κ

[1
r
θ(r − a) + 1

a
θ(a− r)

]
(4.10)

where a is an effective real space cut-off which regularizes the Coulomb potential.

The size of the cut-off can be chosen as a ∼ d and is typically of the order

of the impurity size. This regularization procedure is well known in quantum

electrodynamics in 3+1 dimensions (QED3+1) and has been successfully used to

explain the experimentally observed dive of bound states in the lower continuum

around super-heavy nuclei with atomic number Z > 137 [106, 107]. Both in

QED3+1 as in the 2D case, the wavefunction of the Coulomb impurity bound

states decay over a characteristic distance defined by the Compton wavelength

λC = ~/mv.

In cylindrical coordinates, the solution of Eq. (4.9) is in the form

Ψ(r, φ) = c√
2π

 F
(−)
j (r)ei(j− 1

2 )φ

iF
(+)
j (r)ei(j+ 1

2 )φ

 , (4.11)

where j = ±1
2 , ±

3
2 . . . , m+ 1

2 (m ∈ Z) are the possible angular momentum states,

and c is the normalization constant. The energy spectrum is quantized by the

usual quantum numbers in the Hydrogen atom problem, n ∈ N and j [90, 91, 92].

The degeneracy of the ±|j| angular momenta states for a given n > 0 however is

lifted. At n = 0, only the j = 1
2 state is allowed. For more details of this solution,

please read the appendix.

Defining the impurity strength by the dimensionless coupling g ≡ Zα, where

α = e2/κ~v is the screened fine structure constant of the substrate, there are two

known regimes of the problem: the perturbative regime g � 1, where the bound
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states are shallow, and the strong coupling regime g & 0.5, where they dive in the

negative sector of the energy spectrum, as shown in Fig. 4.5 a. At fixed g, the

lowest energy level is the n = 0, j = 1
2 state, followed by the first excited state

n = 1, j = −1
2 . There is an infinite number of higher excited states inside the

gap ∆. The latter states have very small binding energies and are not relevant

to this discussion.

We are interested in the strong coupling regime of the problem (g & 0.5),

where the confining potential is deep and the energy separation between the

ground state level and the first excited state is of the order of ∼ ∆/2. At suffi-

ciently large coupling, g > gc, the lowest energy state level dives in the continuum

of negative energy states outside of the gap. This regime is known as the super-

critical regime. At the critical one, when g = gc the energy of the lowest level is

exactly at the edge of the gap, ε = −mv2. In the subcritical regime, 0.5 . g < gc,

which is the focus of this paper, the levels are strongly localized and sharply de-

fined inside the gap. For a Coulomb impurity on top of graphene epitaxially

grown on SiC, where ∆ ∼ 0.26 eV [100], and for a typical small distance cut-off

a ≈ 2.8Å, gc = 0.916. In general, the critical coupling gc ∼ 1. The energy of

the levels follows directly from matching the wave function at r = a, similarly to

the procedure in the QED3+1 case. The solution of the subcritical regime can be

calculated either numerically [90] or for the purposes of this work, analytically,

as detailed in the appendix.

4.4.1 Impurity lattice model.

In a honeycomb lattice with massive Dirac fermions, the quasiparticles also have

two valley flavors, in addition to the spin. The Coulomb impurity bound states
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Figure 4.5: (a) Energy of the Coulomb impurity bound states ε, in units of
mv2 = 0.13 eV, as a function of the dimensionless coupling g = Zα. Blue dots:
ground state level, n = 0, j = 1

2 . Black dots: first excited state, n = 1, j = −1
2 .

At g = gc ≈ 0.916, the lowest energy level dives in the continuum of negative
energy states at ε = −mv2. In the subcritical regime g . gc, the two levels have
an energy separation ∼ mv2. (b) Hubbard U , in units of mv2α, versus g in the
strong coupling regime 0.5 ≤ g ≤ gc. U is comparable to the energy of the gap
∆ = 2mv2.

therefore must have both spin and valley degrees of freedom. The Dirac equation

in this case is  Ĥ+(r) 0

0 Ĥ−(r)

Φ(r) = εΦ(r), (4.12)

where Ĥ+(r) = −i~vσ ·∇ + V (r) + mv2σz is the Dirac Hamiltonian matrix in

valley + and Ĥ−(r) = Ĥ∗+(r) in the opposite valley. The eigenvectors are the

four component spinors Φj,+(r) = (Ψj(r),0) and Φj,−(r) = (0,Ψ∗j(r)), which are

degenerate. The j-th energy level is four-fold degenerate, with two spins and two

valleys. The valleys describe the orbital motion of an electron around a Coulomb

impurity. They effectively behave as a pseudo-spin with SU(2) symmetry, as the

actual spins.

Once Coulomb interactions among the electrons in the bound state are in-

cluded, those states tend to spin and valley polarize due to correlations and Pauli
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blocking. In the ground state, j = 1
2 , the Coulomb interaction can be expressed

in terms of a Hubbard U term

HU = 1
2U

∑
{ν},{σ}

n̂ν,σn̂ν′,σ′(1− δν,ν′δσσ′), (4.13)

where

U =
∫

d2rd2r′|Φ 1
2 ,ν

(r)|2 e2

κ|r− r′|
|Φ 1

2 ,ν
′(r′)|2 (4.14)

is a valley independent local repulsion. n̂ν,σ = c†ν,σcνσ is the number operator

per valley and spin at the bound state, where cν,σ annihilates one electron in the

j = 1
2 level on valley ν with spin σ. Due to the orthogonality of the eigenspinors,

Φ†j,+(r)Φj,−(r) = 0, the exchange interaction between electrons in different valleys

around the same Coulomb impurity is zero.

In Fig. 4.5 b, we calculate U as a function of the dimensionless impurity

coupling g in the strong coupling regime 0.5 . g < gc. At g = gc, U = 2.7mv2α,

dropping to U = 1.35mv2α at g = 0.5. When U is large and only the j = 1
2

level is filled, the ground state will be singly occupied in one of the four possible

states: | 〉 = |+, ↑〉, | 〉 = |+, ↓〉, | 〉 = |−, ↑〉, and | 〉 = |−, ↓〉.

We would like to write down an effective lattice model for a strongly correlated

lattice of Coulomb impurities, each one having a quarter filled bound state in

one of the four possible states above. Those electrons can hop between different

Coulomb impurity sites, with each one having a Hubbard U energy, that penalizes

multiply occupied sites, and also having a well defined valley and spin. The

hopping term is

Ht = −t
∑
〈ij〉

∑
ν,σ

c†i,ν,σcj,ν,σ, (4.15)

with ci describing the annihilation operator of an electron in the j = 1
2 level
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Figure 4.6: Left column : triangular lattice; middle column square lattice; right
column : honeycomb lattice. Red dots: g = 0.9; green: g = 0.8; blue: g = 0.7;
cyan: g = 0.6; orange: g = 0.5. Top row: ratio between the onsite repulsion
(U) and the kinetic energy (t) times the fine structure α versus the superlattice
constant L normalized by the Compton wavelength λC = ~/mv. For a substrate
with a gap of of ∆ = 0.26 eV (graphene on SiC), λC ≈ 46Å. When U/t ∼ 5, the
system is strongly correlated: the Coulomb impurities form a lattice of local spin-
orbitals. Middle row: Superexchange interaction, Js = t2/U in units of mv2/α,
versus L/λC . Bottom row: ratio between the exchange interaction Je and the
superexchange interaction Js times α2.
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siting on an impurity site located at Ri, and 〈ij〉 denotes summation over nearest

neighbor (NN) sites. The hopping parameter of the Coulomb impurity lattice is

tij =
∫

d2rΦ†1
2 ,ν

(ri)
∑
k 6=i

V (|rk|)Φ 1
2 ,ν

(rj) (4.16)

where ri ≡ r − Ri is the position relative to site i. Hopping between Coulomb

impurity sites conserves valley due to the orthogonality of eigenspinors in the

valley space, Φ†1
2 ,+

(ri)Φ 1
2 ,−

(rj) = 0. Because of the summation of the potential

over lattice sites and the long range nature of the Coulomb interaction, the value

of t is influenced by the geometry of the lattice.

