Name: T. Leon Rubles
Date of Degree: May 26, 1957
Institution: Owatona A. and M. College
Location: Stiluater, oldzhona
 AND SURVEYING TNSRROMGRTS SUTTABL FOR A

Pages in study: 35
Candidate for Degree of Master of Science
Major Field: Natural Science
Nature of Study: This report deals with the measuring and surveying instruments sutiobie for use in a general mathematics laboratory. Th deals specifically with the appearance and description, mathematical principles Involved, cost, use, construction, and places to borrow twenty-five of the some one hundred instruments studied.

Findings and Conclusion: A general mathematics laboratory can be a reality in nearly any school system.

Use of Study: As a reference when teaching general mathematics in a laboratory approach method.

A SEMTNAR REPORT ON A STUDY OF MEASURING

```
AND SURVEYING INSTRUMENTS SUTTABLE FOR
    A GENERAI MATHEMATICS LABORATORY
```

By
E. Leon Hibbs
Bachelor of Science Northwestern State College Alva, Ok1 ahoma 1952
Master of Education University of OkI ahoma
Norman, Oklahoma
1956

Submitted to the faculty of the Graduate School of the OkIahoma Agricultural and Mechanical College
in partial fulfillment of the requirements for the degree of MASTER OF SCIBNCE

May, 1957

A SOMTNAR RPDORT ON A STUOY CE PrasURTMG
ANO SURVEYTNG IMGTRUMERTS SUTTABLE FOR
A GBMERAL MATHEMATICS LABCRATORy

PRERACE

Many teachers of high school mathematics contend that general mathematics should never be included in the curriculum. Others say that general mathematics is one of the most valuable courses offered in our high schools.

The purpose of this report is not to prove or disprove the value of general mathematics, but we must assume that there are classes in general mathematics in our high schools before this recort could claim validity.

In fact, general mathematics has largely replaced arithmetic in grades seven and eight and is nearly always one leg of the double track program in ninth grade mathematics curricula.

If one takes the old axiom that the whole is greater than any of \therefore ts parts and apnlies it to the field of mathematics, he can easily see that general mathematics could be considered as the whole while the secuential courses such as 21 gebra, geonetry, and trigonometry could be considered as the parts.

Some teachers consider the interrelations between the parts of more significance than the parts themselves. I consider a knowledge of the interrelationship of the parts as being a valuable asset as well as a detajied
study of the parts as being of cultural and educational value for both the non-college and college bound pupil. In other words, we need both.

We profess that the bulk of the general mathematics curriculum deals with the material which every wellinformed citizen should have at his command, but many of our teachers of general mathematics do not possess this information, not to mention the background necessary for teaching it to boys and girls. I felt that I was one of these teachers. With this knowledge of my inadequacy of training and background, I began a study of the whole field of general mathematics.

I first tried to determine the area of general mathematics in which I felt most inadequate. In this endeavor, I always arrived at the fact that I was inadequate in showing the practical applications of mathematics to my pupils. In short, I was one of the students described by Zant ${ }^{1}$ when he said:

Many students who have a thorough knowledge of sequential mathematics do not know the more practical things such as consumer mathematics, simple statistics, the ability to use tables and the like. Hence, we must see that students who are interested in secuential courses in mathematics are also required to make themselves competent in that part of mathematics which is needed by everyone.
${ }^{1}$ James II. Zant, "The Improvement of High School Mathematics Courses as Recommended by the Commission on Post-War Plans", The Mathematics Teacher, Vol. 39, (1946), p. 273.

After having established this wealness in my training and background, I then began a study of how to remove this weakness. Realizing that I must become accuainted with as many applications as possible in a short length of time, I obtained as much material as I could on mathematics laboratories.

Strictly speaking, mathematics is not an experimental science, yet it has an almost unimited number of applications to economic, comnercial, engineering, and industrial situation, and to the natural sciences. These appiications are probab1y more interesting to most students than the abstract material of textbooks. If applications are selected and studied in such a way as to emphasize the mathematical principles which underiie them, they are valuable from a mathomatical standpoint. 2

I was surprised to find that the mathematics 1 aboratory is not just a mere phrase, but that many teachers are having great success in teaching general mathematics in this manner. I was also surprised to find that so much material has been written on this subject.

It must be emphasized that the whole course of general mathematics does not lend itself to laboratory or field work, but many units do have wonderful practical applications. It must also be emphasized that the laboratory method of instruction does not take the place of any part of general mathematics, but only tends to strengthen certain units throughout the course.

[^0]Several learorg in the field of mathenat cos teach-
Eng feel that the laboratory method of instruction leads
Itself wo 11 to certain bases of mathematics. For example, Mojcats says: "If tho toachor wishes to make the mathematics option interesting ant orthrate he should transform $\dot{\theta} t$, whenever possible, into a sort of
laboratory period [.. $]^{\prime \prime}$ odds sars: "[..]andications should be used in order to increase interest, to aid understanding, to provide rractico in annoying lnompedge, and to give the students and the conmenty an apreciaion of the value of mathematical education." roman 5 made this statement:

One of the funcianstal elements of the program of instruction in elementary and high school mathematics is that of assisting the pupils to develop clear objective concepts of the useful units of measure and the instruments of business. Moreover, it must provide him with basic experience in using them. The underlying question zs: How is the school nromerit to assist the child to develon those concent and give hEn the necessary basic exnmexienco? Sertaney one essential is lie observation and use of the actual instruments by the mulls. Instruction in this olonot of mathematics therefore th large part should be of the work-shop or laboratory tyne.
3^{3} Raymond J. Nejtat, "Classroom Practice in the Teaching of Jraryany mathematics," The Mathematics Teacher, Vol. 34, (1941), D. 369.
"g. G. Oles, "The Use of Applications for Instructional Purposes," The Mathematics Teacher, Vol. 34, (1941), p. 83.

