
UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

SOUTH PACIFIC ATMOSPHERIC INTERNAL VARIABILITY AND ITS ROLE IN 

EL NIÑO-SOUTHERN OSCILLATION 

 
 
 
 
 
 

A THESIS 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

MASTER OF SCIENCE IN METEOROLOGY 

 
 
 
 
 
 
 
 
 

By 
 

YUJIA YOU 
 Norman, Oklahoma 

2018 
  



 
 
 
 
 

SOUTH PACIFIC ATMOSPHERIC INTERNAL VARIABILITY AND ITS ROLE IN 
EL NIÑO-SOUTHERN OSCILLATION 

 
 

A THESIS APPROVED FOR THE 
SCHOOL OF METEOROLOGY 

 
 
 
 
 
 
 
 

BY 
 
 
 

______________________________ 
Dr. Jason Furtado, Chair 

 
 

______________________________ 
Dr. Elinor Martin 

 
 

______________________________ 
Dr. Michael Richman 

 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by YUJIA YOU 2018 
All Rights Reserved.



iv 

Acknowledgements 

First and foremost, I owe my deepest gratitude to my advisor, Dr. Jason Furtado, 

for offering me the opportunity to study at the University of Oklahoma, for his constant 

patience, guidance, support and encouragement throughout my master studies. I learned 

a lot from the numerous discussions we have had, which helped me to think in a more 

comprehensive way. Many thanks also go to the faculty and staff at SoM, I really 

enjoyed the past two years here.  

My immense appreciation also goes to my undergraduate advisor, Dr. Xiaojing 

Jia from Zhejiang University, for teaching me the statistical methods when I was new to 

the climate science. In her research group, I first learned how to address research 

questions and think independently. 

I also thank my other committee members Dr. Elinor Martin and Dr. Michael 

Richman, for their insightful advice and discussions on my research. Thanks also go to 

members of Applied Climate Dynamics Group. Although we focus on very different 

topics, their works broaden my horizons and develop my interests in new research 

areas. 

Last but not least, I thank my parents, for unconditional support throughout the 

years and always being there.  



v 

Table of Contents 
Acknowledgements .......................................................................................................... iv 

List of Tables .................................................................................................................. vii 
List of Figures ................................................................................................................ viii 

Abstract ........................................................................................................................... xv 
Chapter 1: Introduction ..................................................................................................... 1 

1.1 ENSO Predictability .............................................................................................. 1 
1.2 Intrinsic ENSO Precursors .................................................................................... 3 

1.3 Outline ................................................................................................................... 9 
Chapter 2: Data and Methodology .................................................................................. 11 

2.1 Observational Datasets ........................................................................................ 11 
2.2 Models................................................................................................................. 12 

2.2.1 Coupled Model Intercomparison Project Phase 5 (CMIP5) Models ......... 12 
2.2.2 North-American Multi-Model Ensemble (NMME) Phase-II Models ....... 12 

2.3 General Methodology and Statistical Techniques .............................................. 14 
2.3.1 Linear Regression and Composite Analysis .............................................. 14 

2.3.2 EOF and MCA ........................................................................................... 16 
Chapter 3: The South Pacific Meridional Mode and its role in the El ............................ 19 

Niño-Southern Oscillation .............................................................................................. 19 
3.1 Background and Motivation ............................................................................... 19 

3.2 Data and Methods ............................................................................................... 21 
3.3 Characteristics of the SPMM in Reanalysis ........................................................ 23 

3.3.1 Spatial Structure of the SPMM .................................................................. 23 
3.3.2 Seasonality of the SPMM in Reanalysis .................................................... 27 

3.4 The SPMM in CMIP5 Models ............................................................................ 31 
3.5 Linking the SPMM to Tropical Pacific Climate Variability ............................... 37 

3.5.1 Contribution of the PMMs to ENSO Diversity ......................................... 39 
3.5.2 Sensitivity of PMMs’ Influence on ENSO Variability Compared to WWV

................................................................................................................. 45 
3.5.3 A Simple Statistical Model for Predicting Boreal Winter Pacific SSTA .. 47 

3.6 Chapter Summary and Discussion ...................................................................... 53 

Chapter 4: Austral winter South Pacific atmospheric internal ........................................ 57 



vi 

variability and its role in the development of ENSO events ........................................... 57 
4.1 Background and Motivation ............................................................................... 57 

4.2 Data and Methods ............................................................................................... 59 
4.3 Results ................................................................................................................. 61 

4.3.1 Reanalysis .................................................................................................. 61 
4.3.2 NMME Hindcasts ...................................................................................... 67 

4.3.3 Role of SPO in ENSO Predictability and Asymmetry ............................... 76 
4.4 Chapter Summary and Discussion ...................................................................... 78 

Chapter 5: Conclusion and Future Work ........................................................................ 80 
5.1 Conclusion .......................................................................................................... 80 

5.2 Future Work ........................................................................................................ 83 
References ....................................................................................................................... 88 

  



vii 

List of Tables 
Table 2.1 List of coupled climate models from CMIP5 analyzed in this study, along 

with total length of the piControl run and grid resolution (unit: degree) for 
each model (years). For resolution, in case of the atmospheric grid and its 
latitude, the tabulated resolution is only valid for the equator region. For 
higher latitudes deviations may occur. Ocean models have their own, finer 
grid. If two values are given for the latitude resolution of the ocean grid, 
resolution is not constant. The first value is that for the equator, the second 
for the poles (maximum for the two poles if different). lat(i,j) and lon(i,j) 
denote latitudes and longitudes defined with two indices i and j. In this case 
the resolution cannot simply be read out. See also the website 
https://portal.enes.org/data/enes-model-data/cmip5/resolution. .................... 13 

Table 4.1 The selected warmJJA and coldJJA events based on the criteria in the text. ..... 61 
Table 4.2 The warmJJA and coldJJA events for the observed bootstrapped composites. .. 70 

Table 4.3 All major El Niño events (23 events, first column), their types (second 
column; see text for definition) and their types predicted by SPO (third 
column). Specifically, when the SPOJJA index is greater (less) than 1σ, then 
a(n) EP (CP) El Niño is predicted. ................................................................. 77 

 
  



viii 

List of Figures 
Figure 1.1 The spatial structure of the North Pacific Meridional Mode. SSTA (°C) and 

surface wind (m/s) fields are shown in shading and vector, respectively. 
Adapted from Figure 1 in Chiang and Vimont (2004). .................................... 5 

Figure 1.2 (a) The SSTA optimal structure that evolves into (b) a mature ENSO event in 
7 months. Contour internal is 0.07. The units are arbitrary. Adapted from 
Alexander et al. (2008). See also Penland and Sardeshmukh (1995). ............. 6 

Figure 1.3 Regression of anomalous SSTA (shading), SLPA (contours), and surface 
winds (arrows) onto normalized SST time series averaged in the (left column) 
northeast (21°N-25°N, 138°W-142°W) and (right column) southeast (19°-
15°S, 103°-107°W) Pacific, respectively. (a, b) The multimodel mean of 11 
AGCM-slab models; (c, d) as in (a) but for the fully coupled version 
(preindustrial scenario), and (e, f) observation. Adapted from Zhang et al. 
(2014a). ............................................................................................................ 8 

Figure 1.4 Seasonality of the SEP index in AGCM-slab models (gray lines with circles, 
multimodel mean), fully coupled models (gray lines with crosses, multimodel 
mean), and observations (Hadley Center Sea Ice and Sea Surface 
Temperature (HadISST) in black dashed lines and Extended Reconstructed 
SST version 3 (ERSSTv3) in black dotted line) expressed by the standard 
deviation as a function of calendar month. The mean standard deviation for 
all months is removed to emphasize the seasonality. Positive (Negative) 
values denote standard deviation exceeds (falls below) the annual mean. 
Adapted from Zhang et al. (2014a). ................................................................. 9 

Figure 3.1 Schematic plot of how the NPMM may trigger ENSO events. (a) SLP and 
low-level wind climatology in the tropical and subtropical North Pacific. (b) 
The positive phase of the boreal winter NPO represents a weakened North 
Pacific subtropical high, thereby weakening the trade winds. The weakened 
trade winds suppress the ocean evaporation, imposing downward latent heat 
flux and warm underlying SSTA. (c) The NPO after boreal winter. In 
responses to the positive SSTA footprint and the WES feedback, an 
anomalous atmospheric circulation resembling the NPO-induced wind 
anomalies forms in the southwestern side of the SSTA footprint. (d) The 
subtropical anomalies propagate southwestward into the western-central 
tropical Pacific. The anomalies then trigger downwelling Kelvin waves to 
deepen the thermocline depth in the far eastern tropical Pacific and thus give 
rise to the onset of an El Niño event. ............................................................. 20 

Figure 3.2 (a) Regressions of the monthly-mean SSTA (shading, °C), SLPA (blue/red 
contour, hPa), 10-m wind anomalies (vector, m/s) and net surface latent heat 
flux (black contour, W/m2) onto the standardized monthly-mean EC-1wind 
index. Negative (positive) latent heat flux anomalies indicate anomalous heat 
flux into (out of) the ocean. Contour interval 0.4 hPa (blue/red line contours) 
and 5 W/m2 (black contours). Reference wind vector 0.7 m/s. Positive 
(negative) values represented by solid (dashed) contours; zero contour 
omitted. Stippled areas indicate significance of SSTA at 95% level according 



ix 

to a two-tailed Student’s t test. Only significant wind vectors are drawn. (b) 
Lag correlation between EC-1wind and EC-1SST indices (see text for details). 
Negative (positive) lags indicate that the EC-1wind leads (lags) the EC-1SST 
index. (c) The month-to-month standard deviation of the EC-1wind (green 
bars) and EC-1SST (yellow bars) indices. (d) The standardized EC-1wind (blue 
line) and EC-1SST (red line) time series. ......................................................... 25 

Figure 3.3 Regression of monthly-mean SSTA (shading, °C), SLPA (blue/red contour, 
hPa), and 10-m wind anomalies (vector, m/s) onto (a) the standardized SLP-
1, (b) SST-1, (c) SLPres-1 and (d) SSTres-1 indices (see text for details). 
Contour interval 0.4 hPa. Reference wind vector 0.7 m/s. Only significant 
(p<0.05) wind vectors are plotted. Stippling same as Fig. 3.1a. (e) Lag 
correlation between the SPMM and SSTres-1 indices (blue) and the SPMM 
and SLPres-1 indices (red). Negative (positive) lags indicate the SPMM leads 
(lags) the other index. ..................................................................................... 27 

Figure 3.4 (a) Month-to-month correlation between the EC-1wind and EC-1SST indices 
from reanalysis. (b) Same as Fig. 1a, except for December-February (DJF). 
Line contour interval 0.4 hPa (blue/red contours) and 5 W/m2 (green 
contours). Reference wind vector 0.7 m/s. (c) Regression of DJF ocean 
potential temperature anomalies (°C) as a function of depth averaged over 
10°S~25°S, 130°W~80°W (red box) onto the SPMM index.  (d) As in (b) but 
for June - August (JJA). (e) As in (c) except for JJA. .................................... 29 

Figure 3.5 (a) Month-to-month regression of net atmospheric heat flux (Qnet, positive 
values indicate fluxes into the ocean; green line; W/m2), convergence of 
ocean heat transport (Qocn, positive values indicate convergence; blue line; 
W/m2) and the total heat flux (Qtotal; red line; W/m2) onto the SPMM index. 
Terms are averaged over 10°S~25°S, 130°W~80° (i.e., red box in Fig. 3). (b) 
Breakdown of the net atmospheric heat flux (W/m2) regression term by 
month: sensible heat flux (SH), latent heat flux (LH), shortwave radiation 
flux (SW) and longwave radiation flux (LW). (c) Climatological mixed layer 
depth (MLD; black line, m) and vertically-averaged temperature tendency 
(∂T/∂t; red line; °C/month), calculated from the ocean heat budget equations 
(see text). (d) Climatological (upper vector; m/s) and anomalous (lower 
vector; m/s) 10-m winds within the same region. Reference vectors given and 
are different between climatological and anomalous winds. ......................... 31 

Figure 3.6 Regression maps of the monthly-mean SSTA (shading, °C), SLPA (black 
contour, hPa) onto the standardized monthly-mean EC-1wind for each 
individual model. The EC-1wind is obtained by MCA similar to Fig. 3.2a. .... 34 

Figure 3.7 (a) The CMIP5 MME regression map of the monthly SSTA (shading, °C), 
SLPA (blue/red line contours, hPa), 10-m wind anomalies (vector, m/s) and 
net surface latent heat flux (black contour, W/m2) onto the standardized 
SPMM index. Negative (positive) latent heat flux values refer to heat fluxes 
into (out of) the ocean. (b) As in Fig. 1b but for the CMIP5 MME. (c) As in 
Fig. 1c but for the CMIP5 MME. (d) As in (a) but regression of the fields 
onto the SLPres-1 index. (e) As in (a) but regression onto the SSTres-1 index. 



x 

(f) As in Fig. 2e but for the CMIP5 MME. Contour interval 0.4 hPa (colored 
contour lines) and 4 W/m2 (black contour lines) for (a), (c), and (d). For all 
contours, positive (negative) values are solid (dashed) contours; zero 
contours omitted. Reference wind vector 1.0 m/s. Stippled areas indicate 
significance of SSTA when at least 9 out of 12 model have the same sign. 
Only significant wind vectors are drawn. ...................................................... 35 

Figure 3.8 As in Fig. 3.4, but for the CMIP5 MME. (b) Line contour interval 0.2 hPa 
(blue/red contours) and 2 W/m2 (green contours). Reference wind vector 0.5 
m/s. (d) Line contour interval 0.2 hPa (blue/red contours) and 4 W/m2 (green 
contours). Reference wind vector 1.0 m/s. Shading in (c) and (e) indicate the 
unit standard deviation across the models. ..................................................... 36 

Figure 3.9 As in Fig. 3.5, but for the CMIP5 MME. Shading in (a) and (c) indicate the 
unit standard deviation across the models. ..................................................... 37 

Figure 3.10 Lag-regression of (a) February-April (FMA), (b) May-July (MJJ), (c) 
August-October (ASO), and (d) November-January [NDJ(+1)] SSTA 
(shading, °C), SLPA (blue/red contour, hPa) and surface wind anomalies 
(vector, m/s) from reanalysis onto the SPMMFMAM index. (e)-(h) Same as (a)-
(d) but for the CMIP5 MME. Stippling denote significance of the SSTA 
regression coefficients at the p < 0.05 level (see text for details). Line contour 
interval 0.2 hPa. Reference vector 0.5 m/s.  Stippling indicates where the 
SSTA regression coefficients are statistically significant (p<0.05 for 
reanalysis; 9 out of 12 models have the same sign of the regression for the 
CMIP5 models). ............................................................................................. 39 

Figure 3.11 (a) Scatter plot of the NPMMFMAM vs. SPMMFMAM from reanalysis. Least-
squares best fit line and correlation included. (b) Scatter plot of NPMMFMAM 
vs CTINDJ(+1) from reanalysis. Red (blue) dots represent years when the 
NPMMFMAM and SPMMFMAM are of the same (opposite) sign. Threshold 
values for each case shown with the red and blue background shading. 
Corresponding colored lines denote the least squares fit line of the 
respectively-colored dots. Correlation for all points (black) and the 
conditional correlations for each case (red and blue) included. Inset shows the 
PDF of the difference in correlation coefficients between the same-signed 
and opposite-signed conditional correlations (i.e., red and blue; see text for 
details). Red dot denotes the correlation difference (i.e., red minus blue). (c) 
As in (b) but for the SPMMFMAM vs. CTINDJ(+1). (d) Histogram of frequency 
(%) of CTINDJ(+1) values for same-signed and opposite-signed NPMM/SPMM 
pairings (corresponding legend on far right). Total samples in each bin 
included. (e)-(h) As in (a)-(d) but for the CMIP5 models. For insets in (f) and 
(g), gray (red) PDFs represents corr_diff(SPMM) [corr_diff(NPMM)] (see 
text for details). .............................................................................................. 41 

Figure 3.12 (a)-(d) Lag-regression of observed (a) February-April (FMA), (b) May-June 
(MJJ), (c) August-October (ASO), and (d) November-January [NDJ(+1)] 
SSTA (shading, °C), SLPA (blue/red contour, hPa) and surface wind 
anomalies (vector, m/s) onto the standardized NPMMFMAM index under the 



xi 

condition that the NPMMFMAM and SPMMFMAM indices are of the opposite 
sign. (e)-(h) As in (a)-(d) but regressed onto the SPMMFMAM index. (i)-(l) 
Same as (a)-(d) but for the CMIP5 MME. (m) – (p) As in (e)-(h) but for the 
CMIP5 MME. Line contour interval 0.2 hPa. Reference vector 1.0 m/s. 
Stippling indicates where the SSTA regression coefficients are considered 
significant (p < 0.05 for reanalysis; 9 out of 12 models have the same sign of 
the regression for the CMIP5 models). .......................................................... 43 

Figure 3.13 As in Fig. 3.12 except under the condition that the NPMMFMAM and 
SPMMFMAM are of same sign. ........................................................................ 44 

Figure 3.14 (a) Scatterplot between the observed NPMMFMAM and CTINDJ(+1) indices 
when the NPMMFMAM is of the same (red dots) and opposite (blue dots) sign 
with the WWVFMAM anomaly. Threshold values for each case shown with the 
red and blue background shading. Corresponding colored lines denote the 
least squares fit line of the respectively-colored dots. Correlation for all 
points (black) and the conditional correlations for each case (red and blue) 
included. (b) As (a) but for the WWVFMAM and CTINDJ(+1) indices. (c)-(d) as 
(a)-(b) but for the observed SPMMFMAM and CTINDJ(+1) indices when the 
SPMMFMAM is of the same (red dots) and opposite (blue dots) sign with the 
WWVFMAM anomaly. (e)-(h) as (a-d) but for the CMIP5 models. ................. 46 

Figure 3.15 (a) Anomaly correlation coefficient (ACC) for the hindcasts of observed 
SSTANDJ(+1) using a multivariate linear regression model (see text) when 
using (a) only the NPMMFMAM, (b) only the SPMMFMAM, (c) both the 
NPMMFMAM and SPMMFMAM, (d) only WWVFMAM, and (e) NPMMFMAM, 
SPMMFMAM, WWVFMAM as predictors. (f)-(j) As in (a)-(e) but for the CMIP5 
MME. Black contours outline where ACC values are significant at the 95% 
confidence level. ............................................................................................ 49 

Figure 3.16 Predictions of the NDJ(+1) Pacific SSTA (shading, °C) in (a-c) 2012/2013, 
(d-f) 2014/2015, and (g-i) 2017/2018 with (a, d, g) PMMs, PMMs and WWV 
(b, e, h) as predictors. Note the color bars for the prediction and observation 
are different. ................................................................................................... 51 

Figure 3.17 (a, c, e) The Niño3.4 index (SSTA averaged over 5°S~5°N and 
170°W~120°W) and (b, d, f) the OND SSTA forecasts by NMME models 
initialized in (a-b) May 2012, (c-d) May 2014, and (e-f) May 2017, 
respectively. The plots are downloaded from the NMME website 
(http://www.cpc.ncep.noaa.gov/products/NMME/archive/; NMME Realtime 
Forecasts Archive). ........................................................................................ 53 

Figure 4.1 Correlation map between winter (January-March) EP ENSO index and (a) 
SLPA in the prior winter, (b) SSTA in the prior winter, and (c) with 
concurrent SSTA associated with the EP ENSO. (e)-(g) The same analysis 
done with the CP ENSO index. Adapted from Di Lorenzo et al. (2015). ...... 58 

