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Abstract 

 
Purpose: The purpose of the study was to evaluate the use of a sprinting protocol to 

consistently generate exercise-induced muscle damage using an active female 

population, and to observe how jumping metrics and sprint performance change due to 

muscle damage. The study also looked to examine the relationship between sprint 

velocity and player load, and how they relate to repeated sprint ability and lactate 

clearance. By using a field-based EIMD protocol in an active female population, the 

relationship between sprinting, jumping, and physiological markers of fatigue were 

examined. Methods: 10 trained females who routinely participate in sprint-based 

activity performed a repeated sprint protocol consisting of five sets of 8 maximal 

sprints, 20-meters in length, with a 5-meter deceleration zone. Immediately following 

the completion of each set of sprints, the participants performed a series of three 

countermovement jumps on a dual force plate, followed by a 2-minute period of rest 

prior to the start of the next set of sprints. Blood lactate and RPE were assessed 

immediately following the completion of the fifth set, with a repeated lactate test 

performed 3-minutes post and RPE 30-minutes post. Following 24-48 hours of rest, 

participants returned and provided soreness ratings, performed a set of three 20-meter 

maximal sprints with a 5-meter deceleration zone, and 3 countermovement jumps on a 

force plate to determine if the performance declines during the repeated sprint protocol 

are due to fatigue, muscle damage, or a combination of the two. Results: The repeated 

sprint protocol resulted in decreased sprint times and CMJ force metrics that persisted 

for up to 24-48 hours. The protocol also induced a high physiological load, as evidenced 

by elevated lactate values post-exercise and significant soreness in follow-up visits. 
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Conclusion: Through this investigation, it was concluded that the protocol was a valid 

and reliable means of eliciting EIMD, with decrements in both sprinting and jumping 

performance persisting for up to 24-48 hours following the completion of the protocol.
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Chapter 1: Introduction 

Performance in sports requires the ability to quickly make decisions and sustain 

high levels of intensity throughout the duration of the competition (8). Repeated sprint 

sports frequently expose players to situations that demand maximal neuromuscular 

effort and require athletes to perform bouts of intermittent high-intensity muscle 

contraction that can place a large emphasis on eccentric contractions (9, 13). Eccentric 

(lengthening) contractions place a large amount of stress on muscles, with repeated 

contractions leading to exercise-induced muscle damage (EIMD), which is 

characterized by soreness, swelling, and a decreased ability to generate force (7). 

Research has indicated that inability to generate explosive force leads to diminished 

functional performance ability (14) and can be indicative of increased risk of future 

injury (12).  

 EIMD in athletes is observed when performing novel tasks or exercise that 

heavily relies on an eccentric component (14). To evaluate the timeline of recovery 

from EIMD, several different protocols involving jumping or cycle-ergometers have 

been established for inducing EIMD (5). A field-based protocol that may be more 

applicable for intermittent sprint sports was validated by Woolley et al. (14) which used 

repeated sprinting as a test to elicit EIMD and was shown to produce similar results 

when compared to a plyometric muscle damage protocol. Performance of multiple trials 

of a sprinting protocol was able to evaluate the damage response in an active female 

population (7) and accounted for adaptations that limit EIMD (16). The use of multiple 

trials can account for the repeated bout effect (RBE), which serves to attenuate force 
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loss, soreness, and swelling associated with EIMD, allowing the athletes to maintain 

maximal performance during high intensity exercise or competition (10). 

 A countermovement jump (CMJ) test performed on a force plate has been 

shown to be an effective assessment of neuromuscular function due to the in-depth 

analysis of many kinetic and kinematic variables within the jumping motion related to 

both force production and power output. CMJ testing provides long-term decreases in 

performance that are highly repeatable (CV <5%) and is ecologically valid as it is a 

familiar motion for team-sport athletes (23). By examining changes in the timing and 

force production of these variables, EIMD and neuromuscular fatigue have been 

accurately measured in female athletes when compared to traditional isometric MVC 

testing. Traditional jump testing tends to focus on the concentric force output during the 

jump, but including eccentric components can better relate CMJ testing to repeated 

sprinting as an assessment of exercise performance monitoring (23). A single 

countermovement jump is highly practical to repeated sprint activity due to the 

emphasis on the stretch-shortening cycle and has low physiological strain on the body. 

This allows multiple jumps to be used within a testing session and averaged together for 

higher reliability without significantly impacting the protocol (27). Additionally, long-

term monitoring of training load coupled with CMJ testing can be a useful tool for 

observing mechanical adaptations to training and competition related to force 

production and performance.  These changes in jumping related to muscle damage are 

of great value for evaluating events which can increase an athlete’s injury risk (28). 

 Inertial measurement units (IMU) are trunk-mounted devices that are used to 

track an athlete’s movements during sporting events. Utilizing Global Navigation 
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Satellite Systems (GNSS), accelerometers, gyroscopes, and magnetometers, the units 

can identify and quantify sport-related movements (30). IMU’s are used to quantify an 

athlete’s physical exertion beyond simply measuring speed and distance.  They also 

offer the ability to group movement patterns together based on intensity to assess the 

total physical load experienced during a training session or competition (31). Repeated 

use of IMU’s creates a movement profile for an individual, and over time deviations 

from expected movement patterns can be observed, indicating fatigue, muscle damage, 

or an increased risk for future injury associated with high intensity exercise. 

 During high intensity exercise the demand for energy exceeds the body’s ability 

to produce it via aerobic pathways, leading to an increased reliance on glycolysis for 

energy. The insufficient amount of oxygen available results in an increased conversion 

of pyruvate from glycolysis to lactate in an attempt to meet ATP demands. When lactate 

production exceeds the body’s ability to consume it, lactate threshold (LT) is reached, 

leading to decreased blood pH and fatigue (25). Previous research has shown that 

endurance training increases lactate threshold due to an increase in oxidative enzymes, 

which increases lactate clearance (26). However, the relationship between lactate 

clearance to sprint velocity and player load during repeated sprint exercise is currently 

uncharacterized. Coupling blood lactate measurements with player load from an IMU 

could relate repeated sprint ability in female athletes to lactate clearance and maximum 

velocity during sprints. Additionally, the use of blood lactate provides an internal 

quantification of training load, which can be examined across repeated exercise bouts to 

compare exercise intensity. 
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 Previous research has shown that a jumping protocol can elicit EIMD, and a 

field-based sprinting protocol has been validated against jumping protocols to induce 

muscle damage in sport-related tasks (14). Additionally, countermovement jumps have 

been shown to be suitable for evaluating neuromuscular fatigue, as the force plate is 

able to provide a detailed analysis of kinetic and kinematic variables throughout the 

entirety of the jump (23). By performing a repeated sprint protocol coupled with CMJ 

and lactate analysis utilizing an active female population, there is potential to validate 

the field-based protocol and characterize muscle damage in female athletes in sports 

such as soccer, lacrosse, field hockey, and possibly basketball. The previous work that 

has shown a repeated sprint protocol can elicit EIMD (7, 14) and that CMJ testing can 

identify changes in neuromuscular function (23, 27, 28) does not directly relate the two 

tasks within the same testing protocol. Therefore, including CMJ testing intermittently 

throughout a repeated sprint protocol may provide insight into the fatigue-related 

changes to acceleration/deceleration capabilities and the rate of decay of proper 

technique.  Characterizing these changes are critical to proper prescription of training 

loads and determination of correct intermittent recovery periods during match play. 

Purpose of the Study 

 The purpose of the study is to evaluate the use of a sprinting protocol to 

consistently generate exercise-induced muscle damage using an active female 

population, and to observe how jumping metrics and sprint performance change due to 

muscle damage. The study also looks to examine the relationship between sprint 

velocity and player load, and how they relate to repeated sprint ability and lactate 

clearance. By using a field-based EIMD protocol in an active female population, the 
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relationship between sprinting, jumping, and physiological markers of fatigue can be 

examined. 

 

Research Questions 

1. How are changes in countermovement jump metrics and repeated sprint 

performance related in female athletes? 

a. Will the fatigue characteristics of repeated sprinting reflect the changes 

in countermovement jump performance? 

2. What is the relationship between changes in sprint velocity and player load in 

female athletes? 

3. What is the relationship between repeated sprint ability and lactate clearance in 

female athletes? 

Sub-Question 

a. How do subjective damage ratings change following a repeated sprinting 

protocol? 

Hypotheses 

1. There will be a decline in sprint performance during the repeated sprint protocol, 

determined by time increases and velocity decreases in the final sprints of the 

protocol. 

a. There will be a significant relationship between fatigue characteristics of 

repeated sprinting and countermovement jump performance 

2. There will be a significant relationship between sprinting metrics and 

countermovement jump metrics during the repeated sprint protocol. 
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3. Sprint velocity and player load will have a significant relationship with repeated 

sprint ability and lactate clearance. 

Significance of the Study 

 Literature shows that plyometric protocols have been able to consistently 

generate exercise-induced muscle damage, which causes decline in sports performance 

(2,5,7,12,14). Additionally, studies have shown that a sprint protocol with a short 

deceleration phase compared to the acceleration phase is a valid measure to induce 

muscle damage due to a heavy reliance on eccentric contractions (7,14).  However, the 

current research is lacking when focusing specifically on a female population. 

Performing a sprint protocol on well-trained female athletes would have the benefit of 

validating the protocol across genders, as well as comparing the recovery timeline after 

exercise-induced muscle damage between men and women. Most current research in 

EIMD focuses on male populations, and the lack of female research could prove 

beneficial in evaluating potential differences in muscle damage between genders and 

determine training strategies that prevent decline in match performance. Additionally, 

the study could be continued further to examine RBE on heavy eccentric loading to 

establish a training protocol for injury reduction. 

Delimitations 

 Delimitations for this study include: 

1. Participants were active females with a history of repeated sprint sports (18-35 

years). 

2. Participants were recruited from the University of Oklahoma. 
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3. Participants could not participate in the study if they answered “yes” to any 

questions on the PAR-Q, or indicated any reason that they are unable to perform 

high-intensity physical activity. 

4. Participants could not have experienced lower body injury within the previous 

six months.  

