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1. INTRODUCTION

The Casson invariant defined in [1] was originally an invariant of integral homol-
ogy 3-spheres, and it was extended to an invariant of knots in integral homology
3-spheres through surgery relations. The intrinsic extension of the Casson invariant
for knots was developed in [5] and generalized to the sympelctic Floer homology in
[3]. The Casson-Lin invariant defined in [3, 5] was an invariant of knots as roughly
counting irreducible SU(2)-representations of the knot groups with trace-zero along
all meridians.

There is an attempt to define a characteristic-p Casson invariant in [7]. One would
like to have the characteristic-p Casson invariant preserving all properties of the
Casson invariant in [1, 3, 5]. Thus one can count representations of the knot group
into SLy(F,), where F, is a finite field and ¢ = p*. Note that the finite field version
of SU(2) does not have the some nice property as SU(2), and the Lie algebras of
SU(2) and SL,(C) are pretty much the same as isomorphism. In [4], the SLy(C)
knot invariant was studied and the relation with SU(2) knot invariant is discovered.

For finite field case, instead of representation varieties, there is no nice intersection
pairing since the representation spaces are not projective. Thus one simply count the
representations of knot groups into SLy(F,). Our work is motivated by the study of
Sink [7]. We use some explicit methods to count the representations of (n,m) torus
knot. Our main results can be stated in the following.

Theorem 1.1. There is a formula to compute the number of representations of (n, 2)
torus knot into SLqo(F,) up to conjugacy (see Table III).

Our formula in Table III has a discrepancy with the result in [7]. We compute some
explicit solutions to show that there are errors in the counting of [7] in §3.

Using the numbers of representations we counted in §2, we formulate a zeta function
of the numbers of representations of SL,(F,) where ¢ = p* for s € N. The zeta
function of the (n,2) torus knot can be computed in an explicit manner. Then we
can verify the modified zeta function /\[}2 is a polynomial for n prime, or a product
of two primes, or a square of a prime. We expect this phenomena true for general n
as it was claimed in Theorem 3 of [7].

The thesis is organized as follows: we first review the conjugacy classes and sta-
bilizers in SLy(F,) in §2.1. Few elementary number theoretic countings and cyclic
group properties are presented in §2.2. In §2.3, we start to counting the number of
representations of (n,2) torus knot group into SL,(F,) up to conjugacy and prove
Theorem 1.1. We give two counterexamples to statements in 7] in §3. In §4, we study
the Zeta function of (n,2) torus knot and verify that the modified Zeta function Az*
is a polynomial for some special cases.

2. FIRST METHOD FOR (n,2) TORUS KNOT

We will count representations SLy(F,) of the fundamental group G of the (n,2)
torus knot up to conjugacy, where Fg is a finite field with ¢ = p°® for a prime number

p > 2. As we know, the fundamental group of (n,2) torus knot can be presented by
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< a,bla™ = b* >. Any representation p : G — SLy(F;) can be one-to-one identified
with (p(a), p(b)) € SLy(F,) x SLy(F,) such that p(a)® = p(b)>. Hence we have the
correspondence between a representation and a pair (A, B) of SLy(F,) matrices with
A™ = B2%. Since we count the representations up to conjugacy and we can always
conjugate one of A and B into a standard representative of one of the conjugacy
classes, we may choose A to be the element and find the number of B satisfying
A = B2,

2.1. Conjugacy Classes in SLy(F,;). We have to find the conjugacy classes in
SLy(F,), and this is well-known in [2], and see Table I. Let € be an element of F,

with \/e ¢ Fys
Table I

Case No. Representative No. of Elts in Class No. Classes

10
co= (1) 1 1

-1 0
2 = (7)) 1 1

11 2
g° -1
. (1) : 1
1 € 2
g -1
co(1e) | 1
- “1 1 2_1
- | € 2
=1
o (34 : ;
7 z 0 g-3
- 0 -1 q(g+1) 2
r y _ g=1
8. (Ey I) qlg —1) 5

Note that we have certain redundancies in the above table; namely in Case 7, the
-1

matrices ( 3 2_1 ) and ( :1:0 2 ) are in the same conjugacy class. Also in that

same Case 7, we do not allow z to be £1 since they are covered in Case 1 and Case
2



2 respectively. Also, in Case 8, the matrix ( é; ?aJ: ) is conjugate to the matrix

( z Y ) and further cannot let y = 0, otherwise it reduces to Case 1 or 2.

€y T

The following table gives the group of stabilizers for each case.

Table 11

Case No. . The stabilizer of each representative in SL,(F,;)

1.

2.

SLy(F,)

SLy(F,)

(% 5 )Res

{ :l(:]‘l mﬂ:l ) |z € Fg}
:El f&l ) = € %o}

(5 8)w-ao

We list the characteristic polynomials for each case. For Case 1, Case 3 and Case
4, the characteristic polynomial is A> — 2XA + 1 = 0. For Case 2, Case 5 and Case
6, the characteristic polynomial is A% + 2X + 1 = 0. For Case 7, the characteristic
polynomial is A2 — (z + z7})A + 1 = 0. For Case 8, the characteristic polynomial is

A2 =222 +1=0.

In the following paper, we use C4 to be the set of the elements conjugate to A in
SL,(F,) and use I'4 to be the stabilizer of A.

2.2. Preliminary Results. Before we begin to discuss solutions of each case, let us
give elementary propositions which we will use later.

Proposition 2.1. Let a,b and m be integers such that m > 0 and (a,m) = d, where
(a,m) is the greatest common divisor of a and m. Ifd { b, then az = b (mod m)

3



has no solutions. If d | b, then ax = b (mod m) has ezactly d incongruent solutions
modulo m.

The proposition is important to prove the following propositions and it is in Section
4.9 of [6].

Proposition 2.2. Given a finite cyclic group G, |G| = m, where |-| is the cardinality.
Let G™ = {z™|z € G}. For ay € G", the number of solutions for z" =y is (in,n).

Proof. Since G is a cyclic group, let g be the generator of G. Then there exists a ¢
with 0 < t < m — 1, such that ¢g* = y. Write z = ¢° for some s. Then the equation
z"™ = y is reduced to the equation ns = ¢ (mod m). Clearly there exists a solution for
ns =t (mod m) since y € G". By Proposition 2.1, it has (n, m) solutions. O

Proposition 2.3. For a finite cyclic group G, let |G| = m, then |G*| = Gk

Proof. It is clear that |G"| % |[{z € G|z" = y with y € G"}| = |G|. By Proposi-
tion 2.2, |G™| = O

(n m)’

Proposition 2.4. For a finite field F,, G is cyclic subgroup of F, with respect to
multiplication with —1 € G. Let m be even. Then there is a solution for the equation
™ = —1 in G if and only if (m, |G|)H%"l

Proof. Let g be the generator of the cyclic group G. Clearly /¢! = 1 and (—1)? = 1.
Let ¢ = —1 with 0 < £ < |G|. Then g% = 1 which means 2t = |G|, i.e., g@ = —1.