Figure 4.2 Locations of Niño regions for measuring SSTs in the tropical Pacific Ocean. 
Adapted from https://climatedataguide.ucar.edu/climate-data/nino-sst-
indices-nino-12-3-34-4-oni-and-tni. .............................................................. 59 



xii 

Figure 4.3 (a) Regression of SLPA (contour, hPa), SSTA (shading, °C), and 10-m wind 
anomalies (vector, m/s) onto the standardized PC1 time series of monthly-
mean South Pacific SLPA (i.e., the SPO index). Contour interval 0.4 hPa 
(line contours) and 0.1°C (shading). Reference wind vector 0.5 m/s. Solid 
(dashed) line contours indicate positive (negative) values. Zero contour 
omitted. (b) The lag correlation between the SPO index and the CTI. 
Negative (positive) lags indicate the SPO index leads (lags) the CTI. (c) The 
standardized SPO index (blue) and its 9-month running-mean (black). (d) 
Seasonality of the SPO index expressed by the standard deviation as a 
function of calendar month. ........................................................................... 62 

Figure 4.4 (a)-(d) Lag regression of SLPA (contours, hPa), SSTA (shading, °C), and 10-
m wind anomalies (vector, m/s) onto the standardized SPOJJA index for (a) 
March-May (MAM), (b) June-August (JJA), (c) September-November 
(SON), and (d) December-February (DJF). For (a), the fields lead the SPOJJA 
index, while for (c) and (d), the SPOJJA index leads the fields. Contour 
interval 0.2°C for SSTA and 0.4 hPa for SLPA. Reference wind vector 0.8 
m/s. Wind vectors plotted only where significant at the p<0.05 level. (e)-(h) 
As (a)-(d) except for the anomalous vertically-integrated meridional oceanic 
mass transport (V; shading, m2/s) and ocean heat content (vertically-averaged 
temperature integrated from 0 to 300m; contour, °C). Contour internal 0.15 
m2/s for V, and 0.2 °C for ocean heat content. Solid (dashed) line contours 
indicate positive (negative) values. Zero contour omitted. Stippling indicates 
statistically significant SSTA regression coefficients at the p < 0.05 level 
according to a two-tailed Student's t test. ....................................................... 64 

Figure 4.5 (a) Regression of JJA SLPA (contour, hPa), SSTA (shading, °C), and 10-m 
wind anomalies (vector, m/s)  onto the standardized CTIJJA index. (b) As in 
(a), except for regression onto the standardized PC1res index (see text for 
details). Contour interval 0.2°C for SSTA and 0.4 hPa for SLPA. Reference 
wind vector 0.8 m/s. Solid (dashed) line contours indicate positive (negative) 
values. Zero contour omitted. Wind vectors plotted only where significant at 
the p < 0.05 level. Stippling as in Fig. 4.4. .................................................... 65 

Figure 4.6 (a)-(d) As in Figs. 4.3(a)-(d) except for regressions onto the standardized 
NPOMAM index. (e)-(h) As in (a)-(d) except for regressions onto the 
standardized NPOMAM-rNiño3 (see text for details). (i)-(l) As in (a)-(d) except 
for regressions onto the standardized NPOMAM-rSPO (see text for details). 
Contour interval 0.1°C (shaded contours) and 0.4 hPa (line contours). 
Reference wind vector 0.8 m/s. Solid (dashed) line contours indicate positive 
(negative) values. Zero contour omitted. Stippling as in Fig. 4.4. ................. 67 

Figure 4.7 (a) Box plots for correlations between the  and Niño3JJA for the CESM1 
(blue) and (red) CanCM4 ensemble members. Bootstrapped warmJJA and 
coldJJA composites of JJA SLPA (contour, hPa) and SSTA (color shading, 
°C) for (b) 10th percentile and (c) 90th percentile based on the  index in 
reanalysis (see text). The warmJJA and coldJJA composites of JJA SLPA 
(contour, hPa) and SSTA (color shading, °C) for the CESM1 ensemble 
members simulating the (d) weakest and (e) strongest , respectively. (f, 

SPONP
JJA

SPONP
JJA

SPONP
JJA



xiii 

g) As in (d, e) but for the CanCM4. Positive (Negative) SLPA values 
represented by solid (dashed) contours. Zero contour omitted. Contour 
interval 0.5hPa. Light blue and light red shading denote where negative and 
positive SLPA are significant at 95% confidence level, respectively, based on 
a two-tailed Student’s t test. ........................................................................... 70 

Figure 4.8 (a) Autocorrelation for  (red line) and  (black line). (b) Scatter 
plot of the Niño3� JJA versus . Regressions of JJA (e) SSTA� 
(shading, °C/hPa) and U850�  (vector, m/s hPa), (g) equatorial (5°N-5°S) 
Tsub� (shading, °C/hPa) and subsurface velocity (u�, w�; vector, cm/s 
hPa) onto the non-standardized  in CESM1. The w� is scaled by 3*104 
for visual clarity. The purple, dark gray, and light gray dots in (c, d) represent 
the events preceding the major El Niño, La Niña, neutral events, respectively. 
(b, d, g, h) are the same as (a, c, e, f) but for CanCM4. The shading in (e, g) 
and stippling in (f, h) indicate the SSTA� and Tsub� significant at 95% 
confidence level, respectively. Positive (Negative) values represented by 
solid (dashed) contours. Zero contour omitted. Only the significant wind 
vectors are drawn. .......................................................................................... 72 

Figure 4.9 (a) Scatter plot of the  versus Niño3�NDJ(+1). Regressions of the JJA, 
September-November (SON), and NDJ(+1) (c) SSTA� (shading, °C/hPa) 
and U850�   (vector, m/s hPa), (d) equatorial (5°N-5°S) Tsub�  (shading, 
°C/hPa) onto the non-standardized  in CESM1. (b, e, f) are the same as 
(a, c, d), but for CanCM4. Only the  precedes the major ENSO events 
are included in (c)-(f). Positive (negative) values represented by solid 
(dashed) contours. Zero contour omitted. Stippling and shading as in Fig. 4.8.
 ........................................................................................................................ 74 

Figure 4.10 Regressions of the JJA (a) SLPA� (hPa/°C), (c) SSTA� (°C/°C), and (e) 
equatorial (5°N-5°S) Tsub �  (°C/°C) onto the non-standardized 
Niño3�NDJ(+1) in CESM1. (b, d, f) are the same as (a, c, e), but for CanCM4. 
Only the major ENSO events are included. Positive (Negative) values 
represented by solid (dashed) contours. Zero contour omitted. Stippling and 
shading as in Fig. 4.8. .................................................................................... 75 

Figure 4.11 (a) Difference between the DJF-mean SSTA (°C) for all El Niño events and 
the inverted DJF-mean (i.e., multiplied by -1) for all La Niña events. (b) As 
in (a) but for only El Niño (La Niña) events when the SPOJJA>1σ 
(SPOJJA<1σ). (c) As in (a) but for El Niño and La Niña events when 
SPOJJA<1σ. Contour interval 0.1°C. Stippling indicates composite differences 
that are significantly different from each other at the p<0.05 level according 
to a two-tailed Student's t test. ....................................................................... 78 

Figure 5.1 Diagram of ENSO variability. The North Pacific framework is put forth by 
Di Lorenzo et al. (2015). ................................................................................ 83 

SPONP
June SPO0NP

June

SPO0NP
JJA

SPO0NP
JJA

SPO0NP
JJA

SPO0NP
JJA

SPO0NP
JJA



xiv 

Figure 5.2 (a) Power spectrum (plotted as percent variance; black line) of normalized 
observed monthly-mean NPMM index. Blue line represents the theoretical 
red noise power spectrum, and the dashed red line represents the 95% 
significance curve. (b) As in (a) but for the observed monthly-mean SPMM 
index. (c) As in (a) but for the CMIP5 MME. (d) As in (b) but for the CMIP5 
MME. (e) Squared coherence from the cross-spectral analysis of the monthly-
mean NPMM index and the CTI. Dashed grey line denotes the 95% 
significance level for the squared coherence. (g, h) As in (e, f) but from the 
cross-spectral analysis of the monthly-mean SPMM index and the CTI. Note 
the differences of the y-axis for the CMIP5 MME versus the reanalysis plots. 
(i) Lag correlation between the raw (solid), 2~4 yr band-passed (dot-dashed), 
and 6 yr low-passed (dashed) versions of the NPMM index (blue) and SPMM 
index (red) and the CTI. Negative (positive) lags indicate that the 
NPMM/SPMM index leads (lags) the CTI. Corresponding vertical lines on 
the x axis represent the lag with the maximum correlation. (j) As in (i) but for 
the CMIP5 MME. Red/blue shading in (j) denotes the unit standard deviation 
across models. ................................................................................................ 85 
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Abstract 
Accurate long-range seasonal prediction of the El Niño-Southern Oscillation 

(ENSO) phenomenon is of critical importance to predict regional and global climate 

anomalies. The overarching goal of this work is to seek the extratropical precursors for 

ENSO events with a focus on the South Pacific. More specifically, this work 

investigates the impacts of the South Pacific atmospheric internal variability on the 

occurrence, intensity, evolution, and flavors of ENSO events in the context of the 

coupled atmosphere-ocean system.  

In general, both the tropically forced and intrinsic atmospheric variability in the 

South Pacific features a large-scale meridional sea level pressure (SLP) dipole with 

anomalies out-of-phase between the middle and high latitudes. The dipole is termed the 

South Pacific Oscillation (SPO) in the present thesis. The internal component of the 

SPO initiates the South Pacific Meridional Mode (SPMM), which acts as an effective 

conduit transmitting the extratropical wind and sea surface temperature (SST) 

anomalies (SSTA) into the central-eastern equatorial Pacific via the wind-evaporation-

SST (WES) feedback. Modulated by the seasonal cycle of the oceanic mixed layer 

depth and the lower amplitude of the mean seasonal cycle in the Southern Hemisphere, 

the WES feedback involved with the SPMM is most effective during the austral 

summer, providing a favorable timing for the SPMM to prime an ENSO event. The 

SPMM-induced anomalies in the central-eastern tropical Pacific interfere constructively 

or destructively with the contemporaneous western tropical anomalies driven by the 

North Pacific Meridional Mode (NPMM) to shape the occurrence, evolution, amplitude, 

and potentially the longitudinal position of the maximum SSTA associated with ENSO 

events. Both the Pacific meridional modes are most efficient at triggering ENSO events 
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when the subsurface equatorial Pacific Ocean is preconditioned with the anomalous 

heat content buildup. The NPMM and SPMM during the austral winter (February-May) 

operate as skillful predictors for the boreal winter SSTA in the Pacific basin. 

Despite considerable improvements to long-lead forecasts of ENSO activity 

over the past decades, the model prediction of the ENSO flavor is constrained to about 

one-to-two season lead time. Our results indicate that the austral winter SPO appears to 

be a primary source contributing to uncertainty in ENSO forecasts and provides 

important implications for the seasonal prediction of the ensuing ENSO flavors. 

Specifically, the spatial structure and amplitude of the austral winter SPO are 

considerably regulated by atmospheric intrinsic process, which affects the strength of 

the South Pacific subtropical high, forces stochastic zonal wind stresses and regulates 

discharge of the ocean heat content in the eastern equatorial Pacific. Although the wind 

stress relevant to the internal variability decays rapidly, it initiates coupled instability 

that grows into ENSO-like structure by the Bjerknes feedback. Given that internal 

variability is, by definition, unpredictable even with a perfect model, the austral winter 

SPO might serve as a natural limit for ENSO prediction. 

Collectively, the current study highlights the importance of the South Pacific 

atmospheric internal variability and provides potential enhancements to understand and 

predict ENSO events. The findings contribute to the existing literature on the 

connection between North Pacific and ENSO to include the South Pacific. Although 

this thesis primarily focuses on the interannual variability, the role of the SPMM in 

Pacific decadal variability and its connection to ENSO under anthropogenic climate 

change warrant future investigations. 
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Chapter 1: Introduction 

1.1 ENSO Predictability  

The El Niño-Southern Oscillation (ENSO) phenomenon is the leading mode of 

coupled variability of the tropical ocean-atmosphere system on interannual timescales 

(e.g., Hoskins and Karoly 1981; Alexander et al. 2002; Barsugli and Sardeshmukh 

2002; Liu and Alexander 2007; Trenberth and Smith 2009). The warm phase of ENSO 

features positive sea surface temperature (SST) anomalies (SSTA) in the central-eastern 

tropical Pacific, weakened easterly trade winds, and a flattened equatorial thermocline. 

In and around the tropical Pacific, ENSO-induced teleconnections impact and alter the 

Walker circulation, while stationary Rossby wavetrains excited by the tropical upper-

level divergence from the anomalous convection dominate the extratropical response in 

both hemispheres. Hence, ENSO is considered an important source for seasonal 

predictability of temperature and precipitation regimes worldwide. Nonetheless, 

seasonal climate predictions based on ENSO are subject to substantial uncertainties 

because of the presence of the inherently unpredictable atmospheric noise in the mid-

high latitudes (e.g., Deser et al. 2017; Lee et al. 2018) and the great diversity in ENSO 

events (e.g., location and amplitude of the maximum SSTA; Capotondi et al. 2015a).  

The event-to-event difference in ENSO intensity and spatial pattern is reflected 

in the associated tropical atmospheric heating profiles and global teleconnections (e.g., 

Ashok et al. 2007; Weng et al. 2009). Commonly, ENSO events are classified into two 

general types based on longitudinal location of the maximum tropical SSTA: eastern-

Pacific (EP) and central-Pacific (CP) events (Kao and Yu 2009; Kug et al. 2009; Yu and 

Kim 2010, 2011; Capotondi et al. 2015a), although several studies proposed that ENSO 
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flavors come in a non-discrete continuum and can be considered as different 

combinations of the two types (e.g., Johnson 2013; Karnauskas 2013). Different terms 

have been used to describe the CP type, including “dateline El Niño” (Larkin and 

Harrison 2005), “El Niño Modoki” (Ashok et al. 2007), and “warm pool El Niño” (Kug 

et al. 2009). The EP type is also termed “cold tongue El Niño” and “canonical El Niño” 

(Kug et al. 2009). The conventional EP events appear to be a basin-wide coupling 

phenomenon during which the SSTA typically appear in the far eastern tropical Pacific 

attached to the coast of South America. On the contrary, during CP events, the SSTA 

extend from Baja California southwestward to the central-western equatorial Pacific and 

thereafter remain and amplify in situ (Kao and Yu 2009; Kug et al. 2009; Yu and Kim 

2010).  

Consequently, a comprehensive understanding of ENSO dynamics and its 

predictability is of both scientific and practical importance. Current theoretical 

explanations of ENSO split with regard to its predictability limit. Theories such as the 

delayed oscillator (Suarez and Schopf 1988) and the discharge-recharge oscillator (Jin 

et al. 1997) emphasize the consequences of the slowly evolving ocean dynamics and 

hence interpret ENSO as a self-sustained, unstable oscillatory mode with potentially 

highly-predictable time scales of up to 2 years. Conversely, other theories consider 

ENSO as a stable (or damped) mode triggered by or interacting with stochastic 

processes. These random disturbances, for which the decorrelation timescale is fairly 

short, fundamentally limit the predictability of ENSO (e.g., Penland and Sardeshmukh 

1995; Chang et al. 1996; Moore and Kleeman 1999; Thompson and Battisti 2000, 

2001). Moreover, when considering dynamical model predictions, despite considerable 
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improvements to long-lead forecasts of ENSO activity over the past decades, poor long-

range seasonal forecast skill in terms of the ENSO occurrence and amplitude still exists 

during the boreal spring prior to an event. This poor skill is termed the “spring 

prediction barrier” in the literature (e.g., Jin et al. 2008; Barnston et al. 2012; Lai et al. 

2017) and possibly arises because the boreal spring features the climatologically 

weakest Walker Cell and weakest tropical Pacific zonal SST gradient upon which even 

the smallest perturbation can rapidly intensify (e.g., Kleeman and Moore 1971; Latif et 

al. 1994). Additionally, the prediction of the types of ENSO remains limited to less than 

one-season lead time since the forecast models suffer from a common systematic bias 

whereby the SSTA associated with the EP ENSO shifts westward with increasing lead 

time (e.g., Hendon et al. 2009; Zhao and Hendon 2009).  

1.2 Intrinsic ENSO Precursors 

The relatively poor prediction skill of ENSO from dynamical models advocates 

the essential role of the atmospheric intrinsic/stochastic variability in driving ENSO 

variability. Note the internal variability in the current study refers to internal variability 

of the atmosphere that is independent of (direct) tropical Pacific forcing. Several 

stochastic forcings that potentially drive ENSO include westerly wind bursts (e.g., 

Fedorov 2002; Vecchi et al. 2000; Chen et al. 2015), the Madden-Julian Oscillation 

(e.g., Gebbie et al. 2007), tropical oceanic instability waves in the eastern Pacific Ocean 

(e.g., An 2008), and extratropical North Pacific atmospheric variability (e.g., Vimont et 

al. 2003a; Chang and Vimont 2004; Nakamura et al. 2006, 2007).  

On time scales longer than 10 days, extratropical atmospheric circulation 

variability is organized into large-scale patterns driven primarily by internal nonlinear 
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dynamical processes (Wallace and Gutzler 1981; Feldstein 2000). These random 

fluctuations are white in time but not necessarily in space. Increasing observational and 

modeling evidence suggests that the North Pacific Meridional Mode (NPMM; Figure 

1.1) acts as an effective conduit through which extratropical North Pacific atmospheric 

variability finally impacts the tropical Pacific (Vimont et al. 2001, 2003a, b; Chiang and 

Vimont 2004; Anderson 2007; Chang et al. 2007; Alexander et al. 2010; Di Lorenzo et 

al. 2015). Initiated by sea level pressure (SLP) variations associated with the North 

Pacific Oscillation (NPO; Rogers 1981; Linkin and Nigam 2008) during the boreal 

winter and spring, the NPMM features warm (cool) subtropical SSTA and the 

weakened (strengthened) trade winds during its positive (negative) phase. The NPMM 

evolves through a positive feedback between the wind-induced evaporation and the 

underlying SSTA. This thermodynamical coupling, referred to as the wind-evaporation-

SST (WES) feedback (Xie and Philander 1994), enhances the southwestward 

propagation of the subtropical SSTA and wind anomalies from the North-central Pacific 

into the western-central equatorial Pacific in the boreal spring and early summer (i.e., 

the seasonal footprinting mechanism; e.g., Vimont et al. 2001, 2003a, b) and 

charges/discharges the equatorial Pacific upper ocean heat content [i.e., the trade wind 

charging (TWC) mechanism; e.g., Anderson et al. 2007; Anderson and Perez 2015]. 

Unlike ENSO, the NPMM does not require ocean dynamics explicitly for its existence. 

However, equatorial oceanic Kelvin waves triggered by the NPMM forcing are the 

fundamental mechanism responsible for further ENSO development (Thomas and 

Vimont 2016). 
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Figure 1.1 The spatial structure of the North Pacific Meridional Mode. SSTA (°C) and surface 
wind (m/s) fields are shown in shading and vector, respectively. Adapted from Figure 1 in 
Chiang and Vimont (2004).  
 

The NPMM thus carries important implications for predicting the onset and 

occurrence of ENSO events. Chang et al. (2007) indicated that more than 70% of the 

historical El Niño events during 1958-2000 were preceded by extreme NPMM positive 

episodes in the boreal spring. Conversely, this fact implicitly hints that not all extreme 

NPMM episodes guarantee an ENSO event. Larson and Kirtman (2014, 2015) found 

large ensemble spread and little skill in ENSO forecasts using the NPMM as the sole 

predictor in dynamical models. Contradictory results also exist in terms of the role of 

the NPMM in predicting the ENSO flavors. Some studies suggest the NPMM is more 

effective in initiating CP ENSO events (e.g., Vimont et al. 2014), while other works 

found no such preference (e.g., Ding et al. 2015a; Di Lorenzo et al. 2015).  

A plausible explanation for the ENSO prediction failure based on the NPMM is 

the interference between the various ENSO precursors. The antecedent and concurrent 

conditions in the tropical Pacific and subtropical South Pacific have been reported to 

interfere constructively or destructively with the NPMM-induced tropical Pacific 
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anomalies (e.g., Anderson 2007; Alexander et al. 2010; Su et al. 2014; Min et al. 2015). 

Notably, the potential influence of the South Pacific anomalies is supported by the 

optimal structure (OS) of ENSO events (Figure 1.2; e.g., Penland and Sardeshmukh 

1995; Alexander et al. 2008). When the OS is specified as the initial condition (Fig. 

