ENHANCED JAVA SECURITY TOOLS

By
JP-KIN ANTHONY WONG

Associate of Liberal Arts
Maut Community College
Kahului, Hawasi
1996

Bachclor of Science
University of Central Oklahoma
Edmond, Oktahoma
1998

Submitted to the Faculty of the
Graduate College of the
Oklahoma Statc University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
December, 200]

ENHANCED JAVA SECURITY TOOLS

Thesis Approved:

&/‘ P/)6/?
6'1}5555' Adviser
/[_/ “ \/

Ny

PREFACE

This research talks about enhancements on the current Java securnty tools, key
management, and random seeders. Its pnmary focus is on the Java security tools. The
enhanced Java security tool suite will use the improved key management scheme and
authentication technigue discussed in this paper. In addition, the extended signing and
verification functionality will be embedded inside this suite as well. Since the gist of this
paper is about enhancements on the Java security tools, it is named Enhanced Java
Secunty Tools (EJST).

This paper is organized into six chapters and three appendixes. Chapter 1,
Introduction, depicts the background of Intemet security, the current problems in Java
security, and the objectives on this research. Chapter 2, Literature Review, introduces
fundamental concepts and background knowledge on authentications, digital certificates
and public key infrastructure (PKI), message digests and digital signatures, cryptographic
algorithms, and the Java security model. Chapter 3, EJST, presents solutions to meet the
objectives. It also describes the design and implementation of the EJST. Chapter 4,
User’s Menu, shows the user menu of the EJST’s Key-Certificate-Policy manager
(KCPM). Chapter S, Conclusion, draws a conclusion on the EJST. Chapter 6, Future
Work, talks about future improvements that can be done on the EJST. Appendix A,
Acronyms, show the acronyms used in this paper. Appendix B, Glossary, provides some
terminologies used tn this research. Appendix C, Source Code, presents some of the

source codes that are used on the implementation.

i1

ACKNOWLEDGEMENTS

I wan to express my sincere gratitude to Dr. Mayfield, my principal adviser, for
giving me invaluable advice, assistant, encouragement throughout my graduate study. His
guidance and generous aid helped make this work possible.

I also want to express my appreciation to Dr. Lu, and Dr. Chandler who gave me

support and advice to guide me through this thesis. They help me to organize my work.

v

TABLE OF CONTENTS
Chapter Page
1. INTRODUCTION. ...ttt e mem et et st s nan s eran e erae e ean 1
1.1 BACKEIOUNAcoooeiieiii ettt rben e e 1
1.2 Current Problems........ e et h e eA b At e e f b e e s ekt ar et eas 3
1.3 ODJECHIVE vttt ettt ettt e e esa e e bt e et et e e s 4
2. LITERATURE REVIEW ._.c.oiiiiiiiiicininiriae et ens et ssbasbse s sesaraeas 5
2.1 Digita] Certificate and PKIcc.ociiiiiiiiniiiiniie s ssin e s e svnn e 5
2.2 Message Digest Algorithm and Digital Signaturecccocvevcieininnenn 7
PARIVENIN (15 110 o114 1e) « OO O S USSR VTP 10
2.4 Cryptographic AIgOTTthIn ...t 13
2.5 Java Security MOdel . ..o e e 19
2.5 1 OVEIVIEW ..ot ittt ettt eene e e ae e seeaes 19
2.5.2 JCA, JCE, and Access CONTOl ...cccoiriiviiiniiiiiiec e 22
2.5.3 Java Secunity TOOIS ..c..vvviviiieie it e e et e 23
2.5.4 Pseudo-random Number Generatorcccviveieriovneeeeisiaeiaeennns 24
3. ENHANCED JAVA SECURITY TOOLS (EJST)...ccoimiiiiniiiiiicvrceniecncnnccns 27
3.1 Problems and SOIUtIONS ...coc..oviiiiiiiiieies et 27
3.2 EJST Architecture, Design, Implementation, and.............ccccoeeeeeiiiiceninne 34
Installation
3.2.1 Truly Random Seeders (TRS).....ccoooeeiiiiieii e 34
3.2.2 Secure KeYSLOTE ..oooiimiiiiiii et 36
3.2.3 Key-Certificate-Policy Manager (KCPM) ..., 37
3. 2.4 INSLANALION. ..o oo e e 39
4, KEY-CERTIFICATE-POLICY MANAGER USER’S MENUcoccoiiiinin, 40
B.1 OVEIVIEW ..ot ettt a e e e e s e en et eass e e er e e amte e e e s e e 40
4.2 Public / Private Key Pail. ..ot 41
4.3 CertifiCale......ooiiei oottt ettt et 44
4.4 SIGN J/ VMY . oottt e 52
B.5 JAR oo et e e e e en e e ns 57
8.6 KBYSLOTE ... veier e et ettt ee ettt e et et e e e et et eae e e ane e sasas e e sane 58
O 11T o TS S ST O RO U PSPPI 61
4.8 SECUTILY POLICY .. oivtr ittt ettt a e eaes 62
4.9 Help MENU ...ttt ettt e 67
5. CONCLUSTIONS Lottt e et ene e s 69

Page
6 FUTURE WORKS ... ittt et st eeeeeies 70
REFERENC Eottt ettt ettt ea e et h e bt et n ks £ttt en s ane e 71
APPENDIX ..ottt ettt et eee e et ese e ettt et e ner ettt e ene e 75
APPENAIX A —ACTONYITIS «.o.iarieiirariaeritar e eriestrasibes s s eeseseaaeren sbstssranesasss e asaansssnnes 75
AppPendix B — GlOSSANYc.oiiiiiiiiiien i e e e 77

vi

LIST OF TABLES

Table

3-1 Number of possible keys of various keyspaces...............occcoirrniiniieirieeniceceiees

3-2 Exhaustive search of various keyspace

vii

..

Figure
2-1
2-2
4-1
4.2
4-3
4-4
4.5
4-6
4.7
4-8

4-9

4-12
4-13
4-14
4-15
4-16

4-17

LIST OF FIGURES
Anatomy of a typical Java application ... 22
Relationship berween the Java 2 SDK, JCA, and JCE APIscoovivcniicciiiirainnncns 23
Keystore Login dialog DOX -...c.civiiiiicecniiiamiieiniiier s erieiee e is s e a4 1
Generate Key Pair dialog BoX.......oiiviiiiioiiiriiceeie e e e, 43
Delete Key Pair dialog DoxX. ..o 44
Change Key Pair Password dialog boXcoooveeieeviiiiiie it 44
Delete Certificate d1alog BOX....c.ocoiieiiiiieiccriici it srens 45
Import Single Centificate d1alog BOX o....ooiviiiii i 46
Irport Certificate Chain dialog boX..........ccooviieiiiniimiciii e, 48
Export Certificate dialog DOXc..coiiiiiiii i e 49
Certificate Signing Request (CRS) dialog boX........ccoviiiiiiiiiniiiec e, 50
Print Certificate from Certificate File dialog box ..., 51
Prnt Certificate from Keystore dialog box ... 52
Sign JAR File d12l0g BOX ..o.voiieiiii e e 54
Verify JAR File dialog BoX ..o.oociiiiiieiiiiie ettt e 55
Sign Regular File dialog BOXc..oouiiiiiii i e 56
Verify Regular File d1alog bOX .o..ooiviiiiiiiiic et et 57
Create JAR File dialog BOX cooovvooiiiiiiciiii ettt 57
Create Keystore dialog Doxo.ccviiiiiiiiii e e 58

viil

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-27

Change Keystore dialog DOXcoiiiriiiiieiceiiee e et 59

Change Keystore Password dialog boXcccccciiiiiiiiiiicicc e 60
List All Entries dialog DOX ..coccmriirii it 61
Opt1onSs ALAIOZ BOX ..ot et 62
Security Policy dIalog DOX ...cciieiiiiiiiireie e eeee e reesre s e et e b 64
Policy TOOl d1alOg DOX ...ccoriiiiiiii ettt ettt cnv b s mba e 65
Policy Entry dialog DOX cocvviiiii e e et e eane 66
Permissions d1ALOZ BOX.couiiiiiieiiie e e 66
Help Menu dialog BOX ... o.oveioiii et e e e 67
VeriSign root CA certificatesooviiiiiiii e e 68

1 INTRODUCTION

1.1 Background

Information security is an important piece in human life. Individuals can keep their
own information secure by keeping their mouth shut. Organizations can store their files in
a secure cabinet and only allow trusted employees to gain access to these files. Ever since
the Internet emerged and was made available to the public, information security has
become a huge issue. The Internet is an excellent vehicle to enhance information sharing,
business-to-business transaction, and business-to-consumer transaction. However, the
problem is that by connecting to the Internet, a door is opened wide for information
hackers. The major potential victims are business firms and govemzﬁent agencies since
they have information that could be worth millions of dollars. These attackers can hack
into organizations through the Internet. They can eavesdrop the communication channels
and disguise themselves as syster users after they collected enough information. Once
they successfully hack into the host system, they can cause different damage such as
stealing corporate information and selling it to competitors, changing the data on the host
system, or stealing customer information and using 1t for their own purposes.

Internet security has been a popular topic for years. A Jot of research have been done
and much more is underway. There are many commercial products available in the
market. Some of these products include firewalls, which provides securities for
communications at the application level as well as at the [P level; secure socket layer

(SSL), which provides a secure channel for business transactions and prevent man in the

middle attack; and encryption and digital signature, which provide authenficanon. data
integrity, and data confidentiality.

Java has become one of the most popular programming languages. For the Inlemnet, it
provides support to all the three protocols mentioned above. In addition, Java provides
tools and application programming interfaces (APIs) for SSL, message digest,
encryption, digital signature, digital certificate, key management, and more. Java 1s
designed to be secure. Toward this end, a lot of emphasis has been placed on secunty to
provide virus-free and tamper-free systems {38]. Nonetheless, the main focus of Java
security is to protect the information on a computer while stil] allowing Java program to
run. The Java sandbox model was introduced to address these 1ssues. The idea behind this
model is that when a program is hosted on a computer, the host computer provides an
environment where the program can be played (run), but it confines the program’s piay
area within certain bounds [24]. Since Java’s JDK 1.1, this security model had been
expanded beyond the sandbox paradigm. Public-key and secret-key encryption, digital
signatures, and digital certificates play important roles on this new model. This 1s because
they provide authentication of who actually provided the Java class and data integrity of
what originally intended to be sent. They provide end users and system administrators
with the ability to grant specific privileges to individual classes or signers. They also
offer users the ability to venfy the integrity of classes. In addition, these classes can be
used for other applications that require a serious authentication protocol. For example,
instead of using simple passwords, a bank transaction system might require a more secure
authentication protocol such as authentication using public-key encryption or

authentication using digital signatures (37, 23. and 24]. By using public-key encryption

and digital signatures, the bank can be sure that a transaction request came from the
account holder, and it also can verify that the transaction has not been tampered with or
altered.

Since the first release, Java has embedded a secunity model in its language. Java 1's
JDK 1.0 default security model contains features that can prevent access from programs
that may harm users’ computing environment that may discover private information on
the host computer [24]. Authentication was added to Java 1 JDK 1.1, and encryption was
made available as an extension to Java 2 SDK 1.2.2. The latest version of Java is Java 2
SDK 1.3. It extends SDK 1.2.2’s security model by providing more and improved
security tools and security APls.

1.2 Current Problems

The Java security model provides a framework for accessing and developing
cryptographic functionality as well as managing security on the Java platform. It offers
security tools and classes from the Java Securty API for encryption, key generation, key
management, digital signature, digital certificate, access control, and more.

Although the Java security model has been improved and provides many nice
features, 1t is not airtight. A lot of secunty flaws, weaknesses, and limitations still remain.
First of all, the Java security and cryptography packages reveal many loopholes and
weaknesses on key management, authentication, and pseudo-random number generation.
Second, the security tools provided by Java 2 are not user-friendly. They require the users
to have extensive knowledge of the tools they are using. These tools also lack of a good

help menu; thus they can be very confusing to use. Finally, Since the Java security model

is designed primarily for Java applications and applets, the Java security tools can only
sign and verify JAR files. This limits the usage of the Java security tools.
1.3 Objectives

Security loopholes on key management in addition to user interface unfriendliness
and limitation on the Java security tools reveal many concerns. These problems not only
barricade the usage of these tools, but also threaten the safety of the system. The purpose
of this research 1s to address these problems.

The first objective 1s to provide a truly random number seeder so that patterns on
pseudo-random numbers are less obvious. The second objective of this project is to
provide a more secure key database key management scheme. This includes
improvements on the authentication and key storage techniques. These enhancements
will help provide the users with better security features. The third objective is to improve
the Java secunty tools such as kevtool, jar, jarsigner, and policytool, in terms of user
interface friendliness, usability, and online help support. In addition, a better security tool
management scheme will be used so that managing keystores, creating JAR files, signing
and verifying files, and managing security policies can be done with great ease. The last
objective is to extend message signing and data integnty verification to all file types, so

that the Java security tools can benefit other applications as well.

2. LITERATURE REVIEW

2.1 PK1 and Digital Certificate

In the banking industry, checks and certificates are handled through Jocal banks and
central banks. On the Internet, digital certificates are handled through some trusted
organizations called certificate authorities (CA). It forms a network of trusted certificates
and certificate chains.

Digital Certificate

Digital Certificate 1s a software token that carries information between applications. It
offers a high level of authentication. It contains a user’s credentials and public key to
validate his identity [19].

