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CHAPTER I 

INTRODUCTION 

The study of.continued fractions has interested mathematicians 

since the beginning of recorded history. To be sure, the forms. in 

which they were stud.ied in those early days are hardly recognizable 

today. In fact, the name "continued fraction" was not used until . 

J, Wallis, an English mathematician, first applied the term to the 

objects he was studying in 1695. The fractions themselves were never·. 

the object_ of study in the earliest days, but rather the properties of 

number were the.center of mathematical investigation. Continued 

fractions turnec:i out to be a very powerful tool in this investigation. 

When Euclid found the greatest common measure of two line segments, 

or when the same princip:\..e was applied to finding the greatest commqn 

divisor of the integers a and b, a process was used similar to that 

of converting a fractioq. into a continued fraction, An example would be 

(48,21) = 3 since 

48 2·21 + 6, 

21 = 3·6 + 3, 

6 = 2·3, 

therefore, 

1 



2 

and hence 

48 1 
21 = 2 + 3 + 1' 

2 

The above example should serve to alert the reader that the study of 

continued fractions is actually the study of the Euclidean Algorithm in 

a very general sense •. Some properties developed for the continued · 

fraction, as The0rem 5.11, can be interpreted in terms of the Euclidean 

Algorithm and reduce the co)llputation involv~d in applying this algorithm, 

It is not known who first proved .that the Ii is not expressible. 

as the ratio of. two integers. It must have been quite a .shock_ to those 

early Pythagareans who·discovered this important fact before the end of 

the .fifth. century B.G. In rep_ly to a question by Socrates, Theaetetus 

says [1] 

Theodorus was writing out.for us something about roots, such 
as the roots of three or five feet, showing that in linear._ 
measurement (that _is comparing the sid.es of the squares) they 
are incommensurable by the unit; _he selected the numbers 
which are roots, up to 17, but he went no further; and as 
there are innumerable roots, the notion occurred tw. us of 
attempting to include them all under one name or class. 

With great ingenuity these Pythagareans approximated the vN by 

successive solutions of the equations Nx2 - y2 = ±1. It will be shown 

that such equations .and their soluticms have a key relationship to 

cqntinued fractions, 

The modern era of continued fract;ions began with the Italian 

mathematician Bomb,elli in 15 72 when he found that 



and more generally 

III=3+ 4 

}a2 + b = 

6 + - 4 
6 + 

a+ b ---

•• 0 ' 

2a + b 
2a + 

The next writer to consider these numbers was Cataldi in 1613 when, he 

wrote, substantially in modern form; 

then modified to 

h8 2 18 = 4. & -8, 2 & _, 

8. & 2 
8. ' 

2 2 · 
4 & 8. & 8. . 

Lord Brouncher, .the first president of the Royal Mathematics 

Society, found the following expresi;;ion for 'IT in 1658, 

4 
'IT=---

1 + '""'l 
2 + 9 

-2-+--25 

2 + 49 , _, 
2 + etc. 

This was base·d on the. product .. discovered by Wallis, 

4 
- = 
'IT 

3·3·5·5·7·7·. 
2·4·4·6·6·8· • 

It was.Euler who really started the systematic development of the 

theory of continued fractions. In 1762 he. devised a new notat;ion where 

.3 



a+ 1 
.~+ .1 

c 

is represented by 

(a,b,c,d,etc.) 
(b,c,d,etc.) 

(a,b,c) 
(b ,c) 

and infinite continued fractions by 

Herei (a,b,c,d,e) = e(a,b,cid) + (a,b,c) and also 

(a,b,c,d,e) =.(e,d,c,b,a). There exists a.similarity between this 

notation and that which is later defined for 

things, Euler found that 

e = 2 + 1 
1 + 1 

2+1 
1+1 

4 + 1 
1 + 

p 
n 

and 

Euler gave a tentative method for solving the equation 2 
X, 

Among other 

2 Ay. = 1. 

He proceeded from the conversion of IA into a continued fraction. 

It was Lagrange (J,769) who supplied the crucial proof fqr Euler's 

method at).d gave a non-tentative method for obtaining all integer. 

solutions of x2 Ay 2 = B where. A,B are any given integers. 

Lagrange's theorem will. be examined in this work and applied to the 

solution of 
2 

x 1. 

Joseph Liouville in 1844 proved that neither. e nor 2 
e can be a 

root of a quadratic equation with rational coefficients. He used the 

properties of the convergents of a continued fract;ion representing a 

4 

root of an algebraic equation with rational coefficients. He established 

later the existence of numbe.rs -- the so-called transcendental numbers 

which cant).ot be roots of any su.ch equatii:m •. This paper will present. 

Liouville's theorem and use it along with continued fractions to prove. 

this famous existence theorem. 
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Continued fractions became significant fot; the :thet>ry of funct.ions 

when E. Laguerre in 1879 converted a divergent power series into a 

convergent continued fraction •. Stf.eltjel:! in 1894 estab:Lished a 

correspondence between .divergent series and cot).vergent .continued 

fractiot).s by which. he was able to.define integration for the series. 

The spec,ies of integration that he de.vised has since been named after . 

him. 

The list of matq.ematicians, great and near great, who have. made 

contributions to the theory of contin:ued.fractions_ is rather impressive. 

To name but a few, who have. not .. already been mentfoned, one. could list. 

Al-Kalsadi of Grat).ada (15th Century), Jacobi, (1850), Leibni.z (1697), 

C. Hygens (1698), _E. Stone (1743), A. F. Mo~ius (1830), G. Lejeune 

Dirichlet- (1854), Pascal; G. Pea~o (1903), B. Segre. (1946), L Niven 

(1962), and Daniel Shanks (1954). The -dates listed_ here indicate when 

their cont:i:'iqutions were made to_ the theory of. continued_ fractions.-

With such an imposing list of mathematicians having worked in the 

area of continued fractioQ.~; one might eJCpect the theory·to be more· 

highly developed tha~ it is today. A clue to why this is not the case 

is given _by -E. Bell when .speaking of Lagrange, 

Lagranges experience with con_tinued fractions _is typical. Of 
high theoretical inter~st, as ·in proving the irrationali_ty of 
certain numbers, con.tinued fractipns .are tElO CUI\lbersome. an 
algorithm to, be of. much practicle use. 

Recognizing that -"practicality" is not always the _ultimate 

criterion by which mathematicians measure their work; this paper-will 

endeavor.to present the _reader with a basic.understanding, of the topic 

of .continued fractipns. It is intended that anyone with an 

undergraduat~ number theory background would be able to unde'rstand the 



majority of this material. A rudimentary understanding of limits and 

convergent series is required for the remainder of the material. 

Specifically, from number theory, one should understand what·is 

meant by greatest co.mmon divisor, the basic cha:r;-acterizatiop.s of the 

6 

g. c.d., the greatest integer funct;:ion [x], and the division algorithm. 

It is also assumed that the reader is aware of the basic properties of 

operations on integers and irrational numbers. In this paper Z will 

be used to represent th.e set of integers and N the natural numbers 

(i.e. {1,2,3, ••. }), 

Even though this paper is intended to be used in a topics or 

seminar course following a first course in number theory, it certainly 

could be included with the first co~rse, time permitting. Tllere are 

parts of this paper, as Chapter II, that could also be used at the high 

school level by students possessing a few basics in number theory. Most 

proofs are included here for. the .sake of· completeness. The reader 

should note that many proofs .. have a similar flavo:ir and as such can be 

scanned once he recognizes that similarity. All definitions, theorems, 

and corollaries are numbered serially with tqe first digit being the 

number of the chapter. When equations are dep.oted by a number for easy 

reference, the numbers start with (1) in .each chapter. When .an equation 

is referred to by number, the chapter will also be given if it is not in 

the same chapter as the reference. 



CHAPTER II 

BASIC THEOREMS AND DEFINITIONS 

An expression of the form 

+ 1 

represents a regular continued fraction. In general, the partial 

quotients a. 
1 

(i ~ 0) can represent any real or complex number. In 

this paper it will be assumed that they are always real. Later, the 

discussion will concentrate on simple continued fractions. A simple 

continued fraction is a regular fraction where a0 E Z and a. E N, 
1 

(i > O). The variable a. 
1 

(i ~ 0) will be referred to as the ith 

partial quotient of the continued fraction, The number of these 

quotients may be infinite (1) or finite as below, 

+ 1 
an-1 + 1 . 

a 
n 

(1) 

(2) 

The following inductive definitions are made for the sake of preciseness. 

Also, for notational convenience, the continued fraction of form (1) 

will be denoted as 

(3) 

7 
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and form (2) denoted.as 

(4) 

Definition 2.1. -Finite Continued Fraction (4), 

real number and a ~ 0. 
n 

ii) 1 
[ao;al] = ao + ;l and if n > 1 

For i 2_ O, 

iii) [ao;al,a2' ... , an]= [ao;[al;a2, ... , an]]. 

Definition 2, 2, Infinite. Continued Fraction (3), Same as 

Definition 2.1 except for (iii) replaced by: 

Definition 2.3 and 2;4, Simple Continued Fractions. Same as 

Definitions 2,1 and 2.2 with: 

iv) a0 E z, and 

v) ai EN for i > 1. 

a. is a 
l. 

Every finite continued fraction is the result. pf a finite number of 

operations on real numbers. Since division by zero is expressly 

excluded, a unique numerical.value can always be determined. In the 

infinite case there. are no such assurances, Until some evaluation 

procedure is adopted, it is only a formal notation similar to that for 

an infinite series whose convergence or divergence-is not brought'into 

question. 



Definition 2.5. sk .. [a0 ;a1 ,a2 , ••• , ak] is called ·a segment of the. 

continued fraction of form (4) for O < k < n. Similarly for arbitrary 

k .::._ 0, one can call Sk a segment of any continued fraction of form 

( 3) • 

Definition 2.6. rk = [ak;ak+l' ,,, , an] is called a remainder of the 

finite continued fraction (4) and r = k. is .a remainder · 

of the infinite continued fraction (3), 

Any remainder of.a finite continued fraction is finite and for an 

infinite continued fraction any remainder is infinite, For finitE;}_ 

fractions, th.ere exists the fol10wing important relationship. 

Theorem 2. 7, For O ~ _k ~ n, 

Proof of this statement · is shown inductively. in. t 8] on page 99, 

The analogous relationship (k .::._ 0) 

for infinite continued fractions · can be me_aningful only as a formal 

notati0n since is an infinite continued fractiion and_ has no 

definite numerical value. 

An interesting corollary to Theorem 2.7 is as fe>llows. 

Corollary 2.8. 

9 

A) If a > 1 and n > 1 in the finite simple continued fraction 
n 

... ' a ], 
n 

then· 



where [a0 ; ,,,, an-1' 1] is also a simple continued fraction. 

B) If a .. 1, th.en 
n 

The proof of the above corollary .follows from tl:le fact that 

10 

[an-1, 1] = an' Since uniqueness of representation of real numbers with 

simple continued fractiol').s is one of the goals of this paper, it will be 

assumed that the last partial quotient in any finite simple continued 

fraction is greater than one. 

Definition 2.9. Convergents of.§!:. Continl.l,ed Fra.ction, For all, k, 

(O .::_ k .::_ n) and the .finite continued fractipn (4) and for all k · 

(k.::.,. 0) and the infinite continued fraction (3), the numerical value of 

the segment Sk is called the kth convergent to the cont:i,.nued fraction, 

Ck will be used to represent the numerical value of the segment· Sk. 

Since.the kth convergent is the value of a finite cqntinued 

fraction with k + 1 partial quotients, it always is well defined and 

may be written as 

wh~re Qk :/: O. It ·is also obvious that the value of the last convergent 

of a finite continued fraction: is the numerical val.ue of that fractioQ., 

C will be used often to represent the numerical value of the finite 
n 

continued fraction [a0 ;a1 , , , , , an], 



Theorem 2.10, For all. k..:. O, 

where 

and 

A) P _1 • .1, PO • a 0 , and for n ..::. 1 

p • a p + p 
n n n~l n-2 

B) Q_1 • .0, Q0 ... 1, and for n > 1 

O a a Q + Q · 
'n n n-1 n~2~ 

Proof: . For k = 0 er 1, direct computation v~rifies the truth 

of the .theorem. 

Assume the statement is true for O ..::_ j < k. where k > 2. · Show 

that the statement is true for k. 

= 

= 

where 

( ~-1 + ~ )pk-2 + pk-3 

( ~-1 + !k ) Qk-2 + Qk-3 

~<~-lpk-2 + pk-3) + pk-2 

~(ak--lQk-2 +Qk-3) + Qk-2 

a' = k-1 

11 



Corollary 2 .11. For a simple continued fraction, 

Qk ~ Max{k,l} for k > O. 

Proof immediate fi::om definition,s. 

Theorem 2.12, For all k..:. O, 

Proof: For k = 0,1 direct computat:i,on verifies the theorem. 

For k..:. 2, assume the statement is true for n < k. 

QkPk-1 - PkQk-1 = (~Qk--1 + Qk-2)Pk-1 - (akPk-1 + pk-2)Qk-1 

= (-,.l)(-Qk-lk-1 + pk-2Qk-l) 

= (-1)(-l)k-l 

= (-l)k. 

Corollary 2,13. For all k..:. O, 

Proof: 

12 · 
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Two other important results follow immediately from this theorem 

and are listed .without proof below. 