1.2a), the SSTA field evolves into a mature ENSO event 7 months later (Fig. 1.2b). The 

OS bears strong resemblance to the NPMM structure in the North Pacific sector, but 

also shows a large loading in the subtropical South Pacific.  

 

Figure 1.2 (a) The SSTA optimal structure that evolves into (b) a mature ENSO event in 7 
months. Contour internal is 0.07. The units are arbitrary. Adapted from Alexander et al. (2008). 
See also Penland and Sardeshmukh (1995). 

 

While previous studies focused on the response of the South Pacific circulation 

to the tropical forcing (e.g., Mo and Higgins 1998; Mo 2000; Mo and Paegle 2001; 

Kidson and Renwick 2002), emerging climate literature now emphasizes the impact of 

the South Pacific variability on tropical Pacific climate variability across multiple 

timescales, either via oceanic tunnels (van Loon and Shea 1985; Luo et al. 2003; Tatebe 

et al. 2013; Imada et al. 2016) or atmospheric bridges (Matei et al. 2008; Okumura 

2013; Zhang et al. 2014a; Ding et al. 2015b, 2017; DiNezio et al. 2017; Meehl et al. 

2017). 
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Recently, Zhang et al. (2014a) identified the South Pacific Meridional Mode 

(SPMM), for which the spatial structure is similar to OS in the South Pacific, using 

atmospheric general circulation (AGCM)-slab ocean models, fully coupled models, and 

observational datasets (Figure 1.3). In AGCM-slab ocean models, it is suggested that 

the South Pacific Meridional Mode (SPMM), which features SSTA in the southeastern 

Pacific oriented with the southeast trade winds (Fig. 1.3b) and is delineated by areal-

averaged SSTA in the southeastern Pacific (i.e., their SEP index), has a stronger 

expression in the equatorial Pacific than the NPMM owing to the northward shift of the 

Intertropical Convergence Zone (Zhang et al. 2014b). However, the slab ocean lacks the 

necessary ocean dynamics required for ENSO. In fully coupled model and observation 

where ocean dynamics are active, obviously, one needs to disentangle the ENSO 

forcing from the SEP index, to bring out the unique impacts of the SPMM and the 

midlatitude internal variability. As shown in Figs. 1.3c-f, the SPMM structure gives 

more resemblance to the canonical ENSO events and the equatorward propagating 

feature is largely absent (not shown). The mixing is hinted by the seasonality of SEP 

index as well (i.e., the standard deviation of the SEP time series as a function of 

calendar month; Figure 1.4). The SEP is most active during the austral winter in 

AGCM-slab ocean models, while in coupled models and the real world it peaks in 

variance during the austral summer when ENSO typically matures. Therefore, under 

this definition, the SEP index may not be completely independent of the tropical SSTA 

forcing and a representative of the South Pacific extratropical internal variability in 

fully coupled system. 
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Figure 1.3 Regression of anomalous SSTA (shading), SLPA (contours), and surface winds 
(arrows) onto normalized SST time series averaged in the (left column) northeast (21°N-25°N, 
138°W-142°W) and (right column) southeast (19°-15°S, 103°-107°W) Pacific, respectively. (a, 
b) The multimodel mean of 11 AGCM-slab models; (c, d) as in (a) but for the fully coupled 
version (preindustrial scenario), and (e, f) observation. Adapted from Zhang et al. (2014a). 
 

Better understanding of how the Pacific meridional modes (PMMs) contribute to 

tropical Pacific interannual-to-decadal variability and how extratropical-tropical Pacific 

interactions will change in future climate ultimately relies on the improved simulation 

of PMMs by climate models (e.g., Lin et al. 2015; Liguori and Di Lorenzo 2018). 

Moreover, comparing and contrasting the models with reanalysis also adds fidelity to 

the robustness of the results and facilitates the quantification of model biases. As such, 

this thesis provides an additional benchmark by which to test coupled climate models 

for their fidelity in simulating the interannual-to-decadal Pacific variability to add to a 

building paradigm on the processes involved in the Pacific climate regime (e.g., 

Clement et al. 2011; Okumura 2013; Di Lorenzo et al. 2015). Hence, how the SPMM 
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and its connections to the tropical Pacific are simulated by the state-of-art coupled 

models is another focus of this thesis. 

 
Figure 1.4 Seasonality of the SEP index in AGCM-slab models (gray lines with circles, 
multimodel mean), fully coupled models (gray lines with crosses, multimodel mean), and 
observations (Hadley Center Sea Ice and Sea Surface Temperature (HadISST) in black dashed 
lines and Extended Reconstructed SST version 3 (ERSSTv3) in black dotted line) expressed by 
the standard deviation as a function of calendar month. The mean standard deviation for all 
months is removed to emphasize the seasonality. Positive (Negative) values denote standard 
deviation exceeds (falls below) the annual mean. Adapted from Zhang et al. (2014a). 
 

1.3 Outline 

 In general, the predictability of ENSO events relies on the existence of 

atmospheric or oceanic precursors preceding ENSO at some lead time. This thesis aims 

to explore further the South Pacific intrinsic precursor and discuss its role in ENSO 

variability and diversity using reanalysis and the state-of-the-art fully coupled climate 

models. The thesis is composed of five chapters and is organized as follows. Chapter 2 

presents an overview of the major datasets and general methods common to analyses 

throughout the thesis. Chapter 3 focuses on the different mechanisms involved with the 

SPMM, how it interacts with the NPMM-induced anomalies and tropical Pacific 

antecedent conditions, and also tests the forecast skill of boreal winter Pacific SSTA 

using the PMMs in a statistical model. Chapter 4 examines the impacts of the austral 
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winter (i.e., June-August) South Pacific atmospheric internal variability on the 

development of ENSO events in both reanalysis and dynamical models used 

operationally for seasonal forecasting. A summary of the results and future work 

avenues are presented in Chapter 5. 
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Chapter 2: Data and Methodology 

2.1 Observational Datasets  

Observational datasets of atmospheric and oceanic variables used throughout the 

thesis are primarily from reanalysis products. For monthly-mean atmospheric fields, the 

National Centers for Environmental Prediction/Nation Center for Atmospheric Research 

(NCEP/NCAR) Reanalysis 1 (Kalnay et al. 1996) is utilized. The data uses a grid with 

horizontal resolution of 2.5° by 2.5° and spans 1948–present. Variables of interest 

include SLP, 10-m wind, and surface energy fluxes. SSTs over the same period are 

taken from the Met Office Hadley Center Sea Ice and Sea Surface Temperature 

(HadISST) dataset (Rayner et al. 2013). Subsurface ocean data come from the European 

Center for Medium Range Weather Forecasts (ECMWF) Ocean Reanalysis System 4 

(ORA-S4; Balmaseda et al. 2013). In this thesis, we use the common time period 

among all reanalysis datasets, namely 1948–2016. Results presented are robust when 

using other reanalysis products [e.g., National Oceanic and Atmospheric Administration 

(NOAA) Extended Reconstructed Sea Surface Temperature SST v3b (Smith et al. 

2008), NOAA-CIRES 20th Century Reanalysis version 2 (Compo et al. 2011), ECMWF 

20th Century Reanalysis (ERA-20C; Poli et al. 2016), ERA-Interim (Dee et al. 2011), 

and Simple Ocean Data Assimilation (SODA; Carton and Giese 2008)]. Not only are 

these datasets different materially, but they also cover different time periods (e.g., ERA-

Interim ranges from 1979–present and ERA-20C spans 1900-2010), indicating that our 

results are generally insensitive to the time period chosen for analysis.  
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2.2 Models  

2.2.1 Coupled Model Intercomparison Project Phase 5 (CMIP5) Models 

For the fully-coupled climate model employed in analyses in Chapter 3, we 

select monthly-mean output from twelve (12) coupled climate models from the Coupled 

Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012). Table 2.1 lists the 

models used in this study. Availability of the necessary atmospheric and oceanic model 

output dictated the selection of the models used in this study. Since we are interested in 

the inherent dynamics of the SPMM and its natural variability, we examine the pre-

industrial control (piControl) experiment from CMIP5 (i.e., prescribed, non-evolving 

greenhouse gas concentrations and aerosols mimicking conditions prior to 1850 are the 

primary forcings). Because of the lack of uniform availability of surface-based winds 

among the models, we use 1000 hPa winds from the models as a proxy for the 10-m 

wind. All model oceanic and atmospheric fields from the models are regridded onto a 

common latitude/longitude grid using bilinear interpolation based on the reanalysis data 

to facilitate comparisons between models and for multi-model ensemble means. Sub-

surface data are vertically interpolated onto the ORA-S4 depth coordinate, which 

contains 42 levels in vertical (18 of which are in the upper 200m). 

2.2.2 North-American Multi-Model Ensemble (NMME) Phase-II Models 

The NMME prediction system is composed of several coupled ocean-

atmosphere models used to make seasonal (Phase-I) and subseasonal-to-seasonal 

(Phase-II) forecasts (Kirtman et al. 2014). The system is run in realtime but also 

consists of hindcasts with varying periods. These hindcasts are initialized on the first 

day of each month based on the observational fields and run out for one full year (365 
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days) to mimic the realtime forecasting process. Output available are at the sub-daily, 

daily-mean, and monthly-mean level.  

Table 2.1 List of coupled climate models from CMIP5 analyzed in this study, along with total 
length of the piControl run and grid resolution (unit: degree) for each model (years). For 
resolution, in case of the atmospheric grid and its latitude, the tabulated resolution is only valid 
for the equator region. For higher latitudes deviations may occur. Ocean models have their own, 
finer grid. If two values are given for the latitude resolution of the ocean grid, resolution is not 
constant. The first value is that for the equator, the second for the poles (maximum for the two 
poles if different). lat(i,j) and lon(i,j) denote latitudes and longitudes defined with two indices i 
and j. In this case the resolution cannot simply be read out. See also the website 
https://portal.enes.org/data/enes-model-data/cmip5/resolution. 

Institution, Country 
 

Model 
acronym 

Length of 
piControl 

run (years) 

Atmospheric grid Oceanic grid 
lat lon lat lon 

 
National Center for Atmospheric Research 
(NCAR), United States 
 

CCSM4 501 0.9424 1.25 lat (i,j)  lon (i,j) 

Canadian Centre for Climate Modeling and 
Analysis (CCCma), Canada 
 

CanESM2 296 2.7906 2.8125 lat (i,j)  lon (i,j) 

Centre National de Recherches 
Météorologiques/Centre Européen de Recherche 
et Formation Avancées en Calcul Scientifique 
(CNRM-CERFACS), France 
 

CNRM-CM5 850 1.4008 1.40625 lat (i,j)  lon (i,j) 

Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) in collaboration 
with the Queensland Climate Change Centre of 
Excellence (QCCCE), Australia 
 

CSIRO-Mk3-
6-0 500 1.8653 1.875 0.93, 

0.95 1.875 

Geophysical Fluid Dynamics Laboratory, United 
States 
 

GFDL-
ESM2G 500 2.0225 2 0.375, 

0.5 1 

National Aeronautics and Space Administration 
(NASA) Goddard Institute for Space Studies 
(GISS), United States of America 
 

GISS-E2-R 250 2 2.5 1 1 

Met Office Hadley Centre, England 
 

HadGEM2-
CC 240 1.25 1.875 0.3396, 

1 1 

 
Institute for Numerical mathematics, Russia 
 

INMCM4 500 1.5 2 0.5 1 

Atmosphere and Ocean Research Institute (The 
University of Tokyo)/National Institute for 
Environmental Studies/Japan Agency for 
Marine-Earth Science and Technology, Japan 
 

MIROC5 300 1.4008 1.40625 0.5 1.40625 

Institut Pierre-Simon Laplace, French 
 

IPSL-CM5A-
MR 300 1.2676 2.5 lat(i,j) lon(i,j) 

Max Planck Institute for Meteorology (MPI-M), 
Germany 
 

MPI-ESM-P 550 1.8653 1.875 lat(i,j) lon(i,j) 

Norwegian Climate Centre (NCC), Norway NorESM1-ME 252 1.8947 2.5 lat(i,j) lon(i,j) 
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In this study, we employ monthly-mean output from the NMME Phase-II 

hindcasts over the period 1982–2010 (a common period for the models examined), with 

all output provided on a 1°x1° grid. As each hindcast run contains 10 ensemble 

members, this dataset essentially allows us to examine how atmospheric intrinsic 

variability impacts seasonal ENSO forecasts. Variables of interest include SLP, SST, 

850 hPa winds (U850; the lowest level available from all model output), oceanic 

subsurface temperatures (Tsub), and oceanic zonal (u) and vertical (w) velocity. Due to 

availability of all these necessary variables, only two of the NMME Phase-II models are 

examined in the current study: CESM1 and CanCM4 (Merryfield et al. 2013). 

2.3 General Methodology and Statistical Techniques 

 This section introduces and briefly describes the main statistical techniques used 

throughout the thesis. For reanalysis and the CMIP5 models, data are linearly detrended 

first to eliminate the influence of (linear) trends on the underlying statistical and 

inferred dynamical relationships among variables. Monthly anomalies are obtained by 

subtracting the climatological annual cycle at each grid point. A 3-month running mean 

is applied to all fields prior to analysis.  

2.3.1 Linear Regression and Composite Analysis 

 Linear regression used to describe the linear relationship between two time 

series, herein x[t] and y[t], can be written as:  

                          (2.1) 

The regression procedure chooses the regression coefficients (i.e., b0 and b1) which 

minimize the mean square error for predictions of y given observations of x: 

               (2.2) 

y = ŷ + ✏ = b0 + b1 ⇤ x

b0 = y � b1x
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                                     (2.3) 

where the overbar denotes means. b1 represents the slope of the linear relationship, 

which describes the y change per unit of change in x. If x is normalized, then the unit of 

b1 are the unit of y per standard deviation in x.  

Furthermore, the fraction of the total variance of y explained by x can be 

measured by the square of the correlation coefficient r: 

                                                (2.4) 

The statistical significance of the linear relationship can be evaluated by a two-sided 

Student’s t test with an effective degrees of freedom N* computed as in Bretherton et al. 

(1999), i.e.,  

                                                (2.5) 

         (2.6) 

where N is the total sample size and r1 and r2 are the lag-1 autocorrelations of the index 

and field used in the particular analysis, respectively.  

 In general, how the variable y linearly evolves with respect to x can be assessed 

by simultaneous and lagged regressions. For instance, many ENSO-induced climate 

anomalies are, to first order, linear. Particularly, over the Pacific sector, ENSO impacts 

can be largely accounted for with linear wave theory and simple ray tracing in the 

troposphere (e.g., Hoskins and Karoly 1981; Horel and Wallace 1981; Sardeshmukh 

and Hoskins 1988; Trenberth et al. 1998). The variability of SSTA averaged over the 

tropical Pacific strip is commonly represented by the cold tongue index (CTI), defined 

b1 =

Pn
i=1(xi � x̄)(yi � ȳ)Pn

i=1(xi � x̄)

2

r =

Pn
i=1(xi � x̄)(yi � ȳ)pPn

i=1(xi � x̄)

2
Pn

i=1(yi � ȳ)

2

t =
r
p
N⇤ � 2p
1� r2

N⇤ =
1� r1r2
1 + r1r2
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as the areal-averaged SSTA in 6°S~6°N and 180°~90°W (e.g., Deser and Wallace 

1990). Thus, the variability of three-dimensional field Y[x, y, t] independent of the 

tropical SSTA forcing can be isolated by linearly regressing out the contemporaneous 

CTI from each grid point, i.e.,  

                    (2.7) 

where  is the regression coefficient of the CTI onto field Y. 

 While regression analysis is based on the assumption that the relationship 

between two time series is largely linear, composite analysis is not limited to this 

constraint. Composite in this study is implemented as follows. Suppose we want to 

investigate the linkage between an index x[t] and three-dimensional field variable Y[x, 

y, t]. Events are selected based on the values of the standardized index x such that we 

can define positive (sample size: n1) and negative (sample size: n2) extreme events 

based on the standardized index x. We then isolate the signal in Y associated with x by 

calculating the difference of the average of Y between the positive (!") and negative (!#) 

key times. Finally, the Student’s t test is employed to check whether the two composite 

samples are statistically significant different from each other:  

                   (2.8) 

where S1 and S2 denote the sample variance of Y in the positive and negative events, 

respectively. 

2.3.2 EOF and MCA 

 Empirical Orthogonal Function (EOF; Wilks 2006) analysis and Maximum 

Covariance Analysis (MCA; Bretherton et al. 1992) are the two matrix methods applied 

Y[x, y, t]internal = Y[x, y, t]� b[x, y] ⇤ CTI[t]

t =
Y1 �Y2q

(n1�1)S2
1+(n2�2)S2

2
n1+n2�2 ( 1

n1
+ 1

n2
)
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to the reanalysis and model output fields to extract the leading modes of variability/co-

variability in the atmospheric and oceanic fields investigated in this thesis. EOF 

analysis is a statistical technique used to identify the principal (spatially orthogonal) 

modes of variability of a given field. The covariance matrix of the field is constructed 

and diagonalized, resulting in a set of eigenvalues and corresponding eigenvectors. 

Each eigenvector can be regarded as a spatial pattern (i.e., EOF). The temporal 

evolution of the spatial pattern is represented by the time series obtained by projecting 

the eigenvector onto the original field (i.e., the principal component (PC) time series).  

By comparison, MCA is usually applied to the covariance matrix of the two data 

fields in order to identify pairs of coupled spatial patterns that explain as much as 

possible the covariance between the two variables. The MCA of the cross-covariance 

matrix yields two spatially uncorrelated sets of singular vectors (i.e., left and right 

singular vectors analogous to the EOFs, but one for each variable), with the first set of 

patterns representing the leading mode of co-variability between the fields, the second 

set as the second leading mode of co-variability, etc. Each pair of singular vectors 

describe a fraction of the squared covariance between the two variables. Temporal 

variations in each of the fields are represented with expansion coefficient time series, 

produced by projecting anomalies of the left (or right) field onto the leading mode of 

that same field. These time series are analogous to the PC time series from EOF 

analysis except (a) there are two sets of time series, one for each field and (b) 

successive expansion coefficient time series for the same field are not mutually 

orthogonal. Note that as EOF is applied to each field separately and the MCA is applied 

to the covariance matrix between two fields, the significance of the atmosphere-ocean 
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interaction is revealed by a strong resemblance between individual EOF and MCA 

modes of SSTA and SLPA. As the time series obtained by EOF and MCA has arbitrary 

amplitude and is dimensionless, a convenient way to present the information is by 

regressing the original data onto standardized values of the respective time series. For 

MCA, this can be accomplished either through homogeneous (i.e., regressing the left 

(right) field onto the right (left) expansion coefficient time series) or heterogeneous 

(i.e., regressing the left (right) field onto the right (left) expansion coefficient time 

series) regression. The spatial pattern that emerges then has units of the original data 

and illustrates a pattern of (co-)variability in the dataset. 
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Chapter 3: The South Pacific Meridional Mode and its role in the El  

Niño-Southern Oscillation1 

3.1 Background and Motivation 

As discussed in the Introduction, the Pacific meridional modes (PMMs) link 

extratropical atmospheric and oceanic anomalies to the tropical Pacific. The key 

physical mechanism involved with the PMMs - i.e., the wind-evaporation-SST (WES) 

feedback (Xie and Philander 1994), contains three different processes (Figure 3.1): (1) 

wind variations generate changes in sea surface evaporation (Fig. 3.1b), (2) surface 

evaporation alters the underlying SST (Fig. 3.1b), and (3) the resulting SST anomalies 

produce atmospheric circulation anomalies (Fig. 3.1c).  

Consequently, the excitation of tropical Pacific climate variability by the PMMs 

is regulated by the seasonality of both midlatitude atmospheric variability and the 

atmosphere-ocean coupled response. For example, for the NPMM, the NPO peaks in 

strength during the boreal winter (Rogers 1981; Linkin and Nigam 2008) with the 

response of the underlying SST to the NPO-induced wind stress forcing maximizing in 

the boreal spring (Vimont et al. 2009). Taken together, the NPMM is therefore most 

energetic in the boreal winter/spring and thus influences the onset of ENSO events. 