5. No exercise took place within 24 hours of testing to prevent residual fatigue 

present during testing. 

6. Caffeine consumption was maintained consistently within the last 24 hours prior 

to each trial. 

Limitations 

 Limitations for this study include: 

1. Previous sporting events could have exposed subjects to eccentric loading, 

diminishing the effects of the EIMD protocol. 

2. No muscle fiber typing was used during the current investigation.  (differences 

in fiber type composition may impact the extent of muscle soreness due to the 

preferential recruitment of Type II muscle fibers during eccentric contractions). 

3. A menstrual cycle history was included to ensure that a normal menstrual cycle 

is occurring, but the phase of menstrual cycle where testing occurs was not 

standardized. 

Assumptions 

1. Subjects were honest when reporting any lower body injuries in the previous six 

months. 
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2. All performance tests, as well as the sprint protocol, were performed with 

maximal effort. 

3. Researchers were experienced with the necessary equipment and collected data 

accurately. 

4. All equipment used in the collection of data was valid and reliable for the 

current study. 

Operational Definitions 

1. Delayed Onset Muscle Soreness (DOMS) – Muscle soreness or pain that 

occurs 24-48 hours after exercise that is either unfamiliar or higher intensity 

than previously performed (1). 

2. Exercise-Induced Muscle Damage (EIMD) – Damage at the cellular level of 

skeletal muscle due to eccentric exercise; characterized by inflammation, 

soreness, and decreased force production (2). 

3. Rate of Force Development (RFD) – An individual’s neuromuscular ability to 

rapidly generate force at the onset of muscular contraction (10). 

4. Repeated Bout Effect (RBE) – A protective effect experienced following 

unaccustomed exercise in order to prevent future muscle damage (16). 

5. Visual Analogue Scale (VAS) – A scale from 0-10 that allows subjects to 

estimate soreness following a muscle damage protocol, with 0 meaning “no 

soreness at all” and 10 meaning “most intense pain imaginable” (12). 

6. Inertial Measurement Units (IMU) – A trunk-mounted device that records a 

person’s location via GNSS, as well as the body’s specific force, orientation, 
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and torque about the center of gravity using an accelerometer, gyroscope, and 

magnetometer. 

7. Neuromuscular Fatigue – The inability to maintain a required force output, due 

to either central or peripheral limitations (24). 

8. Player Load – A measure of an athlete’s work rate through a combination of the 

accelerations produced by three planes of body movement (32). 

√((fwdt=i=1 – fwdt=i)2 + (sidet=i=1 – sidet=i)2 + (upt=i=1 – upt=i)2) 
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Chapter II: Review of Literature 

Intermittent high-intensity muscle contraction is a requirement to meet the demands of 

sport-specific performance. Meeting this demand requires maximal neuromuscular 

effort (9), which can result in an athlete sustaining damage to their working muscles. 

Exercise-induced muscle damage (EIMD) is a well-studied field, as it is a major 

contributor to athlete soreness and decline in performance (1, 2).  It has been shown that 

trained subjects have a reduced susceptibility to the effects of EIMD, and that 

chronically trained individuals experience a smaller decline in performance (2, 15). 

Repeated trials of eliciting EIMD have shown that the repeated bout effect (RBE) 

lessens decline in rate of force development, which is attributed to increased resistance 

to muscle damage due to eccentric loading (3, 10, 16). 

 Numerous studies have been performed to examine the effects of EIMD on 

athletic performance (2, 5, 7, 12, 14), and a plyometric protocol has been established as 

a valid way to induce EIMD (2, 5). Research has also demonstrated that a protocol 

involving repeated sprinting, which has strong ecological validity for use with field-

based, intermittent sports can elicit EIMD when the deceleration interval is shortened 

compared to the acceleration interval.  This places a larger bias toward eccentric loading 

and has been used in place of a plyometric protocol when studying EIMD (5, 12, 14). 

However, while the criterion validity has been established for a repeated sprint damage 

protocol, research in the area primarily focuses on male athletes, with very little 

research focusing on the damage response of female athletes (7). Additionally, there is 

no research examining how the RBE mechanism differs between genders, and if 

training status can affect response to multiple bouts of EIMD in elite female athletes. It 
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is possible that while validating the use of a sprint protocol for EIMD in active female 

athletes, additional insight to gender differences could be observed based on recovery 

time from muscle damage and declines in performance over time. 

Exercise-Induced Muscle Damage and Delayed Onset Muscle Damage 

 Literature has indicated that one of the symptoms indicative of EIMD is delayed 

onset muscle soreness (DOMS) following exercise that is unfamiliar or at a higher 

intensity than an athlete is accustomed to, occurring 24-48 hours after the completion of 

exercise (1, 7, 12, 14). DOMS is categorized as a type I muscle strain, which is 

accompanied by stiffness and a reduced range of motion due to pain during movement. 

The believed mechanism of EIMD leading to DOMS is that large eccentric loading 

during an EIMD protocol causes disruptions during the stretch-shortening cycle of a 

muscle contraction, leading to breakage in the actin-myosin connections and damage of 

muscular protein structures (1, 2). This disconnecting of cross-bridges disturbs the cell 

membrane, increasing intracellular calcium levels and activating calcium-sensitive 

degradative pathways which further the damage to the muscle. An inflammatory 

response to muscle damage transfers fluid into the damaged area, which serves to 

initiate the repair and regeneration process (2, 33). This swelling and pressure within 

the muscle may account for the reduced range of motion and hyperalgesia (2). 

 A study by Thompson et al.  examined the effects of a high-intensity shuttle 

running regimen on muscle soreness, where participants completed a ninety-minute 

protocol that involved movement at a variety of speeds designed to mimic the actions of 

competitive multiple-sprint sports (12). The subjects were assessed based on muscle 

soreness and blood markers for EIMD.  The results indicated significant increases in 



12 

both the level of muscle soreness and blood plasma markers for muscle damage-related 

metabolites. These findings agree with other work (1, 2, 3) in establishing that DOMS 

can serve as an indicator of EIMD following high intensity exercise. 

Plyometric and Repeated Sprint EIMD Protocols 

 There have been multiple studies indicating that a plyometric damage protocol is 

a valid method of eliciting EIMD (2 ,5, 7, 14). This protocol involves performing ten 

sets of ten countermovement or drop jumps, with emphasis on returning to ninety-

degrees of knee flexion upon landing to exaggerate the eccentric component of the jump 

movement. The exaggerated eccentric motion elicited EIMD in each study performed, 

supporting is use as a reliable protocol for inducing muscle damage (5, 14). However, a 

new protocol for muscle damage involving repeated sprints would have greater 

ecological validity, as the sprints are more specific to the most common movements of 

repeated sprint sports. 

 Several experiments established that a sprinting protocol is sufficient in creating 

EIMD due to the eccentric loading placed on the legs, specifically the hamstrings, 

during repeated sprinting (1, 12, 13). To establish criterion validity for a sprinting 

protocol, Woolley et al. designed a study in which subjects performed both a plyometric 

protocol and a sprint protocol that included a short deceleration zone to emphasize 

eccentric loading, with a four-month washout period between testing sessions to prevent 

RBE interference. The results of the study showed that both protocols successfully 

elicited EIMD, with the sprint protocol generating EIMD to a greater extent than the 

traditional plyometric protocol (14). These findings help establish the agreement 
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between studies and potential use of a sprint protocol for EIMD (1, 12, 13), as well as 

validating the protocol to be used in place of plyometrics (14). 

Repeated Bout Effect 

 The repeated bout effect (RBE) is a protective mechanism used by the body 

after exposure to eccentrically based muscle damage (16). This mechanism occurs 

through changes in neural input, as centrally-mediated force-inhibiting neural 

mechanisms reduce the response to voluntary contraction (11, 14). The result is a 

decreased activation during the stretch-shortening of muscle contraction in order to 

prevent further damage to muscles when additional bouts of eccentric exercise are 

performed (14). To examine the time course of the repeated bout effect, Clarkson et al. 

(3) examined muscle damage and adaptation following an eccentric overload in the 

elbow flexors. The findings of the experiment indicated that rapid adaptation is 

observed between repeated bouts of exercise, as serum creatine kinase activity, an 

indicator of muscle damage, was significantly reduced in repeated trials. However, 

these results seem to differ from a study that measured EIMD in resistance-trained men, 

which used EMG to determine that neural adaptations had not occurred in chronically 

trained individuals (15). While overall ability to recruit muscle fibers decreased in all 

individuals in the study, the researchers determined that EMG activity remained 

unchanged following repeated studies. The author also stated limitations of measuring 

EMG activity following eccentric exercise rather than during the protocol, so further 

research is warranted to determine if RBE effects agree with previous work (2, 11, 14, 

15, 16). 
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Gender Differences 

 Men and women have been shown to respond differently to exercise, observed 

through both external and cellular examination. Fulco et al. (38) indicated that women 

fatigue at a slower rate than men, and have faster recovery times between muscle 

contractions. At a cellular level, Kellawan et al. (39) demonstrated that exercise 

vasodilation is significantly greater in females following submaximal exercise. For 

measuring responses to high intensity exercise, there are many indirect measures of 

muscle damage with known time courses that are commonly used in place of invasive 

muscle biopsies, including loss of force production, soreness, inflammation, and 

increases in serum muscle protein markers (35). However, conflicting results of studies 

attempting to differentiate muscle damage between genders indicate that the true EIMD 

response between genders is still unknown. 

 A study by Stupka et al. (36) examined the muscle damage response between 

genders following eccentric exercise. The study consisted of measuring blood protein 

markers, direct cellular structure, and an inflammatory response. They found that 

cellular damage was similar between genders, and that creatine kinase activity was not 

significantly correlated to muscle damage. However, the females in the study had an 

attenuated inflammatory response despite the same amount of muscle damage. These 

findings were suggested to be attributed to the antioxidant effects of 17β-estradiol, but it 

was noted that further investigation was needed. Similarly, Sewright et al. determined 

that there were no differences between sexes in soreness or myoglobin levels following 

eccentric exercise, but it was noted that men experienced greater CK levels than 
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women, and women experienced greater strength loss immediately following exercise 

(35). 