X.509 Digital Certificate is the most popular standard for public key certificate. it
was developed by the International Standards Organization (ISO) [9]. X.509 v3, the latest
verston of X.509 Digital Certificate, is a revision of the CCITT X.509 certificate
standard. X.509 v3, as mentioned by Brieva, “extends the certificate with provisions that
facilitate explicit management of certificates, certification paths, security policies, and the
transfer of trust” [19]. A certificate includes the 1ssuer name, the subject name, and the
subject public key; and the certificate 1s signed with the issuer’s private key. If, for
example, party A has party B’s certificate and knows the issuing CA’s public key, he can
venify party B’s centificate and then use party B’s public key to verify party B’s signature
on any document. X.509 v3 certificate can hold any number of extensions. Each

extension has a criticality flag. If a centificate contains a critical extension, a certification

path verifier that attempts to verify that certificate must be able to process that extension,
or must not verify the certificate at all [19].

PKI

PK1 is a set of standards and technologies for user authentication and secure methods
of exchanging information [7]. Levitt said, “PK] encompasses a broad spectrum of
technologies with dizzying array of possible applications™ [5]. It allows businesses to use
digital certificates to confirm identities. Levine explained that digital certificates are used
to “‘ensure the confidentiality and integrity of data through encryption, control access
through private keys, authenticate documents via digital signatures, and enforce
nonrepudiation of business transactions.” PKI secures sessions between the web browser
and the web server. It controls who does what by 1ssuing digital certificates. It relies on
public-key cryptography to protect data that is sent electronically and digital certificates
to validate user identities [6]. Yasin explained that, “Public keys can be distributed and
used by a person to encrypt data such as e-mail. A recciver of a message uses his or her
corresponding private key to decrypt data. By using a digital certificate electronically
signed by a certificate authority, a user can authenticate himself or herself to another
person or entity over the Internet” [7]). GTE CyberTrust PKI system, for example,
requires a client to go through a three-tier process. First, a digital certificate is issued to
an individual to establish a unique online identity. Second, two Ids are tssued consisting
of an individual password. Third, users are granted access only to specific functions [6].

There are two major PKI paradigms in the industry: hierarchical and horizontal.
X.500/X.509 PKI is organized hierarchically. It is spanned like a tree with a Root

Certificate Authority (RCA) serving as the root. The trust is centered at the root and is

transferred hierarchically to all the users in the network via Certification Authorities
(CA). The public key of the RCA is known to all the users, and it is used to induced
confidence in the public keys of the other entities via some trusted paths 1n a trusted
graph. X.500/X.509-based PKI s best suited for Business-to-Business (B2B) and
Business-to-Consumer (B2C) environment.

PGP-based PK], on the other hand, is organized horizontally. It does not specify any
specific structure for a trusted graph. Users are free to decide whom they trust. PGP-
based PKI uses a decentralized system of trusted introducers, which are analogous to CA
in the X.500/X.509-based PKI. PGP-base PKI allows people to sign anyone else’s public
key. Unlike the X.500/X.509-base PKI, the PGP-based PKI is just a collection of all the
keys 1n the user population, all the signatures on those keys, all the individual opinions of
each PGP-based PKI user as to whom they choose as trusted introducers, all the PGP-
base PKI clieat software, which runs the PGP trust mode] and performs trusted
calculations for the client user, and all the key servers which disseminate this knowledge.
No one will be fooled by a bogus key signed by an suspicious introducer in the PGP-
based PKI model because one can tell if a key is certified by an introducer who he trust
bv looking at the introducer’s signatures [32).

2.2 Message Dipest Alporithm and Digital Signature

The most common way to establish proof of identity is through password-based
authentication as discussed in the authentication section. A more secure avenue to
establish proof of 1dentify is through message digest and digital signature. Data
confidentiality, data integrity, and nonrepudiation can be accomplished by using these

two algorithms.

A one-way hash function, also called a message integrity check, a message digest
function. 2 message digest algorithm, or a message digest, takes an arbitrary length
plaintext as input and outputs a relatively small fixed-length string. This string 1s called a
hash value or a cryptographic check, which serves as a unique fingerprint of the message.
Each unique message fed to a one-way hash function is guaranteed to produce a unique
hash value. Given this hash value, it is virtually impossible to generate the original
plaintext; thus it is called a one-way hash function [28].

One-way hash functions can be used to provide a stronger authentication scheme.
Instead of storing passwords, host computers can store the hash values of the passwords.
When a user sends the host his or her password, the host computer performs a one-way
hash function on the password. Then the host compares the result of the one-way hash
function to the value it previously stored. Since the host computer only stores the hash
value to the user passwords, the threat of someone breaking into the host computer and
stealing the password list is reduced [37]. MD2, MD4, MDS, HAVAL, and RIPE-MD are
example of the message digest algorithms.

MDS5

The MD5 message digest algorithin (one-way hash function), developed by Ronal
Rivest of RSA Data Secunty, Inc. (RSADSI) in 1991, 1s an updated version of MD4 [22].
A variable length message can be hashed to produce a fixed length, say 128-bit, message
digest value. It is used to protect web servers with an RSA MDS5 hash algonithm method
(10]. The hash value calculation is optimized for 32-bat registers. Both MD4 and MDS$
require padding to a multiple of 512 bits. The padding always includes a 64-bit value that

indicates the length of the unpadded message [28]. It is primarily used to produce

fingerprints of sets of data. Message digest authentication allows site manager to be more
selective in thejr use of encryption and enable them to limit SSL session to data that truly
needs to be protected. Unfortunately, it doesn’t encrypt the traffic, and it merely hides
passwords [10].

SHA

Secure Hash Algonthm (SHA), also called SHA-1, was developed by the U.S.
National Institute of Standards and Technology (NIST). This algorithm is based on MD4.
SHA produces a 160-bit message digest value, thus increases its protection ability [22].

Digital Signature

Dagital signature 1s a special encrypted code attached to an electronic message. It lets
the recipients know that the person sending the message really is who he claims to be. A
digital signature binds a person’s identity into an asymmetrically encrypted private key.
This private key is issued to only one bearer and is used to digitally sign and encrypt a
message. Someone with a valid public key can verify the identity of the message sender
[8]. Digital signature works by utilizing a message digest algonithm, such as MDS, to
calculate the message’s hash value. The hash value is then signed by the sender’s private
key, and each digital signature 1s unique to the message it signs. Digital signatures can
also provide integrity venfication of a message because a signed message that has been
altered will fail the recipient’s signature verification [28]. Digital signature systems can
be established within a PK1, and can be maintained by a certificate authonty [8]. DSA,
GOST, and ESIGN are examples of the public-key digital signature algorithms.

DSA

10

Digital Signature Algorithm (DSA) was developed by National Security Agency
(NSA). 1t was released as a standard by the NIST. It is a combination of DSA and SHA-]
algorithms. Its key size varies from 512 to 1024 bits with a 64-bit increment [22].

2.3 Authentication

Authentication means establishing proof of identify. Usually, this involves one or a
combination of items that a person knows, something that this person has, or something
that thts person is [28]. Traditionally, identities are established through passwords.
Different password-based authentication protocols are discussed here. However, a more
secure way 1s to use digital signature. This s discussed in the Message Digest and Digital
Signature section.

Static Password in Cleartext

The most popular authentication technique employed on the Internet is based on static
passwords. In this scheme, a user ts given a user ID and an associated password. The host
computer uses both to identify the users’ identity. The users’ IDs and passwords are sent
to the host as a cleartext. Some host systems store their users’ identity information in a
file or in a database as cleartext. A more secure way is to store the password through a
one-way hash algorithm. When a user enters his password during login, 1t is “crunched”
through the one-way hash algorithm. If the result and the value stored in the password
database are 1dentical, the user must have entered the valid password. Unfortunately, this
authentication scheme has several weaknesses: attackers who steal the password database
can perform a dictionary attack to find a list of poorly chosen passwords. Passwords that
are sent as a cleartext over a network, espectally travel over the Internet, can be revealed

right away afier they have been eavesdropped [28].

11

Chalienge-Response Static Password with One-Way Hash Algorithm

A challenge-response static passwords scheme is a2 much safer authentication protocol
than the static passwords in cleartext authentication protocol. This is because a host can
verify a user’s 1dentity without requiring him or her to send the password over the
network. When a login request is received, the host issues a challenge string as a
responsc. Upon receiving the challenge string, the user’s client software concatenates the
password he entered to the challenge string and computes a one-way hash, using MDS5 for
example, of the result. The output of the hash is then forward to the host, which
independently performs the same calculation using the user’s cleartext password. If the
host’s hash value matches the host’s hash value, then the password he or she entered was
correct. However, the problem is that the host needs to know the user’s password in
advance. In addition, the password container is still vulnerablc to dictionary attack [28).

One-Time Password

Unlike static passwords. which are subject to network eavesdropping and dictionary
attack, one-ime password (OTP) is, in theory, immune to these attacks. There are three
poputar OTP mechanisms: Bellcore’s S/Key, handheld authenticator, and smart card [28].

S/Key

S/Key OPT system is a software that was first conceived by Leslie Lamport, and later
implemented by Phil Kam. It provides secure password-based authentication over
insecure networks. It 1s generated by combining a seed with a secret password from the
user and repeatedly applying a hash algorithm, such as MD35, to produce a sequence of
passwords algorithmically, each of which can be used only one time [18]. An S/Key

password can be calculated by the function p = h(k) where k is the secret key, h is the

12

hash function, and p is the result from the hash function. To allow a user to login n times,
say n = 3, S/Key first stores this user’s secret password. Then it applies the hash
algorithm three times (n=3) to the secret password. The result h(h(h(k))) = h"3 (k) 1s
stored in the S/Key password database. When this user logs in to the system the first time,
he or she 1s prompted for his one-time password h2 (k), which 1s transmitted in cleartext.
Upon receipt, the S/Key system hash the value once to calculate h"3 (k) = h(h"2 (k)). If
this value matches the value that is stored 1in the password container, the user is
authenticated. The next time this user logs in, he or she will be authenticated by
supplying h(k). Unfortunately, the S/Key password database, which contains hashed
secret password, is not without loopholes: a poorly chosen secret password is stil] subject
to dictionary attack [28].

Handheld Authenticator

A handheld authenticator, also know as a handheld password or a token, is a small
handheld device that generates OPTs. There are four types of the handheld authenticators
and they all require that both the host and the authenticator know the common algorithm
for calculating the OTPs in advance. These four authenticators are: asynchronous,
synchronous, PIN (Personal Identification Number)/asynchronous, and PIN/synchronous.
For the PIIN/asynchronous scheme and the PIN/synchronous scheme, a PIN is required
before generating a valid password, and the PIN 1s used to authenticate the user to the
handheld authenticator but not the host. Handheld authenticators can disable themselves
after many consecutive incorrect attempts in order to protect against the PINs they held
{28)].

Smart Card

13

A smart card 1s similar to a handheld authenticator in purpose. However, 1t 1s more
sophisticated, more intelligent, and more expensive than a handheld authenticator. As
descnibed by Hughes, it contains “a CPU, miniature operating system, clock, some
program ROM, scratchpad RAM for cryptographic calculations, and nonvolatile RAM or
EEPROM (electronically erasable programmable read-only memory) for key storage™
[28]. Smart cards compute OTPs in response to a challenge from a host. They
communicate directly with the challenging entity through a smart card reader. After a
user enters his or her PIN, the smart card reader processes the challenge and enables
authentication to take place without further human intervention.

2.3 Cryptographic Algorithm

Cryptography is the science of enabling secure communication. A cryptographic
algorithm, also called a cipher, is a mathematical function for encryption and decryption.
A plaintext, also called a cleartext, is an unencrypted message. A ciphertext is an
encrypted message. A cryptosystem is a cipher plus all possible plaintexts, ciphertexts,
and keys. Some of the most popular cryptographic algonthms are discussed in this
section.

Symmetric Algorithm

Symmetric algorithms, also called secret-key algorithms, conventional algorithms,
single-key algonthms, or one-key algonthms, are algorithms where the encryption key
can be caiculated from the decryption key and vice versa [37]. A symmetric algorithm
uses the same key for both encryption and decryption. A plaintext message is encrypted
through a secret key and symmetric encryption algonithm to produce a ciphertext. To

decrypt this ciphertext, the same key is used together with the corresponding symmetric

decryption algorithm to generate the original plaintext. Note that the encryption and
decryption algonthms must belong to the same cryptosystem. Before secure
communication can be established, symmetric algorithms require that the sender and
receiver agree on a secret key [28]. The security of these algorithms relies on the key:
therefore, the key must remain secret. Encryption is denoted by £; (M) = C and

decryption 1s denoted by D, (C) = M where M is the plaintext message, C is the

14

ciphertext, £ 1s the encryption algorithm, D is the decryption algornithm, and ; 1s the secret

key {37]. IDEA, RC2, RC4, DES, and Blowfish are examples of the symmeitric
algorithms.

Public-key Algorithm

Public-key algonithms, also called asymmetric algonthms, are designed so that
encryption and decryption rely on different keys, and the decryption key cannot be
calculated from the encryption key [37]. However, this is an overstatement; because

given enough time and resources, a decryption key can be cracked in a feasible time

penod 1f its key size 1s not too large. The encryption key is called the public key and can

be disclosed to the public. The decryption key is called the private key and must be kept

in secret. However, sometimes a plaintext message can be encrypted by a private key and

the resulting ciphertext can be decrypted by a public key. Digital signature is a typical

example for this reverse role of the public and private keys. Encryption using public key

puk 18 denoted by £, (M) = C and decryption using public key ,« i1s denoted by Dy (C)

= M where M is the plaintext message, C is the ciphertext, E is the encryption algorithm,

and D is the decryption algorithm. Diffie-Hellman, RSA, EXGAMAL, and Elliptic Curve

are examples of the public-key algonthms.