Like the discussion in the proof of Proposition 2.2, to solve the equation z™ = —1
is equivalent to solve the equation sm = E;—[ (mod |G|). By Proposition 2.1, there is
a solution for equation z™ = —1 in G if and only if (m, |G mL;ﬂ_ O

Proposition 2.5. For a finite field Fq, then ifg =1 (mod 4), then there are two
solutions for the equation z* = —1 in the F,. If ¢ = 3 (mod 4), then there is no
solution for the equation z = —1 in the F,.

Proof. To determine whether there is a solution for z2 = —1 is equivalent to
find a solution in F, — 0, which is a cyclic group with respect to multiplication. By
Proposition 2.4, there exists a solution for 2 = —1 in F, if and only if (2,¢ — 1)]9;—l
Therefore if g = 1 (mod 4), then there are two solutions for the equation z? = —1 in
the F,. If ¢ = 3 (mod 4), then there is no solution for the equation z? = —1 in the
Fy- |

Proposition 2.6. The set 2 = {( Z; Z ) ] ( :; i’; ) € SLo(F,)} is a cyclic

group. Let F' be the vector space over F, with the basis 1 and \/e. Let C = {C €
(Fn*|¢att =1}, Let ¢: Q — C be ¢(( o g )) =z ++/ey. Then ¢ is a isomor-
phism, and || = |C|=¢+ 1.

4



The statement is shown in Chapter 5 of [2].
For the convenience of the discussion, we let ; = ) — {£1}.

Proposition 2.7. For the cyclic group {1 as we defined in Proposition 2.6, if ¢ =
{mod 4), there is no solution for the equation A* = —I. If g = 3 (mod 4), there are
two solutions for the equation A2 = —I, where A € Q.

Proof. Clearly —I € Q1. By Propasition 2.6, |{2] = ¢+ 1. By Proposition 2.4, there
is a solution for A2 = —I if and only if (2,¢ + 1)|%>. Therefore if g = 1 (mod 4),
there is no solution for the equation A% = —I. If ¢ = 3 (mod 4), there are two
solutions for the equation A% = —J, where A € Q. O

Proposition 2.8. Lei p,q be coprime natural numbers. Suppose that the equaiion
7 = —1 {mod ¢} has solutions. Let mg be the smallest positive solution of the equa-
tion. If m is another solution for p* = —1 (mod g), then m = kmy for some positive
odd integer k.

Proof. Note by Fermat’s little theorem, there exists a solution for p* = 1 (mod g).
Let m; be the smallest positive solution for p* = 1 (mod ¢). First we show m; > my.
Otherwise there exist a and b such that my = am; +bwithae > 1 and 0 < b <
my < myg. Therefore p” = —1 (mod g) which is contradictory to the assumption of
my is the smallest positive solution of p* = —1 (mod g). Clearly p'™ = ¢ {mod g)
for some even number [. So if mg|m, then m = kmy for some odd integer k.

Assume my 1 m, there exist positive integers ¢ and d such that m = cmy + d with

0 < d < mg. If c is even, then we get p? = —1 (mod q), which is impossible. If
c is odd, then we get p¢ = 1 (mod 1), but d < my < my, so it is false. Therefore
mg|m. O

Proposition 2.9. For a finite field F,, if x is in F, with \/z ¢ F,, then vz~ ¢ F,.
If the square root of both z and y are not in F,, then \/zy € F,.

Proof. Let g be the generator of the cyclic group F; — 0 with respect to multipli-
cation. Since /z ¢ F,, = g* for some odd number s. Clearly z7! = ¢9~!=¢, then

vz~ ¢ F,. Let y = ¢g*. By the same reason, ¢ is odd too. We get zy = ¢°*, so
TR =

Proposition 2.10. Given A, B be representatives of different conjugate classes such
thatI'yNT'g = {:tI} ForaG e SL;;(]:q), let B, = GBG™'. Then FAHFB! = {:i:]}

Proof The pair of (A4, B) has the following possibilities:
1) A in Case 3, B in Case 7,
2) A in Case 3, B in Case 8;
3) A in Case 4, B in Case 7;
4) A in Case 4, B in Case 8§;
5) A in Case 5, B in Case 7;



6) A in Case 5, B in Case 8;
7) A in Case 6, B in Case 7,
8) A in Case 6, B in Case 8;
9) A in Case 7, B in Case 8;

Clearly 'g, = GI'sG™'. Given C € 'y, D € I'p, such that C and D # +I. By
Table II, C and D have different characteristic polynomials. Clearly {£I} C T4NI'p,.

Therefore I'y NT'g, = {£1}. a
oy Iy 0 . a b
Proposition 2.11. (1) Let By = 0 g with g # *1 and C = c d)€
0
SLo(F,). IfCByC™! is diagonal, then C must be ( 8 2 ) or ( 2 (b) ) and CByC~! =
B!,

(2) If CBoC~! is not diagonal, then T'cp,c-1 N, = {£1}.

Proof. (1) By a simple calculation

ol =0 Yoo adzo — bexy'  —ab(zo — zj") -
0 =5 cd(zo — ") —bezo + adzy’

Ty 0

0 zg!
a 0
0 d

Since zy # +1, C( )C‘l is diagonal if and only if a = 0,d = 0 or

b =0, =0 IfC:(

CByC— = Bg.
(2) Since CByC~! is not diagonal, C cannot be in the form of (1). Note that

(
r 1 1 y 0 ; y 0 -9 3
cBoc-1 = CTg,C~". For any 0 y-! € Il'p, with y # £1, C 0yl C~is

not diagonal. Hence I'cg,c-1 N I'g, = *1.

), then CByC~! = By. FC = ((2 g), then

Proposition 2.12. (1) Let By = ( 6:; z ) M G G ( Z Z

b_a ), and B = Bi'.

