
OPTIMAL FERTILIZER INVESTMENT SYSTEM

A COM - BASED APPLICATION

By

LIWANG

Bachelor of Arts

Beijing Polytechnic University

Beijing, People's Republic of China

1983

Submitted to the faculty of the
Graduate College of the

Oklahoma State Uni versity
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 200 1

f

OPTlMAL FERTILIZER INVESTMENT SYSTEM

A COM - BASED APPLICATION

Thesis Approved:

------<-------L---7~ A'~_
Dean~duateCollage

II

ACKNOWLEDGMENTS

This thesis is the outcome of many months of my work. I am very grateful to the

individuals who, directly or indirectly, have helped me in my effort. First, I wish to thank

my advisor, Dr. G. E. Hedlick. His erudite knowledge, constructive guidance and great

insight on the relationship among the applications have contributed much to the ability to

develop an integrate software with modem technology; his tirelessness and

meticulousness in capturing and editing my manuscript have helped me to set the overall

tone and style of the thesis and made the inevitable revisions be accomplished with

relative ease.

I would like to extend my gratitude to my other committee members, Dr. 1. P.

Chandler and Dr. Nohpill Park. Their knowledgeable inspiration and careful attention to

the detail have assured the value and quality of the thesis.

I must express my great appreciation to Mr. Jianhua Ren, who developed the

software, SFUDSS 1.0. His creative suggestions, sincere encouragement, and friendship

have been invaluable and will remain in my mind.

Finally, the special thanks and apologies should go to my family - my parents and

daughter. Over time they have been neglected, even ignored, during my deepest

concentration. Their unconditional love and support have been great motivation for my

thesis development.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1.1 The Contribution of SFUDSS1.0 to Fettilizer Application 1
1.2 Problem Statement 2

1.2.1 The Perplexity on Fertilizer Market.. 2
1.2.2 The Complexity in Using Sol ver.. 4

1.3 Objective of the Study 8

II. LITERATURE REVIEW 9

2.1 Interprocess Communication 9
2.2 Component Object Model 10
2.3 ActiveX Controls 13
2.4 ADO Data Control and Data-Bound ControL 14
2.5 Object Link Embedded 17
2.6 Visual Basic for Application 20
2.7 Excel 22
2.8 Linear Programming 23
2.9 Excel Solver 36
2.10 Database Management System and Relational Database Model 37
2.11 Dynamic Link Library 39

III. DELOPMENT AND IMPLEMENTATION 41

3.1 Overview of the Features of the System 41
3.2 Design and Implementation 42

3.2.1 Construction of User Graphic Interface 42
3.2.2 Design and Implementation of Database 46
3.2.3 Algorithm for Selection of Fertilizer Blending 53
3.2.4 Access Database from Visual Basic with ADO 55
3.2..5 Displaying of Recordset by DataGrid Control 56
3.2.6 Realization of OLE Automation 57
3.2.7 Implementation of Solver with YBA 59

IV. RESULTS 63

V. CONCLUSION AND FUTURE WORK 69

;v

Chapter Page
5.1 Summary 69
5.2 Conclusions 70
5.3 Future Work 71

BIBLIOGRAPHy 72

APPENDIXES 76

Appendix A - Acronyms and Abbreviations 76
Appendix B - Glossary 78

\.

Table

LIST OF TABLES

Page

1. Fertilizers with their Ingredients and Contents on the Market. 3

2. The Results from Different Fertilizer Combinations 4

vi

r

Figure

LIST OF FIGURES

Page

1. Manually Setting the Spreadsheet.. 6

2. Set Solver Parameter Manually 7

3. ADO Object Model 15

4. Structure of Optimal Fertilizer Investment System 42

5. Relations in the Third Nonnal Form 50

6. E-R Diagram for Fertilizer Database 51

7. Crop Tables 52

8. Method Table 52

9. Fertilizer Table S3

10. Mix Table 53

11. Starting Form 63

12. Prelnfonnation Form 64

13. Combination Fonn 66

14. Optimal Results on the Spreadsheet.. 67

15. Optimization of Fertilizer Investment Fonn 6S

"'11

Chapter I

Introduction

The use of fertilizer is needed for all types of long-term crop production in order to

achieve yield levels which make the effOlt of cropping worthwhile [17].

Modern fertilizer practices, first introduced more than a century ago and based on the

chemical concept of crop nutrition, have contributed widely to the immense increase in

agricultural production and have resulted in better quality food and fodder. As a

beneficial side-effect, the fertility of soils has been improved resulting in more stable

yield levels as well as in a better (nutrition-induced) resistance to some diseases and

climatic stress. Furthermore, the fanner's economic returns have increased due to more

effective production [17].

1.1 The Contribution ofSFUDSSJ.O to Fertilizer Application

Nutrient deficiency in soil can be corrected simply by applying appropriate

fertilizers, but it is neither practicable nor economic to attempt to eliminate deficiency

and to maximize crop production through massive applications of fertilizer, since

excessive fertilizer into soil would result in environmental risk [39]. For the purpose of

optimal fertilization, the Oklahoma State University (OSU) Soil, Water and Forage

Analytical Laboratory (SWFAL) has developed a computer-based software, named

Decision Support System for Soil Fertilizer1.0 (SFUDSSl.O). This software can

generate recommendations of fertilizer application, including the amount of the three

major nutrients contained in a specified field, such as nitrogen (N), phosphorous (P), and

potassium (K), based on test results and further requirements for reaching an anticipated

yield goal.