15

Stream and Block Cipher

Symmetric ciphers can be divided into two categories: stream cipher and block
cipher. A Stream cipher operates on one bit, byte, or word at a time, where as a block
cipher acts on groups of them. A Block cipher has four operation modes: Electronic
Codebook (ECB), Cipher Block Chatining (CBC), Cipher Feedback (CFB), and Output
Feedback (OFB). ECB is the most basic and least secure mode, such that a given block of
plaintext, any key from the keyspace would always encrypt to the same block of
ciphertext. CBC is similar to ECB, but it encrypts blocks using the plaintext, the key, and
a third 1input derived from a XOR operation between the ciphertext of the previous block
and the plaintext the current block; thus ciphertext blocks are chained and patterns are
hidden. CFB is similar to CBC, howevér, the plaintext is encrypted in segments that are
smaller than the actual block size, and chaining occurs after encryption. OFB is similar to
CFB; however, output from the preceding encryption is used instead of feeding back the
preceding ciphertext [28].

DES

Digital Encryption Standard (DES) is a2 symmetric cipher developed by IBM. It is
first published in 1975, and adopted by the U.S. government as the federal standard for
the encryption of commercial and “sensitive-yet-unclassified” government data in 1977.
DES is a block cipher and can be used in any of the four modes (EBC, CDC, CFB, and
OFB). It is designed primarily for hardware implementation. It relies on a fixed-length
56-bit key that encrypts data in 64-bit blocks. The key consumes 64 bits as well, and it
uses one bit in byte for parity, which is ignored by DES. Hughes [28] defined the DES

algorithm in the following:

16

For encryption, a block of plaintext Is first permuted, meaning thar each bit
swaps places with another bit. Then the 64-bit block is divided into left and right
halves, or 32-bit subblocks. Next 16 rounds of calculations are applied to each
half. with input from (unique per-round) 48-bir subkeys derived from the 56-bit
key. Between rounds, the output from the left half becomes the input to the right
half, and vice versa. After completing all rounds, the rwo subblocks are rejoined,
and the result permuted to invert the initial permutation. A 64-bit ciphertext block
emerges. Decryption is achieved through exactly the same sequence of steps, but
with the order of the subkeys simply reversed.

Unfortunately tts weakness is its 56-bit key size from today’s point of view. This
makes 1t vulnerable to key search attacks [22].

Tnple DES (TDES), also called DESede, is a more secure vanation on the DES
cipher. There are several variants on TDES. One variant uses two keys, doubling the
effective key length to 112 bits; thus increase the keyspace by a factor of 2°56. Another
variant uses three distinct 56-bit keys, tnipling the key length to 168-bit, yielding an
increase in the keyspace by a factor of 2112 [28]. The three-key TDES encryption
process, for instance, works as follows: first, encrypt a plaintext using the first key;
second. decrypt the result of the first step by using the second key; third, encrypt the
result of the second step by using the third key; finally, generate the ciphertext. For its
decryption process: first, decrypt the ciphertext using the third key; second, encrypt the
result of step one using the second key; third, decrypt the result of step two with the first
key; finally, produce the original plaintext{22].

RSA

RSA, an acronym for the last names for its three creators: Ron Rivest, Adi Shamir,
and Leonard Adleman, is a pubic key cipher. It is the first public key cryptosystem to

offer both encryption and digital signature functionalities. RSA assumes that 1t 1s

virtually impossible to factor the product of two very large numbers [28]. It mixes a

17

number into a message, and then churns it in such a way that only the number’s prime
factors can undo the message. This number is then used to make a public key [19]. Public
and private keys, or simply called key pair, are large numbers that are related
mathematically and are generated by the RSA algorithm. Hughes 28] provided the
following defintion on the RSA algorithm:

To start, two large prime numbers, p and q, are selected and multiplied giving

the product {or modulus) n. Next an encryption key e is chosen to be less than n

and to have no common factors with the number (p-1)x(q-1). From e the

decryption key d is then derived such that exd = 1x(mod(p-1)x(q-1))... The public

key is the combination of the encryption key e and the modulus n, and the private

key is d.

In the public key cryptosystem if, for example, party A wants 10 receive a secure
message from party B, he or she will create a key pair first and openly send the public
key to party B. Party B then encrypts her message with the public key and send 1t back to
party A. Finally, party A decrypts the ciphertext with the private key. RSA guarantees
that only the private key can decrypt the ciphertext encrypted by the public key that are
generated by the same key parr.

To make sure that the public key sent from the other end comes from the identity who
claims who he or she 1s, one may require the public key be signed by a digital signature,
which is another service that is provided by RSA. RSA uses a one-way hash function to
generate a hash value, which can be encrypted in the sender’s private key, producing a
digital signature. The recipient can decrypt the signature using the sender’s public key to
reveal the sender’s hash value, then calculate its own using the message that was
received. If both, the sender’s and the receiver’s hash values are identical, the sender is

authenticated since the hash value must have been encrypted in the sender’s private key.

It also guarantees that the message that arrives has not been undisturbed. Unfortunately,

18

due to the complicated mathematical calculation, RSA runs a lot slower than symmetric
ciphers like IDEA (around 1000 times slower). As a consequence, 1t is pnmarnly used to
complement symmeltric cryptosystems when performing bulk encryption. For example, a
sender can use DES cipher to encrypt a large plaintext message, with a randomly chosen
key. and then use RSA cipher to encrypt that random key with the receiver’s public key.
After both, the key and the ciphertext, are received, the receiver can first decrypt the key
using RSA, and then decrypt the ciphertext using DES [28].

RC?2 and RC4 ‘

RC stands for either Ron’s Code or Rivest's Code. RC2 is a block cipher and RC4 is
a stream cipher. Both of them were developed by Ron Rivest. Both ciphers support
vanable-length keys. RC2 was designed to replace DES and it is two or three times faster
than DES. It can operate in any of the four block modes and can perform triple
encryption just like what TDES does. RC4 atso runs faster than DES and was reverse-
engineered sometime in 1994. Unfortunately, neither algorithm has gained popularity in
the cryptographic community [28].

IDEA

International Data Encryption Algorithm (IDEA) was invented by Xuejia Lai and
James Massey. It was onginally named Improved Proposed Encryption Standard (IPES)
1n 1991, IDEA 1s a 64-bit block cipher with a 128-bit key. It can operate on all of the four
block cipher modes. Hughes [28] has the following definition on [DEA:

IDEA encryption begins by dividing a 64-bit plaintext block into four 16-bit
subblocks. Each subblock is subjected to a number of computational rounds,
involving 52 different subkeys derived from the 128-bit key. There are eight
rounds. The calculations in each are fairly simple, limited 10 XOR, modular

addition, and modular multiplication... Between rounds, the second and third
subblocks swap positions. After the final round. the four subblocks are

19

concatenated to produce a 64-bit block of ciphertext. Decryption involves exactly
the same steps in the same order, but uses subkeys thar are derived differently.

DH

Diffie-Hellman (DH), developed by Whitfield Diffie and Martin Hellman, and it was
published in 1976. It is the first algorithm to introduce in the public key cryptography.
DH solves the key management problem, which is suffered inherently from symmetric
key ciphers such as DES, IDEA, and RC4. 1t allows both parties, the receiver and the
sender, to derive a key independently without exchanging any secret information {28).
Thus, snoopers will not know the value of the secret key, even if they are able to listen to
the entire transmission between the two parties [22). The process begins with, for
example, party A and party B making consent on two large numbers (150 digits or more)
with mathematical properties relative to each other. Then party A and party B
independently select their own large random numbers that they keep. Next, both
independently enter their own secrect numbers, along with the two-shared numbers, to a
function involving modular exponentiation. Both parties openly exchange their results,
and each performs a second similar calculation with the each other’s numbers. The results
are the public keys, which are identical for both parties [28].

2.4 Java Security Model

2.4.1 Overview

The Java secunity mode] was designed to offer three major security measures. The
first one is the language design features such as strong type conversion, array bound
checking, pointer arithmetic elimination, and strong memory protection. The second
feature offers a sandbox mechanism to control program access. The final feature offers

encryption and digital signatures for code owners or admimstrators to attach their

20

certificates 1o Java classes; thus providing the end users and the hosts authentication and

data integrity [23]. The Java security is comprised of the following:

1. The class file verifier
The class file verifier ensures proper formatting of the program code. It contains a
bytecode verifier, which verifies that the bytecode does not violate the type safety
restrictions of the Java Virtual Machine (JVM), that the internal stacks cannot overflow
or underflow, and that the bytecode instructions will have correctly typed parameters
[23].

2. Class loader
The class loader decides when, where, and how the codes can be loaded by the Java
program. It ensures that system-level components within the run-time environment are
not replaced [23]. It is responsible for loading classes that are found on the
CLASSPATH as wel] as the classes that cannot be found on the CLASSPATH [24).

3. Security manager
The security manager is the primary interface between the Java core API and the
operating system. It has the responsibility for preventing or allowing run-time access to
all system resources [24]. As listed by Postoia [23], these resources include “file VO,
network /O, create a new class loader, manipulate threads and thread groups, start
processes on the underlying operating system, terminate the JVM, load non-java
libraries (native code) into the JVM, perform certain types of windowing system
operations and load certain types of classes into the JVM.” Starting from Java 2,
policies to be enforced by the securnty manage can be specified in a file called

Java.policy; thus determining security policies becomes more flexible.

21

4. The access controller
The access controller enforces the security policies base on the entries on the security
policy file. It also provides a much simpler method of granting “fine-grained” and
specific permission to particular classes {24]. The access controller gives a simple
procedure for giving specific permissions to specific code. To enforce security, the Java
API calls the methods of the security manager; but behind the scene, most of these
methods call the access controller [23].

5. The secunty and cryptography packages
The secunty and cryptography packages form the basis for authenticating and integrity
checking for signed Java classes. It is composed of a collection of general-purpose
classes for cryptographic functions collectively known as the Java Cryptographic
Architecture (JCA), a collection of advance classes for advance cryptographic functions
collectively known as the Java Cryptographic Extension (JCE) (23], and a collection of
classes for access control. These three groups of classes provide APIs to form the Java
Security API. The Java Secunity API is the gist of this paper. More detatls about the
Java Secunty API will be discussed Jater in this section.

6. The key database
The key database is actually part of the security and cryptography packages. It used to
store key entries and certificate entries. A key entry contains a pnvate key and the
associated certificate chain. A certificate entry contains a single trusted certificate.
These key and certificate entries can be used by the security manager and access
controller to verify the digital signature that accompanies a signed class [24]. Java 2

provides an API for the key database, called keystore; thus key database and keystore

are referring to the same thing. Note that this is an engine class. Java 2 also ships a
concrete implementation of the keystore. It has the type JKS and the provider SUN.
Figure 2-1 shows the anatomy of a typical Java application. Note that the class file
verifier, the class loader, the security manager, and the access controller are parts of the

Java Run-time Environment (JRE).

Clasgs 16 wenifier

v

Cleass icader

| Kev datebsse

Figure 2-1. Anatomy of a typical Java application

The set of core classes in Java 2 can be divided into the set of security-related core
classes and the set of other core classes. The security-related core classes can be further
subdivided as access control and permission related core classes and cryptography-related
core classes. The Java Security API 1s comprised with the classes from the union of circle
| and circle 2 as displayed in figure 2-2. It :inctudes all the classes related to access
control and permission and all the classes related to general and advance cryptographic

classes. JCA is a subset of the Java security model. It contains only the general

23

cryptographic classes. JCE is an extension of JCA. It contains the rest of the
cryptography-related classes, which are more advanced and are subject to export

restrictions [23]. Figure 2-2 shows the relationship between the APIs in Java 2.

1. Java 2 SDK APls
2. Java 2 SDK security-related APIs
3. Java 2 Crvptography-related APls

Figure 2-2. Relationship between the Java 2 SDK, JCA, and JCE APIs

2.4.2 JCA, JCE, and Access Control

Java Cryptography Architecture (JCE) 1s comprised with a set of general-purpose
cryptography-related classes to perform operations such as key generation, message
digest calculation, and digital signature creation. These classes provide public methods as
interfaces for programmers known as APIs. JCA is a structure for accessing and
developing functions on cryptography for the Java platform. It was designed to provide
implementation independence and interoperability and algorithm independence and
extensibility. Implementation independence is achieved by using the “provider-based
architecture.” As described by Postoia. “‘the term cryptographic service provider
(provider for short) refers to a package or a set of packages that supply a concrete
implementation of a subset of the cryptography aspects of the Java security APT” [23).
These packages must implement at least one cryptography service such as public-key

algorithms and digital signature algorithms. Implementation interoperability means, as

24

defined by Postoia, “various implementations can work with each other, use each other’s
keys, or verify each other’s signature™ {23]. Base on this definition, digital signature
generated by one provider can be verified by another, and a key generated by one
provider can be usable by another using the same algorithm. Also, Postora [23] explained
that:

Algorithm independence is achieved by defining rypes of crvprographic

services, and defining classes that provide the functionality of these cryprographtc

services. These classes are called engine classes, and examples are the

MessageDigest, Signature, and KeyFactory classes.

Algorithm extensibility means that new algorithms that fit in one of the

supported engine classes can easily be added.

Java Cryptography Extension (JCE) is an extension of the JCA. It is compnised with a
set of advance cryptography-related classes such as encryption, key exchange, and
message authentication code (MAC). JCE relies on the same architecture as JCA does.
This means that 1t also offers implementation independence, tmplementation
interoperability. algorithm independence, and algornithm extensibility.

The Java Security API contains classes that only concern with access control, security
policy, and permissions. Although they are not related to cryptography, they play a magor
role in the Java Security Model.

2.4.3 Java Security Tools

Java 2 provides four secunty tools: keytool, jar, jarsigner, and policytool.

The keytool tool is a command hine utility. It provides an administrative interface to
manage keys and certificates in a keystore. Through the keytool administrative interface,
users can perform operations on the keysotre. These operations include: create key pairs

and self-signed certificates, export certificates to be sent to others along with the signed

message, issuc ceruficate signing requests (CSRs) to be sent to CAs for signing, import

o |

25

certificates to verify signatures, install certificate chains from certificate replies, create
new keystores, change passwords to the keystores and the key pairs, and remove key
pairs and certificates [23].

