
ENHANCED JAVA SECURITY TOOLS

By

IP-KrN ANTHONY WONG

Associate of Liberal Arts
Maui Community College

Kahului, Hawaii
1996

Bachelor 0 f Science
University of Central Oklahoma

Edmond, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
December, 2001

E HACED JA VA SEC RITY TOOL

Thesis Approved:

II

PREFACE

This research talks about enhancements on the current Java security tools, key

management, and random seeders. Its primary focus is on the Java security tools. The

enhanced Java security tool suite will use the improved key management scheme and

authentication technique discussed in this paper. In addition, the extended signing and

verification functionality will be embedded inside this suite as well. Since the gist of this

paper is about enhancements on the Java security tools, it is named Enhanced Java

Security Tools (EJST).

This paper is organized into six chapters and three appendixes. Chapter 1,

Introduction, depicts the background ofIntemet security, the current problems in Java

security, and the objectives on this research. Chapter 2, Literature Review, introduces

fundamental concepts and background knowledge on authentications, digital certificates

and public key infrastructure (PKl), message digests and digital signatures, cryptographic

algorithms, and the Java security model. Chapter 3, EJST, presents solutions to meet the

objectives. It also describes the design and implementation of the EJST. Chapter 4,

User's Menu, shows the user menu of the EJST's Key-Certificate-Policy manager

(KCPM). Chapter 5, Conclusion, draws a conclusion on the EJST. Chapter 6, Future

Work, talks about future improvements that can be done on the EJST. Appendix A,

Acronyms, show the acronyms used in this paper. Appendix B, Glossary, provides some

tenninologies used in this research. Appendix C, Source Code, presents some of the

source codes that are used on the implementation.

III

ACKNOWLEDGEMENTS

I wan to express my sincere gratitude to Dr. Mayfield, my principal adviser, for

giving me invaluable advice, assistant, encouragement throughout my graduate study. His

guidance and generous aid helped make th.is work possible.

I also want to express my appreciation to Dr. Lu, and Dr. Chandler who gave me

support and advice to guide me through this thesis. They help me to organize my work.

IV

Chapter

TABLE OF CONTENTS

Page

1. IN'TRODUCTION 1
1.1 Background I
1.2 Current Problems 3
1.3 Objective 4

2. LITERATURE REVIEW 5
2.1 Digital Certificate and PKl 5
2.2 Message Digest Algorithm and Digital Signature 7
2.3 Authentication 10
2.4 Cryptographic Algorithm 13
2.5 Java Security Model 19

2.5.1 Overview 19
2.5.2 JCA, JCE, and Access Control 22
2.5.3 Java Security Tools 23
2.5.4 Pseudo-random Number Generator 24

3. ENHANCED JAVA SECURITY TOOLS (EJST) 27
3.1 Problems and Solutions 27
3.2 EJST Architecture, Design, Implementation, and 34

Installation
3.2.1 Truly Random Seeders (TRS) 34
3.2.2 Secure Keystore 36
3.2.3 Key-Certificate-Policy Manager (KCPM) 37
3.2.4 Installation 39

4. KEY-CERTIFICATE-POLICY MANAGER USER'S MENU 40
4.1 Overview 40
4.2 Public / Private Key Pair .41
4.3 Certificate 44
4.4 Sign / Verify 52
4.5 JAR 57
4.6 Keystore 58
4.7 Options 61
4.8 Security Policy 62
4.9 Help Menu 67

5. CONCLUSTIONS 69

v

Chapter Page

6. FUTURE WORKs 70

REFERENCE 71

APPENDIX 75
Appendix A -Acronyms 75
Appendix B - Glossary 77

VI

Table

LIST OF TABLES

Page

3-1 Nwnber ofpossible keys of various keyspaces 33

3-2 Exhaustive search ofvarious keyspace .33

Vll

Figure

LIST OF FIGURES

Page

2-1 Anatomy of a typical Java application 22

2-2 Relationship between the Java 2 SDK, JCA, and JCE APIs 23

4-1 Keystore Login dialog box 41

4-2 Generate Key Pair dialog box .43

4-3 Delete Key Pair dialog box .44

4-4 Change Key Pair Password dialog box .44

4-5 Delete Certificate dialog box .45

4-6 Import Single Certificate dialog box .46

4-7 Import Certificate Chain dialog box 48

4-8 Export Certificate dialog box 49

4-9 Certificate Signing Request (CRS) dialog box 50

4-10 Print Certificate from Certificate File dialog box 51

4-11 Print Certificate from Keystore dialog box 52

4-12 Sign JAR File dialog box 54

4-13 Verify JAR File dialog box 55

4-14 Sign Regular File dialog box 56

4-15 Verify Regular File dialog box 57

4-16 Create JAR File dialog box 57

4-17 Create Keystore dialog box 58

VI1l

4-18 Change Keystore dialog box 59

4-19 Change Keystore Password dialog box 60

4-20 List All Entries dialog box 61

4-21 Options dialog box 62

4-22 Security Policy dialog box 64

4-23 Policy Tool dialog box 65

4-24 Policy Entry dialog box 66

4-25 Pennissions dialog box 66

4-26 Help Menu dialog box 67

4-27 VeriSign root CA certificates 68

lX

1

1 INTRODUCTION

1.1 Background

Information security is an important piece in human life. Individuals can keep their

own information secure by keeping their mouth shut. Organizations can store their files in

a secure cabinet and only allow trusted employees to gain access to these files. Ever since

the Internet emerged and was made available to the public, information security has

become a huge issue. The Internet is an excellent vehicle to enhance information sharing,

business-to-business transaction. and business-to-consumer transaction. However, the

problem is that by connecting to the Internet, a door is opened wide for information

hackers. The major potential victims are business firms and government agencies since

they have information that could be worth millions of dollars. These attackers can hack

into organizations through the Internet. They can eavesdrop the communication channels

and disguise themselves as system users after they collected enough information. Once

they successfully hack into the host system, they can cause different damage such as

stealing corporate information and selling it to competitors, changing the data on the host

system, or stealing customer information and using it for their own purposes.

Internet security has been a popular topic for years. A lot of research have been done

and much more is underway. There are many commercial products available in the

market. Some of these products include firewalls, which provides securities for

communications at the application level as well as at the IP level; secure socket layer

(SSL), which provides a secure channel for business transactions and prevent man in the

2

middle attack; and encryption and digital signature, which provide authenticatWn.. data

integrity, and data confidentiality.

Java has become one of the most popular programming languages. For the Intemet;it

provides support to aU the three protocols mentioned above. In addition" Java PI'{»'i~

tools and application programming interfaces (APls) for SSL, message digest.

encryption, digital signature, digital certificate, key management, and more. Java is

designed to be secure. Toward this end, a lot of emphasis has been placed on security to

provide virus-free and tamper-free systems [38]. Nonetheless, the main focus ofJava

security is to protect the information on a computer while stm allowing Java program to

run. The Java sandbox model was introduced to address these issues. The idea behind tills

model is that when a program is hosted on a computer, the host computer provides an

environment where the program can be played (run), but it confines the program'5 play

area within certain bounds [24J. Since Java's JDK 1.1, this security model had heen

expanded beyond the sandbox paradigm. Public-key and secret-key encryption, digital

signatures, and digital certificates play important roles on this new model. This is because

they provide authentication of who actually provided the Java class and data integrity of

what originally intended to be sent. They provide end users and system administrators

with the ability to grant specific privileges to individual classes or signers. They also

offer users the ability to verify the integrity of classes. .In addition, these classes can be

used for other applications that require a serious authentication protocol. For example,

instead of using simple passwords, a bank transaction system might require a more secure

authentication protocol such as authentication using public-key encryption or

authentication using digital signatures [37,23, and 24]. By using public-key encryption

3

and digital signatures, the bank can be sure that a transaction request came from the

account holder, and it also can verify that the transaction has not been tampered with or

altered.

Since the first release, Java has embedded a security model in its language. Java 1's

JDK 1.0 default security model contains features that can prevent access from programs

that may hann users' computing environment that may discover private information on

the host computer [24]. Authentication was added to Java 1 JDK 1.1, and encryption was

made available as an extension to Java 2 SDK 1.2.2. The latest version of Java is Java 2

SDK 1.3. It extends SDK 1.2.2's security model by providing more and improved

security tools and security APls.

1.2 Current Problems

The Java security model provides a framework for accessing and developing

cryptographic functionality as well as managing security on the Java platform. It offers

security tools and classes from the Java Security API for encryption, key generation, key

management, digital signature, digital certificate, access control, and more.

Although the Java security model has been improved and provides many nice

features, it is not airtight. A lot of security flaws, weaknesses, and limitations still remain.

First of all, the Java security and cryptography packages reveal many loopholes and

weaknesses on key management, authentication, and pseudo-random number generation.

Second, the security tools provided by Java 2 are not user-friendly. They require the users

to have extensive knowledge of the tools they are using. These tools also lack of a good

help menu; thus they can be very confusing to use. Finally, Since the Java security model

4

is designed primarily for Java applications and applets, the Java security tools can only

sign and verify JAR files. This limits the usage of the Java security tools.

1.3 Objectives

Security loopholes on key management in addition to user interface unfriendliness

and limitation on the Java security tools reveal many concerns. These problems not only

barricade the usage of these tools, but also threaten the safety of the system. The purpose

of this research is to address these problems.

The first objective is to provide a truly random number seeder so that patterns on

pseudo-random numbers are less obvious. The second objective of this project is to

provide a more secure key database key management scheme. This includes

improvements on the authentication and key storage techniques. These enhancements

will help provide the users with better security features. The third objective is to improve

the Java security tools such as keytool,jar,jarsigner, and policytool, in terms of user

interface friendliness, usability, and online help support. In addition, a better security tool

management scheme will be used so that managing keystores. creating JAR files, signing

and verifying files, and managing security policies can be done with great ease. The last

objective is to extend message signing and data integrity verification to all file types, so

that the Java security tools can benefit other applications as well.

5

2. LITERATURE REVIEW

2.1 PKI and Digital Certificate

In the banking industry, checks and certificates are handled through local banks and

central banks. On the Internet, digital certificates are handled through some trusted

organizations called certificate authorities (CA). It forms a network of trusted certificates

and certificate chains.

Digital Certificate

Digital Certificate is a software token that carries infonnation between applications. It

offers a high level of authentication. It contains a user's credentials and public key to

validate his identity [19].

X.S09 Digital Certificate is the most popular standard for public key certificate. It

was developed by the International Standards Organization (ISO) [9]. X.509 v3, the latest

version of X.509 Digital Certificate, is a revision of the CCITT X.509 certificate

standard. X.509 v3, as mentioned by Brieva, "extends the certificate with provisions that

facilitate explicit management of certificates, certification paths, security policies, and the

transfer of trust" [19]. A certificate includes the issuer name, the subject name, and the

subject public key; and the certificate is signed with the issuer's private key. If, for

example, party A has party B's certificate and knows the issuing CA's public key, he can

verify party B's certificate and then use party B's public key to verify party B's signature

on any document. X.509 v3 certificate can hold any number of extensions. Each

extension has a criticality flag. If a certificate contains a critical extension, a certification

6

path verifier that attempts to verify that certificate must be able to process that extension,

or must not verify the certificate at all [19J.

PKI

PKl is a set of standards and technologies for user authentication and secure methods

of exchanging infonnation [7]. Levitt said, "PKI encompasses a broad spectrum of

technologies with dizzying array of possible applications" [5]. It allows businesses to use

digital certificates to confirm identities. Levine explained that digital certificates are used

to "ensure the confidentiality and integrity of data through encryption, control access

through private keys, authenticate documents via digital signatures, and enforce

nonrepudiation of business transactions." PKI secures sessions between the web browser

and the web server. It controls who does what by issuing digital certificates. It relies on

public-key cryptography to protect data that is sent electronically and digital certificates

to validate user identities [6]. Yasin explained that, "Public keys can be distributed and

used by a person to encrypt data such as e-mail. A receiver of a message uses his or her

corresponding private key to decrypt data. By using a digital certificate electronically

signed by a certificate authority, a user can authenticate himself or herself to another

person or entity over the Internet" [7]. GTE CyberTrust PKl system, for example.

requires a client to go through a three-tier process. First, a digital certificate is issued to

an individual to establish a unique online identity. Second, two Ids are issued consisting

of an individual password. Third, users are granted access only to specific functions [6].

There are two major PKl paradigms in the industry: hierarchical and horizontal.

X.500/X.509 PKl is organized hierarchically. It is spanned like a tree with a Root

Certificate Authority (RCA) serving as the root. The trust is centered at the root and is

7

transferred hierarchically to all the users in the network via Certification Authorities

(CA). The public key of the RCA is known to all the users, and it is used to induced

confidence in the public keys of the other entities via some trusted paths in a trusted

graph. X.5001X.509-based PKI is best suited for Business-to-Business (B2B) and

Business-to-Consumer (B2C) environment.