Corollary 2.14. For k ~ 1, 

pk-1 pk (-l)k ---= 
Qk-1 Q 

k Qk-lQk 

Corollary 2.15. For k > 2 - , 

pk~2 pk ~(-l)k-1 

----= 
Qk-2 

-Q 
k Qk-2Qk 

If one restriqts his attention to simple continued fract:ions, 

Corollary 2 .15 takes on added meaning, In a simple .continued fraction 

ak ~ 1 (k ~ 2), hence 

has the same sign as (-l)k-l. If· k is even, (-l)k-l is negative,, 

thus the differencl;! 

Or the even ordered convergents form a strictly increa:sing sequence.of 

real numbers, It_ could be shown .in similar fashion that the odd-ordered 

convergents. form a strictly decreasing sequence of rea;ji. numbers. These 

results are listed below as Coro1lary 2 .16, 
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Corollary .2.16. Let • •• , a ] 
n 

or be simple 

continued fractions; then 

A) the sequence 

is strictly increasing (sequence finite for finite fractions). 

B) the sequence 

{ }

00 

p2k+l 

Q2k+l k=O 

is strictly deci;easing (sequence fin:t,te for fini.te fractions), 

In the proof of the above corollary no use w'as niade of the fact 

that simple continued fractions have integral partial quotients. Hence, 

the hypothesis could be weakened to include those fractions with 

positive partial quotients. This latter observation will be known as 

Corollary 2.16 in its most general form. 

Another important corollary of Theorem 2,12 indicates that the 

conve:rgents., as characterized in Theorem 2 .10, are in their lowest terms. 

Corollary 2,17, If 

is the kth convergent as defined in Theor.em 2 .10 of a simple .continued 

fraction, then 
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The proof of this follows from the fact that Pk and Qk will 

always be integers when .the continued fraction is simple. Theorem 2.12 

establishes that there always exist integers X and Y such that -

Theorem 2.18. Every odd-ordered c<::mvergent of a simple continued 

fraction is greater than every even"".'ordered convergent • 

• 
Proof: . Let k be odd and J be eyen. 

Cas-e I: k > J 

or 

But k - 1 is even and greater than or equal to J .. By Corollary 2.16 

the even convergents form an increasing sequence; hence, 

Case II: For k < J, th.e proof is similar. Since k and J 

were arbitrary odd and even integers respectively, the theorem is 

established. 

It is evident that for every finite sitnple continued fraction, the 

numerical value a is greater than every even convergent and less than 
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every odd convergent (except, of course, for the last convergent, even 

or odd, which is equal to a), In the following theore~ it is no longer 

required that the continued fraction be simple. 

Theorem 2.19, For arbitrary k (1 ~ k ~ n), 

Pk.,.lrk +Pk".'"2 

Qk-lrk + Qk-2 . 

Pk-l' Qk-l' rk, etc. refers to the continued fraction in the left 

member of this equation. 

Proof: Fro.m Theore~ 2, 7, 

where 

P' = 
k 

and 

P' 
k 

= -, 
Qk 

But Pk-l' Pk-Z' Qk-l and· Qk._2 are computed viith the elements 

(5) 

a0 , ••• , ak-l and, hence, are the same as Pk-:-1' Pk_2 , Qk-l and Qk_2 

respectively, Substitution in·(S) establishes .Theorem 2,19. 

Theorem 2. 20. For arbitrary k ~ 1, 
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Proof by inductlian: The statement is certainly true far k = 1. 

Assume it is true for u < k. Consider 

At this paint the discussion turns to infinite continued fractions. 

It has already been observed .that every finite continued.fraction .has a 

numer;i.cal val~_, nam.~ly the .value of the last convergent. For infinite 

fractions no "final" convergent .exists. Instead, there exists an 

infinite sequence of real num,bers corresponding to .the convergents 

' ... , , . . . . . (6) 

Definition 2.21. The .value (or ,numerical value) of an infinite 

continued fraction is the limit of its sequence of convergents (6), if 

that lim:iit exists and is finite. If an infinite continued fraction has 

a value, it is said to converge; if not,. it is said tlo diverge. 

Many properties of infinite continued fractions that converge and. 

finite continued fractions are analogous. The basic property that makes 

possible the further extension of this analogy is expressed by the · 

following theorem. 
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Theorem 2.22. If the simple continued fraction [a0 ;a1 ,a2 , ... ] 

converges, then so do all of its remainders; conversely, if at least one 

of the .remainders converges, then _the continued fraction itself · 

converges. 

Proof: Let 

denote the kth convergent of the g:i,ven continued fraction as before. 

The kth convergent of a remainder will be denoted by 

P' 
k 

Q'° • 
k 

From Theorem 2.19, for k = 0,1,. , . , , 

p 
n+k 
--· = 
Qn+k 

P' 
k 

Pn-1 -Q, + 
. k 

p 
n-,.2 

= ~--...,,......---P' 
k 

Qn-l·Q'°+ 
k 

(7) 

It follows immediately that if the _remainder r 
n 

converges then so does 

the continued fraction since if; 

exists, then 

; 

··. (:,..~- : .. ;m.J, '"• ,, . rk 
tlim -Q, = L -
k + CX) k 
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To see that the converse of the theorem is true, one needs only to solve 

(7) for 

and apply -the same logic •. 

P' 
k 

qT 
k 

It should be noted that formula (7) implies the same relationship 

for infinite continued fractions that was observed in Theorem 2,19 for 

finite continued fractions. If a= [a0 ;c11 , •.• ] is a convergent 

continued fractioI)., the fact that for all n .:_ O, 

where_ r: 
n 

CY. = 
P r + P n-1 n n-2. 
O r +Q. ·' n-1 n n-2 · 

is the value of the n-th ord_er remainder, will be referred to 

as Theorem 2,19 in its most generalized form. 

Theorem2.23. The value a. of a convergent infinite simple continued 

fraction is greater than any of its even-::-order convergents. and is less 

than any of its odd-order convergents. 

Since the value a is the limit of the convergents and Theorem 2.18 

estab],ishes that every even convergent is less th.an every odd convergent, 

a.· must be the limit of the subsequence.of even convergents and that of 

t:1,').e odd convergen ts. Hence, a. is between any two consecutive 

convergents and strictly greater than the _even.ones and less than the 

odd ones. As corollaries to the above theorem, the following results. 
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In each case assume that a, Pk, Qk' etc. refer to a convergent simple 

continued fraction, 

Corollary .. 2, 24. 

This follows from the fact that ; a is "strilt:ly''. between 

Hence, either· 

(8) 

or 

(9) 

Thus, 

<· 

The proof of the following corol~ary .also depends on the_ 

inequalities (8) and (9). 

Proof~ From :On ang (9) , observe that 
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= + 

Multiplication by Qk+lQk completes the proof. 

Since the even-o,;der.convergents are strictly increasing and the 

value a of a convergent continued fraction is greater than any even 

convergent 

(10) 

where k - 1 and k + 1 are even. Similarly, for odd order convergents 

where k - 1 and k + 1 are odd. 

Corollary 2.26. For a convergent simple _continued fraction (k > 0) 

1 --< IQ P I < L k-l(l - k-1 Qk Qk+l 

Proof: From Corollary.2.24 

From (10) and (11) since ak..:. 1 

> 
];>k+l pk-1 -----
Qk+l Qk-1 

(11) 



Putting these two inequalities together. the following results: . 

Multiplying both members by Qk..,.l yield_s the desired inequality. 

Definition 2~27. Intermediate fractions. Let 

and 

be two cortsecutive convergents .. , then 

aPk-1 +_Pk-:-2 

aQk:_l + Qk.,..2 

for a e: N is called an intermediate fraction between 

pk-2 
-- · and 
Qk-2. 

Theorem 2.28. Any s~quence of. irite_rmediate fractions ·fro:m a simple 

continued fra.ction fo1;m a strictly incre~sing sequenc~ or a ,strictly. 

22 

decreasing sequence dep.ending oil whether . k is even or odd ,.respectively. 

Let i . be a positi;ve inte·g~r. 

(i + .l)Pk-L + Pk-:-2 

(i + l)Qk-1 + Qk-2 

Hence, if . k is even, 



iPk-1 + pk-2 

iQk-1 + Qk-2 , 

The inequality is reversed if k is odd, Since 

pk akPk-1 + pk~2 · 

Qk • ~ Qk-1 + Qk-2 

where ~EN, it should be noted that 

is an intermediate fraction between 

is 

If k is even, the smallest intermediate fraction between 

pk-l + pk-,,2 

Qk-1 + Qk-2 ·• 

23 

Similarly, if k is odd, it is the largest intermediate fraction. The 

result is that one of the following two inequalities must hold. 

(Assuming the continued fraction is simple.) 

0\ < 
pk-:-1 

Q k-1 
(12) 



or 

Corollary 2.29. For k > 0 in a simple continued fraction,. 

p 
. k. 
a - -

Qk 

Proof: By replacing k - 2· with k in (12) and (13), the. 

following results: 

But 

pk+l + pk 

Qk+l + Qk 

pk+l + pk 

Qk+l + Qk 

< 

24 

(13) 

The question naturally arises as to whether there. are. tests for the 

convergence of continued fracti:i>ns, just.as far infinite series. In ·the 

case where a. > 0, 
]. 

for all i .:_ 1, 
/ 

there is an extremely simple and 

convenient test for ccmvergence. 

Theorem 2.30. For the co:ntinued fraction [a0 ;a,1 , ••• ] to converge, it, 

is necessary and sufficient that the series, 

diverge. (a.> O, for i _> 1.) 
]. 

co 

~ a 
n=l. n. 

(14) 
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Proof: From Corollary 2.16 in its mast general form,it is :known 

tha.'t the even..,.order convergents form an increasing sequence of real 

numbers and the _odd-order convergents ,. a deerreas:i,ng sequence~, Hence; a 

continued_ fraction has _,_a limit ·if ,and only if the __ above two sequences 

have the same limit; They will have the same limit if_ and only ._if. 

= 

or 

(15) 

Thus, cond:{.tion (15) is necessary _and su_fficient for the ca_nvergence, of. 

a continued fraction of _this _type. 

Suppos~ 

00 

converges. By the ·definition of Q k 

Hence, either Qk.:...l < Qk or Qk~l- > Qk-2' 

In the first case, since (14) converges, there exists N such that· 

if k ..::_ N, then: 8k. < 1. Thus,._ for ,all k ..::_ N, 

and hence 



or 

In the second case 

If ak < 1 (as ·for k ~ N) 

1 
ak + 1 < 1 - a 

k 

Thus, fol;'· all k _::...N, there is L = k•~ 1, or k - 2 St.lCh that 

If L .,::.. N, the. same inequal1:ty tnay be applied to QL" . Cont:f.nuing in 

this ~nner, tqe following inequality results: 

26 

(16) 

where. k > L > , • • • > .r . .:. N arid. S < N. Beca:use it was .. assumed that 

(14) cG>nverges, it is known that the followir:ig infinite product 

00 

II 
n=N 

(1 - a ) , 
n 

also converges and has a positive value , A. Thus, · 
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Let Q = max{Q0 ,Q1 , ,,,, QN_1 }, From (16) it is noted that .. 

Q < .9. k ;\ (k ,:. N) 

consequently, 

(k.:. N). 

This implies that relationship (15) does not hold., and the continued 

fraction diverges. 

Conversely, suppose .that. (14) diverges, Since Qk > Qk_2 for 

k > 2, let c = min {Q0 ,Q1 }, and thus .for all k .:. 0, Qk .:. c, Hence, 

(k.:. 2). 

Successive application of this inequality gives·. 

and 

so that 

k 

Q2k ..:'.. QO + c L a2n 
n=l 

k 

Q2k+l ..:'.. Ql + c L a2n + 1 
n=l 

2k+l 

Q2k + Q2k+l > QO + Ql + c L 
n=l 

In other words, for all odd values of k, 

k 
c. L 

n=l 
a., 

n 

a , 
n 
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A similar proof would establish the above inequality for even values of 

k. Thus, in any product QkQk-l one of the factors must be greater 

than 

a • n 

Since·the other factor is greater than or equal to c 

a • n 

Since (14) diverges, then relation (15) must hold; hence, the continued 

fraction converges. This completes the proof of Theorem 2.~0. 

The above theorem implies that any infinite simple continued 

fraction must necessarily converge. This results from the fact. that 

for i > 1, a > 1, hence i - . 

ex, 

}: 

i=l 
a. = oo. 

J. 

and [a0 ;a1 , .•• ] converges. This observation allows the hypothesis o~ 

Theorem 2.23 and Corollaries•2.24, 2.25, and 2.26 to be weakened by 

replacing "convergent simple cqntinued fract,ionll with •isimple continued 

fraction." The representation of real numbers. with simple continued 

fractions will now be considered in detail. 

Theorem 2.31. Let a 
b 

be a rational number in its lowest terms with 

b > 0. Thim there exists a finite simple continued traction 



Proof: Let 

a 
ao + Rl where - = b 

Let 

and define 

then 

where O ~ R2 < 1. 

been determined. 

Let 

and define 

then 

ao 

where 0 < R.+l < 1, - J . 

• [t] 
0 ~ R1 < 

Suppose 

and define 

1. 

al = pi] 

1 
-· =al+ R2 
Rl 

Rl 

ao 'al' •.. ' a .· 1 ' J-' 

1 
= - - a. 

Rj J 

1 -= 
R. 