 While much research has been done to examine EIMD in sports-related athletics 

(2, 3, 5, 8, 10, 12, 13, 14), these studies focus their attention on a male population. A 

lone study verifies the use of a repeated sprint protocol to elicit EIMD in elite female 

athletes (7), and currently only one study has been published comparing RBE responses 

between genders (20). Hunter (6) determined that women are less fatigable compared to 

their male counterparts, and that the difference is task specific due to how women react 

to certain stressors and intensities compared to males. It is further stated that a possible 

explanation is a lower pain threshold in women, which alters voluntary activation and 

prevents fatigue and muscle damage (6). A separate study by Hunter (37) indicated that 

sex differences in fatigability during dynamic exercise are task and velocity dependent, 

and that the differences are due to contractile mechanisms rather than sex differences in 

voluntary activation. Additional mechanic studies are needed to determine differences 

between genders in EIMD and RBE, and the lack of study in the area of elite female 

athletes provides a large potential for new research. 

Countermovement Jump 

 A countermovement jump (CMJ) is a form of vertical jumping useful for 

assessing neuromuscular function. CMJ tests utilizing a force plate also provide the 

ability to obtain data related to both force and power output, which is valuable for 

monitoring changes in performance over time. CMJ testing is more standardized than 

performance of a simple vertical jump or drop jump and therefore can provide more 

consistent data for analysis (29). When performed properly, CMJ testing on a force 
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plate provides useful data that mimics a common action during repeated sprint sports, 

and places low physiological strain on the participant, allowing it to be repeated without 

significantly contributing to a fatiguing protocol (27).  

 A study performed by Markström and Olsson (40) looked to examine the 

relationship between multiple forms of jumping performance and sprint performance in 

track and field athletes. Through multiple regression analyses, the results indicated that 

CMJ peak force regulated for body weight was a significant predictor of sprint 

performance in track athletes. Furthermore, it was determined that CMJ was the most 

accurate form for jumping performance, as the drop jumps and squat jumps did not 

yield significant results. These findings agree with Gathercole et al. (23), who 

determined that CMJ testing is the most suitable jumping test for monitoring 

neuromuscular function due to high repeatability and sensitivity to changes in 

performance, as well as Cormack et al. (29) who determined that a single CMJ was the 

most reliable method of observing responses to acute and chronic exercise. By 

performing a single countermovement jump in between sets of repeated sprints during 

an EIMD protocol, the sensitivity of metrics such as peak force and rate of force 

development allow a decline curve to be formed, providing valuable insight for future 

prediction of injury risk.  

Inertial Measurement Units 

 A trunk-mounted Inertial Measurement Unit (IMU) is a device used to quantify 

movements of repeated sprint sports to determine a player’s total workload. In addition 

to GNSS data such as speed and distance, IMUs use accelerometers, magnetometers, 

and gyroscopes to capture high intensity movements including jumping, collisions, 
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tackling, accelerations, and decelerations, and other physically demanding actions that 

would otherwise be considered low intensity (31). The sum of all movements detected 

by the IMU indicate an athlete’s player load, which can be used to monitor workload 

throughout acute or chronic bouts of exercise (32). Long-term monitoring of a single 

athlete using an IMU can create a movement profile where the device can recognize 

specific motions and movement patterns, and any deviations from normal patterns may 

be indicative of future injury during exercise. Given that a female athlete is 6-8 times 

more likely to experience a non-contact ACL injury than a male performing the same 

exercise (41), monitoring female athletes provides valuable insight for preventing future 

injury due to high intensity exercise.  

 A multifaceted study by Boyd et al. (42) sought to determine the reliability of an 

IMU for use in repeated sprint sports. In a laboratory setting, eight IMUs were attached 

to a hydraulic shaker, and the field-based component consisted of ten athletes each 

wearing two units taped together to ensure that the axes of the accelerometers were 

aligned with each other. The findings of the study were showed that the between- and 

within-device coefficients of variation were less than 2% for all trials of the laboratory 

protocol, and the field-based testing revealed very strong correlation between units 

(r=0.996-0.999). These findings agree with the work of Varley et al (18) who 

determined that GPS units are valid and reliable when compared to a criterion measure 

of laser timing gates. Very strong Pearson correlations (>0.9) indicate that the units are 

valid for use during acceleration, deceleration, and constant velocity for multiple 

speeds. These studies show that a valid and reliable IMU device can be used 

successfully for athlete monitoring. While previous work has used IMU tracking for a 
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female population, these is currently no research that couples an IMU with CMJ 

performance to determine if there is a relationship between force declines and changes 

in movement profiles and player load during a muscle damage protocol.  

Session RPE 

 Session RPE is a concept designed by Foster et al. (43) to quantify the intensity 

of an entire bout of exercise by combining instantaneous RPE with training impulse. 

The use of session RPE allows for all physiological stressors an athlete experiences to 

be combined into a single score, which allows for a simple evaluation of how physically 

demanding a training session or competition is for an athlete (44). Through a series of 

changing exercise modalities, it was determined that session RPE is strongly correlated 

to heart rate during exercise and can be used as an indirect measure of heart rate (43). 

Additionally, Pustina et al. (45) determined that session RPE is a valid indicator of 

training response. Using collegiate soccer players, it was determined that session RPE 

was significantly correlated with distance covered and minutes played during 

competitions, indicating that it can be used to evaluate workloads of participants in 

repeated sprint sports. 

Summary 

 Both plyometric and repeated sprint protocols have been validated for use to 

elicit EIMD based on their heavy eccentric components, and that muscle damage can be 

observed through DOMS, blood plasma markers, and declines in exercise performance 

(2, 5, 7, 12, 14). It is clear that there is a knowledge gap in the effects of muscle damage 

in a female population. While a large amount of research has been done recently to 

study the effects of EIMD, the tendency to focus on a male population needs to be 
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balanced with similar investigations into the female population. A study involving a 

repeated sprint protocol in female athletes could serve to validate the use of the protocol 

for women, and inclusion of countermovement jumping throughout the protocol can 

provide a valuable force decline curve without influencing the results of the sprint 

protocol. Repetition of the protocol over time is also important to study the RBE 

mechanism in women. Lastly, this research would be beneficial for female athletes to 

construct training regimens with the hopes of minimizing declines in performance, 

highlight the time-course and characteristics of recovery, as well as, potentially reduce 

injury risk following muscle damage. 
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Chapter III: Methodology 

As previously stated, the purpose of this study was to investigate the utility of a 

repeated sprint protocol as a field-based test for evaluating fitness and fatigue 

characteristics in in female athletes.  This fatiguing protocol was expected to generate 

exercise-induced muscle damage (EIMD), and thus a second purpose was to evaluate 

the recovery process in these active females (e.g. subjective soreness, force production) 

by relating changes in jumping metrics and repeated sprint performance. Lastly, the 

study also looked to examine the relationship between velocity and player load to 

repeated sprint ability and lactate clearance. There is a growing interest in the use of 

microtechnology for tracking athletes in order to assess physical performance and injury 

risk.  However, most of the current use of these technologies has been with male 

athletes in rugby, Australian rules football, soccer, and American football.  Thus, 

acceleration and velocity-based metrics are missing in the female athlete population.  

Additionally, there is little research examining EIMD with a specific focus on females, 

and current literature does not articulate changes in performance at different stages of 

the protocol.  

Participants 

 Based on a power analysis (G*power) using a 1-b of 0.80, 19 participants were 

required, thus up to 25 active women between the ages of 18 and 35 were recruited 

from the University of Oklahoma women’s rugby team, as well as additional active 

females who routinely participate in sprint-based activity to allow for participant 

attrition. Participants could not have been previously exposed to an eccentric loading 

protocol prior to participating in the current study. Participants needed to be free of any 
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lower body injury within the previous six months. All participants consented to 

voluntary participation and were not given compensation for participation in the study. 

All participants were highly active females, capable of performing countermovement 

jumps and repeated sprints. Informed consent, health history status questionnaire, 

rhabdomyolysis screening, PAR-Q, and menstrual history documents were reviewed 

and signed by all subjects prior to the start of testing. All participants were active 

females on the University of Oklahoma women’s rugby team or females participating in 

similar levels of repeated sprint activity, which satisfied the criteria for inclusion (14). 

Inclusion Criteria 

1. Participants were either active female athletes from the University of Oklahoma 

rugby team, or other active females routinely participating in sprint-based 

activity. 

2. Participants had not been previously exposed to an EIMD protocol, 

eccentrically-biased training, and had not experienced significant lower body 

injury within the previous six months. 

3. Participants between 18 and 35 years of age. 

4. Participants experience normal menstrual history. 

Exclusion Criteria 

1. Men, as this study was based on the validation of a sprinting protocol in a 

female population. 

2. Participants who had experienced significant lower body injury in the previous 

six months were not allowed to participate. 
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3. Any participants previously exposed to eccentric loading protocol in order to 

elicit EIMD were excluded. 

4. Any female participants not experiencing a normal menstrual cycle. 

Experimental Design 

 This study employed a within-participant, repeated measures design where each 

participant acted as their own control. Repeated measures testing throughout the 

experimental protocol were used in order to identify a sprint performance and force 

decline curve. A total of nine visits were required to account for all measurements, 

including a familiarization visit prior to data collection. An overview of the protocol can 

be seen in Figure 1 below: 
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Figure 1. Overview of experimental procedures. 
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Data Collection Procedure 

Visit 1: Informed consent and familiarization 

The first visit was used to obtain informed consent, as well as to provide a 

familiarization to all participants in the study. Upon completion of the informed 

consent, health status questionnaire, rhabdomyolysis screening form, PAR-Q, HIPAA, 

and menstrual history documents, participants were fitted to determine the proper size 

of the Catapult compression garment. Height was measured using a Stadi-O-Meter 

(Novel Products, Inc., Rockton, IL, USA), and weight was recorded using the 

ForceDecks (FD4000, NMP ForceDecks Ltd., London, England). A dynamic warmup 

consisting of a 2-3-minute jog, 10 lunges with each leg, 10 body weight squats, and 10 

forward leg swings with each leg was shown to the participants, as it was used before 

each testing session. Participants were then shown the proper mechanics of a 

countermovement jump and asked to perform a series of three jumps on the force plate 

to familiarize the testing procedure. Following jumping, participants were then shown 

the sprinting course and instructed to perform three sprints, consisting of a twenty-meter 

sprint zone and a five-meter deceleration zone. A thirty-second break was given 

between each of the sprints. Once the participants had gone through a familiarization, 

an additional overview of the entire testing protocol was given in order to ensure that 

participants were fully informed about all aspects of the protocol, including lactate 

testing procedures. 