In the limit U � t, we can expand the effective Hamiltonian in second order

perturbation theory in the hopping, Hs = −HtH−1
U Ht + O(t4). The Hamilto-

nian that results is the superexchange interaction, which favors antiferromagnetic

alignment of spins or valleys. This interaction is of order Js = t2/U and lowers

the energy cost for electrons to hop back and forth between two NN sites. The

superexchange competes with the exchange interaction between NN sites, which

is ferromagnetic and defined by

Je,ij = −1
2

∫
d2rd2r′Φ†1

2 ,ν
(ri)Φ 1

2 ,ν
(rj)

e2

κ|r− r′|
Φ†1

2 ,ν
′(r′j)Φ 1

2 ,ν
′(r′i), (4.17)

with Je,〈ij〉 ≡ Je < 0. As shown in Appendix A, both the superexchange and the

exchange interactions map into a Kugel-Khomskii type Hamiltonian [108] with

exact SU(4) symmetry,

H = J
∑
〈ij〉

(1
2 + 2τi · τj

)(1
2 + 2Si · Sj

)
, (4.18)

where τi is the valley pseudospin operator and Si the spin operator on a given
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site. Hamiltonian (4.18) is symmetric under any permutation among the four

different valley-spin flavors (colors).

The coupling J ∼ Js > 0 in the regime where the superexchange coupling

dominates (t2/U � Je). The superexchange interaction is antiferromagnetic,

and can drive the spin-orbital lattice into frustrated phases where no symmetry

is broken. In the opposite regime (Je � t2/U), the coupling J = −Je < 0 changes

sign, and the system tends to order in a ferromagnetic state at zero temperature.

4.4.2 Numerical results.

In Fig. 4.6 we show the ratio of U/tα as a function of the impurity lattice

constant L for three different geometries: triangular, square, and honeycomb. L

is normalized by the Compton wavelength λC , which is inversely proportional

to the mass gap of the substrate. In the regime where U/t & 5, the system is

a strongly correlated insulator and can be effectively described as a lattice of

local valley-orbitals and spins. The different curves in each panel correspond

to different impurity couplings, with g ranging from 0.5 to the critical value

gc ∼ 0.916. At the middle row panels, we display the superexchange coupling Js

(in units of mv2/α) as a function of L. For couplings g < gc, when U/tα ∼ 12

the superexchange coupling ranges from Jsα/mv
2 ≈ 0.01 − 0.02 for g running

between 0.5 and 0.9 in all geometries we tested, as indicated in Fig. 4.6. In the

regime U/tα ∼ 20, the super exchange is in the range Jsα/mv2 ≈ 0.003− 0.007.

For graphene on SiC substrate with ∆ = 2mv2 ∼ 0.26 eV, the Compton

wavelength λC ≈ 46Å. On the surface of SiC (κ ∼ 5.2) the fine structure constant

α ≈ 0.42. The size of the superlattice constant L that corresponds to a fixed value

of Js varies slightly depending on the geometry of the lattice. At g ≈ gc (red dots),
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the impurity valence Z ∼ 2. When U/tα = 12 (U/t ≈ 5), the superexchange

interaction between NN sites is Js/k ∼ 59 K and corresponds to impurity lattice

constants L/λC ≈ 2.25 (M), 1.9 , and 2.1 , resulting in L ∼ 90− 100Å. At g = 0.5

or Z ∼ 1 (orange dots), the wavefunctions are more weakly bounded to the

impurities and hence more extended. The same ratio of U/t ≈ 5 corresponds

to Js/k ∼ 28 K and larger superlattice constants L/λC ∼ 4.6 , 3.9 , and 4.3 ,

respectively, with L ∼ 180Å − 200Å. For a larger gap of ∆ ∼ 0.5 eV [101], the

superexchange nearly doubles (Js ∼ 56− 118 K) while the Compton wavelength

is halved. When U/tα = 20 (U/t ≈ 8.5), Js/k ∼ 10− 20 K.

In the regime of interest, where U/t is large, U is the largest energy scale in the

problem. The superexchange interaction competes with the exchange one Je and,

in principle, both can be of the same order. In the bottom row of the panels in Fig.

4.6 we plot the ratio between Je/Jsα2. For α < 1, the superexchange interaction

clearly dominates the exchange interaction, and is at least three times larger for

U/tα . 20. When considering Coulomb impurities on graphene-SiC substrates,

where α = 0.42, the ratio Je/Js < 0.07 in all geometries considered in the range

U/t . 8.5. The dominant interactions are therefore clearly antiferromagnetic.

Due to the SU(4) symmetry, valley and spin degrees of freedom are strongly

entangled and may give rise to a spin-orbital liquid in the Mott insulator regime.

4.4.3 Experimental setup.

The lattice of Coulomb impurities can be experimentally created with STM tips,

which can drag atoms on a surface with atomic precision [109]. Possible substrates

include graphene epitaxially grown on SiC, which was shown to develop a gap

ranging from ∆ = 0.26 − 0.5 eV [100, 101]. In high quality samples, the Fermi
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level was observed in the middle of the gap [101]. Other crystals, such as MoS2,

MoSe2, and other dichalcogenides [110], have even larger gaps, however they also

exhibit large spin-orbit couplings [111], which will lift the SU(4) symmetry of the

problem, lowering it to SU(2). Strong unitary disorder connects the two valleys

and can also have a similar effect. Disorder effects, however, can be inhibited by

properly annealing the substrate.

Among alkaline metals, potassium adatoms (Z = 1) are known to sponta-

neously form two dimensional crystals on honeycomb substrates such as graphite

[112]. Higher valence cobalt adatoms have already been studied with STM on

graphene and are also possible candidates [113]. The strong coupling regime,

where the bound states are deep and well separated, is experimentally accessible

for impurities with a valence Z ∼ 1. That contrasts with the standard rela-

tivistic scenario, where the strong coupling regime can be achieved only when

the valence is of the order of the inverse of the QED fine structure constant

Z ∼ 1/αQED = 137.

The determination of the impurity lattice constant L that is required to create

a Mott insulator with strong antiferromagnetic correlations can be achieved with

local spectroscopy measurements around a single impurity. Those measurements

can accurately determine the energy of the bound states inside the gap. With

the theoretical wavefunctions, one can extract the effective impurity coupling g

by comparing the measurement of the energy levels with the calculated result,

as shown in Fig. 4.4. The appropriate range for the impurity lattice constant

is indicated in the plots of Fig. 4.6. Integration of the measured local density

of states over the area around the impurity gives the occupation of the ground

energy level inside the gap. When the impurity lattice is in the Mott regime, each

four-fold degenerate impurity level will remain singly occupied (quarter filling).
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4.5 Discussion

Recent numerical evidence [102] suggests that the ground state of the antiferro-

magnetic Hamiltonian (4.18) in the honeycomb lattice is a strongly correlated

state that preserves all the symmetries of the system. This state is a quantum

spin-orbital liquid schematically drawn in the left panel of Fig. 4.7. Every site

has a well defined spin-valley state (color) among the four possible colors. Each

color has the same neighbors up to color permutations. The pattern preserves

both the lattice symmetry and the SU(4) color symmetry.

Color-color correlations appear to decay as a power law, indicating a gap-

less state, or equivalently, an algebraic quantum spin-orbital liquid with no true

long range order. Algebraic spin liquids are generally known to be robust two-

dimensional interacting critical states, relevant to a variety of correlated physical

models [114]. After comparison of the energy of several different states, the quar-

ter filled π-flux state currently appears as the leading candidate [102]. In the

honeycomb lattice, a π-flux in the honeycomb plaquette creates Dirac fermions

at quarter filling, which is the regime of interest for Mott insulators with SU(4)

symmetry. Those Dirac fermions are spinon excitations, which are four-fold de-

generate due to the color symmetry.

Low-energy characteristic probes amenable to 2D systems have been proposed,

such as injecting a spin current into the insulator and monitoring the spin bias

dependence of the current [116, 117]. In the simplest experimental setup with a

single metal-insulator interface, spin accumulation is achieved via the spin Hall

effect. In the four-terminal setup, the spin-liquid insulator is coupled to left and

right metal leads. Spin current detection occurs through the reverse spin Hall

effect in one of the metallic contacts.
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In the spin-orbital (valley) case at hand, the spin degrees of freedom in the

insulator and in the metal are coupled at the interface. The valleys are decoupled

from the orbital degrees of freedom in the metal. Hence the valleys do not

experience flips due to the spin current injection. The result is the propagation

of a pure spin current with additional valley degeneracy. Consequently, in this

case, the spin current will scale in the same way with the bias voltage as in pure

spin models. For the π-flux state, the Dirac cone of the spinons is degenerate

in all quantum numbers (spin and valley). The spin current scales with the

fifth power of the bias voltage, Is ∼ V 5 [116, 117]. This result appears to be a

universal signature of both spin and spin-orbital liquid phases with gapless Dirac

fermion spinons. In general, the power of the spin voltage dependence is sensitive

to the nature and dispersion of the spinon excitations. The exact nature of the

spin-orbital liquid state in the honeycomb lattice requires further investigation.

Nevertheless, the prospects of observing a true quantum spin-orbital liquid in

this geometry seem quite promising.