PGP-based PKl, on the other hand, is organized horizontally. It does not specify any

specific structure for a trusted graph. Users are free to decide whom they trust. PGP­

based PKI uses a decentralized system of trusted introducers, which are analogous to CA

in the X.500/x'509-based PKI. PGP-base PKI allows people to sign anyone else's public

key. Unlike the X.500/X.509-base PIG, the PGP-based PKI is just a collection of all the

keys in the user population, all the signatures on those keys, all the individual opinions of

each PGP-based PKI user as to whom they choose as trusted introducers, all the PGP­

base PKI client software, which runs the PGP trust model and performs trusted

calculations for the client user, and all the key servers which disseminate this knowledge.

No one will be fooled by a bogus key signed by an suspicious introducer in the PGP­

based PKI model because one can tell if a key is certified by an introducer who he trust

by looking at the introducer's signatures [32].

2.2 Message Digest Algorithm and Digital Signature

The most common way to establish proof of identity is through password-based

authentication as discussed in the authentication section. A more secure avenue to

establish proof of identify is through message digest and digital signature. Data

confidentiality, data integrity, and nonrepudiation can be accomplished by using these

two algorithms.

8

A one-way hash function, also called a message integrity check, a message digest

function, a message digest algorithm, or a message digest, takes an arbitrary length

plaintext as input and outputs a relatively small fixed-length string. This string is called a

hash value or a cryptographic check, which serves as a unique fingerprint of the message.

Each unique message fed to a one-way hash function is guaranteed to produce a unique

hash value. Given this hash value, it is virtually impossible to generate the original

plaintext; thus it is called a one-way hash function [28].

One-way hash functions can be used to provide a stronger authentication scheme.

Instead of storing passwords, host computers can store the hash values of the passwords.

When a user sends the host his or her password, the host computer perfonns a one-way

hash function on the password. Then the host compares the result of the one-way hash

function to the value it previously stored. Since the host computer only stores the hash

value to the user passwords, the threat of someone breaking into the host computer and

stealing the password list is reduced [37]. MD2, MD4, MD5, HAVAL, and RIPE-MD are

example of the message digest algorithms.

MD5

The MD5 message digest algorithm (one-way hash function), developed by Ronal

Rivest ofRSA Data Security, Inc. (RSADSI) in 1991, is an updated version ofMD4 [22].

A variable length message can be hashed to produce a fixed length, say 128-bit, message

digest value. It is used to protect web servers with an RSA MD5 hash algorithm method

[10]. The hash value calculation is optimized for 32-bit registers. Both MD4 and MD5

require padding to a multiple of 512 bits. The padding always includes a 64-bit value that

indicates the length of the unpadded message [28]. It is primarily used to produce

9

fingerprints of sets ofdata. Message digest authentication allows site manager to be more

selective in their use of encryption and enable them to limit SSL session to data that truly

needs to be protected. Unfortunately, it doesn't encrypt the traffic, and it merely hides

passwords [10].

SHA

Secure Hash Algorithm (SHA), also called SHA-l, was d.eveloped by the U.S.

National Institute of Standards and Technology (NlST). This algorithm is based on MD4.

SHA produces a 160-bit message digest value, thus increases its protection ability [22].

Digital Signature

Digital signature is a special encrypted code attached to an electronic message. It lets

the recipients know that the person sending the message really is who he claims to be. A

digital signature binds a person's identity into an asymmetrically encrypted private key.

This private key is issued to only one bearer and is used to digitally sign and encrypt a

message. Someone with a valid public key can verify the identity of the message sender

[8]. Digital signature works by utilizing a message digest algorithm, such as MD5, to

calculate the message's hash value. The hash value is then signed by the sender's private

key, and each digital signature is unique to the message it signs. Digital signatures can

also provide integrity verification of a message because a signed message that has been

altered will fail the recipient's signature verification [28]. Digital signature systems can

be established within a PKl, and can be maintained by a certificate authority [8]. DSA,

GOST, and ESIGN are examples of the public-key digital signature algorithms.

DSA

10

Digital Signature Algorithm (DSA) was developed by National Security Agency

(NSA). It was released as a standard by the NIST. It is a combination ofDSA and SHA-l

algorithms. Its key size varies from 512 to 1024 bits with a 64-bit increment [22].

2.3 Authentication

Authentication means establishing proof of identify. Usually, this involves one or a

combination of items that a person knows, something that this person has, or something

that this person is [28]. Traditionally, identities are established through passwords.

Different password-based authentication protocols are discussed here. However, a more

secure way is to use digital signature. This is discussed in the Message Digest and Digital

Signature section.

Static Password in Cleartext

The most popular authentication technique employed on the Internet is based on static

passwords. In this scheme, a user is given a user ill and an associated password. The host

computer uses both to identify the users' identity. The users' IDs and passwords are sent

to the host as a cleartext. Some host systems store their users' identity information in a

file or in a database as cleartext. A more secure way is to store the password through a

one-way hash algorithm. When a user enters his password during login, it is "crunched"

through the one-way hash algorithm. If the result and the value stored in the password

database are identical, the user must have entered the valid password. Unfortunately, this

authentication scheme has several weaknesses: attackers who steal the password database

can perform a dictionary attack to find a list of poorly chosen passwords. Passwords that

are sent as a cleartext over a network, especially travel over the Internet, can be revealed

right away after they have been eavesdropped [28].

11

Challenge-Response Static Password with One-Way Hash Algorithm

A challenge-response static passwords scheme is a much safer authentication protocol

than the static passwords in cleartext authentication protocol. This is because a host can

verify a user's identity without requiring him or her to send the password over the

network. When a login request is received, the host issues a challenge string as a

response. Upon receiving the challenge string, the user's client software concatenates the

password he entered to the challenge string and computes a one-way hash, using MD5 for

example, of the result. The output of the hash is then forward to the host, which

independently performs the same calculation using the user's cleartext password. If the

host's hash value matches the host's hash value, then the password he or she entered was

correct. However, the problem is that the host needs to know the user's password in

advance. In addition, the password container is still vulnerable to dictionary attack [28).

One-Time Password

Unlike static passwords, which are subject to network eavesdropping and dictionary

attack, one-time password (OTP) is, in theory, immune to these attacks. There are three

popular OTP mechanisms: Bellcore's SlKey, handheld authenticator, and smart card [28].

S/Key

SlKey OPT system is a software that was first conceived by Leslie Lamport, and later

implemented by Phil Karn. It provides secure password-based authentication over

insecure networks. It is generated by combining a seed with a secret password from the

user and repeatedly applying a hash algorithm, such as M05, to produce a sequence of

passwords algorithmically, each of which can be used only one time [18). An SlKey

password can be calculated by the function p = h(k) where k is the secret key, h is the

12

hash function, and p is the result from the hash function. To allow a user to login n times,

say n = 3, SlKey first stores this user's secret password. Then it applies the hash

algorithm three times (n=3) to the secret password. The result h(h(h(k») =h"3 (k) is

stored in the SlKey password database. When this user logs in to the system the first time,

he or she is prompted for his one-time password h2 (k), which is transmitted in cleartext.

Upon receipt, the SlKey system hash the value once to calculate h"3 (k) = h(h"2 (k». If

this value matches the value that is stored in th.e password container, the user is

authenticated. The next time this user logs in, he or she will be authenticated by

supplying h(k). Unfortunately, the SlKey password database, which contains hashed

secret password, is not without loopholes: a poorly chosen secret password is still subject

to dictionary attack [28].

Handheld Authenticator

A handheld authenticator, also know as a handheld password or a token, is a small

handheld device that generates OPTs. There are four types of the handheld authenticators

and they all require that both the host and the authenticator know the common algorithm

for calculating the OTPs in advance. These four authenticators are: asynchronous,

synchronous, PIN (Personal Identification Number)/asynchronous, and PIN/synchronous.

For the PIN/asynchronous scheme and the PIN/synchronous scheme, a PIN is required

before generating a valid password, and the PIN is used to authenticate the user to the

handheld authenticator but not the host. Handheld authenticators can disable themselves

after many consecutive incorrect attempts in order to protect against the PINs they held

[28].

Smart Card

13

A smart card is similar to a handheld authenticator in purpose. However, it is more

sophisticated, more intelligent, and more expensive than a handheld authenticator. As

described by Hughes, it contains "a CPU, miniature operating system, clock, some

program ROM, scratchpad RAM for cryptographic calculations, and nonvolatile RAM or

EEPROM (electronically erasable programmable read-only memory) for key storage"

[28]. Smart cards compute OTPs in response to a challenge from a host. They

communicate directly with the challenging entity through a smart card reader. After a

user enters his or her PIN, the smart card reader processes the challenge and enables

authentication to take place without further human intervention.

2.3 Cryptographic Algorithm

Cryptography is the science of enabling secure communication. A cryptographic

algorithm, also called a cipher, is a mathematical function for encryption and decryption.

A plaintext, also called a cleartext, is an unencrypted message. A ciphertext is an

encrypted message. A cryptosystem is a cipher plus all possible plaintexts, ciphertexts,

and keys. Some of the most popular cryptographic algorithms are discussed in this

section.

Symmetric Algorithm

Symmetric algorithms, also called secret-key algorithms, conventional algorithms,

single-key algorithms, or one-key algorithms, are algorithms where the encryption key

can be calculated from the decryption key and vice versa [37]. A symmetric algorithm

uses the same key for both encryption and decryption. A plaintext message is encrypted

through a secret key and symmetric encryption algorithm to produce a ciphertext. To

decrypt this ciphertext, the same key is used together with the corresponding symmetric

14

decryption algorithm to generate the original plaintext. Note that the encryption and

decryption algorithms must belong to the same cryptosystem. Before secure

communication can be established, symmetric algorithms require that the sender and

receiver agree on a secret key [28]. The security of these algorithms relies on the key;

therefore, the key must remain secret. Encryption is denoted by Ek (M) = C and

decryption is denoted by Dk (C) =M where M is the plaintext message, C is the

ciphertext, E is the encryption algorithm, D is the decryption algorithm, and k is the secret

key [37]. IDEA, RC2, RC4, DES, and Blowfish are examples of the symmetric

algorithms.

Public-key Algorithm

Public-key algorithms, also called asymmetric algorithms, are designed so that

encryption and decryption rely on different keys, and the decryption key cannot be

calculated from the encryption key [37]. However, this is an overstatement; because

given enough time and resources, a decryption key can be cracked in a feasible time

period if its key size is not too large. The encryption key is called the public key and can

be disclosed to the public. The decryption key is called the private key and must be kept

in secret. However, sometimes a plaintext message can be encrypted by a private key and

the resulting ciphertext can be decrypted by a public key. Digital signature is a typical

example for this reverse role of the public and private keys. Encryption using public key

puk is denoted by Epuk (M) = C and decryption using public key prk is denoted by Dprk (C)

=M where M is the plaintext message, C is the ciphertext, E is the encryption algorithm,

and D is the decryption algorithm. Diffie-Hellman, RSA, EIGAMAL, and Elliptic Curve

are examples of the public-key algorithms.

15

Stream and Block Cipher

Symmetric ciphers can be divided into two categories: stream cipher and block

cipher. A Stream cipher operates on one bit, byte, or word at a time, where as a block

cipher acts on groups of them. A Block cipher has four operation modes: Electronic

Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), and Output

Feedback (OFB). ECB is the most basic and least secure mode, such that a given block of

plaintext, any key from the keyspace would always encrypt to the same block of

ciphertext. CBC is similar to ECB, but it encrypts blocks using the plaintext, the key, and

a third input derived from a XOR operation between the ciphertext of the previous block

and the plaintext the current block; thus ciphertext blocks are chained and patterns are

hidden. CFB is similar to CBC; however, the plaintext is encrypted in segments that are

smaller than the actual block size, and chaining occurs after encryption. OFB is similar to

CFB; however, output from the preceding encryption is used instead of feeding back the

preceding ciphertext r28l

DES

Digital Encryption Standard (DES) is a symmetric cipher developed by ffiM. It is

first published in 1975, and adopted by the U.S. government as the federal standard for

the encryption of conunercial and "sensitive-yet-unclassified" government data in 1977.

DES is a block cipher and can be used in any of the four modes (EBC, CDC, CFB, and

OFB). It is designed primarily for hardware implementation. It relies on a fixed-length

56-bit key that encrypts data in 64-bit blocks. The key consumes 64 bits as well, and it

uses one bit in byte for parity, which is ignored by DES. Hughes [28J defined the DES

algorithm in the following:

16

For encryption, a block ofplaintext is first permuted, meaning that each bit
swaps places with another bit. Then the 64-bit block is divided into left and right
halves, or 32-bit subblocks. Next 16 rounds ofcalculations are applied to each
half, with input from (unique per-round) 48-bit subkeys derived from the 56-bit
key. Between rounds, the output from the left halfbecomes the input to the right
half, and vice versa. After completing all rounds, the two subblocks are rejoined,
and the result permuted to invert the initial permutation. A 64-bit ciphertext block
emerges. Decryption is achieved through exactly the same sequence ofsteps, but
with the order ofthe subkeys simply reversed.