Visits 2, 4, 6, 8: Repeated Sprint Protocol 

 Visits 2 and 4 served to provide baseline measurements for each participant, and 

to observe any changes in force decline due to the repeated bout effect. Visits 6 and 8 
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served as experimental trials for each participant. The testing visits began by obtaining a 

verbal re-consent from the participants, followed by a verbal familiarization of the 

protocol. Participants were fitted for the Catapult OptimEye S5 units (Catapult Sports, 

Melbourne, Australia) which were turned on and allowed to link to a locally positioned 

data acquisition tower before being inserted into the garments. Participants were taken 

through the dynamic warmup previously outlined and performed three 

countermovement jumps to determine proper recovery from the previous session, and 

blood lactate was assessed. If not fully recovered, the participants were given 48 more 

hours of rest in order to ensure that trials began from a consistent starting point. Once 

the Catapult device and radar gun were active, the participants began the sprinting 

protocol, which consisted of five individual sets. Each set consisted of eight, 20-meter 

maximal sprints with a 5-meter deceleration zone. Participants were give 30 seconds of 

rest between each sprint. Participants came to a complete stop within the deceleration 

zone to emphasize eccentric loading. After reaching a complete stop, participants 

walked to the next starting point during the rest period, as shown in Figure 2. 

Immediately following the completion of each set of sprints, the participants completed 

a series of three countermovement jumps, followed by a 2-minute period of rest. Blood 

lactate was assessed immediately following the completion of the fifth set, with a 

repeated test performed 3-minutes post. 
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Figure 2. Schematic of EIMD protocol. 
 
Visits 3, 5, 7, 9: Post-Test Evaluations 

 Following the completion of each repeated sprint protocol (visits 2, 4, 6, 8), 

participants were asked to return for a follow-up visit after 24-48 hours of rest. 

Participants were asked to assess their upper body, lower body, and global soreness 

levels using the VAS. The participants then performed the dynamic warmup previously 

outlined, and performed a total of three 20-meter maximal sprints with 30 seconds of 

rest between each sprint. Participants then performed a series of three countermovement 

jumps. These post-test visits were used to determine if the performance declines during 

the repeated sprint protocol are due to fatigue, muscle damage, or a combination of the 

two.  

Countermovement Jump Metrics 

All jumping metrics were assessed using a countermovement jump. The 

ForceDecks bilateral force plate system and accompanying software was used for 

measurement with a sampling rate of 1000Hz. The ForceDecks has been used in 

previous work to accurately portray countermovement jump power output (17). 

Participants started from a standing position, squatted down to a 90-degree knee angle 

and jumped vertically, keeping their hands on their hips so that power was only 
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generated from the legs. Concentric mean force (ConMF), concentric peak force 

(ConPF), eccentric mean force (EccMF), eccentric peak force (EccPF), peak power 

output (PPr), concentric mean power output (ConMP), eccentric mean power output 

(EccMP), concentric rate of force development (ConRFD), as well as concentric time to 

peak force (ConTPF) and flight time to contraction time ratio (FTCT), were recorded 

during each series of jumps and compared within subjects to characterize the resulting 

fatigue curve.   

Sprint Measurements 

 Sprint performance was measured by means of a 20-meter maximal sprint test 

where sprints were recorded using a Stalker II ATS radar gun (Applied Concepts, 

Plano, TX, USA). Previous literature has shown that the radar gun is an accurate means 

of measuring sprint time and velocity and is often used as the gold standard in 

comparison studies versus timing gate systems (46). A sprint percentage decrement 

score (Sdec) was calculated using the following formula: 

 

Girard et al. (4) found the Sdec calculation was the most valid and reliable method to 

quantify fatigue in tests of repeated-sprint ability. 

Additionally, participants were equipped with inertial motion-analysis units 

(IMU). The IMU’s contain accelerometers and gyroscopes and were utilized to quantify 

linear and angular kinetics associated with the subjects’ movement patterns during 

maximal sprinting. The Catapult device has previously been shown to accurately and 

reliably measure repeated sprint ability across a wide variety of sport performance 

levels (18). 
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Blood Lactate 

 Blood lactate was analyzed using a Nova Biomedical Lactate Plus Meter 

(NOVA Biomedical, Waltham, MA, USA) using capillary blood from the participant’s 

finger. The Lactate Plus meter is a valid and reliable instrument for the assessment of 

blood lactate during exercise testing (21). Use of the finger for blood lactate has been 

shown to be a valid measure, as previous work has indicated that there are no statistical 

differences between measurements from the brachial artery and finger capillary blood 

(22). Lactate measurements were obtained by puncturing the skin of the finger with a 

lancet, then using capillary action to draw blood onto the testing strip of the meter. Use 

of lactate measurements provided a method of quantifying internal work load to 

compare across all trials within each participant. 

Perceived Muscle Soreness and Session RPE  

Subjective muscle soreness was reported by the subjects using a visual analogue 

scale (VAS) with a scale of 0-10. The scale consists of a 100mm line that participants 

place a mark on to indicate their level of soreness. The mark is measured as a distance 

from the 0 value to obtain the perceived soreness ranking. A value of 0 indicates “no 

soreness at all” and a value of 10 represents “most intense pain imaginable”. Soreness 

was assessed prior to the start of the sprinting protocol once the subject performed 3 

squats with approximately 90 degrees of flexion and then returned to the standing 

position (12). Measurements of soreness included lower body, upper body, and global 

soreness. The VAS was utilized to ensure that participants did not have any soreness 

prior to the EIMD protocol. 
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The rating of perceived exertion for each sprinting session (sRPE) was recorded 

immediately upon completion of the sprinting protocol, as well as following a 30-

minute washout period once all sprinting sets were completed in a trial.  Session RPE 

was used to help evaluate whether the intensity of each experimental session was 

comparable across trials. 

Research Design 

 The design of this study allowed for research questions to be answered because 

it relied on an active female population without previous eccentric loading training. By 

testing both running and jumping as performance indices, as well as measuring blood 

lactate, the study examined changes in sport-specific tasks, which increases external 

validity of the study. Repetition of the same protocol multiple times allowed for 

buffering due to the repeated bout effect to be observed, and still examine the changes 

in sprint and jumping metrics due to eccentric overload. The first two testing days 

served as a buffer period, while the final two testing days were used to answer the 

research questions. 

Data Management and Analysis 

 All participants in the study were given a subject identification number, which 

was used separately from identifying information when collecting data during the 

protocol. Identifying information was stored in a secure location separate from data so 

that anonymity can be preserved. The data obtained from the visits where the EIMD 

sprint protocols, CMJ performance, player load metrics, and lactate values were each 

analyzed using one-way analysis of variance (ANOVA) with repeated measures. 

Changes in velocity and CMJ performance between EIMD inducing visits (2,4,6,8) and 
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their follow up visits (3,5,7,9), were analyzed using a 4 (trial) x 2 (time) repeated 

measures ANOVA.  Significant interactions and main effects for performance indices 

were then analyzed using post-hoc testing with Bonferroni corrections. Correlations 

between jumping metrics, sprint performance, player load, and blood lactate were also 

performed to identify associations between variables.  To assess the absolute agreement 

of performance across trials, a two-way, mixed effects intraclass correlation (ICC3,1) for 

visits 2, 4, 6, and 8.  Additionally, coefficients of variation (COV) were derived to 

assess the consistency of the relationship between sprint performance means and the 

resulting standard deviation, as well as CMJ-based metrics.  IBM SPSS Statistical 

Software for Macintosh, Version 23 (Armonk, NY, IBM, 2015) was used for all 

analyses.  Statistical significance was set at p £ 0.05.  All data are presented as mean ± 

SD. 

Protocol Overview for Testing Days 

1. Blood lactate measure 

2. Dynamic warmup 

3. Set 1 (8 sprints, 3 countermovement jumps) 

4. Set 2 (8 sprints, 3 countermovement jumps) 

5. Set 3 (8 sprints, 3 countermovement jumps) 

6. Set 4 (8 sprints, 3 countermovement jumps) 

7. Set 5 (8 sprints, 3 countermovement jumps) 

8. Blood lactate measure (0-, 1-, 3-minutes post) 
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Chapter IV: Results 

The purpose of this study was to evaluate a sprinting protocol as a means of 

generating exercise-induced muscle damage, and to observe changes in jumping metrics 

and sprint performance due to muscle damage. Additionally, the relationship between 

player load and sprint velocity was examined, as well as how they relate to 

physiological markers of fatigue in an active female population. 

Participant Characteristics 

 Nineteen active females enrolled in this study; however, 9 did not complete the 

study due to injuries sustained outside of the study. Most of the participants were 

actively participating in collegiate-level rugby, where they experience high physical 

demands related to collisions, scrums, and abrupt changes of direction. The participants 

were active females aged between 19 and 27 years (mean = 21.70 ± 2.50 years) with a 

history of participation in repeated sprint sports. Participants were free of any 

significant lower body injuries within the previous six months and did not have any 

history of cardiovascular disease. Descriptive data for all participants can be found in 

Table 1, presented as means ± SD. 

Table 1. Subject Characteristics 
Variable Mean ± SD          
n 10                   

Age (years) 21.7±2.5 

Height (cm) 166.3±5.9 

Weight (kg)  68.54±9.2 
Values are mean ± SD. 
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Sprint Performance 

One-way repeated measures ANOVA with Bonferroni pairwise comparisons 

were conducted to compare average and peak velocity across experimental sessions and 

post-damage evaluations. No significant differences were observed for average velocity 

(p=0.345) or peak velocity (p=0.685). The average measure ICC3,1 across visit 2, 4, 6, 

and 8 for average velocity was 0.917 with a 95% confidence interval from 0.779 to 

0.977 (F(9,27)=11.015, p<0.001), whereas the ICC3,1 for peak velocity was 0.792 with a 

95% confidence interval from 0.472 to 0.941(F(9,27)=4.990, p<0.001).  These findings 

support a high degree of agreement across time for the damaging sprint protocol. Table 

2 describes the peak and average velocities for the first three sprints of the repeated 

sprint protocol and the three sprints of the post-damage evaluations, while Table 3 

describes the peak and average velocity change scores for each experimental session. 