The jar tool 1s another command line utility. It is used to compress and pack files into
JAR files. In addition, jar can also be used to extract files from JAR files. The
compression is done based on ZIP and ZLIB compression format. During the archive
process, jar can create a special text file, called JAR manifest or simply manifest, which
contains descnptions of each file archived in the JAR file [23].

The jarsigner tool is another command line utility. It is used to sign JAR files and to
verify signatures and the integnty of signed JAR files [23)]. Behind the scene, jarsigner
uses the entnes in a keystore to look up information about a particular identity and uses
that information either to sign or to verify a JAR file [24].

The policytool is a GUI-based utility. It is used to create and manage securnity
policies, which are stored in a policy file. These secunty policies are used to grant
permission to various Java codes (i.e. class files and JAR files) depending upon the code
base and/or the digital signature applied to the code [23]. For more details, see User’s
Menu in a Jater chapter.

2.4.4 Pseudo-random Number Generator

Java 2 contains two pseudo-random number generator (PRNG) classes: Random and
SecureRandom. A Random object can be initialized with a seed that represents the
starting point for the random number sequence. A program that uses the same seed value
gets the same sequence of numbers from the generator. [n addition, if no seed value is

provided, the Random object uses the value of the system clock as the seed value. As

26

Knudsen pointed out, “This is a predictable seed... If an attacker knows when you create
the random number, even approximately, he or she can guess at likely values of the
random number seed” [22]. A SecureRandom object is cryptographically strong; thus it is
ruore secure. The SecureRandom object uses a digest algorithm 1o digest the seed valuc.
Then, the resulting digested value is stored as part of the SecureRandom object’s intemnal
state. When a random number is requested, the SecureRandom object updates the
message digest with the intemal state and the internal counter. The SecureRandom class
contains a seed generator, which is used to generate seed values for new SecureRandom

objects. The seed generator uses the timing of the thread to seed itself [22].

27

3. ENHANCED JAVA SECURITY TOOLS (EJST)

Recall from the Introduction, this paper has four objectives. First, provide a truly
random seeder. Second, provide a more secure key management scheme through stronger
authentication techniques and a better key storage algorithm. Third, provide
enhancements on the existing Java security tools. Fourth, extend message signing and
data integrity verification to all file types.

3.1 Problem and Solution Overview

3.1.1 Pseudo-Random Numbers

Currently, Java 2 offers both the standard pseudo-random number generator (PRNG),
which is represented by the Random class, and a more secure version of the standard
PRNG called SecurcRandom, which is represented by the SecureRandom class.

Numbers that are generated by the Random class can be compromised easily because
the seed value 1s not generated at random as discussed earlier. Numbers that are
generated by the SecureRandom class are more secure because seed values are generated
quite randomly. Unfortunately, the SecureRandom class has not been tested thoroughly.
As Knudsen pointed out, “It may have weaknesses that cryptanalysts could exploit”™ [22).
In addition, both the Random class and SecureRandom class calculate their seed values
through algorithms. Since most computers are deterministic machines, seed values that
are generated from these machines are not truly random. As a consequence, random
numbers generated from these pseudo-random number generators may reveal patterns.

Attackers can utilize these pattermns to compromise security systems that usc these

generators. On the other hand, human actions can be truly random; therefore, truly
random seed values can be generated through human actions.

Human actions can be recorded through input devices such as: keyboard, mouse,
scanner, and microphone. Here, only the keyboard and the mouse are utilized.

Human actions can be tracked through keyboard events such as the timing between
successive keystrokes and the keystroke that got struck. Using the internal representation
of the keys that got struck as the source is not very secure because it can be compromised
if someone is watching behind the user’s shoulder. The timing between successive
keystrokes is a better choice because even a very consistent typist will probably not be
able to type with millisecond precision. This means that the seed values generaied from
this kind of seeder can be truly random. This technique has been used for years in Pretty
Good Privacy (PGP) [22].

Human actions also can be tracked through mouse events such as mouse movements
and the timing between successive mouse clicks. The timing between successive mouse
clicks is not very a wise choice because there are only a few buttons on the mouse. On
the other hand, mouse movements are more random. This is because it is probably
impossible to repeat exactly where the mouse has traveled. This means that the seed
value generated from this kind of seeder can be truly random.

In addition to the two human action seeders mentioned above, truly random seeds can
be generated from randomly chosen bits from a file. These three seeders are implemented
into a suite of seeders, called the Truly Random Seeders (TRS).

3.1.2 Key Mapagement

29

Java’s key database, also called keystore, is used to store key entnes and certificate
entries. The private key in the key entry should be kept secret because compromising the
private key will compromise the cipher text generated by that public-key algorithm.
Unfortunately this keystore implementation provided by Sun Microsystems has a poor
key management. One of the loopholes is the weak authentication scheme it uses.
Currently, access to the keystore and the key entries require passwords. However, there 1s
no restriction on the passwords used. As a result, the keystore and its key entries are
subject to dictionary attack. A password guesser such as crack in Unix can be used to
perform dictionary attacks.

Key management is the hardest part in cryptography. Cryptanalysts often attack both
public-key and secret-key cryptosystems through key management [37]. Even the best
key management system is vulnerable if the passwords to the key database or key entries
are badly chosen. Here, we have two approaches to avoid badly chosen passwords. They
provide stronger authentications to the keystore key management.

One can mandate that users enter passwords containing punctuation or numenc
characters that are found in the American Standard Code for Information Interchange
(ASCII) character sets. This approach works because a typical dictionary attack uses keys
from a file, which contains words that can be found in a dictionary, to run against the
stolen password file. Dictionary attack would not work if the passwords contain
punctuation or numeric characters.

Alternatively, instead of asking the user to provide a password for each key entry,
Schneter [37] suggested a key management scheme called random keys. A random key 1s

created using a pseudo-random number generator, which generates a random string [37].

30

Using this technique, random passwords can be generated the same way random keys are
generated. The Truly Random Seeders (TRS) and the SecureRandom random number
generator can be used to generate random passwords. All passwords will be created as an
eight-character long string as recommended by Knudsen [22]. Table 3-1 gives the
number of possible keys with different constraints on the input strings, and table 3-2
gives the time required for an exhaustive search through all of the keys given a million
attempts per second. Here the printable character sets, without the space character, will be
used to represent the random passwords. An eight-character long string contains 948 or
approximately 6.1*10" possibilities. This not only is sufficient to defend against a
dictionary attack, but also good enough to protect against an exhaustive key search
attack. also called brute force attack. However, random keys with shorter key space are
vulnerable, and random keys with long key space are hard to remember; thus eight-
character long passwords should be adequate. The Key-Certificate-Policy Manager
(KCPM), which will be discussed later in this chapter, utilizes the random password
authentication technique to provide befter authentication to the keystore and key entries.
Key storage is another problem in the keystore key management scheme. Currently,
the keystore implementation provided by Sun Microsystems uses an internal algorithm to
encrypt private keys. It uses the KevProrector class to protect the private key in a key
entry. This KeyProtector classes uses the password of the key entry and concatenates it
with a salt. After a series of hashing, XOR, and concatenation operations, the key is
claimed to be protected. Unfortunately, the salt js generated randomly and cannot be

derived from the password. Thus salt is stored in the keystore file, together with the key,

31

uaprotected. If an attacker knows where the salt is stored, the private key can be easily
compromised.

In fact, as Oaks [24] pointed out, *“The strength of this encryption is limited: because
it is part of the standard Sun distribution... ‘Weak’ is a relative term in this context; it still
require some effort for the encryption to be broken, but it can be done.” Furthermore, as
Knudsen [22] explained, a private key is encrypted by scrambling the “passphrase”,
which is used as the password to access the private key, and combining it with the private
key.

This research uses a more secure password-based encryption algorithm, called
PBEWithMD5AndDES. This algorithm is implemented by Sun Microsystems, and it
comes with the Java Cryptography Extension (JCE). The PBEWithMD5AndDES
algorithm provides password-based encryption and decryption base on the RSA
Laboratories PKCS #5 v1.5: Password-Based Cryptography Standard. This algorithm
uses DES as the symmetric cipher, cipher block chaining (CBC) mode as the cipher
mode, PKCSPadding as the padding scheme, and MDS5 as the hash function.

For encryption, the PBEWithMDS5AndDES algorithm uses the password of the
private key to generate a secret key. Then this secrete key 1s used with the DES
symmetric cipher to encrypt the pnivate key before it 1s saved to the keystore. Decryption
is done in the same fashion. Through the PBEWithMDSAndDES algorithm, private keys
can be securely protected. This feature is implemented in the Secure Keystore, which will
be discussed later in this chapter. The Secure Keystore 1s an alternation of Sun's keystore
implementation. It embeds the PBEWithMDSAndDES password-based algonithm to

protect the private keys.,

32

3.1.3 Java Security Tools

Java 2 provides four secunty tools: keyrool, jar, jarsigner, and policytool. The keytool
is 2 command line utility. It is used for keystore management. The jar tool is another
command line utility. It is used to archive Java class files. The jarsigner tool is also a
command line utility. It is used to sign and verify JAR files. The policytool ts a GUI-
based utility. It 1s used to grant permissions to Java applications and applets.

Although keytool, jar, and jarsigner provide many different kinds of features, their
user interfaces are not user-friendly. Many of their operations have long commands. For
example, generating a key pair in keyfoo! may require up to 22 parameters. Users need to
remember the spelling of the keyword and the order of the arguments. These
inconveniences make the command line utilities, mentioned above, difficult to use. [n
addition, all of the four security tools lack a good help menu. The help menus provided
by these tools are very brief. The content on these help menus only provide descnptions
on the syntax of the tools. They do not explain what the operations are, what they do, and
what they are used for. Furthermore, the Java security tools, namely jarsigner, can sign
and venfy JAR files only. This limits the usage of the Java security tools.

This research provides graphical user interfaces to replace the command line user
interfaces found in keytool, jar, jarsigner. These GUIs are user-friendlier. They can
eliminate problems that are encountered on complex operations. They can also enhance
the usability on these tools. In addition, this research extends message signing and data
integrity verification to all file types, so that the Java securty tools can benefit other

applications as well.

33

Furthermore, this research provides a GUI-based on line help menu. This help menu

1S designed as web pages on a web browser. Users can browse the menu through links.

This help menu also provides detail descriptions about each operation. This aid the users

to get a better understanding of each process.

The GUI-based security tools are organized into an application. When this application

runs, users can perform all the operations that can be found in the old security tools. This

application is like a console, and it is called the Key-Certificate-Policy Manager

(KCPM). The KCPM manages all the operations provided by the security tools and the

underlying keystore as a whole; thus it provides easier user access and better

management to the keystore as well as the secunty tools.

| 4-Byte 5-Byte 6-Byte 7-Byte 8-Byte
Lowercase letters (26): 460,000 1.2E7 3.1E8 80E9 | 2.1 Ell
Lowercase letters and digits 1,700,00 | 60E7 | 22E9 | 7.8E10 | 2.8 EI2
(36): 0
Alpbanumenc characters (62): 1.5E7 9.2 E8 5.7E10 | 3.5E12 | 2.2 El4
Pontable characters (95): 8.1 E7 7.7 E9 7.4 Ell 70E13 | 6.6 E1S
ASCII characters (128): 2.7 E8 34E10 | 44E12 | S6El4 | 7.2 E16
8-bit ASCII characters (256): 4.3 E9 1.1E12 | 28E14 | 7.2E16 | 1.8 EI9

Table 3-1. Number of possible keys of various keyspaces
4-Byte 5-Byte 6-Byte 7-Byte 8-Byte

Lowercase letters (26): Ss 12's Sm 2.2h 2.44d
Lowercase Jetters and digits 1.7s]l m 36 m 22 h 33d
(36):
Alphanumeric characters (62): 15s 15m 16 h 41d 69y
Printable characters (95): 1.4m 2.1h 8.5d 22y 210y
ASCII characters (128): 4.5m 9.5h 51d 18y 2300y
8-bit ASCII characters (256): | 1.2h 13d 8.9y 2300y | 580,000y

Table 3-2. Exhaustive search of various keyspaces with one million attempts per second

34

3.2 EJST Architecture, Design, Implementation, Installation

The Enhanced Java Security Tools (EJST) is a tool suite. It provides three utilities:
Truly Random Seeder (TRS), Secure Keystore, and Key-Certificate-Policy Manager
(KCPM). The TRS provides truly random seeds to any pseudo-random number generator
to reduce patterns. The Secure Keystore utilizes the PBEWithMDSAndDES password-
based encryption algonthm to provide a more secure key storage. KCPM 1s designed to
replace the user interfaces found in the command line secunty tools. It provides GUIs
that are user-fnendly. It contains an online help menu to aid the users. It embeds the
password restriction and random password techniques to provide stronger authentication
for the underlying keystore. Furthermore, It extends data integrity checking to all file
types.

3.2.1 Truly Random Seeders (TRS)

The Truly Random Seeders (TRS) is used to generate some truly random seed values.
These values can be used to seed the pseudo-random number generators. Since the seed
produced by the TRS can be truly random, random numbers that are generated by the
pseudo-random number generators that use the seeds from TRS may produce less
obvious patterns or at least makes these numbers less predictable [22].

The Truly Random Seeder is a suite of random number seeders. It contains the
Keyboard Seeder, the Mouse Seeder, and the File Seeder.

The Keyboard Seeder utilizes the keyboard timing. It calculates the seed by
measuring the time between successive keystores using a fast timer with a resolution of
one millisecond. The currentTimeMillis method from the lang. System class has a

resolution of 10 milliseconds. This 1s insufficient. As a result, the Counter class 1s

35

1mplemented to provide the needed resolution. It creates a thread for itself and increments
the counter data member once every millisecond.

The Keyboard Seeder has a byte array data member. It is used to represent the value
of the seed. The length of this byte array is defined the same as the length of the seed.
The timing between keystrokes is assigned to the next unassigned byte on the byte array.
The Keyboarder Seeder rejects repeating keys because the timing of repeating keys may
be predictable [22].