Unfortunately its weakness is its 56-bit key size from today's point ofview. This

makes it vulnerable to key search attacks [22].

Triple DES (TDES), also called DESede, is a more secure variation on the DES

cipher. There are several variants on TDES. One variant uses two keys, doubling the

effective key length to 112 bits; thus increase the keyspace by a factor of 21\56. Another

variant uses three distinct 56-bit keys, tripling the key length to 168-bit, yielding an

increase in the keyspace by a factor of21\112 [28]. The three-key IDES encryption

process, for instance, works as foHows: first, encrypt a plaintext using the first key;

second. decrypt the result of the first step by using the second key; third, encrypt the

result ofthe second step by using the third key; finally, generate the ciphertext. For its

decryption process: first, decrypt the ciphertext using the third key; second, encrypt the

result of step one using the second key; third, decrypt the result of step two with the first

key; finally, produce the original plaintext[22].

RSA

RSA, an acronym for the last names for its three creators: Ron Rivest, Adi Sharnir,

and Leonard Adleman, is a pubic key cipher. It is the first public key cryptosystem to

offer both encryption and digital signature functionalities. RSA assumes that it is

virtually impossible to factor the product of two very large numbers [28]. It mixes a

17

number into a message, and then chums it in such a way that only the number's prime

factors can undo the message. This number is then used to make a public key [19]. Public

and private keys, or simply called key pair, are large numbers that are related

mathematically and are generated by the RSA algorithm. Hughes [28] provided the

following definition on the RSA algorithm:

To start. two large prime numbers, p and q, are selected and multiplied giving
the product (or modulus) n. Next an encryption key e is chosen to be less than n
and to have no common factors with the number (p-l)x(q-l). From e the
decryption key d is then derived such that exd = lx(mod(p-l)x(q-l)) ... The public
key is the combination ofthe encryption key e and the modulus n. and the private
key is d.

In the public key cryptosystem if, for example, party A wants to receive a secure

message from party B, he or she will create a key pair first and openly send the public

key to party B. Party B then encrypts her message with the public key and send it back to

party A. FinaIly, party A decrypts the ciphertext with the private key. RSA guarantees

that only the private key can decrypt the ciphertext encrypted by the public key that are

generated by the same key pair.

To make sure that the public key sent from the other end comes from the identity who

claims who he or she is, one may require the public key be signed by a digital signature,

which is another service that is provided by RSA. RSA uses a one-way hash function to

generate a hash value, which can be encrypted in the sender's private key, producing a

digital signature. The recipient can decrypt the signature using the sender's public key to

reveal the sender's hash value, then calculate its own using the message that was

received. Ifboth, the sender's and the receiver's hash values are identical, the sender is

authenticated since the hash value must have been encrypted in the sender's private key.

It also guarantees that the message that arrives has not been undisturbed. Unfortunately,

18

due to the complicated mathematical calculation, RSA runs a lot slower than symmetric

ciphers like IDEA (around 1000 times slower). As a consequence, it is primarily used to

complement symmetric cryptosystems when performing bulk encryption. For example, a

sender can use DES cipher to encrypt a large plaintext message, with a randomly chosen

key, and then use RSA cipher to encrypt that random key with the receiver's public key.

After both, the key and the ciphertext, are received, the receiver can first decrypt the key

using RSA, and then decrypt the ciphertext using DES [28].

RC2 and RC4

RC stands for either Ron's Code or Rivest's Code. RC2 is a block cipher and RC4 is

a stream cipher. Both of them were developed by Ron Rivest. Both ciphers support

variable-length keys. RC2 was designed to replace DES and it is two or three times faster

than DES. It can operate in any of the four block modes and can perfonn triple

encryption just like what TDES does. RC4 also runs faster than DES and was reverse-

engineered sometime in 1994. Unfortunately, neither algorithm has gained popularity in

the cryptographic community [28].

IDEA

International Data Encryption Algorithm (IDEA) was invented by Xuejia Lai and

James Massey. It was originally named Improved Proposed Encryption Standard (IPES)

in 1991. IDEA is a 64-bit block cipher with a 128-bit key. It can operate on all of the four

block cipher modes. Hughes [28] has the following definition on IDEA:

IDEA encryption begins by dividing a 64-bit plaintext block into four 16-bit
subblocks. Each subblock is subjected to a number ofcomputational rounds,
involving 52 different subkeys derived from the 128-bit key. There are eight
rounds. The calculations in each are fairly simple, limited to XOR, modular
addition, and modular multiplication ... Between rounds. the second and third
subblocks swap positions.. After the final round, the four subblocks are

19

concatenated to produce a 64-bit block ofciphertext. Decryption involves exactly
the same steps in the same order. but uses subkeys that are derived differently.

DH

Diffie-Hellman (DH), developed by Whitfield Diffie and Martin Hellman, and it was

published in 1976. It is the first algorithm to introduce in the public key cryptography.

DH solves the key management problem, which is suffered inherently from symmetric

key ciphers such as DES, IDEA, and RC4. It allows both parties, the receiver and the

sender, to derive a key independently without exchanging any secret information [28].

Thus, snoopers will not know the value of the secret key, even if they are able to listen to

the entire transmission between the two parties [22]. The process begins with, for

example, party A and party B making consent on two large numbers (150 digits or more)

with mathematical properties relative to each other. Then party A and party B

independently select their own large random numbers that they keep. Next, both

independently enter their own secret numbers, along with the two-shared numbers, to a

function involving modular exponentiation. Both parties openly exchange their results,

and each performs a second similar calculation with the each other's numbers. The results

are the public keys, which are identical for both parties [28].

2.4 Java Security Model

2.4.1 Overview

The Java security model was designed to offer three major security measures. The

first one is the language design features such as strong type conversion, array bound

checking, pointer arithmetic elimination, and strong memory protection. The second

feature offers a sandbox mechanism to control program access. The final feature offers

encryption and digital signatures for code owners or administrators to attach their

20

certificates to Java classes; thus providing the end users and the hosts authentication and

data integrity [23]. The Java security is comprised of the following:

1. The class file verifier

The class file verifier ensures proper formatting of the program code. It contains a

bytecode verifier, which verifies that the bytecode does not violate the type safety

restrictions of the Java Virtual Machine (NM), that the internal stacks cannot overflow

or underflow, and that the bytecode instructions will have correctly typed parameters

[23].

2. Class loader

The class loader decides when, where, and how the codes can be loaded by the Java

program. It ensures that system-level components within the run-time environment are

not replaced [23]. It is responsible for loading classes that are found on the

CLASSPATH as well as the classes that cannot be found on the CLASSPATH [24].

3. Security manager

The security manager is the primary interface between the Java core API and the

operating system. It has the responsibility for preventing or allowing run-time access to

all system resources [24]. As listed by Postoia [23], these resources include "file I/O,

network I/O, create a new class loader, manipulate threads and thread groups, start

processes on the underlying operating system, terminate the JVM, load non-java

libraries (native code) into the JVM, perform certain types ofwindowing system

operations and load certain types of classes into the JVM." Starting from Java 2,

policies to be enforced by the security manage can be specified in a file called

java.policy; thus determining security policies becomes more flexible.

21

4. The access controller

The access controller enforces the security policies base on the entries on the security

policy file. It also provides a much simpler method of granting "fine-grained" and

specific pennission to particular classes [24]. The access controller gives a simple

procedure for giving specific permissions to specific code. To enforce security, the Java

API calls the methods of the security manager; but behind the scene, most of these

methods call the access controller [23].

5. The security and cryptography packages

The security and cryptography packages form the basis for authenticating and integrity

checking for signed Java classes. It is composed of a collection of general-purpose

classes for cryptographic functions collectively known as the Java Cryptographic

Architecture (lCA), a collection of advance classes for advance cryptographic functions

collectively known as the Java Cryptographic Extension (JCE) [23], and a collection of

classes for access control. These three groups of classes provide APIs to form the Java

Security API. The Java Security API is the gist ofthis paper. More details about the

Java Security API will be discussed later in this section.

6. The key database

The key database is actually part of the security and cryptography packages. It used to

store key entries and certificate entries. A key entry contains a private key and the

associated certificate chain. A certificate entry contains a single trusted certificate.

These key and certificate entries can be used by the security manager and access

controller to verify the digital signature that accompanies a signed class [24]. Java 2

provides an API for the key database, called keystore; thus key database and keystore

22

are referring to the same thing. Note that this is an engine class. Java 2 also ships a

concrete implementation ofthe keystore. It has the type JKS and the provider SUN.

Figure 2-1 shows the anatomy of a typical Java application. Note that the class file

verifier, the class loader, the security manager, and the access controller are parts of the

Java Run-time Environment (JRE).

Figure 2-1. Anatomy of a typical Java application

The set of core classes in Java 2 can be divided into the set of security-related core

classes and the set of other core classes. The security-related core classes can be further

subdivided as access control and permission related core classes and cryptography-related

core classes. The Java Security API is comprised with the classes from the union of circle

I and circle 2 as displayed in figure 2-2. It includes all the classes related to access

control and permission and all the classes related to general and advance cryptographic

classes. JeA is a subset of the Java security model. It contains only the general

-
23

cryptographic classes. JCE is an extension ofJeA. It contains the rest of the

cryptography-related classes, which are more advanced and are subject to export

restrictions [23]. Figure 2-2 shows the relationship between the APls in Java 2.

I. Jaw 2 SDK APIs
2. Java 2 SDK security-related APIs
3. Java 2 Cryptography-reiated APls

Figure 2-2. Relationship between the Java 2 SDK, lCA, and JCE APls

2.4.2 JCA, JCE, and Access Control

Java Cryptography Architecture (lCE) is comprised with a set of general-purpose

cryptography-related classes to perform operations such as key generation, message

digest calculation, and digital signature creation. These classes provide public methods as

interfaces for programmers known as APls. leA is a structure for accessing and

developing functions on cryptography for the Java platform. It was designed to provide

implementation independence and interoperability and algorithm independence and

extensibility. Implementation independence is achieved by using the "provider-based

architecture." As described by Postoia. "the term cryptographic service provider

(provider for short) refers to a package or a set of packages that supply a concrete

implementation of a subset of the cryptography aspects of the Java security API" [23].

These packages must implement at least one cryptography service such as public-key

algorithms and digital signature algorithms. Implementation interoperability means, as

-

-

24

defined by Postoia, "various implementations can work with each other, use each other's

keys, or verify each other's signature" [23]. Base on this definition, digital signature

generated by one provider can be verified by another, and a key generated by one

provider can be usable by another using the same algorithm. Also, Postoia [23] explained

that:

Algorithm independence is achieved by defining types ofcryptographic
services, and defining classes that provide the functionality ofthese cryptographic
services. These classes are called engine classes. and examples are the
MessageDigest, Signature. and KeyFactory classes.

Algorithm extensibility means that new algorithms that fit in one ofthe
supported engine classes can easily be added.

Java Cryptography Extension (JCE) is an extension ofthe JCA. It is comprised with a

set of advance cryptography-related classes such as encryption, key exchange, and

message authentication code (MAC). JCE relies on the same architecture as lCA does.

This means that it also offers implementation independence, implementation

interoperability, algorithm independence, and algorithm extensibility.

The Java Security API contains classes that only concern with access control, security

policy, and pennissions. Although they are not related to cryptography, they playa major

role in the Java Security Model.

2.4.3 Java Security Tools

Java 2 provides four security tools: keytool,jar,jarsigner, and policytool.

The keytool tool is a command line utility. It provides an administrative interface to

manage keys and certificates in a keystore. Through the keytool administrative interface,

users can perform operations on the keysotre. These operations include: create key pairs

and self-signed certificates, export certificates to be sent to others along with the signed

message, issue certificate signing requests (CSRs) to be sent to CAs for signing, import

-

25

certificates to verify signatures, install certificate chains from certificate replies, create

new keystores, change passwords to the keystores and the key pairs, and remove key

pairs and certificates [23].

Thejar tool is another command line utility. It is used to compress and pack files into

JAR files. In addition, jar can also be used to extract files from JAR files. The

compression is done based on ZIP and ZLIB compression format. During the archive

process, jar can create a special text file, called JAR manifest or simply manifest, which

contains descriptions of each file archived in the JAR file [23J.

Thejarsigner tool is another command line utility. It is used to sign JAR files and to

verify signatures and the integrity of signed JAR files [23]. Behind the scene, jarsigner

uses the entries in a keystore to look up information about a particular identity and uses

that information either to sign or to verify a JAR file [24].

The policytool is a GUI-based utility. It is used to create and manage security

policies, which are stored in a policy file. These security policies are used to grant

permission to various Java codes (i.e. class files and JAR files) depending upon the code

base and/or the digital signature applied to the code [23J. For more details, see User's

~enu in a later chapter.