) € SLy(F,).

a

IfB=CBy)C e, thenCeQorC = ( e

(2)‘ IfB ¢ Q, then FBI'“IFBO‘ = {i]}

Proof. (1) By a simple calculation, we get

AT z + bdey — acy a’y — b’ey
€ T - ed’y—c?y zT+acy—ebdy |-

It C ( :y g ) C~' € Q, then 7 + beey — acy = T + acy — ebdy, which implies

(ac — ebd)y = 0. Since y # 0, we get ac — ebd = 0. Therefore a® — b% = =+1.
Combining with ad — bc = 1 and ac —ebd = 0, we get a = d, ¢ = €b, i.e, C €
6



ara=—de=—eb BC={ & °), then CBL = B.sG={ 2T,
eb a —eb —a
OB(]C—I = Bo_l
(2) If B ¢ Q, then C cannot be in form of (1). Note that I'g = CTI'g,C~*. For any
A= ( i ) € I'p, with v # 0, CAC~! ¢ Q. Hence Ty NTp, = {+I}. ]

2.3. Counting the Number of Solutions. As we have said, we take the matrix A
to be in the standard form of each case shown in Table I, and count the solutions B
of the equation

(1) A" = B?

up to conjugacy in each case. It is obvious that Equation (1) is equivalent to the
equation

(2) A"B™' = B.

In the first 7 cases, we count solutions of Equation (2) instead of solving Equation

(1) directly. In this section, we write B = ( Z g ) with

(3) ad —bc=1

: : d —b

=1

in Fg. Clearly B~ = ( L ) :

Notice that (n,2) = 1, so n is always odd in this section. Now we discuss the
number of solutions of Equation (1) case by case.

In order to get the number of representations up to conjugacy, we need to modulo
more from the stabilizers of A and B. Let I'y = {G € SLy(F,)|GAG™" = A} be the
stabilizer of A. Hence any element G € I'4 acts on (A, B) as a single conjugacy orbit
(A,GBG™') with fixed conjugacy representative of A. This only affects solutions
(A, B;) and (A, By) with B; and B, in the same conjugacy class under I'4.

Case 1. Let A = ( (1) (1) ) Then A" = ( é (1J ), Equation(2) is reduced to
B~' =B, i.e,

5 (2a)=(%2)

Therefore d = a,b = —b, and ¢ = —c. Then b = ¢ = 0. Combining with equation (3),
we get a® = ad = 1 which has solutions a = 1. Therefore we have two solutions for

10 -1 0
B—(01>and(0 _1).
Note that for both two solutions of (A, B), we have 'y = I'p = SLy(F,). Hence

there are two distinct solutions of I = B? up to conjugacy.
7



—1: 40
0 ]

@ (%)=

which is equivalent to a = —d. Combining with equation (3), we get d* + bc = —1.
There are two subcases: (a) bc = 0, (b) be # 0. We count the number of solutions for
each subcase and add them up.

Case 2. Let A = ( 1 ) Then A™ = ( —01 (11 ) Equation (2) becomes

2.a: For bc =0, it is clear that

{(b, c,d)|d® + be = —1,bc = 0}| = |{(b, c)|bc = 0}| * |{d|d* = —1}].

There are 2g-1 solutions in Fy for bc = 0. For the equation d?> = —1, by
Proposition 2.5, there are two solutions for d> = —1 if ¢ = 1 (mod 4), and there
is no solution for d* = —1 if ¢ =3 (mod 4). Therefore the number of solutions

for d® + bec = —1 with be = 0 in F is

2(2¢—-1) ifg=1 (mod4),
0 ifg=3 (mod 4).

2.b: For bc # 0, we get the following relation
[{(b, ¢, d)|d®* + be = 1,be # 0}| = [{d]d” # —1}|  |{b[b # O} |.

According to Proposition 2.5, we have |{d|d®> # —1}| =¢—2if ¢ =1 (mod 4),
and |{d|d®> # —1}| = ¢ if ¢ = 3 (mod 4). Obviously |{b|b # 0}| = ¢ — 1. Hence
the number of solutions for d? — bc = —1 with bc # 0 is

{ (g—2)(¢g—1) ifg=1 (meod 4),
q(g—1) ifg=3 (mod 4).

Summarizing the previous discussions, the number of solutions of Equation (1) in
Case 2 is

{ glg+1) ifg=1 (mod 4),
glg—1) ifg=3 (mod 4).

For all the solutions B satisfying B? = —I, B = ( _Cd Z ) with d® + bc = —1,

then its characteristic polynomial is A2 = —1. By the characteristic polynomial of
SLy(F,), the solution must be in Case 7 or Case 8 for z + 27! =0 or 2z = 0.

If g =1 (mod 4), then /—1 € SLy(F,) by Proposition 2.5. Hence z+z~ = 0 has

% 0 ) with the fixed z; and

a solution, all the solutions are conjugate By = ( 0 7~
0

2 __
mo—'—l.

Let Cp, = {GBoG™'|G € SLy(F,)}. Since By is a solution for B2 = —I, any
element in Cp, is also a solution. Therefore the collection of the solutions of B2 = —I

is equal to Cp,. We can write all the solutions in this case as (—I, GByG™!) for some
: 8



G € SLy(F,). On the other hand the stabilizer of —I is SLy(F,). Therefore up to

0
If ¢ = 3 (mod 4), then /-1 ¢ F, by Proposition 2.5. There is no solution for
z+z~! = 0. So all the solutions must be in Case 8. By Proposition 2.9, v/—e € F,.

0 x/?)

Th ‘ f . ; . . } — |
erefore all the solutions are conjugate to the matrix By ( e . O

conjugacy, we only have one solution (-1, ( g 2_1 ))
0

Let Cpy = {GByG |G € SLy(F,)}. We can write all the solutions in this case as
(—I,GByG™") for G € SLy(F,). For I'_; = SLy(F,), up to conjugacy we only have
. 0 v—el
one solution (—1, ( =g ))

Therefore in Case 2, up to conjugacy the number of solutions is 1.

Case 3. Let A = ( L1 ) Then A™ = ( L n ) Equation (2) becomes

01 01
np-1__ [ d—ne —b+an) {a b
(6) e _( - a )-(cd ’
One has the equivalent relations:
d—nc=a
—b+an=1">
—c=c
=i,

By —c = ¢, we get ¢ = 0. Combining equation (3) and a = d, we have a® = 1 which
has solutions @ = +1. Thus —b+ an = b is reduced to b = +2"'n. Therefore we have
two solutions in this case, i.e.,
-1
B = ( +1 +27!n ) .

0 =1

—1 i
(1) f ") cannot be conjugate to 01 _f ™) in SLy(F,) for they

have different eigenvalues. Therefore we have two distinct solutions in this case.

Case 4. Let A = ( L e ) Then A" = ( L ne ) Equation (2) is equivalent to

Clearly (

01 0 1
np-1_ [ d—mnce —b+ane \ _( a b
) A"B _( —-c a )—(c d)'
One has the equivalent relations:
d—nce=a
—b+ane=1>
—c=c¢
a=d.