J 

a then -- - ao, b 

and. 0 < R. < 1 have 
- J 

29 
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To complete the theorem it must be shown that, 

1) for some k, ~+l"" O; 

2) [ao;al, ... , ak] is a simple continued fractiqn; and, 

3) [ao;al, ~] 
a ... , = -
b 

It can be shown by induction that for all k.:. 1, ~ is rational 

and in its lowest terms when _its denominator is taken to be the 

numerator of ~-l' Simple computation verifies these facts for k 1, 

Suppose 

~-1 = 

is rational and in its lowest -terms (i.e. (~_1 ,dk_1 ) = 1). By 

definition, _ 

1 
R =--·---1<: R where 

= 

--k-1 

dk-1 - ak-l~k-1 · 

nk-1 

where dk = nk-l and nk = dk-l - ak-lnk-l' - Gertainil.y, ~_is 

rational and (dk-l - ak-l nk-l '~-l) = 1 since - (nk-l 'dk-l) = 1. Also, 

which- implies 

nk < dk = n k-1' 
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Thus, when expressed in lowest terms the numerators of the remainders 

~ form a strictly _decreasing sequence of nonnegative numbers. The 

largest numerator in this sequence is n1 = b, Of necessity, a strictly 

decreasing sequence of nonnegative integers bounded above (and below) 

must be finite, The only way.for th,e sequence to terminate. is for one 

of them, say nk+l to be zero. Hence, there is a remainder 

~+l = 0 

and.the continued fractiqn is finite with k + 1 terms and is of the 

form. 

[ ao ; al ' •.. ' ak] • 

To establish (2) it need only be observed that a0 = [ : J is an 

integer and for all j ~ 1, 0 .::_ Rj < 1 . which implies 

and, hence, 

or 

1 < 1 
R. 

J 

aj e: N. 

Thus, by definition, [a6 ;a1 , • , , , ak] is a finite simple c~ntinued 

fraction. 
a: . 

It will now· be .shown by in_ductiori .that . b is the _numerical value 

of the continued fraction where a. 
J 

is defined as 

above. 
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Supfose .it has been shown that for O ~ j < .k 

then 

a 
[ao; aj ,aj-f:l ; Rj+Z] - = ... , 

b 

(ao; 
-1 = ... ' aj·' [aj·+1 ;Rj+zll 

[aQ;_ 
...;1 

= .... ' aj ,aj+l '-Rj+Zl. 

It has been noted that eventually a zero remainder. will be en.countered, 

say 
-1 

In that case Rj+l EN and hence 

This :completes the proof of Theor~m 2 •. 31. 

The· reader should recall that the :final partial quotient E>f any· 

finite .simple continued fraction i~ required to be greater than unity. 

Suppose now .that .two simple finite continued .fract;ic.>ns whos.e numerical 

a 
values are . b have been co.mputed •. That is 

a = - = 
b 

or 
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Certainly if either.· [a1 ; ••• , ak] or [b1 ; •• , , bj·] has more than one 

partial quotient, then· 

1 
and 1 

are both less than one, By requiring that the last partial quotient in 

both continued. fractions be greater than one also forces the above. 

expressions to be less than unity even if·they consiet of a single term, 

namely, 

1 1 
[all or [bf. 

1· 

Since· a0 and b 0 
a 

are integers less than.·. b but less than one unit 

a 
difference from b , they must be the .same integer. Hence, 

by induction. It follows that 

for O < i ..::_ k and 

k = j. 

Thus, the following important theorem has been demonst.rated. 

Theorem 2, 32, The finite simple continued fracti.on representing a 

rational number is unique. 
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Now consider the .irrational ·number a. The process described. in·· 

Theorem 2.31 is applicable to a. Using such a process, a simple 

continued fraction ·could be associated with the irrational.number a. 

This continued fraction .would necessarily be infinite since the values 

R. (i .:_ 1) are all irrational and, there:fore, 
1 

1 =--

cannot.be zero. 

a. E N 
1 

As previously stated, the infinite simple continued fraction 

[a0 ;a1 , •.• J associ.ated with the irrational number . a must. of 

necessity be convergent (see· discus.sion. followiI).g Theorel!l. 2.30). 

Conversely, starting with an _inf:tnite simple continued fraction, its. 

value may be computed as in Definition 2, 21. ':['h.;ts value must ·be 

irrational since if it was rational; that rational value would have a 

finite continued fraction coinciding with the infinite fraction, which. 

is impossible~ 'irhe proof: of th.is last st,atement is precisely the one 

used. to show the uniqueness of the continued ·f:ra:ctions associated with 

rational numbers. 

Theorem 2.33. Every irrational-number· a has a unique.infinite simple 

continued fraction associated with it (as computed in Theorem 2.31). 

This fraction is convergent, and its value is a. 

Proof: Part of this theorem has already been estap,lished in the 

preceding paragraph. Th~ remaind.er of the proof will be shown .in two 

parts: 
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A) If the cop.tinued fract;.ion [a0 ;~l'a2 , ••• ]. is assoc.iated with. 

the irrational number_ a (i.e.. as _generated. in Theorem 2.31)·,. 

then its value is· a. 
' ' 

B) The ,infi~ite ,cont~pued £ractiot1, who_._e va~ue is a is unique. · 

A) From Theorem 2 •. 31 note th_e following cG>~structipn for the 

continued fraction, 

and 

1 
-=al+R2·' 
Rl 

1 
-R=a+R, n n+l · 

n 

Hence, by induction it could be shown, 

0 < R1 _<.! 

0 < Rn+J: < 1. 

(17-) 

where_ 
-1 

Rn+l > 1 .. for all n. It ·is important herEa_ to r~alize that (17) 

is a finite cqntinued fraction with the same first .. n elements. as the 

infinite con.tinued fraction asseciated_ with a. As such,. the first n · 

convergents. of the finite fraction will coincide with the first. n 

converge.nts of the infinite continued fraction.· It has been previously 

noted that for finite .co~):inued fracti;ans.(of n.+ l· el~ment1:1) 

P' 
n:H a.=-,-

Qn+l· 

R-1 p + p -
ntl n n-,,l,. = 1 ' ., 

R +lQ. + Q 1 n n n-:-
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for all n > 1. 

Consider .. 

p -1 p R +l + p 1 n n n n~ - .....!!. Cl - - .. 
~ -1 . Qn. R . Q + Q 

n+l n n-1 

~p - p ~ n-1 n -1. = . -1 · . 
(Rn+lQn + Qn~l)~ 

1 = -1 
(Rn+lQn + Qn-l)Qn 

< 1 

Qn-lQn 
(18) 

It is emphasized here again that Qn and Qn...,l. are the same for the 

infinite continued fractipn associat;ed with a. and the finite continued 

fraction (17). Since the, infinite centinued fraction is simple, it is 

known by Cot"ollary 2,11 tha.t:: 

and thus 

Hence, as n + co 
. . ' 

Thus, the conclusion is that 

lim 

'Q > n n-

1 ---+ o. 
Qn~-1 

n + .. co 



and 

where 

p 

lim _.!!. = a, 
n -+ co Qn 
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is the nth convergent of the infinite. continued fra~tion associated with 

a, This establis_hes part . (A) of the theorem. The proof of part (B) 

follows exactly the same as that for the uniqµeness of finite simple 

continued fract·ions, 

The preceding arguments have shown that every real number. has .a 

unique representation as a simple continued fraction. The importance. of 

this representa.tion lies in the fact· that the real numl.,er may· be 

approximated te any predetermined degree of accuracy by evaluating the. 

convergents of the continued fraction, Continued fractions are thus 

similar to decimal.repre.sentatidn of real numbe:rs. 

Whenever there. are dual ~ystems that perform ths same task, such as._ 

representing real numbers, it is .natural to_ compare the advant.ages and. 

disadvantages of ea.ch. It ·will be .shown in the next chapter that 

represen.tation by continued fractions is superior to that of decimals 

in many ways. The nature of the continued fraction is often more 

descriptive of the nature of the number. It ·has already been neted that 

finite· continued fractions represent ·rational numbers. ,while infinite 

fractions represent. irrational numbers .• · Some rational ·numbers have 

finite decimals while others have infinite decimals, It will be shown 

that algebraic and transcendental numbers have characte_ristic continued 
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fractions while the same is not true of their decimal·representations. 

One of the disadvantages in using continued fractions to represent real 

numbers is their unwillingness to combine even under the simplest of 

arithmetical operations. There is no practical algorithm for the 

calculations of th~ sum or product of two continued fractions. 

Continued fractions find their primary application in theoretical. 

investigations involving the study of the arithmetic laws of the 

continuum and the arithmetic properties of individual irrational 

numbers. The remainder of this paper will be devoted to those ends. 

The primary tool in this investigation will be tl:lat of simple continued 

fractions. Unless stated otherwise, the term "continued fraction" will 

now mean simple continued fraction. 



CHAPTER III 

BEST APPROXIMATIONS AND TRANS.CENDENTAL NillfilERS 

The representation of a real number a as an ordinary rational 

fraction i$ a natural application of the convergents pf the continu~d 

fraction associated with a. This. representation may be .made within 

certain specified margins of accuracy given.by·Corollaries 2.24 and 2.29, 

1· 
< ' • 
- ~~+1 

Equality is necessary for the rigQt-'-hand symb0l since if . a is · 

rational; it is equal to its. last convergent., say 

and 

p 
n = 

p 
n+l 

Qn+l 

The problem of. approximating irrational (or even ·rat_iona.1 numbers. 

with large denominators) by rational fractions con.sist.s of determining 

which fraction, within the specified limits of accur~cy, has th.e 

smal],.e:'~t · (positive) denominator, The rational ap·proxirilation of 'IT 

within .15 accuracy is 3 sirice- the ·denominator pf 3 
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smallest of all the rational numbers in that range of approximation. 

Thus, 3 is said to be the best rational approximation of rr within 

.15 units accuracy. This concept is defined formally below, 

Definition 3.1. . ~ Approximation (Type I). The rational number 

(for: b > O) is a best approximation of the first type for a real 

number a if every other rational fraction with the same or smaller 

denominator differs from a by.a greater amount, To be precise, if 

0 < d < b 
a · c 

and b 'f d , then 

a 
b 
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The difference between the real number a and the rational number 

a b may also be characterized in anE>th.er fashion. The expression 

jba - aj also is an indication of this difference. 

Definition 3.2. ~ Approxill).ation (Type II). 
a The rational number. b 

(for b > O) is. a best approximation for the real numb.er a of the 

second type if. 0 < d < b and then 

jda - cJ > Jba - a~. 

It. is easy to. show that a best approximation of Type II i9- also a 

best approximation of Type I. Consider the contrapositive of the 

statement. 

fraction 

If 
a 
b 

is not a Type .r best approximation, then there is a 

c· d such.that, 0 < d < b and a.Le 'h - r - wit 
b d 

(1) 



Multiplying the inequality (1) by the inequality. d < b the following 

results 

Ida - c I < Iba - a I · 

Hence, a 
b 

is not a best approximation of the se:conc;l type. 

The converse., in general, is not true. If a· is 1 7, 1 
then -· 5 

is easily seen. to be a best Type .r approximation.. Howe:ver, that it is 

·not. a best approximation of Type II is seen from _the inequality 

and 1 < 5. 

1 
7-

1 
7 

An important ptoperty of Type .n·approximations is stated·in the 

following theorem. 

Theorem. 3. 3. Every best approximat:f_on to. the real number a of the 

se.cond type is a convergent of the colltinued fraction asso~iat~d with 

a.. 

Proof: Let [a0 ;a1 , ••• ] be ·the. continued fraction ass0ciated 

w:!-th a.. (It _shoul.d be µoted that the .foliewing theorem also applies 

to rational a.) Let 
a 
b 

be a best approximation to 

type. Assume that 
a 
b 

is not a convergent. 

Suppose further that a <. - a· b O' henc~, 

11 · a - a0 I < I a. - : I < I b a - a I 

of the second 

since. 1 < b and a. < a.. 
0- Thus, . a0 /1 . would be a "better" 

41 
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a approximation of the second type than b, The conclusion must be that 

a 
b.:. ao. 

a 
If· b is not a convergent to ci. · then either 

I) or 

II) there is a k such that : lies between 

In the first case, since 

ci.-.!! > 
b 

and hence 

On the other hand, since . a1 

so that 

where 1 < b. 

and 

pl 
Cl,< -

- Q ' 1 

1 
> --
- bQ ' 1 

[ iJ where R1 



a This contradicts the hypothesis that b was a best Type II 

approximation. 

Case II is the only alternative left. In this case, 

p 
a k-1 ----
b Qk-1 

> 1 
- bQk-1 

since aQk-l - bPk-l ~ 0. Also 

p 
a k-1 ---
b Qk-1 

< 
pk pk-1 ----
Qk Qk-1 

Combining inequalities (2) and (3) and multiplying both members by 

bQkQk-l yields Qk < b. On the other hand, 

and hence, 

whereas 

a 
a 
b 

> 
Pk+l a ----
Qk+l b 

/ba - a/ 2:_ -1 - , 
Qk+l 

Combining inequalities (4) and (5) results in /ba - a/ 2:_ /Qka - Pk/ 

where Qk < b 
a contradicting that b is a best approximation of 

II Th 1 · b h a · Type . e cone usion must now et at b is a convergent to a. 
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(2) 

(3) 

(4) 



The converse of Theorem 3,3 is not true, However, in all cases 

1 1 > R1 ~ 2 , it is true. This case will be 

referred to as the trivial case, 

Theorem 3.4. Every convergent is a best approximation of the second. 

type, the _sole exception being the trivial case of 

and 

Proof: Cas_e I, 

1 
0 ~ R1 < 2 and 

Suppose a 
b 

is a "better" appr©ximation of the second type; thus, 

must equal one. Since 

and 

it must be true that 

ao <a< a +!<a + 1 
0 2 0 

a = ao + 1. But in this event J1 . a - aJ 

b 

> l 
2 

whereas 11 ao I 
1 and ~ is not "better" approximation of . a - < - a 
2 b 

a. 