2.4.4 Pseudo-random Number Generator

Java 2 contains two pseudo-random number generator (PRNG) classes: Random and

SecureRandom. A Random object can be initialized with a seed that represents the

starting point for the random number sequence. A program that uses the same seed value

gets the same sequence of numbers from the generator. In addition, if no seed value is

provided, the Random object uses the value of the system clock as the seed value. As

-

-

26

Knudsen pointed out, "This is a predictable seed... If an attacker knows when you create

the random number, even approximately, he or she can guess at likely values of the

random number seed" [22]. A SecureRandom object is cryptographically strong; thus it is

more secure. The SecureRandom object uses a digest algorithm to digest the seed value.

Then, the resulting digested value is stored as part of the SecureRandom object's internal

state. When a random number is requested, the SecureRandom object updates the

message digest with the internal state and the internal counter. The SecureRandom class

contains a seed generator, which is used to generate seed values for new SecureRandom

objects. The seed generator uses the timing of the thread to seed itself [22].

-

-

27

3. ENHANCED JAVA SECURITY TOOLS (EJST)

Recall from the Introduction, this paper has four objectives. First, provide a truly

random seeder. Second, provide a more secure key management scheme through stronger

authentication techniques and a better key storage algorithm. Third, provide

enhancements on the existing Java security tools. Fourth, extend message signing and

data integrity verification to all file types.

3.1 Problem and Solution Overview

3.1.1 Pseudo-Random Numbers

Currently, Java 2 offers both the standard pseudo-random number generator (PRNG),

which is represented by the Random class, and a more secure version of the standard

PRNG called SecureRandom, which is represented by the SecureRandom class.

Numbers that are generated by the Random class can be compromised easily because

the seed value is not generated at random as discussed earlier. Numbers that are

generated by the SecureRandom class are more secure because seed values are generated

quite randomly. Unfortunately, the SecureRandom class has not been tested thoroughly.

As Knudsen pointed out, "It may have weaknesses that cryptanalysts could exploit" [22].

In addition, both the Random class and SecureRandom class calculate their seed values

through algorithms. Since most computers are deterministic machines, seed values that

are generated from these machines are not truly random. As a consequence, random

numbers generated from these pseudo-random number generators may reveal patterns.

Attackers can utilize these patterns to compromise security systems that usc these

-

28

generators. On the other hand, human actions can be truly random; therefore, truly

random seed values can be generated through human actions.

Human actions can be recorded through input devices such as: keyboard, mouse,

scanner, and microphone. Here, only the keyboard and the mouse are utilized.

Human actions can be tracked through keyboard events such as the timing between

successive keystrokes and the keystroke that got struck. Using the internal representation

of the keys that got struck as the source is not very secure because it can be compromised

if someone is watching behind the user's shoulder. The timing between successive

keystrokes is a better choice because even a very consistent typist will probably not be

able to type with millisecond precision. This means that the seed values generated from

this kind of seeder can be truly random. This technique has been used for years in Pretty

Good Privacy (PGP) [22].

Human actions also can be tracked through mouse events such as mouse movements

and the timing between successive mouse clicks. The timing between successive mouse

clicks is not very a wise choice because there are only a few buttons on the mouse. On

the other hand, mouse movements are more random. This is because it is probably

impossible to repeat exactly where the mouse has traveled. This means that the seed

value generated from this kind of seeder can be truly random.

In addition to the two human action seeders mentioned above, truly random seeds can

be generated from randomly chosen bits from a file. These three seeders are implemented

into a suite of seeders, called the Truly Random Seeders (TRS).

3.1.2 Key Management

-
29

Java's key database, also called keystore, is used to store key entries and certificate

entries. The private key in the key entry should be kept secret because compromising the

private key will compromise the cipher text generated by that public-key algorithm.

Unfortunately this keystore implementation provided by Sun Microsystems has a poor

key management. One of the loopholes is the weak authentication scheme it uses.

Currently, access to the keystore and the key entries require passwords. However, there is

no restriction on the passwords used. As a result, the keystore and its key entries are

subj ect to dictionary attack. A password guesser such as crack in Unix can be used to

perfonn dictionary attacks.

Key management is the hardest part in cryptography. Cryptanalysts often attack both

public-key and secret-key cryptosystems through key management [37]. Even the best

key management system is vulnerable if the passwords to the key database or key entries

are badly chosen. Here, we have two approaches to avoid badly chosen passwords. They

provide stronger authentications to the keystore key management.

One can mandate that users enter passwords containing punctuation or numeric

characters that are found in the American Standard Code for information Interchange

(ASCII) character sets. This approach works because a typical dictionary attack uses keys

from a file, which contains words that can be found in a dictionary, to run against the

stolen password file. Dictionary attack would not work if the passwords contain

punctuation or numeric characters.

Alternatively, instead of asking the user to provide a password for each key entry,

Schneier [37] suggested a key management scheme called random keys. A random key is

created using a pseudo-random number generator, which generates a random string [37].

..

30

Using this technique, random passwords can be generated the same way random keys are

generated. The Truly Random Seeders (TRS) and the SecureRandom random number

generator can be used to generate random passwords. All passwords will be created as an

eight-character long string as recommended by Knudsen [22]. Table 3-1 gives the

number of possible keys with different constraints on the input strings, and table 3-2

gives the time required for an exhaustive search through all of the keys given a million

attempts per second. Here the printable character sets, without the space character, will be

used to represent the random passwords. An eight-character long string contains 948 or

approximately 6.1 *1015 possibilities. This not only is sufficient to defend against a

dictionary attack, but also good enough to protect against an exhaustive key search

attack. also called brute force attack. However, random keys with shorter key space are

vulnerable, and random keys with long key space are hard to remember; thus eight­

character long passwords should be adequate. The Key-Certificate-Policy Manager

(KCPM), which will be discussed later in this chapter, utilizes the random password

authentication technique to provide better authentication to the keystore and key entries.

Key storage is another problem in the keystore key management scheme. Currently,

the keystore implementation provided by Sun Microsystems uses an internal algorithm to

encrypt private keys. It uses the KeyProtector class to protect the private key in a key

entry. This KeyProtector classes uses the password ofthe key entry and concatenates it

with a salt. After a series of hashing, XOR, and concatenation operations, the key is

claimed to be protected. Unfortunately, the salt is generated randomly and cannot be

derived from the password. This salt is stored in the keystore file, together with the key,

-
31

unprotected. If an attacker knows where the salt is stored, the private key can be easily

compromised.

In fact, as Oaks [24] pointed out, "The strength of this encryption is limited; because

it is part of the standard Sun distribution... 'Weak:' is a relative term in this context; it still

require some effort for the encryption to be broken, but it can be done." Furthermore, as

Knudsen [22] explained, a private key is encrypted by scrambling the "passphrase",

which is used as the password to access the private key, and combining it with the private

key.

This research uses a more secure password-based encryption algorithm, called

PBEWithMD5AndDES. This algorithm is implemented by Sun Microsystems, and it

comes with the Java Cryptography Extension (lCE). The PBEWithMD5AndDES

algorithm provides password-based encryption and decryption base on the RSA

Laboratories PKCS #5 v1.5: Password-Based Cryptography Standard. This algorithm

uses DES as the symmetric cipher, cipher block chaining (CBC) mode as the cipher

mode, PKCSPadding as the padding scheme, and MD5 as the hash function.

For encryption, the PBEWithMD5AndDES algorithm uses the password of the

private key to generate a secret key. Then this secrete key is used with the DES

symmetric cipher to encrypt the private key before it is saved to the keystore. Decryption

is done in the same fashion. Through the PBEWithMD5AndDES algorithm, private keys

can be securely protected. This feature is implemented in the Secure Keystore, which will

be discussed later in this chapter. The Secure Keystore is an alternation of Sun's keystore

implementation. It embeds the PBEWithMD5AndDES password-based algorithm to

protect the private keys.

-

-

--

32

3.1.3 Java Security Tools

Java 2 provides four security tools: keytool,jar,jarsigner, and policytool. The keytool

is a command line utility. It is used for keystore management. Thejar tool is another

command line utility. It is used to archive Java class files. Thejarsigner tool is also a

command line utility. It is used to sign and verify JAR files. The policy/ool is a Gill­

based utility. It is used to grant permissions to Java applications and applets.

Although keytool,jar, andjarsigner provide many different kinds of features, their

user interfaces are not user-friendly. Many of their operations have long commands. For

example, generating a key pair in keytool may require up to 22 parameters. Users need to

remember the spelling of the keyword and the order of the arguments. These

inconveniences make the command line utilities, mentioned above, difficult to use. In

addition, all of the four security tools lack a good help menu. The help menus provided

by these tools are very brief. The content on these help menus only provide descriptions

on the syntax of the tools. They do not explain what the operations are, what they do, and

what they are used for. Furthennore, the Java security tools, namely jarsigner, can sign

and verify JAR files only. This limits the usage ofthe Java security tools.

This research provides graphical user interfaces to replace the command line user

interfaces found in keytool,jar,jarsigner. These Gills are user-friendlier. They can

eliminate problems that are encountered on complex operations. They can also enhance

the usability on these tools. In addition, this research extends message signing and data

integrity verification to all file types, so that the Java security tools can benefit other

applications as well.

•

-

--

33

Furthermore, this research provides a Gill-based on line help menu. This help menu

is designed as web pages on a web browser. Users can browse the menu through links.

This help menu also provides detail descriptions about each operation. This aid the users

to get a better understanding of each process.

The Gill-based security tools are organized into an application. When this application

runs, users can perform all the operations that can be found in the old security tools. This

application is like a console, and it is called the Key-Certificate-Policy Manager

(KCPM). The KCPM manages all the operations provided by the security tools and the

underlying keystore as a whole; thus it provides easier user access and better

management to the keystore as well as the security tools.

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte
Lowercase letters (26): 460,000 1.2 E7 3.1 E8 8.0 E9 2.1 Ell
Lowercase letters and digits 1,700,00 6.0E7 2.2 E9 7.8 El 0 2.8 E12
(36): 0
Alphanumeric characters (62): 1.5 E7 9.2 E8 5.7 ElO 3.5 El2 2.2 E14
Printable characters (95): 8.1 E7 7.7 E9 7.4 Ell 7.0 E13 6.6 E15
ASCII characters (128): 2.7 E8 3.4EIO 4.4 El2 5.6 El4 7.2 E16
8-bit ASCn characters (256): 4.3 E9 1.1El2 2.8 E14 7.2 El6 1.8 El9

Table 3-1. Number of possible keys ofvanous keyspaces

4-Byte 5-Byte 6-Byte 7-Byte 8-Byte
Lowercase letters (26): .5s 12 s 5m 2.2 h 2.4 d
Lowercase letters and digits 1.7 s 1m 36m 22 h 33 d
(36):
Alphanumeric characters (62): 15 s 15 m 16 h 41 d 6.9 Y
Printable characters (95): 1.4 m 2.1 h 8.5 d 2.2 y 210 y
ASCn characters (128): 4.5m 9.5 h 51 d 18 Y 2300 Y
8-bit ASCII characters (256): 1.2 h 13d 8.9 y 2300 Y 580,000 Y
Table 3-2. Exhaustive search of various keyspaces with one million attempts per second

-

--

34

3.2 EJST Architecture, Design, Implementation, Installation

The Enhanced Java Security Tools (EJST) is a tool suite. It provides three utilities:

Truly Random Seeder (TRS), Secure Keystore, and Key-Certificate-Policy Manager

(KCPM). The TRS provides truly random seeds to any pseudo-random number generator

to reduce patterns. The Secure Keystore utilizes the PBEWithMD5AndDES password­

based encryption algorithm to provide a more secure key storage. KCPM is designed to

replace the user interfaces found in the command line security tools. It provides aVIs

that are user-friendly. It contains an online help menu to aid the users. It embeds the

password restriction and random password techniques to provide stronger authentication

for the underlying keystore. Furthermore, It extends data integrity checking to all file

types.

3.2.1 Truly Random Seeders (TRS)

The Truly Random Seeders (TRS) is used to generate some truly random seed values.

These values can be used to seed the pseudo-random number generators. Since the seed

produced by the TRS can be truly random, random numbers that are generated by the

pseudo-random number generators that use the seeds from TRS may produce less

obvious patterns or at least makes these numbers less predictable [22].

The Truly Random Seeder is a suite of random number seeders. It contains the

Keyboard Seeder, the Mouse Seeder, and the File Seeder.

The Keyboard Seeder utilizes the keyboard timing. It calculates the seed by

measuring the time between successive keystores using a fast timer with a resolution of

one millisecond. The currentTimeMillis method from the langSystem class has a

resolution of 10 milliseconds. This is insufficient. As a result, the Counter class is

-

--

35

implemented to provide the needed resolution. It creates a thread for itself and increments

the counter data member once every millisecond.

The Keyboard Seeder has a byte array data member. It is used to represent the value

ofthe seed. The length of this byte array is defined the same as the length of the seed.

The timing between keystrokes is assigned to the next unassigned byte on the byte array.

The Keyboarder Seeder rejects repeating keys because the timing of repeating keys may

be predictable [22].

To use the Keyboard Seeder, the user needs to create a KeyboardSeeder object and

specify the number of bytes he wants. For example, to generate an eight byte seed, the

user need to hit the keystrokes on the keyboard, without consecutively repeating keys,

eight times. Then, by calling the getSeed method, the seed is returned.