Indeed, when the NPMM is artificially suppressed in model simulations during boreal 

winter/spring, the simulated ENSO substantially weakens and is no longer phase-locked 

to the seasonal cycle (e.g., Chang et al. 2007). 

 

 
                                                
1 Work in this chapter is currently under revision in J. Climate: You, Y., and J. C. Furtado, 2018a: The 
South Pacific Meridional Mode and its role in the ENSO variability and predictability. J. Climate., in 
revision. 
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Figure 3.1 Schematic plot of how the NPMM may trigger ENSO events. (a) SLP and low-level 
wind climatology in the tropical and subtropical North Pacific. (b) The positive phase of the 
boreal winter NPO represents a weakened North Pacific subtropical high, thereby weakening 
the trade winds. The weakened trade winds suppress the ocean evaporation, imposing 
downward latent heat flux and warm underlying SSTA. (c) The NPO after boreal winter. In 
responses to the positive SSTA footprint and the WES feedback, an anomalous atmospheric 
circulation resembling the NPO-induced wind anomalies forms in the southwestern side of the 
SSTA footprint. (d) The subtropical anomalies propagate southwestward into the western-
central tropical Pacific. The anomalies then trigger downwelling Kelvin waves to deepen the 
thermocline depth in the far eastern tropical Pacific and thus give rise to the onset of an El Niño 
event. 

 

Hence, seasonality is of great importance when considering the role of PMMs in 

ENSO formation and variability. If the SPMM is akin to its northern counterpart in case 

of the seasonality, then we may speculate that the contribution of the SPMM to the 

onset of ENSO events could be trivial. Instead, several studies have documented the 

unique influences of the austral summer South Pacific atmospheric and oceanic 

variability on ENSO (e.g., McGregor et al. 2009a, b; Ding et al. 2015b; Min et al. 

2017). In this chapter, we explore the characteristics of the SPMM in the context of 

coupled atmosphere-ocean system and illustrate the different mechanisms involved with 
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the SPMM relative to the NPMM. Results also show the role of South Pacific 

extratropical stochastic forcing in the various aspects of ENSO events (e.g., regulating 

the occurrence, evolution, amplitude, and flavors of ENSO). This work contributes to 

our growing understanding of how the South Pacific atmosphere and ocean interact with 

the tropical Pacific for multi-scale climate variability. This chapter is organized as 

follows. Section 3.2 documents the reanalysis datasets, model outputs, and the statistical 

methods employed in this study. Section 3.3 and 3.4 characterize the SPMM and its 

linkages with the large-scale circulation variability in both reanalysis and climate 

models. Section 3.5 then presents the influences of SPMM on the tropical Pacific 

climate, its interactions with the NPMM and tropical preconditions, and evaluates the 

prediction skill of a developed statistical model for the boreal winter Pacific SSTA. 

Discussion and conclusions of this chapter follow. 

3.2 Data and Methods 

In this work, we use many of the reanalysis products and CMIP5 models 

detailed in Chapter 2 of this thesis. In additional to the variable already mentioned, 

subsurface potential temperature data come from the ECMWF ORA-S4 are used to 

determine the 20°C isotherm (Z20), a proxy for tropical thermocline depth in the tropical 

Pacific. Additionally, we use the Z20 to calculate a measure for ocean heat content, the 

warm water volume (WWV), defined as the depth of Z20 over 5°S~5°N and 

120°E~80°W (e.g., McPhaden 2003). 

To better equate and compare model statistics with the reanalysis products, we 

subdivide the output of each CMIP5 model into 70-year segments and then compute the 

necessary statistics and quantities on those 70-year segments. The model-mean is then 
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computed as the average of the statistics among the several sub-intervals. Finally, the 

multi-model ensemble (MME) mean is computed by averaging a particular statistic over 

all of the models, with uncertainty denoted by the unit standard deviation amongst the 

ensemble members. 

Several statistical methods are used in this study. EOF and MCA are employed 

to study the variability and co-variability of atmospheric and oceanic fields, respectively 

(see Chapter 2). Correlation and regression are also used in this study. For observations, 

the significance testing for the temporal correlation and regression is done through a 

two-sided Student’s t test. For the models, the significance for the regression maps is 

defined when at least 9 out of 12 models have the same sign as the ensemble-mean.  

Lag-correlation is commonly used to identify potential precursors of a given 

variable (e.g., y correlates with x1 at a certain time lag). However, other climate 

processes (e.g., a process x2) may intervene with x1 to augment/offset its relationship 

with y. For this purpose, we consider the variation of the correlation between x1 and y 

conditioned on x1 and x2: i.e., corr_diff(x2) = corr (x1, y | x1*x2 > 0) - corr (x1, y | x1*x2 < 

0). Whether x2 significantly modulates the correlation of x1 with y is evaluated through a 

Monte Carlo resampling technique. For the Monte Carlo testing, we generate 10,000 

normally-distributed synthetic time series (xP) with identical length, mean, and variance 

as x2 and calculate the probability density function (PDF) of corr_diff (xP). The 

significance is then represented by the probability that corr_diff (x2) > corr_diff (xP). 

For the models, which have a much larger sample size, we generate 70-yr x1, x2, y, and 

xP time series randomly to produce PDFs of corr_diff (x2) and corr_diff (xP), 
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respectively. A two-tailed Kolmogorov-Smirnov goodness-of-fit test is applied to 

compare the two PDFs and test if they are significantly different from each other. 

3.3 Characteristics of the SPMM in Reanalysis 

3.3.1 Spatial Structure of the SPMM 

In this study, we define the SPMM in reanalysis following the methodology of 

Chiang and Vimont (2004) for meridional modes – i.e., the leading MCA mode (MCA-

1) of SST and 10-m wind anomalies in the subtropical South Pacific sector (35°S-10°S, 

180°-70°W). Note that our domain excludes the tropical Pacific SSTA and winds to 

highlight the extratropical processes associated with the SPMM. Furthermore, as ENSO 

teleconnections are seasonally dependent, we linearly remove the contemporaneous CTI 

month by month from the fields prior to MCA to isolate the internal variability. The 

SPMM accounts for 54.1% of the total coupled variance and is significantly 

distinguished from higher modes based on a Monte Carlo test. Figure 3.2 summarizes 

the spatiotemporal features of the SPMM. In the positive phase, a northeast-southwest 

SLPA dipole exists between the subtropical and higher latitudes with a nodal point near 

50°S (Fig. 3.2a). The northern pole of the SLPA dipole modulates the strength of the 

South Pacific subtropical high and therefore the climatological southeasterly trade 

winds, generating anomalous latent heat fluxes into the underlying ocean (Fig. 3.2a, 

black contours). Associated with the change in the trade winds and latent heat flux 

anomalies, a SSTA dipole extending toward the central-eastern equatorial Pacific forms 

in the subtropical South Pacific. The lag-correlation peaks when the wind expansion 

coefficient time series (EC-1wind) leads the SST expansion coefficient time series (EC-

1SST) by one month (r = 0.54; p < 0.05; Fig. 3.2b), suggesting the atmosphere drives the 
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ocean. Intriguingly, contrary to the NPMM (Chiang and Vimont 2004), the month-to-

month variance of the EC-1wind and EC-1SST indices evolve out of phase; i.e., the SST 

variance maximizes during austral summer while the wind variance peaks during austral 

winter (Fig. 3.2c).  

The SPMM possesses variability ranging from seasonal to interannual and 

longer timescales (Fig. 3.2d), indicating that this intrinsic mode may have implications 

on Pacific climate variability across multiple timescales. Further comments on this 

multi-scale variability are reserved for the last section. Following previous studies (e.g., 

Vimont 2003a, b; Chiang and Vimont 2004; Chang et al. 2007), we use the EC-1wind to 

delineate the SPMM in the remainder of this paper. The anomalous wind field 

associated with the SPMM is closely related to the mechanism needed for the 

generation of oceanic Kelvin waves (Thomas and Vimont 2016) and contains 

information about the atmospheric intrinsic variability as well as the feedbacks from the 

underlying ocean. While the SSTA field may be affected by the ENSO nonlinearity 

(Chiang and Vimont 2004). Thus, the SPMM index represents variability in the 

extratropical South Pacific atmosphere and ocean system. Note that changes in the 

analysis technique [e.g., computing the SPMM by removing the first two leading 

principal components (PCs) of the tropical Pacific SSTA prior to MCA and reasonable 

changes in the domain size (150°E-70°W, 5°N-45°S)] yield similar results (not shown). 
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Figure 3.2 (a) Regressions of the monthly-mean SSTA (shading, °C), SLPA (blue/red contour, 
hPa), 10-m wind anomalies (vector, m/s) and net surface latent heat flux (black contour, W/m2) 
onto the standardized monthly-mean EC-1wind index. Negative (positive) latent heat flux 
anomalies indicate anomalous heat flux into (out of) the ocean. Contour interval 0.4 hPa 
(blue/red line contours) and 5 W/m2 (black contours). Reference wind vector 0.7 m/s. Positive 
(negative) values represented by solid (dashed) contours; zero contour omitted. Stippled areas 
indicate significance of SSTA at 95% level according to a two-tailed Student’s t test. Only 
significant wind vectors are drawn. (b) Lag correlation between EC-1wind and EC-1SST indices 
(see text for details). Negative (positive) lags indicate that the EC-1wind leads (lags) the EC-1SST 
index. (c) The month-to-month standard deviation of the EC-1wind (green bars) and EC-1SST 
(yellow bars) indices. (d) The standardized EC-1wind (blue line) and EC-1SST (red line) time 
series. 
 

 Where does the SPMM originate, and how it is excited? To address these 

questions, we examine EOFs of the atmospheric and oceanic fields separately (Figure 

3.3). The leading SLP (SLP-1) and SST (SST-1) modes capture 49.3% and 41.5% of the 

total variance respectively and are significantly distinguished from higher-order modes 

per the North et al. (1982) criteria. SLP-1 features a north-south pressure seesaw (Fig. 

3.3a), similar to that in Fig. 3.2. A similar SLPA structure emerges (albeit weaker) with 

the SLPA structure associated with SST-1 (Fig. 3.3b). Although both modes are 

significantly correlated with tropical Pacific SSTA, the two single-field EOF spatial 
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maps share similarities with the SLPA and SSTA fields associated with the SPMM 

outside of the equatorial Pacific.  

To further isolate the intrinsic variability in the extratropical South Pacific, we 

repeat the above EOF analysis but this time the CTI is linearly removed month by 

month from the field prior to EOF analysis. The leading residual SLPA (SLPres-1; Fig. 

3.3c) and SSTA (SSTres-1) modes (Fig. 3.3d) account for 46.0% and 25.5% of the 

residual variance respectively and are significantly separated from higher order modes 

per the North et al. (1982) criteria. Given similarities between the SLP-1 (SST-1) and 

SLPres-1 (SSTres-1) in both the SLPA and SSTA fields outside of the tropical Pacific 

strip, the tropically-forced and internal components of South Pacific climate variability 

project onto a similar spatial pattern. Differences between the subtropical SLPA, 

surface wind anomaly, and SSTA patterns in the residual EOF regression fields (Figs. 

3.3c-d) and those from the SPMM are minimal (Fig. 3.2a). The lag correlation between 

the EC-1wind and the SLPres-1 (SSTres-1) indices peaks at a lag of 0 (1) month [r = 0.92 

(0.54); Fig. 3.3e], suggesting that the SPMM operates as a conduit connecting the large-

scale extratropical South Pacific SLP variations to the SST field.  
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Figure 3.3 Regression of monthly-mean SSTA (shading, °C), SLPA (blue/red contour, hPa), 
and 10-m wind anomalies (vector, m/s) onto (a) the standardized SLP-1, (b) SST-1, (c) SLPres-1 
and (d) SSTres-1 indices (see text for details). Contour interval 0.4 hPa. Reference wind vector 
0.7 m/s. Only significant (p<0.05) wind vectors are plotted. Stippling same as Fig. 3.1a. (e) Lag 
correlation between the SPMM and SSTres-1 indices (blue) and the SPMM and SLPres-1 indices 
(red). Negative (positive) lags indicate the SPMM leads (lags) the other index.  
 

3.3.2 Seasonality of the SPMM in Reanalysis 

The spatiotemporal characteristics of the observed SPMM align well with the 

NPMM except that the EC-1wind and EC-1SST indices vary out of phase (Fig. 3.2c). To 

understand the physical process responsible for the out-of-phase seasonality, Figure 

3.4a displays the month-to-month correlation between the EC-1wind and EC-1SST. 
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Although the MCA is designed to extract coupled modes of variability, the coupling 

strength experiences a distinct seasonal cycle. The contemporaneous correlation peaks 

during the austral summer (r ~ 0.7) rather than the austral winter (r ~ 0.4), despite wind 

anomalies being largest (and more variable) during the austral winter months (Fig. 3.2c; 

green bars). As such, factors other than the latent heat fluxes must be considered for 

shaping the seasonality of the SPMM SSTA field.  

The spatial structures of the positive phase of the SPMM during austral summer 

(Fig. 3.4b) and winter (Fig. 3.4d) indicate that in both seasons, the southeasterly trade 

winds weaken, and anomalous latent heat fluxes enter the ocean. However, although the 

latent heat flux anomalies are generally stronger in magnitude during June - August 

(JJA; Fig. 3.4d) than during December - February (DJF; Fig. 3.4b), the JJA SSTA 

response is minimal over the eastern subtropical South Pacific (i.e., maximum SSTA 

loading center of the SPMM; Fig. 3.4d). Looking at the subsurface temperatures over 

the SSTA loading center (i.e., red box in Figs. 3.4b, d), the deeper mixed layer depth 

(MLD) during JJA appears to reduce the SSTA sensitivity to surface heat flux 

anomalies (Fig. 3.4e) compared to the shallower mixed layer during DJF (Fig. 3.4c). 

Therefore, we hypothesize that the seasonality of the MLD dictates why maximum 

SPMM impacts occur during austral summer rather than winter.  



29 

 

Figure 3.4 (a) Month-to-month correlation between the EC-1wind and EC-1SST indices from 
reanalysis. (b) Same as Fig. 1a, except for December-February (DJF). Line contour interval 0.4 
hPa (blue/red contours) and 5 W/m2 (green contours). Reference wind vector 0.7 m/s. (c) 
Regression of DJF ocean potential temperature anomalies (°C) as a function of depth averaged 
over 10°S~25°S, 130°W~80°W (red box) onto the SPMM index.  (d) As in (b) but for June - 
August (JJA). (e) As in (c) except for JJA. 

 

To quantitatively evaluate the effect of the MLD seasonal cycle on the SPMM, 
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where $% = 1020 kg/m3 is the density of seawater, cp = 3900 J/(kg K) is the specific heat 

capacity of sea water, ∂T/∂t is the tendency of the mixed layer temperature (a proxy for 

SST), Qnet is the net (radiative and non-radiative) atmospheric heat flux, and Qocn is the 

convergence of ocean heat transport. Here, the MLD is defined as the depth where the 

ocean temperature is 0.5°C less than the climatological SST (e.g., Kara et al. 2000). 

Additionally, the growth rate of the SPMM is determined by linearly regressing select 

variables in the heat budget equation onto the normalized monthly-mean SPMM index 

for each month. The contribution of various terms in (3.2) to Qnet (Figures 3.5a and 

3.5b) highlights the dominance of the latent heat flux, which peaks during JJA when the 

surface wind anomalies are of largest magnitude (Fig. 3.5d). Qocn contributes minimally 

throughout the year (Fig. 3.5a) and hence inserts negligible influences from ocean 

dynamics on the growth of the SPMM. Because of the deeper mixed layer during the 

cold season, SSTA increase fairly rapidly from January-May and grow more slowly 

from JJA (Fig. 3.5c). Therefore, the South Pacific MLD likely plays an essential role in 

regulating the effectiveness of the air-sea coupling processes and the WES feedback 

associated with the SPMM. This behavior differs from the dynamics associated with the 

NPMM, in which both SSTA and wind anomalies peak in the late boreal winter and 

early boreal spring (Chiang and Vimont 2004; Vimont et al. 2009). Although the MLD 

and surface wind experience similar seasonality in the region affected by the NPMM, 

the amplitude of the mean seasonal cycle in the Southern Hemisphere is lower than the 

Northern Hemisphere owing to the weaker continental effects on the meridional 

temperature gradient (e.g., Kiladis and Mo 1999; Cai and Watterson 2002). 
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Figure 3.5 (a) Month-to-month regression of net atmospheric heat flux (Qnet, positive values 
indicate fluxes into the ocean; green line; W/m2), convergence of ocean heat transport (Qocn, 
positive values indicate convergence; blue line; W/m2) and the total heat flux (Qtotal; red line; 
W/m2) onto the SPMM index. Terms are averaged over 10°S~25°S, 130°W~80° (i.e., red box in 
Fig. 3). (b) Breakdown of the net atmospheric heat flux (W/m2) regression term by month: 
sensible heat flux (SH), latent heat flux (LH), shortwave radiation flux (SW) and longwave 
radiation flux (LW). (c) Climatological mixed layer depth (MLD; black line, m) and vertically-
averaged temperature tendency (∂T/∂t; red line; °C/month), calculated from the ocean heat 
budget equations (see text). (d) Climatological (upper vector; m/s) and anomalous (lower 
vector; m/s) 10-m winds within the same region. Reference vectors given and are different 
between climatological and anomalous winds. 
 

3.4 The SPMM in CMIP5 Models 

Given the close relationship between the SPMM and ENSO, we suggest that 

coupled models should have a reasonable SPMM simulation in order to exhibit realistic 

ENSO behavior. Hence, we next examine how well the multi-model ensemble (MME) 

of twelve CMIP5 models replicate the observed SPMM features. Due to the lack of 

observations in the South Pacific before the satellite era, the additional output from 
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hundreds of years of model simulations would also test the robustness of our findings 

from the relatively short reanalysis period. Nevertheless, when applying the same MCA 

procedure from Fig. 3.2 to model outputs, several CMIP5 models produce erroneous 

and unfamiliar patterns (e.g., CCSM4, CSIRO-MK-3-6-0, NorESM1-ME; Figure 3.6). 

Here, we therefore adopt a different approach to elucidate the mechanics and 

characteristics of the SPMM in the CMIP5 models. Instead of conducting MCA on the 

model fields, the anomaly fields of each model (after linearly removing the CTI from 

the fields) are projected onto the observed SPMM-related anomalous wind and SST 

patterns (i.e., Fig. 3.2a). Hence, the SPMM index (i.e., the time series of the anomalous 

low-level wind field onto the observed SPMM wind pattern) obtained in this manner 

represents low-level wind variability from the models that correspond to the observed 

SPMM structure. As such, our evaluation of the models will rely on their ability to 

replicate observed temporal variability and the associated physical processes associated 

with the SPMM.  

Figure 3.7a presents the MME-mean SPMM pattern obtained by averaging the 

individual regression maps of the various fields onto the SPMM index for each model. 

The spatial pattern of the MME-mean SPMM bears strong resemblance to that from 

reanalysis (Fig. 3.2a) and the SPMM-like pattern also emerges in the residual EOF of 

the SLPA and SSTA fields, as expected from our methodology. Temporal statistics of 

the simulated SPMM also follow those from reanalysis, particularly the out-of-phase 

seasonality between the wind and SST fields (Figs. 3.7b-c). As such, the strongest 

(weakest) air-sea coupling in the MME occurs during DJF (JJA) (Figure 3.8a) regulated 

by the shallower (deeper) the MLD (Figs. 3.8c, e). The ocean heat budget in the models 
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reaffirms our hypothesis on the role of the MLD in modulating the WES feedback 

(Figure 3.9). However, the SSTA growth rate in the models is approximately half of 

that in reanalysis (compare Figs. 3.5c and 3.5c), possibly resulting from the overall 

weaker heat flux anomalies (Fig. 3.9b) compared to reanalysis (Figs. 3.9b).  