5F. M. Gorman, Mothat Laboratory Eouiment for elementary and High School Mathematics? ${ }^{\prime \prime}$ School Science and Mathematics, Vol. 43, (1943), r. 335.

After I became convinced that a 1 aboratory approach to the teaching of a part of general mathematics was a logical and adequate approach, I began an investigation as to which phases of the 1aboratory material suggested by leaders in the field would be of most value for me to study. After careful investigation, I found that I was weakest in preparation in mathematics of finance and the use of and mathematical principles involved in measuring and surveying instruments. My enrollment in a course entitled "Mathematics of Finance" seemed to be a logical way to correct the first weakness. But what of the measuring and surveying instruments and their applications to general high school mathematics? There was no course available. So, being a persistent individual, I proceeded to find the answer for myself.

During the remainder of this paper, I shall report a part of my findings on "Measuring and Surveying Instruments Suitable for a General Mathematics Laboratory." It is my wish that the bringing together of this material will not only be a great addition to my training as a teacher of general mathematics, but that the reporting of this information will make ready reference material available to myself in my teaching position and for any of the other members of the National Science Foundation teachers who care to make use of this paper.

In order to simplify the report and to make it easier to use for future reference, I shall limit my
report to only about twenty-five of the some one hundred instruments studied. These twenty-five were chosen because of either the mathematical principle involved in their uses, ease with which they can be obtained or made, or interesting applications in which they are used.

For further simp1ification, I shall divide the remainder of the report into $s i x$ sections in the following manner:

1. The name of the instruments or pieces of equipment, their general appearance, and a source of available classroom-size photographs, where applicable.
2. The mathematical principle involved in each of the instruments, where apolicable.
3. The current retail price of each of the instruments. This price will be for the lowest priced instrument of good grade as found in current catalogs of scientific supp1y houses.
4. Some uses and apolications of the instruments adaptable to the mathematics 1aboratory.
5. The instruments that can be homemade and procedure, where deemed necessary or applicable.
6. The instruments that can be borrowed from other institutions or agencies and where each of these conld be borrowed.

ACMOM RDGEMENTS

The writer wishes to express bis stincere appreciation and gratitude to Dr. Janes H. Zant, Professor of Mathonatics, who has contributed much of his time in 1 istening to jdeas on the preparation of this report, and to Maxine mbos, wife, who did the typing.

TABL O OF COITMTTS

Chapter rage
I. INSTRUMENTS AMD THEIR APDPARAITE 1
IT. THE MATHEMATICAL PRINCTPLES
INVOLVED • • • • • • • • • • • • • • 8
III. COST OR INSTRUMENTS 17
IV. USE OF INSTRUMENTS IN CLASS. 18
V. HOW CAN ONE MAYE THESE INSTRUMENTS? 27
VI. WHERE CAN ONE BORRON TITOM? 33
BIBT IOGRADHY 35

LIST OF TABLES

Table Page
I. Approximate Cost of Instruments 17
IIST OF ILIUSTRATIONS
Figure Page

1. Principles of Angle Mirror 8
2. Measurement of Vertical Distance With Jacob's Staff 9
3. Measuring Horizontal Inaccessible Distance With a Jacob's Staff 9
4. Incirect Measurement With a Groma. 11
5. Principles of Sextant. 14
6. Use of Angle Mirror. 18
7. Principle of Leveling. 21
8. Laying Out a Right Angle 25

CHADTER I

INSTRUMENTS AND THEIR APPGARANCE

Following is a list of instruments chosen for the basis of this report.
(1) Angle mirror
(2) Jacob's staff
(3) Plane tab1e
(4) Alidade
(5) Proportional dividers
(6) C1 inometer
(7) Groma or surveyor's cross
(8) Hynsometer
(9) P1animeter
(10) Leve1
(11) Compass
(12) Transit and rod
(13) Sextant
(14) Vernier
(15) Pantograph
(16) Quadrant
(17) Plumb 1 ine and bob
(18) Odometer
(19) Chartometer
(20) Theodolite
(21) Ruler, tape, and meter stick
(22) Micrometer
(23) Balances horn pan type specifically
(24) Carpenter's square
(25) Nephoscope

The angle mirror is used in laying out angles or circles when given a known diameter. It consists of two mirrors on a frame, the mirrors meeting at an angle.

The Jacob's or cross staff has the appearance of a cross with one of the bars shorter than the other. The shorter bar is made so that it will slide along the
longer bar in four directions, to the right, left, forward, or backward.

A plane table is nothing more than a drawing board mounted on a tripod. The plane table usually has a compass along one edge. It is free to rotate on the tripod, but fitted with a locking device so that it can be held in one position.

An alidade is nothing more than a ruler with a sighting device attached. Some alidades have sights with vertical siits at each end and others have telescones attached.