Triangular lattices are natural candidates for quantum disordered states due

to their strongly frustrated nature. It was proposed at first that their ground

state has plaquette order [150], with plaquettes formed by SU(4) singlets. How-

ever more recent work [103] found strong local resonances between plaquette

configurations. While more complicated orders with large unit cells can not be

ruled out, the ground state appears to be a spin-orbital liquid with no plaquette

order. The presence of next-nearest neighbor superexchange J ′s drives the system

into magnetically long range ordered state via a quantum phase transition at a

critical value J ′s/Js ≈ 0.12 [103]. In the proposed Coulomb impurity lattice, we

find that ratio to be ∼ 10−2. On the basis of the existing knowledge about the

model, we conclude that a spin-orbital liquid state can be realized in the Mott
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a b

Figure 4.7: (a) Possible algebraic quantum spin-orbital liquid for the honeycomb
lattice in the SU(4) Heisenberg model, numerically predicted in Ref. [102]. This
state may correspond to a quarter filled π-flux phase. Each color is surrounded by
the same states, up to color permutations. Both crystalline and SU(4) symmetries
are intact. (b) Possible dimerized state in the square lattice, with alternating
singlets of two colors (after Ref. [104].) This state has long range order and
breaks both lattice and color symmetry.

regime. The nature of this state is not yet known.

There have been suggestions of a variety of different ground states for Hamil-

tonian (4.18) in the square lattice. Possibilities include a gapless spin liquid with

nodal fermions [105], and a plaquette state [150, 118]. A more recent numeri-

cal work has laid more concrete evidence towards a dimerized state depicted in

Fig. 4.7 b, which breaks both lattice and color symmetry [104]. The thick bonds

represent strong bonds, while the thick lines are weaker. This particular state

has two sets of dimers with two colors each, which alternate along the two main

directions of the lattice. Because of the broken symmetry, the elementary exci-

tations are Goldstone modes in the form of gapless magnons. These could also

lead to characteristic power law dependencies in the spin current as a function

of spin bias [116, 117], with the power being generally smaller than for gapless

Dirac spinons (π-flux phase).

Coulomb impurity lattices offer wide possibilities for different frustrated sce-
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narios due to the inherent flexibility in their design. Recent experiments observed

evidence for a spin-liquid ground state in the antiferromagnetic Kagome lattice

[145]. We conjecture that gapped honeycomb substrates with large spin orbit

coupling, such as MoS2 [111], could be experimentally used to design frustrated

artificial Coulomb impurity lattices where the spin degeneracy is explicitly lifted,

leaving a pure quantum orbital (valley) liquid in the ground state. The tendency

towards frustration is not the unique scenario for artificial lattices supported on

gapped honeycomb substrates. For instance, color ferromagnetism is possible in

superlattices of mass defects forming quantum rings [120].

In summary, we have shown that Mott insulators having spin and orbital

degeneracies can be artificially designed in a solid state system. The emergent

SU(4) symmetry of the problem follows from the unique nature of the valley

degrees of freedom in honeycomb substrates and does not require fine tuning.

We have predicted the conditions for Coulomb impurity lattices to be in the

Mott regime and discussed experiments that could detect quantum spin-orbital

liquid states.

Most of the current efforts to simulate quantum spin liquids are concentrated

in cold atom systems, where the Mott physics is present only at ultra low temper-

atures [87, 88]. This proposal may lead to significant advances in the experimental

design and observation of quantum spin-orbital liquids in solid-state settings.
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Chapter 5

Chiral Topological

Superconductivity in CrO2

bilayers

5.1 Overview

A chiral superconductor is defined as a superconductor the phase of whose order

parameter ∆(~p) changes as ~p rotates around some axis in the momentum space.

The simplest case in this class of superconductor has an order parameter which

has the form px + ipy. In this chapter, we address the emergence of spin triplet

p+ ip superconductivity in CrO2 bilayers. CrO2 is a half-metal, which have fully

spin polarized conduction bands. Starting from a lattice model, we show that

at large doping the system has a sequence of topological phase transitions that

can be tuned by gating effects and interaction strength. Among several phases,

we find chiral topological phases having a single Majorana mode at the edge.

We show that different superconducting topological phases could spontaneously
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emerge in the vicinity of the van Hove singularities of the band.

By definition, half metals have only one species of spin, either spin up or spin

down, near Fermi energy. In contrast, in normal metals like aluminum, both spin

up and spin down electrons are present at the Fermi level. This striking spin po-

larization in half metals has inspired lots of research activities in spintronics device

implementations [124][125]. Half-metals such as CrO2 [129, 130] are promising

materials for the prospect of emergent topological superconductivity. By having

a metallic Fermi surface with a single spin, they raise the possibility of chiral

superconductivity in the triplet channel [131], which is believed to occur only in

a handful of systems such as Sr2RuO4 [134], which may have a spinful triplet

state, UPt3 and some heavy fermions superconductors [132, 133]. A distintic-

tive property of chiral topological superconductivity is the presence of Majorana

fermions propagating at the edges [135, 136, 137, 139, 138, 140] and half-flux

quantum vortices [143, 144] that can trap Majorana modes [141, 142]. Majorana

edge states were predicted to exist in different heterostructures with strong spin-

orbit coupling [145, 146, 147, 148, 149, 150] and may have been recently observed

in an anomalous Hall insulator-superconductor structure [151, 152].

5.2 Background knowledge

5.2.1 A brief review on Chiral px + ipy superconductors

In this section, we give a brief review of the spinless chiral p-wave superconductor.

We mainly review the basic formalism of a simple p+ ip model, the appearance of

Majorana states along the sample edge or inside the vortex. The author learned

the subject from the article [135], and the presentation follows the paper closely.
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We begin with the spinless Hamiltonian of a two dimensional superconductor

in the mean field level,

H =
∑
k

[(εk − µ)c†kck + 1
2(∆kc

†
kc
†
−k + h.c.)], (5.1)

where the concrete form of the spectrum of the free particle part εk is not im-

portant, and in the mean field level we consider the order parameter has the

form

∆k = |∆|(kx − iky). (5.2)

The excitations of the system are obtained by the Bogoliubov transformation

ηk = ukck − vkc†−k

η†k = u∗kc
†
k − v∗kc−k,

which yields

H =
∑
k

Ekη
†
kηk + const. (5.3)

To determine the edge state, we can put the system on a strip geometry in real

space. Along the y direction, the system is extended and the momentum ky can be

used to label different states. We set a domain wall at x = 0, where the chemical

potential changes sign when going across the line x = 0. With this setup, the

existence of the edge state can be obtained by solving the BdG equations in real

space:

i
∂u

∂t
= −µu+ i∆∗( ∂

∂x
+ i

∂

∂y
)v,

i
∂v

∂t
= µu+ i∆( ∂

∂x
− i ∂

∂y
)u.
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The equations admit a solution with u(x, t) = v(x, t)∗. This solution means we

have the condition η†(x, t) = η(x, t) or η†k = η−k in momentum space. This con-

dition is the Majorana condition telling us that the quasiparticles are Majorana

states whose antiparticles are themselves. For a given ky and at energy E, the

BdG equations become

Eu = −µu+ i∆( ∂
∂x
− ky)v,

Ev = µv + i∆( ∂
∂x

+ ky)u.

If we assume the chemical potential is constant away from the domain wall, we

have the equation for u (similar for v)

∂2u

∂x2 +
(
E2 − µ2

∆2 − k2
y

)
u = 0. (5.4)

So the the equation has solutions which have exponential decay inside the bulk

of the system. For E = 0, the solution is

u ∝ e−iπ/4exp
[
− 1

∆

∫ x

0
µ(x)dx

]
. (5.5)

If the superconductor order parameter vanishes at some points in real space,

the definition of the phase of the order parameter is problematic at these points.

Inside the core of a vortex, the material is in the normal state. The size of a

typical core is about the coherence length of the superconductor. These “bad”

points are described by the vortices due to the penetration of a magnetic flux.

Furthermore, after going around the vortex the phase field of the order parameter

would pick up a 2π phase, which ensures the single-valued property. Because of
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the vanishing of the superconducting order parameter, the vortex core is similar

to a domain wall as that discussed above, but in this different geometry [135].

The existence of the Majorana mode related to a vortex can be obtained in a

similar way.

Another important property about the vortices in p + ip superconductor is

that it has a half quantum flux in a spin triplet superconductor when a magnetic

field penetrates. A general form of the spin triplet order parameter is

∆ = ∆0(~d · ~σ)(iσy)eiφ (5.6)

where ~d characterizes different components of the order parameter. This order

parameter has several components. When the vector ~d changes to −~d and the

phase factor φ changes by π, the order parameter will go back to itself and in

this case the vortex is a half quantum vortex number. In a spin triplet p-wave

superconductor, the spin up pairing channel can be seen as a superconductor

with half-quantum vortices, while vortices are absent in the spin down channel.