Similarly as Case 3, we get ¢ = 0 from —c = ¢. Combining equation (3) and a = d, we
have a? = 1 which has solutions @ = +1. Thus —b+ane = b is reduced to b = +£2 " 'ne.
9



In this case the solutions are

+1 +27'ne
B:( 0 =1 )

1 _o-1
01 _? B ) in SLy(F,) since they

have different eigenvalues. Therefore we have two distinct solutions in this case.

Case 5. Let A = ( g ) Then A™ = ( =4 Til ) Equation (2) becomes

91
Clearly ( (1) 51“} ne ) is not conjugate to (

0 -1 0
np-1_ [ —d—mnc b+an )\ _[(a b

(8) L _( ¢ —a )—(cd ’
One has the equivalent relations:

—d—nc=a

b+an =5

E=i

—a =d.

From b+ an = b we get an = 0. If pt n, a must be 0. Combining —d — nc = a and
—a = d, we get ¢ = 0, which contradicts to the assumption ad — bc = 1. Therefore
there is no solution.

w_ (-1 0
If p | n, then A —( 0 —1 )

If g =1 (mod 4), by Case 2, all the solutions can be written as (A, GBoG~') where

Bi— ( %ﬂ 261 ) and G € SLy(F,).

We define an action I'4 on Cp,: ['y xCp — Cp by (H,B) - HBH ! where H € I'4
and B € Cg. Now we just need to count the orbits under the action of I'4. Clearly
IT4(B)| = |Ta/TanTg|

According to Table I, T4 = {( e ) lz € F,}, and T, = {( g 2_1 ) ly €
Fy—0}, and Ty NTp, = {£I}. For any B = GB,G™", by Proposition 2.10, T4 N
I'p = {£I}. Therefore |T4(B)| = [[4/TsNTp| = g for every B € Cp,. Since
ICB,| = q(g + 1), the number of orbits under the action of I'4 is ¢ + 1. Therefore up
to conjugacy the number of solutions is ¢ + 1.

If ¢ = 3 (mod 4), by Case 2, all the solutions for B> = —I are conjugate to
T —e=T
By = ( 61/3—6_—1 0 ¢ ) According to Table II, T'y = {( :l(:)l j:l ) |z € Fy},

Tp = {( eS:; :?j: ) |z* — ey’ = 1}, T4 NTp, = {£I}. By the same discussion as

above, we get the number of solutions up to conjugacy is ¢ — 1.
10



Thus the number of solutions of equation (1) is

g+1 ifg=1 (mod4)andp |n,
g—1 ifg=3 (mod4)andp|n,

0 Otherwise.
Case 6. Let A = ( —01 6_1 ) Then A" = ( =1 nel ) Equation (2) becomes
(9) A"B‘lz( —d — nce b+ane) (a )
c ¢
One has the equivalent relations:
—d —nce=a
b+ane=1>
C=¢e
—a =d.
From b + ane = b we get ane = 0. With the same method as in Case 5, if p { n,
then there is no solution. If p | n, then A™ = _01 (11 . By the same discussion

of Case 5, the number of solutions of equation (1) is

g+1 ifg=1 (mod4) and p|n,
g—1 ifg=3 (mod4)andp|n,

0 Otherwise.
.z 0 g 0 : :
Case 7. Let A = 0 -l )% # +1. Then A" = 0z ) Equation (2) is
reduced to
; dz™  —bz"™ a b
np-1 _ —
(10) - _(—cx‘" ax‘")—(c d)'
One has the equivalent relations
=g
—bz" = b
—cz " =c¢
T =d,

From (1+z")c = (1+2™)b = 0, Equation (10) is split to two subcases, (a) 14+z™ = 0,
(b)1+z™ #0.

7.a: For 1 4+ z™ = 0, we have A™ = —]. It is clear that
{(4,B)|A = B*, A" = —I}| = [{A|A" = -1}| « |{ B|B? = - I}|.

Because n is odd, —1 € (F, — 0)". By Proposition 2.2, there are (¢ — 1,n) many
solutions for z" = —1. Since we do not allow z = —1, there are (¢ — 1,n) — 1
many solutions satisfying A™ = —I and A # +I. We know ( 3 2_1 and

11



( x(; 1 2 ) are conjugate to each other. On the other hand for two represen-
tatives A and A’ of Case 7, A’ is conjugate to A if and only if A’ = A*. Up to
conjugacy we get (”’q—_zn_—l— many solutions for A = —1I , where A = ( g 2_ 1 )
for some z with z # +1.

Fix A, to be ( ?8 2_1 ) such that z7 = —1 and z; # £1.
1

If ¢ = 1 (mod 4), by Case 2, the set of collection of solutions for A} = B?

is Cp, where By = :%0 2_1 . Like in Case 5, we define an action I'4, on
0 .

Tpy: T4, X Cpy — Cp, by (H,B) - HBH™'. Let Nr, be the number of orbits.

Clea,rly FAl = FBo = FBwa;m' Then !FAl(BQ), = IFAI(BD—I)I = II‘A_,/FAlﬂFBOI =
1.

Given a B = GByG™, and B # BE', By Proposition 2.11, B is not diagonal,
T4, N\Tg = {£I}. Therefore |['4,(B)| = T4, /T4, NTp| = L.

Hence

g—1
T(NFAm —2)+2=g¢q(g+1).

We get Nr, = 2(g+ 3). Therefore up to conjugacy the number of solutions
for A? = B? is 2(q + 3).
If ¢ = 3 (mod 4), by case 2, the set of solutions for AT = B? is Cp; where
0 V—el ‘
By = (6\/? 0 ) By Table II, Cs N I'p, = {£I}. By the same

argument of Case 5, up to conjugacy, the number of solution for A} = B? is

Ca,| _ge-1 _,
EFAlerlanal ((]— 1)/2
n,g—1)—1

Recall up to conjugacy the number of solutions for A" = —1I is g
therefore the number of solutions for A = B? with A" = —1 is
((n,g—1)—1)(q+3) ifg=1 (mod4),
((n,g—1)—1)g ifg=3 (mod 4).
7.b: If 2® + 1 # 0, then b = ¢ = 0. Combining a = dz™ and equation (3), we get
d?z™ = 1, which is equivalent to the equation z” = d~2. The number of solutions
for z" = d~? is equal to

D Halz" = g}| = [{d|d™* = g},

9eG
where G = (F, — 0)° N (F, — 0)". Since (n,2) =1, G = (F — 0)*". By Propo-
sition 2.2, the number of solutions for z" = g and (d“)2 = g with ¢ € G are
(n,q — 1) and (n,2) respectively. By Proposition 2.3, |G| = —4——. Therefore

(g—1,2n)"
g—1,zn
we totally have ¢ — 1 solutions for the equation d?z™ = 1.