Proportional dividers or compasses consist of two equal bars joined by an adjustable screw in which the distance from the screw to one end of one bar is equal to the distance from the screw to one end of the second bar. This also makes the distances from the screw to the other ends of the bars equal to one another. This is the same as having two sets of dividers with different lengths of legs but open at the same angle.
"The clinometer is a sighting tube with cross wires placed at the outer end. A quadrant scale graduated in degrees from 0 to 90 is mounted on the side. ${ }^{1}$
"The Surveyor's Cross is a modern adapation of the groma of Roman times. The former consists of a double

[^1]double alidade with the two parts rigjdy set at right angles on a tripod." ${ }^{2}$

A hypsometer consists of a rectangle that has been divided into small squares and a plumb line and bob attached to one corner of the rectangle.

A planimeter is an instrument used to measure areas of irregularly shaped figures. It anpears to be two rods connected by a hinge. The other end of one of the rods is arranged so that it will not s1ide while the free end of the second rod is on a roller with the roller being graduated.

Nearly everyone has seen a carpenter's leve1. The surveyor's level is very similiar except that it has a telescope attached and the level is attached to a tripod when in use.

The compass is a direction fincler and appears in many forms. Most people have seen one at an early age in life. The compass is simply a magnetized needle free to turn on an axis.

The transit js simply a telescone mounted on a vertical protractor and these two parts can be turned on a horizontal protractor. The leveling rod is used in conjunction with the transit and level and is just a long rod marked off in equal lengths similiar to a ruler.

[^2]The sextant consists of a sight piece, two mirrors and a graduated arc arranged so that angles in any plane can be measured.

In 1631, Pierre Vernier invented the vernjer. It consists of a small sliding scale parallel to a large one. Verniers are found on sextants, mercurial barometers, and other precision instruments.

The pantograph consists of at least four rods joined to form a parallelogram. It is adjustable to form other parallelograms having sides of different ratios.

A quadrant is a quarter of a circle. In making use of this instrument, we attach a plumb line and bob at the right angle [or center of the circle] and graduate the arc in degrees.

A plumb line and bob is simply a string with a weight attached to one end.

The odometer invented by Leonardo Da Vinci is a wheel with an attached counter that counts the number of revolutions the wheel makes when it is rolled along the ground.

The chartometer is very much like the odometer on1y much smaller. The chartometer is used with paper on a desk while the odometer is used in the field.

The modern theodolite looks much like the modern transit but differs in one respect. Instead of having the telescope directly lined with the eyepiece as in the transit, the theodolite has the tube of the telescope
perpendicular to the eyepiece with a mirror to reflect the light. It will be shown later why there is a difference in construction.

The micrometer caliper is U shaped with a bar that can be extended from the inside of one end of the open U to the other.

A balance is a bar with half of the bars weight extending on either side of a knife edge on which the bar is resting. The horn pan type of balance has pans of equal weight attached to the ends of the bar which allows objects to be placed in the pans and compared as to weight.

A carpenter's square is two bars meeting one another at one end of each bar at right angles. One bar is usually larger than the other.

A nephoscope looks very much like a television antenna and mast except that the crosspieces are the same length and all the crosspieces are equidistant apart.

$$
\begin{aligned}
& \text { Classification of Mathematical } \\
& \text { Instruments, } 3 \text { With Sources* } \\
& \text { *Abbreviations used: } \\
& \text { B. \& S. - - Browne and Sharpe Co., } \\
& \text { Providence, R. I. } \\
& \text { Cenco Cat - Catalog of the Central } \\
& \text { Scientific Co., Chicago, } \\
& \text { I11inois. }
\end{aligned}
$$

${ }^{3}$ The National Council of Teachers of Mathematics, Multi-Sensory Aids in the Teaching of Mathematics, Eighteenth Yearbook, (New York: Teachers College, Columbia University, 1945), pp. 198-200.

$$
\begin{aligned}
\text { Comp. - } & \text { Used in "Prom Comp", to mean } \\
& \text { picture supplied by the } \\
& \text { manufacturer. } \\
\mathrm{K} \& \mathrm{E} \text { - } & \text { Keuffel and Esser Co., New } \\
\mathrm{K} W- & \text { York City. } \\
& \text { Botalog, Kelvin White Co., } \\
& \text { Boston, Massachusetts. }
\end{aligned}
$$

In the following classification will be found the name of the instrument, followed by a few selected sources of pictures large enough to be of use in the classroom.

```
Section I - MEASUREMENT INSTRUMENTS
        Part A: Laboratory Instruments
2. Length
    Calipers - Cenco Cat.; B. \(\mathrm{B}_{\mathrm{z}} \mathrm{S}\). Cat.
    Micrometer screw - Cenco Cat.;
    B. \& S. Cat.
3. Mass and Weight
```


 Analytic Balances - Cenco Cat.,
 From Comp.
 Part B: Applied Instruments
 1. Surveying
Groma - So. Kensington Museum
Quadrant - Third Yearbook National
Council of Teachers of
Mathematics
Plane Tab1e - K \& E Catalog, From
Comp.
Theodolite - So. Kensington Museum,
From Comp.
Transit - K \& E Cat., From Comp.
Leve1 - K \& B Cat., From Comp.
Leveling Rod - K \& E Cat.
Surveying Compass - K \& E Cat.
2. Navigating