The following Cooper pair wave function captures this

Ψ(r, θ) = ∆(r)[eiθ| ↑↑〉+ | ↓↓〉](px + ipy)

= ∆(r)

 eiθ 0

0 1

 (px + ipy).

Inside the vortex core, a Majorana zero mode may appear. The Bogoliubov

quasiparticles satisfy γ†(E) = γ(−E), so the zero modes are Majorana modes
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which are γ†(0) = γ(0). These Majorana modes obey the interchanging statistics

γi → γi+1 (5.7)

γi+1 → −γi (5.8)

γj → γj for non-neighboring sites (5.9)

A well-known candidate material is Sr2RuO4, which is believed to have p-

wave spin triplet superconducting phase. The article [144] reports the magnetic

moment response effects in Sr2RuO4. The experiments performed in [144] do

not study how the order parameter winds around a vortex, instead they consider

the order parameter around a hole drilled in the center of a sample. When a

supercurrent winds around the hole with a magnetic field passed through, the

order parameter obtains a phase factor Φ =
∮ ~A · d~s + (4π/c)

∮
λ2~js · d~s = nΦ0

[121][144]. n is an integer: n = (1/2π)
∮ ~∇θ ·d~s. The magnetic moments response

of the material is given by µ = ∆µzn + χHz, where χ is the magnetic suscepti-

bility, and ∆µz measures how the magnetic moments change with respect to the

transition n→ n′. Because n must be an integer, µ exhibits a series of steps. If

the transition n→ n+ 1
2 happens, one-half step would appear.

In [122], a method is proposed to detect depinned vortices. Vortices in a

superconductor can begin to move by the influences of non-equilibrium effects

or thermal fluctuations. The sample film has a hole, through which there is a

magnetic flux. Another magnetic field is applied to the rest of the sample. When

a current Jx is driven along the x direction, the vortex current jy along the y

direction can induce a voltage drop Vx = (h/e)jy. If the vortex moves coherently,

the resistivity contributed by the vortex part contains the information about the

braid statistics.
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5.2.2 Classification

Fermionic Hamiltonians can be classified according to how they are transformed

under symmetry operations [162][163]. Two types of symmetry operation called P

type and C type are examined for doing the classification [126][127][128][162][164],

P : H = −PHP−1, PP † = 1, P 2 = 1, (5.10)

C : H = εcCHTC−1, CC† = 1, CT = ηcC, (5.11)

where εc = ±1 and ηc = ±1. The time-reversal symmetry operation and the

particle-hole symmetry operation belong to these two types. A time-reversal

symmetry operation for spinless or integer spin particles should satisfy the case

of C type with(εc, ηc) = (1, 1). For particles with half-integer spin, a time re-

versal symmetry operation satisfies the C type symmetry with (εc, ηc) = (1,−1).

(εc, ηc) = (−1, 1) and (εc, ηc) = (−1,−1) represent particle-hole symmetry opera-

tions for a triplet pairing Hamiltonian and a singlet pairing Hamiltonian respec-

tively. A chiral symmetry (sublattice) is in the P type category. According to

the behaviors of Hamiltonians under time-reversal, particle-hole, and chiral sym-

metry operations, Hamiltonians can be classified into ten classes [162][163][164].

The table of the classification is repeated in Table 5.1 [162].

The Hamiltonian of the px + ipy has the form of the Dirac Hamiltonian, so

the same winding number can be defined for the px + ipy system. The BdG

Hamiltonian is H = ∑Ψ(p)hΨ(p)

h =

 ξ(p) px − ipy

px + ipy −ξ(p)

 (5.12)
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TRS PHS SLS d = 1 d = 2 d = 3
standard A (unitary) 0 0 0 - Z -

(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -
AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z
(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -

CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

Table 5.1: The classification table is from [162]. TRS means time reversal sym-
metry; PHS means particle hole symmetry; SLS means sublattice symmetry. In
the symmetry operation column, 0 means the corresponding symmetry is broken;
1 means the system is invariant under this symmetry and the symmetry is im-
plemented by a unitary transformation; −1 means the symmetry is implemented
by an anti-unitary transformation.

The Hamiltonian has the form h(p) = ∑
a na(p)σa with na = (px, py, ξ(p)). The

winding number can be defined as [123]

N = 1
8π2

∫
d2pεabcna

∂nb
px

∂nc
∂py

. (5.13)

The two dimensional spinless px + ipy superconductor does not have the time-

reversal symmetry, and the BdG Hamiltonian is particle-hole symmetric by con-

struction. According to the classification table, the system is classified by an

integer, which is the winding number we just defined. In the following sections,

we will compute this number in the system of bilayer CrO2.

5.3 CrO2 bilayers and lattice model

In its most common form, CrO2 is a three dimensional bulk material with rutile

structure [153, 154]. It was recently suggested [156] that CrO2/TiO2 heterostruc-
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tures have fully spin polarized conduction bands over a wide energy window

around the Fermi level, and behave effectively as a two dimensional (2D) crystal.

In its simplest 2D form, CrO2 will form a bilayer. It is natural to ask if this ma-

terial could spontaneously develop 2D chiral topological superconducting phases

and host Majorana fermions even in the absence of spin-orbit coupling effects

[145].

In this Chapter, we start from a lattice model for a single CrO2 bilayer to

address the formation of spin triplet pairs with px + ipy symmetry, which may

lead to a fully gapped state. We show that at large doping the system has an

exotic sequence of topological phase transitions as a function of the chemical po-

tential and interaction strength. Different non-trivial topological phases occur

in the vicinity of van-Hove singularities of the band, where the density of states

(DOS) diverges, allowing the possibility for both conventional and purely elec-

tronic mechanisms. We suggest that this system is a promising candidate for the

experimental observation of intrinsic 2D chiral topological superconductivity in

the triplet channel.

In a bilayer system, the Cr atoms form two interpenetrating square sublattices,

A and B, each one sitting on a different layer. From above, the Cr atoms are

arranged in a checkerboard pattern, as shown in Fig. 5.1 a. Each site on sublattice

A (B) has two orbitals with dxy and dxz(dyz) symmetry. Nearest neighbors (NN)

hopping between a dxy orbital in sublattice B with a dxz orbital in sublattice A

has amplitude t1 along the the (1, 1̄) direction and zero along the (1, 1) direction

by symmetry. In the same way, NN hopping between a dxy orbital in sublattice

A and with a dyz orbital in B has amplitude t2 along the (1, 1) direction and

zero along the other diagonal in the xy plane. Intra-orbital NN hopping is finite

between dxy orbitals (t3) but zero between dxz and dyz orbitals (t4), which are
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Figure 5.1: top: Lattice of a CrO2 bilayer, with dxy and dxz (dyz) orbitals in
sublattice A (B). The blue orbitals sit in the top layer (A sites), and red orbitals
in the lower one (B sites). Hopping energies are indicated by tαj for intra-orbital
hopping between next-nearest sites, with α = xy, xz for j = A and α = xy, yz
for j = B, and ti (i = 1, 2, 3, 4) for nearest neighbor hopping. c) Energy spectrum
of the lattice model along the diagonal (1, 1) direction. Energy axes in eV units.
Red dots indicate the location of van Hove singularities, where the DOS (d)
diverges logarithmically.

othogonal to each other. Among next-nearest neighbors (NNN), the dominant

processes are described by intra-orbital hoppings tαj , with α = xy, xz for sites in

sublattice j = A and α = xy, yz for B sites.

The Hamiltonian can be described in a four component basis

Ψ = (ψA,xy, ψA,xz, ψB,xy, ψB,yz). (5.14)
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In momentum space, H0 = ∑
q Ψ†qh(q)Ψq, with [156]

h(q) =

 hA hAB

h†AB hB

 , (5.15)

where

hA =

 εxyA (q) 0

0 εxzA (q)

 , hB =

 εxyB (q) 0

0 εyzB (q)

 . (5.16)

The diagonal terms incorporate NNN hopping processes, where εαj (q) = Eα
j +

4tαj cosqxcosqy, with Eα
j a local potential on obital α in sublattice j and qx,y =

1
2(kx ∓ ky) the momentum along the two diagonal directions of the crystal. The

off-diagonal terms in (5.15) describe the NN hopping terms illustrated in panels

a) and b) in Fig. 5.1,

hAB =

 −2t3
∑
ν=x,y cosqν 2it1sinqy

2it2sinqx −2t4
∑
ν=x,y cosqν

 , (5.17)

where t4 = 0 by mirror symmetry [155].