Table 2. Sprint Performance 
Variable   Visit 2 Visit 4 Visit 6 Visit 8 
Peak Velocity (m/s) Pre 6.45±0.38 6.39±0.39 6.38±0.41 6.38±0.41 

  Post 6.36±0.37 6.44±0.43 6.36±0.39 6.45±0.34 
Avg Velocity (m/s) Pre 4.71±0.25 4.74±0.25 4.71±0.21 4.76±0.21 

  Post 4.51±0.29* 4.68±0.30* 4.58±0.25* 4.60±0.30* 
Values are mean ± SD. Pre = average of the first three sprints of the repeated sprint protocol (visits 2, 
4, 6, and 8). Post = average of the three sprints of the post-damage protocol evaluations (visits 3, 5, 7, 
and 9). 
*indicates significant difference from Pre. 
 
Table 3. Velocity Change Scores 
Variable Visits 2&3 Visits 4&5 Visits 6&7 Visits 8&9 

Peak Velocity (m/s) 1.28±4.70 -0.88±2.90 0.06±6.84 -1.57±8.48 
Avg Velocity (m/s) 4.15±5.92 1.29±2.03 2.84±1.87 3.53±4.09 
Values are mean ± SD. Values indicate a decline in velocity, expressed as a percent difference of 
the average of the first three sprints of the repeated sprint protocol (visits 2, 4, 6, and 8) and the 
average of the three sprints of the post-damage protocol evaluations (visits 3, 5, 7, and 9. No 
significant differences were observed for peak (p=0.685) or average (p=0.345) velocities. 
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 The two-way repeated measures ANOVA compared average and peak velocities 

across time for the average of the first three sprints of the repeated sprint protocol 

during trials 2, 4, 6, and 8 and the average of the three sprints of visits 3, 5, 7, and 9. 

Average velocity showed no main effect for trial (p=0.507) and no significant 

interaction effect for trial*time (p=0.344). However, there was a significant main effect 

for time (p=0.002), indicating that average velocity significantly decreased from the 

repeated sprint protocol to the post-damage evaluations. When peak velocity was 

analyzed, there were no significant main effects for trial (p=0.874) or time (p=0.937), 

and no significant interaction for trial*time (p=0.699). 

 Pearson’s correlations were conducted to compare velocity metrics to player 

load and lactate measurements. Average velocity did not correlate with total player load 

(r= -0.132, p=0.416), average player load (r=-0.143, p=0.378), relative player load 

(r=0.121, p=0.457), IP lactate (r=-0.294, p=0.065), or 3P lactate (r=-0.226, p=0.161).  

Maximum velocity did not correlate with total player load (r= 0.083, p=0.611), average 

player load (r=0.069, p=0.672), relative player load (r=0.100, p=0.541), IP lactate 

(r=0.054, p=0.739), or 3P lactate (r=-0.005, p=0.975). However, a moderate, positive 

correlation between average and maximum velocity (r=0.465, p=0.003) was noted. 

Player Load 

 Figures 3, 4, and 5 represent each of the three player load metrics (total, relative, 

and average player load) across all four testing visits.  
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Values are mean ± SD. Total player load is the sum of player load of all sprints, expressed in arbitrary 
units (AU). No statistically significant differences were observed between visits 2, 4, 6, and 8 (p=0.331). 
 

Values are mean ± SD. Relative player load = total player load relative to body weight (kg). No 
statistically significant differences were observed between visits 2, 4, 6, and 8 (p=0.309). 
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Figure 3. Mean total player load across visits 2, 4, 6, and 8. 

Figure 4. Mean relative player load across visits 2, 4, 6, and 8. 
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Values are mean ± SD. Average player load = the player load incurred during each individual sprint. No 
statistically significant differences were observed between visits 2, 4, 6, and 8 (p=0.358). 
 

A one-way repeated measures ANOVA was conducted to compare total player  

load, average player load (player load per sprint), and relative player load (player 

load/kg) across all four trials.  The Greenhouse-Geisser correction was utilized 

following a statistically significant finding on Mauchly’s test of sphericity, revealing 

equal variance of differences for all pairs could not be assumed.  There were no 

significant differences between trials for total player load (p=0.331), player load per 

sprint (p=0.358), or relative player load (p=0.309).  

Pearson’s correlations were conducted to determine if player load measurements 

were related to post-sprinting lactate values. Total player load was positively correlated 

with IP lactate (r=0.386, p=0.014) and 3P lactate (r=0.548, p<0.001). Average player 

load was also positively correlated with IP lactate (r=0.367, p=0.020) and 3P lactate 

(r=0.531, p=0.003). 
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Figure 5. Mean values for average player load across visits 2, 4, 6, and 8. 
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Pearson’s Correlations were also performed to compare perceived upper, lower, 

and total body soreness to total and relative player load measures. A significant positive 

correlation was observed between visit 4 total player load and visit 5 total body soreness 

(r=0.684, p=0.029) as well as between visit 4 total player load and visit 5 lower body 

soreness (r=0.777, p=0.008). 

Countermovement Jump Metrics 

 One-way ANOVA with repeated measures were conducted to compare CMJ 

variables across the four experimental sessions and the four post-damage evaluations to 

determine is significant differences existed. Two-way, trial*time repeated measures 

ANOVA were utilized to compare CMJ performance prior to the damaging sprint 

protocol (visits 2,4,6,8) and to the concomitant follow up trial (visit 3,5,7,9). Table 4 

represents CMJ metrics of interest as means ± SD, and Table 5 represents change scores 

as a percent decrease from baseline values following the EIMD protocol. PPr, ConRFD, 

ConMP, EccMP, ConPF, and EccPF are expressed relative to body weight, while 

ConMF and EccMF are absolute values. 

 There were no significant differences in the percent decline between visits 2 and 

3, 4 and 5, 6 and 7, or 8 and 9 for PPr (p=0.802), ConRFD (p=0.652), ConMP 

(p=0.892), EccMP (p=0.285), ConPF (p=0.721), EccPF (p=0.588), ConMF (p=0.196), 

EccMF (p=0.377), ConIMP (0.201), ConTPF (0.576), and FTCT (p=0.198). These 

findings indicate that participants experienced similar declines in jump performance 

following each EIMD protocol. 

 Results of the two-way ANOVA indicated that there were no trial*time 

interactions for PPr (p=0.714), ConRFD (p=0.455), ConMP (p=0.773), EccMP 
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(p=0.535), ConPF (p=0.649), EccPF (p=0.598), ConMF (p=0.222), EccMF (p=0.360), 

ConIMP (p=0.262), ConTPF (p=0.223), or FTCT (p=0.215). No significant trial effects 

were observed for PPr (p=0.850), ConRFD (p=0.272), ConMP (p=0.299), EccMP 

(p=0.133), ConPF (p=0.168), EccPF (p=0.552), ConMF (p=0.431), (p=0.518), ConIMP 

(p=0.251), ConTPF (p=0.649), or FTCT (p=346). However, a significant time effect did 

exist for some CMJ variables.  Pairwise comparisons with Bonferroni corrections 

revealed that PPr (p=0.006), ConRFD (p=0.001), ConMP (p<0.001), EccMP (p=0.002), 

ConPF (p<0.001), EccPF (p=0.001), ConMF (p<0.001), and ConIMP (p=0.046), 

demonstrated a decreased performance between baseline and post-damage protocol 

values. No significant time effects were observed for EccMF (p=0.148),  ConTPF 

(p=0.756) or FTCT (p=0.059). 
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Table 4. Countermovement Jump Metrics 
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Exercise Performance and CMJ  

 Pearson’s correlations were conducted to compare FTCT declines and Sdec and 

one-way repeated measures ANOVA compared performance decrement measures 

between visits 2, 4, 6, and 8. FTCT measures did not significantly correlate with Sdec 

(r=0.10, p=0.950). FTCT declines were not significantly different between all visits 

(p=0.098). Sdec was not significantly different between visits (p=0.246).  

 Additionally, one-way repeated measures ANOVA was also used to compare 

FTCT declines, as well as, Sdec across all follow-up visits. There were no significant 

differences between visits 3, 5, 7, and 9 for FTCT (p=0.166). 

Blood Lactate 

 A 4 (trial) x 3 (time) repeated measures ANOVA was conducted to compare 

blood lactate values between visits for pre-sprinting, immediately post-sprinting, and 

three-minutes post-sprinting lactate levels. Values can be found in Table 5. 

Table 5. Blood Lactate 

 

 There was no interaction effect for trial*time main effect for trial indicating 

lactate levels were consistent across all visits (p>=0.784).  However, there was a main 

effect for time (p<0.001).  Post-hoc testing was performed to reveal where significant 

 Variable Visit 2 Visit 4 Visit 6 Visit 8 

Pre (mmol/L) 1.61±0.64 1.44±0.57 1.56±0.53 1.44±0.25 

IP (mmol/L) 5.88±2.36a,b 5.21±2.39a,b 6.10±2.82a,b 5.36±2.55a,b 

3P (mmol/L) 4.41±2.10a 4.12±2.23a 4.66±2.28a 4.12±2.25a 

Values are mean ± SD. Pre = baseline. IP = immediately post. 3P = 3-minutes post. 
aindicates significant difference from Pre  
bindicates significant difference from 3P 
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differences existed.  Mean values ± SD can be seen in Figure 6 across all time points for 

all EIMD sprinting visits.  Bonferroni pairwise comparisons showed that visit 2, IP 

(p<0.001) and 3P (p=0.001) were significantly greater than pre-sprinting values, and IP 

was significantly greater than 3P (p=0.028). For visit 4, IP (p=0.003) and 3P(p=0.020) 

were significantly greater than pre, and IP was significantly greater than 3P (p=0.001). 