Sextant - K \& E Cat., From Comp.
Nautical Compass - K W Cat.
Section II - CALCULATION INSTRUMENTS
part A: Graphical Methods
3. Drawing Instruments
Proportional dividers - K \& E Cat.
```
    Pantograph - K & E Cat.
    2. Nomographs
    Vernier Scale - Picture of sextant
    3. Lengths of curves
        Curve Measurex - A. Galle, Mathe-
        matische Instrumente, Leipzig,
        1912, p. 65.
    4. Areas
        Planimeter - K & Cat., From Comp.
        ................................
    Part C: Solving Equations
1. With balances - L. Jacob, Calcul
        Mecanique, Taris, 1911, p. 132.
        .................................
```


Figure 1. Drincinles of angle mirror
If a pernendicintar is to be constructed to line EE at B , sight from s through a Window above the mirror at b to stale r at a convenient point in line re. Then have a second stalse I set un by an assistant so that its image is refiected trice, as indicated by the arrows in the diagram, and appears in the mirror at p, directiy under and in line with the stake K seen
through the dindow. Then the line, BI
is perpendicular to KD as desined. ${ }^{1}$
The mathematical princinle is that angle KEL will
always be twice angle HPD.
${ }^{1}$ Ieonhardy, Josenh, and McLeary, $\mathrm{p}, 147$ •

Figure 2. Principle of measurement of vertical distance with Jacob's starf.

$$
B C=\frac{A B x D E}{A D}
$$

Figure 3. Mathematical Principle of measuring horizontal inaccessible distance with a Jacob's staff.

$$
D E=\frac{A A \times B C}{A O}
$$

The fundamental operation of the Jacob's staff is that of measuring the angle of sight of a given object. This is done by placing at a deteminable distance from the eye a suitable object such as a short rod, so that its ends coincide with the lines of sight from the ends of the obinct to be measured.

The natural means of carrying out such an operation are the outstretched arm and the fingers of the hand held close together and at right angles to the arm. At some period of man's history some unknown individual must have noticed the relationship between the size of the angle of sight and the number of fingers held together. ${ }^{2}$

The method used in the simplest form of a Jacob's staff is to change the length of the arm which varies the angle instead of varying the length determined by the closed fingers.

One finds the desired distances by solving for parts of similiar triangles as shown in Figures 1 and 2.

The plane table and alidade are used as a team in elementary mapping and surveying. Hence, they are discussed as a tean rather than separate instruments.

They use one of two rinciples, either the principle of radiation from a point or intersections of lines of sight taken from both ends of a given, or established, base line. In either case the alidade is the sighting instrument and the plane table is the drawing board, level, and point of reference.

Proportional dividers are used for enlarging or reducing maps and such. This instrument is simply based on the principle of proportionality of corresponding parts of similiar triangles.

[^3] noasurement. It is used to finu the angle of alovation or depression. One can then moasure ne side of tho right triange and solve for eny of the othor parts by use of tregonometric functions.

The Surveror's Sross is a monnan adaptation of the stoma of Roman tinos. The former corsests of a doublo atione with the ton muts xisody set at right angles on a tripod. The purpose of this instrument is to construct xipht angles, and it is used particulanly in laytny ont streets and highoys.3

We shall see in Chanter IV bor tho groma may be used to measure inderecty the line $A B$ in Digure 4.

The hypsometer is a moden form or the sometryc square. Direct mosuremonts can be mare qut it when one sto of a simitar triangle is intentionally made eoual to scale to ons side of the trangle to be solvod. This mares it posibule to reat the dimensions of the other tur sides aspety from the stotrmont.
$3_{\text {The National Councti of Toachers of Nathenatics, }}$
 1942), D. 205.

The tracer of a planimeter is passed round the periphery of an area to be measured. This moves the flange wheel, which either turns or slices on the paper according to the direction the tracer is moving.

The planimeter is actually an integrater. The instrument simply measures the ordinate of the integral curve and we multiply by the constant of the machine to get the area of the figure.

The basic principle involved in the level which is used in surveying is to establish planes in which the lines of sight will be horizontal.

The principle involved in the compass is that no matter where a person is located on the northern hemisphere, one end of the compass needle nearly always points to the same point.

The compass needle coes not point to the true north pole but to the magnetic pole. The angle between true north-south meridian and the magnetic meridian is called the magnetic declination. Imaginary lines connecting places having the same deciination are called isogonic lines. These lines are very irregular. The dec1ination in the United States ranges from 22 degrees west to 24 degrees east. ${ }^{4}$

The transit is an instrument used to measure angles as well as to level. It measures angles in both vertical and horizontal planes. "It thus provides a combined
${ }^{4}$ The National Council of Teachers of Mathematics, Selected Topics in the Teaching of Mathematics, Third Yearbook, New York: Teachers College, Colunbia University, 1928), D. 215.
means for securing all data needed in any field problems in surveying or mapping or in the indirect measurement of distances." ${ }^{5}$

The leveling rod is required for all leveling work and for some of the work with the transit. It is simply an oversized ruler.

A convenient hand instrument used for measuring angles in any plane and an indispensable aid in determining the latitude of a ship at sea is a sextant. The sextant's name is derived from the fact that it contains a sixty degree arc of a circle. In Figure 5, DD' is a sixty degree arc of a circle whose center is M; this arc is graduated from zero degrees to 120 degrees. MC is a movable arm, which has a mirror at M in line with MC and perpendicular to the plane of the sextant. Fixed at M^{\prime} is another mirror, the horizon glass, also perpendicular to the plane of the sextant and parallel to MD'. E is a small telescope fixed across MD' and pointed toward the mirror M^{\prime}. Since only the lower half of this mirror is silvered, if the observer wishes to find the angle of elevation of the sun, he first sights the horizon through the unsilvered portion. Then the arm MC is moved so that the image of the sun is reflected from mirror M to mirror M^{\prime} and thence through the telescope to the eye. The observation consists in bringing the horizon and the image of the sun into coincidence. The angle of elevation of the sun is read on the graduated arc.