The energy spectrum is shown in Fig. 5.1c, and has two sets of Dirac points

along the (1, 1) and (1, 1̄) directions, respectively. Enforcing the symmetries of

the 2D lattice, namely roto-inversion S4 symmetry and mirror symmetryM at the

diagonal directions of the unit cell, we adopt t1 = −t2 ≡ t = 0.3eV as the leading

energy scale, and the set of parameters t3 = t/30, txyj = −txzA = −tyzB = t/3 and

Exy
j = −Exz

A = −Eyz
B = t/6, following ab initio results [156]. The four band

model breaks down near the edge of the band, where states may hybridize with

high energy bands. We also assume that the bands are spinless. The resulting

band structure has several van Hove singularities at the saddle points, where
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the density of states (DOS) diverges logarithmically, as depicted in Fig. 5.1d.

In the vicinity of those points (red dots), the system can be unstable towards

superconductivity.

5.4 Pairing Hamiltonian

For spinless fermions, superconductivity is allowed only in the triplet channel.

The wavefunction of the Cooper pairs is anti-symmetric under inversion, and

hence only states with odd angular momentum are allowed. When electrons pair

accross the center of the Brillouin zone, the lowest symmetry is in the p-wave

channel. We consider the possible instabilities of the lattice model in the chiral

p + ip state, which can produce a fully gapped state and hence is expected to

minimize the free energy of the system. A full assessment of the stability of

this state requires taking fluctuations into account [157, 158, 159], which will be

considered elsewhere.

For NN sites, the effective interaction term has the form

Hint = −1
2
∑

r∈NN
gαβn̂i,α(ri)n̂j,β(rj) (5.18)

where n̂i,α = ψ†i,αψi,α is the density operator in orbital α on sublattice i = A, B,

gαα ≡ g1 > 0 is the intra-orbital coupling, and gxy,yz = gxz,xy ≡ g2 > 0 is the

coupling in the inter-orbital channel. The p+ip pairing follows from the Ansatz on

the lattice ∆αβ(δn) = gαβ〈ψA,α(r)ψB,β(r+~δn)〉 ≡ ∆αβeiπ2 n, where ~δ1,3 = ±a
2(x̂+ŷ)

and ~δ2,4 = ±a
2(x̂− ŷ) describe the four NN vectors, with a the lattice constant.

Defining ∆αα ≡ ∆1 and ∆αβ ≡ ∆2 for intra-orbital and inter-orbital pairing

respectively, the order parameter in momentum space ∆i(q) = ∆i(sin qy+i sin qx)
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has px + ipy symmetry, with i = 1, 2. At the mean field level, Hamiltonian (5.15)

and (5.18) results in the Bogoliubov-de Gennes (BdG) Hamiltonian HBdG =∑
k∈BZ Φ†qhBdG(q)Φq with Φq = (Ψq,Ψ†−q), which has the form

hBdG(q) =

 h(q) ∆̂(q)

∆̂†(q) −hT (−q)

 , (5.19)

where

∆̂(q) =

 0 ∆1(q)1 + ∆2(q)σx

∆1(q)1 + ∆2(q)σx 0

 (5.20)

is the pairing matrix, with σx a Pauli matrix in the orbital space.

Minimization of the free energy F(∆1,∆2) = −T tr∑k ln e−hBdG(k)/T+∑i=1,2 |∆i|2/gi

for a fixed chemical potential µ gives the zero temperature (T = 0) phase diagram

shown in Fig. 5.2a as a function of the couplings g1 and g2. The inter-orbital

channel g2 may lead to gapless p + ip superconductivity (∆2 6= 0) shown in

the red region, which is topologically trivial. The dashed line around it in Fig.

2a describes a first order phase transition and sets the boundary of the gapless

p+ ip phase with the others at g2 = g2c(µ). The intra-orbital p+ ip pairing state

(∆1 6= 0) on the other hand is fully gapped and can be topological.

The gapped state has multiple minima that compete. The dashed vertical

line in Fig. 5.2a indicates a first order phase transition between the weak and

strong coupling phases of the gapped state at g1 = g1c(µ). At this coupling,

the superconducting order parameter ∆1 jumps (see Fig. 5.2b) and different

gapped phases with distinct topological numbers coexist. The resulting gap is

very anisotropic around the Fermi surface. In the weak coupling phase ḡ1c(µ) <

g < g1c(µ) shown in the light blue region in Fig 5.2a, ∆1 scales as a power
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Figure 5.2: (a) Phase diagram in the spinless p+ ip state for gapped intra-orbital
(gray and blue regions) and gapless inter-orbital pairing (red) at µ = 4t/3 = 0.4
eV. Couplings g1 and g2 in eV units. Dashed lines: first order phase transitions.
Gray area: gapped strong coupling phase with Chern number N = 1; Blue:
gapped weak coupling one (ḡ1c < g < g1c) with N = −3 (see Fig. 5.3). Solid
black line: second order phase transition to the normal state N (g = ḡ1c). b)
Scaling of the gapped order parameter ∆1 with g1. Red circles: µ = 0.4 eV;
brown: µ = 0. Dotted lines indicate fist order phase transitions. Green arrows:
critical coupling ḡ1c ≈ t/7 = 0.045 eV at µ = 0.4 eV. Inset: log ∆1 vs log x, with
x = (g/ḡc1 − 1), showing power law behavior near ḡ1c. Green dots: µ = 0.3 eV.
Red: µ = 0.4eV.

law with the coupling for fixed µ, ∆1(g1) ∝ (g − ḡ1c)β, with β ≈ 2.7 ± 0.1 for

0.2 . µ . 0.4 eV (see inset). ∆1 vanishes at the critical coupling ḡ1c, where the

system has a second order phase transition to the normal state, indicated by the

green arrows in Fig. 5.2. When µ is in the immediate vicinity of the van Hove

singularities, ḡ1c abruptly drops towards zero. This singular behavior suggests a

crossover to exponential scaling when the Fermi surface is nested at the van Hove

singularities [160].

For large doping, when µ is large, both ḡ1c and g1c shift towards the infrared,

and the discontinuity of the order parameter ∆1 decreases. In general, all the

gapped phases prevail over the gapless one (∆2). In the opposite regime, at small

73



doping, the two critical couplings merge (ḡ1c = g1c) below |µ| . 0.6t and the

gapped phase has a first order phase transition to the normal state at g < g1c(µ)

(see Fig 5.3).

5.5 Topological phase transitions

In two dimension, spinless superconductors with a bulk gap that breaks time

reversal symmetry belong to the C class in the ten-fold classification table [162,

163]. The topological number in this class is defined by the BdG Chern number

N , which corresponds to the number of chiral Majorana modes propagating along

the edge [135, 165].

In Fig. 5.3, we numerically calculate the Chern number

N = (i/2π)
∫
BZ

d2q Ωz(q) (5.21)

in the gapped state as a function of µ and intra-orbital coupling g1, with Ω(q) =

∇q×〈ψn,q|∇q|ψn,q〉 the Berry curvature from the eigenstates of the BdG Hamil-

tonian at the Fermi level, |ψn,q〉. By changing the chemical potential, the system

shows a sequence of topological phase transitions.

In the weak coupling phase, shown in the blue areas in Fig. 5.3,

there are up to five transitions separating different topological phases with

N = −4, −5, −6, −4, −5, and −3, in the range of −2t ≤ µ ≤ 2t = 0.6eV.

The critical values of the chemical potential where the system has a topological

phase transition are close to the energy of the van Hove singularities of the band

(see Fig. 5.1c) and coincide with the energies where the topology of the Fermi

surface changes. At those critical values, the superconducting gap closes and the
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Figure 5.3: Phase diagram showing the different topological phases as a function
of the chemical potential µ and intra-orbital pairing coupling g1, both in eV
units. The integers indicate the corresponding BdG Chern number N . For fixed
g1, the system has a sequence of topological phase transitions near the van-Hove
singularities of the band, where the topology of the Fermi surface changes. The
blue regions correspond to the weak coupling gapped phases of superconductivity,
which are topological. Gray and maroon regions: strong coupling phases. N
region: normal.

Chern number jumps by an integer number. The line g1 = ḡ1c(µ) separates the

blue areas from the normal region through continuous phase transitions. As an-

ticipated, when |µ| . 0.6t = 0.18eV, ḡ1c = g1c, and the weak coupling phases are

suppressed. The singular behavior of ḡ1c(µ) when µ is at the van Hove singularity

is not captured by the numerics shown in Fig. 5.3 due to the smallness of the

gap.