For visit 6, IP (p=0.004) and 3P (p=0.013) was significantly greater than pre, and IP 

was significantly greater than 3P (p=0.001). For visit 8, IP (p=0.003) and 3P (p=0.016) 

were significantly greater than pre, and IP was significantly greater than 3P (p=0.005).  

 

 
 

Perceived Soreness 

 Upper, lower, and total body soreness results can be seen in Figures 7, 8, and 9, 

respectively. A one-way repeated measures ANOVA was performed to compare upper 

body, lower body, and total body soreness following repeated sprint activity (visits 3, 5, 

7, 9). There was no significant difference between time points for upper body 

(p=0.136), lower body (p=0.124), or total body soreness (p=0.176). Separate one-way 

Values are mean ± SD. Pre = baseline. IP = immediately post. 3P = 3-minutes post. 
*indicates significant difference from Pre and 3P for all visits (p£0.05). 
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Figure 6. Mean lactate values at Pre, IP, and 3P across visits 2, 4, 6, and 8. 
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ANOVAs were conducted to compare upper, lower, and total body soreness for each 

visit. No significant difference was found between upper, lower, and total body areas 

for visit 3 (p=0.146), visit 5 (p=0.062), visit 7 (p=0.258), or visit 9 (p=0.136). However, 

because no significant differences were found, all measurements were collapsed, and a 

single one-way ANOVA was performed. The results indicated that total body soreness 

(p=0.014) and lower body soreness (p<0.001) were both significantly greater than upper 

body soreness. Lower body and total body soreness were not significantly different 

(p=0.898). Pearson’s correlations revealed that total body soreness had a strong, 

positive correlation to lower body (r=0.839, p<0.001) and upper body (r=0.677, 

p<0.001) soreness. Lower body and upper body soreness had a weak, positive 

correlation (r=0.362, p=0.022). 

Figure 7. Upper Body Soreness 

 
Values are mean ± SD. Soreness ratings are measured on a scale from 0-10. *indicates a            
significant difference from baseline measures (p£0.05). 
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Figure 8. Lower Body Soreness 

 
Values are mean ± SD. Soreness ratings are measured on a scale from 0-10. *indicates a            
significant difference from baseline measures (p£0.05). 
 
Figure 9. Total Body Soreness 

 
Values are mean ± SD. Soreness ratings are measured on a scale from 0-10. *indicates a            
significant difference from the sprinting session that occurred 24-48 hours prior (p£0.05). 
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statistically significant. Bonferroni pairwise comparisons indicated that RPE-IP was 

significantly greater than RPE-30P (p=0.009). RPE-IP was not significantly different 

across all four visits (p=0.416). RPE-30P was not significantly different across all four 

visits (p=0.102). RPE mean values across all time points are illustrated in Figure 10. 

Values are mean ± SD. IP = immediately post. 30P = 30-minutes post. RPE values are measured using the 
Borg Scale (6-20). A condition*time effect for RPE was not significant (p=0.274). 
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Chapter 5: Discussion 

 The purpose of the study was to evaluate the use of a sprinting protocol to 

consistently generate exercise-induced muscle damage using an active female 

population, and to observe how jumping metrics and sprint performance change due to 

muscle damage. It was hypothesized that: 1) there would be a decline in sprint 

performance during the repeated sprint protocol, 2) there would be a significant 

relationship between fatigue characteristics of repeated sprinting and countermovement 

jumps, 3) there would be a significant relationship between sprinting metrics and 

countermovement jump metrics during the repeated sprint protocol, and 4) sprint 

velocity and player load would have a significant relationship with repeated sprint 

ability and lactate clearance. 

Sprint Performance 

 Results showed that peak velocity and average velocity between visits 2, 4, 6, 

and 8 were not significantly different. This lack of significance was expected due to the 

sprint-trained nature of the participants and supports the absence of a learning effect or 

training effect across trials. Additionally, ICC3,1 values were shown to be high, 

indicating that there was a strong level of agreement between experimental trials for 

both peak velocity and average velocity. Average velocity was significantly lower 

following the muscle damage protocol for all follow-up visits occurring 24-48 hours 

later. This agrees with previous work (1, 12, 13, 14) as the reductions in sprint 

performance are most likely the result of EIMD-induced decreases in force production, 

considered a hallmark effect of this condition. However peak velocity achieved did not 

decrease, but the two variables were moderately correlated to each other. This may 
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indicate that the force loss due to muscle damage diminished the acceleration phase 

where the largest requirement for force production is required and thus delayed rather 

than prevented the participants from reaching their peak velocities.  

Percent change scores were also similar for both average and peak velocity, 

which may suggest that the reduction in performance was stable across all experimental 

trails. This finding shows that participants were able to function at the same level each 

visit as they completed four EIMD protocols within a 30-day period, which suggests 

that all participants recruited were highly trained. This high training status may explain 

why RBE interference was not observed or points to the stability of the RBE in trained 

females once it occurs. 

 Sprint performance did not demonstrate the expected correlations to total player 

load, average player load, or relative player load. The expected outcome was that 

increasing sprint velocity would be associated with an increased player load. A possible 

explanation for the lack of agreement could be that player load is calculated from 

accelerometer-based data but considers all athlete movements in the X, Y, and Z planes 

including arm swings, lateral motion, and up and down movements throughout the 

duration of each sprint, while radar data only includes linear velocity on a fixed target 

and extraneous movements are removed during data filtering. The study cohort had a 

varied running efficiency; therefore, each participant’s player load was likely influenced 

more so by differences in running economy and mechanics than by sprint velocity. 

Player Load 

 Player load is a value derived through quantification of changes in inertia and 

used to quantify the intensity of a training session or competition through the 
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examination of an individual’s movement patterns or external work (18). These derived 

values have arbitrary units and can be used to evaluate both acute and chronic bouts of 

exercise (32).  Player load metrics from the current study were not different across all 

four visits, which indicated that participants achieved similar intensities and workloads 

during each muscle damage protocol.  This is a key finding that points to the 

participants’ ability to replicate effort and the consistency of their run technique. 

 Total and average player load were correlated with post-test lactate 

measurements. Player load is a validated method of quantifying external training load 

(18, 42) and blood lactate is a valid means of measuring internal response to an imposed 

external demand (55). Previous work has examined the relationship between external 

and internal training load (56) but has not used blood lactate as an internal measurement 

for comparison. The current findings indicate that player load might be used in place of 

blood lactate in order to non-invasively quantify physiological workload during training 

or competition or used in conjunction with lactate analysis to better understand how an 

individual may respond to changes in training that impose an increased or differing 

external work load.  Since individuality in training responses are common, the 

combination of these two outcome variables may provide valuable information and thus 

be warranted. 

 Correlation between total player load and total body soreness, as well as 

between total player load and lower body soreness were found, but only during visits 4 

and 5. Previous literature (61) has shown that external training load was significantly 

related to athlete soreness using male rugby players, however the external training load 

was derived utilizing a modified sRPE method.  While both correlations in the current 
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study were strong, the lack of any other significance between player load and soreness 

indicates that further research is required to determine if an association truly exists. 

Countermovement Jump Metrics 

 Countermovement jumps (CMJ) were used to assess force output, as previous 

work has shown that CMJ testing is the best jump test to assess neuromuscular function 

due to high sensitivity to change and high repeatability in both acute and chronic 

exercise (23, 29). These works support the findings of the current study, as CMJ 

variables of interest were not significantly different from each other between visits 2, 4, 

6, and 8, indicating that the participants gave similar effort and produced consistent 

CMJ during each testing session.  

 Results from the current investigation revealed that several of the CMJ force and 

power variables of interest (PPr, ConRFD, ConMP, EccMP, ConPF, EccPF, ConMF, 

ConIMP) decreased in the visits following the repeated sprint protocol. These findings 

agree with McLean et al. (52) who found that neuromuscular performance measures 

such as relative power output are reduced for at least 48 hours following repeated sprint 

sports. The results showed that participants exhibited decreased force generating 

capacity indicative of exercise-induced muscle damage during the post-damage protocol 

evaluations, consistent with the findings of others (51). This suggests that the current 

protocol is not only a valid means of eliciting EIMD similar to previous work (1, 12, 13, 

14) but it is also reproducible, as force decrements were not eliminated due to the 

repeated bout effect (14). The observed changes in ConTFP indicate that participants 

were slower at reaching peak force following the repeated sprint protocol, which could 

be detrimental during competition when maximal neuromuscular effort is required. A 
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2016 study by Martinez (53) stated that an 8% decline in the ratio of flight time to 

contraction time was a strong predictor of declines in athlete readiness, slow stretch-

shortening cycle (SSC) activity, and neuromuscular fatigue than traditional jump testing 

as they account for changes in jump strategy in order to maintain jump height. Observed 

declines in FTCT ratio in the current study ranged from -2.2% to -7.5%, indicating that 

either the subjects could not maintain their pre-damage flight time or required a longer 

period of time (time under tension) for contraction to elicit a similar flight time.  In 

either case, these changes seem indicative of a reduction in force-producing capacity of 

the lower body musculature. 

Exercise Performance and CMJ 

 Analysis of FTCT and Sdec scores determined that sprinting and jumping 

declines were similar between trials 2, 4, 6, and 8. This finding suggests that 

participants did not experience attenuated force loss due to the repeated bout effect. The 

Sdec formula used to determine decrement in sprint performance was determined by 

Glaister et al. (58) to be the best method of quantifying fatigue during repeated sprints. 

The inclusion of every sprint time in the calculation of the formula accounts for noise in 

the measurements due to biological variability, as well as unexplained speed increases 

during the final sprint (58, 59). The Sdec formula appears to be a valuable method for 

analyzing reduction in sprint performance over multiple attempts and thus warrants use 

in future studies. 

Sprinting is an exercise that produces a very high RFD, requires a large amount 

of energy, and is considered a fast SSC movement (50). Countermovement jumps are 

classified as slow SSC movements (49) that place low physiological strain on 
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participants (27), allowing them to be used in conjunction with the repeated sprint 

protocol without significant contribution to overall fatigue. However, CMJ performance 

was not correlated to sprint performance in the current study. This finding does not 

agree with previous literature (40, 59) which states that CMJ can be used as a predictor 

of sprint performance. However, it should be noted that the present study attempted to 

correlate performance decrements rather than predict maximal performance. 