SFUDSS 1.0 is capable of telling farmers how much N, P, and K needed for their

planting plan, however it cannot instruct farmers }n the amount and sort of ferti Iizers they

should purchase from the most economic perspective.

1.2 Problem Statement

1.2.1 The perplexity on fertilizer market

With the aid of a Decision Support System for fertilizer application, farmers learn

fertilizer requirements based on their yield goals. However, the farmers do not know

what mixtures of fertilizers are best for them to purchase since the commercial fertilizers

on the market contain a variety of ingredients with different prices.

For instance, assume a recommendation that states one field needs at least 32 pounds

of nitrogen, 24 pounds of phosphorus, and 42 pounds of potassium. On the market, there

are five types of fertilizers available as shown in Table 1.

Fertilizer Nitrogen Phosphorous Potassium CostJpound
A 3% 5% 1.4% $0.04
B 30% 0% 0% $0.15
C 0% 20% 0% $0.01
D 15% 10% 7% $0.13
E 0% 0% 20% $0.14

Table 1. Fertilizers with their ingredients and contents on the Market.

These fertilizers can be combined differently for purchase, however the ingredients

and the prices resulting from different combinations appear greatly divergent. Table 2

demonstrates this fact.

2

Fertilizer
Nutrients Surplus

Fertilizer
Needed (lbsta)

Contained Nutrients Cost
Mixture N p K N P K

A 3000 90 150 42 58 126 0 $120

B 107
C 120 32.1 24 42 0.1 0 0 $57.5
E 210
A 88.89
D 195.56 32 24 42 0 0 0 $47.9
E 135.33

Table 2. The results from different fertilizer combinations.

If fertilizer A is the only choice, then at least 3000 pounds of this type of fertilizer is

necessary to satisfy required 42 pounds of K at the cost of $120.

If a combination of fertilizers occurs among fertilizers B, C and E, then no less than

107 pounds of B, 120 pound of C, and 135 pounds of E are needed to fill the nutrient

requirements. This combination produces 32.1 pounds of N, 24 pounds of P, and

42 pounds of K at a price of $57.50.

If the selection includes fertilizers A, D, and E, then 88.89 pounds of A, 195.56

pound of D, and 135.33 pounds of E are enough to meet the ingredient requirements at

a cost of $ 47.90.

Comparing the three combinations, it is obvious that the first choice is thoroughly

undesirable. It leads to not only the waste of :')8 pounds of Nand 126 pounds of P

but also environmental pollution due to excessive Nitrogen and phosphorous applied to

the soil. The amount of $120 charged for this mixture of fertilizers is also not a small

investment.

The second choice greatly decreases the waste of N, P and K, and it significantly

lowers the cost. However, the price for this combination is unacceptable.

The last choice removes any wasted nutrient ingredients as well as having the least

cost. This choice is optimal in the case shown in table 2.

In addition to the consideration of nutrient ingredients in fertilizers, the other

factors, such as crop growth phase, fertilizer form, methods of fertilizer placements,

fertilizer compatibility, and side-effects of some fertilizers on certain crops, also affect

the selection of the fertilizers and must be taken into account.

In general, fertilizers exist in either dry or liquid form. The distinct forms of

fertilizers are applied using different methods of fertilizer placement. The crop growth

phase determines the utilization of the placement methods.

Finding an ideal combination of the required fertilizer ingredients that are

compatible, satisfy the constraints of placement method and crop growth phase, and

are provided with the least cost is an optimization problem.

The process to solve the optimization problem is quite difficult and complicated.

It involves using a mathematical method to formulate the problem then operating tools to

reach an optimal value. At present, Solver built-in Excel is one of the methods widely

used to realize optimization.

1.2.2 The complexity in using Solver

The built-in Solver in Excel is a powerful tool for computing an optimal solution.

The theoretical foundation of Solver is linear programming. The basic concept in linear

programming is finding a particular set of variables that satisfy all constraints and

maximizes, or minimizes, the value of the objective function. Usually, using Solver to

compute an optimal solution takes the following steps:

4

1) Formulating an optimization model.

a. Select relevant variables and restrictions. Express relationships between variables

and restrictions in equation fonn.

Based on example in table 1, one field needs at least 32 pounds of nitrogen, 24

pounds of phosphorus, and 42 pounds of potassium. The problem can be

fonnulated as follows:

Let Xl =amount of fertilizer A

X2 =amount of fertilizer B

X3 = amount of fertilizer C

~ =amount of ferti lizer D

Xs=amount of fertilizer E

0.03X\ + 0.30X2 + 0.15 ~ ~ 32

0.05 X I + 0.20 X 3 + 0.10 X 4 ~ 24

0.14 X 1+ 0.07 X 4+ 0.20 X s 2:: 42

X i ~ 0 (i = 1,2,3,4,5)

b. Determine an objective function or measure of effectiveness referring to the example

in table 1, the objective function is set to:

Smin = 0.04 X I + 0.15 X 2 + 0.1 X 3 + 0.13 X 4 + 0.14 X s

X i ~ 0 (i =1, 2, 3, 4, 5)

2) Setting the optimal model up on a spreadsheet.