Overall, the inconsistency in the leading MCA pattern (Figure 3.6) along with 

the deficiency in the SSTA growth rate is in need of further investigations, in particular, 

as to whether this is a result of a poor representation of the South Pacific atmospheric 

intrinsic variability or the air-sea coupling process caused by biases in background 

mean state (Zhang et al. 2014b) warrants further investigations but is beyond the scope 

of this paper. Despite these differences, the CMIP5 models are capable of capturing the 

physical processes in line with the observed SPMM, facilitating further analyses of the 

SPMM-ENSO relationship in the CMIP5 models. 
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Figure 3.6 Regression maps of the monthly-mean SSTA (shading, °C), SLPA (black contour, 
hPa) onto the standardized monthly-mean EC-1wind for each individual model. The EC-1wind is 
obtained by MCA similar to Fig. 3.2a. 
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Figure 3.7 (a) The CMIP5 MME regression map of the monthly SSTA (shading, °C), SLPA 
(blue/red line contours, hPa), 10-m wind anomalies (vector, m/s) and net surface latent heat flux 
(black contour, W/m2) onto the standardized SPMM index. Negative (positive) latent heat flux 
values refer to heat fluxes into (out of) the ocean. (b) As in Fig. 1b but for the CMIP5 MME. (c) 
As in Fig. 1c but for the CMIP5 MME. (d) As in (a) but regression of the fields onto the SLPres-
1 index. (e) As in (a) but regression onto the SSTres-1 index. (f) As in Fig. 2e but for the CMIP5 
MME. Contour interval 0.4 hPa (colored contour lines) and 4 W/m2 (black contour lines) for 
(a), (c), and (d). For all contours, positive (negative) values are solid (dashed) contours; zero 
contours omitted. Reference wind vector 1.0 m/s. Stippled areas indicate significance of SSTA 
when at least 9 out of 12 model have the same sign. Only significant wind vectors are drawn. 
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Figure 3.8 As in Fig. 3.4, but for the CMIP5 MME. (b) Line contour interval 0.2 hPa (blue/red 
contours) and 2 W/m2 (green contours). Reference wind vector 0.5 m/s. (d) Line contour 
interval 0.2 hPa (blue/red contours) and 4 W/m2 (green contours). Reference wind vector 1.0 
m/s. Shading in (c) and (e) indicate the unit standard deviation across the models. 
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Figure 3.9 As in Fig. 3.5, but for the CMIP5 MME. Shading in (a) and (c) indicate the unit 
standard deviation across the models. 
 

3.5 Linking the SPMM to Tropical Pacific Climate Variability 

As discussed in Section 3.1, ENSO theories present different predictability 

limits for the phenomenon. In this section, we assess the roles of the PMMs versus the 

slowly-evolving tropical Pacific heat content for predicting ENSO events. In particular, 

we look to challenge the spring predictability barrier plaguing ENSO predictability 

studies through using both the NPMM and the SPMM. As we will show, the SPMM 

and South Pacific climate variability aids in extending ENSO predictability back into 

the boreal spring before the event.  

To address this question, Figure 3.10 depicts the seasonal evolution of the 

Pacific atmosphere and ocean via linear regression onto the February-May (FMAM) 
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SPMM index (SPMMFMAM) in reanalysis (Figs. 3.10a-d) and the MME (Figs. 3.10e-h). 

Here, the SPMMFMAM is defined EC-1wind of the FMAM fields similar to that in Fig. 3.2 

(Fig. 3.2d). During February-April (FMA), the SPMM-induced southeastern Pacific 

anomalous low-level winds and SSTA propagate northwestward into the equatorial 

central-eastern Pacific via the WES feedback (Figs. 3.10a-b). This perturbation triggers 

oceanic Kelvin waves that suppress the thermocline in the eastern tropical Pacific and 

promote the Bjerknes feedback that intensifies the equatorial Pacific SSTA (Figs. 

3.10b-d). The CMIP5 MME mean replicates this SPMM-related evolution but with 

reduced magnitude (Figs. 3.10e-h). The SPMMFMAM index and the following winter’s 

CTI [NDJ(+1); CTINDJ(+1)] are significantly correlated in both reanalysis (r = 0.50, p < 

0.05; Fig. 3.11c) and in the CMIP5 MME (r = 0.31; Fig. 3.11g). These correlation 

values are comparable in magnitude to the well-identified NPMM2 precursor (r = 0.51; 

p < 0.05 in reanalysis; r = 0.31; p < 0.05 in the CMIP5 MME; Figs. 3.11b, f). As such, 

the SPMM appears to play an important role in tropical Pacific SSTA variability in a 

way comparable to the more well-known NPMM pathway. 

                                                
2 The NPMM is defined as the MCA-1 of the monthly SSTA and 10-m wind anomalies over 21°S-32°N and 175°E-
95°W after linearly removing the CTI from the fields (Chiang and Vimont 2004). 
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Figure 3.10 Lag-regression of (a) February-April (FMA), (b) May-July (MJJ), (c) August-
October (ASO), and (d) November-January [NDJ(+1)] SSTA (shading, °C), SLPA (blue/red 
contour, hPa) and surface wind anomalies (vector, m/s) from reanalysis onto the SPMMFMAM 
index. (e)-(h) Same as (a)-(d) but for the CMIP5 MME. Stippling denote significance of the 
SSTA regression coefficients at the p < 0.05 level (see text for details). Line contour interval 0.2 
hPa. Reference vector 0.5 m/s.  Stippling indicates where the SSTA regression coefficients are 
statistically significant (p<0.05 for reanalysis; 9 out of 12 models have the same sign of the 
regression for the CMIP5 models). 
 

3.5.1 Contribution of the PMMs to ENSO Diversity 

Since the two PMMs are contemporaneously independent of each other (r = 

0.16 in observations, r = 0.03 in MME; Figs. 3.11a, e), we next investigate how 

different combinations of the two phases of the PMMs (i.e., positive or negative) 

contribute to ENSO diversity. Here the positive (negative) phase of the PMM indicates 

the atmospheric and oceanic circulation patterns that favor warm (cold) ENSO events.  

As shown in Figs. 3.11b-c, although the NPMM and SPMM are significantly 

correlated with tropical Pacific SSTA, these relationships are conditional - that is, they 

depend on the phase and amplitude of the other PMM. Specifically, when the PMMs are 

both positive or both negative, lagged correlations of each mode with the CTINDJ(+1) are 

enhanced (r ~ 0.6 for reanalysis; r ~ 0.5 for the MME; Figs. 3.11b, c, f, g). However, 
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when the PMMs are of the opposing sign relative to each other, the lagged correlation 

between each PMM mode and the CTINDJ(+1) drops considerably. We note, however, the 

change in the correlation is greater for SPMM (corr_diff = 0.65; p < 0.05) than NPMM 

(corr_diff = 0.32, p < 0.05; see histogram insets in Figs. 3.11b, c) in reanalysis. This is 

different from the CMIP5 MME where the correlation change is similar for both the 

NPMM and SPMM (corr_diff ~ 0.3, p < 0.05; Figs. 3.11f, g). These significant changes 

in the correlation of either PMM with tropical Pacific SSTA suggest that this 

conditional relationship merits consideration for understanding and predicting tropical 

Pacific variability. 

 The above argument is also supported from the perspective of ENSO events. To 

illustrate this, we plot the histogram of the CTINDJ(+1) values as a function of the 

conditional phases of the PMMs: NPMM and SPMM of the same sign (two cases) and 

the NPMM and SPMM of opposite sign (two cases; Figs. 3.11d, h). The subdivisions 

here are done solely based on the sign of the PMMs and not on their amplitude, as we 

wish to preserve as many samples as possible for the histograms. For reanalysis (Fig. 

3.11d), except for a few cases, more than 75% of the strongest El Niño and La Niña 

episodes occur when the two PMMs are of the same sign; i.e., both positive (negative) 

for extreme El Niño (La Niña) episodes (Fig. 3.11d). Similarly, more than 50% of the 

weak events (|CTINDJ(+1)| < 1°C) occur when the PMMs are of opposite sign.  
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Figure 3.11 (a) Scatter plot of the NPMMFMAM vs. SPMMFMAM from reanalysis. Least-squares 
best fit line and correlation included. (b) Scatter plot of NPMMFMAM vs CTINDJ(+1) from 
reanalysis. Red (blue) dots represent years when the NPMMFMAM and SPMMFMAM are of the 
same (opposite) sign. Threshold values for each case shown with the red and blue background 
shading. Corresponding colored lines denote the least squares fit line of the respectively-colored 
dots. Correlation for all points (black) and the conditional correlations for each case (red and 
blue) included. Inset shows the PDF of the difference in correlation coefficients between the 
same-signed and opposite-signed conditional correlations (i.e., red and blue; see text for 
details). Red dot denotes the correlation difference (i.e., red minus blue). (c) As in (b) but for 
the SPMMFMAM vs. CTINDJ(+1). (d) Histogram of frequency (%) of CTINDJ(+1) values for same-
signed and opposite-signed NPMM/SPMM pairings (corresponding legend on far right). Total 
samples in each bin included. (e)-(h) As in (a)-(d) but for the CMIP5 models. For insets in (f) 
and (g), gray (red) PDFs represents corr_diff(SPMM) [corr_diff(NPMM)] (see text for details). 
 

In the models, this relationship is generally reproduced (Fig. 3.11h), though the 

proportion of the extreme events explained by the same-signed PMMs is lower than 

what we find in reanalysis. One reason, of course, is the thousand-fold difference in 

sample size between the models and reanalysis, which factors into this wider 

distribution. Thus, the reanalysis results may be too separated because of the limited 

event numbers. Another reason for this difference between reanalysis and the CMIP5 

MME is more dynamical - i.e., the models systematically underestimate of the impact of 

the PMMs on tropical Pacific variability, which will be discussed further shortly.  
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To examine how tropical Pacific variability evolves when the PMMs are of 

opposite sign, the conditional regression - i.e., the lag regression of atmospheric and 

oceanic fields onto the SPMMFMAM (NPMMFMAM) index but only for times when the 

two PMMs are of the opposite sign (i.e., blue dots in Fig. 3.11) is applied. Figure 3.12 

shows the seasonal evolution of the Pacific atmosphere and ocean related to these 

conditional regressions in the reanalysis (Figs. 3.12a-h) and the CMIP5 MME (Figs. 

3.12i-p). During FMA, the PMMs produce their characteristic SSTA footprints in their 

respective hemisphere, along with modulating the strength of the trade winds (Figs. 

3.12a and b). Since the thermocline feedback is hampered by the opposing anomalous 

wind stress forcing in the equatorial Pacific introduced by the opposite-signed PMMs, 

the generation and subsequent eastward propagation of oceanic Kelvin waves are 

suppressed, limiting SSTA growth and damping the Bjerknes feedback critical for 

ENSO development (Figs. 3.12b, f). Thus, the tropical Pacific SSTA remain almost 

unchanged spatially throughout the period (Figs. 3.12d, h). These results reaffirm our 

findings shown in Fig. 3.12 that skillful prediction of ENSO relies on knowing the state 

of both PMMs. Moreover, note that when the NPMM is accompanied by an opposite-

signed SPMM, the tropical SSTA excited the NPMM forcing remain confined to the 

central tropical Pacific, resembling CP ENSO conditions (Fig. 3.12d). Conversely, a 

canonical EP-type ENSO develops when the two PMMs are in the same phase (Figure 

3.13). As such, not only does the SPMM play a role in tropical Pacific dynamics, but it 

may also contribute to the flavor of the resulting ENSO event (i.e., CP or EP ENSO).  
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Figure 3.12 (a)-(d) Lag-regression of observed (a) February-April (FMA), (b) May-June (MJJ), 
(c) August-October (ASO), and (d) November-January [NDJ(+1)] SSTA (shading, °C), SLPA 
(blue/red contour, hPa) and surface wind anomalies (vector, m/s) onto the standardized 
NPMMFMAM index under the condition that the NPMMFMAM and SPMMFMAM indices are of the 
opposite sign. (e)-(h) As in (a)-(d) but regressed onto the SPMMFMAM index. (i)-(l) Same as (a)-
(d) but for the CMIP5 MME. (m) – (p) As in (e)-(h) but for the CMIP5 MME. Line contour 
interval 0.2 hPa. Reference vector 1.0 m/s. Stippling indicates where the SSTA regression 
coefficients are considered significant (p < 0.05 for reanalysis; 9 out of 12 models have the 
same sign of the regression for the CMIP5 models). 
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Figure 3.13 As in Fig. 3.12 except under the condition that the NPMMFMAM and SPMMFMAM 
are of same sign. 
 

The CMIP5 MME yields similar evolutions during FMA and May-July (MJJ; 

Figs. 3.12i-j, 3.12m-n) as the reanalysis. However, differences emerge thereafter and 

especially during the peak season of ENSO [i.e., NDJ(+1)]. For the NPMM 

accompanied by opposite-signed SPMM, the SSTA span the entire equatorial Pacific 

strip (Fig. 3.12l), unlike the central Pacific ENSO-like conditions seen in reanalysis 

(Fig. 3.12d). For the SPMM accompanied by opposite-signed NPMM, the equatorial 

Pacific strip is nearly devoid of any positive SSTA (Fig. 3.12p). Models' deficiency in 

simulating the flavors of ENSO likely factors into this MME results (e.g., Kim et al. 
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2012), suggesting caution should be used when studying predictability or projections of 

ENSO activity using these models. 

3.5.2 Sensitivity of PMMs’ Influence on ENSO Variability Compared to WWV 

Inherent to the recharge oscillator theory (Jin et al. 1997), the upper ocean heat 

content, which leads ENSO by a quarter cycle, is often considered a necessary 

precondition to the development of an ENSO event (e.g., Meinen and McPhaden 2000; 

McPhaden 2003; Larson and Kirtman 2013). Consistent with previous studies (e.g., 

Anderson 2007; Deser et al. 2012), we next explore the sensitivity of the PMMs’ 

influence on the tropical Pacific to that of the upper ocean heat content, represented 

here by WWV.  

Figure 3.14 is like Fig. 3.11 except this time considering the conditional 

relationship between each PMM and WWV. Here, positive (negative) WWV values 

indicate when tropical Pacific upper ocean heat content is anomalously positive 

(negative). When the NPMMFMAM and WWVFMAM have the opposite sign (e.g., positive 

WWVFMAM but a negative NPMMFMAM), the correlation between WWVFMAM and 

CTINDJ(+1) is small and insignificant (r = -0.15; Fig. 3.14a). Moreover, the difference in 

correlations for cases with anomalously high WWV with and without a positive NPMM 

is 0.87 (Fig. 3.14b). Hence, WWV alone seems insufficient as a precursor to an ENSO 

event as there is a strong dependence on NPMM-wind forcing and the TWC mechanism 

(e.g., Anderson and Perez 2015). The NPMM thus contains additional information 

needed for predicting an ENSO event over WWV alone (e.g., Anderson 2007; Anderson 

and Perez 2015).  
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The SPMM, by contrast, has a negligible relationship with the concurrent WWV 

(r = 0.07). The SPMM-related wind curl is directed eastward and thus favors Sverdrup 

transport toward the South American coast (not shown). As such, the SPMM is not 

associated with the TWC mechanism. Nonetheless, same-signed WWV anomalies 

appear important for the SPMM to initiate ENSO events (corr_diff = 0.44; Figs. 3.14c), 

while the importance of the SPMM forcing to the connection between WWV and 

ENSO is relatively weaker (corr_diff = 0.23; Fig. 3.14d). 

 

Figure 3.14 (a) Scatterplot between the observed NPMMFMAM and CTINDJ(+1) indices when the 
NPMMFMAM is of the same (red dots) and opposite (blue dots) sign with the WWVFMAM 
anomaly. Threshold values for each case shown with the red and blue background shading. 
Corresponding colored lines denote the least squares fit line of the respectively-colored dots. 
Correlation for all points (black) and the conditional correlations for each case (red and blue) 
included. (b) As (a) but for the WWVFMAM and CTINDJ(+1) indices. (c)-(d) as (a)-(b) but for the 
observed SPMMFMAM and CTINDJ(+1) indices when the SPMMFMAM is of the same (red dots) and 
opposite (blue dots) sign with the WWVFMAM anomaly. (e)-(h) as (a-d) but for the CMIP5 
models.  
 

The CMIP5 models seemingly do not reproduce the TWC mechanism, as the 

correlations between either PMM and WWV are both low (r = 0.15 for NPMM; r = 

0.13 for SPMM; Figs. 3.14e-h). Interestingly, the relationship between the PMMs and 
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ENSO (corr_diff ~ 0.5) is more sensitive to the state of WWV (corr_diff ~ 0.5) than the 

actual sensitivity between WWV and ENSO (corr_diff ~ 0.3; Figs. 3.14e-h). The WWV 

dominates ENSO predictability in the models, as models simulate ENSO variability 

with a too-short, highly regular period compared to nature (e.g., Bellenger et al. 2014). 

As such, ENSO behaves as more of self-sustained regular oscillatory mode in the 

CMIP5 MME with WWV modulating that variability. 

3.5.3 A Simple Statistical Model for Predicting Boreal Winter Pacific SSTA 

Thus far, we have presented evidence of the relationship between both PMMs 

and ENSO along with the roles of the PMMs versus ocean subsurface memory (i.e., 

WWV) in driving ENSO variability. To quantify the relative importance of the NPMM, 

SPMM, and WWV in long-lead ENSO predictions, we construct a multivariate 

statistical model of the form:  

         (3.4) 

where x is the spatial coordinate, t is time, and a, b, and c are the regression coefficients 

determined by least-squares fitting. This model is run using one, two, and all three 

predictors to examine the sensitivity of our hindcasts to each predictor. Forecast skill 

(relative to climatology) of the statistical model hindcasts is quantified through the 

anomaly correlation coefficient (ACC; Miyakoda et al. 1972), i.e.,  

           (3.5) 

where ft is the forecast value and vt is the observed (or model’s) value at time t. The 

leave-one-out cross-validation scheme is applied to lessen the overfitting problem 

(Elsner and Schmertmann 1994).  

SSTANDJ(+1)[x, t] = a[x] ⇤NPMMFMAM[t] + b[x] ⇤ SPMMFMAM[t] + c[x] ⇤WWVFMAM[t]
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Figure 3.15 summarizes the performance of the statistical prediction model. In 

reanalysis, when using only the NPMMFMAM index as a predictor, high ACC values 

prevail in the subtropical North Pacific and the central tropical Pacific with lower ACC 

values in the far eastern tropical Pacific (Fig. 3.15a). Conversely, when using the 

SPMMFMAM index only, high predictability regions are located over the eastern 

equatorial and subtropical Pacific (Fig. 3.15b). These areas of maximized ACC concur 

with our earlier analysis on how tropical Pacific SSTA correlate with each PMM. Using 

both the NPMMFMAM and SPMMFMAM captures a significant fraction of the tropical and 

subtropical Pacific SSTANDJ(+1) variance versus using a single PMM (Fig. 3.15c). As 

such, combining the two PMMs brings a statistically significant enhancement to the 

forecast skill in the Pacific basin (Fig. 3.15c). Considering only WWVFMAM restricts 

forecast skill to a very narrow belt over the equatorial Pacific (Fig. 3.15d). Although 

WWVFMAM alone would fare poorly as a predictor for extratropical Pacific SSTA, it 

elevates ACC values in the central-to-eastern tropical Pacific when combined with the 

two PMMs (Fig. 3.15e). The prediction skill of the empirical model is comparable to 

the linear inverse modeling and is higher compared to a univariate first-order 

autoregressive scheme (Alexander et al. 2008). Overall, the results from reanalysis 

indicate that the NPMM and SPMM together are the most significant predictors of the 

three for ENSO variability. 
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Figure 3.15 (a) Anomaly correlation coefficient (ACC) for the hindcasts of observed 
SSTANDJ(+1) using a multivariate linear regression model (see text) when using (a) only the 
NPMMFMAM, (b) only the SPMMFMAM, (c) both the NPMMFMAM and SPMMFMAM, (d) only 
WWVFMAM, and (e) NPMMFMAM, SPMMFMAM, WWVFMAM as predictors. (f)-(j) As in (a)-(e) but 
for the CMIP5 MME. Black contours outline where ACC values are significant at the 95% 
confidence level. 