Because it is often difficult to see the horizon, a bubble sextant is usually used. A small spirit level is attached to the tube of the telescope, and when the bubble is centered, the effect is the same as that which is produced when the horizon is sighted. 6

5 Butler and Wren, p. 115.
${ }^{6}$ Leonhardy, Joseph, and McLeary, pp. 231-233.

Angle MFM' is equal to twice angle $D^{\prime} M C$. Hence, arc DD' must be graduated from zero degrees to 120 degrees. This comes from the fact that an exterior angle of a triangle ecuals the sum of the opposite interior angles.

Figure 5. Principles of sextant

A vernier is sometimes attached to a sextant or other instruments when accurate measurements are wanted.

The fact that two scales side by side one of which has all primary units subdivided into ten equal parts and the other has nine of these subdivisions divided into ten equal parts which makes each division of this scale one-tenth of a primary subdivision shorter than a primary subdivision enables us to measure accurately to one-one hundredth of the main unit. An instrument such as this is called a vernier, after its inventor Pierre Vernier.

The pantograph, an instrument used in enlarging and reducing maps and pictures is based on this principle; if two polygons are radically situated, they are similar.

The quadrant, as the name implies, is a quarter arc of a circle and the principle involved in its use is the same as in the cinometer.

The plumb-bob when suspended from a 1 ine will point the line to the center of the earth on the bob end and toward the zenith on the suspended end.

The odometer and chartometer use the principle that the circumference of a circle is two times pi times the radius of the circle. Thus by counting the number of times the whee 1 rotates one can obtain the distance traveled by measuring the radius of the wheel and computing the circumference.

The theodolite uses exactiy the same mathematical principles as the transit.

The ruler, tape, and meter stick are used by the principle of finding a certain distance in torms of a smaller known distance by counting the number of smaller distances within the larger distance.

The micrometer uses the principle of the vernier in measuring distances very accurately.

The horn pan balance uses the principle of equality. Two objects equal in mass, one in each pan, will make the bar of the balances assume a horizontal position.

The corpenters square uses the eometry of the right triangle as its basis.

The nephoscone uses the rrincinle of similar triangles and parallel lines to obtain the Eirection of movenent and velocity of clouds.

CHAPTER ITI

cost or ITSTRUMORTS

TAMID I

ammownane cost on mpstavertis

Tane of Instament
Apracimate Cost Dach

USE OF TNSTRUMENTS IN CLASS

Figure 6 shows an exercise that $c a n$ be performed with an angle mirror, tape, and pole. A person wants to sketch a map of the bank of a creek or some other irregular 1 ine.

Lay off a straight line $A B$ some distance from the creek and mark every ten feet or some other interval. Then place at pole at B and have one student at A with an angle mirror while another student stands at the bank at C with another pole. The student at A has the one at C move until both poles line up. Angle $C, A B$ is then ninety degrees. The distance C, A is measured and noted. As soon as all the offsets are measured it is easy to plot the map by connecting C_{1}, C_{2}, and so on. The area between the line $A B$ and the creek may be found by using the trapezoidal rule: Multiply the distance between the offsets by half the sum of the first and last offsets plus the sum of the other offsets. ${ }^{1}$
$1_{\text {The }}$ National Council of Teachers of Mathematics, Third Yearbook, p. 205.

Other projects that can be solved by use of the angle mirror are the laying out of a football field or tennis court.

A Jacob's staff can be used to measure vertical or horizontal distances when one or both ends of the line one wishes to measure is inaccessible. Some examples are the height of a flagpole or the distance between two points on the other side of a river Cthere isn't a bridge and the operator can't swim】.

The plane table and alidade can be used to map an area bounded by straight lines and also to find the horizontal distance between two points, each inaccessible from the other and from any third point. The Jacob's staff can also be used in this case of inaccessibility.

Proportional dividers are extremely fascinating to students and can be used to enlarge or draw to scale almost any picture, map, or drawing.

The clinometer is used to find the angle of elevation of any structure such as a building or flagpole. The tangent of the angle found in this manner times the distance from the structure will give the height of the structure.

The chief use of the groma is to lay out right angles. It can be used to make indirect measurements such as $A B$ in Figure 4 of this paper. Angles B and D are made right angles by use of the groma, if $B C D$ and
$A C E$ are straight 1 ines, and if the distance $B C, C D$, and $D E$ are known or can be measured then the 1ength of $A B$ can be computed.

The hypsometer, a simple form of height-measuring instrument, is often used by forest rangers and lumbermen to determine the height of trees. Its uses are very similiar to those of a clinometer only a different principle of mathematics is used in the hypsometer as described in Chapter II.

The only practical use of the planimeter is to measure area of regular or irregular figures drawn on a piece of paper. However, this area on the paper may be a map and in proportion to a larger area such as a field or pasture thereby making it possible to determine the actual area of a field by this method.

To level means to find how much hicher or lower one point on the earth's surface is than anothor. There are several factors such as difference in elevation and the nature of the terrain between the points that affect the method of leveling. The modern bubble tube level isn't necessary in carrying out these projects but is certainy one of the instruments which make the job much easisr. However, some of the simple instruments mentioned earlier may be used if the modern level is not available.