This involves several tasks as follows:

a. Reserve a cell to hold the value of each decision variable.

b. Pick a cell to represent the objective function, and enter a formula that calculates the

objecti ve function value in this cell.

c. Pick other cells and use them to enter the fonnulas that calculate the left hand sides

of the constraints.

d. The constraints on the right hand side can be entered as numbers in other cells, or

entered directly in the Solver Add Constraint dialog box.

Figure 1 and Figure 2, based on the example in table 1, show how a user manually

sets the spreadsheet to compute an optimal solution.

a. Reserve the cells from E3to 13for as constraints the contents of N contained in the

five types of fertilizers. Reserve the cells from E4 for 4 as constraints for the contents

of P contained in the five types of fertilizers. Reserve the cells from Es to Is as

constraints for the contents of K contained in the five types of fertilizers.

b. Pick cell Cg to hold the objective function, f =O.04xl + O.15x2 + O.l6x3 + O.13X4 +

O. 14xs.

FertD FertE

I

_-=1=
I

-t
. _ ..l

__-f..:.==.:....::=t-,.........$...O....,o.o,----+-------,_

o 0.15 0
+--.............:==+----=.~+-----+----=-'-=-"+--~+---0~.2~---"'::0c-'.1-+---0

o~ 007 i 0,2
__ ~ I

=,,-0,;o.OO~---::-=,oC-',o~o+ 0-eDO • P9f Q]QC
1;;;;;l-__-+ ~o.:.::-...::.:-;.~~"'--_+-~$.::.;O.~04_=_+-~$O""',.:.;;;15'--t-.............:$O=.:..,.'1-,,-0_--,,$,_O.-,-13~_-,--,,$O~

Figure 1. Manually setting the optimization model on the spreadsheet.

6

&

c. Use cells C3, C4, and Cs to keep each fonnuJa that caJculate the vaJue on the left hand side

respectively. These fonnulas take the fonn of SUMPRODUCT (E3:13 E7:h),

function that multiplies the content of each nutrient in each fertilizer to Xn (an initial value).

respectively, and sums them. For example. SUMPRODUCT computes for nutrient N

3%X1 + 30%X2 + 15%)4.

d. Enter the constraint on the right hand side in the cells from B3 to B5.

Figure 2. Set Solver parameters manually.

3) Activating the Solver to find an optimal solution.

Clicking the Solver parameter dialog box to drive Solver computing optimal

solution. Using Excel Solver to compute an optimal solution is a difficult and

7

complicated process. It requires the users (1) know the fundamentals of linear

programming and its solving steps, (2) have the knowledge of advanced Excel, and

(3) be capable of manipulating Solver.

Obviously, it is impossible to complete this process for users who lack the

knowledge of and experience with linear programming, Excel, and Solver.

1.3 Objective ofthe Study

To meet the need of the farmers for an optimal fertilizer investment, the objectives of

this study are:

1. To develop a software that provides users with optimal solution for fertilize

investment and frees them from difficult tool operation. Users interact with the

application only through a friendly interface, and simple keystrokes and mouse

clicks are enough for them to acquire an optimal value.

2. To use COM technology to implement interprocess communications. With COM

a variety of independent software, such as Visual Basic, Fertilizer database, and

Excel used in this project, are integrated, and any part of the software provides its

service as one or more COM objects. These software components communicate and

cooperate, enabling data sharing and software reuse. This system can be run under

any Microsoft Windows System with Office installed.

Chapter II

Literature Review

2.1 lnterprocess Communications

As computer users become more sophisticated, they demand more power from the

applications they use. To meet this demand, developers add more features to the

applications, and the applications become larger. Large applications eventually become

unmanageable, both from a development standpoint and from a user-interface point of

VIew.

One method a developer can use to manage larger applications is to produce a

specialized application that provides a limited number of features, then enable it to

communicate and share data with other specialized applications using some form of

Interprocess Communications (IPC). It is not necessary that any single application meets

all its user's expectations; users can use the communicating and cooperating applications.

Generally, IPC is a capability supported by some operating systems that allows one

process to communicate with another process. The processes can be running on the same

computer or on different computers connected throughout a network. IPC also enables

one application to control another application, and for several applications to share the

same data without interfering with one another [24]. IPC is required in all

multiprocessing operating systems.

Typically, IPC applications can be categorized as clients or servers. A client is an

application or a process that requests a service from some other process. A server is an

application or a process that responds to a request. Many applications act as both a client

9

and a server, depending on the situation. For example, a Visual Basic application might

act as a client in requesting a setting of constraints and an objective function from an

Excel spreadsheet that acts as a server. The spreadsheet application, in turn, might be a

client requesting an optimal computation from Solver.