 

Applying the same statistical model to the CMIP5 models, the predictive power 

of the model is overall lower compared to reanalysis (Figs. 3.15f-j). This lowered ACC 

calues could in part be because of the larger sample size in the models, but other 

important differences are also evident. For example, using only the SPMMFMAM index 

as a predictor, the significant ACC values (ACC ~0.3) reside from the central equatorial 

Pacific southward to about 10-15°S (Fig. 3.15g). Although the forecast skill increases 

when using both the SPMMFMAM and NPMMFMAM indices as predictors, the ACC 

values in the MME are half of that of from observations. (Fig. 3.15h).  Instead, the 

prediction skill for the models comes when using WWVFMAM as a predictor, whose sole 

contribution is greater than the combination of the two PMMs used together (Fig. 

3.15i). This result strongly suggests that the CMIP5 models are overly sensitive to 

conditions in the tropical Pacific themselves for ENSO predictability rather than 

capturing the extratropical precursors (i.e., PMMs). Thus, ENSO behaves more like a 

self-sustained oscillatory mode and there may be actual important coupled ocean-
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atmosphere dynamics originating from the extratropics missing from the models, 

potentially limiting their use for ENSO predictability. Whether the underestimation of 

the PMM’s influences is caused by the model bias in the atmospheric internal 

variability or the atmosphere-ocean thermodynamic coupling warrants further 

investigation through numerical experiments. 

To provide a rigorous test to the empirical models, we proceed one step further 

to examine the predictions of several unusual ENSO episodes in the past decade (i.e., 

2012/2013, 2014/2015, and 2017/2018), which have been documented in several recent 

studies (i.e., Su et al. 2014; Min et al. 2015; Hu and Fedorov 2016). Figure 3.16 shows 

the predictions of SSTA in those years using just the PMMs and the complete model 

(PMMs and WWV). For comparison, Figure. 3.17 shows the NMME forecasts 

initialized at almost the same time as the statistical model predictors. The discussion of 

each event is below. 

• 2012/2013 event. During the summer 2012, there was a clear signal of the 

developing El Niño over the equatorial Pacific corresponding to strong positive SPMM 

(Su et al. 2014; see the SPMM index in Fig. 3.2d). However, the warming juxtaposed 

with an extremely negative NPMM (Fig. 3.16a) and thus the warm event was not 

favored based on our prediction scheme. Note that including WWV into the model 

actually change the sign of the forecasted eastern equatorial SSTA (Figs. 3.16a and 

3.16b), suggesting that the NPMM’s influence was much more important than pre-

existing warm water in the tropical pacific.  
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Figure 3.16 Predictions of the NDJ(+1) Pacific SSTA (shading, °C) in (a-c) 2012/2013, (d-f) 
2014/2015, and (g-i) 2017/2018 with (a, d, g) PMMs, PMMs and WWV (b, e, h) as predictors. 
Note the color bars for the prediction and observation are different. 
 

• 2014/2015 event. This event was identified as a CP type. The prediction based 

on our scheme (Figs. 3.16d-e) is very close to the observed SSTA (Fig. 3.16f). 

Physically, the extremely negative SPMM (Fig. 3.2d) hampered the development of 

tropical SSTA excited by the concurrent positive NPMM and WWV. In the equatorial 

Pacific, the influences of the out-of-phase PMMs canceled each other out (Fig. 3.16d). 

Thereby the boreal winter warming residing in the narrow equatorial band was 

primarily driven by the positive WWV. Furthermore, the SSTA in the extratropical 

Pacific are successfully predicted with the statistical model, especially the South Pacific 
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SSTA dipole and the North Pacific SSTA elongating from the west coast of North 

America into the central tropics (Figs. 3.16e-f). By contrast, the dynamical models 

predicted a super warm event though with large ensemble spread (Figs. 3.17c-d). 

• 2017/2018 event. During spring 2017, the SPMM-induced super warming off 

the Peruvian coast (see Fig. 3.2d for SPMM index) suggested that an El Niño event 

would develop during the following winter (Figs. 3.17e-f). However, the SPMM 

switched into neutral and even negative values during late boreal spring and summer. 

This, combining with a negative NPMM, a La Niña event was instead favored (Figs. 

3.16g-i).  
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Figure 3.17 (a, c, e) The Niño3.4 index (SSTA averaged over 5°S~5°N and 170°W~120°W) 
and (b, d, f) the OND SSTA forecasts by NMME models initialized in (a-b) May 2012, (c-d) 
May 2014, and (e-f) May 2017, respectively. The plots are downloaded from the NMME 
website (http://www.cpc.ncep.noaa.gov/products/NMME/archive/; NMME Realtime Forecasts 
Archive). 
 

3.6 Chapter Summary and Discussion 

This chapter explored the characteristics of the South Pacific Meridional Mode 

(SPMM) and its influence on tropical Pacific climate variability, specifically the El 

Niño-Southern Oscillation (ENSO) phenomenon. The SPMM emerges as a robust 
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thermodynamically-coupled mode driven by the South Pacific atmospheric internal 

variability (Figs. 3.2-3.3). The seasonality of the SPMM wind and SST components 

vary out of phase with the maximum SST variance occurring in austral summer, while 

the strongest wind variance occurs in austral winter. The response of South Pacific 

SSTA to the surface wind anomalies during the austral winter is weaker than expected 

due to a deeper mixed layer (Figs. 3.4-3.5). Nevertheless, the SPMM operates as an 

effective conduit for South Pacific austral summer atmospheric variability to propagate 

into the tropics and thereafter contribute to the initiation of ENSO events. The 

constructive and destructive interference between the NPMM and SPMM through the 

austral fall shapes and regulates the temporal evolution, intensity of the final event, and 

also the flavors of the ensuing ENSO events. Incorporating the two PMMs into a simple 

statistical predictive model substantially enhances ENSO prediction skill with a 6-12 

month lead time (Figs. 3.15-3.17), potentially reducing the existing spring predictability 

barrier currently plaguing ENSO seasonal forecasts.  

Aside from the SPMM, two major differences between the North and South 

Pacific atmospheric variability associated with the PMMs are also noted. First, the 

amplitude of the mean seasonal cycle in the Southern Hemisphere atmospheric 

variability is lower (Figs. 3.4, 3.7; e.g., Kiladis and Mo 1999; Cai and Watterson 2002), 

which allows the SSTA and wind anomalies associated with the SPMM to vary out of 

phase (Fig. 3.2c), making the SPMM a candidate to initiate ENSO events (Fig. 8). As 

recent studies have highlighted the impacts of the austral winter South Pacific 

variability on 2-year La Niña (DiNezio et al. 2017) and on El Niño flavors (Meehl et al. 

2017), advancing ENSO prediction skill may stem from observing the South Pacific. 
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Second, akin to the NPO, the internal atmospheric modes exciting the SPMM features a 

large-scale dipole (Okumura 2013; Zhang et al. 2014a), which may be termed the South 

Pacific Oscillation (SPO). As the tropically forced variability projects onto this dipole 

structure as well (Figs. 3.3, 3.6; e.g., Cai and Watterson 2002), the SPMM-induced 

tropical Pacific SSTA, in turn, reinforce the SLPA driver pattern, potentially forming a 

fast positive feedback and explaining why the SLPA pattern associated with the SPMM 

decays slowly compared to the NPO (Figs. 3.1-3.12). 

The close correspondence of the major features of the SPMM and the associated 

seasonal evolutions of Pacific oceanic and atmospheric variability related to the SPMM 

in reanalysis products and CMIP5 models bolster our findings and conclusions. Hence, 

these results provide an additional benchmark for testing and evaluating tropical Pacific 

climate prediction in other coupled climate models. The CMIP5 MME captures the 

spatiotemporal characteristics and physical mechanisms of the SPMM reasonably well 

(Figs. 3.6-3.9), but seemingly underestimate (overestimate) the impacts of the PMMs 

(WWV) on ENSO variability (Figs. 3.14-3.15).  

This study also contributes to an emerging and growing body of literature on the 

role of the PMMs in linking the extratropical and tropical Pacific variability. The SSTA 

pattern associated with the PMMs closely resembles the optimal initial condition SSTA 

pattern that precedes ENSO by 6~7 months (Penland and Sardeshmukh 1995; 

Alexander et al. 2008; Newman et al. 2011; Vimont et al. 2014; Capotondi et al. 2015b). 

While either meridional mode alone can excite ENSO events, we propose the possibility 

that the interplay between the PMMs regulates the ENSO diversity. Geographically, the 

SPMM regulates the anomalies in the eastern Pacific cold tongue while the NPMM-
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related anomalies extend into the western Pacific warm pool. In contrast to the 

suppressed thermocline feedback, the zonal advection feedback intensifies in the 

vicinity of the western Pacific warm pool, contributing to the central Pacific-like SSTA 

when the NPMM is accompanied by opposite-signed SPMM cases (Fig. 3.12-3.13). In 

other words, when ocean dynamics are involved, the impacts of the two PMMs on the 

tropics are comparable. 

Finally, the results presented in this chapter do not downplay the contributions 

of other processes involved with ENSO complexity, e.g., westerly wind bursts (Chen et 

al. 2015). Analogous to the connection between the NPMM and westerly wind bursts 

(Nakamura et al. 2006, 2007; Alexander et al. 2010), the linkage between the SPMM 

and the so-called high-frequency easterly wind surges in the central-eastern tropical 

Pacific (Hu and Fedorov 2016; Zhu et al. 2016; Levine and McPhaden 2016; Chiodi 

and Harrison 2015, 2017) deserves further investigation. Also note that stochastic 

processes during the boreal spring have caused prediction failure in many ENSO 

forecasts from statistical and dynamical models (e.g., Landsea and Knaff 2000). Our 

hypothesis on the significant role of the SPMM on contributing to the evolution of 

ENSO events may shed light on past unusual (and misforecasted) ENSO episodes, 

including the failure of the highly-anticipated 2014-2015 El Niño event (Figs. 3.16-

3.17; e.g., Su et al. 2014; Min et al. 2015; Hu and Fedorov 2016; Imada et al. 2016). 
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Chapter 4: Austral winter South Pacific atmospheric internal  

variability and its role in the development of ENSO events3 

4.1 Background and Motivation 

As discussed in Chapter 3, the WES feedback involved with the SPMM 

maximizes during the austral summer and fall (i.e., February-May), indicating that 

South Pacific atmospheric variability creates favorable conditions for the ENSO 

occurrence. Although combining the two PMMs and WWV enhances ENSO prediction, 

where the maximum equatorial Pacific SSTA resides remains uncertain.  

On the other hand, the boreal winter NPMM appears to be a precursor for both 

EP and CP events (Figure 4.1; see also Penland and Sardeshmukh 1995; Ding et al. 

2015a). As the South Pacific variability is most energetic during austral winter, whether 

it inserts any significant impact and provides additional information for the prediction 

of ENSO flavor are left as an open question. Jin and Kirtman (2009) suggest that the 

South Pacific SLPA, which leads ENSO maturity by one to two seasons, is actually a 

response to the developing ENSO event due to the local seasonality.  

 In this chapter, we employ both reanalysis and the North American Multimodel 

Ensemble (NMME) Phase-II models designed for subseasonal-to-seasonal predictions. 

Compared to AGCM simulations with prescribed SSTA, the full ocean-atmosphere 

coupling in NMME allows us to examine the two-way interactions between the tropical 

Pacific SSTA and South Pacific circulation anomalies. Based on the results shown 

                                                
3 Results presented in this chapter are part of two peer-reviewed journal manuscripts. 
You, Y., and J. C. Furtado, 2017: The role of South Pacific atmospheric variability in the development of 
different types of ENSO. Geophys. Res. Lett., 44, 7438–7446, doi: 10.1002/2017GL073475  
You, Y., and J. C. Furtado, 2018b: Relationship between South Pacific atmospheric internal variability 
and ENSO in the North American Multimodel Ensemble Phase-II Models. Geophys. Res. Lett., in prep. 
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below, we argue that the response of the austral winter South Pacific extratropical 

circulation to tropical Pacific forcing is strongly modulated by the atmospheric intrinsic 

variability, which thereafter contributes the development of ENSO events. Results also 

indicate that the austral winter South Pacific atmospheric variability offers potential 

implications for the prediction of ENSO flavor, which is currently limited to less than 

one-season lead time in dynamical models (e.g., Hendon et al. 2009). 

 

Figure 4.1 Correlation map between winter (January-March) EP ENSO index and (a) SLPA in 
the prior winter, (b) SSTA in the prior winter, and (c) with concurrent SSTA associated with the 
EP ENSO. (e)-(g) The same analysis done with the CP ENSO index. Adapted from Di Lorenzo 
et al. (2015). 
 

This chapter is organized as follows. Section 4.2 documents the reanalysis 

datasets, model outputs, and the statistical methods employed. Section 4.3 presents the 

dominant mode of the austral wintertime South Pacific atmospheric variability, and its 
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influences on the development of the ensuing ENSO events. Discussion and conclusions 

of this chapter follow. 

4.2 Data and Methods 

 To better understand ENSO diversity, we use multiple indices based on the 

SSTA averaged over given regions as shown in Figure 4.2. The Niño3 (Niño4) index, 

calculated by averaging SSTA from 5°S-5°N and 150°W-90°W (5°S-5°N and 160°E-

150°W), characterizes the eastern (central) equatorial Pacific SSTA state. In defining 

events, a(n) El Niño (La Niña) year is defined as a year in which the December-

February (DJF) Niño3 or Niño4 index exceeds (falls below) 0.5°C (-0.5°C). Following 

Yeh et al. (2009), an El Niño event is classified as a(n) CP (EP) type if the Niño4 index 

is greater (less) than the Niño3 index. 

 
Figure 4.2 Locations of Niño regions for measuring SSTs in the tropical Pacific Ocean. 
Adapted from https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-
oni-and-tni. 

 

In investigating oceanic pathways linking the South Pacific to the tropical 

Pacific, we compute the depth-integrated meridional velocity V (i.e., Sverdrup transport; 

e.g., Anderson and Perez 2015):  

                      (4.1) 
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where tx and ty are the eastward and northward components of the wind stress, 

respectively, b is the latitudinal gradient of Coriolis parameter, and r = 1025kg/m3 is 

the density of sea water. The wind stresses are computed as t = CDrairU2, where CD = 

0.0013 is the drag coefficient, rair = 1.2kg/m3 is the density of air, and U is the 10-m 

wind speed. 

For some analyses, we are interested in removing the linear dependence of a 

time series y(t) with some other climate mode or variable x(t) to examine residual 

variability. Calling this residual y-rx: y-rx(t) = y(t) – [a+b*x(t)], where a and b are found 

through least-squares fitting. Thus, y-rx(t), is, by definition, uncorrelated with x(t).  

A complete description of NMME Phase-II models was presented in Chapter 2. 

In order to isolate the austral winter internal variability, we utilize the models initialized 

on June 1st. We note that the forecast models experience drift toward their own 

climatology at long forecast lead times. As such, we bias-correct the NMME monthly-

mean output by removing the forecast (which is lead-time dependent) 29-year 

climatology of each model separately. The ensemble-mean statistics are computed first 

by averaging the fields in the 10 ensemble members to suppress the atmospheric 

internal variability. The ensemble spread is then represented as the deviation of that 

member’s field from the ensemble mean (i.e.,	'( = ' − '). Then the various patterns 

related to a given ensemble spread index are computed by regression analysis. 

In the NMME models, major warm and cold events during austral winter are 

defined when the JJA Niño3 (Niño3JJA) exceeds (falls below minus) 0.8s. This 

procedure yields 6 warmJJA and 7 coldJJA events. Likewise, 7 El Niño (1982, 1986, 

1987, 1991, 1997, 2002, 2009) and 6 La Niña (1984, 1988, 1999, 2005, 2007, 2010) 
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events are identified when the NDJ Niño3 (Niño3NDJ) exceeds (falls below minus) 0.8s. 

In reanalysis, 13 warmJJA and 15 coldJJA events are identified accordingly. Note the 

conclusions hold when using a threshold of 0.5s. The selected events are listed in Table 

4.1. 

Table 4.1 The selected warmJJA and coldJJA events based on the criteria in the text. 

Year Observation 

warmJJA
 (13) 

1951, 1957, 1963, 1965, 1969, 1972, 1976, 1982, 1983, 1987, 1997, 
2009, 2015 

coldJJA
 (15) 

1954, 1955, 1964, 1970, 1973, 1975, 1978, 1984, 1985, 1988, 1999, 
2000, 2007, 2010, 2013 

Year NMME 

warmJJA
 (6) 1982, 1983, 1987, 1991, 1997, 2009 

coldJJA
 (7) 1984, 1985, 1988, 1999, 2000, 2007, 2010 

 

4.3 Results 

4.3.1 Reanalysis 

We begin by examining the dominant mode of the South Pacific atmospheric 

variability via EOF analysis of monthly-mean South Pacific SLPA field over the 

domain 10°S-45°S and 160°W-70°W. Figure 4.3a shows the regressions of monthly-

mean SLPA (line contours), SSTA (shading), and 10-m wind anomalies (vectors) onto 

the standardized leading principal component (PC1) time series of monthly-mean South 

Pacific SLPA. The leading mode explains about 46% of the total variance in South 

Pacific SLPA, is significantly separated from higher order modes according to the 

North et al. (1982) criteria, and is robust to reasonable variations in the domain size (not 

shown). Similar to the SLPA signature associated with the SPMM (Figure 3.2), the 

positive phase, as defined in Fig. 4.3a, features a meridional SLPA dipole between the 
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subtropics (cyclonic anomalies) and mid-to-high latitudes (anticyclonic anomalies) with 

an equivalent barotropic structure throughout the troposphere (not shown). We call this 

SLPA pattern the South Pacific Oscillation (SPO), owing to its analogous structure to 

the NPO, and its associated time series (i.e., PC1) the SPO index. The cyclonic SLPA 

loading center generally overlaps the location of the South Pacific High and thus 

weaken the climatological southeasterly trade winds (Fig. 4.3a, vectors). The positive 

phase of the SPO covaries strongly with warm SSTA throughout the central and eastern 

tropical Pacific (Fig. 4.3a, shading). Indeed, the SPO is significantly correlated with the 

CTI (r = 0.56; p < 0.01) with the maximum correlation occurring when the SPO leads 

the CTI by 3-4 months (Fig. 4.3b). The SPO variability spans a wide range of time 

scales (intraseasonal, interannual and even decadal; Fig. 4.3c) with seasonal variability 

maximized during austral winter (i.e., JJA; Fig. 4.3d). 

 

Figure 4.3 (a) Regression of SLPA (contour, hPa), SSTA (shading, °C), and 10-m wind 
anomalies (vector, m/s) onto the standardized PC1 time series of monthly-mean South Pacific 
SLPA (i.e., the SPO index). Contour interval 0.4 hPa (line contours) and 0.1°C (shading). 
Reference wind vector 0.5 m/s. Solid (dashed) line contours indicate positive (negative) values. 
Zero contour omitted. (b) The lag correlation between the SPO index and the CTI. Negative 
(positive) lags indicate the SPO index leads (lags) the CTI. (c) The standardized SPO index 
(blue) and its 9-month running-mean (black). (d) Seasonality of the SPO index expressed by the 
standard deviation as a function of calendar month. 
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 To elucidate the connections between the SPO and the tropical Pacific, we focus 

on the austral winter (JJA) when the SPO is most variable. Figure 4.4 shows the lagged-

regression maps of SLPA, SSTA, and 10-m wind anomalies onto the standardized JJA 

SPO (SPOJJA) index from MAM through DJF+1 (i.e., the peak season for ENSO). 