Additionally, decrements in both sprint performance and CMJ performance were 

observed in post-damage protocol visits. 

Blood Lactate 

 An accumulation of blood lactate, commonly associated with fatigue, occurs 

when metabolic energy demand causes an increased reliance on glycolysis, resulting in 

a shift in the balance between production and removal (54). Blood lactate values were 

not significantly different between visits for any time points, indicating that participants 

experienced a similar internal physiological response for each muscle damage protocol. 

The increase from pre to IP measurements indicated that the 40 sprints induced a high 

physiological load similar to what would be expected in an interval training session or 

repeated sprint sports (47). The significant difference between IP and 3P values 

indicated that the participants had already experienced significant clearance in the first 

three minutes following the protocol. This finding supports the assumption that 

participants were well trained. Training has been shown to increase an athlete’s ability 

to clear lactate rather than reducing production (57). The current study did not control 

for menstrual cycle during the testing sessions. However, a study by Smekal et al. (48) 

found no effect on blood lactate by menstrual cycle phase in female participants. 
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Perceived Soreness 

VAS ratings of DOMS, which is one of the most common symptoms indicative 

of EIMD (1, 7, 12, 14), showed that participants experienced significant levels of upper, 

lower, and total body soreness following each testing session, and that lower and total 

body soreness were higher than upper body. The indicated levels of soreness were not 

significantly different between each post-damage evaluation, which indicates that the 

participants experienced similar levels of perceived damage after each testing session. 

Lower body and total body measures were not significantly different from each other 

and were strongly correlated.  

Session RPE 

 No differences in sRPE were indicated between visits 2, 4, 6, and 8 for IP or 30P 

time points, indicating that participants viewed the intensity of the repeated sprint 

protocol similarly across all four visits. These findings agree with Foster et al. (43), who 

indicated that sRPE was a reliable means of evaluating exercise intensity. The present 

findings also support Pustina et al. (45), who stated that sRPE is a strong indicator of 

training response using athletes participating in repeated sprint sports.  
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Chapter VI: Conclusion 

Key Findings 

 The purpose of this study was to evaluate the use of a sprinting protocol as a 

consistent field-based means of generating EIMD in a well-trained female population, 

as well as to observe changes in sprinting and jumping metrics due to incurred muscle 

damage. Additionally, this study sought to examine the relationship between sprint 

velocity and player load, and to determine how they relate to repeated sprint ability and 

lactate clearance. Through this investigation, it was concluded that the protocol was a 

valid and reliable means of eliciting EIMD, with measurable decrements in both 

sprinting and jumping performance for up to 24-48 hours following the completion of 

the protocol. Although a significant relationship between fatigue characteristics of 

repeated sprinting and CMJ performance did not occur, both exhibited decrements in 

post-exercise evaluations that are indicative of muscle damage that could hinder 

performance. Sprint performance and player load were not significantly related, but 

player load was shown to be associated with lactate levels following repeated sprints. 

The practical significance of the current study is that sports teams could use this 

protocol to evaluate fatigue characteristics for their athletes and utilize CMJ metrics or 

sprint decrement scores to determine an athlete’s readiness for competition.  

Limitations 

 Several limitations exist in this study. The reduction in the participant pool due 

to attrition may have reduced the potential to find some significant relationships 

between variables due to a reduced variability.  However, the a priori power analysis 

was based on the variables with the smallest expected treatment effect and highest 
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variability in order to reduces chances for Type II error.  The researchers feel the study 

was sufficiently powered as evidenced by the significance findings of the study and the 

size of the subject cohorts typical of this type of investigation in the literature.   

Participation in previous sporting events may have exposed participants to 

eccentric loading, diminishing the effects of the EIMD protocol. Muscle fiber typing 

was not used in the current investigation, as differences in fiber type composition may 

have impacted soreness due to preferential recruitment of Type II muscle fibers during 

eccentric contractions.  

A menstrual history was included to ensure that participants were experiencing 

normal cycling, but the phase of menstrual cycle was not standardized. Finally, testing 

was performed indoors to eliminate external confounding variables, so velocity data 

could not be collected from the Catapult units for comparison to radar gun velocities, 

however the radar gun used for the current study is considered the “gold standard” for 

measurements of linear velocity and used to establish criterion validity when testing 

advanced timing gate systems.   

Future Research Directions 

 Future research should examine recovery modalities that might be utilized to 

attenuate force loss so that athletes may streamline the process of returning to peak 

performance capacity. Future studies may also investigate the critical power and critical 

rest interval needed to preserve sprint ability in repeated sprint sports. Finally, because 

sport involves sprints with short deceleration and immediate change of direction, future 

research could investigate the decline in performance related to eccentrically biased 

change-of-direction movements performed in a repeated trial manner and with the use 
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of a timing gate system to capture changes at different distance intervals that may shed 

light on how peak velocities are maintained over the entirety of distance and how 

acceleration curves are modified by fatigue and muscle damage. 

 

 



54 

References 

1. Cheung, K., Hume, P., & Maxwell, A. (2003). Delayed Onset Muscle 
Soreness. Sports Medicine, 33(2), 145-164. 
 

2. Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in 
humans. American journal of physical medicine & rehabilitation, 81(11), S52-
S69. 
 

3. Clarkson, P., & Tremblay, I. (1988). Exercise-induced muscle damage, repair, 
and adaptation in humans. Journal of Applied Physiology (Bethesda, 
Md:1985), 65(1), 1-6. 
 

4. Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-Sprint 
Ability Part I. Sports Medicine, 41(8), 673-694. 
 

5. Highton, Twist, & Eston. (2009). The Effects of Exercise-Induced Muscle 
Damage on Agility and Sprint Running Performance. Journal of Exercise 
Science & Fitness, 7(1), 24-30. 
 

6. Hunter, S. (2014). Sex differences in human fatigability: Mechanisms and 
insight to physiological responses. Acta Physiologica, 210(4), 768-789. 
 

7. Keane, K., Salicki, R., Goodall, S., Thomas, K., & Howatson, G. (2015). Muscle 
damage response in female collegiate athletes after repeated sprint 
activity. 29(10), 2802. 
 

8. Knicker, Axel J., Renshaw, Ian, Oldham, Anthony R.H., & Cairns, Simeon P. 
(2011). Interactive processes link the multiple symptoms of fatigue in sport 
competition. Sports Medicine, 41(4), 307. 
 

9. Nédélec, M., Halson, S., Abaidia, A., Ahmaidi, S., & Dupont, G. (2015). Stress, 
Sleep and Recovery in Elite Soccer: A Critical Review of the Literature. Sports 
Medicine, 45(10), 1387-1400. 
 

10. Peñailillo, L., Blazevich, A., Numazawa, H., & Nosaka, K. (2015). Rate of force 
development as a measure of muscle damage. Scandinavian Journal of Medicine 
& Science in Sports, 25(3), 417-427. 
 

11. Ross, A., Leveritt, M., & Riek, S. (2001). Neural Influences on Sprint 
Running. Sports Medicine, 31(6), 409-425. 
 

12. Thompson, D., Nicholas, C., & Williams, C. (1999). Muscular soreness 
following prolonged intermittent high-intensity shuttle running. Journal of 
Sports Sciences, 17(5), 387-95. 
 



55 

13. Thorpe, Robin, & Sunderland, Caroline. (2012). Muscle damage, endocrine, and 
immune marker response to a soccer match. Journal of Strength and 
Conditioning Research, 26(10), 2783. 
 

14. Woolley, B. P., Jakeman, J. R., & Faulkner, J. A. (2014). Multiple Sprint 
Exercise with a Short Deceleration Induces Muscle Damage and Performance 
Impairment in Young, Physically Active Males. J Athl Enhancement 3: 2. of, 7, 
2. 
 

15. Ye, X., Beck, T., & Wages, N. (2015). Reduced susceptibility to eccentric 
exercise-induced muscle damage in resistance-trained men is not linked to 
resistance training-related neural adaptations. Biology of Sport, 32(3), 199-205. 
 

16. Zourdos, Michael C., Paul C. Henning, Edward Jo, Andy V. Khamoui, Sang-
Rok Lee, Young-Min Park, Marshall Naimo, Lynn B. Panton, Kazunori Nosaka, 
and Jeong-Su Kim. (2015). Repeated Bout Effect in Muscle-specific Exercise 
Variations. Journal of Strength and Conditioning Research, 29(8), 2270. 
 

17. de Hoyo, M., Cohen, D. D., Sañudo, B., Carrasco, L., Álvarez-Mesa, A., del 
Ojo, J. J., ... & Otero-Esquina, C. (2016). Influence of football match time–
motion parameters on recovery time course of muscle damage and jump ability. 
Journal of sports sciences, 34(14), 1363-1370. 
 

18. Varley, Matthew C., Fairweather, Ian H., & Aughey, Robert J. (2012). Validity 
and reliability of GPS for measuring instantaneous velocity during acceleration, 
deceleration, and constant motion. Journal of Sports Sciences, 30(2), 121. 
 

19. James, C., Dufek, J., & Bates, B. (2006). Effects of Stretch Shortening Cycle 
Exercise Fatigue on Stress Fracture Injury Risk During Landing. Research 
Quarterly for Exercise and Sport, 77(1), 1-13. 
 

20. Eston, R., Lemmey, A., McHugh, P., Byrne, C., & Walsh, S. (2000). Effect of 
stride length on symptoms of exercise-induced muscle damage during a repeated 
bout of downhill running. Scandinavian Journal of Medicine & Science in 
Sports, 10(4), 199-204. 
 

21. Hart, S., Drevets, K., Alford, M., Salacinski, A., & Hunt, B. E. (2013). A 
method-comparison study regarding the validity and reliability of the Lactate 
Plus analyzer. BMJ open, 3(2), e001899. 
 

22. Williams, J. R., Armstrong, N., & Kirby, B. J. (1992). The influence of the site 
of sampling and assay medium upon the measurement and interpretation of 
blood lactate responses to exercise. Journal of sports sciences, 10(2), 95-107. 