To use the Keyboard Seeder. the user needs to create a KeyboardSeeder object and
specify the number of bytes he wants. For example, to generate an eight byte seed, the
user need to hit the keystrokes on the keyboard, without consecutively repeating keys,
eight times. Then, by calling the getSeed method, the seed is returned.

The Mouse Seeder utilizes mouse movements. It calculates the seed by measuring
successive movements of the mouse pointer. The location of a mouse pointer is
represented by a point, which contains an X coordinate and a Y coordinate in pixels.

The Mouse Seeder has a byte array data member. It 1s used to represent the seed. The
length of this byte array 1s defined the same as the length of the seed. The X and Y
coordinates are muitiplied to produce a random number. This number js then assigned to
the next unassigned byte on the byte array. It rejects repeating coordinates because these
values may not be random.

To use the Mouse Seeder, the user needs to create a MouseSeeder object and specify
the number of bytes he wants. Then the user i1s required to move the mouse pointer

around on the screen. Finally, by calling the getSeed method, the seed is returned.

36

The File Seeder utilizes the bits in a file. It calculates the seed by randomly choosing
the bits from a portion of a file. The File Seeder has a byte array data member. It 1s used
to represent the value of the seed. The length of this byte array 1s defined the same as the
length of the seed.

The File Seeder allows the users to choose any source file the user computer. If the
file contains fewer bits than what is needed, an error message wil) be prompted. A fter the
source file has been specified, File Seeder uses the SecureRandom to randomly choose
the bits on the source file. These bits are then assigned to the byte array.

To use the File Seeder, the user needs to create a FileSeeder object, and specify the
number of byte he or she wants. The user is then prompted to specify the source file.
Finally, by calling the getSeed method, the seed 1s retumed.

3.2.2 Secure Keystore

The Secure Keystore uses the PBEW1thMD5AndDES password-based algorithm to
provide more secure key storage to the existing keystore key management scheme [22].
The Secure Keystore provides services such as store and retrieve key entries, store and
retrieve certificate entries, delete key and certificate entries, change password of the
keystore and the key entries, check entry types, and get the number of entries stored in
the keystore.

The Secure Keystore uses the PBEWithMDSAndDES password-based algorithm and
the KeyProtector class to protect the private keys. Note that the KeyProtector class is
used here only for backward-compatibility. When the private keys are stored, they are

PBEWi1thMDSAndDES encrypted using the passwords to these keys as secret keys.

37

When the private keys are accessed, they are PBEWithMD5AndDES decrypted using the
password to these keys as secrete keys.

Besides using private key encryption, the Secure Keystore uses SHA message digest
algorithm to protect its integrity. When the keystore 1s loaded, the integrity is checked,
and when the keystore is stored, the digest value is calculated and stored with the
keystore.

The Secure Keystore needs to be installed before it can be used. First, the provider for
the Secure Keystore is created. Its name is £JSTProvider. and it contains a keystore type
EJST. Then the EJSTProvider 1s added to the java.security file, located at the
java.home\lib\security directory, as a new security provider entry (java. home is the
location where Java is installed.) Afier these two steps, the Java Security APl will know
where to find the concrete implementation of the Secure Keystore. Note that the Secure
Keystore is represented by the Ekeystore class

3.2.3 Key-Certificate-Policy Manager

The Key-Certificate-Policy Manger (KCPM) is an application console. It is designed
to replace the user interfaces provided by keyrool, jar, and jarsigner. It also provides easy
access to the policvtool utility. Through the KCPM, users can perform all the security
operations in one application. Furthermore, KCPM provides an online help menu to aid
users.

The KCPM provides a number of services. These services include generate key pair,
delete key pair, change key pair password, delete certificate, import single certificate,
mmpont certificate chain, export certificate, certificate signing request (CSR), print

certificate, sign JAR file, venfy JAR file, sign regular file, venfy regular file, create JAR

38

file, security policy, create keystore, change keystore, change keystore password, list
keystore entries, options, and help menu.

Each of these services is accessed by a dialog box. When a menu on the menu bar is
clicked, an action event that is listening to that menu is fired, and the corresponding
dialog box 1s displayed. A dialog box may contain many components such as text fields,
labels, buttons, combo boxes, and radio buttons. Each component may be responsible for
specific events. An event listener of a specific type is added to the component if the
component is responsible for that event. Each of the listeners is represented by an inner
class. Since the KCPM user interface listens to over one hundred events, there are over a
hundreds inner class files crated in the directory where KCPM is located.

To provide stronger authentication to the underlying keystore, KCPM utilizes the
password restriction and random password techniques, The users can set the password
restriction on to enforce password restrictions. In addition, users also can request a
random password from KCPM. The random password technique utilizes the TRS to get
random seed values. These values are used to seed the SecureRandom object to produce
strings of printable ASCII characters. KCPM uses these strings as random passwords.

The KCPM not only contains classes that handle operations on the graphical user
interfaces, but also contains classes that perform the actual operations. The Fkeytool class
is responsible for all tasks related to key management as well as signing and verifying
regular files. It contains an instance of the Secure Keystore (£keystore) class, which is
used for the underlying keystore management. The EjarSigner class is responsible for
signing and verifying JAR files. The Policytool class 1s responsible for generate the

policytool interfaces. The RandomKey class ts responsible for generating random

39

passwords and enforcing password restrictions. The MouseSeeder is responsible for
generating random seeds.
3.4 Installation
EJST is a multi-platform application. It can be installed on any computer that
supports Java 2. With a few configurations, EJST can be up and running. The followings
are the installation steps on a Windows platform:

1. Make sure Java SDK 1.2.2 or later version and Java JCE 1.2.1 or later version are
installed on the computer.

2. Copy the EJST directory, which contains all the application class files, to a
directory on the user hard dove (i.e. C:\Anthony)

3. Add SET CLASSPATH=C:\JDK1.3\LIB;.;C:\ANTHONY to an empty line in the
autoexec.bat file (assuming the operating system s running Windows 98, Java
SDK is installed on C:\JDK .3, and the EJST directory Is installed on
C:\Anthony)

4. Add security.provider. 1=EJST.EJS TProvider 10 the provider section in the
Java.policy file located i the java. home\libisecurity directory. If the security

provider number is assigned, choose the next available number.

S. After the computer is rebooted, EJST is ready for usc.

40

4 KEY-CERTIFICATE-POLICY MANAGER (KCPM) USER’S
MENU

4.1 Overview

The Key-Certificate-Policy Manager (KCPM) is a GUI-based application. It is used
to manage the keystore and the security tools. Users can utilize it to perform operations
on public/private key pairs, digital certificates, JAR files, key stores, and security
policies. It also provides the users with system options and online help menu.

When KCPM starts up, the Keystore Login dialog box, as shown it Figure 4-1,
would pops up and looks for a specific user keystore file, root certificate authority (CA)
kevstore file, and the password to login to the user keystore. When KCPM is run at the
first time. Kevstore and the Root CA certificate are blank. Users can utilize the Browse
buttons on the dialog box to search these two files. KCPM provides an empty user
keystore, which is named .store. The password to this keystore is keystore. Users are
recommended to change the password of the .store keystore. KCPM also provides a root
CA certificate keystore, which is named cacerts. It contains five trusied root CA
certificates from VeriSign. Figure 4-27 shows these ten VeriSign root CA certificates. By
default. these two keystore files are stored in the same directory. where EJST class files
located. Keystore type specifies the type of the keystore implementation. KCPM uses
EJST keystore implementation, which is as the name suggests, created by EJST. Users
also can choose JKS keystore implementation, which is, provided by SUN Microsysters,

to work on user keystores that are compatible with the JKS implementation. Keystore

41

provider specifies the keystore implementation service provider (creator). The provider
for EJST is EJSTProvider. and the provider for JKS is SUN [22. 23, 24].
After the user logs on to the specified user keystore, the KCPM’s menu bar is

enabled.

A e
A
T TR v

Lo SRR SR TSR FEAR Ere i e

Figure 4-1. Keystore Login dio bo Bl

4.2 Public / Private Key Pair

The Public/Private key menus provide services on generating public / private key
pairs (or simply called key pairs). delcting key pairs, and changing the password to the
key pairs.

Gencrate Key Pairs

The Generate Key Pair dialog box. as shown in Figure 4-2. creates a pair of public
key and private kev. The public key in the key pair 1s wrapped into an X.509 v] self-
signed certificate. This certificate is contained in a certificate chain, which has only one
element: the self-signed certificate. To obtain a trust certificate chain from the CA, one
should send a certificate signature request (CSR) to a CA and import the centificate chain
from the certificate reply to the user keystore. The private key and the self-signed
certificate is stored together in the user keystore as a key entry identified by an alias

name. Note that generating a new key pair may take a few seconds due to the process of

42

creating the public and private key pair. The bigger the key size specified, the longer the
process takes [23. 24].

The Key Information section specifies the informatton about the key pair and the
self-signed certificate. Key alias specifies the alias name, which is used to identify the
entries (key entries and certificate entries) stored in a keystore. Key password specifies
the password required to access this key entry. Key size specifies the size of the key pair.
Certificate time stamp specifies the time stamp, which is the validity of the certificate in
days. of the self-signed certificate. Signature algorithm specifies the digital signature
algorithm for the self-signed certificate. KCPM supports four signature algorithms:
SHAIwithDSA , MD2withRSA, MD5withRSA, and SHAIwithRSA. Although Java 2 comes
with SHA1, MD2, and MDS message digest algorithm and DSA public key cipher, it
doesn’t come with RSA public key cipher. As a result, users, who want to use the RSA
cipher or RSA related signature algorithm should purchase the RSA cipher from RSA,
Inc. and install it into their system. Key algorithm specifies the algorithm for generating
the public key and the private key for the key pair. Use system generated password
specifies whether the user wants to the system to generate a random password for the key
entry or not.

The Identity Information section contains information about the identity of the
owner (subject) of the key pair. Since the public key is wrapped around into a self-signed
certificate, this information is used to specify the issuer of the self-signed certificate as
well. Therefore, the owner of the key pair and the issuer of the self-signed certificate both
refer to the same entity. To obtain a certificate issued by a CA one should create a

certificate signature request (CSR). For details about the CSR, please refer to the CSR

43

section later in the user menu. Full name specifies the common name of the individual,
which is usually the first and last name of an entity. Organization name specifies the
name of the organization with which the individual is associated. Organization unit
specifies the unit with which the individual is associated. City/Locality. State/Province.
and Two-letter country code specifies the city or locality, state or province, and country
where the identity resides respectively. This information is used to create a X.509

distinguished name (DN) of a certificate {23, 24).

Delete Key Pair

The Delete Key Pair dialog box, as shown in Figure 4-3, js used to remove a key
entry, which coniains a private key and the associating self-signed certificate, from the
user keystore. Once a key entry is deleted, it cannot be recovered. Key alias specifies the
aljas to the key entry. Key password specifies the password required to access this key

entry.

44

o= by

Figure 4.3, Delete Key Pair dialog box
Change Key Pair Password

The Change Key Pair Password dialog box. as shown in Figure 4-4, is used to
change the password associated with a key entry. Key alias specifies the alias to the key
entry. Old password specifies the password that is currently used to access the key entry.
New password specifies the new password that will be assigned to the key entry. After
the new password is specified, the user needs to reenter the password in Confirm
password. Use system geperated password specifies whether or not the user wants to
the system to generate a random password for the key entry. Note that this system-
generated password uses the random password technique described tn chapter 3. The
password is eight characters long and consists of ASCII printable characters only (except

the space character).

C—
| —

Fur 4-4, Cnge Kc Pair Password box

4.3 Certificate

45

The Certificate menus provide services for deleting certificates, importing
certificates and certificate chains, exporting certificates, generating CSRs, and printing
certificates from certificate files and user keystores. Since the EJST keystore only
supports X.509 v1, v2, and v3 certificates, KCPM is limited to operate on these types of
certificates. As a consequence, importing, exporting, and printing certificates other than
the X.509 standard causes errors.

As mentioned before, a user keystore is capable of storing both key entries and
certificate entrjes. A certificate entry contains a single certificate. It is identified by an
alias name just like a key entry does. Note that certificate entries do not have password
associating them. This is because certificates are designed to be accessed by the public.

Delete Certificate

The Delete Certificate dialog box, as shown is Figure 4-5, is used to remove a
certificate entry from a user keystore. Certificate alias refers to the alias to the certificate

entry.,

ST SEERE,

Figure 4-5. Delete Certificate dialog box
Import Single Certificate
The Import Single Certificate dialog box, as shown in Figure 4-6, is used to read a

certificate from a certificate file and stores it in the user keystore as a cerntificate entry. If

the certificate entry already exists, an error message will be prompted.

46

KCPM can import both trusted and untrusted certificates to the user keystore.
However. importing untrusted certificates is considered dangerous and 1s not
recommended. Adding an untrusted certificate involves no verification. On the other
hand. importing a trusted certificate involves series verification operations. KCPM would
try to verify the certificate by attempting to construct a chain of trust from that certificate
10 the certificates from the user keystore. In the chain of trust cannot be established, the
certificates from the root CA certificate keystore can be considered. Note that the
certificate, which 1s stored in the certificate file. must be saved in either binary encoding
or printable encoding Base 64 format [23, 24].

Certificate file specifies the file that contains the certificate. By convention.
certificate files have a “.cer” filename extension. Certificate alias specifies the alias to
the certificate entry. Validate with root CA certificate specifies whether or not to use
the root CA certificates to verify the importing certificate. Import untrusted certificate

specifies whether or not to import the certificate even if it is untrusted.