The Mouse Seeder utilizes mouse movements. It calculates the seed by measuring

successive movements of the mouse pointer. The location of a mouse pointer is

represented by a point, which contains an X coordinate and a Y coordinate in pixels.

The Mouse Seeder has a byte array data member. It is used to represent the seed. The

length of this byte array is defined the same as the length of the seed. The X and Y

coordinates are multiplied to produce a random number. This number is then assigned to

the next unassigned byte on the byte array. It rejects repeating coordinates because these

values may not be random.

To use the Mouse Seeder, the user needs to create a MouseSeeder object and specify

the number of bytes he wants. Then the user is required to move the mouse pointer

around on the screen. Finally, by calling the getSeed method, the seed is returned.

--

36

The File Seeder utilizes the bits in a file. It calculates the seed by randomly choosing

the bits from a portion of a file. The File Seeder has a byte array data member. It is used

to represent the value of the seed. The length of this byte array is defined the same as the

length of the seed.

The File Seeder allows the users to choose any source file the user computer. If the

file contains fewer bits than what is needed, an error message will be prompted. After the

source file has been specified, File Seeder uses the SecureRandom to randomly choose

the bits on the source file. These bits are then assigned to the byte array.

To use the File Seeder, the user needs to create a FileSeeder object, and specify the

number of byte he or she wants. The user is then prompted to specify the source file.

Finally, by calling the getSeed method, the seed is returned.

3.2.2 Secure Keystore

The Secure Keystore uses the PBEWithMD5AndDES password-based algorithm to

provide more secure key storage to the existing keystore key management scheme [22].

The Secure Keystore provides services such as store and retrieve key entries, store and

retrieve certificate entries, delete key and certificate entries, change password ofthe

keystore and the key entries, check entry types, and get the number of entries stored in

the keystore.

The Secure Keystore uses the PBEWithMD5AndDES password-based algorithm and

the KeyProtector class to protect the private keys. Note that the KeyProtector class is

used here only for backward-compatibility. When the private keys are stored, they are

PBEWithMD5AndDES encrypted using the passwords to these keys as secret keys.

--

37

When the private keys are accessed, they are PBEWithMD5AndDES decrypted using the

password to these keys as secrete keys.

Besides using private key encryption, the Secure Keystore uses SHA message digest

algorithm to protect its integrity. When the keystore is loaded, the integrity is checked,

and when the keystore is stored, the digest value is calculated and stored with the

keystore.

The Secure Keystore needs to be installed before it can be used. First, the provider for

the Secure Keystore is created. Its name is EJSTProvider, and it contains a keystore type

EJST Then the EJSTProvider is added to the java.security file, located at the

java.home\lib\security directory, as a new security provider entry Uava.home is the

location where Java is installed.) After these two steps, the Java Security API will know

where to find the concrete implementation of the Secure Keystore. Note that the Secure

Keystore is represented by the Ekeystore class

3.2.3 Key-Certificate-Policy Manager

The Key-Certificate-Policy Manger (KCPM) is an application console. It is designed

to replace the user interfaces provided by keytool,jar, andjarsigner. It also provides easy

access to the policytool utility. Through the KCPM, users can perform all the security

operations in one application. Furthermore, KCPM provides an online help menu to aid

users.

The KCPM provides a number of services. These services include generate key pair,

delete key pair, change key pair password, delete certificate, import single certificate,

import certificate chain, export certificate. certificate signing request (CSR), print

certificate, sign JAR file, verify JAR file, sign regular file, verify regular file, create JAR

C&

.....

--

38

file, security policy, create keystore, change keystore, change keystore password, list

keystore entries, options, and help menu.

Each of these services is accessed by a dialog box. When a menu on the menu bar is

clicked, an action event that is listening to that menu is fired, and the corresponding

dialog box is displayed. A dialog box may contain many components such as text fields,

labels, buttons, combo boxes, and radio buttons. Each component may be responsible for

specific events. An event listener of a specific type is added to the component if the

component is responsible for that event. Each of the listeners is represented by an inner

class. Since the KCPM user interface listens to over one hundred events, there are over a

hundreds inner class files crated in the directory where KCPM is located.

To provide stronger authentication to the underlying keystore, KCPM utilizes the

password restriction and random password techniques. The users can set the password

restriction on to enforce password restrictions. In addition, users also can request a

random password from KCPM. The random password technique utilizes the TRS to get

random seed values. These values are used to seed the SecureRandom object to produce

strings of printable ASCn characters. KCPM uses these strings as random passwords.

The KCPM not only contains classes that handle operations on the graphical user

interfaces, but also contains classes that perform the actual operations. The Ekeytool class

is responsible for all tasks related to key management as well as signing and verifying

regular files. It contains an instance of the Secure Keystore (Ekeystore) class, which is

used for the underlying keystore management. The EjarSigner class is responsible for

signing and verifying JAR files. The Policytool class is responsible for generate the

policytool interfaces. The RandomKey class is responsible for generating random

cu:;

--

-

39

passwords and enforcing password restrictions. The MouseSeeder is responsible for

generating random seeds.

3.4 Installation

EJST is a multi-platform application. It can be installed on any computer that

supports Java 2. With a few configurations, EJST can be up and running. The followings

are the installation steps on a Windows platform:

1. Make sure Java SDK 1.2.2 or later version and Java JCE 1.2.1 or later version are
installed on the computer.

2. Copy the EJST directory, which contains all the application class files, to a
directory on the user hard drive (i.e. C:\Anthony)

3. Add SET CLASSPATH=C:IJDKl.3\LIB;.;C:IANTHONY to an empty line in the
autoexec.bat file (assuming the operating system is running Windows 98, Java
SDK is installed on C:\JDK1.3, and the EJST directory is installed on
C:\Anthony)

4. Add security.provider.l=EJST.EJSTProvider to the provider section in the
java.policy file located in the java. homel/ib Isecurity directory. If the security
provider number is assigned, choose the next available number.

5. After the computer is rebooted, EJST is ready for usc.

-

-

40

4 KEY-CERTIFICATE-POLICY MANAGER (KCPM) USER'S
MENU

4.1 Overview

The Key-Certificate-Policy Manager (KCPM) is a QUI-based application. It is used

to manage the keystore and the security tools. Users can utilize it to perform operations

on public/private key pairs, digital certificates, JAR files, key stores, and security

policies. It also provides the users wi.th system options and online help menu.

When KCPM starts up, the Keystore Login dialog box, as shown it Figure 4-1,

would pops up and looks for a specific user keystore file, root certificate authority (CA)

keystore file, and the password to login to the user keystore. When KCPM is run at the

first time, Keystore and the Root CA certificate are blank. Users can utilize the Browse

buttons on the dialog box to search these two files. KCPM provides an empty user

keystore, which is named .store. The password to this keystore is keys(ore. Users are

recommended to change the password of the .store keystore. KCPM also provides a root

CA certificate keystore, which is named cacerts. It contains five trusted root CA

certificates from VeriSign. Figure 4-27 shows these ten VeriSign root CA certificates. By

default, these two keystore files are stored in the same directory, where EJST class files

located. Keystore type specifies the type of the keystore implementation. KCPM uses

EfST keystore implementation, which is as the name suggests, created by EJST. Users

also can choose JKS keystore implementation, which is, provided by SUN Microsystems,

to work on user keystores that are compatible with the JKS implementation. Keystore

41

provider specifies the keystore implementation service provider (creator). The provider

for EJST is EJSTProvider, and the provider for JKS is SUN [22,23,24].

After the user Jogs on to the specified user keystore, the KCPM's menu bar is

enabled.

Figure 4-1. Keystore Login dialog box

4.2 Public I Private Key Pair

The PubliclPrivate key menus provide services on generating public / private key

pairs (or simply called key pairs). dell:ting key pairs, and changing the password to the

key pairs.

Generate Key Pairs

The Generate Key Pair dialog box, as shown in Figure 4-2, creates a pair of public

key and private key. The public key in the key pair is wrapped into an X.509 vi self­

signed certificate. This certificate is contained in a certificate chain, which has only one

element: the self-signed certificate. To obtain a trust certificate chain from the CA, one

should send a certificate signature request (CSR) to a CA and import the certificate chain

from the certificate reply to the user keystore. The private key and the self-signed

certificate is stored together in the user keystore as a key entry identified by an alias

name. Note that generating a new key pair may take a few seconds due to the process of

42

creating the public and private key pair. The bigger the key size specified, the longer the

process takes [23,24].

The Key Information section specifies the information about the key pair and the

self-signed certificate. Key alias specifies the alias name, which is used to identify the

entries (key entries and certificate entries) stored in a keystore. Key password specifies

the password required to access this key entry. Key size specifies the size of the key pair.

Certificate time stamp specifies the time stamp, which is the validity of the certificate in

days. ofthe self-signed certificate. Signature algorithm specifies the digital signature

algorithm for the self-signed certificate. KCPM supports four signature algorithms:

SHAlwithDSA , MD2withRSA, MD5withRSA, and SHAlwithRSA. Although Java 2 comes

with SHAl, MD2, and MD5 message digest algorithm and DSA public key cipher, it

doesn't come with RSA public key cipher. As a result, users, who want to use the RSA

cipher or RSA related signature algorithm should purchase the RSA cipher from RSA,

Inc. and install it into their system. Key algorithm specifies the algorithm for generating

the public key and the private key for the key pair. Use system generated password

specifies whether the user wants to the system to generate a random password for the key

entry or not.

The Identity Information section contains information about the identity of the

owner (subject) of the key pair. Since the public key is wrapped around into a self-signed

certificate, this information is used to specify the issuer of the self-signed certificate as

well. Therefore, the owner of the key pair and the issuer of the self-signed certificate both

refer to the same entity. To obtain a certificate issued by a CA one should create a

certificate signature request (CSR). For details about the CSR, please refer to the CSR

-

43

section later in the user menu. Full name specifies the common name of the individual,

which is usually the first and last name of an entity. Organization name specifies the

name ofthe organization with which the individual is associated. Organization unit

specifies the unit with which the individual is associated. City/Locality, StatelProvince,

and Two-letter country code specifies the city or locality, state or province, and country

where the identity resides respectively. This infonnation is used to create a X.509

distinguished name (DN) of a certificate [23,24].

Figure 4-2. Generate Key Pair dialog box

Delete Key Pair

The Delete Key Pair dialog box, as shown in Figure 4-3, is used to remove a key

entry, which contains a private key and the associating self-signed certificate, from the

user keystore. Once a key entry is deleted, it cannot be recovered. Key alias specifies the

alias to the key entry. Key password specifies the password required to access this key

entry.

--

44

Figure 4-3. Delete Key Pair dialog box

Change Key Pair Password

The Change Key Pair Password dialog box, as shown in Figure 4-4, is used to

change the password associated with a key entry. Key alias specifies the alias to the key

entry. Old password specifies the password that is currently used to access the key entry.

New password specifies the new password that will be assigned to the key entry. After

the new password is specified, the user needs to reenter the password in Confirm

password. Use system generated password specifies whether or not the user wants to

the system to generate a random password for the key entry. Note that this system­

generated password uses the random password technique described in chapter 3. The

password is eight characters long and consists of ASCII printable characters only (except

the space character).

Figure 4-4. Change Key Pair Password dialog box

4.3 Certificate

45

The Certificate menus provide services for deleting certificates, importing

certificates and certificate chains, exporting certificates, generating CSRs, and printing

certificates from certificate files and user keystores. Since the EJST keystore only

supports X.509 vi, v2, and v3 certificates, KCPM is limited to operate on these types of

certificates. As a consequence, importing, exporting, and printing certificates other than

the X,509 standard causes errors.

As mentioned before, a user keystore is capable of storing both key entries and

certificate entries. A certificate entry contains a single certificate. It is identified by an

alias name just like a key entry does. Note that certificate entries do not have password

associating them. This is because certificates are designed to be accessed by the public.

Delete Certificate

The Delete Certificate dialog box, as shown is Figure 4-5, is used to remove a

certificate entry from a user keystore. Certificate alias refers to the alias to the certificate

entry.

Figure 4-5. Delete Certificate dialog box

Import Single Certificate

The Import Single Certificate dialog box, as shown in Figure 4-6, is used to read a

certificate from a certificate file and stores it in the user keystore as a certificate entry. If

the certificate entry already exists, an error message will be prompted.

--
46

KCPM can import both trusted and untrusted certificates to the user keystore.

However, importing unrrusted certificates is considered dangerous and is not

recommended. Adding an untrusted certificate involves no verification. On the other

hand. importing a trusted certificate involves series verification operations. KCPM would

try to verify the certificate by attempting to construct a chain of trust from that certificate

to the certificates from the user keystore. In the chain of trust cannot be established. the

certificates from the root CA certificate keystore can be considered. Note that the

certificate, which is stored in the certificate file, must be saved in either binary encoding

or printable encoding Base 64 format [23,24].