There are a few IPC mechanisms that are supported by Win32 API (Application

Programming Interface), such as Clipboard, COM, Dynamic Data Exchange (ODE), File

Mapping, Mailslots, Pipes, Remote Process Call (RPC) and Windows Sockets. Among

them COM is used popularly for interprocess communications.

2.2 Component Object Model

The Component Object Model (COM) is a language-independent software

component model that enables interaction between software components and applications

running on a Windows platfonn. COM is the foundation on which Microsoft OLE,

ActiveX, and other programming technologies are constructed [38].

COM has following features:

COM is based on components and objects. COM is a Component-oriented design

that breaks applications into components that can be distributed in separate binary files

either dynamic link libraries (DLL) or executable (EXEs). In this context, components

are pre-compiled, interacting pieces of software that can act as building blocks for

creating applications (53].

Component-oriented design also makes a given component reusable in different

applications that require similar functionality and allows the individual components of an

application to be updated easily.

10

-

Interface is the key concept in COM. The interfaces of a component are the

mechanism by which its functionality can be used by another component. Interfaces

contain functions. COM defines certain basic interfaces that provide function common to

all COM-based technologies [4]. To provide additional functions for a component,

simply an additional interface needs to be added from those functions.

COM components are language-independent. COM component can be written in

any of several different languages with quite dissimilar structures. These components

can be called within a single process, in other processes, even on remote machines. For

example a user can create COM component in Visual Basic and integrate it into the

user's Visual C++ or Visual J++ project. Language-independence makes it possible to

build then subsequently use components with distinct languages [41].

COM components act as both client and server. The term 'client /server'

encapsulates two separate, discrete entities. These entities could simply be two

components, two applications or even two computers. The client requires some service,

and requests a server to perform this service on its behalf. The server performs the

service and returns a result to the client.

In terms of COM components, each component can function both as client and as

server. A server is a component that exposes its interfaces and therefore a list of

functions that a client may call. The client is a component that uses that interfaces.

COM enforces a strict separation of the client and server such that they only know of

each other's presence by the existence of their interfaces [20].

COM objects have object-oriented features. Obeying the structures of encapsulation,

they are accessed using only public methods and properties, so that any data they contain

II

-

is hidden from public consumption.

COM is a framework for creating and using components [38]. It offers following

advantages:

1. COM provides a mechanism for components to communicate with one another.

COM achieves the communication by the combination of two things.

First, there is the binary standard it imposes. This means that the components not

only provide a mechanism to communicate, but also communicate with other COM

enabled components or applications.

Second, there is a set of services provided by the COM runtime library that is

required to be present on a computer before communication between the components can

occur. These services, which are available to all components, come in the form of a set

of Application Programming Interface (APl) functions [20].

2. COM components are usually written to be generic, which allows them to be used in

multiple ways by different pieces of software [38]. For example, a user can put a graph

in a Microsoft World document, or the user might put it onto a Microsoft Access form. A

user can use it in either application and it will work the same way in one a it does in the

other.

3. COM promotes the use of component-based development.

Before the advent of component-based development, the predominant technique was

procedure-based development. This style is linear in nature, and programs start at the

first line of code, and finish either when the last line is executed, or an Exit statement

is reached. Applications written in this fashion tend not to be vary adaptive to what

was happening around them [4].

12

In Visual Basic today, it is quite easy to reference (that is, to plug in) a library of

functionality in order to use it in users' programs.

Component-based development also allows the programmers to take advantage of

using pre-packaged components or tools.

4. COM promotes object-oriented programming.

COM was created with object-oriented programming in mind. This is a

methodology that improves thinking about software 'objects' and the way those objects

interact with each other, rather than their implementation [41].

As COM has evolved, it has been extended heyond the basic COM service. COM

serves as the basis for other technologies, such as Automation and ActiveX controls.

2.3 ActiveX Controls

ActiveX controls are software components that are used to realize software reuse and

increase productivity. Theses controls use COM technologies to provide interoperability

with other types of COM components and services [33].

ActiveX controls are visual controls that can be plugged into an ActiveX contro

container application. They are not complete applications in themselves, but can be

thought of as prefabricated OLE controls that are reusable in various applications [24].

ActiveX controls have a visible user interface, and rely on these predefined interfaces to

negotiate I/O and display issues with their host containers [9].

An ActiveX control encapsulates, or contains, three different parts --- properties,

methods, and events --- that users will modify, call, and define to take advantage of

the control's functionality in their programs:

- Properties define attributes of a control, such as the way a control looks on the form or

the initial state of the control when a users runs the program.

- Methods are functions that perform a specific action on or with an object.

- Events are notifications generated by an ActiveX control in response to some particular

occurrence in the program, such as a mouse click on a user interface control or a

completed acquisition.

ActiveX controls make use of automation to expose their properties, methods, and

events. Features of ActiveX controls include the abilities to fire events, bind to data

sources, and support licensing.

2.4 ADO Data Control and Data-Bound Control

ADO Data Control is a form of ActiveX controls. It is based on the ActiveX Data

Objects (ADO). ADO is a high-level interface to all kinds of data and is used to provide

consistent access to the data [25].