The solid curve separating the blue regions in Fig. 5.3 from the strong coupling

phases sets g1c(µ), which describes a line of first order phase transitions between

different gapped phases. At this line, the order parameter is discontinuous [161],
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Figure 5.4: Majorana edge modes in the different topological phases in the gapped
p + ip state. Energy units in eV. a) BdG Chern number N = −3 state, at
µ = 0.44eV. b) N = −5 at µ = 0.33eV; c) N = −4 at µ = −0.49 eV and d)
N = −6 at µ = −0.38 eV in the weak coupling regime. The lower panels give
the corresponding phases in the strong coupling sector: e) N = 1 at µ = 0.44eV,
f) N = −1 at µ = 0.33eV; g) N = 0 at µ = −0.49 eV, which is topologically trivial
and h) N = −2 at µ = −0.38eV. At the crossing from the weak to strong coupling
phases, when g = g1c(µ), all Chern numbers increase by 4.

indicating the onset of a topological phase transition as a function of g1 for fixed

µ. In all cases, the Chern number changes accross the g1c(µ) line by ∆N = 4.

Deep in the strong coupling regime (gray and maroon regions), for fixed g >

g1c(µ = 0), there are six topological phase transitions separating the phases N =

0, −1, −2, 0, −1, 1, 0 as a function of the chemical potential. At the wide doping

window 1.27t . µ . 2t = 0.6 eV, the elemental chiral topological superconducting

phase with N = ±1, and hence a single Majorana mode, can emerge at strong

coupling.

5.6 Chiral Majorana edge states

To explicitly verify the Chern numbers for the different phases, we calculate the

edge modes of the gapped state in a two dimensional strip geometry with edges
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oriented along the (1, 0) direction.

The plots in Fig. 5.4a−d (top row) show the evolution of the edge modes in

the weak coupling regime (ḡ1c < g < gc(µ)) for different values of µ. The N = −3

state shown in Fig. 5.4a has five edge modes in total, but only three modes that

are topologically protected, as indicated by the three different colors. The three

modes indicated in blue can be adiabatically deformed into a single zero energy

crossing at k = 0, and hence count as a single topologically protected mode.

By decreasing the chemical potential into the contiguous N = −5 state (Fig.

5.4b), two of those modes become topologically protected, raising the number

of Majorana modes to five. By reducing µ further into the N = −4 state, the

topology of the Fermi surface changes drastically, forming gapped pockets of

charge around four Dirac nodes, indicated in Fig. 5.1c. Panel d shows the edge

modes of the N = −6 state, for µ . −t = −0.3 eV. The corresponding edge

modes in the strong coupling regime (g > g1c(µ)) with N = 1, −1, 0, and −2 are

shown in the bottom row of Fig. 5.4 (e−h).

5.7 Pairing Mechanism

Although it is difficult to reliably predict a mechanism of superconductivity,

the fact that topological superconductivity develops near van Hove singularities,

where the DOS is very large, indicates that both phonons and electronic interac-

tions could be suitable candidates for a pairing mechanism at large doping. We

will not discuss the phonon mechanism, since it is conventional.

Electronic mechanisms typically provide attraction when the charge suscep-

tibility at the Fermi surface nesting vector Q satisfies χ(Q) > χ(0) [166]. When

the chemical potential µ is close to a Van Hove singularity, the electronic bands

77



have energy spectrum ε(q) = −αq2
x+βq2

y, (0 < α ≤ β) where q is the momentum

away from the saddle point. The susceptibility in the vicinity of the singularity

is logarithmic divergent, χ(0) = 1
2π2/
√
αβ ln (Λ/δµ) with δµ the deviation away

from the van Hove and Λ ∼ t an ultraviolet cut-off around the saddle point [167].

At the nesting wavevector ε(q + Q) = −αp2
y + βp2

x , the susceptibility is

χ(Q) = c/(α + β) ln (Λ/δµ) , (5.22)

where the constant c = 1
π2 ln(

√
α

β−α +
√

β
β−α) is logarithmically divergent at the

nesting condition α = β [172]. For the particular lattice Hamiltonian parametriza-

tion taken from Ref. [156], the fitting of the bands around the van Hove at

µ = 0.312 eV has α ≈ 1.2 and β ≈ 1.7. That gives the ratio χ(Q)/χ(0) ∼ 1.20,

suggesting that a purely electronic mechanism of superconductivity is possible

[167, 169].

The high doping regime could in principle be reached with gating effects

for CrO2 encapsulated in an insulating substrate [170] that preserves the roto-

inversion symmetry of the lattice.

5.8 Summary

We have examined the p+ ip pairing states for a lattice model of CrO2 bilayers,

and showed that a variety of triplet chiral topological superconducting phases are

allowed at large doping. Due to the large DOS at the saddle points of the band,

different pairing mechanisms are possible, including purely electronic ones. We

showed that CrO2 bilayers are promising materials for the observation of chiral

topological superconductivity in 2D.
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Chapter 6

Conclusion

In this thesis, we mainly studied the properties of generalized Dirac nodal systems

in two dimension. Many questions arise if we want to study the interaction effects

in these systems. Roughly speaking, we would like to know if new phases can

appear when interactions are added.

In the ABC-stacked trilayer graphene system, we studied how the “free” quasi-

particles are renormalized by the Coulomb interaction. With the result of polar-

ization bubble and Fermi self-energy, we further computed several concrete phys-

ical observables which are renormalized by the electron-electron interactions. We

believe that these renormalization effects leave hints which may be potentially

detected in experiments.

“Frustration” due to competition among different interactions may lead to

exotic phases like a quantum spin liquid. In the second part of the thesis the spin-

orbital liquid phases are proposed in Dirac-material-based impurity superlattices.

More concretely, we propose a controllable system in which an artificial Mott

insulator can be achieved. Due to the flexible of the designing of the system,

spin-orbital liquids ground state may be possible in a totally tunable parameter
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region. In addition, different geometries of lattice can be realized in this system,

which provide more opportunities for new physics.

In the third part the instability of the chiral topological superconductivity in

the chromium dioxide bilayers was examined. Inspired by the half-metallic prop-

erty of chromium dioxide, we investigated the spin triplet p+ip superconductiv-

ity in the chromium dioxide bilayers. In the parameter space extended by the

chemical potential and the interaction strength, we identify several areas where a

non-trivial topological Majorana mode can appear. Topological phase transitions

in this system are also studied. The key result for this is that the topological

phase transitions appear near the von Hove singularities. A remaining question

is whether the mean field result is still robust when fluctuation effects are taken

into account. Numerical simulation results will be also useful for providing more

information about this question.

As discussed above the main focus is on two-dimensional or quasi-2D sys-

tems. In three dimension space, we still do not understand the chiral-induced

transport properties of new Weyl materials like TaP, NbAs, and NbP. Type-

II Weyl semimetals which have different Weyl nodes are also proposed, in which

Weyl points are the touching points of electron and hole pockets [174]. Dirac loop

semimetals present harder questions for experimental measurements: if there are

no exotic surface states, one can not infer the properties in the bulk by measuring

surface states.
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Appendix A

A.1 Details of methods used in Chapter 4

A.1.1 Wavefunctions

We assume a real space cut-off for the Coulomb interaction a = λC/18. For

a typical mass gap energy mv2 ≈ 0.13 eV and ~v ≈ 6eVÅ, as in graphene

on SiC, the Compton wavelength λC ∼ 50Å, which corresponds to a ≈ 2.8Å.

This number agrees with the typical size of many Coulomb impurities, including

alkaline metals.

The analytical form of the 2D Coulomb impurity wavefunctions in the weak

coupling regime (g � 1) is well known [91, 92]. In that regime the cutoff does

not play an important role (can be set to zero) and the bound states are shallow.

The wavefunctions in the subcritical strong coupling regime (0.5 . g < gc) can

be solved analytically as well. They correspond to the solution of the Dirac equa-

tion in the potential (4.10) and bare strong similarity to the 3D Dirac equation

(QED3+1) case [106, 107].

Setting ~ = v = 1, for r > a, the strong coupling solution in the subcritical

95



regime has spinor component amplitudes [?]

F
(±)
j (r) =

√
m∓ ε e−ρ/2ρ−γ−1/2 Γ(2sγ)

Γ(sγ − ε̃)G
(±)(r), (A.1)

where γ =
√
j2 − g2, β =

√
m2 − ε2, Γ(x) is a gamma function and

G(±)(r) ≡
∑
s=±1

[F(−γ − ε̃; 1− 2γ; ρ)

∓−γ − ε̃
j + m̃

F(1− sγ − ε̃; 1− 2sγ; ρ)
]

(A.2)

is defined in terms of confluent hypergeometric functions of the first kind. m̃ =

mg/β, ε̃ = εg/β and ρ = 2βr are the normalized mass, energy and distance away

from the impurity. For r ≤ a, the solution is defined in terms of Bessel functions

F−j (r) = Jj−1/2(
√
E+E−r) (A.3)

and

F
(+)
j (r) = − 1

E+

{
∂r[
√
rF

(−)
j (r)]− j

r

√
rF

(−)
j (r)

}
, (A.4)

where E± = ε− V (a)±m.