Case II, a is a real number, and the c0nvergent is 

p 
n 

Q' 
n 

n > 1. 

44 



The proof of this case is based on Corollaries 2.25 and 2,26. 

Suppose 

p 

~"' ...1l b Q 
n 

with 1 < b ~ Qn and n > 1, If 

p 
a n-1 · -=--b Q . ' 

n-1 

then the latter corollary indicates 

or 

If 

then 

and hence~ 

IQ a - P I < -1 - < 1° P I n n Qn+l ~-la - n-1 

a 
b 

Cl.. + 

p 
a n-1 b 7'-Q-·. -, 

n-1 

p 
n-1 

ci.---

Qrt-1 
> 

45 

.::. b~ • (6) 
n-1 

Multiplying both members of inequality (6) by bQn-l the following 

results: . 
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Q. 1 jba -- al+ bjQ. 1a - P 1 1 > 1. n- n- n-

The assumption that: 1 ~ b ~ Qn · a_nd Corollaxy 2. 25 leads to 

1 > bjQ 1a - P 1 1 + Q 1 1Q .a - P I - n- n- · n- n n 

whence 

IQ a - P I < jba - aj •. n n (7)-

Equality in (7) is imposs::!.;ble for a· irrationa+ since 

p . 
: ';& Qn. 

n 

For rational. a., excluding equali:tY in (7) ,requires an additional. 

argument whicll, may . run as follows.. Assume equality holds _in · (7) and let 

••· P r + P B.J·. n-1 n _ n~2 
' a = er"" 0 r ' + Q 

· "'n-1 n n-2 

with ration-al as in Theorem 2.19, and It -is thus _the 

case that 

which implies 

(8) 

From the left member of equality (8), applying Theorem 2,12 and 

Corollary 2.13, it follows that 
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IQ (P lr + P 2) - P (O lr + Q 2) I ... I (-l)nrn.+ (-l)n-lanl n n- n n- n --ii- n n-

"" Ir - a I' n n 

and hence 

lbP - aQI • Ir - a I· n n 
(9) 

Equality (9) indic~tes that r is an integer; thus, by the definition 
n 

of simple continued fractions, 

contrary to the assumption that 

r =-a and n n 

p 
a .J. n 
b T Q • 

n 

Thus, equality cannot hold in (7) and IQ a - P I < Iba - al. Hence, 
n n 

is a best approximation of Type II. This completes the argument for 

Theorem 3.4. 

It can be shown that any approximation of the first type will be a 

convergent or an intermediate fraction. For a proof of this statement, 

the reader is referred to [10) Theorem 15, page 22. The converse of 

this theorem is not nearly as complete as that for Theorem 3.3. 

The preceding theorems concerning best approximations of the second 

type have a striking geometric interpretation for an irrational number 
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a.. It was Klein who first observed in 1895 that if one considers all 

points in the Cartesian Plane with integral coordinates as pegs (or 

posts) and the equation of y = a.x, which will pass through only the 

peg at the origin when a. is a positive irrationa~, then the 

convergents to a haye the following characterization. One is to· 

imagine that. two strings have been attached to the graph of y = a.x. at 

a point infinitely distant from the origin in the first quadrant. At 

the origin one string is pulled above.the graph and the other string 

pulled down. The freedom of movement of the strings will be restricted 

by the pegs, and they will "catch" on certain ones. (See Figure l,) 

Consider the bottom string. The slope of the graph is, of course, 

a.; but the slope of any "segment" of the string is greater than a.~ By 

"segment" is meatJ.t a part of the striq.g "caught" between two pegs. The 

result of these conditions requil;'e that the bottom string beco.mes a 

greater vertical distance from the graph of y = ax as one measures 

these distances nearer the origin, If one considers the expression 

it is apparent that this is the vertical distance from a point on the 

graph to point with the coordinates (x0 ,y0). 

Let (x0 ,y0) be a peg that "catches" the bottom string. There are 

no pegs with smaller x . coordinates that are closer. to the graph · 

(vertically) since the line gets further from the .graph as x becomes 

smaller. There are certainly no pegs between the line and graph. 

Hence; for all y EN and x ~ x0 , x EN 
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y • • 

• • 

• !' 

• • 

; 

• ' i 
' J ,. 

' • • 

·x 

Figure 1 

Thus, 

is a best approximation of the second type. The "catching" pegs below 

the line will be even convergents, and those. above the line will be odd 

convergents. 

With a = 13 = [1;1,2,1,2,1, ... ], the convergents are: 

l 2 5 7 19 26 
1 ' I ' 3 ' 4 ' 11 ' 15 ' • · • • 

The pegs below the line are at the points 

(1,1), (3,5), (11,19), ... , 
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and.the pegs above the line are at the points 

(1,2), (4,7), (15,26), •••• 

This geometrical interpretation of .the coi;i.vergents of an irrational. 

a leads to many fascinating applications of .the forege>ing theorems. To 

suggest but; one of many, consider 

Io P - q P I = I c-1):n I = 1. n n-l n""."1 n (10) 

If one considers the vectors [Q P] and [Q P ] · the ·left-hand 
n' n n-1! n-1 ' 

member of (10) is just the .bar product. The area of the triangle with 

these vectors as its sides is 
l 
2 

this product. Hence, the· area of any. 

triangle drawn from the origin to points which represent consecutive . 

convergents will have the area l 
2· 

The foregoing material of this chapter concerns itsel{ witQ 

minimizing th~ difference I a - : I for all possible ration~ ·,numbers 

~ where the .denominator b. has certa:i,n restrictions placed on it. The· 

result has been that· the convergents .. 

turn out to be the "bestll choice of all the fractions, sati.sfying the 

given restrictions on the denomit>.ator b. Hence, in any examination of 

rational approximations to the .number a, it suffices to examine the 

properties of the :convergents to a. One sue~ property of the 

convergents was. stat~d in Corollary 2. 24 from which the following 

inequality is de;ived, 
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(11) 

The question naturally arises as to whether the inequality (11) can be 

a strengthened.· Does there exist a rational number b (b > 0) such that 

1 (12) 
f(b)b 2 . 

where f(b) > l? Of,course, inequality (11) states that an infinite 

number of such rationals exist satisfying (12) for. f(b) = 1 and o. 

irrational. In this light, the following theorems deal with possible 

values for . f (b) • 

Theorem 3.5. If a number o. has a convergent o~ order k > O, at 

least one of the follewing two inequalities must hold: 

1 
< --2 ' 

2Qk 

p 
k-:-1 · 

0. - --
. Qk-1 

Proof: Since o. lies between 

it follows. that 

+ = 

pk 
and Q, 

k 

< 
1 
2 • 

2Qk-1 

• (13) 
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This inequality follows from the fact that 

2 2 2 2 
Qk + Qk-l > 2QkQk_1 • Divide both members of this inequality by 2QkQk-l 

and the desired expression r~sults. In order for inequality (13) to be 

true, at least one of the two inequaliti~s in .the conclusion must hold. 

Corollary 3.fr. If a is irrational, the.n ·there are an .infinite number 

of. rational il.umbe.rs a 
b 

satisfying (12) for f (b) = 2. 

Proof: . Since the number of convergents t0 a is infinite, .then so 

too is the number of pairs of convergents. {c2n,c2n+l}. But Theorem 3.5 

states that each pair must contain a rational number satisfying (12) 

with f(b) = 2, Hence, the corollary follows~ 

The above theorem also has a true converse in a cert:.ain sense. 

Theorem 3.7. a Every irreducible .rational fraction . b that satisfies 

(12) for f(b) = 2 is a cop.vergent of the number a. 

Proof: It will be shown that 

the second kind. Suppose 

a 
b 

is a best approxitllation to a 

Ida - c I < Iba - a I < ~b 

for d > 0 
c. a 

and d ;': b , then 

and consequently, 

.£__~ 
d b 

c 
d 

1 
2bd 

a 
b 

of 



c .J. a On the other hand, since d r b ·, 

thus, 

1 
- < bd 

or 

2b < b + d; 

and hence, b < d, establishing that t is a best Type II approxima-

tion. By _Theorem 3,3, a· 
b is a convergent to Cl.. 

Corollary 3.8. If· 01. is rational, there are only finitely many 

rationals a 
b 

in their lowest terms satisfying (12) with f (b) :: 2. 
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The proof follows from Theorem 3.7, and the fact.that 01. has only 

finitely many convergents. 

Theorem 3. 9. If a number 01. has a convergent of order k > 1, at 

least one of the following three inequalities must hold: 

Cl. - < l 
rs Q2 , 

k 

Cl. - < 
1 

2 • 
rs Qk-2 

Proof: Assume the statement is false, then for k > l, 



1 > 1 
- Is Q2 

k 

> 2 
- Is Qk-1 

and 

> 1 
- r:: 2 

v5 Qk-2 

In Chapter II it was observed that for three consecutive 

convergents to a either, 

or 

From these inequalities it follows that 

1 + 1 pk 
+ 

Pk..,.1 1 
2 . < a a --- = rs Q2 rs Qk-1 

- Qk Qk-1 QkQk-1 
k 

and 

1 + 1 
< 

pk-2 
+ 

pk"'."'! 1 --- a a --- = 

rs Q~-2 rs Q~-1 Qk-2 Qk-1 Qk-2Qk-1 

These inequalities may be restated as 

( Qk )
2 rs ( Qk ) + 1 < 0 

Qk-1 - S Qk-1 
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. 



and 

Hence, 

must both satisfy the inequality 

x2 - /sx + 1 < O. 

Using elementary algebra one discovers the solution set to this last 

inequality is 

Thus, it is apparent that 

/s - 1 Qk ---<--
2 - Q ' k-1 

Qk-1 /s + 1 -<---
Qk-2 - 2 

In Theorem 2.20 it was noted that 

and hence, 

+ 1 . 
~ ~-k-1 

Qk-2 

,. 
i 

I 
; 
• ,. 
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(14) 



Let 

then 

Since s is a solution to (14) , 

15'. - 1 < s < rs+ 1 
2 -· - 2 

and 

rs+ 1 2 1 2 rs - 1 
= > - > = 

2 ls-1-s-rs+ 1 
2 

Therefore, since ak .::_ 1, 

1 1 rs-1 a+->l+,;_>1+ = 
1< S - S - 2" 

Since 

/5+ 1 
2 

is also a solution to {14), equality must b~ the case and 

But 

rs+ 1 
2 
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(15) 



is a finite continued fraction; and hence, it is rational while 

rs+ 1 
2 

is clearly irrational. Thus, equality (15) cannot hold, and our 

original assumption is false. 

Corollary 3,10 (Hurwitz). If a is irrational, then there are 

infinitely many rational numbers 

f(b) = rs. 

a 
b 

satisfying inequality (12) with 

The proof of this theorem follows. the same pattern as that of · 

Corollary 3, 6, 

The reader at this-point may suspect tha~ one could continue to 

strengthen the .statements of Theorems 3,5 and 3,9 ad infinitum. 
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However, this suspicion is erroneous as f(b) = rs is the best possible 

constant value. 

Theorem 3.11. The·re exists irrational a such that inequality (12) 

holds for only finitely many rationals : when f(b) = c > rs, c a 

constant, 

Let s = [1;1,1, ... ], 

Since c > rs> 2, then 

then it · can be sh.own • that 

1 1 <--<--
cb2 2b 2 

s = 
1 + rs 

2 

a implies that b is a convergent to. s by Theorem 3.7. It will be 

shown that only a finite number of convergents satisfy the stated 

conditions. 



Let n ~ 1, then from Theorem 2,20 

Qn 
-~ = [ a ; a 1 , , , , , · a1 ] n n--1 

where ai - 1 (1 ~ .i ~ n), It can be shown. that;, 

~ lim --= [l;l, ... ] = ~. 
n + co Qn-1 

Let r be any remainder as defined in Chapter II, It is clear.that 
n 

for aJ..l n, 

rn+l = [l;l, ,,,] = ~. 

Hence, 
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lim 
1 r.;;' 

~+~= v5, (16) 
n + co 

By the generalized form of Theorem 2 .19., 

where 

= 
r +lp + P .1 n n n-:-
r +1Q + Q 1 n . n n-

p 
n. 

1 1 = ---,.-------. = ---
Qn-1 Q2 L(n) • 

rn+l + -Q-.- n 
. n 

L(n) 

By (16), L(n) can be greater than c > /s for only finitely many n; 
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hence, 

• 

for only finitely many n, 

It is important to note that this last·. theorem does not· asser.t that 

for all irrational il one cannot improve f (b) = rs as in 

Corollary 3.10, but rather; for at least one, namely l;"=ls+l 
',, 2 ' 

is the best (or largest) value. The. following theorem asserts that .. the 

possibilities for improving the values of f (b) are boundless if the 

values are not:required to work fqr all irrational numbers, 

Theorem 3,12.. For any positive funct.ion. f(b) with natural argument 

b, there is an irrational numbe~ a. such that the inequality 

has an infinite number of solutions in.integers a and. b (h > O) 

with (a,h) = 1. 