 
 



56 

23. Gathercole, R. J., Sporer, B. C., Stellingwerff, T., & Sleivert, G. G. (2015). 
Comparison of the capacity of different jump and sprint field tests to detect 
neuromuscular fatigue. The Journal of Strength & Conditioning 
Research, 29(9), 2522-2531. 
 

24. Boyas, S., & Guével, A. (2011). Neuromuscular fatigue in healthy muscle: 
underlying factors and adaptation mechanisms. Annals of physical and 
rehabilitation medicine, 54(2), 88-108. 
 

25. De Backer, D. (2003). Lactic acidosis. Intensive care medicine, 29(5), 699-702. 
 

26. Donovan, C. M., & Brooks, G. A. (1983). Endurance training affects lactate 
clearance, not lactate production. American Journal of Physiology-
Endocrinology And Metabolism, 244(1), E83-E92. 
 

27. Gathercole, R., Sporer, B., Stellingwerff, T., & Sleivert, G. (2015). Alternative 
countermovement-jump analysis to quantify acute neuromuscular 
fatigue. International journal of sports physiology and performance, 10(1), 84-
92. 
 

28. Gathercole, R., Sporer, B., & Stellingwerff, T. (2015). Countermovement jump 
performance with increased training loads in elite female rugby 
athletes. International journal of sports medicine, 36(09), 722-728. 
 

29. Cormack, S. J., Newton, R. U., McGuigan, M. R., & Doyle, T. L. (2008). 
Reliability of measures obtained during single and repeated countermovement 
jumps. International journal of sports physiology and performance, 3(2), 131-
144. 
 

30. Wundersitz D, et al. Classification of team sport activities using a single 
wearable tracking device. Journal of Biomechanics. 2015. 
 

31. Dalen, T., Jørgen, I., Gertjan, E., Havard, H. G., & Ulrik, W. (2016). Player 
load, acceleration, and deceleration during forty-five competitive matches of 
elite soccer. The Journal of Strength & Conditioning Research, 30(2), 351-359. 
 

32. Hollville, E., Couturier, A., Guilhem, G., & Rabita, G. (2016, May). MinimaxX 
player load as an index of the center of mass displacement? A validation study. 
In ISBS-Conference Proceedings Archive (Vol. 33, No. 1). 
 

33. Clarkson, P. M., & Sayers, S. P. (1999). Etiology of exercise-induced muscle 
damage. Canadian journal of applied physiology, 24(3), 234-248. 
 

34. McHugh, M. P., Connolly, D. A., Eston, R. G., & Gleim, G. W. (1999). 
Exercise-induced muscle damage and potential mechanisms for the repeated 
bout effect. Sports Medicine, 27(3), 157-170. 



57 

35. Sewright, K. A., Hubal, M. J., Kearns, A., Holbrook, M. T., & Clarkson, P. M. 
(2008). Sex differences in response to maximal eccentric exercise. Medicine and 
Science in Sports and Exercise, 40(2), 242-251. 
 

36. Stupka, N., Lowther, S., Chorneyko, K., Bourgeois, J. M., Hogben, C., & 
Tarnopolsky, M. A. (2000). Gender differences in muscle inflammation after 
eccentric exercise. Journal of applied physiology, 89(6), 2325-2332. 
 

37. Hunter, S. K. (2016). Sex differences in fatigability of dynamic 
contractions. Experimental physiology, 101(2), 250-255. 
 

38. Fulco, C. S., Rock, P. B., Muza, S. R., Lammi, E., Cymerman, A., Butterfield, 
G., ... & Lewis, S. F. (1999). Slower fatigue and faster recovery of the adductor 
pollicis muscle in women matched for strength with men. Acta Physiologica 
Scandinavica, 167(3), 233-240. 
 

39. Kellawan, J. M., Johansson, R. E., Harrell, J. W., Sebranek, J. J., Walker, B. J., 
Eldridge, M. W., & Schrage, W. G. (2015). Exercise vasodilation is greater in 
women: contributions of nitric oxide synthase and cyclooxygenase. European 
journal of applied physiology, 115(8), 1735-1746. 
 

40. Markström, J. L., & Olsson, C. J. (2013). Countermovement jump peak force 
relative to body weight and jump height as predictors for sprint running 
performances:(in) homogeneity of track and field athletes?. The Journal of 
Strength & Conditioning Research, 27(4), 944-953. 
 

41. Hughes, G., & Watkins, J. (2006). A risk-factor model for anterior cruciate 
ligament injury. Sports Medicine, 36(5), 411-428.dicine, 36(5), 411-428. 
 

42. Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX 
accelerometers for measuring physical activity in Australian 
football. International Journal of Sports Physiology and Performance, 6(3), 
311-321. 
 

43. Foster, C., Florhaug, J.A., Franklin, J., Gottschall, L., Hrovatin, L.A., Parker, S., 
Doleshal, P., Dodge, C. (2001). A new approach to monitoring exercise training. 
Journal of Strnegth and Conditioning Research; 15(1), 109-115. 
 

44. Lambert, M.I. & Borreson, J. (2010). Measuring training load in sports. 
International Journal of Sports Physiology and Performance; 5, 406-411. 
 

45. Pustina, A.A., Sato, K., Liu, C., Kavanaugh, A.A., Sams, M.L., Liu, J., 
Uptmore, K.D., Stone, M.H. (2017). Establishing a duration standard for the 
calculation of session rating of perceived exertion in NCAA division I men’ 
soccer.  Journal of Trainology; 6, 26-30. 



58 

46. Haugen, T., & Buchheit, M. (2016). Sprint running performance monitoring: 
methodological and practical considerations. Sports Medicine, 46(5), 641-656. 
 

47. Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold 
concepts. Sports medicine, 39(6), 469-490. 
 

48. Smekal, G., Von Duvillard, S. P., Frigo, P., Tegelhofer, T., Pokan, R., Hofmann, 
P., ... & Bachl, N. (2007). Menstrual cycle: no effect on exercise 
cardiorespiratory variables or blood lactate concentration. Medicine & Science 
in Sports & Exercise, 39(7), 1098-1106. 
 

49. Laffaye, G., Wagner, P. P., & Tombleson, T. I. (2014). Countermovement jump 
height: Gender and sport-specific differences in the force-time variables. The 
Journal of Strength & Conditioning Research, 28(4), 1096-1105. 
 

50. Taylor, M. J. D., & Beneke, R. (2012). Spring mass characteristics of the fastest 
men on Earth. International journal of sports medicine, 33(08), 667-670. 
 

51. Byrne, C., Twist, C., & Eston, R. (2004). Neuromuscular function after exercise-
induced muscle damage. Sports medicine, 34(1), 49-69. 
 

52. McLean, B. D., Coutts, A. J., Kelly, V., McGuigan, M. R., & Cormack, S. J. 
(2010). Neuromuscular, endocrine, and perceptual fatigue responses during 
different length between-match microcycles in professional rugby league 
players. International journal of sports physiology and performance, 5(3), 367-
383. 
 

53. Martinez, D. B. (2016). The use of reactive strength index, reactive strength 
index modified, and flight time: contraction time as monitoring tools. Journal of 
Australian Strength and Conditioning, 24(5), 37-41. 
 

54. Hoff, J., Støren, Ø., Finstad, A., Wang, E., & Helgerud, J. (2016). Increased 
blood lactate level deteriorates running economy in world class endurance 
athletes. The Journal of Strength & Conditioning Research, 30(5), 1373-1378. 
 

55. Eniseler, N. (2005). Heart rate and blood lactate concentrations as predictors of 
physiological load on elite soccer players during various soccer training 
activities. Journal of Strength and Conditioning Research, 19(4), 799. 
 

56. Casamichana, D., Castellano, J., Calleja-Gonzalez, J., San Román, J., & 
Castagna, C. (2013). Relationship between indicators of training load in soccer 
players. The Journal of Strength & Conditioning Research, 27(2), 369-374. 
 

57. Donovan, C. M., & Brooks, G. A. (1983). Endurance training affects lactate 
clearance, not lactate production. American Journal of Physiology-
Endocrinology And Metabolism, 244(1), E83-E92. 



59 

58. Glaister, M., Howatson, G., Pattison, J. R., & McInnes, G. (2008). The 
reliability and validity of fatigue measures during multiple-sprint work: an issue 
revisited. The Journal of Strength & Conditioning Research, 22(5), 1597-1601. 
 

59. Robinson, J. M., Stone, M. H., Johnson, R. L., Penland, C. M., Warren, B. J., & 
Lewis, R. D. (1995). Effects of different weight training exercise/rest intervals 
on strength, power, and high intensity exercise endurance. The Journal of 
Strength & Conditioning Research, 9(4), 216-221. 
 

60. Hennessy, L., & Kilty, J. (2001). Relationship of the stretch-shortening cycle to 
sprint performance in trained female athletes. Journal of Strength and 
Conditioning Research, 15(3), 326-331. 
 

61. Montgomery, P. G., & Hopkins, W. G. (2013). The effects of game and training 
loads on perceptual responses of muscle soreness in Australian 
football. International journal of sports physiology and performance, 8(3), 312-
318. 



60 

Appendix A: IRB Approval Letter 

 
 
 
 
 



61 

Appendix B: Informed Consent Form 

 

 
 
 
 



62 

 

 
 
 
 



63 

 

 
 
 
 
 



64 

 
Appendix C: HIPAA 

 

 



65 

 
 
 

 
 



66 

 
 
 

 
 



67 

Appendix D: Health Status Questionnaire 

 
 
 
 



68 

 

 
 
 
 
 
 



69 

 

 
 

 
 

 



70 

Appendix E: International Physical Activity Questionnaire 

 

 
 
 



71 

 

 
 
 
 
 



72 

 

 
 
 
 
 



73 

 

 
 
 
 
 



74 

 

 
 
 
 
 



75 

 

 
 
 
 

 



76 

Appendix F: Physical Activity Readiness Questionnaire 

 

 
 



77 

Appendix G: Rhabdomyolysis Screening Form 

 

 
 
 
 



78 

Appendix H: Menstrual History Questionnaire 

 

 
 
 



79 

 

 
 
 
 

 