Certificate file specifies the file that contains the certificate. By convention,

certificate files have a ".cer" filename extension. Certificate alias specifies the alias to

the certificate entry. Validate with root CA certificate specifies whether or not to use

the root CA certificates to verify the importing certificate. Import untrusted certificate

specifies whether or not to import the certificate even if it is untrusted.

ElItnport .Slng18 C8nJRCat8 ",:, ~;r..

Figure 4-6. Import Single Certificate dialog box

Import Certificate Chain

The Import Certificate Chain dialog box, as shown in Figure 4-7, is used to read a

certificate chain from a certificate file. The certificate chain replaces the certificate chain,

which consists only a self-signed certificate and is associated with a private key, in the

47

key entry. The certificate chain from the certificate file should be a PKCS #7 reply,

which is generated from a CA in response to a CSR sent by the user. Although KCPM

can import X.509 vI, v2, and v3 certificates, the PKCS #7 formatted certificate chain

must consist with certificates of the same type [23,46]. In addition, the certificate chain,

which is stored in the certificate file, must be saved in either binary encoding or printable

encoding Base 64 format. When importing a certificate reply, the certificate chain can be

validated using trusted certificates from the keystore, but this is not required. If the

certificate is not validated, the certificate chain from the certificate reply is considered

untrusted and it is not recommended. Importing a trusted certificate chain involves series

of operations. KCPM tries to verify the certificate by attempting to construct a chain of

trust from that certificate to the certificates from the user keystore. If the chain of trust

cannot be established, the certificates from the root CA cenificate keystore can be

considered. Noted that when the certificate chain is imported. it would replace the

certificate chain that is associated with the private key in the key entry [23].

Certificate file specifies the file that contains the certificate chain. Key alias

specifies the alias to the key entry. Key password specifies the password required to

access this key entry. Validate with root CA certificate specifies whether to use the root

CA certificates to verify the importing certificate chain or not. Import untrusted

certificate specifies whether or not to import the certificate chain even if it is untrusted.

48

Figure 4-7. Import Certificate Chain dialog box

Export Certificate

The Export Certificate dialog box, as shown in Figure 4-8, is used to read a

certificate from a certificate entry, which is stored in the user keystore, and saved it in a

certificate file. By convention, the certificate file has a filename extension ".cer". The

certificate can be exported either in binary encoding format or printable Base 64 fonnat.

If the alias refers to a certificate entry, that certificate is exported. If the alias refers to a

key entry, then the first certificate in the associated certificate chain is exported [23,24].

Certificate file specifies the file that is used to store the certificate. Key or

certificate alias specifies the alias to a certificate entry or a key entry. Certificate

format specifies the format that is used to store the certificate. The format can be either

binary encoding or printable Base 64 encoding.

49

Figure 4-8. Export Certificate dialog box

Certificate Signature Request (CSR)

The Certificate Signing Request dialog box, as shown in Figure 4-9, is used to

generate a CSR using the PKCS # 10 fonnat. A CSR is intended to be sent to a CA. The

CA will authenticate the certificate requestor and will return a certificate chain in a

certificate reply. The certificate requestor will use this certificate chain to replace the

existing certificate chain, which is associated with a corresponding private key, in a key

entry. The private key and the X,SOO distinguished name associated with the key entry

are used to create the PKCS # I0 CSR [23, 48].

CSR file specifies the file that is used to store the CSR. By convention, a CSR file

has an ".scr" filename extension. Key alias specifies the alias to the key entry. Key

password specifies the password required to access the key entry. Signature algorithm

specifies the algorithm used to sign the CSR.

50

Figure 4-9. Certificate Signing Request (CSR) dialog box

Prjnt Certificate from Certificate File

The Print Certificate from Certificate File dialog box, as shown is Figure 4-10, is

used to read a certificate from a certificate file and print its content in either printable

Base 64 encoding format or using no encoding (human-readable) format. The Printable

Base 64 format is used to print the certificate in Base 64 format. The Base 64 format is an

Internet standard. Binary data can be encoded in Base 64 by rearranging the bits of the

data stream in such a way that only the 6 least significant bits are used in every byte [22,

23].

No encoding with public key and signature fonnat is used to print certificate

information that is human readable and understandable. It prints out the alias name of the

keystore entry, the certificate creation date and time, the type of the keystore entry, the

length of the certificate chain if it is a key entry, the certificate version, the subject in

X.SOO distinguish name, the name of the signature algorithm used, the name of the public

key algorithm, the public key, the time stamp, the issuer in X.500 distinguish name, the

serial number, and the value of the signature.

No encoding with fingerprints is used to print certificate information that is human

readable and understandable. It prints out the alias name of the keystorc entry, the

certificate creation date and time, the type of the keystore entry, the length of the

-

51

certificate chain if it is a key entry, the subject in X.500 distinguish name, the issuer in

X.SOO distinguish name, the serial nwnber, the time stamp, and the fingerprints of the

certificate in MD5 and SHA. Note that the certificate must be stored in either the binary

encoding fonnat or the printable Base 64 format.

Certificate file specifies the file where the certificate is stored. Certificate format

specifies the certificate printout format. If the no encoding fonnat is selected, the Show

public key & signature / fingerprints options will appear. Users can specify their

preferred printout option.

Subject: CN=AnthonyWong, OU=Computer Science, O=OSU, L=Stlllwater, ST=OK, C=US
Issuer: CN=AnthonyWong, OU=Computer Science, O=OSU. L=S1illwater, ST=OK, C=US
Serial number: 3b58f24e

alid from Fri Jul 2022:09:02 COT 2001 to Sun Aug 19 22:09:02 COT 2001
Fingerprints:

M05: 08:aO:21 :b5:ge:15:e2:17:cd:44:27:24:a3:02:02:rr
SHA: 518b:be:55:fd:7c: 73:98:74 :82:c1 :8a:d5:ec:fa:29:47:93:7 2: 2b

Figure 4-10. Print Certificate from Certificate File dialog box

Print Certificate from Keystore

The Print Certificate from Keystore dialog box, as shown in Figure 4-11, is used to

read a certificate from a certificate entry or key entry and prints out its content in either

printable Base 64 encoding format or using no encoding (hwnan-readable) format. The

no encoding format further specifies the details on the printout: public key and signature,

52

or MD5 and SHA fingerprints. Note that the certificate must be stored in either the binary

encoding fonnat or the printable Base 64 format.

Certificate file specifies the file, which the certificate is stored. Certificate format

specifies the certificate printout fonnat. If the no encoding fonnat is selected, the Show

public key & signature I fingerprints options will appear. Users can specify their prefer

printout option.

o BaSe 64. encoding.:\ . "*'
@ No 1JfI~ (hurtIari readable)

rstkey, Frl Jul 20 22:09:02 COT 2001, keyEntry
Certificate chain length 1
Certificate[1]:

I
[

Version: V1
Subject: CN=Anthonywong, OU=Computer Science, O=OSU, L=Stlllwater. ST=OK, C=US
Signature Algorithm: SHA1wlthDSA, 010 = 1.2.840.10040.4.3

Key: Sun DSA Public Key
Parameters:DSA

p fd7f5381 1 d751229 52df4a9c 2eece4971611 b752 3cef4400 c31 e31'80 b6512669
455d4022 51tb593d 8d58fabfc5f5ba30 fficb9b55 6cd7813b 801 d346ff26860b7
6b9950a5 a4919fe8 04 7b1 022 c24tbba9 d7feb7c6 1 b1'83b57 e7c6a8a6 150ffi4tb
83ffid3c5 1 ec30235 54135a16 9132ffi75 f3ae2b61 d72ae1T2 2203199d d14801 c7

q 9760508f 15230bcc b292b982 a29b840b f0581 cf5
g: f7e1 a085 d69b3dde cbbcab5c 36b857b9 7994atbb fa3aea82 19574cOb 3d078267

5159578e bad4594fe671 071 0 8180b449 167123e8 4c281613 b7cf0932 8cc8a6e1
3c167a8b 547c8d28 eOa3ae1 e 2bb3a675 916ea37fObfa2135 62f1tb62 7a01243b
cca4f1 be a8519089 a883dfe1 5ae59f06 928b665e 807b5525 64014c3b fecf492a

y'

c35B8d44 6d982385 fe44 78a8 1 dd27927 a79SbBa3 353e7cd5 ecd581 89 4ge971 39
f546atbe 1 5604tb4 1 deBbe4e 4d65f3fc aa739437 5ce402cO 733f3138 190aaf1 3
Oa35ce12 1 bc84006 d24a5713 d97c3cb5 51 e6b1 Oa a1530064 7d3beb33 b54a2b09

Figure 4-11, Print Certificate from Keystore dialog box

4.4 Sign / Verify JAR

KPCM provides services for signing JAR files and verifying signatures and the

integrity of signed JAR files. In addition, it also provides services for signing regular files

(non JAR files,)

--

53

A signed JAR file contains a signature file, with a SF extension, and a signature block

file, with a DSA extension. Each SF file contains three lines of text: the signature version,

the name of th.e digest algorithm for the manifest file and the digest value for the manifest

file, and the name of the company that provides the digest algorithm. In addition, the SF

file contains two lines of text for each source file archived in the JAR file. The first line

specifies the name of the source file, and the second line specifies the name of the digest

algorithm and the digest value. The SF file is then signed. Each DSA signature block file,

by default, contains the same three line of text found in the associated SF file. In addition,

the DSA file contains the signature of the SF file. It also contains the encoded certificate

or certificate chain from a user keystore. The certificate or certificate chain is used to

authenticate the public key corresponding to the private key used for signing [23, 24].

Sign JAR File

The Sign JAR File dialog box, as shown in Figure 4-12, is used to sign a JAR file.

The signing process produces a signature file with a SF extension and a signature block

file with a DSA extension. KCPM uses the private key from a key entry in a user keystore

to sign the SF file and the associating certificate chain to provide authenticity.

Source JAR file specifies the JAR file to be signed. Key alias specifies the alias to

the key entry. Key password specifies the password required to access this key entry.

Base file name specifies the base file name for the SF and DSA file. Note that this is

optional. Signed JAR file specifies the name of the signed JAR file. This is optional too.

If one does not specify a file name, the source JAR file is used as the signed JAR file;

thus the content of the source JAR file will be overwritten. Show signing information

54

specifies whether a detail description of the signing process should be printed after the

file is signed.

updating: META-INF/MANIFEST.MF
adding META-INFI.SF
adding: META-INFI.DSA
signing: Testing.class
signing: EJarSigner.class

Figure 4-12. Sign JAR File dialog box

Verify JAR File

The Verify JAR File dialog box, as shown in Figure 4-13, is used to verify signatures

and the integrity of signed JAR files. The integrity check will print an error message if

any of the files in the JAR file were modified. If the JAR file is not signed, an error

message will also be printed out.

JAR file specifies the signed source JAR file. Print certificate information specifies

whether or not the certificate stored in the DSA file be printed our a1ter the verification

process. Print verification information specifies whether or not a detailed message is

printed after the verification process.

-------------- --

55

232 SatJuI2116:17:18 CDT2001 META-INF/MANIFEST.MF
256 Sal ..lui 21 16:17:30 COT 2001 META-INF/.SF

1049 Sat ..lUi 21 16:17:30 CDT 2001 META-INF/.DSAsmk
1017 Sat ..lui 21 16:16:12 COT 2001 Testlng.class

X.509, CN=Anthony Wong, OU=Computer Science, O=OSU, L=SlllIwater, ST=OK, C=US (firstkey)

smk
18336 Sat ..lui 21 16:16:12 COT 2001 EJarSigner.class

X.5D9, CN=AnthonyWong, OU=Computer Science, O=OSU, L=Stlllwater, ST=OK, C=US (firslkey)

s = signature was verified
m = entry Is listed In manifest
k = at least one certificate was found In keystore
I = Oil least one certificate was found In Identity scope

'ar verified.

Figure 4-13. Verify JAR File dialog box

Sign Regular File

The Sign Regular File dialog box, as show in Figure 4-14, is used to sign all kinds of

files except the class and JAR files. The signing process uses the private key in a key

entry to sign the source file. After the source file is signed, a signature file and a

certificate file are produced. The signature file and certificate file are used to protect the

data integrity of the signed file.

Key alias specifies the alias to the key entry. Key password specifies the password

required to access the key entry. Source file specifies the source message file to be

signed. Signature file specifies the signature file that is use to store the digital signature

of the source file. If the signature file is not provided, the signature will be stored in a file

with the base file name the same as the source file concatenate with a ".sig" filename

-

56

extension. Signature algorithm specifies the signature algorithm that is used to sign the

message. Certificate file specifies the file that is used to store the digital certificate. If the

certificate file is not provided, the certificate win be stored in a file with the base file

name the same as the source file concatenate with a ". cer" filename extension.

Figure 4-14. Sign Regular File dialog box

Verify Regular File

The Verify Regular File dialog box, as shov,ll in Figure 4-15, is used to verify

signatures and the integrity of signed files. Unlike signing regular files, users need to

specify the original source file (signed file), the signature file, and the certificate file.