Proof: Define a = [a0 ;a1 , • , • ] whe17e for i ~ 0, a .. +l > f ( Q • ) ; 
]. - ]. 

thus,· 

1 
< 



60 

In the most general case it was shown (Corollaries 2,24 and 2,29) 

that 

or, equivalently, 

Since 

and ~· ..:_ 1, 

Q 
0 < k-1 < l 

Q - • 
k 

Hence, 

1 < 'Ci (17) 

Hence, the larger ak+l becomes the more closely 

will approximate a. Thus, irrational numbers with large partial 

quotients admit·good approximations by rational numbers. Numbers with 
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bounded partial quotients must admit poor approximations. In 

particular, , = [1;1,1, ••• ] would have the worst rational approxima-

tions of all • 

Those approximating properties that are peculiar to numbers with 

bounded elements are completely expressed in the following proposition. 

Theorem 3 .13. For every irrational number a with bounded partial 

quotients, and for sufficiently large c, the inequality 

I °' a I 1 
< 

cb2 b 

has no solution in . integers a and b (b > 0). On the other.hand, for 

every number a with an unbounded sequence of elements and arbitrary 

c > O, the above inequality has an infinite set of such solutions. 

Proof: Suppose the partial quotients of irrational a are 

unbounded, then for all fixed c, there is an infinite set of integers 

k such that 

ak+l > C, 

By the second of inequalities (17) 

1 
~-2--- < --2 

Qk ak+l cQk 

1 

for all k in the above infinite set. Thus, the second assertion has 

been established., 

If there exists an M > 0 such that a. < M for i _::. 0, then on 
]. 

the basis of the first of the inequalities (17) 



for arbitrary k .!. O. 

Let a and b be arbitrary integers (b > 0) , and let · k be 

chosen by the inequali~ies Qk-l < b ·;. Qk' Since all convergen.ts. are 

best approximations of the first .kind, 

a. pk 
> 1 

(l - - > (l 

Q~(M + 2) 
. b - Qk 

1 ( tk )2 = 
b2 (M + 2) 

> 1 

b2(M ~ 2) (Qr r 
1 ( Q r k-1 = 

b2 (M + 2) ~Qk-1 + Qk-2 

> b 2(M + 2) a + Qk-2 
. 1 ( 1 )

2 

k Qk-1 

1 1 

> b2(M + 2)(ak ~ 1) 2 >bi(~+ 2)(M + 1) 2 , 

If c is chosen greater than (M + 2)(M + 1) 2, then for all k, 

a 
(l - -

b 
> .. 1. 

b2 (M + 2)(M + .1) 2 
. 1 

> 2. 
ch 
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Thus, Theorem 3.13 has been established. 

Based.on this previous theorem, one could define an order of 

approximation for infinite continued fractions with bounded partial 

quotients~ Th.e order could be the minimum value of c. such that . the 

inequality 

a 
b 

(18) 

has no solution in integers a and b (b > 0). It is apparent that 

the value c for a continued fraction with unbounded partial quotients. 

would be infinite. Another way one could define an order of approxima-

tion for bounded continued fractions.is finding the largest value of c 

such that (18) had an infinite number of solutfons. Hurwitz's Theorem 

would state that c = rs for the :i,rrational ~. Again, unbounded 

continued fractions would have infinite orders of approximation. 

The following theorem determines the best value of c in 

inequality (J.8) such that for any irrational number a. the inequality 

has at least on.e solution a 
b' a and b 

or, more generally, at least m solut icms. 

Theorem 3 .14.. Let 

denote then-th convergent to ~o = 
rs- 1 

2 

relatively ._prime, (b > 0) , 

, . starting with 
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Let 

p 
k = 1 { rs + 1} + 2m-l 

m 2 Q2m-l 

for m = 1, 2, •••• Then, for any-irrational, a, the inequality 

I a - .!:' < _1:..__ . b . - k b2 
(19) 

m 

has at least m soluti.ons in relatively. prime integers a and b, 

with b > O. Further., if _ a. = ~O, tqere are not more than · m such 

solutions •. 

The proof of' th,is theorem is :found in an_ artkle by A •. v. Prasad 

[18]. 

At this point the discussion. will tu,~ to the existence of 

transcendental numbers. In this discussion, the function f(b) in 

inequality (12) will no longer be a constan_t function but of t4.e -form 

1 c 
f(b) = bk . 

In order to make the d.iscussion complete, the _following definitions .. are 

made. 

Definition 3.15. a. is. an algebraic _number if there ·exists a polynomial 

of degree n .· with .integral coefficients such :that a. · is a root of that; 

polynomial. 
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Definition 3.16. is of degree n· _, if is algebraic and satisfies. 

an integral polynomial of degree. n and is not the root.of any integral 

polynomial of smaller degree. 

Every rational number a is algebraic sinc.e it ts a root of the b 

polynomial bx - a. Similarly, for m E: z, n;; is algebraic. since it 

is the root of· n x - m. 

Definition 3.17. a is a transcendent.al number if it is not algebraic. 

Examples of transcendental numbers are e, 1r, and 13 
a ' where· a 

and 13 are .algebraic, a 1' 0 ,1, and 13 is irrational. It is not 

irrnnediately obvious that any of the above ex~mples are transcendental or 

even that, such, numbers exist. The first noteworthy step in proving the 

existence of such numbers is the following theorem known as Lio.uville' s 

Theorem. 

Theorem 3.18 (Liouvd.lle). For every real irrational algebraic number 

of degree n, there exists a positive number c such that, for 

arbitrary integers a and b (b > 0), 

The proof of Liouville's Theorem is found many places in the 

literature.· One such reference would be [10], page 45. 

Liouville's Theorem shows that algebraic numbers. do not admit 

rational approximations greater than a certain order of accuracy. To 

establish the existen.ce of nonalgebraic or transcendental. numbers, one. 
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must only exhibit an irrational number for which rational fractions give 

extremely close approximations, Theorem 3,12 indicates that the 

possibilities for this are unlimited, 

Corollary 3 .19. There exists o. that is transcendental. 

Proof:, Using the apparatus of continued fractions, one may exhibit 

as many such, numbers as he desires •. ct = [a0 ;a1 , ••• ] will be 

inductively defined as follows: 

a0 is an arbit;rary integer and 

then for all k, 

ct -

For c · and n · fi:iced, there. exists k sufficiently large sucl:i that 

and hence, 

_1 __ < c 
k+l n 

Qk Qk 

Thus, by Liouville '.s Thec>1rem, ct is not algebraic of degree n. Since 

n was a:tbitrary, ct is transcendental. 



CHAPTER IV 

QUADRATIC IRRATIONALS AND PERIODIC 

CONTINUED FRACTIONS 

There are not many irrational numbers whose continued fractions are 

known to have any features of regularity, Here, the term "regularity,'' 

as applied to continued fractions, is used to imply a certain 

predictability about the partial quotients of the fraction. This 

predictability could be in the form of an upper (or lower) bound on the 

partial quotients, or it may be the complete determination of the 

quotients ad infinitum. 

The most prominent of those irrationals whose partial quotients are 

"regular" are the quadratic irrationals, It will be shown that every 

continued fraction whose partial quotients are periodic after some point 

has a value which is a quadratic irrational. The converse of this 

statement, first shown by Lagrange, is also true. 

Theorem4.l. Let n and s be fixed and n > O, s EN, and let a 

be the value of the .continued fraction where 

for all j _:: n (j EN) then a is a quadratic irrational. 

Prqof: Case 1. n = 0 (Purely periodic), As with decimals it is 

customary to indicate a repeating segment with a bar. With this 

notation the continued fraction fqr Case 1 may be written: . 
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Using the generalized form of Theorem 2,19, 

p la+ P 2 s- s-
a. = 

Q 10\ + Q 2 s- s-

where Ps-l' Ps_2 , Qs-l' Qs_2 are integers and Qs-l ·~ 1. Thus, a is 

a solution of 

and, hence, a quadratic irrationa:J_, 

Case 2. n > O, a.= [a0 ;a1 , ... , an, ... , an+s-l]. Again using 

Theorem 2.19, 

where (3 = [a ; • , . , a + 1J and., hence n · n s-

A+ v'B 
(3 :11=. --c 

where A, B, and C are integers with B > 1 and C ~ 0. By 

(1) 

(2) 

substituting equality (2) into equality (1), Case 2 and Theorem 4.1 are 

established. 

The converse. of this theorem is not so simple. Several theorems 

leading to Lagrange's Theorem will be needed. First, an examination of 

the construction of the simple continued fraction for the rn, where 

D is a natural number that .is not the square of a natural number, will • 



69 

be undertaken. In this discussion and the following theorems when v'D 

is written, it will always be assumed that D is a natural number and 

not the square of some other.natural number. The procedure as outlined 

in Theorem 2.31 and Theorem 2.33 indicates 

ao = [IDl and rn = aO + Rl 

• 
where 0 < R1 < 1. Thus, 

1 1 
rn + ao rn + b1 

-= 
Rl rn - D -

2 cl ao ao 

2 c1 = D - a0 and c1 > O. Hence,. 

D - b2 = Cl, 1 
(3) • 

Continuing, 

P1J and 1 
al+ R2' al = -· = 

Rl 

whence, by (3) ' 

1 1 1 
-= = 
R2 1 rn + b1 Rl al - al cl 

cl cl (v'D + alcl· - bl) 
= = 

- b )2 rn + b1 - a'l_c1 D - (alcl 1 



c1 (/n+ a1c1 - b 1) 
= -----,..2---·-2 __ 2 ________ ___ 

D - b1 - a1 c1 + 2a1b1 c1 

ID+ alcl - bl ID+ b2 
- = -------

1 - aic1 + 2a1b1 c2 

Using the above 

pattern, the following inductive definitions are made. 

Definition 4,2, With b 1 , b2 , c1 ,. and c2 defined as above, .for 

n > 2 

bn+· 1 = a c - b n n n' 

and 

Theorem 4.3. For all n.::. 2, = c c . n-1 n 

Proof; (By induction.) For n = 2, it has been shown that 

and thus, 

= D - (a1c1 .. - b / 
1. 
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Suppose the statement is true for n > 2; consider 

D - 2 D - (a c - b )2 bn+l = 
n n n 

D - b2 2 2 + 2a b = - a c c n n n n n n 

2 2 + 2a b = c c - a c c n-1 Ii n n. n n n 

c (c 1 
2 + 2a b) = - a c 

n n- n n n n 

= cncn+l' 

Since D is not the square of a natural .number, this insures that 

c # 0 for all n. 
n 

Theorem 4.4. For all n,:. 1, 

l -= 
R 
n 

Ip+ b . n 

c 
n 

Proof: (By inductipn.) This has been established for n = 1 in 

the discussion above. Suppose the statement is true for n > 1, and 

consider 

1 --= 
Rn+l 

= 

1 
1 
R n 

a n 

c 
n 

rn + b 
n 

= rn + b 

c 

- a c 
n n 

n 

1 

n - a n 
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c (v'D + a c - b ) 
n n.n n m ____ ....,.....;.._....;;;._ 

D - (a c - b ) 2 
n n n 

= 

Theorem 4.5. For all n ~ 1, 

vD-b v'D+b 
O< n<l<----n 

c 
n 

c 
n 

Proof: (By induction.) Since bl = a0 = [v'D] < YD, 

0 < ID - b < 1. But 
1 

c1 · is a natural number; eo, . 

Al$o, since O < R1 < 1, 

and, hence, 

rn - b 
1 

0 < ----- < 1. 

rn + b1 
1 < ----
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This establishes the theor.em for n = 1. Suppose the statement is true 

for n > 1. By Theorem 4.4 and the.fact that 0 < R < 1, 
n+l 

1 /n + bn+l 
1 < -- = -----

Rn+l cn+l 

By Definition 4.2 and Theorem 4.3, 



rn - bn+l 

Cn+l 

Since 

it follows that 

= 

.. 

2 
D - bn+l 

= 
cn+l ( rn + bn+l) 

c 
n -rn + a c - b n n n 

rn - b 
n 

0 < ------- < 1, c 
n 

rn - b 

c 
n 

rn + bn+l 

l 

rn - b 
n 

+ 
c 
n 

___ n_ .. + a > a > l. 
c n n 
n 

Thus, 

and the .theor.em has been established. 

a 
n 

If c < 0 
n 

for some n, then by Theorem 4.5, both rn - b and 
n 

v'D + b are less than zero; hence, 2rn < 0 which is impossible. 
n 

Thus, c > 0 for all n. 
n 

Consequently, rn-b < c <v'D+b, 
n n n 

whence vD - b < vD + b . and so b > 0 for all n, Thus., 
n n n 

Theorem 4.5 also implies b 
n 

< rn and c 
n 

< rn + b 
n 

< 2/n and the 

following corollary has peen established. 

Corollary 4, 6. For all n2:_l; b < rn and 
n 

c 
rt 

< 2rn. 

Thus, the possible number of expres~ions of the form 
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rn + b 

c 
n 

n 

must be less than 2D. But this implies that among the numbers 

1 1 
R ' R 1 2 

' ... ' 

at least two are the same. Consequently, there are numbers k and 

s < 2D such that 

Since 

1 1 -=--
~ ~+s 

1 1 
-- = ------
Rn+ 1 1 

R 
n [ t l 

for n= 1, 2, .•• , it follows that. 

and more generally 

1 1 --=---
~+l ~+s+l. 