Figure 4-6. Impon Single Cemcate dlalog box

Import Certificate Chain
The Import Certificate Chain dialog box, as shown in Figure 4-7, is used to read a
certificate chain from a certificate file. The certificate chain replaces the certificate chain.

which consists only a self-signed centificate and is associated with a private key, in the

47

key entry. The certificate chain from the certificate file should be a PKCS #7 reply,
which is generated from a CA in response to a CSR sent by the user. Although KCPM
can import X.509 v1, v2, and v3 certificates, the PKCS #7 formatted certificate chain
must consist with certificates of the same type [23, 46]. In addition, the centificate chain,
which is stored in the certificate file, must be saved in either binary encoding or printable
encoding Base 64 format. When importing a certificate reply, the certificate chain can be
validated using trusted certificates from the keystore, but this is not required. If the
certificate 1s not validated, the certificate chain from the certificate reply is considered
untrusted and it is not recommended. Importing a trusted certificate chain involves series
of operations. KCPM tries to verify the certificate by attempting to construct a chain of
trust from that certificate to the certificates from the user keystore. [f the chain of trust
cannot be established, the certificates from the root CA certificate keystore can be
considered. Noted that when the certificate chain is imported, it would replace the
certificate chain that is associated with the private key in the key entry [23].

Certificate file specifies the file that contains the certificate chain. Key alias
specifies the alias to the key entry. Key password specifies the password required to
access this key entry. Validate with root CA certificate specifies whether 10 use the root
CA certificates to verify the importing certificate chain or not. Import untrusted

certificate specifies whether or not to import the certificate chain even if it is untrusted.

48

& [CranthonyEJSTirst cer |' Brows.

RS -0 TR R T T = - e e ot st it

gure 4-7. Importiflc i lo box

Export Certificate

The Export Certificate dialog box, as shown in Figure 4-8, is used to read a
certificate from a certificate entry, which is stored in the user keystore, and saved it in a
certificate file. By convention, the certificate file has a filename extension “.cer”. The
certificate can be exported either in binary encoding format or printable Base 64 format.
[f the alias refers to a centificate entry. that certificate is exported. If the alias refers to a
key entry. then the first certificate in the associated certificate chain 1s exported [23. 24].

Certificate file specifies the file that is used to store the certificate. Key or
certificate alias specifies the alias to a certificate entry or a key entry. Certificate

format specifies the format that is used to store the certificate. The format can be either

binary encoding or printable Base 64 encoding.

49

T A R T g e YL,

Figure 4-8. Export Ci ialog

Certificate Signature Request (CSR)

The Certificate Signing Request dialog box, as shown in Figure 4-9, is used to
generate a CSR using the PKCS #10 format. A CSR is intended to be sent to a CA. The
CA will authenticate the certificate requestor and will return a certificate chain in a
certificate reply. The certificate requestor will use this certificate chain to replace the
existing certificate chain, which is associated with a corresponding private key, in a key
entry. The private key and the X.500 distinguished name associated with the key entry
are used to create the PKCS #10 CSR (23. 48].

CSR file specifies the file that js used to store the CSR. By convention, a CSR file
has an “.scr™ filename extension. Key alias specifies the alias to the key entry. Key
password specifies the password required to access the key entry. Signature algorithm

specifies the algorithm used to sign the CSR.

. [cranthonyEJSTirst.csr [
firstikey

it i et i

re 4-. Certificate Signing Request (CSR) dialog box |

Figu

Print Certificate from Certificate File

The Print Certificate from Certificate File dialog box, as shown is Figure 4-10, is
used 10 read a certificate from a certificate file and print its content in either printable
Base 64 encoding format or using no encoding (human-readable) format. The Printable
Base 64 format is used to print the cerntificate in Base 64 formatl. The Base 64 format is an
Internet standard. Binary data can be encoded in Base 64 by rearranging the bits of the
data stream in such a way that only the 6 least significant bits are used in every byte [22,
23].

No encoding with public key and signature format is used to print certificate
information that is human readable and understandable. It prints out the alias name of the
keystore entry, the certificate creation date and time, the type of the keystore entry, the
length of the certificate chain if it is a key entry, the centificate version, the subject in
X.500 distinguish name, the name of the signature algorithm used, the name of the public
key algorithm, the public key, the time stamp, the issuer in X.500 distinguish name, the
serial number, and the value of the signature.

No encoding with fingerprints is used to print certificate information that is human
readable and understandable. It prints out the alias name of the keystore entry. the

certificate creation date and time, the type of the keystore entry, the length of the

51

certificate chain if it is a key entry, the subject jin X.500 distinguish name, the issuer in
X.500 distinguish name. the serial number, the time stamp, and the fingerprints of the
certificate in MDS and SHA. Note that the certificate must be stored in either the binary
encoding format or the printable Base 64 format.

Certificate file specifies the file where the certificate is stored. Certificate format
specifies the certificate printout format. If the no encoding format is selected. the Show
public key & signature / fingerprints options will appear. Users can specify their

preferred printout option.

e
r‘
R L

A - ————

Subject CN=Anthony Wong, OU=Computer Science, 0=08U, L=Sliliwater, ST=0K, C=US
Issuer CN=Anthony Wong, OU=Computer Science, O=08U, L=Stijlwater, ST=0K, C=US
Senal number 3058M24e

(vand from FriJul 20 22:09:02 COT 2001 to Sun Aug 19 22:08:02 CDT 2001

Fingerprnnts:

MD5: 08:20:21:bb:9e:16:e2:17.cd:44:27 .24:23:02.02:1
SHA: 51 8b'b9:66.00:7¢.73:98:74.82.¢1 Ba:85.8ec1a.29.47:93:72'2b

Figure 4-10. Print Centificate from Certificate File dialog box
Print Certificate from Keystore
The Print Certificate from Keystore dialog box. as shown in Figure 4-11, is used to
read a certificate from a certificatc entry or key entry and prints out its content in either
printable Base 64 encoding format or using no encoding (human-readable) format. The

no encoding format further specifies the details on the printout: public key and signature,

or MDS5 and SHA fingerprints. Note that the certificate must be stored in either the binary
encoding format or the printable Base 64 format.

Certificate file specifies the file, which the certificate is stored. Certificate format
specifies the certificate printout format. If the no encoding format is selected, the Show

public kev & signature / fingerprints options will appear. Users can specify their prefer

printout option.

|Cenmeate ln!ommqlon— :
| c:anmmdaliac |ﬁrstkev

mrsikey, FriJul 20 22:09 02 CDT 2001, kevEmry
Cenificate chaln length 1
Ceartiicate(1]-

|
l
Version Vi

Sub)ect: CN=Anthony Wong, OU=Computer Science, O=08SV, L=8illwater, ST=0K, C=US
Signature Algorithrn SHAITWIthDSA, CID = 1 2840 10040 4 2

IKey Sun DSA Public Key

Parameters OSA

4 (I715381 1751228 5206r428¢ 20000467 16110752 3¢0874400 ¢3103/00 bb512669
45504022 51583d 8d58Bfabf ¢515ba30 MBcb8bSS 6cd7813b §0133467 MR2BE6OL7T
65995035 a49181ab 047b1022 c24bbal8 d7feb7¢6 1bM3b57 v7c63B8ab 150M04m
B3M6C3cS 1ec30235 54135516 91321675 13a62b61 d72a6M2 22031990 d14801¢7

Q g780506r152300¢¢c b297b3IB2 a2enBA0D M0581¢r5

] f7e81a085 d68b3dde cbbcahs5c 36bESThbB 7834aMmb fa3aeabd2 M574c0b 340789287 y
51595788 Dadd45841 66710710 81800448 16712368 4¢291613 b7cf0B32 B8¢ccBabe ok
3¢167aBb 547¢9328 eGa3aeie 2bb3a675 816683710bra2135 6201 M™MB2Z 7a01243b ‘
ccadfibe aB519089 aBA3are1 53591086 92808656 B07b5525 B4014c3b fecf482a

Y
c3589c44 60882385 16447838 1dG827827 a7968bBald 35387cd5 6c356168 49897139
1546aMme 156044 1deBbede 4d65r37c as739437 5ceq402¢0 73313138 04313
0a35ce12 1beB4006 d24a5713 d97¢3cb5 51e6b10a a1530064 7d30beb33 b54a2b0g

Figure 4-11. Print Certificate from Keystore dialog box

[JEISE

4.4 Sign / Verifv JAR

KPCM provides services for signing JAR files and verifying signatures and the

integrity of stgned JAR files. In addition. it also provides services for signing regular files

(non JAR files.)

53

A signed JAR file contains a signature file, with a SF extension, and a signature block
file. with a DSA extension. Each SF file contains three lines of text: the signature version,
the name of the digest algorithm for the manifest file and the digest value for the manifest
file, and the name of the company that provides the digest algorithm. In addition, the SF
file contains two lines of text for each source file archived in the JAR file. The first line
specifies the name of the source file, and the second line specifies the name of the digest
algorithm and the digest value. The SF file is then signed. Each DSA signature block file,
by default, contains the same three line of text found in the associated SF file. In addition,
the DSA file contains the signature of the SF file. It also contains the encoded certificate
or certificate chain from a user keystore. The certificate or certificate chain 1s used to
authenticate the public key corresponding to the private key used for signing [23, 24].

Sign JAR File

The Sign JAR File dialog box, as shown in Figure 4-12, is used to sign a JAR file.
The signing process produces a signature file with a SF extension and a signature block
file with a DSA extension. KCPM uses the pnivate key from a key entry in a user keystore
to sign the SF file and the associating certificate chain to provide authenticity.

Source JAR file specifies the JAR file to be signed. Key alias specifies the alias to
the key entry. Key password specifies the password required to access this key entry.
Base file name specifies the base file name for the SF and DSA file. Note that this is
optional. Signed JAR file specifies the name of the signed JAR file. This is optional 100.
If one does not specify a file name. the source JAR file is used as the signed JAR file;

thus the content of the source JAR file wil] be overwritien. Show signing information

specifies whether a detail description of the signing process should be printed after the

file is signed.

updating: META-INF/MANIFEST MF
adding' META-INF/ SF

adding' META-INF/.DSA

signing Testing.class

signing EJarSigner.class

Figure 4-12. Sign JAR File dialog box

Verify JAR File

The Verify JAR File dialog box, as shown in Figure 4-13, is used to verify signatures
and the integrity of signed JAR files. The integrity check will print an error message if’
any of the files in the JAR file were modified. If the JAR file is not signed, an error
message will also be printed out.

JAR file specifies the signed source JAR file. Print certificate information specifies
whether or not the certificate stored in the DSA file be printed out after the verification
process. Print verification information specifies whether or not a detailed message is

printed after the verification process.

232 SatJul 21 16'17:18 CDT 2001 META-INF/MANIFEST MF
256 B8atJui 21 18'17:30 CDT 2001 META-INF/.SF
1049 SatJul 21 16:17.30 CDT 2001 META-INF/.OSAsmk
1017 SatJul 21 16:16 12 CDT 2001 Testng.class
X.608, CN=Anthony Wong, OU=Comguter 8clence, O=08U, L=Stlliwater, ST=0K, C=US (Nirstkey)

smk
18336 SatJul 21 16°'16:12 CDT 2001 EJarSignar.class
X 6§08, CN=Antnony Wong, OU=Computer Science, O=08U, L=8tllwater, ST=0OK, C=US (Nrstkey)

= sighature was verified
m = entry Is listed In rmantfest
K= atleastone certificate was found in keystorse
1= atleast one cenificate was faund In idenuty scope

Figure 4-13. Verify JAR File dialog box

Sign Regular File

The Sign Regular File dialog box, as show in Figure 4-14, is used to sign all kinds of
files except the class and JAR files. The signing process uses the private key in a key
entry to sign the source file. Afier the source file is signed, a signature file and a
certificate file are produced. The signature file and certificate file are used to protect the
data integrity of the signed file.

Key alias specifies the alias to the key entry. Key password specifies the password
required to access the key entry. Source file specifies the source message file to be
signed. Signature file specifies the signature file that is use to store the digital signature
of the source file. If the signature file 1s not provided, the signature will be stored in a file

with the base file name the same as the source file concatenate with a “.sig” filename

74

56

extension. Signature algorithm specifies the signature algorithm that is used to sign the
message. Certificate file specifies the file that is used to store the digital certificate. If the
certificate file is not provided, the certificate will be stored in a file with the base file

name the same as the source file concatenate with a “ cer” filename extension.

ClNthonpylEJSTImess age. ot

e L

Figure 4-14. Sign Regular File dialog box_
Verify Regular File
The Verify Regular File dialog box, as shown in Figure 4-15, is used to verifv
signatures and the integrity of signed files. Unlike signing regular files, users need to
specify the original source file (signed file). the signature file, and the certificate file.
Source file specifies the original (signed) file. Signature file specifies the file that is
used to store the signature associated with the source file. Signature algorithm specifies
the signature algorithm used in signing the source file. Certificate file specifies the file

that is used to store the certificate associated with the source file.

17|

:zf’?fs“z?ff ;

|C \Anthuny\EJST\message ba

L TR A o T e T

Skl l L

o |C \Amhom/«EJSﬂmessage td.slg

Figure 4- 15 Vcnfy licgular File dlalog box
4.5 JAR

KPCM provides services on archiving files through the JAR menus. A manifest file 1s
created during the JAR file creation process. This file contains information about each of
the archived files [23, 24].

Create JAR File

The Create JAR File djalog box, as shown in Figure 4-16. is used to creatc JAR
files. First, the source files to be archived are selected. Next the files are added to the
archive list. After specifying the name of the destination JAR file, the JAR file is created.

Source file specifies a file to be archived. The Add button adds the source files to the
archive file list. The remove button removes the selected files from the archive file list.

JAR file specifies the file that holds the archived source files and the manifes: file.

D‘ 3.