Source file specifies the original (signed) file. Signature file specifies the file that is

used to store the signature associated with the source file. Signature al~orithm specifies

the signature algorithm used in signing the source file. Certificate file specifies the file

that is used to store the certificate associated with the source file.

......

-
57

Figure 4-15. Verify Regular File dialog box

4.5 JAR

KPCM provides services on archiving files through the JAR menus. A manifest file is

created during the JAR file creation process. This file contains information about each of

the archived files [23, 24].

Create JAR File

The Create JAR File dialog box, as shown in Figure 4-16, is used to create JAR

fi les. First, the source files to be archi ved are selected. Next the files are added to the

archive list. After specifying the name of the destination JAR file, the JAR file is created.

Source file specifies a file to be archived. The Add button adds the source files to the

archive file list. The remove button removes the selected fi les from the archive file list.

JAR file specifies the file that holds the archived source files and the man~fest file.

Figure 4-16. Create JAR File dialog box

-
58

4.6 Keystore

The Keystore menus provide services related to the user keystore. The user can

create a new user keystore, change to a different user keystore. change the current

keystore password, and list all entries, including both key entries and certificate entries,

from the current user keystore.

Create Keystore

The Create Keystore dialog box, as shown in Figure 4-17. is used to create a new

user keystore. The newly created keystore does not contain any entry. Keystore specifies

the fi Ie used to store the user keystore. Keystore password specifies the password

required to access the user keystore. The user needs to fe-enter the password to for

confinnation in Confirm password. Use system generated password option specifies

whether or not the user wants KCPM to generate a random password for the keystore

password.

Change keystore

The Change Keystore dialog box, as shown in Figure 4-18, is used to load a different

user keystore to the system. Users also can load a different root CA certificate keystore

using this dialog box. After the new user keystore is loaded, all the keystore management

d

59

and signature signing and verification operations will refer to the newly loaded user

kcystore.

Keystore specifies the keystore file. Keystore password specifies the password

required to access the user keystore. Note that if the user does not specify the root CA

certificate keystore, the previous defined root CA certificate keystore is used. Keystore

type specifies the type of the keystore implementation. Keystore provider specifies the

keystore implementation service provider (creator).

Figure 4-18. Change Keystore dialog

Change Keystore Password

The Change Keystore Password dialog box, as shown in Figure 4-19, is used to

change the password of the currently loaded user keystore.

Old password specifies the password currently used to login to the current user

keystore. New password specifies the newly assigned password, which will replace the

old password. The user is required to re-enter the new password in Confirm password to

confirm the password that has been entered. Use system generated password specifies

whether or not the user wants KCPM to generate a random password for the keystore.

-

-
60

Figure 4-19. Change Keystore Password dialog box

List AU Entries

The List All Entries dialog box, as shown in Figure 4-20, is used to print all the

entries, including key entries and certificate entries, from the user keystore. Keystore

entries can be printed in Brief, Base 64 encoding, no encoding with fingerprints, and no

encoding with public key and signature fonnats. If the Brief fonnat is selected, it prints

out the entry alias name, the creation date and time, the type of the entry, and the

certificate fingerprint in MD5. If the entry is a key entry, the fingerprint of the first

certificate in the certificate chain is printed. Base 64 encoding, no encoding with public

key and signature, and no encoding with fingerprints all print out entry alias name, the

creation date and time, the type of the entry, and the length of the certificate chain, if the

entry is a key entry. In addition, infonnation about the certificate or certificate chain will

also be printed as discussed early in this menu Printing format specifies the keystore

entry printout fonnat as described above.

61

Keyslore type: EJST
Keystore provider: EJSTProvlder

he Keyslore conlOilns 4 entries:

secondKey, Sa1Jui 21 04:35:46 COT 2001, KeyEntry
CertificOite fingerprint (MD5): 05:64:601:e4:75:f6:66:5c:44:73:b5:15:Ba:BO:dO:37

secondcert. Frl Jul 20 02:37:1 B COT 2001, 1rus1edCertEntry. Certificate fingerprint (MD5): fd:1O:e9:fd:5a:e6:bO

esignature. Man Jun 11 18:05:36 COT 2001. KeyEntry
CertlflcOite fingerprint (MD5): 76:b7:2e:1 3:55:91 :ca:4a:79:20:ed:01 :92:47:51:51

trstKey, Fri Jul 20 22:09:02 COT 2001 , KeyEntry
Certificate fingerprint (MD5). 08:010:21 :b6:ge:16:e2:1 7:cd:44:27:24:a3:02:02:rr

Figure 4-20. List All Entries dialog box

4.7 Options

The Options dialog box, as shown in Figure 4-21, is used to provide default

configuration options for KCPM. These configurations are used throughout the

application, and they are stored in a file named option. txt. When KCPM is started, it

reads the option. txt file to initialize the configurations.

Keystore specifies the default file path of the user keystore. Root CA certificate

specifies the default file path of the root CA certificate keystore. Key size specifies the

default value of the size of the keys used in the public-key cipher. Certificate time

stamp specifies the default of the time stamp. which is the validity of a certificate in

days. Signature algorithm specifies the default signature algorithm. Enforce password

restriction specifies whether or not password restrictions be applied. These restrictions

are applied to both user keystore passwords and key entry passwords. If enforced,

--

62

passwords provided by the users must be at least six letters long. and they must consist of

one or more punctuation or numeric characters.

-- ~-

Figure 4-21. Options dialog box

4.8 Security Policy

Java's security policies are used to grant pennissions to various Java code (class and

JAR files) depending upon the code base and/or digital signature applied to the code.

These security policies are stored in a security policy file. Java 2 comes with a policy file

namedjava.policy, and it is stored in thejava.home\lib\security directory [23].

A policy file contains a list of entries. There may be a keystore entry and zero or more

grant entries. There can be only one keystore entry on a policy file. This entry is

necessary only if a signer is specified in any of the grant entries so that the signer can be

referred to the specific keystore [23].

Grant entries are used to grant pennissions to codes from various sources and/or

signed by various entities. Each grant entry contains zero or more pennission entries, and

can include LI si!?lledBy name-value pair entry and a codeBase name-value pair entry. The

63

signedBy entry specifies that the pennissions granted are for the code that has been

signed by the private key from the corresponding key entry. When multiple signer are

specified, the code must be signed by all of them. The codeBase entry specifies the

originating location of the code (JAR or class file) where permissions are to be granted.

The originating location can be defined to grant permission to a single JAR or class file,

all class and/or all JAR files from the current directory, and all the class and/or all the

JAR files from the currently directory as well as from its sub-directories [23].

The originating location takes an URL address, which allows the permissions to be

granted to different networks that are on the Internet. The permission entry specifies

permissions that are granted to specific target. These permissions are represented by

permission classes. They include: A WfPermission, FilePermission, NetPermission,

ProperryPermission, ReflectPermission, RuntimePermission, SecurityPennission,

SerializablePennission., and SocketPermission. The target is the files that give particular

permissions to the class and/or JAR file specified in the codeBase. Creating policies on

policy files is outside the scope of this paper. For more information about the security

policy, please refer to [22], [23], and [24].

The Security Policy dialog box, as shown in Figure; 4-22, is used to connect to the

policytool provided by Java 2. Policy files specifies the security policy file that will be

accessed by the policytool. If the policy file is not specified, policytool will try to open

the policy file in the user.home directory. If the policy file does not exist, the user will be

presented with an error message.

64

Figure 4-22. Security Policy dialog box

The Policy Tool dialog box, as shown in Figure 4-21, is designed to configure

security policies on Java applications and applets in a user computer. It provides three

functions: create new policies, modify existing policies, and view warning logs.

To create a new policy, first, make sure that the policy file is not under construction.

If the policytool is working on an existing policy file, select new from the File menu.

This will open a new policy. Then select save from the File menu to save the policy to a

policy file. The file should be saved with a policy extension.

The policytool maintains a warning log, which stored all the warning message that

have been displayed during a policy configuration session. To access this warning log,

select view warning log from the File menu.

The policytool allows adding new policy entries. modifying existing policy entries,

removing existing policy entries, and changing to another user keystore.

To add a new policy entry, click on the Add Policy Entry button on the Policy Tool

dialog box, as shown in Figure 4-23. This brings up the Policy Entry dialog box, as

shown in Figure 4-24. codeBase specifies the originate location of the code, which

permissions are to be granted. signedBy specifies the alias name to the key entry. To add

permission to this policy entry, click on the Add Permission button. This will bring up

65

the Permissions dialog box, as shown in Figure 4-25. The drop-down lists (combo

boxes) on this dialog box allow the user to choose among the various options that are

already provided in Java 2. Permission specifies the permission that will be granted.

Target name specifies the files that give particular pennission to the class and/or JAR

files specified in the codeBase. Actions specifies the operations allowed. FilePennission,

for example, can have read, write, delete, and execute operations. To edit permissions,

click on the Edit Permission button. To remove permissions, click on the Remove

Permission button [23].

-fol..!!J
File Edit

Policy File IO:\ldk1 .3\lre'Ub'.ecurltll\l.",•.pollcy

Keysl'ore I

Add Policy Entry I Edit Policy Entry I Remov. Polley Entry I

OodeBase "f1le:$(Java.ho m e1111 b/eXV-'
CodeBase -ALL"

FIgure 4-23. Policy Tool dialog box

66

Pnl..... y rntry I i7'~

....
CodeBase: II
SlgnedBy: rl---------------------------

Add Psrmlsslon I

Oone I

i ..
Remove Permission I

, I

Signed By:

Figure 4-24. Policy Entry dialog box

Add New Permission:

'IFllepermiSSlon ::=J IJava.lo.FllepermISSion

...., <-<A~L~L-::F~IL-::E~S-»--------......;.;,3~ I....ALL FILES··

ralilIMi"iwl.m'••MIAeiWiw.,-iij';!m'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii~3~ Iread, write, delete, execute

I

cinelli

Figure 4-25. Pennissions dialog box

To edit an existing policy entry, click on the Edit Policy Entry button on the Policy

Tool dialog box. This brings up the Policy Entry dialog box. Modification of an existing

policy entry can be done in the same way as adding new policy entries that is described

above.

To change the user keystore so that the policy configuration should apply, select

Change keystore from the Edit menu. The Keystore dialog box will pop up. New

keystore URL specifies the location of the user keystore file. New keystore type

z

67

specifies the type of the implementation used in the user keystore. The keystore supplied

by Java 2 is implemented by Sun Microsystems. This keystore has a type called JKS.

KCPM has its own keystore implementation, and it is of the type EJST.

4.9 Help Menu

The Help Menu dialog box, as shown in Figure 4-26, is used to display KCPM's help

menu. This help menu provides detailed information about every service available on

KCPM. The Help Menu dialog is designed like a web browser. Users can browse the

help menu through links.

__eKey ce..-.

NLU!pw'" "x~ SIcnIV.rtty.JAR Cn'.tY.rUy JAR. Ku..IIID. rdu .a.J:IaaI.

Key-CertU1cate-PoUcy Mana&u (KCPM) UIU'. Menu

The Enhanced Java Security Tools (EJST) provide. graphical user interface I (GUl), called the
Key-Certificate-Policy Manager (KCPM), for Ulers to perfonn operationl on public/private key pairl, digital
certificates. JAR liles, key stores, and security policies. It also provide. the usc... with .ystem optionl and
online help menu.

When KCPM starts up, the Keystore Login dialog box, a. shown it Figure I, would pop up and look for a
specific user keystore file, root certificate authority (CA) keyStore file, and the password to login to the user
key.tore.

When KCPM is JUn at the first time. Keystore and the Root CA certificate are blank. U.en can utilize the
Browse buttons on the dialog box to search these two fdes. KCPM provides an empty user keyston.• which il
nanled . store. The paslword to this keyltore i. key.tore. U.ers are recommended to change the pass""ord of
the .Itore keystore.

KCPM also provides a root CA certificate keystore. which il named eacerts. It contains five tru.ted root CA
certificates from VeriSign. Figure xx sho'Wl thele five VeriSign root CA certificates. By default. these two
keystore files are stored in the SBnle directory, where EJST class files located.

Keystore type specifies the type of the keystore ilnplementation. KCPM Ule. EJST key.tore implementation,
which is as the name suggested, created by EJST. Users can also choose JKS keystore implementation, which
is .o(QYided bv .SUN-..Micro•.vs.terns .. to wo(kon_usc:r. ey.torC.s a c 0 o.a 'bIe c

Figure 4-26. Help Menu dialog box

68

Figure 4-27. VeriSign root CA certificates

69

5 CONCLUSIONS

Java's security model provides security APIs and security tools for key management,

digital signatures, digital certificates, access control, and more. Although the security

APls and the security tools have been improved, security flaws, weaknesses, and

limitations still remain. These problems involve keystore key management, pseudo­

random number generation, and the security tools.