ADO sits on the top of database. It hides the peculiarities of each database, and

gives developers a simple conceptual view of the underlying database [36].

ADO enables client applications to access and manipulate data through any OLE DB

provider, and it contains object for connecting to a data source, adding, updating, or

deleting data. A client application performs the following:

1. Establishes a connection to the database

2. Executes commands against the database

3. Retrieves information from the database

ADO object mode, shown in Figure 3, corresponds to these operations.

14

• Connection object builds a connection to the database.

• Command object points to SQL strings, stored procedures, or action queries that a

user can execute.

• Recordset object creates a set of records from a query (User can move forward and

backward through ADO Recordsets. ADO Recordset is also called cursors) and it can

be used to view the contents of a table or results from executing an SQL statement.

• Parameter object represents a parameter of a command. A user explicitly can

generate parameter objects then add them to the parameter collection to avoid the

unnecessary and expensive task of going to the system catalog to populate the

parameter binding information automatically.

• Field object displays a column in a Recordset.

Connection

Command

Parameters

Errors

Recordset

Fields

Figure 3. The top-level object in ADO is the Connection object, which contains Command and

Recordset objects and the Errors collection.

15

-

• Error object deals with an error returned from a data source. This object is optional

because it is only needed when data sources can return multiple errors for a single

method call.

ADO Data Control represents the ActiveX Data Objects, and it accesses databases

through the ADO objects. ADO Data Control is placed on a Form and functions as a user

application's visual gateway to a database. A user can set it up to "see" any table or

query in a database with point-and-click operations.

ADO Data Control exposes the basic properties of the Connection object, which

allow a user to connect to a database, and the basic properties of the Command object,

which allow a user to retrieve the desired rows. To access these rows, use the Recordset

object. This is a property of the ADO Data Control, which in turn exposes the same

properties as the ADO Recordset object.

Data-Bound Control is another form of ActiveX control. It comes with Visual Ba ic

and can bind to multiple rows in a table. These controls are also called Data-aware

controls and must be used with a data source. Working with ADO data control, data-

bound controls help a user to view and update a specified field in the database.

Data-bound controls, described below, can only be used in conjunction with a

database:

Datalist control This is similar to the ListBox control, but its items are the values of

a column in the database (or a query).

A ListBox control presents lists of choices for user to select. The ListBox control

16

-

occupies a user-specified amount of space on the Form and is populated with a list of

items; the user can select one or more with the mouse.

DataCombo control This is similar to the ComboBox. control, but its items are the

value of a column in the database (or a query).

A ComboBox control contains multiple items but occupies less space on the screen.

The ComoBox control is an expandable ListEox control: the user can expand it to make a

selection and retract it after the selection is made.

DataGrid control It maps an entire table (or query) on a grid. DataGrid control call

direct editing of its cells, as weB as the addition of new rows and the deletion of existing

ones.

The DataList and DataCombo controls are frequently used as lookup mechanisms.

They display the values of a specific column, yet they can be bound to another Recordset

and synchronize their data with the second Recordset.

2.5 Object Link Embedded

In the past, software development tools were uniform throughout, allowing little

variation and component exchange with other tools. Programming environments were

thought of as islands, somewhat isolated from other applications. Programmers used

structured programming techniques to analyze programming problems in terms of

procedures and then implement those procedures [28].

With the introduction of Object Link Embedded (OLE), software development

has been significantly transformed from procedural to object-oriented programming. The

developers no longer have to work with prepackaged tools. They can create self-

l7

-

contained models or objects that greatly simplify programming, especially when it comes

to building large applications [28]. With OLE developers can use both Visual Basic

objects and objects exposed by other applications to build new applications. They wilJ be

an integral part of the operating system and its applications [28J.

OLE is unified environment of object-based service. lts essence is allowing

applications to supply their objects to external development tools, macro languages and

other applications that support OLE.

At core of OLE is the Component Object Model (COM). COM is a standard

software architecture based on interfaces that is designed to separate code into self

contained objects or components. Each component exposes a set of interfaces through

which all communication to the component is handled.

To realize OLE, following applications and techniques are necessary:

OLE Object - an item that is exposed, or made available, by and OLE server

application. OLE server application exposes different type (or classes) of objects. OLE

objects are used in container applications.

Server Application - an application that exposes the objects a Visual Basic

application contacts. When an application must edit a document created by a server

application, it contacts the server application used to edit the document.

Container Application - an application that contains the OLE objects. Objects can

be linked or embedded. A container itself is also an object. The container is also referred

to as a client because it uses the services of OLE servers to obtain the objects.

Object Embedding - a technique with which we can insert an object from one

application (the server application) into another application (the container application).

18

-

The inserted object is a copy of the original and can be manipulated and stored separately

and apart from the original object.

Object Linking - a technique similar to embedding, except that the embedded data

are also linked to the document from which they come. Changes to the object in the

server application are reflected automatically in the container application. Linking

doesn't store the object, it makes a reference to the object exposed by the server

application. Each time opening the document that contains the linked object, the

container application contacts the server application, which actually opens the most up

to-date version of the linked object. Linked objects are not copies. They are the

originals, viewed from within different containers.