Bmmmm

&0 il
|: ,

chaﬂo' {C \Amhony\EJST\EKeyToolLEJarS\gner class

3 I

Cr ANthoNVEJSMTesting class
C\ANthonEJSTMEKeyYTooNEJarSigner.ciass

Flgure 4 16 Create JAR Flle d1alog box

58

4.6 Keystore

The Keystore menus provide services related to the user keystore. The user can
create a new user keystore, change 10 a different user keystore, change the current
keystore password, and list all entries, including both key entries and certificate entnes,
from the current user keystore.

Create Keystore

The Create Keystore dialog box. as shown in Figure 4-17, is used to create a pew
user keystore. The newly created keystore does not contain any entry. Keystore specifies
the file used to store the user keystore. Keystore password specifies the password
required to access the user keystore. The user needs to re-enter the password to for
confirmation in Confirm password. Use systemn generated password option specifies
whether or not the user wants KCPM to generate a random password for the keystore

password.

£ creats Xeystore

Kengore. T IC lAnthany\EJS‘r\ ﬂrststore
Keystore password: |7"'-""_"____1_‘.__.~“JI L S P
Conﬂrm password: I | L 2

 (Use system uenarmad passwnru_——-‘*—*—-—‘- s
iC) Yes O No

A @m Closa_ J

i

Flgurc 4 17 Crcatc Keystore daa]og box
Change keystore
The Change Keystore dialog box, as shown in Figure 4-18, is used to load a different
user keystore to the system. Users also can Joad a different root CA certificate keystore

using this dialog box. After the new user keystore is loaded, alt the keystore management

and signature signing and verification operations will refer to the newly loaded user
keystore.

Keystore specifies the keystore file. Keystore password specifies the password
required to access the user keystore. Note that if the user does not specify the root CA
certificate keystore, the previous defined root CA certificate keystore is used. Keystore
type specifies the type of the keystore implementation. Keystore provider specifies the

keystore implementation service provider (crcator).

B change Keystore ;

QYN t,;, e 21k

Keymote hassword.
an cs comucaw '{nmlnnnl): I

Flgure 4-18. ChangeMKJeystore dlalog

Change Keystore Password

The Change Keystore Password dialog box, as shown in Figure 4-19, is used to
change the password of the currently Joaded user keystore.

0ld password specifies the password currently used to login to the current user
keystore. New password specifies the newly assigned password, which will replace the
old password. The user is required to re-enter the new password in Confirm password (0
confirm the password that has been entered. Use system generated password specifies

whether or not the user wants KCPM to generate a random password for the keystore.

60

Fi‘gL;Ar.e 4-15. Change Keystore Password dialog box

List All Entries

The List All Entries dialog box, as shown in Figure 4-20, is used to print all the
entries, including key entries and certificate entries, from the user keystore. Keystore
entries can be printed in Bref, Base 64 encoding, no encoding with fingerprints. and no
encoding with public key and signature formats. If the Brief format is selected, it prints
out the entry alias name, the creation date and time, the type of the entry, and the
certificate fingerprint in MDS. If the entry is a key entry, the fingerprint of the first
certificate in the cerntificate chain is printed. Base 64 encoding, no encoding with public
key and signature, and no encoding with fingerprints all print out entry alias name. the
creation date and time, the type of the entry, and the length of the certificate chain, if the
entry is a key entry. In addition, information about the certificate or certificate chain will
also be printed as discussed early in this menu Printing format specifies the keystore

entry printout format as descnbed above.

61

3 Uist Al Entries fram the Keystore
—Certificats Information o

Kepystore type. EJST
Keystorg providar: EJSTProvider
[The keystiore contains 4 sniries!

secondkey, 8at Jul 21 04:35.46 CDT 2001, kevyEntry
Certificate Nngerprint (MD5)" 05'B84:62.04:75.16:68:5¢:44.73:b5:15:62:80.40:37

secondcan, FriJul 20 02.37:18B CDT 2001, irustedCertEntry, Carlifticate fingerprint (MD5). 1d:10:89 fd.Sa 6 b0

esignature, Mon Jun 11 1B.05 36 CDT 2001, keyEntry
Certiticate fingarprint (MDS5). 78:07:20:13:55.81:ca'49:79:20:@d:D1:92:47:51.51

Nrstkey, FriJul 20 22:08.02 COT 2001, keyEntry
Cartificale fingerprint (MO S). 08 a0 21.b6:8e 18:82:17:cd 44 2724 . a3:02:02:m

Figure 4-20. List Al] Entries dialog box
4.7 Options

The Options dialog box, as shown in Figure 4-21, is used to provide default
configuration options for KCPM. These configurations are used throughout the
application, and they are stored in a file named option.txt. When KCPM is started, it
reads the option.txt file to initialize the configurations.
Keystore specifies the default file path of the user keystore. Root CA certificate
specifies the default file path of the root CA certificaie keystore. Key size specifies the
default value of the size of the keys used in the public-key cipher. Certificate time
stamp specifies the default of the time stamp, which is the validity of a certificate in
days. Signature algorithm specifies the default signature ajgorithm. Enforce password
restriction specifies whether or not password restrictions be applied. These restrictions

are applied to both user keystore passwords and key entry passwords. If enforced,

62

passwords provided by the users must be at least six letters long, and they must consist of

one Or more punctuation or numeric characters.

3 options

rDefault Optians

Key store; .]C \Anthom/lEJSﬂ newStore

T T N i P e

CA Root Certificate: |C \Amhom/\EJSﬁcacer‘ts

Kay stra: . c | 1024~

Cenmwetlme s(arnp' [30

Slgnaturo alaornhm. |SHA1MM)SA S. =

-‘Key Aluomm—
®DSA ORSA

~Enforce Password Restricthon -
C Yas @ No

ey

Figure 4-21. Opti.(.J.n-S dialog box

4.8 Security Policy

Java's security polictes are used to grant permissions to various Java code (class and

JAR files) depending upon the code base and/or digital signature applied to the code.

These security policies are stored in a security policy file. Java 2 comes with a policy file

named java.policv, and it is stored in the java.home\lib\security directory [23].

A policy file contains a Jist of entnes. There may be a keystore entry and zero or more

grant entries. There can be only one keystore entry on a policy file. This entry is

necessary only if a signer is specified 1n any of the granr entries so that the signer can be

referred to the specific keystore [23].

Grant entries are used Lo grant permissions to codes from various sources and/or

signed by various entities. Each grans entry contains zero or more permission entries, and

cannclude a siginedBy name-value pair entry and a codeBase name-value pair entry. The

63

signedBy entry specifies that the permissions granted are for the code that has been
signed by the private key from the corresponding key entry. When multiple signers are
specified, the code must be signed by all of them. The codeBase entry specifies the
originating location of the code (JAR or class file) where permissions are to be granted.
The originating location can be defined to grant permission to a single JAR or class file,
all class and/or all JAR files from the current directory, and all the class and/or all the
JAR files from the currently directory as well as from its sub-directories {23].

The onginating location takes an URL address. which allows the permissions to be
granted to different networks that are on the Intermet. The permission entry specifies
permissions that are granted to specific target. These permissions are represented by
permission classes. They include: AWT Permussion, FilePermission, NetPermission,
ProperryPermission, ReflectPennission, RuntimePermission, SecurityPernnission,
SenalizablePermission, and SocketPermission. The target 1s the files that give particular
permissions ta the class and/or JAR file specified in the codeBase. Creating policies on
policy files 1s outside the scope of this paper. For more information about the security
policy. please refer to [22], [23]. and [24].

The Security Policy dialog box, as shown in Figure 4-22, is used to connect to the
policytool provided by Java 2. Policy files specifies the security policy file that will be
accessed by the policytool. If the policy file is not specified, policytool will try to open
the policy file in the user.home directory. If the policy file does not exist, the user will be

presented with an error message.

The Policy Tool dialog box, as shown in Figure 4-21, is designed to configure
secunity policies on Java applications and applets in a user computer. [t provides three
functions; create new policies, modify existing policies, and view waming logs.

To create a new policy, first, make sure that the policy file is not under construction.
If the policytool is working on an existing policy file, select new from the File menu.
This will open a new policy. Then select save from the File menu 10 save the policy to a
policy file. The file should be saved with a policy extensjon.

The policytool maintains a warmning log, which stored al) the warming messages that
have been displayed during a policy configuration session. To access this warning log.
select view warning log from the Kile menu.

The policytool allows adding new policy entries, modifying existing policy entries,
removing existing pohcy entries. and changing to another user keystore.

To add a new policy entry, click on the Add Policy Entry button on the Policy Tool
dialog box, as shown in Figure 4-23. This brings up the Policy Entry dialog box, as
shawn in Figure 4-24. codeBase specifies the onginate Jocation of the code, which
permissions are to be granted. signedBy specifies the alias name to the key entry. To add

permission to this policy entry. click on the Add Permission button. This will bring up

65

the Permissions dialog box, as shown in Figure 4-25. The drop-down lists (combo
boxes) on this dialog box allow the user to choose among the various options that are
already provided in Java 2. Permission specifies the permission that will be granted.
Target name specifies the files that give particular permission to the class and/or JAR
files specified in the codeBase. Actions specifies the operations allowed. FilePermissjon,
for example, can have read, write, delete, and execute operations. To edit permissions.
click on the Edit Permission button. To remove permissions, click on the Remove

Permission button [23).

F=4rolicy Toal S| - 1T |

Fie Eon

Poliey File |c:\|dk‘l . 3JreuibwecurinA)ave.pollcy
Kevstore I

Add Pollcy Entry | Egit Pollcy Entry Remove Pallcy Entry

CodeBase "Nle $(Jjava. hama ¥liniexv™
CodeBase <ALL>

Figure 4-23. Policy Tool dialog box

66

CoveBase:
Bigneoby:

Add Permisslon I Edn F'-m-n.-lon:l y Remove Permission

Done | : .canceri

Figure 4-24. Policy Entry dialog box

Permissions e e R |

Add New Permigslon:

java.lo.FilePermission
«<ALL FILES>»

A, l.«ullv—,l','Tlelv:‘, LTI read, write, delete, exgcule
8igned By [

ﬂl Cancel |

|FuePermission

Ll

| «<ALL FILES>>

Figure 4-25. Permissions dialog box
To edit an existing policy entry, click on the Edit Policy Entry button on the Policy
Tool dialog box. This brings up the Policy Entry dialog box. Modification of an existing
policy entry can be done in the same way as adding new policy entries that is described
above.
To change the user keystore so that the policy configuration should apply, select
Change keystore from the Edit menu. The Keystore dialog box will pop up. New

keystore URL specifies the location of the user keystore file. New keystore type

67

specifies the type of the implementation used in the user keystore. The keystore supplied
by Java 2 is implemented by Sun Microsystems. This keystore has a type called JKS.
KCPM has its own keystore implementation, and it is of the type EJST.
4.9 Help Menu
The Help Menu dialog box, as shown in Figure 4-26, is used to display KCPM's help
menu. This help menu provides detailed information about every service available on
KCPM. The Help Menu dialog is designed like a web browser. Users can browse the

help menu through links.

Laqh athonced Tivo Mraarity Yools - e T 7 10f >
PubiicPrivete Key Cerlificsls SignVarlly JAR Heystoru

) Hatp v R

Publis/Public hoy Cestificate Nigp/Varty 4B Cnam/Verly JAR Kay ewxx Pakicy Ontiame

Key-Cerdficate-Policy Manager (ICCPM) User's Menu

The Enhanced Java Sceurity Tools (EJST) provides graphical user mterfaces (GUT), called the
Key-Certificate-Policy Manager (KCPM), for users ¢to perform operations on public/private key puirs. digital
certificates, JAR tles, key stores, and sccunty policies. It also provides the users with syvtem spuonx and
online help menu.

When KCPM starts up, the Kcystore Login dialog box, as shown it Figure 1, would pop up and look for a
speaific uyer Keystore file, root ccrtficate authonty (CA) KeyStorc flc, and the password to login to the user
Reystore.

When KCPM is run at the Arst ume, Keystore und the Root CA certificate are blank. Users cun utlize the
Browsc buttons on the dialog box 1o scurch thesc two files. KCPM provides an empty user keystore, which is
namcd .storc. The password to thus kcystorc is keystore. Users arc rcconmumnended to change the password of
the .store keystore,

KCPM also provides a root CA certficate keystore, which is namcd cacerts. It contains five trusted root CA
certificatcs from VerSign. Figurc xx shows these five VenSign root CA ccriificatcs. By dcfswlt, these rwo
keystore files are stored in the zame directory, where EJST class files located.

Keystore rype specifics the type of the keystore implementston. KCPM uses EJST keystore implementation,
which is 8s the name suggested, crceted by EIST. Uscrs can also choose JKS keystore impleirientation, which
is provided by SUN Micrgsyste work er kevstores that are comoatiblc with the JKS

Figure 4-26. Help Menu dialog box

el yeenailca, Uit
PCGert il tcate Fangerpyint (MY
Sonalbas e Iy I
{ rogeepe it CHPS >

Mawe Jan 29

fingersinl. (HDLS

malpremina, Fya
fiugearpeint. (ADL D

i ol 12

{ inyerprint, <HIY
: dan 270
swine (M)
A : Mon oo 2

{ingerprint (HDLO:
Jdan 29
ate tingerprint (HD*
ciprcningzevoerca, ey
t tugerprint <HMbLHYO:
Jew, Mo Jduan 29
tinyerprint (HY

Cercil i

CaNAnthonp\NEJST >
Gt haony~TL16T >

CealCertlny o,
wo7ep & VIO Y
trostedCert bntey,
VT HER N (S B S DA) FAS N B I S S Y B
talCe st Lt ey,
i A7) AR 1 I':7¢:0h
1999, vpruncLedCoprtlnt
HUIE B0 G SR I IR R N B R 1 U
TedCeytnt ey,
ST ML N UL AR DY S T R (IS R N 5
SN ETIRE
S I 1 O e IR RN Y
B GHE 1y toedCery En e
Al AR TR S Y I B R0 R B DR T A P-R] - X
tedCeort at ry.
HS SN LU R U NI T R T R LTSN B PR £
teee bellUet o
= 11iE A R R P A BT 1

(IR IR | R RS

Figure 4-27. VenSign root CA certificates

69

5 CONCLUSIONS

Java’s security mode] provides security APls and security tools for key management,
digital signatures, digital certificates, access control, and more. Although the security
APIs and the secunity tools have been improved, secunty flaws, weaknesses, and
limitations still remain. These problems involve keystore key management, pseudo-
random number generation, and the security tools.