The fundamental principle of ordinary leveling is made clear in Figure 7. The height of a point A above an arbitrarly chosen horizontal plane the datum plane is assumed. A level instrument is set up in such a position that sights can be taken on a rod held at A and B. All the lines of sight from the instrument at any fixed height determine a horizontal plane. Suppose that the sight on A reads $10 \mathrm{ft} .$, while that on B reads 4 ft . Then the horizontal plane of sight is 10 ft . above A or 30 ft . above the datum plane; therefore B, which is 4 ft . below the plane of sight must be 26 ft . above the datum plane, and the difference in elevation between A and B is 6 ft. [... $]^{2}$

If the points A and 3 are so far apart that they both cannot be seen from one point, then the elevation of points between A and B must be found and the leveling instrument moved to these points until the difference in elevation of A and B can be calculated.

A compass can be used in the classroom to show the students how to detormine directions if they are lost.
${ }^{2}$ The National Council of Teachers of Mathematics, Nineteenth Yearbook, p. 354.

It doesn't lend itself we11 to ropeated exercise, but every person show know how to use a compass.

The transit can be used to solve any of the probiems which can be solved by the use of the level, hypsoneter, groma, ciinometer, Jacob's staff, or angle mirror previously described. It can also be used to solve problems in which the cuadrant or theodolite are used which will be described presently.

The sextant can be used to determine latitude and the hejght of objects. March twenty-first and September twenty-third are the best dates to determine latitude. On these two dates there need not be correction for decisnation.

Most sextants have a vernier attached to their arc. This malies it possible to teach the use and principles of the vernier fight along with teaching the use and principles of the sextant. This offers another opportunity of teaching two principles at one time.

The pantograph can be used to enlarge or reduce any plane figure of reasonable size.

The quadrant can be used to measure the angle of elevation of any point above the horizon. This is due to the fact that angles with the same complement are equal.

The quadrant can also be user in leveling which was described earlier in conjunction with the level.

It is interesting to note that the first attempts to measure the earth's circumference were made by the use of the quadrant.

The plumb line and bob have no use in their own right other than to find the vertical. However, they are employed as a part of certain instruments such as the quadrant and hynsometer.

The odometer can be used to measure distances such as the dimensions of a football field or even curved distances such as the length of a terrace line or curved sidewalk. This fascinates boys and girls because they can quickly measure long distances with no more of a measuring device other than a short ruler to determine the radius of the wheel used on the odometer.

The chartometer can be used to measure the perimeter of any plane figure or the circumference of solid figures such as the cylinder. A good exercise is to measure the miles of shoreline of a certain lake on a map which has been drawn to the desired scale.

Wind direction and velocity aloft can be determined by the use of a pilot baloon and a theodolite. The theodolite is a transit with the eyopiece making right angles to the main tube of the telescope instead of directly in line with it. The pilot baloon filled with a certain amount of heljum will ascenc at a known rate. Therefore it can be followed with the theodolite and
the baloon's elevation and azimuth determined at certain time intervals in which the baloon should be at a known altitude. This makes it possible to calculate the wind direction and velocity at that altitude.

A transit could be used for this work and sometimes is. The only difficulty involved is that the transit is always pointing near the vertical and the observer soon tires at his job when he has to look up for any length of time. The theodolite with a mirror arrangement allows the observer to 100 k in a horizontal direction all of the time.

Nearly everyone knows of many uses of the tape, ruler, and meter stick. The chief purpose of having a meter stick in a mathematics program is to introduce the metric system. Some examples would bo for the boys and girls to determine the length of their feet in centimeters. Many young people do not actually understand the construction or use of the ruler. The first step, then, in the effective toaching of linear measurement is the study of the measuring instrument. The teacher should know that the pupils understand the construction and principles of the instrument before asking for specific exercises to be done by the pupils.

An interesting demonstration with a tape is easily performed. A right angle can be laid out with a one hundred foot tape as show in Figure 8 with the ends of the tape at A and B and the right angle at B.

A micrometer can be used to neasure the thiclmess of a shoet of paper and other smal temonstons that are nearly thpossible to measure by any other ordinary means.

The hom par belances are somatenes used to show that two objocts are aguat in wass theroby emonasizing the princtore of equality.

Tho carpentor's scuare is a versetile instrument for carnonters as wil as methematics laboratories. Students use t to find the horinontal distance betreen two points, ono jons accessible, to moternine the hejght of an object, to bisect an angio, to lay out paralles İnes, or to sotre momy my neoblem inviving nrorortion.

The ase of the cormeter's souare constitutes a five somester hour course in several universtites. Whis statemont is mak so the rearn might realion the Hany andicotions to whic: mo wigt tut the carrntex's square.

The onfy use of the nerhoscone found was to find the arection ant velocity of some abject in the styy suck as a olout, bird, ow aympen when tro objectes

```
    height is momn. This last stabmmt "Meight is lmom""
roncers this instrument almost uselos: in the goneral
mathonatzcs student. Therefore, a. Ascussion of this
instrumont to aHy wrsat oxtort othor then to say thet
It 三s an extremely intoresting anolication of the prim-
```



```
wacte of time.
```

Homenade instrunents will not usually give as precise measurements as commercial instruments, but for classroom use they are sufficiently accurate. Homemade instruments have two advantages over the commercially produced. First, students take more nrice in equipment made by themselvos. This helns in motivating them to use the instruments. Second, the mathematical principles upon which the instruments are based are more 1 ikely to be understood by the chindren if they make thesir own instruments.