Ill-Place Editing - also known as in-place activation. The functionality of the server

application is incorporated into the container application, thus enabling us to edit the

object using the menus and tools of the server application.

OLE Drag- lind-Drop - a method allows users to pick up objects that have been

exposed in a server application and place or drop them into users' container application.

OLE Automation - a method that allows manipulation of objects exposed by another

application from within Visual Basic applications. It is also a standard that defines how

code is shared between applications and how applications can be controlled from within

other applications.

Generally, using OLE Automation, users can:

- Create applications and programming tools that exposed objects.

- Create and manipulate objects exposed in one application from anther application.

- Create tools that access and manipulate objects. These tools can include embedded

19

-

macro languages, external programming tools, object browsers. and compilers.

The objects an application or programming tool exposes are called OLE Automation

objects. Applications and programming tools that access the objects are called OLE

Automation controllers. These controllers can be created using Microsoft Visual Basic,

Microsoft Visual C++, Microsoft Excel, Microsoft Project, and other applications and

programming languages that support OLE.

2.6 Visual Basic for Applications

When Microsoft developed OLE Automation, the basic idea was simple: create a

common language and programming environment for a number of applications so that

users could customize applications and add capabilities to suit their own environments.

The result was the language Visual Basic for Applications [30].

Visual Basic for Application (VBA) is powerful language and development

environment built into the Microsoft Office family of applications, which provide

developer with professional quality development tools for building custom solutions [19].

VBA comprises a VBA engine and an integrated development environment (IDE)

with a full-featured editor, debugger, and OLE browser. It supplies basic control

structures, mathematical and string functions, and variable manipulation capabilities that

enables developers to learn a single language and development environment which can

then be used across multiple applications.

VBA is an object-oriented environment that provides a large collection of objects,

each with its own sets of properties and methods. This environment makes automation

and application re-use possible.

20

-

VBA programming environment can be incorporated into applications that upport

Automation to make them programmable. The suite of Microsoft Office applications

incorporate the VBA programming environment and are written to support Automation

interlaces [26]. In addition, many other software components, such as ActiveX controls

and DLLs (Dynamic Link Libraries), also expose their functionality to VBA

programmers through Automation interlaces.

Using the objects, properties, and methods exposed through Automation interfaces,

one can use VBA code running in modules associated with the currently open document,

template, database, Microsoft FrontPage-based web, or add-in to automate that

application [26]. VBA and Automation make it possible to record simple macros to

automate keystrokes and mouse actions, and also to create sophisticated integrated

solutions, such as document management, accounting. and database applications [19].

To produce even more powerful integrated applications, one can use VBA code

running in one application to create and work with objects from another installed

application or component. For example, if a user is developing a solution in Access and

wants to use mathematical or other functions available only in Excel, the user can use

VBA to create an instance of Excel and use its features from code running in Access.

Generally, Automation can be thought of as a nervous system that makes

programmatic communication and feedback between applications and components

possible, and "glues" that lets you integrate features from Office applications and other

software components into a custom solution [35].

VBA's support for Automation provides Office developers with incredible flexibility

and power. By taking advantage of Automation, a user can use the features exposed

21

----------------------_.....-

-

through the object models of the entire Office suite of applications (as well as any third

party applications and components that support Automation interfaces) as a set of

business-application building blocks [12]. By taking advantage of the pre-built

components exposed through Automation, a user doesn't need to develop own custom

components and procedures each time the user wants to get something done. It greatly

saves the time for developing the user's solution.

2.7 Excel

Microsoft Excel was developed as a business application for accounting and

financial calculations. Excel, however, is also powerful to perfonn many of calculations

that scientists and engineers use. Excel has sufficient numeric precision to represent most

of the values in calculations of interest to those in technical fields. There are also

facilities for creating user-defined functions and automating often-repeated

task/calculations with macros [I8].

Excel is able to create and perform "what-if' analysis of complex, interrelated

columnar reports, also called spreadsheets or worksheets. Spreadsheets are made of cells

arranged in rows and columns that can hold labels, numbers, formula and data. Excel

gains its popularity due to this feature that makes infonnation easy to present in

meaningful way.

Excel is the leading spreadsheet program, providing features for:

• handling numbers and text

• adding formulas and functions to automatically carry out calculations

• graphing data in the spreadsheet

r:

-

• generating statistical analysis of the data

The spreadsheet has a reference to Solver Add-in, so that all the Solver function will

be available to Excel users. The spreadsheet also is able to function as an interface that

holds inputs and outputs for Excel Solver.

In 1993, Microsoft incorporated customized version of Visual Basic for Applications

into Excel, therefore it becomes possible to operate Solver from other applications.

2.8 Linear Programming

Linear programming (LP) is used as a standard tool to allocate a finite set of

resources in an optimal way. Linear programming is applied to a specific class of

mathematical problems, in which a linear function is either maximized or minimized

subject to given linear constraints. In another words, the basic problem in linear

programming is to find the particular set of variables that satisfies all constraints and

maximizes or minimize the value of the objective function. Any problem that fits the two

basic assumptions, linearity and certainty, can be solved by linear programming [45].