The Enhanced Java Security Tools (EJST) provides solutions to these problems. To

seal the loopholes, EJST implemented the Truly Random Seeders (TRS) and the Secure

Keystore. TRS provides truly random seeds that can be used on any pseudo-random

number generator to reduce or eliminate patterns. The Secure Keystore utilizes the

PBEWithMD5AndDES password-based encryption algorithm to provide a more secure

key storage scheme.

EJST not only fixes the security loopholes, but also provides enhancements on the

Java security tools. The Key-Certificate-Policy Manager (KCPM) is implemented to

replace the command line user interfaces for the Java security tools. It provides aVIs that

are user-friendly. It contains an online help menu to aid the users. It embeds the password

restriction and random password techniques to provide stronger authentication for the

underlying keystore. Furthermore, it extends data integrity checking to all file types.

EJST is a multi-platform application. It can be installed to any computer that supports

Java 2. With a few configurations, EJST can be up and running.

70

6 FUTURE WORKS

Although the Enhanced Java Security Tools (EJST) has made many enhancements on

the Java security tools, there is still room for improvement.

First of all, keystores should not be limited for local access. They should be designed

for remote access as well. An organization may want to install a keystore on their

network, so that members of the network can enjoy the services provided by the

distributed keystore. A distributed keystore can be placed inside a remote network server.

Each workstation can install a copy of the EJST. With these infrastructures set up,

member users can login to this keystore through the Internet.

Second, one of the weaknesses on EJST is the time required for storing and retrievmg

entries on a keystore. Our tests did not reveal any problem on this. However, if the

keystore is installed on a wide area network or on the Internet, where the keystore may be

responsible for handling thousands of entries, it may not be able to afford the workload.

In this case, the entries should be stored in a distributed database management system

(DBMS). Modification to KCPM should be made so that it can communicate with the

DBMS through the Java Database Connectivity (JDBC).

Finally, when importing certificates, users should, first, check if the certificates are

invalid. To do that, users can consult a certificate revocation list (CRL), which is a list of

certificates that have been revoked. This list can be obtained from a CA. Modification to

the EJST should be made so that certificate revocation check can be done automatically

when importing certificates.

71

REFERENCES

1. Yasin, Rutrell. "IETF Initiatives Gives Boost to Embattled SSL" Internet Week 6
July 1998: 1-2.

') Yasin, Rutrell. "An Embattle standard Gets a Shot in the Ann." Internet Week 13
July 1998: 28-29.

3. "RSA Extends Lead in Java Security Race with BSAFE SSL-J 2.1 Software." Online.
Internet. June 1999. Available: http://industry.java.sun.com.

4. Stallings, William. "Pretty Good Privacy." Byte July 1994: 193-195.

5. Levitt, Jason. "What is Public Key Infrastructure?" Infonnation Week Jan. 2000: 82­
83.

6. Levine, Daine. "Public Key Infrastructure Adds Security To E-Business." Infonnation
Week May 2000: 94-96.

7. Yasin, Rutrell. "PKI Crosses Enterprise Boundaries." Internet Week 1 May 2000: 1-2.

8. Radcliff, Deborah. "Digital Signatures." Computer World April 2000: 64.

9. Jim Kerstetter and Paul Korzeniowski. "Internet Privacy--and Piracy." PC Week 16
June 1997: 138.

10. Jim Kerstetter and Scot Petersen. "Web Server Security Spec Gaining Support." PC
Week 28 June 1999: 1.

11. Kosiur, Dave. "Securing Internet VPNs." PC Week 25 Aug. 1997: 89-90.

12. Wirbel, Loring. "Push is on for Vistual-Private-Network Solutions." Electronic
Engineering Times Mar. 1999: 20.

13. Ulfelder. Steve. "VPNX 101." Computer World 6 Mar. 2000: 80.

14. "Crunching Internet Security Codes." Science News 156.14 (1999): 221.

15. Ganesan, Srinivasa, and Madhusudan Sastry. "Time is Right for a Good, Secure
'Idea'." Electronic Engineering Times 23 Oct 1995: 66-68.

72

16. Kerstetter, Jim. "RSA Opens up S/MIME." PC Week 1 Sept. 1997: 8-9.

17. McQuilken, Barry. "Securing the Enterprise Network." Telecom Asia 8.6 (1997): 74­
76.

18. Mantakos, Harry. "The Java OTP Calculator." Online. Internet. Available:
http://www.cs.umd.edu

19. Brieva, Art. "Cover Your Assets - Fending off Hackers Requires a Mix of Firewall
Technologies." Computer Shopper July 2000: 236-240.

20. Burr, Nazario, and Timothy Polk. "A Proposed Federal PKI Using X.509 V3
Certificates." Online. Internet.

21. "Puzzling Secrets: Cryptography." The Economist 7 Sept. 1996: 79-80.

22. Knudsen, Jonathan. Java Cryptography. California: O'Reilley & Associates, Inc.,
1998.

23. Postoia, Marco, et al. Java 2 Network Security. New Jersey: Prentice Hall, 1999.

24. Oaks, Scott. Java Security. California: O'Reilley & Associates, Inc., 1999.

25. Petrie, C.S., and J.A. Connelly. "The Sampling of noise for random number
generation." IEEE Circuits and Systems 6 (1999): 26-29.

26. Karras, D.A., and V. Zorkadis. "Overfitting in Multilayer Perceptrons as a Mechanism
for (Pseudo) Random Number Generation in the Design of Secure Electronic
Commerce Systems." IEEE Information Systems for Enhanced Public Safety and
Security (2000): 345-349.

27. Horton, IvoT. Beginning C++, The Complete Language. United Kingdom: Wrox Press,
1998.

28. Hughes, Larry. Internet Security Techniques. Indiana: New Riders, 1995.

29. Deng, Lih-Yuan and Dennis Lin. "Random Number Generation for the New Century."
The American Statistician May (2000): 145-150.

30. L'Ecuyer, Pierre. "Uniform Random Number Generators." IEEE Simulation
Conference Proceedings Dec. (1998): 97-104.

31. Drew, Grady. Using SET for Secure Electronic Commerce. New Jersey: Prentice-Hall,
Inc., 1998.

73

32. Adams, Carlisle, et al. "Which PKJ (Public Key Infrastructure) is the Right One?"
Proceedings of the 7th ACM Conference on Computer and Communications Security
(2000): 98-101.

33. Boyarsky. Maurizio. "Public-key Cryptography and Password Protocols: The Multi­
User Case." Proceedings of the 6 th ACM Conference on Computer and
Communications Security (1999): 63-72.

34. Kyas, Othmar. Internet Security Risk Analysis, Strategies and Firewalls. London, UK:
International Thomson Computer Press, 1997.

35. Hoover, D.N. and Kausik, B.N. "Software Smart Card Via Cryptographic
Camouflage." IEEE Security and Privacy Proceedings of the 1999 Symposium May
(1999): 208 - 215.

36. Lee, Yung-Cheng and Laih, Chi-Sung. "On the Key Escrow System Without Key
Exchange." Computers & Electrical Engineering July (1999): 279 - 280.

37. Schneier, Bruce. Applied Cryptography. New York: Wiley, 1996.

38. Horstmann, Cay and Cornell, Cary. Core Java Volume I-Fundamentals. California:
Sun Microsystems, Inc., 1997.

39. Robinson, Matthew and Vorobiev, Pavel. Swing. Connecticut: Manning Publications.
2000.

40. Zukowski, John. Definitive Guide to Swing for Java 2, second edition. California:
Apress,2000.

41. Geary, David. Java 2 Mastering the]FC, third edition. California: Sun Microsystems,
1999.

42. Horstman, Cay and Cornell, Gary. Core Java 1.1, volume 1. New York: Prentice Hall,
1997.

43. Chan, Patrick, et al. The Java Class Libraries, second edition, volume J.
Massachusetts: Wesley, 1999.

44. Palmer, Grant. Java Programmer's Reference. Wrox Press, 2000.

45. "PKCS #5 v2.0: Password-Based Cryptography Standard." RSA Laboratories. Mar.
1999.

46. PKCS #7 v1.5: "Cryptographic Message Syntax Standard." RSA Laboratories. Nov.
1993.

74

47. PKCS #8 v1.2: Private-Key Infonnation Syntax Standard." RSA Laboratories. Nov.
1993.

48. "PKCS #10 v1.7: Certificate Request Syntax Standard." RSA Laboratories. May 2000.

49. "Java Cryptography 1.2.1 API Specification & Reference." Online. Internet. Jun.
2000. Available: http://java.sun.com.

API:
ASCll:
B2B:
B2C:
CA:
CBC:
CFB:
CRL:
DBMS:
DES:
DH:
DN:
DSA:
ECB:
EJST:
Gill:
IDEA:
IPES:
ISO:
JAR:
JCA:
JCE:
IDBC:
JDK:
JRE:
JVM:
KCPM:
MAC:
MD:
NIST:
OFB:
OTP:
PGP:
PIN:
PIG:
PKCS:
PRNG:
RCA:
RSA:
SDK:

Appendix A. Acronyms

Application Programming Interface
American Standard Code for Information Interchange
Business-to-Business
Business-to-Customer
Certificate Authority
Cipher Block Chaining (mode)
Cipher Feedback (mode)
Certificate Revocation List
Database Management System
Digital Encryption Standard
Diffie-Hellman (key-exchange algorithm)
Distinguished Name (X.509)
Digital Signature Algorithm
Electronic Codebook (mode)
Enhanced Java Security Tools
Graphical User Interface
International Data Encryption Algorithm
Improved Proposed Encryption Standard
International Standards Organization
Java Archive
Java Cryptography Architecture
Java Cryptography Extension
Java Database Connectivity
Java Development Kit
Java Run-time Environment
Java Virtual Machine
Key-Certificate-Policy Manager
Message Authentication Code
Message Digest
National Institute of Standards and Technology
Output Feedback (mode)
One-time Password
Pretty Good Privacy
Personal Identification Number
Public Key Infrastructure
Public-Key Cryptography Standard
Pseudo-random Number Generator
Root Certificate Authority
Rivest Shamir Adleman (public key algorithm)
Standard Development Kit

75

SHA:
SSL:
TDES:
TRS:

Secure Hash Algorithm
Secure Socket Layer
Triple Digital Encryption Standard (also know as DESede)
Truly Random Seeders

76

77

Appendix B. Glossary

Base 64:

No encoding with:
public key and signature

No encoding with:
fingerprints

SHAI WithDSA:

MD2WithRSA:

MD5WithRSA:

SHAIWithRSA:

java.home:

user. home:

passphrase:

random key:

keystore:

key entry:

certificate entry:

An Internet standard that can be used to print certificates. It
rearranges the bits of the data stream in such a way that only
the six least significant bits are used in every byte [23].

It is used to print information from certificates that can be read
from human. This information includes: certificate creation
date and type, the owner's and the issuer's X.500 DN, public
key, and the signature.

It is used to print information from certificates that can be read
from human. This information includes: certificate creation
date and type, the owner's and the issuer's X.500 DN, MD5
fingerprint, and SHA fingerprint.

Signature algorithm using SHAI and DSA.

Signature algorithm using :MD2 and RSA.

Signature algorithm using MD5 and RSA.

Signature algorithm using SHAI and RSA.

JDK installation directory (i.e. c:\jdk1.3\jre on Window)

Operating system's installation directory (i.e. c:\windows on
Windows)

A phrase that can be used as a password.

A string that contains random characters.

A key database that is used to store key entries and certificate
entries.

Contains a private key and the associated certificate chain.

Contains a single trusted certificate.

PBEWithMD5AndDES: A password-based encryption algorithm. It uses DES as the
symmetric cipher, cipher block chaining (CBC) mode as the

salt:

fingerprint:

78

cipher mode, PKCSPadding as the padding scheme, and MD5
as the hash function.

A random string that is concatenated with passwords before
being operated on by the one-way function.

The hash value of a set of data.

V
VITA

Ip-Kin Anthony Wong

Candidate for the Degree of

Master of Science

Thesis: ENHANCED JAVA SECURITY TOOLS

Major Field: Computer Science

Biographical:

Education: Received Associate of Arts in Liberal Arts from Maui Community
College, Kahului, Hawaii. Recei ved Bachelor of Science degree in Computer
Science from University of Central Oklahoma, Edmond, Oklahoma. Completed
the requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 200 I.

Experience: Employed by the University of Central Oklahoma, College of Business
as a lab monitor; Uni versity of Central Oklahoma, College of Bu iness, 1996 ­
1997. Employed by the Pardon and Parole Board as an application developer;
Oklahoma Pardon and Parole Board, Data Processing Depal1ment. 1998 - 1999.
Employed by the Department of Correction as an application specialist II:
Oklahoma Department of Correction, Data Processing Department. 1999.
Employed by Oklahoma State University, Department of Computer Science as a
research assistant; Oklahoma State Uni versity, Department of Computer Science,
1999 - 2001. Employed by Oklahoma State University, Department of Computer
Science as a teaching assistant: Oklahoma State University, Department of
Computer Science, 2000 - 200 1.

Professional Memberships: Student in Free Enterprise, Web Master's Club.