The energy of the levels follows from matching the wavefunctions at r = a,

Ψr<a(a) = Ψr>a(a), as shown in Fig. 2. For a given angular momentum state j,

there is an infinite number of solutions that can be labeled by the index n ∈ N,

which is a non-negative integer. The lowest energy solution is labeled n = 0,

with higher n > 0 attributed to the other higher excited states. For j = 1
2 and

ε = −m, the critical coupling of the n = 0 level state is gc = 0.916. The spectrum

is in excellent agreement with the numerical results of [90].
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A.1.2 Hubbard U term.

The Coulomb interaction among electrons in the lowest energy state n = 0 and

j = 1
2 is described by

HC = 1
2

∫
d2rd2r′ρ̂(r) e2

κ|r− r′|
ρ̂(r′), (A.5)

where ρ̂(r) = ∑
σ Θ̂†σ(r)Θ̂σ(r) is the density operator defined in terms of the field

operator Θ̂σ(r) = ∑
ν Φ 1

2 ,ν
(r)cν,σ. Hamiltonian (A.5) can be expressed explicitly

in terms of c operators, resulting in the Hubbard U Hamiltonian described in the

main text. The exchange term that also follows from (A.5) is identically zero due

to the orthogonality of the two valley eigenvectors.

A.1.3 Spin-orbital exchange Hamiltonian.

In second order of perturbation theory, the superexchange Hamiltonian is ex-

pressed in terms of c operators as:

Hs = −Js
∑
〈ij〉

∑
{ν},{σ}

c†i,ν,σcj,ν,σc
†
j,ν′,σ′ci,ν′,σ′ , (A.6)

with Js = t2/U . The exchange interaction between NN sites can be calculated

from the Coulomb interaction ∑〈ij〉HC,ij,

HC,ij = 1
2

∫
d2rd2r′ρ̂(ri)

e2

κ|r− r′|
ρ̂(r′j). (A.7)

We extend the definition of the field operators as a sum over lattice sites, Θσ(r) =∑
ν,i Φ 1

2 ,ν
(ri)ci,νσ. The exchange part of the interaction above term can be explic-
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itly written as

He = Je
∑
〈ij〉

∑
{ν}{σ}

c†i,ν,σc
†
j,ν′,σ′ciν′,σ′cj,ν,σ, (A.8)

where Je is given in the text. Hamiltonians (A.6) and (A.8) both map into

pseudospin (valley) and spin operators, τ = (τx, τ y, τ z) and S = (Sx, Sy, Sz),

through the following relations:

c†i,ν,σci,ν,σ →
(1

2 + ντ zi

)(1
2 + σSzi

)
c†i,ν,σci,−ν,σ → τ ν

(1
2 + σSzi

)
c†i,ν,σci,ν,−σ →

(1
2 + ντ zi

)
Sσ

c†i,ν,σci,−ν,−σ → τ νSσ,

where τ ν = (τx + νiτ y) and Sσ = Sx + σiSy. ν = ±, and σ = ± indexes the two

valleys and spins respectively. This mapping results in Hamiltonian (4.18).
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Appendix B

B.1 Wavefunction of the strong coupling sub-

critical regime

The wave function Ψ(r) of a two dimensional massive Dirac fermion moving

around a Coulomb impurity satisfies,

(−iσ ·∇ + V (r) +mσz)Ψ(r) = εΨ(r), (B.1)

where

V (r) =


−g/r, r > a

−g/a, r ≤ a

is the regularized Coulomb potential. Here we set ~ = v = 1.

The two-component wave function is

Ψ(r, φ) = 1√
2π

 F
(−)
j (r)ei(j−1/2)φ

F
(+)
j (r)ei(j+1/2)φ

 , (B.2)
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he Dirac equation with the presence of an external potential becomes

 ε−m− U −(∂r + κ+1
r

)

(∂r − κ
r
) ε+m− U


 F

(−)
j (r)

F
(+)
j (r)

 = 0

or equivalently

dF
(−)
j

dr
− κ

r
F

(−)
j + (ε+m− U)F (+)

j = 0

dF
(+)
j

dr
+ κ+ 1

r
F

(+)
j − (ε−m− U)F (−)

j = 0 (B.3)

where κ = j − 1
2 .

B.1.1 Solution for r > a

The wave functions assumes the form (j indexes will be dropped)

F (−)(ρ) =
√
m+ εe−ρ/2ργ−1/2(Q1 +Q2)

F (+)(ρ) =
√
m− εe−ρ/2ργ−1/2(Q1 −Q2). (B.4)

where ρ = 2λr, β =
√
m2 − ε2, andγ =

√
j2 − g2. After some algebra, we get

ρQ′1 + (γ − εg

β
)Q1 − (j + mg

β
)Q2 = 0 (B.5)

ρQ′2 + (γ + εg

β
− ρ)Q2 − (j − mg

β
)Q1 = 0. (B.6)

These equations can be decoupled

ρQ′′1 + (1 + 2γ − ρ)Q′1 − (γ − εg

β
)Q1 = 0
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ρQ′′2 + (1 + 2γ − ρ)Q′2 − (1 + γ − εg

β
)Q2 = 0,

both of which are Kummer’s differential equation

xy′′ + (c− x)y′ − ay = 0

with the solution y = cF(a; c;x). Here we call the confluent Hypergeometric

function of the first kind 1F1(a; c;x) as F(a; c;x),

1F1(a; c;x) = 1 + a

c
x+ a(a+ 1)

c(c+ 1)
x2

2! + ...,

and notice that 1F1(a; c;x = 0) = 1. The solutions are

Q1 = c1F(γ − εg

β
; 1 + 2γ; ρ) + d1F(−γ − εg

β
; 1− 2γ; ρ) (B.7)

Q2 = c2F(1 + γ − εg

β
; 1 + 2γ; ρ) + d2F(1− γ − εg

β
; 1− 2γ; ρ). (B.8)

B.1.2 Weak coupling regime

When g < j, γ is real. Integrability of the wavefunction at ρ→∞ requires that

d1 = d2 = 0. From Eq.(B.7), one can determine the ratio

c1

c2
= Q1

Q2

∣∣∣∣∣ρ=0 =
j + mg

β

γ − εg
β

.

To simplify the notation we call m̃ = mg/β, ε̃ = εg/β, and

c1 = c, c2 = γ − ε̃
j + m̃

c.
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That leads to the solution

F
(−)
j (ρ) = c

√
m+ εe−ρ/2ργ−1/2[F(γ − ε̃; 1 + 2γ; ρ) + γ − ε̃

j + m̃
F(1 + γ − ε̃; 1 + 2γ; ρ)]

F
(+)
j (ρ) = c

√
m− εe−ρ/2ργ−1/2[F(γ− ε̃; 1 + 2γ; ρ)− γ − ε̃

j + m̃
F(1 + γ− ε̃; 1 + 2γ; ρ)]

This solution is regular at ρ → 0, and the short distance cut-off can be set to

zero.

B.1.3 Strong coupling regime

When the coupling g > 1
2 , γ becomes imaginary. With the requirement of impos-

ing a small distance cut-off, the condition that the wave function behaves well at

ρ = 0 is not necessary, so we should include both ±γ branches into the solutions.

The ratio between the two And in this case we hope the wave functions die off

at ρ → +∞, which can also serve to settle down the ratio between γ−branch

and (−γ)-branch. The formula can be used here is the asymptotic form of the

hypergeometric function,

1F1(a; b;x) ∼ Γ(b)
(
ezza−b

Γ(a) + (−z)−a
Γ(b− a)

)
.

The second part is required if the gamma function Γ(a) is infinite (when a is a

negative integer) or Re(z) is non-positive. In our case, we could exclude these two

conditions, and only keep the second term. Therefore for large |z|, the dominating

part (which is growing) of F(z) is

F(a; b; z) ∼ Γ(b)
Γ(a)e

zza−b,
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and we ask for some condition to cancel this term. For aF (ρ; γ) + bF (ρ;−γ) we

need the following two terms to be finite at ρ→ +∞

aργ−1/2F(γ − ε̃; 1 + 2γ; ρ) + bρ−γ−1/2F(−γ − ε̃; 1− 2γ; ρ) (B.9)

aργ−1/2 γ − ε̃
j + m̃

F(1+γ− ε̃; 1+2γ; ρ)+bρ−γ−1/2−γ − ε̃
j + m̃

F(1−γ− ε̃; 1−2γ; ρ) (B.10)

From B.9,

a

b
= − Γ(γ − ε̃)

Γ(1 + 2γ)
Γ(1− 2γ)
Γ(−γ − ε̃) = − Γ(γ − ε̃)

(2γ)Γ(2γ)
(−2γ)Γ(−2γ)

Γ(−γ − ε̃) = Γ(γ − ε̃)
Γ(2γ)

Γ(−2γ)
Γ(−γ − ε̃) .