A linear program can be expressed as follows (the so-called Standard Form):

Minimize f =ClX\ + C2X2 + ... CnXn (objective function)

Subject to:

1" . bconstramt: a\,(x1 + a\,2 X2 + ...+ al ,nXn = I

ili . bm constramt: am, \Xl + am,2X2 + '" am,nXn = m

..

,-

-

positivity: Xl~ 0, X2~ 0 ... Xn ~ 0

wherefis the function to be minimized, the x's are variables, the value of which

should be determined in such a way thatfis minimized and the c's are given fixed

coefficients.

The importance of linear programming derives in part from its many applications

and in part from the existence of good general-purpose techniques for finding optimal

solutions. These techniques take as input only an LP problem in the above standard

form, then determine a solution without reference to any infonnation concerning the LP's

origins or special structure. They are fast and reliable over a substantial range of problem

sizes and applications [46].

The simplex method has been the standard technique for solving a linear program

since the 1940' s. It was introduced by Dantzig. The simplex method passes from vertex

to vertex on the boundary of the feasible polyhedron, repeatedly decreasing the objective

function until either an optimal solution is found, or it is established that no solution

exists. In practice, the method is highly efficient, typically requiring a number of steps

that is just a small multiple of the number of variables [32]. Linear programs in

thousands or even millions of variables are routinely solved using the simplex method on

modern computers. Efficient, highly sophisticated implementations are available in the

form of computer software packages [45], such as Excel Solver add-in.

The following definitions are involved in the simplex method:

Objective Function: the function that is either being minimized or maximized.

Optimal Solution: a vector, x, which is both feasible (satisfying the constraints) and

optimal (obtaining the largest or the smallest objective value).

24

I

./

I
I
1

I

-

Constraints: a set of equalities and inequalities that the feasible solution must satisfy.

Feasible Solution: a solution vector, x, which satisfies the constraints.

Canonical System: an equation system in which a variable that has a unit coefficient in

one equation and zeros in other equations.

Slack Variable: a variable added to the equations to eliminate less-than constraints.

Surplus Variable: a variable added to the equations to eliminate greater-than constraints.

Artificial Variable: a variable used to get a canonical system with a basic feasible

solution when none is available in the equation.

Basis: a set of basic variable.

Basic Variable: a variable that appears with a unit coefficient in a equation and zeros in

all other equations. Basic variable is in the basic solution.

Nonbasic Variables: a variable that is not in the basic solution and its value is zero.

Pivot Operation: a sequence of elementary operations that reduces a given system to an

equivalent system in which a specified variable has a unit coefficient in one equation and

zeros elsewhere.

Basic Solution: the solution obtained from a canonical system by setting the nonbasic

variables to zero and solving for the basic variables.

Basic Feasible Solution: a basic solution in which the values of the basic variables are

nonnegative.

Relative Profit: the net change in the value of objective function per unit increase (for

maximization) or decrease (for minimization) in a nonbasic variable.

Relative Profit (on Xn) =New value of objective function - Old value of objective

function

25

'I'

-

Minimum Ratio Rule: a rule used to detennine the variable to leave the basic set,

involving the calculation of ratios and selection of the minimum ratio.

Pivot Row: the row that contains the minimum ratio.

SoLution Set: the collection of all possible solutions to the system.

The principles adopted by simplex method include [37]:

1. Start with an initial basic feasible solution in canonical fonn.

2. Improve the initial solution if possible by finding another basic feasible solution with

a better objective function value. At this step the simplex method implicitly

eliminates from consideration all those basic feasible solutions whose objective

function values are worse than the present onc.

3. Continue to find better basic feasible solutions improving the objective function

values. When a particular basic feasible solution cannot be improved further, it

becomes an optimal solution and the simplex method tenninates.

The steps of the simplex method for either maximization or minimization problem

are as follows:

Step I. Frame the problem.

a. Select relevant variables and restrictions. Express relationships among all

variables and restrictions in standard (equation) fonn.

b. Determine an objective function.

Step II. Start with an initial basic feasible solution in canonical form.

Step III. Check whether the current basic feasible solution is optimal. At this solution,

the relative profits of all the nonbasic variables are computed. If these coefficients are

:~

"

·t

'.

-

negati ve(for maximization), or positive (for minimization), or zero, the current solution is

optimal. Otherwise, go to Step IV.

Step IV. Select a nonbasic variable to be the new basic variable in the solution. A

general rule is to select the nonbasic variable with the largest relative profit (most

positive value for maximization) or smallest relative profit (most negative value for

minimization) so that it may give an larger increase or decrease in the value of the

objective function.

Step V. Detennine the basic variables to be replaced by the nonbasic variable.

Examining each of the constraints to detennine how far the nonbasic variable can be

increased or decreased. For these constraints in which the nonbasic variable has a

positi ve coefficient, the limit is given by the ratio of the right-hand side constant to that

positive coefficient. For the other constraints the limit is set to + 00. The constraint with

..-

..

the lowest limit is detennined, and the basic variable in that constraint is replaced by the

nonbasic vaIiable.