12
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If g =1 (mod 4), then —1 € (F, — 0)%. So we must throw the solutions of
z" = d~? = —1 out. The number of solutions of " =d=2 = -1 is

{zlz" = -1}« {d|d™* = —1}| = 2(n,q - 1).

Obviously 1 € (F, — 0)%. So we have to throw out 2 solutions out again. So
the number of solutions is ¢ — 3 — 2(¢ — 1,n) for g = 1 (mod 4).

If g =3 (mod 4), then —1 ¢ (F, —0)%. We just throw out 2 solutions if ¢ = 3
(mod 4), that is to say the number of solutions is ¢ — 3 for ¢ =3 (mod 4).

Clearly in this subcase both A and B are in the standard form of Case 7.
Clearly (A, B) is not conjugate to (A, —B). We know that if (A, B) is a solution,
then (A~!, B~1) is a solution and conjugate to (4, B). On the other hand, (4, B)
and (A’, B') are conjugate to each other if and only if A’ = A*!, in this situation
B' = B*!, Therefore up to conjugacy, we have

{%—(n,q—l) ifg=1 (mod 4),

e ifg=3 (mod 4),

many solutions for A" # —I and A™ = B2,

Add the number of solutions in case 7.a and case 7.b up, we get the number of
solutions for the Equation (1) in case 7 is

{((n,q—l)—l)(q—!—B)—i—”—gﬁ—(n,q—1) ifg=1 (mod 4),
((n,g—1)—1)g+ %2 ifg=3 (mod 4).

Let E(s) = 3(1+(-1)%), O(s) = (1 — (—1)*). As we know if p =3 (mod 4), then
p°* =1 (mod 4) for s even, p* = 3 (mod 4) for some s odd. The previous formula is
equivalent to

{ (n,p* —1) = )(p° +3) + B5° — (n,p" = 1) ifp=
((n,p° = 1) = 1)(p° + 3B(s)) + &2 — E(s)(n,p* = 1) ifp=3

(
(

Case 8. Let A = ( :; z ) , where y # 0. By Proposition 2.6, A™ = ( u z ) for
(

and (c) A™ # +1.
8.a: For A™ = I, we get
{(4, B)|A® = B2, A" = I}| = [{A|A" = I}| « |{ B|B? = I},

By Case 1, we know |[{B|B? = I'}| = 2. By Proposition 2.2, the number of
solutions of A™ = I is equal to (n,¢ + 1). Since A is not-allowed to be I, we
throw one solution out. Clearly (A, ) and (A, —1I) are not conjugate to each
other. On the other hand A is conjugate to A’ in Q if and only if A’ = A~!
for A € €). Hence we totally have 2% = (n,q + 1) — 1 solutions for the
equation A" = B? with A™ = I.

8.b: For A® = —I. It is clear that

{(4, B}|A" = B*, A" = —I}] =1|3{A|A” = —I}| = |{B|B* = -1}.




First we count the solutions for the equation A™ = —I . By Proposition 2.2,
the equation A® = —I has (n,¢ + 1) many solutions in the set 2. We have to
throw one solution out for A # —I. With the similar discussion of Case 8.a, up

to conjugacy we have (1% solutions for A™ = —I.

Fix A; to be ( % zl ) such that A} = —1 and A, # 1.
1

€Y
If ¢ = 1 (mod 4), then by Case 2, the set of collection of all solutions B is
Cp, where By = 380 2_1 as we have defined as in Case 2. By Table II,
0

Iy, NTp, = {£I}. By the same argument of Case 5, the number of solutions
for AT = B? up to conjugacy is

|Ca] _gle+l) o
IFAJX/FAM r7]:‘1'3()' (q+1)/2

If ¢ = 3 (mod 4), the set of collection of AT = B? is Cp, where By =
0 v—el ,
( N o=l ) as defined in Case 2. Clearly I'4, = 'p;.

Similarly we define the action I'y, on Cp;:I'4, x Cpy — Cpy by (H,B) —
HBH™'. We use Nr,,_ to be the number of orbits.

C|1early T4, =Tp, = gy-1. Then [Ty, (Bg)| = |Ta,((Bp)~")| = |Ta,/Ta, N
FB’ = 1.

E}iven a B = GByG~!, and B # Bi'. Then B ¢ Q. By Proposition 2.12,
FAJ n FB = {:i:]} Therefore IF/M(B)] = IFA1/FA| N I‘B' = g;—_l Since ICB(-,‘ =
q(g — 1), then

g+1
Ny, —2) +2=4q(g-1).

We get |Cg/ ~ | =2(g—1).

Since up to conjugacy the number of solutions for A" = —1I is (”'—"{,1)—_]
get the number of solutions for A" = B? with A" = —I is

, We

{ ((n,g+1)—1)g ifg=1 (mod 4),
((n,g+1)—1)(¢g—1) ifg=3 (mod 4).

8.c: For A™ # +£1, let A™ = ( ::) Z ) with some u, v and v # 0. By computation,

B2 a? +bc ab+ bd
“ \ ac+de bc+d?

(11) u v\ _ [ a+bc ab+bd
\ew u /) \ac+dec be+d* |-

14

). Hence Equation (1) becomes




One has the equivalent relations

u=a?+bc
v =ab+ bd
| ev =ac+bc
l u = bc+ d?.

From (a +d)b = v and v # 0, we get a +d # 0. From u = a® + bc and
u = d? + bc, we get a® = d?. Therefore a = d. From v = ab+ bd, ev = ac + de
and a = d, we get 2abe = 2ac, i.e., a{be —c) = 0. Since a = d and a + d # 0,
we get ¢ = eb. This means B € ) too. So the problem is reduced to solve the
equation A™ = B2 in the group 2. With the same discussion as we used in Case
7, we get |{(A, B)|]A" = B A, B € Q}| = ¢ + 1. Since A" # I, we must throw
out 2(n,q + 1) solutions. By Proposition 2.7. the square root of —I is in {2
if and only if ¢ = 3 (mod 4), By Proposition 2.7. In this condition, we throw
2(n, ¢ + 1) many solutions out again.

Clearly in this subcase both A and B are representatives of Case 8, then they
have the same stabilizer. On the other hand, we know that if (A4, B) is a solution,
then (A~!, B~') is a solution and conjugate to (A, B). we also know that in Case
8, (4, B) and (A', B') are conjugate to each other if and only if A’ = A*!. So up
to conjugacy the number of solutions for the equation A" = B? with A™ # +I
are

{gg—j—(n,q-k-l) ifg=1 (mod 4),
= —2(n,qg+1) ifg=3 (mod4).