The angle mirror is easily constructed by using a miter box to cut two grooves in a short piece of one by four lumber at forty-five degree anglos. These grooves should overlan one another near the edge of the board and be just wide enough so that cheap mirrors will fit snugly into the grooves meeting at the point of intersection of the grooves. When the mirrors are inserted the instrument is completed.

A Jacob's staff can be constructed from two yard sticks and a stove bolt with a wing-tip nut. Cut one
foot off one of the vard sticks, saving the two foot piece for the instrument, then take both sticks and remove a center portion about one-fourth inch wide extending to within one inch of the encs of the sticks. Then place the shorter stick on the longer one in the form of a cross, insert the bolt through both sticks, and tighten the nut.

Butler and Wren ${ }^{1}$ hav? given complete directions on how to make the plane table, alicade, and clinometer.

Proportional dividers can be made by a procedure much the same as in the making of a Jacob's stafe. The chief differences are that the sticks should be of ecual length and shorter [the length used is entirely dependent upon the wishes of the craftsman than in the former procedure and both sticks should be pointed on both ends. A good way to make the point is to start about two inches from an end of the stick from the inside of the angle Formed and cut diagonally to the very tip of the stick to tho outside of the angle.

A surveyor's cross can be made by taking two ruiers and fastening them rigidy togethor with their flat sides toward each other. Pins can be Enserted into the rulers equidistant from the edges to be used as sights. It is very important that the rulers cross each other at right angles and at points midway between their ends.
$1_{\text {Butler }}$ and Wren, pp. 119-120.

A hynsometer is easily constructed by pasting a sheet of orcinary graph paper on a rectangular board and attaching a plumb bob and sights. Shellac will help to protect the paper. The plumb bob should be attached directly under the far sight and so that the plumb line will superimpose one of the dark division lines of the graph paper when the hypsometer is sighted in a horizontal position.

The planimeter, theodolite, and micrometer are much too difficult to construct to be attempted by an anateur. It seems best to leave their construction to the professional instrument makers.

The Eighteenth Yearbook ${ }^{2}$ of The National Council of Teachers of Mathematics gives a complete description of how to make a transit and their Nineteenth Yearbook ${ }^{3}$ shows how to make a level.

A leveling rod may be made by taking a ten foot one by four board and marking it off in foet and inches or tenths of feet.

A compass is made by magnetizing a noedle by rubbing it on a magnot, inserting the needle through a cork with

[^4]each end sticking out an ecual distance, and floating
this apparatus in a container of water.
Since a student sextant can be obtained at a
nominal price it is not recomended that time be spent in trying to construct one.

The pantograph could be constructed fairly easily, but tine spent in constructing one could be better used, since the principle of the pantograph can be demonstrated by even a toy pantograph which is available in local department stores at a lower price than enumerated in Chapter III.

Construct a simple scale with all primary units subdivided into ten equal parts along one edge of a piece of cardboard in the making of a vernjer. On another cardboard araw a line equal in length to n "ne of these sublivisjons and subdivide this acain into ten enual parts. Each division of this scale is one-tenth of a primary subdivision shorter than a primary subdivision. Therefore, when the zero of the secondary scale coincides with the zero on the main scale, the first division of the secondary scale is oneone hundredth of the main unit shorter than the first primary subdivision of the main scale. This value is known as the least count of the vernier [...]

In general the division of the vernier which coincides with a division mark on the main scale gives the reading of the second decimal point on such a scale.

A quadrant is constructed by cutting out one-fourth of a circle from a piece of lumber on a jig-saw, marking

[^5]this arc off in degrees, and attaching a plumb bob and line at the point of the ninety degree angle which is a radius distance from the arc.

A plumb bob and line is made by taking a small weight such as a fisherman's weight and attaching it to a piece of string.

An easy way to improvise an odometer is to take the front wheel and fork from a bicycle and paint a stripe across the tire. This onables tho operator to count the number of turns the whee1 makes when pushed over the line to be measured.

A typist's eraser in the form of a small wheel should be marked so that the number of turns can be counted when it is rolled over a line to be measured and one will have a perfect1y good chartometer.

Rulors, tapes, and meter sticks can be made by carefully copying from a commercially manufactured specimen.

Horn pan balances need not be purchased if they are not available. Simply attach small Easter egg baskets or something similar to a meter stick or yard stick that has been balanced on a knife edge. Care should be taken that the balance is not disturbed whon the "pans" are attached.

Since carpenter's scuares are so readily available, time should not be spent in trying to construct one.

A nephoscope is not of much value unless the hejght of the object observed is known. Therefore, unless a
nephoscope is readily available, a ciass in mathematics should not be concerned too much in the actual use of this instrument, but the study of the mathomatical principle involved and the showing of a picture of a nephoscone certainly sem to be worthotide.

CHANERR VI

WIERE CAN ONE BORRON TUEM?

It is possible to borrow the following instruments from the county engineer, soil conservation district, or county agricultural stabilization comittee. Some of them are sometines bormod from the barents of boys and girls in the class where they w11 be used: angle mirror, plane table, alidade, proportional dividers, c1inometer, planimeter, surveyor's 1eve1, transit and rod, odometex, chartometex, and pantograph.