During MAM, (Fig. 4.4a), the characteristic SSTA and wind anomaly patterns 

associated with the NPO/NPMM are apparent (Chiang and Vimont 2004). By JJA, a 

canonical (i.e., EP) El Niño is established with the maximum SSTA over the central-

eastern tropical Pacific (Fig. 4.4b; shading) concomitant with a positive SPO (Fig. 4.4; 

line contours). From JJA to SON, the anomalous wind stresses associated with the SPO 

promote anomalous equatorial divergence of water west of 150°W in both hemispheres, 

as shown by the regression of V onto the SPOJJA index (Figs. 4.4f-g). By contrast, 

anomalous equatorward mass transport is centered south of the equator between 

150°W-90°W (Figs. 4.4f-g), co-located with warmest SSTA (Figs. 4.4b-c), thereby 

charging the eastern equatorial Pacific, in accordance with the TWC mechanism 

(Anderson et al. 2013; Anderson and Perez 2015). Hence, positive ocean heat content 

builds in the central tropical Pacific and eventually discharges to the east from JJA to 

DJF (Figs. 4.4f-g), resulting in a warm EP ENSO event (Fig. 4.4d).  
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Figure 4.4 (a)-(d) Lag regression of SLPA (contours, hPa), SSTA (shading, °C), and 10-m wind 
anomalies (vector, m/s) onto the standardized SPOJJA index for (a) March-May (MAM), (b) 
June-August (JJA), (c) September-November (SON), and (d) December-February (DJF). For 
(a), the fields lead the SPOJJA index, while for (c) and (d), the SPOJJA index leads the fields. 
Contour interval 0.2°C for SSTA and 0.4 hPa for SLPA. Reference wind vector 0.8 m/s. Wind 
vectors plotted only where significant at the p<0.05 level. (e)-(h) As (a)-(d) except for the 
anomalous vertically-integrated meridional oceanic mass transport (V; shading, m2/s) and ocean 
heat content (vertically-averaged temperature integrated from 0 to 300m; contour, °C). Contour 
internal 0.15 m2/s for V, and 0.2 °C for ocean heat content. Solid (dashed) line contours indicate 
positive (negative) values. Zero contour omitted. Stippling indicates statistically significant 
SSTA regression coefficients at the p < 0.05 level according to a two-tailed Student's t test. 
 

 Is the SPO merely a response to tropical Pacific forcing, or does it contain 

significant internal variability that can impact tropical Pacific SSTA? To answer this 

question, Figure 4.5a shows the regression of JJA SLPA (contours), SSTA (shading), 

and 10-m wind anomalies (vectors) onto the CTIJJA index. The SLPA field clearly 

displays a SPO-like structure in the South Pacific, indicating that at least a portion of its 

variability covaries with tropical Pacific SSTA. Next, to examine the potential 

stochastic component of the SPO, we conduct EOF analysis on the residual South 

Pacific SLPA field - i.e., the SLPA field after linearly removing the CTIJJA index: 

SLPAres= SLPA-(a+b*CTIJJA). Therefore, SLPAres has uncorrelated with tropical 

Pacific SSTA in the CTI region. The leading mode of SLPAres (i.e., the spatial pattern 

EOF1res and its associated time series PC1res) accounts for 48% of the variance in 

SLPAres and resembles strongly the SPO (Fig. 4.5b, line contours; r (SPOJJA, PC1res) = 

(a) MAM (b) JJA (c) SON (d) DJF

(e) MAM (f) JJA (g) SON (h) DJF

[°C] [m2 s-1]

0.8 m s-1
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0.79; p < 0.01). Therefore, we suggest that the SPO cannot be viewed only as a response 

to forcing form tropical Pacific SSTA but instead contains significant (and independent) 

internal variability that can subsequently play a role in the development of an ENSO 

event. 

 

Figure 4.5 (a) Regression of JJA SLPA (contour, hPa), SSTA (shading, °C), and 10-m wind 
anomalies (vector, m/s)  onto the standardized CTIJJA index. (b) As in (a), except for regression 
onto the standardized PC1res index (see text for details). Contour interval 0.2°C for SSTA and 
0.4 hPa for SLPA. Reference wind vector 0.8 m/s. Solid (dashed) line contours indicate positive 
(negative) values. Zero contour omitted. Wind vectors plotted only where significant at the p < 
0.05 level. Stippling as in Fig. 4.4. 
 

We now examine how important the SPOJJA variability is relative to the austral 

fall (boreal spring) NPO (NPOMAM) in the development of an ENSO event. The NPO 

index is traditionally defined as the second leading EOF of SLPA poleward of 15°N in 

the North Pacific (Linkin and Nigam 2008). However, it is the Hawaiian node that is 

most important for seasonal (and longer) linkages to the tropical Pacific (e.g., Vimont et 

al. 2003a; Anderson et al. 2003, 2007; Di Lorenzo et al. 2010; Furtado et al. 2011, 

2012). Therefore, for this study, we define the NPO index as the SLPA averaged over 

13°N-24°N and 158°W-135°W (i.e., SLPA associated with the node near Hawaii). 

Figure 4.6 shows the lag regression of SLPA (line contours), SSTA (shading), and 10-m 

wind anomalies (vectors) onto three different indices:  

(a) CTIJJA (b) 

[°C]
0.8 m s-1
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• The NPOMAM index (Figs. 4.6a-d) 

• The NPOMAM-rNiño3 index, found by linearly removing the Niño3JJA index from 

NPOMAM index: NPOMAM-rNiño3 = NPOMAM – [a1+b1* Niño3JJA] (Figs. 4.6e-h) 

• The NPOMAM-rSPO index, found by linearly removing the SPOJJA index from the 

NPOMAM index: NPOMAM-rSPO = NPOMAM – [a2+b2*SPOJJA] (Figs. 4.6i-l) 

The lag regressions on the NPOMAM index (Figs. 4.6a-d) illustrate the ENSO 

lifecycle as expected from the seasonal forecasting mechanism framework (Vimont et 

al. 2003; Chiang and Vimont 2004; Chang et al. 2007): (1) the SSTA and wind 

anomalies extend from the subtropical North Pacific into the central-western tropical 

Pacific during MAM (Fig. 4.6a); (2) the SSTA subsequently expand into the eastern 

tropical Pacific and (3) finally grow into an ENSO event during DJF (Figs. 4.6b-d). 

When examining lag regressions of the same fields onto the NPOMAM-rNiño3 index (Figs. 

4.5e-4.5h), we see that, by construction, the tropical Pacific SSTA do not expand into 

the Niño3 region during JJA (Fig. 4.6f). Nonetheless, significant positive SSTA 

encompass the eastern tropical Pacific during the following DJF (Figs. 4.6g-h). This 

finding suggests that JJA Niño3 region positive SSTA are not necessary to result in an 

EP-type ENSO event (Fig. 4.6d). By contrast, upon removing SPOJJA variability 

linearly from the NPOMAM index (Figs. 4.6i-l), the positive SSTA are now confined to 

the central equatorial Pacific throughout the period and develop in situ into a CP ENSO 

event, resembling the evolution of a CP ENSO event shown by Kug et al. (2009) and 

Kao and Yu (2009). Similar conclusions are found when examining ocean heat content 

anomalies (not shown). Note that while these lag regression analyses cannot prove 
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definitively the exact influence of the SPO on ENSO, they provide clues as to its 

contribution relative to the current paradigm involving the NPO. 

 

Figure 4.6 (a)-(d) As in Figs. 4.3(a)-(d) except for regressions onto the standardized NPOMAM 
index. (e)-(h) As in (a)-(d) except for regressions onto the standardized NPOMAM-rNiño3 (see text 
for details). (i)-(l) As in (a)-(d) except for regressions onto the standardized NPOMAM-rSPO (see 
text for details). Contour interval 0.1°C (shaded contours) and 0.4 hPa (line contours). 
Reference wind vector 0.8 m/s. Solid (dashed) line contours indicate positive (negative) values. 
Zero contour omitted. Stippling as in Fig. 4.4. 
 

4.3.2 NMME Hindcasts 

 The above analyses suggest that SPOJJA cannot be viewed only as a response to 

forcing form tropical Pacific SSTA but instead contains significant internal variability 

(Fig. 4.5). Henceforth, we utilize the NMME hindcasts initialized on June 1st to isolate 

the role of the atmospheric internal variability in the scenario of similar JJA SSTA 

forcing. Although the period covered is relatively short (i.e., 1982-2010), the 10 

ensemble members increase the sample size.  

[°C]
0.8 m s-1

(a) MAM JJA SON DJF(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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To set the stage, first we check if the models reasonably reproduce the 

relationship between the South Pacific SLPA and tropical Pacific SSTA during JJA. 

Figure 4.7a displays box-whisker diagrams of the correlation coefficients between 

Niño3JJA and the northern node of the JJA SPO (i.e., SPO../01; SLPA averaged over 15°S-

40°S and 180-90°W). We focus on the SPO../01  as it regulates the South Pacific 

subtropical high and is most important for linkages to the following ENSO events. The 

correlations are shown for each model, their ensemble members, and the ensemble-

mean. Consistent with previous analyses, the overall correlation is negative (i.e., a 

positive Niño3JJA anomaly favors a weaker South Pacific subtropical high). Meanwhile, 

the large amount of spread among ensemble members and the surpassing correlation of 

the ensemble-mean in both models (Fig. 4.7a, diamonds; r ~ -0.7 for CESM1 and r ~ -

0.8 for CanCM4) support the presence of the internal variability. The member spread in 

correlation includes the correlation from reanalysis (r ~ -0.55; Fig. 4.7a, black cross 

markers). However, the observed value falls between the highest value and upper 

quartile in CanCM4 and between the median value and lower quartile in CESM1, 

suggesting the relationship between the Niño3JJA and SPO../01  is overestimated 

(underestimated) in the CanCM4 (CESM1) model. 

To further qualify the level of South Pacific variability that is intrinsic versus a 

response to tropical Pacific SSTA, composites of JJA SLPA and SSTA during the 

warmJJA and coldJJA events are evaluated. For the NMME models, this contrast can be 

accomplished simply by comparing the 10 ensemble members. For reanalysis, however, 

we have only one realization. As such, we employ a random sampling method, or the 

“bootstrapped composites”, following Deser et al. (2017). The method goes as follows: 
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Synthetic composites are formed by randomly sampling with replacement from among 

the 13 warmJJA and 15 coldJJA events, retaining the same sample size for either category. 

This sampling is then repeated for 2,000 times. The resulting composites thus yield an 

estimate of the degree to which sampling variability influences the single “real-world” 

composite. The observed bootstrapped composites are then ranked by the SPO../01.  

Figs. 4.7b and 4.7c display the observed bootstrapped composites of the 10th and 

90th percentiles, respectively. The specific events used for the composites are listed in 

Table 4.2. Although the intensity and spatial structure of the tropical Pacific SSTA are 

similar in the two composites, the spatial pattern and magnitude of the SPOJJA vary 

considerably. Although both composites exhibit somewhat similar structure to the 

SPOJJA, the southern node of the SPO is less coherent in the two composites due to the 

stronger stochastic variability present at higher latitudes. As to the NMME models, 

Figs. 4.7d-e (4.7f-g) exhibit the composites of JJA SSTA (shading) and SLPA 

(contours) based on the same set of the warmJJA (6) and coldJJA (7) events for the 

CESM1 (CanCM4). Only the ensemble member that simulates the weakest and 

strongest SPO../01 are shown. As seen, the SLPA dipole is reasonably reproduced while 

remarkable diversity similar to the observed bootstrapped composites is also apparent. 

Although the composites yield below-normal SLPA in the extratropical South Pacific, 

the amplitude of the SLPA varies greatly, indicating the SPO../01  is substantially 

influenced by the intrinsic variability. In line with Fig. 4.7a, the overall response of 

South Pacific circulation to the tropical SSTA is stronger in CanCM4 model than 

CESM1 model. 
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Table 4.2 The warmJJA and coldJJA events for the observed bootstrapped composites. 
Year Bootstrapped warmJJA and coldJJA composites – 10% 

warmJJA (13) 1957(2), 1963(2), 1965(2), 1969, 1972, 1976, 1982, 1987, 2009, 2015 

coldJJA (15) 1954(2), 1955(2), 1970(2), 1973(2), 1978, 1988, 2000, 2007, 2010(2) 

Year Bootstrapped warmJJA and coldJJA composites – 90% 

warmJJA (13) 1951, 1957, 1963(3), 1969, 1972, 1982(2), 1997(2), 2009, 2015 
coldJJA (15) 1954(2), 1955, 1964, 1970(2), 1975(2), 1978, 1985(2), 1999(2), 2000(2) 

 

 
Figure 4.7 (a) Box plots for correlations between the  and Niño3JJA for the CESM1 (blue) 
and (red) CanCM4 ensemble members. Bootstrapped warmJJA and coldJJA composites of JJA 
SLPA (contour, hPa) and SSTA (color shading, °C) for (b) 10th percentile and (c) 90th percentile 
based on the  index in reanalysis (see text). The warmJJA and coldJJA composites of JJA 
SLPA (contour, hPa) and SSTA (color shading, °C) for the CESM1 ensemble members 
simulating the (d) weakest and (e) strongest , respectively. (f, g) As in (d, e) but for the 
CanCM4. Positive (Negative) SLPA values represented by solid (dashed) contours. Zero 
contour omitted. Contour interval 0.5hPa. Light blue and light red shading denote where 
negative and positive SLPA are significant at 95% confidence level, respectively, based on a 
two-tailed Student’s t test. 

 

To isolate the JJA atmospheric internal variability in the models, we subtract the 

ensemble average SLPA (i.e., the “forced” response, as the tropical SSTA boundary 

condition is similar in each member) from each ensemble member’s SLPA field (i.e., 

SPO'../01  = SPO../01  - SPO../01 , in which the overbar denotes the ensemble average). To 

facilitate more commonality amongst the models for this particular analysis, we only 

consider JJA periods preceding major ENSO events in the following analysis. The 
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caveat to this approach is that the tropical SSTA are not fixed during JJA so that other 

high-frequency processes, such as the westerly wind bursts, might be involved, which 

may cause more uncertainty in the relationship between the SPO'01
../ and ENSO. 

 The caveat is addressed by evaluating the relationship between the SPO'../01  and 

Niño3′JJA (i.e., the ensemble spread in Niño3JJA; Niño3′JJA = Niño3JJA-Nıño3../). The 

impact of the tropical SSTA forcing is evident in the autocorrelation characteristics of 

the SPONP time series shown in Figures 4.8a and 4.8b. The decorrelation timescale for 

the SPO.9:;01  is longer than 1 month and the autocorrelation exhibits a period in 

accordance with the ENSO life cycle (red lines). After removing the ensemble average, 

the e-folding timescale of the SPO'.9:;01  drops to less than one month (black lines), 

consistent with the white-noise process. Figs. 4.8c and 4.8d relate the Niño3 ′JJA
 to 

SPO'../01. The variance of the SPO'../01 is comparable in the two models, ranging from -2~2 

hPa and following a Gaussian distribution. The SPO'../01 is inversely proportional to the 

Niño3′JJA. To clarify the causality link, the spatial structure of the SPO'../01 is examined 

by regressing the spread of the JJA oceanic and atmospheric variables against the non-

standardized SPO'../01 time series (Figs. 4.8e-h). The suppressed South Pacific subtropical 

high weakens the climatological trade winds, reducing upwelling in the eastern tropical 

Pacific and inducing warm SSTA in the subtropical southeastern and eastern equatorial 

Pacific (Figs. 4.8e-f).  
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Figure 4.8 (a) Autocorrelation for  (red line) and  (black line). (b) Scatter plot of 
the Niño3′JJA versus . Regressions of JJA (e) SSTA′ (shading, °C/hPa) and U850′ (vector, 
m/s hPa), (g) equatorial (5°N-5°S) Tsub′ (shading, °C/hPa) and subsurface velocity (u ′, w ′; 
vector, cm/s hPa) onto the non-standardized  in CESM1. The w′ is scaled by 3*104 for 
visual clarity. The purple, dark gray, and light gray dots in (c, d) represent the events preceding 
the major El Niño, La Niña, neutral events, respectively. (b, d, g, h) are the same as (a, c, e, f) 
but for CanCM4. The shading in (e, g) and stippling in (f, h) indicate the SSTA′ and Tsub′ 
significant at 95% confidence level, respectively. Positive (Negative) values represented by 
solid (dashed) contours. Zero contour omitted. Only the significant wind vectors are drawn. 
 

The mechanisms responsible for the SSTA over the eastern equatorial and 

southeastern Pacific are likely different. In the southeastern Pacific, the SSTA evolution 

likely results from a combination of anomalously downward latent heat flux, suppressed 
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upwelling, and the increased shortwave radiation feedback from low stratiform clouds 

(e.g., Zhang et al. 2014a). While in the eastern equatorial Pacific, since the thermocline 

is climatologically shallow and the vertical temperature gradient is strong in the upper 

50 meters over this region, the thermocline feedback via the suppressed upwelling and 

the deepened thermocline is most likely responsible for the surface warming. Figs. 4.8f 

and 4.8h support this assertion as the subsurface warming is co-located with the 

suppressed upwelling near the thermocline (<(=>/=@). The zonal advection feedback 

induced by the anomalous eastward ocean currents (A(=>/=') could also contribute. 

To bring out the role of the internal variability on ENSO, the evolution of the 

anomalous field is visualized by regressing the member spread of atmospheric and 

oceanic fields in the following seasons against the SPO'../01 index (Figure 4.9). In addition 

to the concurrent changes in the state of the tropical and southeastern Pacific Ocean, the 

SSTA associated with the SPO'../01 grow into an ENSO-like structure in the following 

boreal winter. In CESM1, although the subtropical wind stress anomalies associated 

with the SPO'../01 signature diminish rapidly after JJA, the Bjerknes feedback amplifies 

the initial eastern equatorial Pacific SSTA and Tsub, promoting warming along the 

equator and giving rise to an ENSO-like pattern in the boreal winter (Figs. 4.9c-d). 

Driven by the wind-evaporation-SST (WES) feedback (Xie and Philander 1994), the 

SSTA and wind anomalies in the southeastern Pacific could also propagate 

northwestward into the central equatorial Pacific. This lagged evolution of the 

atmospheric and oceanic fields associated the SPO'../01 is largely linear as the composites 

yield similar results to the linear regressions (not shown). As such, the SPO'../01 

modulates the ensemble spread of the ENSO prediction (i.e., Niño3 ′ NDJ(+1) = 



74 

Niño3NDJ(+1)-Niño3NDJ(+1)) as suggested by the negative correlation between the SPO'../01 

and Niño3′NDJ(+1) (r = -0.57 for CESM1; Fig. 4.9a). That said, the member with a more 

negative (positive SPO′../01) tends to predict a stronger (weaker) El Niño (La Niña) event. 

A similar relationship is found in the CanCM4 model (r = -0.45; Figs. 4.9b, 4.9e, and 

4.9f). Nonetheless, the relationship is somewhat weaker and uncertainty is greater as 

indicated by the larger scatter between the SPO'../01 and Niño3′NDJ(+1) indices versus those 

in the CESM1 (compare Fig. 4.9a and Fig. 4.9b). 

 

Figure 4.9 (a) Scatter plot of the  versus Niño3′NDJ(+1). Regressions of the JJA, September-
November (SON), and NDJ(+1) (c) SSTA′ (shading, °C/hPa) and U850′  (vector, m/s hPa), (d) 
equatorial (5°N-5°S) Tsub′ (shading, °C/hPa) onto the non-standardized  in CESM1. (b, e, 
f) are the same as (a, c, d), but for CanCM4. Only the  precedes the major ENSO events 
are included in (c)-(f). Positive (negative) values represented by solid (dashed) contours. Zero 
contour omitted. Stippling and shading as in Fig. 4.8. 
 

In order to check how much of the ENSO ensemble spread is forced by the 

SPO'../01  or driven by other processes, regressions of the JJA member spread of 
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atmospheric and oceanic fields onto the non-standardized Niño3′NDJ(+1)
 index are shown 

in Figure 4.10. The conspicuous agreement of the SLPA pattern with the SPO′../01 is yet 

another confirmation that the spread of ENSO forecast  can be reasonably explained by 

the SPO'../01  (Figs. 4.10a and 4.10b). However, compared to the SPO'../01-driven pattern 

shown in Fig. 4.9, the spatial structure of the SSTA′ is different in the CanCM4 (Figs. 