1 1 
R=-R-

n n+s 

for n > k, Consequently, the sequence ~,ak+l' ,,, 

is periodic. 
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(4) 



Theorem 4.7. For n,:. 1, 

where 

"n • { ~n] and 

Proof: Since 

ID - b n 1 ------x 
n 

c· 
n 

0 < R < 1, it follows that n+l 

Hence, 

and 

By Theorem 4. 5 , . 

rn + b 
n 

a = ----n c 
n 

2 _ b3 
D(bn + bn+l) - bnbn+l n+l 

= ---.,----2----------

cn+l =-...;;;;..--
ro - b n+l. 

c n c n + l 

rn - b 

c 
n 

n 

cn+l ro - b ------=a + ___ n_. 
Irr - b n 

n+l 

1 
= a +

n x 
n 

c 
n 

75 



thus, 

0 < 1 
x 

n 
< 1, 

[xn+l] = an for n = 1, 2, ,,, . 
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(5) 

Furthermore, since equality (4) gives x = x for n = k _> 2, it 
n n+s' 

is clear by (5) that 

Repeating this argument (provided that k - 1 .:_ 2) it follows that 

1 
-· · - = ak-1 + ~ = 
~-1 

a + R k+s-1 -k+s 
1 =---
~+s-1 

and, hence, xk-l = xk+s-l; . thus, 

By induction it would follow that a = a 
k-j k+s-j 

for 1 < k - j < k - 1 

and, thus, the sequence a1 ,a2 ,a3 , .. , is periodic. 

It is thus clear that there is a sequence of formulae 

1 -= 
1 1 

al + R2' -·- = a2 + R3' '''' R = as + Rs+! = 
R2 s 

(6) 

and another related sequence 

' • • • ' XS 

From ( 6) 



and from (7) 

Hence, the formulae (8) imply the relations 

and 

Since 

a ' s 

ID= [a - a0 ;a 1 ,a 2 , .•• , a 1 ,x1 ]. s s- s- . 

and 
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(8) 

are both greater than one, the f;i.rst s + 1 · partial quotients must be 

the same. . Thus, 

a 2 ' • . • ' a · 1 = al. s- s-

Thus, it is ·apparent that the sequence • • • ' a 1 s- is symmetric . 

These findings are summarized in the following theorem. 



Theorem 4.8. If· D is a natural number which is not the.square of a 

natural number, tl).en in the representation of ID as a. continued 

fraction, 

the ·sequence · a1 ,a2 ,.,,, is periodic,:: Moreovel;', the period of. the 

sequence. is pure and, if _it ·con,sist.s of · s terms, a1 ,a2, , , ~ , as·, 

then s < 2D, a = 2 [In] s ', ' 

symmetric, 

and the sequenc~ , ' ' ' a 1 s- is 

With the. appropriate alteraticms, the foregqirig theorem c~uld. be · 
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changed so th.at its proof would ~lso estal;>lish Lagrange's Theor~m. This 

is extremely complicated and will not b~. presented he~e. Instead; 

another ·proof which is relatively .less complicated will be. presented. 

Theorem 4,9, (Lagrange) Every periodic cont;l.nued fraction represents 

a quadratic irrational .11umber and. every quadratic irrat:tonal number is 

represented by a periodic continµed fraction, 

Proof:· The f:Lrst half of ·this_theor~m is actually Theorem 4.la~d 

has been shown. The converse follows; let a. be a quadratic irrational 

satisfying the :quadratic equation 

2 
aci.. + pa. + c =. 0 (9) 

with a, b, and c integers, a ./: _0, Le·t a. · be writtei\ in terms of 
,<" 

its remainders of order' n,' 

Cl. = 
P r + P n-l·n n-i 
O 1r + .Q 
~- n n-2 



using the generalized form of Theorem 2.19, 'rhus, 

equation 

A r 2 + B r + C = 0 n n n n n 

where A , B , 
n n and c 

n 
are integers defined by 

Observe that en= An-l and also 

r satisfies the 
n· 
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(10) 

(11) 

= (b 2 - 4ac). (12) 

Hence, the discriminant of (10) is the same for all n and is equal to 

the discriminant of (9), Since 

1 <--
2 

~-1 

it follows that 

Therefore, the first formula of (11) gives us 



8 n-1 +-. -
Qn-1 r + b ( aQn-1 

8 n-1 +-
Qn-1 

= (ail+ ba + c)Q!_1 + 2aa.8n-l + 

82 
n-1 

a -2- + b8n-1' 
Qn-1 

from which, using (9), 

A 
n 

and since C = A 1 , n n-

= 2aa.8 l + n-

82 
n-1 

a -. -2-. - + b8n-1 
Qn-1 

~ 2/aa/ + /a/+ /b/, 

Since A and <I: are integers whose absolute values are bounded, 
n n 
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there is only a finite number of distinct pairs (A ,C ) • · From (12) it n n 

is also seen that B is a funct;i.on of the pair (A ,c) and, hence, n n, n 

there is only a finite numbe.r of disti.nct. equations of t4e form (10). 

Thus, as· n is increased from 1 to 00 there is .only a finite number 

of distinct values 

that 

r and thus there exist k > 0 and he: N such 
n 

This shows that the .cont:i.nued fraction representing a is periodic and 

Lagrange's Theorem is established. 
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It is interesting to note that the continued fractions of algebraic 

irrationals of degree higher than two are unknown. All that exists at 

this time are some corollaries to Liouville's Theorem, It is not known, 

for instance, whether the:l,r partia~ quotients are unbounded or bounded. 

In general, questions connected .with the continued-fraction expansion of 

algebraic numbers of higher degree than the second are extremely 

difficult and have hardly been studied. 

Before leaving quadratic irrationals, an application of Theorem 4.8 

is presented. The problem considered here occupied the skills of many 

of the great mathematicians until J, L, Lagrange finally settled the 

matter in 1769-7.0, An equation of the form 

2 2 
x - Dy = 1 

is known as a Pell equation, Named by Euler who mistakenly attributed a 

method of solution given by Wallis to John Pell, an English 

mathematician of that period. A solu.tion in positive integers of the 

Pell equation is easily obtained in terms of the continued fraction for 

In where D is a natural number and not the squa~e of some other 

natural number. It is of note that such D's provide the only 

interesting forms of the equation. 

Corollary 4.10, If a0 = [~], then a0 + In is periodic from the 

0-th partial quotient. If ID = [ao ;al, , , • , as-·l '2ao], then 

a0 + In= [2a0 ;a1 , ... , as_1 ]. 

The proof is inunediate .from Theorem 4. 8. 
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Theorem 4 .11. Let D be a natural number which is not the square of a 

natural number., then if v'D == [a0 ;a1 , , , , , as_1 ,2a0] the Pell equation 

2 x· nl • 1 

has the following solutions in positive integers. 

A) If the period s of the continued fraction for rn is 

then the numerator and denominator of the (ns~l)-th convergent, 

n = 1,2, .. --· ' form a solution for (13), 

(13) 

even, 

B) If the period s of the continued fraction for v'D is odd, 

then the numerator and denominator of the (2ns-l)-th convergent, 

n = 1,2, ... ' ' 
form a solution of 0.3), 

More0ver,, all the solutions are obtained in this way. 

Proof: Using the generalized form of Theorem 2 .19, the v'D may. be 

written 

rn = 
pks-:-l<ao + v'D) + Pks-2 

Qks-l<ao + v'D) + Qks-2 

(14) 

for k = 1,2,3, ,,, . Here, Corollary .4.10 is used to identify the 

value of any remainder whose first ;partial quotient has the index·· ks. 

Using (14) the following equality results.: 

Hence, 

a Q - p O ks-1 ks-1 = -Qks-2 and DQ - a P ks-1 0 ks-1 
(15) 



83 

since if Av'D + B = O, then A= 0 and B = O. Multiplying the first 

equality of (15) by -P ks-1 and the second by and then adding 

them, the following is obtained: 

P2 2 
ks-1 - PQks-1 = 

= (-l)ks. 

If s is even then 

p2 2 = l 
ks-1 - DQks-1 ' 

which proves conclusion (A) of the theor.em. If s is odd, then 

p2 2 
ks-1 - DQks-1 

for k = 1,3 ,5, 

for k = 2,4,6, 

which proves conclusion (B), 

The fact that all solutions are found in this manner is seen by 

considering the arbitrary solution (t,u), (t > u) of (13). Let 

t 
- = 
u 

(16) 

be the representation of number t 
u 

as a simple continued fraction. 

was observed by Corollary 2, 8, .it ·is always possible to choose k - 1 

as an odd number depending on whether or not bk-l == 1 or is greater 

than one. Thus, 
u 
t will have a finite continued fraction with 

(even) terms, 

Let 
t I t· 

be the k - 2 · convergent to. 
u 

Thus, 

k 

As 
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and u' < u. Since k · is·even,. by Theorem 2.12, tu' - ut' • 1. Now,. 

subtrac1;cing the last equality f1;om the equality 

fol.lowing result.a: 

t(u' - t) • u(t'· -.Du) •. 

By · (16), O <!.-b 1 u a.:.·; henc~, 

0 < t - b u < u. 
0 -

2 2 
t - Du • 1, the· 

(17) 

(18) 

In view of.the fa~t that t and u'. are relatively prime, there .is an 

integer l with the property that-the equalities 

u' - t = lu, t' - Du.= lt: 

hold. Hence, 

(19) 

From the inequalities O < u' < u and. (18), it _can be inferred that: 

lu' - (t - b0u) I < u, which by virtue ,flf (19) gives· l + b 0 = O,. so 

l = -b0 • Hence,. 

and consequently, 

t(b + fD) + t I 
0 ~----------~ = 

u(bo + In) + u' 

t ' = Du ... ,.., t '°o , . 

tin+ Du 

t + ulo 
= rn. 



Hence, v'D = [b0 ;h1 , ••• , bk_1 ,b0+1n] and thus 

vD = [h0 ;h1 , •.• , . bk-l, 2b0 ] , . which is unique by Theorem 2. 33. Note 

that .!_ is the k-1-th convergent to ID. It should also be noted the 
u 

period k for the ID may not be th.e ·shortest such period. This 

completes the proof of Theor.em 4 .11. 
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CHAPTER V 

THE CONTINUED FRACTIONS FOR x e AND 1T 

The purpose of this chapter is to examine the continued fractions 

of x 
e ' for certain values of x, and the continued fraction of 1T. 

The derivations of these two continued fractions are representative of 

two distinct approaches employed by mathematicians to find simple 

continued fractions whose values are a given irrational number. In the 

first case, it will be shown that a regular continued fraction exists 

whose value is x e , In the second case, the continued fraction will be 

computed using the decimal representation of TI, The regularity, if 

any, of the result.ing continued. fraction is unknown. 

Theorem 5 .1. If a .,. [a0 ;a1 , , • , ] is a continued fraction then for all 

n > 0 

where 

p 
n-1 

and 

are the nth and n-1-th convergents to a,. 

Proof: (By induction.) Computation verifies the theorem for 

n = 0. Suppose the theorem is true for n ..::... 0, then 
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(1) 
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( ao : ) ( a 

:) (~ p ) 
n n.,.l 

(2) ... 
1 1 Qn..;.l 

and 

en pn-1) c~l l) ( a +lp + p 1 :: ) n n n-
= 

an+lQn + Qn.,.l Q Q l l . 0 n n-

c p ) 
n+l n+l-1 (3) 

Qn+l Qn+l-1 • 

Substitution of the left side of (2) in the left.side of (3) completes 

the proof. 

It is thus clear that , a may be associated with the sequence of. 

matrices 

To facilitate the relationship be:tween. a and the sequenGe of matrices 

the following notation is introduced. If 

A • ( : : ) 

is a matrix, define. 

a 
= -c if c . .;. 0; 

b 
K2 (A) = d, if d ~ O. 



If {A} is a sequence of matrices as described in Theorem 5.1, then 
n 

(s = 1,2) 

as n -+ 00 , But in Theorem 5.1 so there is no loss of 

generality in writing 

K(A • • • A ) -+ a. 
1 n 

as n-+ 00 • The above limit may also be written 

Some important properties of the functions K1 and K2 will now 

be stated. The following thec;,rems, 5.2 to 5.4, are stated in terms of 

K1 , but apply equally to K2. 

Theorem 5.2. If 

and K (A • A • • •) 
1 1 2 

Proof: Let 

by hypothesis 

B·(: :) 
a., · whe·re ca.-+ d :/, O, then 

aa. + b 
CCI.+ d • 

A A • • • A = ( pn 1 2 Ii 
qn :: ) . 
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But 

and hence, 

Thus, 

Theorem 5.3. 

nonzero real numbers, then 

apn + b~ 

cp + dq 
n n 

ar. + bs .) n n-

cr + ds 
n_ n 

ap + bq. 
n n 

cp + dq 
n n. 

aa + b 
= -C-0\-. +-d.,...: 0 

and {a} is a sequence of 
n 

The proof follows from the fact that 

hence, 

a )r _) n n 

a )s 
n n 
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Theorem 5.4. If K (A A •••) exists and if 
1 l 2 · 

sequence of partial, products of {A1 A2 • • • An}, then·· 

in·particular, 

K (A A •••) • K(B B •••)· 
1 . 1 2 . 1 1 .2 ' 

The proof. follows fr.om the. fact that ·matrix multiplication is. 

associative and t¥t any subseq1,1ence of a convergent sequence of real. 

numbers has the same limitl po:f:nt. 

Theorem 5.5. If 

A ••• 
1 

I 
then 

··-Proof: 

K1 (M ) - K2· (M ) 
n n .. 

P s - r q n n n n 
= 

qnsn. 
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I det A1 • • • An I 
= ~~~~~~----

I q n s n I 

Theorem 5.6. B,A1 ,A2 , ... a~e matrices over the ring of integers such 

that ldet Ari = 1 for r • 1,2, .... K(A1 ,A2 , ... ) = a and if 

then 

as· n + 00 ; and if 

then 

K (A •••AB)+ a 
1 1 n 

··{: :). 
K (A •••AB)+ a 2 1 n 

as n + 00 ; and if B has a nonzero element in each column, 

Proof: It suffices to prove the fitst conc:j.usion of the th~orem; 

the second is similar, and the final result follows from the fi:rst two. 