A school nearly always ows a carpenter's suare, horn pan balances, rulers, tapes, and meter sticks.

There are not many of the following instruments available in many commonities so it would be very difficult to borrow them: nephoscone, theodolite, quadrant, sextant, hypsometer, surveyor's cross, and Jacob's staff.

However, most of these are easily constructed so they are readily available to any teacher who wants to go to a littie trouble to have them made.

Usually some student in the class will bave a compass, and is clar to make it available.

Verniers are usually attached to some of the
instruments mentioned above.
The micrometer can be vorrowed from machine shops in the community.

A WORD OF CAUTION
Some of these instruments are quite expensive as has been shown and some are also very delicate. Therefore, if an instrument is borrowed, the teacher should assume full responsibility in seeing that the instrument is retumed as soon as possible and in as good condition as it was when borrowed. It is better to make or buy an instrument if possible bocause of the fact that illfeeling is sometimes created from borrowing.

It has benn said that the pure mathematician is never as happy as when he does not know what he is talking about - W. F. G. Swann.

When you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot measure it, when you cannot express it in numbers, your mowledge is of meagre and unsatssfactory find. Lord Kelvin

BIBL IOGRAPHY

Butler, C. H., and Wren, F. L. The Teaching of Secondary Mathematics. New York: McGraw-Hill Book Co., 1951

Gorman, F. H. What Laboratory Ecuipment for Elementary and High School Mathematics?" Schoo1 Science and Mathematics, Vo1. 43, 1943.

Haynes, B. C. Technicues of Observing the Weather. New York: John Wiley and Sons, Inc., 1947 •

Leonhardy, A., Joseph, M., and McLeary, R. D. New Trend Geometry. New York: Charles E. Merrill Co., $\overline{1940 .}$

Mejdak, Raymond J. "Classroom Practice in the Teaching of Everyday Mathematics." The Mathematics Teacher, Vo1. 34, 1941.

The National Council of Teachers of Mathematics. A Source Book of Mathematical Application. Seventeenth Yearbook, New York: Teachers College, Columbia University, 1942.
mathics $-\frac{\text { Multi-Sensory }}{\text { Eighteenth }} \frac{\text { Yearb }}{} \frac{\text { in }}{\text { the }} \frac{\text { Teaching }}{\text { Ne }} \frac{\text { of }}{\text { Tork: }} \frac{\text { Mathe- }}{\text { Tehers }}$ College, Columbia University, 1945.

Third Yearbook, New York: Teachers College, Columbia University, 1928	
Surveying Instruments. Nineteenth Yearbook, k: Teachers College, Co1umbia University,1947.	
Olds, E. G. "The Use of Applications for Instructional	
	Purposes." The Mathematics Teacher. Vol. 34, 1941.
Zant, James H. "The Improvement of High School Mathe-	
matics Courses as Recommended by the Commission on	

VITA
Elvin Leon Hibbs

Candidate for the Degree of
Master of Science

Seminar Report: A SEMINAR RgDORT ON A STUDY OF MBASURING AND SURVEYING INSTRUMENTS SUITABLE FOR A GENERAL MATHEMATICS LABORATORY

Major Field: Natural Science
Biographical:
Personal data: Born near Balko, Oklahoma, October 15, 1930, the son of P. O. and Louella Hibbs.

Education: Attended elementary school in 3alko and Beaver, Oklahoma; graduated from Beaver High Schoo1 in 1948; received the Bachelor of Science degree from Northwestern State College, Alva, Oklahoma, with a major in Mathematics, in May, 1952; received the Master of Education degree from the University of Oklahoma, with a major in Administration, in August, 1956; comnleted requirements for the Master of Science degree in May, 1957.

Professional experience: Entered teaching profession in 1952 as an elementary and junior high school teacher at Greenough Consolidated School, Liberal, Kansas, also as Principal or this same school until May, 1956.

Professional organizations: Beaver County Schoo1master's, Beaver County Teachers, Oklahona Education Association, National Education Association, National Counc 11 of Teachers of Mathematics, National Association of Secondary School Principa1s, Kappa De1ta Pi, Who's Who in American Colleges and Universities, 1951.

[^0]: ${ }^{2}$ C. H. Butler and F. L. Wren, The Teaching of Secondary Mathematics, (New York: McGraw-Hill Book Company, Inc., 1951), pp. 120-1.

[^1]: ${ }^{1}$ B. C. Haynes, Techniques of Observing the Weather, (New York: John Wile y and Sons, Inc., 1947, $\frac{\mathrm{pp}}{\mathrm{y}}$. 55-56.

[^2]: 2A. Leonhardy, M. Joseph, and R. D. McLeary, New Trend Geometry, (New York: Charles E. Merri11 Co., 1940),

[^3]: $2_{\text {The Natjonal Counci } 1 \text { of Teachers of Mathematics, }}$ Surveying Instruments, Nineteenth Yearbook, (New York: Teachers College, Columbia University, 1947), p. 83.

[^4]: ${ }^{2}$ The National Council of Teachers of Mathenatics, Mu1ti-Sensory Aids to the Teaching of Mathematics, Eighteenth Yearbook, (New York: Teachers College, Columbia University, 1945), pp. 189-191.
 ${ }^{3}$ The National Council of Teachers of Mathematics, Nineteenth Yearbook, pp. 129-141.

[^5]: 4The National Council of Teachers of Mathematics, Nineteenth Yearbook, D. 342 .