We can assign

a = Γ(−2γ)
Γ(−γ − ε̃) , b = Γ(2γ)

Γ(γ − ε̃) (B.11)

The solution for F (±) is

F
(∓)
j (r) = c′

√
m± εe−ρ/2ρ−1/2

× [ Γ(−2γ)
Γ(−γ − ε̃)ρ

γF(γ − ε̃; 1 + 2γ; ρ) + Γ(2γ)
Γ(γ − ε̃)ρ

−γF(−γ − ε̃; 1− 2γ; ρ)

± Γ(−2γ)
Γ(−γ − ε̃)

γ − ε̃
j + m̃

ργF(1 + γ − ε̃; 1 + 2γ; ρ)

± Γ(2γ)
Γ(γ − ε̃)

−γ − ε̃
j + m̃

ρ−γF(1− γ − ε̃; 1− 2γ; ρ)] (B.12)
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B.1.4 Solution for r ≤ a

In the r < a region, we define

F
(−)
j (r) = 1√

r
A(r)

F
(+)
j (r) = 1√

r
B(r)

the Dirac equation becomes

A′(r)− j

r
A(r) + E+B(r) = 0

B′(r) + j

r
B(r)− E−A(r) = 0

where E± = ε+ g
a
±m. These equations can be decoupled into

A′′(r) + (E+E− + j − j2

r2 )A(r) = 0

B′′(r) + (E+E− −
j + j2

r2 )B(r) = 0

The solutions are

A(r) = c1
√
rJj−1/2(

√
E+E−r)

B(r) = c2
√
rJj+1/2(

√
E+E−r)

and
√
E+E− =

√
ε2 + (g/a)2 + (2εg/a)−m2.

From

B(r) = −
A′ − j

r
A

E+
,
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we have

B(r) = − c1

E+
[

1
2 − j√
r
Jj−1/2(

√
E+E−r) +

√
rJ ′j−1/2(

√
E+E−r)]

B.1.5 Energy

The energy ε can be determined by matching the inside solution and the outside

one, formally through

Out(j, ε, r, g)
∣∣∣
r=a

= Ins(j, ε, r, g)
∣∣∣
r=a

For given j, g, and at r = a, we can determine the energy ε


√
rF (r)
√
rG(r)


∣∣∣∣∣
r=a

=

 A(r)

B(r)


∣∣∣∣∣
r=a
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Appendix C

C.1 Topological Phase Transitions

C.1.1 Order of the transitions

In order to explicitly verify the existence of a quantum critical second order phase

transition for |µ| & 0.18 eV, we plot in Fig C.1 the free energy for µ = 0.1eV

and µ = 0.3 eV. In the former, the topologically trivial superconducting state

N = 0 coexists with the normal state at the critical coupling g1c ≈ 0.0919 eV,

where the order parameter is discontinuous. For µ = 0.3eV, the transition to the

normal state becomes continuous at g = ḡ1c ≈ 0.0561eV, where the system has

a topological phase transition separating the normal state and the topological

N = −3 state. At g = g1c ≈ 0.078 eV, the order parameter jumps, signaling the

onset of a discontinuous topological phase transition between the N = −3 and

N = 1 states.

C.1.2 Line of quantum critical points

Although the intra-orbital state is fully gapped, the Fermi surface at high doping

is very anisotropic and produces an anisotropic superconducting gap in the energy
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Figure C.1: Top left: scaling of the intra-orbital coupling ∆1 vs g1 for µ = 0.1 eV
: first order phase transition from the normal to the superconductor state with
N = 0. Bottom left: Free energy for µ = 0.1 eV, showing the coexistence of the
normal and superconducting states. Top right: ∆1 vs g1 for µ = 0.3 eV. The
system has a second order phase transition at ḡ1c = 0.0.0561 to a topological
phase with N = −3 and a first order phase transition at g1c = 0.078 eV, where
∆1 jumps. Bottom right: Free energy for µ = 0.3 eV, showing coexistence of the
N = −3 and N = 1 states.
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Figure C.2: Left: Fermi surface for µ = 0.33eV. Center: Path along the Fermi surface,
where the energy gap in the superconducting state (intra-orbital gapped state) is cal-
culated numerically in the weak coupling regime. Right: Anisotropic gap as a function
of the angle φ from 0 to 0.5 rad.

spectrum around the Fermi surface. In Fig. C.2 we plot the Fermi surface for

µ = 0.33eV and the corresponding energy gap along the Fermi surface, which has

a significant variation. This anisotropic state requires a finite attractive coupling

g1 to stabilize the formation of Cooper pairs, leading to a quantum critical phase

transition even when the normal system has a large DOS at the Fermi level.

We extract the quantum critical scaling of the order parameter ∆1 with g1 in

the vicinity of the critical point of the second order phase transition for µ = 0.3,

0.312 (which coincides with the energy of a van Hove singularity) and 0.4 eV.

The order parameter scaling has the form

∆1(g1) = α

(
g1

ḡ1c
− 1

)β
,

with β ≈ 2.7 ± 0.1, α = 0.1 and critical couplings ḡ1c = 0.046 and 0.041 eV for

µ = 0.3 and 0.4 eV respectively. However, at µ = 0.312 eV, ḡ1c suddenly drops

to ḡ1c ≈ 0.017 eV and α ≈ 2 × 10−4. This abrupt drop in the numerical value

of ḡ1c suggests a crossover to exponential behavior due to the presence of a Van

Hove singularity at the Fermi surface. In that scenario, the anisotropy of the
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Figure C.3: Left: Scaling of the gapped state order parameter ∆1 vs coupling g1 for
µ = 0.3, 0.312 and 0.4 eV. At µ = 0.312 eV the Fermi surface is nested at the van Hove
singularities. Away from the van Hove, the scaling can be fit with a power law behavior
near a quantum critical point (g = ḡ1c). In the immediate vicinity of the van Hove, ḡ1c
drops abruptly, suggesting that the scaling crosses over to exponential behavior (right
panel).

gap around the Fermi surface as a whole becomes unimportant and the system

likely becomes unstable towards superconductivity at any arbitrary attractive

coupling, as in conventional Fermi liquids. At that filling, ∆1 can fit well with

an exponential curve ∆1 = α/ [exp(βg1)− 1] , with α = 0.22 and β = 4.36.

Fig. C.4 shows the Fermi surface at µ = 0.312 eV, where it crosses a saddle

point indicated by the vectors q1 and q2. On the right we fit the energy spectrum

around that one saddle point. In general, the energy and position of van Hove

singularities, as well as their dispersion, are not universal and are sensitive to

the parametrization of the tight binding model. We assume the parametrization

from ref. [171], which is based on ab initio results.
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Figure C.4: Left: Fermi surface at µ = 0.312 eV. The crossing indicates the position of
the Van Hove singularity in the Brillouin zone for the tight-binding parameterization
in the text. Right: Fitting of the bands around the van Hove singularity.

C.1.3 Tc estimate

For a purely electronic mechanism, a crude estimate of the critical temperature

can be calculated when the chemical potential is very close to the van Hove

singularities of the band. For perfect nesting (α = β),

χef ≈ χ(Q),

where

χ(Q) ∼ ln2
(

Λ
δµ

)

has a double logarithmic divergence [172]. In perturbation theory, the dimen-

sionless effective interaction is

λef = V0 + V 2
0 χef ,
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where

V0 = U

8πΛ � 1

is the normalized interaction between nearest neighbor sites [173]. Since the DOS

ρ(0) = χ(0) ∼ ln(Λ/δµ), the gap equation reads

1 ∼ λef

∫
dEρ(0) tanh(E/2Tc)

E
∼ V 2

0 χ(Q)χ(0) ln(µ/Tc),

and hence

Tc ∼ δµ e−1/V 2
0 χ(Q)χ(0) ≈ δµ exp

[
− 1
V 2

0 ln3(Λ/δµ)

]
.

This expression gives an upper bound for the critical temperature, since the

nesting condition is not perfectly satisfied. For Λ ∼ t = 0.3 eV, U ∼ 1 eV, and

δµ/t = 0.01, then Tc ∼ 2 meV≈ 20K.
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