Let 
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then 

ap + er 
a . • K (A. • • • · A B) · • n n . 
n 1 1 n •q + cs 

n n 

If· a or c is zero, the .conclusion follows immediately. Assume both 

a:i.:e non.zero. 

Since K(A1A2 •• •) exists, by Theorem 5.5 it is apparent that 

I~ sn I .-+ co as n .+ co. Also., ( qn, sn) = .1 beca,use 

Hence• for all large n since aq + cs = O · n n · implies 

qnsn divides ac, which is impossible fer sufficiently large n. 

Thus, 

a 
n 

- Pn 
q n 

a 
n 

as n + co. Since 

both .tend to a as. n + co, 

r . 
n 

s 
n· 

lac I = .............. ....,.._._. __._....._....,......,.._2 + 0 

lqnsnl laqn + csnj 

r 
and __£. 

s 
n 

it now follows that· a + a. 
n 

The next result follows directly from. the above theG>r.em and is of 

fundamental importance. 
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Corollary 5.7. Let B,A1 ,A2 , ••• be matrices over the ring of integers 

such that Jdet A)= 1, B is nonsingular and for r = 1,2,- ••• , 

Ar= BCrB-l. If K(A1 ,A2 , •.• )a.a, then 

It will be frequently possible to transform the product of matrices 

with integral elements and. r = 1,,.2, . .. • ' 

into a product of matrices of the form·exhibited in (1), so yielding a 

continued fraction. 

This procedure is employed to obta'in ah expression for ex in-the 

Theorem 5.8. 

x· 
e = K { 

co ( (2m + 1) 

. m~O (2m .+ 1) 

for all (real) x. 

Proof: It will be shown that 

n ( (2m - 1) + x. (2m - 1) 
II 

m=l (2m - 1) (2m - 1) 

where 

h (x) = g (...;,x)' n n 

and 

+ x 

- x) 

k (x) n 

(2m + 1) 

(2m '+ 1) 

= ( fn(x) 
h (x) n 

= .. f (-x) 
n 

_ x)} (4) 

l!n (x)) 
kn (x)· 

(5) 

(6) 



with 

f (x) = 
n 

n K 
I nC K x, 

~=O n, 

g (x) = 
n 

c n,K 

n K 
I (n ~ K)C K x, 

K=O n, 

= (2n - K - l)! 
(n K) !K! 

The relations (6) follow immediately from the fact that the left hand 
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side of (5) is unchanged by interchanging rows and then columns of .each 

of the matrices and replacing x · by -x. 

The statement of line (5) is established by induction pn n. The 

result is clearly true for n = l; assume that it is true for n > 1. 

To prove it is true for n + l, it suffices in view of (6) to show that 

(2n + l){ fn (x) + gn (x)} + xfn (x) = fn+l (x) 

and (7) 

(2n + l){fn(x) + gn(x)} - xgn(x) = gn+l(x). 

The first equation in (7) follows from the fact that: fn+l (x) is the 

upper left hand entry in the matrix formed by 

( 
fn (x) gn (x). · ) ( 

h (x) k (x) , 
n n 

(2n + 1) + x 

(2n + 1) 

c2ri + 1) 

(2n + 1) 

The second equality in ( 7) follows similarly. By using the induction 

hypothesis and the equations in (7), the required statement for n + 1 

would follow, 
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Now, to prove the statement of the theorem, it will be shown that 

f (x) 
n x ---+e 8n (-x) 

as n + oo. This. follows from, .the f~.ct that 

f (x) 
n 

n(n + 1) .~. (2n - 1) 

n K 
n(n - 1). ••• (n - K + 1) x 

= l + E (2n - 1) (Zn - 2) .. • (2n - K) K! K=l 

n 
= 1 + E K=l 1 - !... ) 2n 

Clearly, 

n 
= 1 + E K=l a 

( ~ x r 
n,K K! 

a -+ 1 as n-+ 00 for fixed K, 
n,K and also 

an,K<.(· 
1

K )K~R\)K= 2K· 
1-- l--

2n 2 

At this point it is necessary to recall Tannery's Theorem [2] for 

sequences which. states: 

Hypothesis: 

p 
F(n) = E 

r=O 
V (n) 

r 

(8) 



where p -+ 00 as and lim 
n -+ oo 

V (n) = w for all fixed r r 

IV (n) / < M , 
r - r 

where M is independent of n and r 

is convergent, 

Conclus.ion: 

lim F(n) 
n -+ oo 

00 

00 

E 
r=O 

w r 
= w. 

In applying Tannery's Theorem to (8), the VK (n) will be 

( 1 \K 

a~ 
n,K K!. 

which tends to 

u:l 
K! 

as n-+ oo, the values ~ are 

I 

~ 
K! 