4.10c and 4.10d). The stronger loading in the eastern equatorial Pacific indicates an 

increasing possibility for the ensemble member simulating a greater equatorial warming 

in JJA to predict a stronger El Niño event in the following winter. While this does not 

rule out the influence of the SPO'../01 , the subsurface Tsub '  dipole indicates the 

contribution of the oceanic Kelvin waves (Fig. 4.10f), accounting for the greater 

uncertainty in the CanCM4 (Fig. 4.9b). 

 

Figure 4.10 Regressions of the JJA (a) SLPA′ (hPa/°C), (c) SSTA′ (°C/°C), and (e) equatorial 
(5°N-5°S) Tsub′ (°C/°C) onto the non-standardized Niño3′NDJ(+1) in CESM1. (b, d, f) are the same 
as (a, c, e), but for CanCM4. Only the major ENSO events are included. Positive (Negative) 
values represented by solid (dashed) contours. Zero contour omitted. Stippling and shading as in 
Fig. 4.8. 
 



76 

4.3.3 Role of SPO in ENSO Predictability and Asymmetry 

 The above analyses suggest that although tropical SSTA during austral winter 

remotely forces the SPOJJA, the magnitude and pattern of the SPOJJA are strongly 

regulated by extratropical South Pacific internal variability (Figs. 4.5, 4.7, 4.8). The 

SPO is capable of modulating of the climatological southeasterly trade winds (Fig. 4.4) 

and exciting stochastic equatorial wind stresses and initiate coupled instability that 

grows into ENSO-like structure by the Bjerknes feedback (Fig. 4.9). The greatest 

influence of the SPOJJA is located in the eastern equatorial Pacific (Fig. 4.9). Differing 

from the North Pacific where the ENSO-forced pattern (i.e., Pacific-North American 

pattern; PNA) and the internal mode modulating the tropical Pacific (i.e., NPO) are 

orthogonal, the ENSO-forced and the internal mode in the South Pacific (i.e., SPO) 

project onto similar spatial structure and account for comparable amount of variability 

(Fig. 4.5). Thus, the tropical Pacific SSTA forcing and the forced South Pacific SLPA 

could produce a fast positive feedback. Given that the forecast models suffer from a 

common systematic bias whereby the SSTA associated with the EP-type El Niño shift 

westward with increasing lead time (e.g., Hendon et al. 2009; Zhao and Hendon 2009), 

the magnitude of the full SPOJJA may offer a plausible pathway to improve the 

prediction of subsequent ENSO development and particularly the flavor of ENSO with 

6-month lead in real world.  

 To test this assertion, we conduct a simple prediction exercise. For all El Niño 

identified since 1948 using our definition (see Section 4.2), the strength and phase of 

the full SPOJJA index is used to predict if an EP or CP event would ensue. That is, if the 

SPOJJA index is greater (less) than 1σ, an EP (a CP)-type event is predicted. The 

verification for our prediction follows the characterization of ENSO events as in Yeh et 
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al. (2009), though the overall results are insensitive to other designations (e.g., those 

used in Yu et al. 2012). Table 4.3 indicates that our simple prediction scheme identifies 

correctly the types of 74% (17 out of 23) of all observed El Niño events since 1948. 

This finding suggests that the SPO is a reliable (but not absolute) predictor for the type 

of ENSO event that will ensue with a 3-6 month lead. 

Table 4.3 All major El Niño events (23 events, first column), their types (second column; see 
text for definition) and their types predicted by SPO (third column). Specifically, when the 
SPOJJA index is greater (less) than 1σ, then a(n) EP (CP) El Niño is predicted. 

Year Type Predicted by SPOJJA Year Type Predicted by SPOJJA 

1951 EP Ö 1987 EP Ö 
1957 EP Ö 1990 CP Ö 
1963 EP ´ 1991 EP ´ 
1965 EP Ö 1994 CP Ö 
1968 CP Ö 1997 EP Ö 
1969 EP ´ 2002 CP ´ 
1972 EP Ö 2004 CP Ö 
1976 EP Ö 2006 EP ´ 
1977 CP Ö 2009 CP Ö 
1979 EP Ö 2014 CP Ö 
1982 EP Ö 2015 EP ´ 
1986 EP Ö Total  17/23 = 74% 

 

Aside from identifying the flavor of warm ENSO events, the SPO may also play 

a role for La Niña events and the observed spatial asymmetries between El Niño and La 

Niña events. To examine this, we compute the asymmetric pattern between El Niño and 

La Niña (Larkin and Harrison 2002; Anderson et al. 2013) - i.e., the composite 

difference between SSTA during El Niño events and the inverse (i.e., multiplied by -1) 

of SSTA during La Niña events. Figure 4.12 shows the results of the composite 

differences for all events (Fig. 4.12a) and events conditioned by the phase and strength 
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of the SPO (Figs. 4.12b-c). When examining all events, the spatial difference in SSTA 

is minimal and statistically insignificant (Fig. 4.12a). But, when we examine the 

composite difference for events where magnitude of the SPOJJA is greater than 1σ, the 

asymmetry between El Niño and La Niña is clearly visible with statistically significant 

differences in the easternmost tropical Pacific and near the dateline (Fig. 4.12b; 

stippling). For cases when the magnitude of the SPO is less than 1σ, the spatial patterns 

of the El Niño and La Niña SSTA match fairly well (i.e., small differences) with 

significant differences restricted to the far eastern tropical Pacific (Fig. 4.12c). Hence, 

along with being a potential discriminant for the flavor of a warm ENSO event, the SPO 

may also play a role in the asymmetrical structure of warm and cold ENSO events. 

 

Figure 4.11 (a) Difference between the DJF-mean SSTA (°C) for all El Niño events and the 
inverted DJF-mean (i.e., multiplied by -1) for all La Niña events. (b) As in (a) but for only El 
Niño (La Niña) events when the SPOJJA>1σ (SPOJJA<1σ). (c) As in (a) but for El Niño and La 
Niña events when SPOJJA<1σ. Contour interval 0.1°C. Stippling indicates composite differences 
that are significantly different from each other at the p<0.05 level according to a two-tailed 
Student's t test. 
 

4.4 Chapter Summary and Discussion 

In this chapter, we present evidence that although the tropical SSTA in the 

austral winter can remotely influence SLPA in the extratropical South Pacific, the 

[°C]

(c) Events related to SPOJJA (magnitude less than 1.0!)(b) Events related to SPOJJA (magnitude greater than 1.0!)

(a) All events
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magnitude and pattern of the SLPA are strongly regulated by the inherently atmospheric 

noise (Figs. 4.5, 4.7). The South Pacific atmospheric internal variability associated with 

the South Pacific Oscillation (SPO), featuring by a large-scale meridional SLPA seesaw 

between the subtropics and higher-latitudes (Fig. 4.3), contributes significantly to the 

development of the following ENSO events (Figs. 4.6, 4.9) and provides great 

implications for the seasonal prediction of the flavors of ENSO events (Fig. 4.11; Table 

4.3). Furthermore, the SPO′../01  is a primary source of uncertainty for ENSO prediction in 

the NMME hindcasts explored here (Fig. 4.10). Given that internal variability is, by 

definition, unpredictable even with a perfect model, the SPO variability might serve as a 

natural limit for ENSO prediction. 

Analogous to the westerly wind bursts (Chen et al. 2015), the synoptic-scale 

surface easterly wind bursts in the central equatorial Pacific were suggested by several 

recent studies to play an important role in the onset of La Niña events (Choidi and 

Harrison 2015) and in the stalling of the some El Niño events (e.g., Min et al., 2014; Hu 

and Fedorov 2016; Levine and McPhaden 2016; Choidi and Harrison 2017). Hu and 

Fedorov (2016) used model experiments to illustrate that a surplus of westerly wind 

bursts during boreal spring and the balance between westerly and easterly wind bursts 

(yielding small net wind stress anomaly) during boreal summer accounts for the early 

development and mid-year reversal of El Niño-like SSTA development during the 

2014/2015 event. The connections between the various characteristics of the easterly 

wind bursts (i.e., occurrence, strength, timing, persistence, zonal extent) and SPOJJA 

thus warrant further study.  
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

The El Niño-Southern Oscillation (ENSO) phenomenon, a coupled climate 

mode characterized by anomalies sea surface temperature (SST) anomalies (SSTA) 

across the equatorial pacific and changes in tropical convection patterns, considerably 

modulates global atmospheric circulations and influences both local and remote 

climates. The effects of the temporal and spatial structures of the tropical Pacific SSTA 

on the global teleconnections call for better understanding and predictability of the 

occurrence, intensity, and spatial structure of ENSO events. 

This main finding of this work illustrates that greater seasonal prediction of 

ENSO state is possibly achieved by incorporating certain South Pacific ENSO 

precursors. We have presented evidence from reanalysis products and a collection of 

state-of-the-art climate models that the South Pacific atmospheric internal variability 

imposes substantial influences on the various behaviors of ENSO events. Differing from 

the North Pacific where ENSO teleconnections (i.e., Pacific-North American pattern; 

PNA) and the atmospheric internal mode (i.e., North Pacific Oscillation; NPO) are 

nearly orthogonal to each other, the South Pacific atmospheric tropically-forced and 

internal modes project onto a similar SLPA structure, termed the South Pacific 

Oscillation (SPO) in the present thesis (Figs. 3.3, 4.3). Akin to the NPO, the SPO is 

characterized by a large-scale meridional SLPA seesaw between the subtropics and 

higher-latitudes. The northern node of SPO physically modulates the strength and 

location of the South Pacific subtropical High. Detailed conclusions for each chapter are 

provided below. 
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In Chapter 3, we assessed the seasonality of the atmosphere-ocean coupled 

mode intrinsic to the extratropical South Pacific – i.e., South Pacific Meridional Mode 

(SPMM; Fig. 3.2). The seasonality is of great importance for the SPMM’s role in 

influencing tropical Pacific variability. The response of the South Pacific subtropical 

SSTA to the atmospheric forcing [i.e., the wind-evaporation-SST (WES) feedback] is 

most energetic during the austral summer owing to the seasonal cycle of the oceanic 

mixed layer depth and the overall lower amplitude of the mean seasonal cycle in South 

Hemisphere atmospheric variability compared to that of the Northern Hemisphere (Fig. 

3.4). As a result, the seasonality of the wind and SST components of the SPMM vary 

out of phase (Fig. 3.2c). The WES feedback and associated SPMM dynamics thus are 

most active during the austral summer/fall, providing a favorable timing for subtropical 

SST and wind anomalies initiated by the SPO (Fig. 3.3) to propagate equatorward into 

the cold tongue region (Fig. 3.10). The resulting tropical anomalies may interact 

constructively or destructively with the concurrent North Pacific Meridional Mode- 

(NPMM-)induced anomalies in the warm pool region, subsequently shaping the 

occurrence, temporal evolution, amplitude, and potentially the longitudinal position of 

the maximum SSTA of the resulting ENSO events (Figs. 3.11-3.13). Both Pacific 

Meridional Modes (PMMs) appear to be most efficient at triggering El Niño when the 

subsurface is preconditioned with the buildup of heat content during the austral fall and 

winter (Fig. 3.14). The boreal winter Pacific SSTA can be feasibly forecasted when 

using the boreal spring PMMs as predictors (Figs. 3.15-3.16). Although the PMMs are 

captured reasonably by the state-of-art climate models, the contributions of the slowly 



82 

evolving ocean heat content dominants over the PMMs in the equatorial Pacific (Fig. 

3.15). 

Although combining the two PMMs and WWV enhances ENSO prediction, 

where the maximum equatorial Pacific SSTA resides remains uncertain. Hence, we 

investigated the South Pacific austral winter climate variability in Chapter 4, as this is 

the time when the South Pacific atmospheric variability is strongest. Using reanalysis 

and NMME hindcasts, we tested the previously-published argument that the austral 

winter SLPA are actually a response to the developing tropical Pacific SSTA due to the 

local seasonality. Instead, our analyses indicated that both the spatial structure and 

amplitude of the austral winter ENSO teleconnections in the South Pacific are strongly 

regulated by the atmospheric internal variability, namely the SPO (Figs. 4.3, 4.5, 4.7). 

By regulating the discharge of the ocean heat content over the eastern tropics (Figs. 4.4, 

4.6) and exciting stochastic equatorial westerly wind stress (Fig. 4.8), the positive phase 

of the austral winter SPO initiates coupled instability that thereafter grows into ENSO-

like structure via the Bjerknes feedback (Fig. 4.9). Furthermore, the austral winter SPO 

provides great implications for the seasonal prediction of the ENSO flavors. In NMME 

hindcasts, the austral winter SPO is the main atmospheric pattern responsible for the 

ensemble spread of ENSO prediction (Fig. 4.10). Given the internal variability is 

unpredictable even with a perfect model, the austral winter SPO might serve as an 

intrinsic limit for ENSO prediction.  

Collectively, we extend the North Pacific-tropical Pacific framework put forth 

by Di Lorenzo et al. (2015) to include the South Pacific, providing a new framework to 

understand the relationship between the extratropical Pacific internal variability and 
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ENSO events (Figure 5.1). Given the uncertainties in NPMM-ENSO relationship 

(Larson and Kirtman 2014, 2015) and the fact that the NPMM appears to be a precursor 

for both EP and CP events (Fig. 4.1), this paradigm incorporates the South Pacific 

ENSO precursors in the austral summer and winter to enhance the prediction of the 

occurrence, intensity, evolution, and flavors of ENSO events.  

 

Figure 5.1 Diagram of ENSO variability. The North Pacific framework is put forth by Di 
Lorenzo et al. (2015).  

 

5.2 Future Work 

The results presented in previous chapters are important for understanding and 

predicting the tropical Pacific variability on interannual scales. They also provide more 

interesting and important questions for future studies. In particular, two key topics are 

highlighted below. 
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Impact of the SPMM on Pacific decadal variability  

Given that the dynamics of the PMMs are consistent with a red noise process 

without any preferential timescales, the PMMs may also play an important role in 

energizing the decadal and multi-decadal energy in the tropical Pacific (Vimont et al. 

2002; Clement et al. 2011; Di Lorenzo et al. 2015; Newman et al. 2016). Additionally, 

as we did not apply any filtering in the analyses, the high correlation between the un-

filtered PMMs and ENSO (Fig. 3.14) indicates that the bulk of Pacific variability is 

possibly caused by the same mechanism on interannual and decadal timescales.  

To examine this a little further, we perform the power spectral and cross-spectral 

analyses on the PMMs and CTI time series to check the frequency of the PMMs and 

their relationship to tropical Pacific variability. As shown in Figure 5.2, power spectrum 

analysis reveals that the dynamics of the PMMs could play a role in tropical Pacific 

variability at lower frequencies. At the lower frequencies, the observed PMMs show 

significant periodicities at and longer than ~5 years (Figs. 5.2a-b). The increasing power 

of PMMs at low-frequencies arises partly from mid-latitude air-sea coupling (Barsugli 

and Battisti 1998; Vimont et al. 2002) and partly from tropical Pacific remote forcing 

(Furtado et al. 2012; Stuecker 2018). The highly-significant squared coherence between 

the PMMs and CTI on the interannual timescale (2-4 years) and periods exceeding 6 

years suggests that a great amount of the CTI variance at these bands is related to the 

PMMs (Figs. 5.2e-f, i). The CMIP5 MME agrees with observation but with reduced 

coherence (Figs. 5.2c-d, g-h). However, the lead time for the PMMs at low-frequency 

timescales is confined to ~1 year (Figs. 5.2i-j; e.g., Vimont et al. 2002; Okumura 2013; 
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Di Lorenzo et al. 2015), suggesting limited predictability. Actual qualification is 

warrant for future studies. 

 

Figure 5.2 (a) Power spectrum (plotted as percent variance; black line) of normalized observed 
monthly-mean NPMM index. Blue line represents the theoretical red noise power spectrum, and 
the dashed red line represents the 95% significance curve. (b) As in (a) but for the observed 
monthly-mean SPMM index. (c) As in (a) but for the CMIP5 MME. (d) As in (b) but for the 
CMIP5 MME. (e) Squared coherence from the cross-spectral analysis of the monthly-mean 
NPMM index and the CTI. Dashed grey line denotes the 95% significance level for the squared 
coherence. (g, h) As in (e, f) but from the cross-spectral analysis of the monthly-mean SPMM 
index and the CTI. Note the differences of the y-axis for the CMIP5 MME versus the reanalysis 
plots. (i) Lag correlation between the raw (solid), 2~4 yr band-passed (dot-dashed), and 6 yr 
low-passed (dashed) versions of the NPMM index (blue) and SPMM index (red) and the CTI. 
Negative (positive) lags indicate that the NPMM/SPMM index leads (lags) the CTI. 
Corresponding vertical lines on the x axis represent the lag with the maximum correlation. (j) 
As in (i) but for the CMIP5 MME. Red/blue shading in (j) denotes the unit standard deviation 
across models. 
 

The Sensitivity of SPMM-ENSO relationship to mean state 

While we primarily concentrate on the CMIP5 MME in Chapter 3, individual 

models display a variety with regard to the relation between SPMMFMAM and ENSO. 

We briefly address the inter-model spread here. We grouped the models analyzed in this 

study into two groups based on the correlation between the SPMMFMAM and CTINDJ(+1) 

within each model compared to the MME correlation. The two groups included 
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modelhigh_corr (CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-ESM2G, GISS-E2-R, 

NorESM1-ME) and modellow_corr (CCSM4, HadGEM2-CC, INMCM4, MIROC5, IPSL-

CM5A-MR, MPI-ESM-P). We then repeated the analysis in Fig. 3.9 (i.e., lagged 

regressions of SLPA, SSTA, and wind anomalies onto the SPMMFMAM index) and 

averaged the results per subset. Figures 5.3a-h display these lag regressions. The most 

evident differences between the modelhigh_corr and the modellow_corr models emerge during 

and after MJJ, when the SSTA and the deepening of thermocline in the eastern tropical 

Pacific have been established in the modelhigh_corr models (Fig. 5.3b) but not in the 

modellow_corr models (Fig. 5.3f). The modelhigh_corr (modellow_corr) exhibit strengthened 

(weakened) responses of the thermocline slope and equatorial zonal wind anomalies to 

the SPMM-related forcing, indicating the tropical coupled system is relatively unstable 

(damped) and the SSTA growth rate is thus greater (weaker). Additionally, we 

examined the biases in the SST (Fig. 5.3i) and precipitation mean state (Fig. 5.3j). The 

inter-model spread for these dynamics is likely also associated with the well-

documented “cold-tongue” bias in the models, as the system tends to be more unstable 

where the eastern equatorial SST mean state is warmer and the ascending branch of the 

Walker circulation shifts eastward (Figs. 5.3i, j; see also Lübbecke and McPhaden 

2014).   

The above analysis highlights the effect of model biases in tropical Pacific SST 

climatology. On the other hand, this also suggests that the influence of the SPMM on 

ENSO events is sensitive to the tropical mean state. The WES feedback that controls the 

growth rate of the PMMs-related SSTA (Vimont et al. 2009), exhibits an exponential 

increase in amplitude because of the nonlinear relationship between SSTA and 
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evaporation in a warming climate. The increase in the amplitude of NPMM leads to an 

increase in the coupling between NPMM and ENSO, contributing to the variance of 

Pacific variability (Liguori and Di Lorenzo 2018). Similar analysis can be applied to the 

SPMM to facilitate the understanding of ENSO variability under different climate state. 

 

Figure 5.3 (a)-(d) As in Fig. 3.10e-h, but for the ensemble-mean of the modelhigh_corr subset. (e)-
(h) Same as (a)-(d) but for the modellow_corr. Stippling indicates where the SSTA regression 
coefficients are considered significant (p < 0.05 for reanalysis; 4 out of 6 models have the same 
sign of the regression). (i) Mean February-July SST climatology (black contour, °C) for the 
modelhigh_corr models and the difference (shading, °C) of the February-July SST climatology 
between the modelhigh_corr  and modellow_corr models. (j) As in (i) but for the precipitation 
(mm/day). 
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