The Enhanced Java Securnty Tools (EJST) provides solutions to these probtems. To
seal the loopholes, EJST implemented the Truly Random Seeders (TRS) and the Secure
Keystore. TRS provides truly random seeds that can be used on any pseudo-random
number generator to reduce or eliminate patterns. The Secure Keystore utilizes the
PBEWithMDS5SAndDES password-based encryption algornithm to provide a more secure
key storage scheme.

EJST not only fixes the security loopholes, but also provides enhancements on the
Java security tools. The Key-Certificate-Policy Manager (KCPM) is implemented to
replace the command line user interfaces for the Java security tools. It provides GUIs that
are user-friendly. It contains an online help menu to aid the users. It embeds the password
restriction and randomn password techniques to provide stronger authentication for the
underlying keystore. Furthermore, it extends data integrity checking to all file types.

EJST is a multi-platform application. It can be installed to any computer that supports

Java 2. With a few configurations, EJST can be up and running.

70

6 FUTURE WORKS

Although the Enhanced Java Secunity Tools (EJST) has made many enhancements on
the Java secunity tools. there is still room for improvement.

First of all, keystores should not be limited for local access. They should be designed
for remote access as well. An organization may want to install a keystore on their
network. so that members of the network can enjoy the services provided by the
distributed keystore. A distributed keystore can be placed inside a remote network server.
Each workstation can instal) a copy of the EJST. With these infrastructures set up,
member users can Jogin to this keystore through the Internet.

Second, one of the weaknesses on EJST is the time required for storing and retrieving
entries on a keystore. Our tests did not reveal any problem on this. However, if the
keystore is (nstalied on a wide area network or on the Intemet, where the keystore may be
responsible for handling thousands of entries, it may not be able to afford the workload.
In this case, the entries should be stored in a distributed database management system
(DBMS). Modificatton to KCPM should be made so that it can communicate with the
DBMS through the Java Database Connectivity (JDBC).

Finally, when importing certificates, users should, first, check if the certificates are
ynvalid. To do that, users can consult a certificate revocation list (CRL), which is a list of
certificates thal have been revoked. This list can be obtained from a CA. Modification to
the EJST should be made so that certificate revocation check can be done automatically

when importing certificates.

10.

11

12.

13.

14.

LS.

71

REFERENCES

Yasin, Rutrell. “IETF Initiatives Gives Boost to Embattled SSL” Internet Week 6
July 1998: 1-2.

Yasin, Rutrell. “An Embattle standard Gets a Shot in the Arm."”" Internet Week 13
July 1998: 28-29.

“RSA Extends Lead in Java Securnity Race with BSAFE SSL-J 2.1 Software.” Online.
Internet. June 1999. Available: http://industry.java.sun.com,

Stallings, William. “Pretty Good Privacy.” Byte July 1994: 193-195.

Levitt, Jason. “What 18 Public Key Infrastructure?” Information Week Jan. 2000: 82-
83.

Levine, Daine. "Public Key Infrastructure Adds Security To E-Business.” Information
Week May 2000: 94-96.

Yasin, Rutrell. "PKI Crosses Enterprise Boundaries.” Intemet Week | May 2000: 1-2.

Radecliff, Deborah. “Digital Signatures.” Computer World April 2000: 64.

Jim Kerstetter and Paul Korzeniowski. "Intemet Privacy--and Piracy.” PC Week 16
June 1997: 138.

Jim Kerstetter and Scot Petersen. "Web Server Securnty Spec Gaining Support.” PC
Week 28 June 1999: 1.

Kosiur, Dave. "Securing Internet VPNs.” PC Week 25 Aug. 1997: §9-90.

Wirbel, Loring. "Push is on for Vistual-Private-Network Solutions." Electronic
Engineering Times Mar. 1999: 20.

Ulfelder. Steve. “VPNX 101.” Computer World 6 Mar. 2000: 80.

"Crunching Internet Securnity Codes.” Science News 156.14 (1999): 221.

Ganesan, Srinivasa, and Madhusudan Sastry. "Time is Right for a Good, Secure
‘Idea’.” Electronic Engineering Times 23 Oct 1995: 66-68.

16.

17.

18.

19.

20.

27.

28.

30.

31

Kerstetter. Jim. "RSA Opens up S/MIME." PC Week 1 Sept. 1997: 8-9.

McQuilken, Barry. "Secuning the Enterprise Network." Telecom Asia 8.6 (1997): 74-
76.

Mantakos, Harry. "The Java OTP Calculator.” Online. Internet. Available:
http://www.cs.umd.edu

Brieva, Art. "Cover Your Assets - Fending off Hackers Requires a Mix of Firewal)
Technologies.” Computer Shopper July 2000: 236-240.

Burr, Nazario, and Timothy Polk. "A Proposed Federal PKI Using X.509 V3
Ceruficates.” Online. Internet.

. "Puzzling Secrets: Cryptography.” The Economist 7 Sept. 1996: 79-80.

2. Knudsen, Jonathan. Java Cryptography. California: O’Reilley & Associates, Inc.,

1998.

. Postoia, Marco, et al. Java 2 Network Secunity. New Jersey: Prentice Hall, 1999.

. Oaks, Scott. Java Secunty. California: O'Reilley & Associates, Inc., 1999.

. Petnie, C.S., and J.A. Connelly. “The Sampling of noise for random number

generation.” IEEE Circuits and Systems 6 (1999): 26-29.

. Karras, D.A., and V. Zorkadis. “Overfitting in Multilayer Perceptrons as a Mechanism

for (Pseudo) Random Number Generation in the Design of Secure Electronic
Commerce Systems.” [EEE Information Systems for Enhanced Public Safety and
Security (2000): 345-349.

Horon, Ivor. Beginning C++, The Complete Langnage. United Kingdom: Wrox Press,
1998.

Hughes, Larry. Internet Securnity Techniques. Indiana: New Riders, 1995.

. Deng, Lih-Yuan and Dennis Lin. “Random Number Generation for the New Century.”

The American Statistician May (2000): 145-150.

L'Ecuyer, Pierre. “Uniform Random Number Generators.” [EEE Simulation
Conference Proceedings Dec. (1998): 97-104.

Drew, Grady. Using SET for Secure Electronic Commerce. New Jersey: Prentice-Hall,
Inc., 1998.

33.

34

35.

36.

37.

38.

39.

40.

41.

45.

46.

. Adams. Carlisle, et al. “Which PKI (Public Key Infrastructure) is the Right One?”

Proceedings of the 7" ACM Conference on Computer and Communications Securty

(2000): 98-101

Boyarsky, Maurizio. “Public-key Cryptography and Password Protocols: The Multi-
User Case.” Proceedings of the 6™ ACM Conference on Computer and
Communications Security (1999): 63-72.

Kyas, Othmar. Internet Security Risk Analysis, Strategies and Firewalls. London, UK:
International Thomson Cormputer Press, 1997.

Hoover, D.N. and Kausik, B.N. “Software Smart Card Via Cryptographic

Camouflage.” [EEE Secunty and Privacy Proceedings of the 1999 Symposium May
(1999): 208 - 215.

Lee, Yung-Cheng and Laih, Chi-Sung. “On the Key Escrow System Without Key
Exchange.” Computers & Electrical Engineering July (1999): 279 - 280.

Schneier, Bruce. Applied Cryptography. New York: Wiley, 1996.

Horstmann, Cay and Comell. Cary. Core Java Volume [-Fundamentals. California:
Sun Microsystems, Inc., 1997.

Robinson, Matthew and Vorobiev, Pavel. Swing. Connecticut: Manning Publications.
2000.

Zukowski, John. Definitive Guide to Swing for Java 2, second edition. Califomia:
Apress, 2000.

Geary, David. Java 2 Mastering the JEC, third edition. California: Sun Microsystems,
1999.

. Horstman, Cay and Cornell, Gary. Core Java 1.1, volume 1. New York: Prentice Hall,

1997.

. Chan, Patnck, et al. The Java Class Libranes, second edition, volume | .

Massachusetts: Wesley, 1999.

. Palmer, Grant. Java Programmer’s Reference. Wrox Press, 2000.

“PKCS #5 v2.0: Password-Based Cryptography Standard.” RSA Laboratones. Mar.
1999.

PKCS #7 v1.5: “Cryptographic Message Syntax Standard.” RSA Laboratories. Nov.
1993.

74

47. PKCS #8 v1.2: Private-Key Information Syntax Standard.” RSA Laboratories. Nov.
1993.

48. “PKCS #10 v1.7: Centificate Request Syntax Standard.” RSA Laboratories. May 2000.

49, *Java Cryptography 1.2.1 API Specification & Reference.” Online. Intemnet. Jun.
2000. Available: http://java.sun.com.

i

API:
ASCI:
B2B:
B2C:
CA:
CBC:
CFB:
CRL:

DBMS:

DES:
DH:
DN:
DSA:
ECB:
EIST:
GUL
IDEA:
IPES:
ISO:
JAR:
JCA:
JCE:
JDBC:
JDK:
JRE:
JVM:

KCPM:

MAC:
MD:
NIST:
OFB:
OTP:
PGP:
PIN:
PK1I:
PKCS:

PRING:

RCA:
RSA:
SDX:

Appendix A. Acronyims

Application Programming Interface

American Standard Code for Information Interchange

Business-to-Bustness
Business-to-Customer

Cenuficate Authority

Cipher Block Chaining (mode)

Cipher Feedback (mode)

Certificate Revocation List

Database Management System

Digjtal Encryption Standard
Diffie-Hellman (key-exchange aigorithm)
Distinguished Name (X.509)

Digital Signature Algorithm

Electronic Codebook (mode)

Enhanced Java Security Tools

Graphical User Interface

International Data Encryption Algorithm
Improved Proposed Encryption Standard
International Standards Organization
Java Archive

Java Cryptography Architecture

Java Cryptography Extension

Javu Database Connectivity

Java Development Kit

Java Run-ume Environment

Java Virtual Machine
Key-Centificate-Policy Manager
Message Authentication Code

Message Digest

National Institute of Standards and Technology
Output Feedback (mode)

One-time Password

Pretty Good Privacy

Personal Identification Number

Public Key Infrastructure

Public-Key Cryptography Standard
Pseudo-random Number Generator

Root Certificate Authority

Rivest Shamir Adleman (public key algorithm)
Standard Development Kit

~1

N

SHA:
SSL:
TDES:
TRS:

Secure Hash Algorithm

Secure Socket Layer

Triple Digital Encryption Standard (also know as DESede)
Truly Random Seeders

76

Base 64:

No encoding with:
public key and signature

No encoding with:
fingerprints

SHA1WIithDSA:
MD2WithRSA:
MDSWithRSA:
SHAIWithRSA:
java.home:

user.home:

passphrase:
random key:

keystore:

key entry:
certificate entry:

PBEWithMD5AndDES:

77

Appendix B. Glossary

An Internet standard that can be uscd to print certificates. It
rearranges the bits of the data stream in such a way that only
the six least significant bits are used in every byte [23].

[t is used to pnnt)nformation from certificates that can be read
from human. This information includes: certificate creation
date and type, the owner's and the issuer’s X.500 DN. public
key, and the signature.

It 1s used to print information from certificates that can be read
from human. This information includes: certificate creation
date and type, the owner’s and the issuer’s X.500 DN, MD5
fingerprint, and SHA fingerpnint.

Signature algorithm using SHA and DSA.

Signature algorithm using MD2 and RSA.

Signature algorithm using MDS and RSA.

Signature algorithm using SHA| and RSA.

JDK 1nstatlation directory (i.e. ¢:\jdk1.3\jre on Windows)

Operating system's installation directory (i.c. ¢:\windows on
Windows)

A phrase that can be used as a password.
A string that contains random characters.

A key database that is used to store key entries and certificate
entries.

Contains a private key and the associated certificate chain.
Contains a single trusted certificate.

A password-based encryption algorithm. It uses DES as the
symmetric cipher, cipher block chaining (CBC) mode as the

salt:

fingerprint:

78

cipher mode, PKCSPadding as the padding scheme, and MDS
as the hash function.

A random string that s concatenatcd with passwords before
being operated on by the one-way function.

The hash value of a set of data.

A

VITA
Jp-Kin Anthony Wong
Candidate for the Degree of

Master of Science

Thesis: ENHANCED JAVA SECURITY TOOLS
Major Field: Computer Science
Biographical:

Education: Received Associate of Arts in Liberal Arts from Maui Community
College. Kahului, Hawaii. Received Bachelor of Science degree in Computer
Science from University of Central Oklahoma, Edmond. Oklahoma. Completed
the requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 2001,

Expenence: Employed by the University of Central Okiahoma, College of Business
as a lab monutor; Umiversity of Central Oklahoma. College ol Business, 1996 -
1997. Emploved by the Pardon and Parole Board as an applicition developer:
Oklahoma Pardon and Parole Board. Data Processing Depaniment., 1998 — [999.
Emploved by the Department of Correction as an applicauon specralist 11;
Oklahoma Department of Correction. Data Processing Department. 1999.
Emploved by Oklahoma State University. Department of Computer Science as a
research assistant: Oklahoma State University, Department of Computer Science,
1999 - 2001. Emploved by Oklahoma State Unmiversity, Depariment of Computer
Science as a teaching assistant: Oklahoma State University, Department of
Computer Science, 2000 - 2001.

Professional Memberships: Student in Free Enterprise. Web Master's Club,