Summarize above we totally have

{((n¢1+1)—1)Q+g— 1 ifg=1 (mod 4),
((n,g+1)=1)(g—1)+ % —(n,g+1)—1 ifg=3 (mod 4).

By the same discussion as in Case 7, the above is equivalent to
{ ((n,p* +1) — 1)p° + &L ifp=1 (mod4),
((n,p* +1) = 1)(p* — O(s)) + B2 — O(s)(n,p* + 1) ifp=3 (mod 4).

Now we can give Table III for the number of solutions for each case which completes
the proof of Theorem 1.1.



Table IIT
Case No. No. of Solutions Up To Conjugacy

1. 2
2. 3
3. 2
4.

ifg=1 (mod4) and p|n,
ifg= 3 (mod 4) and p|n,
Otherwise.

{ q+ 1
q + 1 ifg=1 (mod 4) and p|n,
6. ifg=3 (mod 4) and p|n,

Otherwise.

nq—l)—l)(q+2)+ﬂ;—5 ifg=1 (mod 4),
nq—l)—l)q+9— ifg=3 (mod 4).

((n,g+ 1) —1)g+ S+ ifg=1 (mod 4),
((n,g+1)—1)(g— 2)+ 3 ifg=3 (mod 4).
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3. COUNTEREXAMPLE FOR THE RESULT IN [7]

In [7], the number of solutions of A™ = B? is computed case by case up to conjugacy.
The following table is a result of [7].

Table IV
Case No. No. of Solutions

1. 2
5 glg+1) ifg=1 (mod 4),

: glg—1) ifg=3 (mod 4)
3 2
4. 2
5 Case2 p|n

' 0 pin
6 Case2 p|n

. 0 ptn

(n,q—2 ol — 1) + -3 ifg=3 (mod 4).
-1

8. ol 1 - L1+ (-1)7F).

The table IV of [7] is completely different from our Table III except Case 1, Case
3 and Case 4. The main difference is in the result of Case 8. The formula given in [7]

in Case 8 is ﬁz”—l —1-z(1+ (—1)"5—l ). While in this paper, by our computation, the
number of solutions of the same case is
((n,g+1) —1)g+ &t ifg=1 (mod 4),
(n,g—1)—1)(g—1)+ %+ — (n,q+1) ifg=3 (mod4).
They are not equivalent to each other. There is an error in [7] by the following
examples.

Example 1. Let ¢ =5,n = 3. Then F, = {0,1,2,3,4}. Since v2 ¢ F,, we choose

e = 2. Write A = ( S)‘ Z ) as the pair (a,b), where a,b € F, and o — €b® = 1.
v v _[a b " . _ n _ 3 0 _
= ( b a ) , we write (u,v) = (a,b)". Let @ = {(a,b)|a® — b® =

1in F,}. We determine a by a® = 1 + €b®. Thus

Q= {(1)0)3 (4: 0): (2:1?7)‘7 (2) 3): (3: 2): (313)}"



Let O = {(u,v)|(u,v) = (a,b)? for some (a,b) € Q}, . Clearly if {u,v} = (a,b)?,
then u = a® + eb®, v = 2ab. Thus

02 = {(1,0),(2,2),(2,3)}.

Let 3 = {(u,v)|(u,v) = (a,b)* for some (a,b) € Q}. Obvmusly if (u,v) = (a,b)%,
then u = a*+ 3ab’e,v = 3a%b + bPe. Thus

9 ={(1,0),(-1,0)}
So for any A € §, A® = +I. The number of solutions of both 43 = B? with
A€~ {+]} is equal to
HBIB? =1} #|{A|A* =L Ac )} +|{B|B* = —I}|» |{A|A® = -1, A € 4}
By computation, {(a,b)}{a,b)® = I} = {(1,0),(2,3),(2,2)}. The solutions for

B? = Iis +I. Since (2,3} = (2 2) the matrix (2, 3) are conjugate to the matrix
(2,2}, so up to conjugacy we ha.ve 2 pairs solutions for A* = B? =T in Case 8:

2 3 10
1"4:(53 2)’B=(0 1)'

2 3 10
M—(es z)B (o —1)‘

We also get {(a,b){(a,b)® = —I} = {(-1,0),(3,2),(3,3)}. Up to conjugacy we only
have one solution A = (3,2) for A3 = —I in Case 8. We list the solution of B* = —J
below, where the matrices in the same row are the orbits under the action of U'(3 7).

(as)(31)51):

w
—t
—

= (33)( )3,
s (13).(33)(5%),
C(29)(33)(53),
#(53)(a3)(15)
o (39)(33)(4 1),
(33).(02)(33).
o+ (33).(1):(33):
- (33).(33):(1%).
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'3 3Y (23 01
o (53):(63).(30)
Therefore up to conjugacy we have 12 solutions for A* = B? in Case 8.
By the formula given in [7], the number of solutions is
g+1 1 =1y 041 1 gt
- e S =" 1 Z(14(-1
1+ ()T =2 S+ (=T

By the formula given in table II, the number of solutions is

) =1.

-1 5—1
((ng+1)-1g+I5==((3,5+1) - 1)5+ - -1=12

Example 2. Let ¢ = 7,n = 3. By simple calculation, v/3 ¢ F7, let e = 3. Then
Q= {(1,0),(6,0),(2,1),(2,6),(0,3),(0,4), (5,1), (5,6)},

0 = {(1,0),(6,0),(0,3),(0,4)},
0 =Q.

Clearly there is no matrix A € Q; satisfying 4> = +1. So
{(A, B)|A® = B, A € 0.} = {(4, B)|A® = B?, A, B € O},
which is listed below

{((2,1),(0,3)), ((2,6),(0,4)), ((5, 1), (0,4)), ((5,6), (0, 3))}.

Clearly ((2,1), (0,3)) and ({2, 6), (0,4)) are conjugate to each other, and ((5,1), {0, 4))
and ((5,6), (0,3)) are conjugate to each other. Up to the conjuagacy, the number of
solutions is 2. By the formula given by [7], the number of solutions is

g+1"- 1

T_1—§(1+( 1)T) =5.

By the formula given in table II, up the conjugacy the number of solutions is
7—1

((ma+1)=1g=1)+1" ~ (n,g+1) = ((3,8) - DT~ 1)+ =~ (3,8) =2.

4. FINDING THE ZETA FUNCTION

What we are going to do now is to use the previous information on the counting of
the representations to evaluate the Zeta function of a torus knot. First we give the
definition.