hence, 

lim 
n -+ co 

f (x) 
n 

~~~~~~~~~---- = n(n + 1) ••• (2n ~ 1) 
; ( t x r. 

K=O K! 

1 zX 
e 
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Similarly, 

lim 
n -+ oo 

Thus, 

t~J (2m + 1) + x 
Kl 

(2m + 1) 

Similarly, 

1 
gn(x) 2 x 

--,~~-,---~~-~--,- = e 
n (n + 1) • • • ( 2n - 1) 

(2m + 1) 

(2m + 1) 

(2m + 1) + x 

(2m + 1) 

f (x) -x)} . n 
lim h (x) 

n -+ 00 n 

= lim 
n -+ oo 

(2m + 1) 

(2m + l) 

f (x) n 
g (-x) n 

and the proof of Theorem 5,8 is established. 

97 

1 zX 
e x = = e . 

1 
-2x 

e 

It is now possible to deduce some regular continded fractions from 

the relationship stated in Theorem 5.8. 

Corollary 5.9. The following are regular continued fraction expansions 

for the functions specified where k denotes an integer subject to the 

restrictions stated. 

(i) 
1/k 00 

e = [l,(2n + l)k - 1, l]n=O (k > 1) ; 

-----,. 00 

e = [2,l,2n,l]n=l' 
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(ii) 
2/k 1 1 . . ~ 

e • [1, 2 {(6n+l)k-l}, 6(2n+l)k, 2 {(6n+S)k-l},l]n•O 

(odd k > 1) 

2 ~ 
e • [7, 3n + 2, 1, 1, 3n + 3, 6(2n + 3)]n•O' 

Using the fact that 

( 
a+l 

a 
(9) 

with a= (2n + l)k, the proof of part (i) follows directly from 

Theorem 5.8. A similar device is employed to prove part (ii) [23]. To 

make clear the use of the notation in this corollary the first few 

partial quotients of e are listed: 

e = [2;1,2,l,l,4,l,l,6,l,l,8,l,l,10, ••• ]. 

The reader should also note that the foregoing theorems could be 

generalized to the extent that if the matrices are taken over the 

Gaussian integers, then an additional conclusion could be added to 

Corollary 5. 9, 

(iii) 
1 00 

tank= [O, k-1, 1, (2n + l)k - 2]n=l (k > 1). ; 

-----co 
tan 1 = [l, 2n - l]n=l' 

For an account of this procedure, the reader is referred to [23]. 

Up to this point in the discussion it may seem that every 

continued fraction is regular, or at least has some semibalance of 

regularity. Unfortunately, this illusion cannot be maintained any 



longer. Most of the known regular continued fractions have now been 

presented and what remains is a vast infinity of numbers for which 

nothing is known with regards to regularity. An example of such a 

number is TI, It is mentioned here beca~se it offers the best example 

of the alternative to discovering regularity in finding the continued. 

fraction expansion for a number. The process that follows is based on 

an extremely close decimal approximation to TI, namely. 

TI= 3,14159 26535 89793 23846 

26433 83279 50288 41971 

69399 37510 58209 74944 

59230 78164 06286 20899 

86280 34825 34211 70680. 

It will be clear that the method employed here would be applicable to 

any real number for which a very accurate decimal representation is 

known. 

If a is an irrational number, then the k-th partial quotient is 

given by the formula 

where ~ is the remainder given by 

1 
- = ~-1 + 1\ 
1\-1 

and O < 1\ < 1. It sh.ould also be apparent that if 
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then 

In other words 

1 --!\: 

.L 
!\: 
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is just the remainder rk defined in Chapter II. Hence, the algorithm 

developed in Theorem 2.33 may be restated in terms of rk. 

[a.], 1 
ao a. = a +-

O r 1 

[rl], 
1 

al = rl = al+-
r2 

and in general 

The notation Pk and Qk have been used to .,represent the numerator and 

denominator of the k-th order convergent. It will now be,necessary to 

introduce notation for the k-th order convergent of the remainder 

r. = [a.;a.+1., ... ]. 
J J J . 

The k-th order convergent of rj 

where 

and 

p (k ,j) = 
Q(k,j) [aj ;aj+l' •.. , aj+kl 

P (m,j) = P(m - l,j)a.+ + P(m - 2,j), 
J m 

Q(m,j) = Q(m - l,j)aj+m + Q(m - 2,j), 

will be 

(10) 



The proof that 

P(-1,k) • 1, P(O,k) = ak 

Q(-1,k) = o, Q(O,k) = L 

p (k ,j) 
Q (k,j) 
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is the k-th order convergent to the remainder r. 
J 

follows exactly the 

same pattern as the proof of Theorem 2.10. With this new notation 

Pn = P(n,O) and ~ = Q(n,O) for all n > O. 

The following theorem is important in the sense that it enables one 

to easily compute a remainder rj+n knowing the remainder. rj and the 

partial quotients [aj; .•. , aj+n-l]. This would be possible in any 

case by applying the appropriate definitions. However, a savings of 

effort is effected by requiring only the convergents of 

Theorem 5.10. For all j > 0 and n ~ 1, 

P(n - 2,j) - Q(n - 2,j)r. 
= - ~~~~~~~~~~~~--

p (n - l ,j) - Q (n - l ,j) r. · ' 
J 

Proof: The above theorem follows directly from the generalized 

form of Theorem 2.19 after the new notation has been employed. Of 

(11) 

course, the theorem must be applied to the remainder rj and solved for 

Another useful theorem follows. · It will give us the same economy 

in computing convergents that Theorem 5.10 does for remainders, 



Theorem 5.11. For j > 0 and n ..::_ O, 

Pj+n = l;'/(n-1,j+l) + Pj_1Q(n-l,j+l), 

Proof: (By induction on n.) For n = 0 direct computation 

verifies the theorem. Assume the statement is true for k..:, n, show 

true for n + 1. 

+ [P;P(n-2,j+l) + P. 1Q(n-2,j.+l).] 
J J- . 

= Pj[P(n-1,j+l)aj+n+l + P(n-2,j+l)] 

+ ·Pj-l [Q(n-1,j+l)aj+n+l + Q(n-2,j+l)] 

P.P(n,j+l) + P, 1Q(n,.j+l) 
J J-

= P,P(n+l-1,j+l) + P, 1Q(n+l-l,j+l). 
J J-

Now, given an irrational number a with a very large number of 

significant figures, the first partial quotient a0 = [a] may be 

computed by [SJ where S ~ a. The advantage here. is to choose a S 

which has few significant figures, but is still very close in its 

numerical value to a. For any such S, not: only will the first 
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partial quotient be the same as that for a, . but it could be expected 

that .the first few partial quotients might be the same. The important 

question to answer is, "How many?" There are two ways this question 

could be answered. One way is to find y ~ a such that a is between· 

6 and y. The partial quotients of a will be the same as those for 
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S at least as long as the partial quotients for S coincide with those 

for y, The other method of telling how far one might tr.ust the partial 

quotients of S will be discussed presently. 

Having obtained the first few partial quotients, up to say ak, 
1 

now compute the numbers 

using the recurrence formulas (10) with j = 0. The relation 

affords an almost infallible check on the work. 

k -1 
(-1) 1 

Thus far the calculation has involved. only small numbers, In fact, 

a has not been used, but merely an approximation of it, By setting 

j = 0 and · n = k1 + 1 in·. (11) the following results : 

P(k1-1,0) - Q(k1-1,0)a 

P(k1 ,0) Q(k1 ~0)a 

Here for the first time really large numbers are encountered. To be 

quite certain that the computations thus far havl? not g<!me astray, 

Theorem 3.5 and Theorem 3.7 may be applied. Theorem 3.5 states that 

either 

or 

must satisfy the condition 

(12) 
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a - ....... 
b 

(13) 

and Theorem 3. 7 says that .the one that doe.s satisfy (13) must be a 

convergent to a. This is the second way the accuracy of the partial 

quotients provided by S::::::.: a• could be chec~ed. 

Having computed rk +l (on Line (12)), this valuei may now be 
1 

approximated by Sk just as S was used to approximate a. Again the 
1 

partial quotients of Sk are computed up to that point beyond which 
1 

they .cannot be trusted, say 

~ +l' ak +2' •••, ak +l+k' 
1 1 1 2 

Using these partial quotients compute the following numbers 

and check. them by means of the relation 

k -1 
P(k2 , k1+1)Q(ki-l, k1+1) - P(k2-l, k1+1)Q(k2 , k1+1) = (-1) 2 , 

Using (ll) with j = k1 + 1 and n = k2 + 1, 

• 
' . 

which involves for the second time operations with really large numbers. 

The process may continue by appr0ximating then finding 

additional partial quotients and the resulting convergents. At each 
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step, this pair of convergents offers a check to the. work as has been 

outlined above. 

In some problems the. convergents . 

are of nQ interest. For example; one.may want to examine.the partial 

quotients tc, see .if they terminate, .become periodic,. or obey some law or 

other. The· process as outlined above is adequate to meet these needs. 

In other problems, such as finding a best ra.tional approximat:ion to 

the number at. the convergen ts are very important. In these · cas.es 

usually one or two convergents. are needed. Sometimes. a sequence of 

convergents starting at some point are required, the earlier convergents 

being of no use. This happens, for example, when one is looking for a · 

rational approximation tq a given real number which not only is. 

sufficiently .accut,"ate but whose.numerator or d~nominator has some 

further property. In e~ch of these cases one would find the formulas 

in Theorem 5 .11 extremely helpful. Whe·never. two consecutive convergents 

are . found, the equation expressed in Theorem 2 •. 12 would serve as a 

final check. 

The above pro·cess was used_ to cqmpute the continued fraction for 

1T based on the previously. mentioned decimal approxi~tion. For a 

complete development of _this ._application, the reader. is referred to the 

article [11] by D. H. Lehmer. A brief summary of this article follows. 

An ap~raximation of 1T was used to compute the partial quotients 



TI= [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2, ,,,] 

from which 

p17 = 2549491779, p18 • 6167950454, 

Q17 = 811528438, Q18 = 1963319607. 

Using the 100 figure acc,uracy, it was found that. 

r = -19 
p17 - Q17TI 

p18.,...·Q18TI 
* = 2.989 . 
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An approximation of the value fer r 19 was used to compute the partial 

quotients [a19 ,a20 , ... , a32 , ... ]. From this P(12,19), Q(l2,19), 

P(l3,19) and Q(13,19) were computed. In this fashion the remainders 

r 33 , r 51 , and r 77 were determined. Finally all the partial quotients 

up to W'Sre found as listed below: 

TI= [3;7,15,1,292,1,l,1;2,l,3,1,14,2,1,l,2,2, 

2,2,1,84,2,1,1,l5,3,13,l,4,2,6,6,99,1,2, 

2,6,3,5,1,1,6,8,1,7,1,2,3,7,1,2,l,1,12, 

1, l, 1,,3 , 1, 1; 8 , 1; 1, 2 , 1, 6 , 1 , 1, 5 , 2 , 2 , 3, 1 , 2 , 

4,4,16,1,161,45,1,22,1,2,2,1,4,1,2,24, ••• ] 

Using Theorem 5.11 one could. compute the convergents up to and including 

c90 . The actual value of c90 was found to differ from TI by less 

than 8•10-97 • 

* The actual value of r 19 was suppressed to save space. 
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The above process has been carried much further than what is 

indicated here. In 1958, Peder Pedersen [17], using a decimal 

representation of TI with 220 significant figures, was able to 

compute the first 200 partial quotients for TI, Even though this 

process has been carried to an extreme for the value TI, it is 

important to remember that the process is a very valuable tool when 

applied to the vast majority of irrational numbers for which there is no 

knowledge of regularity in their partial quotients. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The first chapter is a brief historical discussion of continued 

fractions. Also_ in this chapter are found the prerequisites for 

understanding the material presented in subsequent chapters. Chapter I 

contains a few notatfonal conventions that are used throughout ·the 

paper. The second chapter contains the basic development of continued 

fractions. The the.orems and. defipit_ions in this chapter are necessary 

before one. can understand_ the _remainder of the paper. If one has 

mastered the copcepts presented in Chapter II, he should be able to read 

most articles in the professional journals related to continued 

fractions. The representatior:i of rational numbers versus irrational 

numbers by continued fractions is also found in Chapter II. 

Chapter III develops the concept of "best .approximation" of a real 

number by a rational number. The fact that_the convergents of continued 

fractions admit best approximations is the essence. of the development in 

this chapter. Hurwitz's Theorem is presented in Chapter III as well as 

the_ definitions of algebraic and transcendental numbe;rs. Finally, in 

Chapter III, one finds Liouville's Theorem and the proof that 

transcendental numbers exist. Chapter _IV is the introduction to the 

study of periodic continued.fractions. It is shown that such i:::ontinued 

fractions always represent quadratic irrationals and conversely. The 
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continued fractions of quadratic irrationals are used to find all the 

solutions to the Pell equation. 

In Chapter V two basic apprGlaches to finding continued fractions 

are presented. · The first approach is based on the use of a product of 

special matrices to represent CGlntinued fractions. Th:1,s is employed 

after x 
e is associated with such a product •. The second approach 

employs a very accurate decimal representation of a real number to 

determine the continued fraction. This is then applied to the real 

number TI, Either of the two approaches mentioned in this chapter are 

applicable to real numbers other than those giyen. 

In conclusion, a few ideas for original research are suggested. 

Since so little is known about the regularity of continued fractions, it 

seems as though one might explore this topic, The following is a brief 

account of the author's endeavors along these lines and is actually a 

generalization of the method used to find the continued fractions of 

quadratic irrationals. 

If one attempts to find the continued fraction of 
1/' n J 

' where· 

n,j e: N and j .::_ 2, he soon runs into the problem of rationalizing 

the denominator of the following expression: 

1 
j-1/j j-2/j 1/j 

a n + a n + • • • .+ aln + ao ' 1 ,· 2 · J- ' J-

What is needed is another expression of the form 

+ ... + b l/j + b .1 O ln Or 

such that 

(1) 
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(a. nj-l/j +···+a )(b nj-l/j + ••· + b0) E z. 
j-1 0 j-1 (2) 

It can be shown that if j -1/j 1/j 
c. n + ··· + + J-1 cln co is .the product 

of .the two expressions on line (2) then 

+ .•• 

+ ... 

cj_3 = na. 2b. 1 + na, 1b. 2 + 
J- J- J- J-

+ 

+ 

The above can be expressed in matrix form, 

ao al a2 a, 3 J- aj-2 a. 1 J- . b, 1 J- c. 1 J- ' 

na. 1 J- ao al a. 4 J- a. 3 J- a. 2 J- b. 2 J- c, 2 J-

na. 2 na. 1 ao a. 5 a. 4 a, 3 b. 3 = c. 3 (3) 
J- J- J- J- J- . J- J-

na2 na3 na4 na. 1 a0 J- ' al bl cl 

na1 na2 na3 na. 2 J- na .. l 
J '"'.' ao bo co 

It is now desi:irable (to satisfy (2)) that c .. l· = c. 2 = ••• = c1 = O. J-· J-

This is tantamount to finding a vector [bj-l'bj_2 , ... , b1 ,b0 ] that 

is perpendicular to the upper j - 1 row vectors of the j x j matrix · 

in (3). 
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Theorem 6.1. The vector [bj-l'bj_2 , ,,, , b1 ,b0] is perpendicular to 

each of the upper j - 1 row vectors in the j x j matrix in (3) if 

bk is the cofactor computed at 11 k in the following determinant: 
' 

11,j-l 11,j-2 11,j-3 11,1 11 0 ' 

ao al a2 a. 2 J- a. 1 J-

na. 1 J- ao al a. 3 J- a. 2 J-

na2 na3 na4 ao al 

Proof: Consider the product 

ao al a2 a. 2 J- a. 1 J-

ao al a2 a. 2 J- a. 1 J-

aObj-1 + albj-2 + ... + aj-lbO = na. 1 ao al a. 3 a. 2 J- J- J-

na2 na3 na4 ao al 

0 (4) 

since any determinant with two like rows must be zero. The product on 

line (4) with any other row would also result in a zero determinant for 

the same reason; hence, the theorem is established. 

When applying Theorem 6.1 to find the continued fraction of 21/ 3 

the following results: 

21/3 = 1 + 2 113 - 1 ' 
0 < 21 / 3 - 1 < 1 

' 



and 

__ 1_ .. 22/3 + 21/3 + l 
z113 _ 1 

Here, Theorem 6.1 was employed to rationalize the denominator of 

Thus, 

and 

1 

21/3. - 1 

--..--1--- = 3 + 22/3 + 21/3 _ 2, 
z113 _ 1 

0 < 2213 + 2113 - 2 < 1 

1 3~2213 + 4,21/ 3 + 2 --------------·= ------------------22/3 + 21/3 _ 2 10 

3,2213 + 4,2113 - 8 
= l + 10 

Continuing in this manner, one would soon discover that 

1/3 2 = [1;3,l,5,1,1,4, ..• ] 

112 

where the last partial quotient lis.ted is the greatest integer less .than 

2044[(3,373,118)22/ 3 + (4,251,390)2113 + (3,636,472)] 
6,509,309,244 

It is not known if some pattern evolves in this process as was 

experienced when. it was applied, t0 the quadratic irrationals. Unlike 

the Cc!,se involving quadratic irrationals., there is no apparent upper 

bound to the numbers involved in the process when applied to 2113, A 
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computer would seem to be a very useful tool in any investigation of 

this method of computing continued fractions. 

Another direction in which original research might procede is the 

discovery of algorithms for the addition or multiplication .of continued 

fractions~ While inv.estigating this topic, the .following characte.riza-

tion of. Pn and Qn was developed:, 

ao -1 0 0 0 

1 al -1 .. '. 0 0 

p = 0 1 a2 0 0 (5) n 

0 0 0 an-1 -1 

0 0 0 ... 1 a n 

and 

al -1 0 0 

1 a2 0 ,o 

Qn = (6) 

0 0 a n-1 -1 

0 0 1 a n: 

Theorem 6.2. For all n > 0 and the continued fraction [a0 ;a1 , .•. ] 

the value given for p 
n 

on line (5) is correct; and if. n ..::_ 1, 

value given for Qn on line (6) is correct. 

the 

Proof: (By induction.) Direct computation verifies that (5) is 

' true if n = 0. Assume. t4at (5) is true for O _::. k .::_ n, show true for 



n + 1. Expand the followit).g determinant about the bot tom row. 

ao -1 

1. al 

0 0 

0 0 

0 0 

... 0 0 

a -1 
n 

... 1 an+l 

ao -1 0 0 

1 a_l 0 0 

= < -l) 2 Cri+ L) 
· an+l 

0 0 an-1 -1 

0 0 l 

ao -1 

1 al 

+ (,-l) 2 (n+l)-1 (l) 

0 0 

0 0 

a p ·• + (-l)2(n+l)-l(-l/n(-l) 
n+l n 

a 
n 

a n-2 

0 

1 

0 0 

0 0 

0 

0 

-1 0 

1 -1 

0 

0 

1 
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0 

0 

-1 
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Hence, by induct~on (5) has been established. (6) follows.similarly 

and is "left to the reader, 

Using the fc\ct that determinants are unchanged if multiples of one 

row or column are added to another row or column respectively, the 

following corollary was established. 

C 11 6 3 For all n -> 0, i'f a0. 4 O, oro · ary . • r 

[ao] 0 0 

0 [al;ao] 0 

p = 0 0 [a2;al,a0] n 

and, hence, 

A similar statement could be shown for Q , 
n 

[ a ; a .l ' .• ·• , a0 ] n n-

The above corollary does suggest the following col]lputational 

procedure for finding 

[2;1,3,4,5]; 

p • 
n 

(Similarly for Q • ) 
n 

3 2·-
2 

3 
p = 2·-· 2 · 2 

Consider 

) = 
3 11 2·-·-
2 3 ' 
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and 

3 11 47 246 
p 4 .. 2 "2"3" 11 "1+1 • 246. 

The k-th factor in the product is formed by adding the previous factor 

inverted to the k - l partial quotient, 

Many of the previous theorems concerning p 
n 

and Q 
n 

could be 

established quite easily using Theorem 6.2 a~d Corollary 6.3. For 

~ [al] • • • [an-1; ·"' ' al ][an; "· ' al] 
Qn-1 "" ---[,....a_l...,,.]-. -.. -. -• ....,[,_a_n ___ l_; _. -•• -.-,-a-1..,,...l__,. __ 

which is Theorem 2.20. Obviously, if a0 la O, then 

When a0 'f O, Theorel)l 5.12 is the result of evaluating the determinant 

which is equal to Pj+n by diagonalizing the matrix for the first j 

columns and then applying Corollary 6.3; Pj+n would be: 

-1 

1 -1 

1 
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Further, 

1 

(7) 

aj+l -1 

= P. 1 [a.; ... ' ao] 1 -1 
J- J 

1 aj+n 

-1 0 

1 aj+2 -1 

+ (-1) (8) 
1 

aj+n 

= Pj-l[aj; ... , a 0 ]P(n-l,j+l) 

aj+2 -1 

+ P. 1 (-1)(-1) 1 
J-

aj+n 

= P.P(n-1,j+l) 
J . 

+ P. 1Q(n-l,j+l). 
J-

Here P(n-,1,j+l) is the .numerator of the n-lst convergent to the 

continued fraction [aj+l ;aj+Z, •.• , aj+n] as it was in Chapter. V. It 

should also be noted that line (8) is th.e result of evaluating .the 

determinant in line (7) by expanding about the nonzero elements of the 

first column. 



This determinant representation of p 
n 

and appears to be a 

very powerful tool and might well lead to some new insights into 
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continued fractions. It is interesting to examine determinants of this 

form when a. :;:: 1 for i > O. Su_ch a determinant will always have a 
]. 

numerical value equal to some el~ment in a Fibonacci sequence. 

The objective of this paper has been to develop the concept of 

continued fract;ions in such a way that ;any undergraduate student with a 

number theory course and. a few basic concepts in algebra and analysis 

as background might appreciate its content, The aim has not been to 

relate everything that is known about the topic, but rather to provide 

the reader with a framework of knowledge that will permit him to 

investigate the subject further. 
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