Definition 4.1. Let K be a Torus knot in 3-space. Fix a prime number p. Let N,
be the number of representations of the knot group into SL(F,s), up to conjugacy.
The the Zeta function is simply the formal power series

(12) Z(p,T) =

19



We will keep p fixed, once and for all. Now notice that if N! is the number of
solution that come from Case ¢ above then: N; = Z?=1 Ni,

20,T) = ep(> ML —exp(Y 30 2T
g=1 s=1 1

s S

[o.o]

= T[>0 =] 2

s=1

where Z; = exp(} o2, Mf—s), so basically we can just find the Zeta function for each

individual case, then multiply the answers together when all done.

Case 1. Recall that in this situation we have 2 solutions, no matter what ¢ = p°
was. So we can say N, = 2, so

o o0

Nie 7

Z = exp(y =) =exp()_2—)
s=1

g=1 s
o0 T"q
= (2 —) = —2log(1 — T
exp( ; —) = exp(~2log(1 — 7))
_ 1
- [A-=TF
Case 2. From table III, we have 1 solution up to conjugacy. So
1
P
2T 1=T
Similarly we get
1
Z
3 (1 _ T)g;
1
Zy = ——
Ta-r1”

Case 5. From table III, we have no solution if p { n. If p | n, the number of solutions
is equal to

g+1 ifg=1 (mod4),
g—1 ifg=3 (mod 4),

If p=1 (mod 4), then p = 1 (mod 4) for all s. If p = 3 (mod 4), then p* =
(mod 4) for s is odd, p* =1 (mod 4) for s is even. Therefore the previous formula is
equivalent to

P’ +1 ifp=1 (mod 4),
p*+(—=1)° ifp=3. (mod 4).
20




Therefore for p =1 (mod 4) and p | n, we get

= NOTE
g = () 2T

o 8
= exp(d_ ——(1+:3)T3)
— ) j 1
T (A-pT)A-T)

For p =3 (mod 4) and p | n, we get

2 N5Ts
Zs = EXP(Z_H—)

. s
1

@
I

)

= op(y 2 ENIT

[“]2

s=1 -
_ 1
 1-pD)(+T)
In general,
1 if ptn,
Z5 = 1 ‘ 'f .
{ (1-pT)(1+(-1) 2 T) it s
Similarly
1 if p1 n,
Zﬁ = 1 f
{ (T P |n.

To calculate Z7, we need to deal with 3_(p* — 1,n)Z-. So we first discuss how to
calculate 322 ((p° — 1,n) — 1)L*. By Fermat’s little Theorem, for each d|n, there

g=1

exists a 1(d), such that p¥® = 1 (mod d) if (d,p) = 1. Clearly if (n,p) # 1, then
(n,p* — 1) =1 for all 5. In this situation, we obtain

=T s
. i_:T ifp=1 (mod 4)
7 jum—

(1_—71):](0_1;'1“2 ifp=3 (mod 4).

Suppose (n,p) = 1.

Given a natural number p, we can write n = p!'p ... p¥ for some distinguish prime

number p;. So we calculate three different cases i)n = py, ii)n = pi, iii)n = pip.

where p,, p2 are different prime number, with p;, ps > 2. Then the other cases can be

computed by the same algorithm. Write F(s) = > ((p* — 1,p) — 1) T
21




i: Let n = p,. Let m, be the smallest positive integer satisfying p* =1 (mod p,).
If p™ =1 (mod p,), we can write m = km, for some integer k. Therefore

e 9

F(s) =Y (0" - L) - )

S
s=1
Tmlk
Tﬂlk

_1)2

]n(l — ™).
my

ii: Let n = p?. Let m; as above. Let ms be the smallest positive integer satisfying
p* =1 (mod p?). Clearly m,|mz. Therefore

oo

8 Ts
Fs) =) (P - L5 - 1)
s=1
o0 Tm;k Tmzk ngk
~ — (p1 — -
STCRT) pEMRTARNI) prcepy S
— _ 2 _
Pl gy BT gy P Ly
My Mg g
S Sk SWOR L L Sl BRORY L)
my mo

iii: For n = p,p,. Choose m, as above. Let mg, m4 be the smallest positive integers
satisfying p°* =1 (mod ps) and p* =1 (mod p,p,) respectively. Clearly m, | m4
and mgz | mg. Then

F(s) =3 (7" = 1,pim) - 1)3}

Tmak
= — i i =
(p1 2 - (ps )Z + (P2 ); —
o0 o0
‘ T'm4k m4k
—cpzw-nzmw I
k=1 k=
1 —1
S Sy —Tm”)+L]n(1—Tm4)
my My
R Ink WO LUV Ink SWOREE LASEE - Tnb SN LN
ms3 My My
-1 — —
= =T S gl ey 2 ! Tl = T8 — o~ D> — 1) In(1 — T™).
UG M3 My

To simplify the formula, let f(p;) = E,{n—_ll,f(ﬂz) = mﬂg—"l), and f(p1p2) = (’“‘gﬁ;;ﬂ_—u
So for n = py, we get,
22



r

1
(1—pm1T™1 ) Ll (1-T™1)27 (P1)
V(1-T)®

. * e, p=1 (mod 4),

1 * 1 ” il
(1_(;,T)m1)f(m) (1_Tm1)f(m) (1_(_T)‘M1)f‘(m)

& /____(1“?)_“]‘3(;“7'7’, p=3 (mod 4).

For n = p?, we get

[ 1 1
- (G T O (=TT (g g ).f(p?)‘

L V(-T) ifp=1 (mod 4),

(1_Tm2)~‘2f(r¥) * V1—pT

Zy = 4

i ” 1 * 1
(1-(pT)™1)f(p1) (1-Tm‘1)f(m) " (1-(-T)™ )f(m)

1 i

f 1
(1—(pT)™2 o (1_Tm1)'f(1’%) * (1_(_T)m2)f(p¥)
—~TY4(14T . _ 1
\ -{‘1—1%—},&%—4'—2 ifp=3 (mod 4).

For n = p,ps, we get

1 1
(1—pm1 ™) 1) (1—Tm1)2F 1) (1—pmaTms)flv2)

—

. 1

—Tm3)2Ia) ¥ (1_pmaTma) (e (1Tma) 2 (7g)

(1-T)° e

Ji-pT lf Pp= 1 (mOd 4),

—

(

ZT = 4 (1_(,,T)}n])f(m) # (1_Tm11)f(m)' * (1_‘(_'1")15111)‘!(1&;)

1 * 1 * 1
(1—(pT)™s)fr2) ™ (1-T™m3)F(P2) (1—(-T)™3)f(P2)

1 1 1
(1—(pT)™4)/ (P1P2) e (1—T™4)f(P172) * (1—(=T)m4)f(P1p2)

\ 1/% ifp=3 (mod 4).

To compute the Zeta function of case 8, we use the same method as we have shown
in the computation of Zeta function of Case 7. And by the same reason as above,
we only give the Zeta function for i)n = py, ii)n = p?, iii)n = pyp; for some py, ps
are prime number with py,p; > 2 and p; # po. To simplify the discussion, we always
suppose there is a solution for the equation p* = —1 (mod n).
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i)For n = p;. Let m) be the smallest positive solution for p* = —1 (mod p),. By

Proposition 4.1, we get if p™ = —1 (mod p, ), then m = (2k + 1)m, for some integer
k > 0. Clearly m; = 2m|. We compute the subcase of p=1 (mod 4). So

-1
Ng = ((pr,p* +1)— 1)p° + F

2
We compute In Zg first.
CN((npt 4 1) — gl
In(Ze) = 3 (mr +1) =0 + E5003
_ — 00 (pT 2i¢:+1)m1 _ psTa TS
om kz;: 2k + 1 Z
=Pm—1]n1+(PT)',‘ lnl_T
2m! " 1—(pT)™ 2 1-—pT
1+@N)=, 1, 1-T
fe Ty ).
(pT) p) 2 1—0p
Zy = (D™ s (12T
1—(pT)™ 1—pT

In general we get

1+(pT ™) f(m) : =
1 = m N ifp=1 (mod 4),

éi 14+(pT 1 m
flp1) (L=TL Y f(p1)
(o0 (-

LH=T)™ f(p)\/E P
L *(1 (- T)'"T) YA T ifp=3 (mod 4).

ii)For n = p?. Choose m| as above, let m), be the smallest positive solution for

p* = —1 (mod p?). Clearly m;|ms. And my = 2m),. By the similarly discussion as
a,bove we get Zg equal to
([ (LT 1), 1+W)”2 fod), [T P =
\ [ PTL)f p1) (1= —T™ L)f pl)(w)ﬂm)
1—(pT)™1 1+T"" =(-T)™
1+ pT)"‘z £o?) (1=T72 ) £(p) J__—TY”? foh, [ O-T* g, =
iii)For n = pypy.

Choose m/ as above, let mj be the smallest positive solution
(mod p)a, mj be the smallest positive solution for p° = —1 (mod p;p2).

Clearly m/ |m/);, mj|m}, and m}, mj are coprime. We also get m3 = 2m3 and my = mj
Therefore Zg equal to

for p* = —
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(Ilz%)f(m)(%)ﬂm)
(i+(zg:: )f(plm)\/l——pg“ ifp=1 (mod 4),
{ (%)i(m)(hgl )f(m)(i+§ :j)t::) (p1)
‘ (%)ﬂpz)(ﬁ)ﬂ )(%)f(m)
! (%))’(le)t%) (mm)(%ﬁmpg) ,———“;%)T(,l)_iﬂ e

In [7], a modified Zeta-function of a knot is defined as

(13) M, T) = exp((H),

s=1

where N] is the number of non-diagonal representations of the fundamental group
of the torus knot into SL(F,.), counted up to conjugacy.

Let p =1 (mod 4). We show that for n = p;, A3 (p,T) is a polynomial. Here we
have two subcases 1) p{n. 2)p | n. Denote exp(} iﬂgﬁ) by A; where (N?) is the
number of non-diagonal representations in Case i.

1) Let p{ n.

i: Both representative is Case 1 are diagonal, so

)\1 =1
ii: Both representative is Case 2 are diagonal, so
)\2 = 1

iii: Obviously no diagonal representations since A4 is not diagonal. So A3 = ﬁi’
iv: Obviously no diagonal representations since A is not diagonal. So My = u-_l'r)f
v: By table III, we get N =0, s0 As = 1.

vi: By table III, we get N =0, so A = 1.

vii: The representations of subcase 7.b are diagonal. In subcase 7.a, for the so-
lution (A, B), it is diagonal if and only if B is diagonal. For each fixed A,
there are two diagonal solutions satisfying AT = B%. So (N7)' = 1((n,p* — 1) —
1)(2(p* +3) —2) = ((n,p* — 1) — 1)(p® + 2). We get

1

)‘7 = (1 __pmlTTm)f(P!)(]_ — Tml)zf(pl).

viii: Obviously all the presentations in Case 8 are not diagonal. So
1 T 1-T
As = j&)ﬂm [1=2

1— (pT)™ V1-pT
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Therefore

; 1 1
M =1x1:
* *r(l—T)“‘*(]l—T)"*l*l
) 1 (L (pT)™ ypron 1= T
(1—pm™ Tm)ﬂ(m)(l — TW)M(N) 1- (pT)m'i = pit'
1 | 1

(1=T)7((1 = (pT)™ )41 (1 — Tm™)4fe1) 1 — pT"
Hence =2 is a polynomial.
2)Let p | n.
i: Both representative is Case 1 are diagonal, so
AL=1
ii: Both representative is Case 2 are diagonal, so
Ay =1

iii: Obviously no diagonal representations since A is not diagonal. So A3 = “—_Jﬁf
iv: Obviously no diagonal representations since A is not diagonal. So Ay = (T_iT—)g
v: Clearly no diagonal representations since A is not diagonal, So A5 = H—T’l‘;(l——'ﬂ'
vi: Clearly no diagonal representations since A is not diagonal. So Ag = Fl?T’!)TT:ﬁ‘

vii: The representations of subcase 7.b are diagonal. In subcase 7.a, since p | n,
(n,p* — 1) — 1 =0, we get

)\7:1.

viii: Obviously all the presentations in Case 8 are not diagonal. So

1~ T
X .
i 1-pT
Therefore
1 1 1
2=1x%1x
N T T - pT - T
L *1*1_T
(1-pT)*(1-T)? 1—pT

1
0= T)i(l— D)

Clearly A2 is a polynomial.
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Let n = p?. Then

1 1 1 1

2 _ ;
= (1-T)(1-T)* x (1 — pmTm)2f(p)(1 — T )4 ) (1 — pszma)Ef(P?)

‘ L (L4 1) gy L+ (PT)™ o5y 1= T
(1 — Tm2)4f0}) 1 — (pT)™ 1— (pT)™ 1-pT

- 1 1

T (1 =T)((1 — (pT)™ )4 1) (1 — Tm)4f(pa) ((1 — (pT)™2)4f(P1) (1 — Tm2 )4 (PD)
1—pT

Clearly A2 is a polynomial.
Let n = p;ps. Then

1 1 1
(L=T)7 ((1 — (pT)™ )41} (1 — Tma)4f(e1) ((1 — (pT)™s)4f(p2(1 — T'ma)4f(2)
1 1
(1 = (pT)™e)iTeips) (1 — Tma)tiearn) * 1 — pT

=

Obviously A~2 is a polynomial.
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