Step VI. Find the new canonical system and the basic feasible solution using a pi vot

operation. Return to Step III.

The various steps of the simplex method can be carried out by using a tableau fonn

to represent the constraints and the objective function. The use of the tableau form has

made the simplex method more efficient and convenient for computer implementation.

The following problem is solved by the simplex method using a tableau form.

The problem states that each fertilizer contains different content of N, P and K. In

the fertilizer mixture, the total content of N must greater or equal to 32 pounds, the total

content of P should be greater or equal to 24 pound, and the total content of K is greater

27

-

or equals to 42 pounds. This problem requires the purchase of the ferti.lizer mixture with

the least cost.

The problem is defined as follows:

n = the type of a fertilizer (n =1 for ferti lizer I, n =2 for fertilizer 2, and n =3 for

fertilizer 3)

m =the nutrient ingredient contained in a fertilizer (m =1 for N, m =2 for P, and

m =3 for K)

amn =the total content of the mth ingredient in the fertilizer nih

bm =the total minimum number of pounds of the mlh ingredient required

Cn = the cost per pound of the nth fertilizer

xn = the quantum of the nth fertilizer that should be purchased

This linear-programming problem involves minimizing the cost function

Subject to the conditions

and

Assume Fertilizer 1 contains:

N =0.03 pound, P =0.05 pound, K =0.14 pound. and cost =$0.2

..-

•

-

Fertilizer 2 contains:

N =0.3 pound. P =0.2 pound, K =0.07 pound, and cost =$0.8

Fertilizer 3 contains:

N =0.15 pound, P =0.1 pound, K =0.2 pound, and cost =$0.65

Based on the information above:

1. Frame problem.

Minimize: S =O.2X1 + 0.8X2 + 0.65X3

Subject to: 0.03X l + 0.3X2+ 0.15X3 ~ 32

0.14X l + 0.07X2 + 0.2X:; ~ 42

Where Xi ~ 0 (i =1,2,3).

2. Convert the problem to a standard form

Add slack variables ~, Xs, and X6 to equations to eliminate greater-than

constraints.

Minimize: S = 0.2 XI + 0.8 X2 + 0.65 X3

Subject to: 0.03 Xl + 0.3 X2 + 0.15 X3- ~ =32

)...
~.....
5•...
•

"--

..

Where Xi ~ 00 = 1,2,3,4,5,6).

- Xs =24

3. Add the artificial variables X7, Xg, and X9 to make a canonical fonn.

Minimize: S =0.2 XI + 0.8 X2 + 0.65 X3 + 1000X7 +1000Xg +1000X9

Subject to: 0.03 XI + 0.3 X2 + 0.15 X3-~

29

-

0.14 Xl + 0.07 X2 + 0.2 X3

+ Xg =24

Where Xi ~ 00 =1,2,3,4,5,6,7,8,9).

In objective function, each of artificial variables is assigned a very large value

($1000). The simplex method, while trying to improve the objective function, will find

the artificial variables uneconomical to maintain as basic variables with negative values.

Hence they are quickly replaced in the basis by the real variables with smaller values.

4. Start with an initial basic feasible solution

Tableau 1 illustrates the initial basic feasible solution of above problem.

Tableau 1
(INITIAL SOLUTION)

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB~Basis J Xl X2 Xl X4 Xs X6 X7 Xg X9 Constant Ratio

1000 Xz 0.03 0.3 0.15 -I 0 0 1 0 a 32 106
1000 Xg 0.05 0.2 0.1 0 -1 0 0 I 0 24 120
1000 X9 0.14 0.07 0.2 0 0 -I 0 0 1 42 600

CRow -219.8 -569.2 -449.3 1000 1000 1000 0 0 0 Z = $98000

In Tableau 1, Basis refers to the basis variables in the current basic feasible solution.

The values of the basic variables are given under the column Constants. The symbol Cj

denotes the cost of the variable Xn in the objective function, while Co denotes the cost of

the basic variables. Z is the value of objective function that is the total minimum cost for

the fertilizers' mixture.

)-..-
)
•

.,---

-

From the above table, the basic feasible solution is written as X7 =32, Xg =24.

X9 = 42, and XI = X2 = X3 = X4 =Xs= :Ni = O. The value of the objective function is given

by the inner product of the vectors CB and constants as follows

5. Check feasible solution

In order to check if the above basic feasible solution is optimal, the relative profits

of all the nonbasic variable is calculated using a formula known as inner product rule.

The relative profit coefficient of the variable Xt/, denoted by Cj is given by:

- [inner product of CB ' and the column]
C j = C j - corresponding to X j in the canonical system .

For example

eX) = 0.2 - (1000 * 0.03 + 1000 * 0.05 + lOOO * 0.14) = -219.8

Cx2 = 0.8 - (1000 * 0.3 + 1000 * 0.2 + 1000 * 0.07) = - 569.2

C t7 = 1000 - (1000 * 1 + 1000 * 0+ 1000 * 0) = 0

Since there are some negative values in the C row, the current basic feasible

solution is not optimal. The nonbasic variable X2 with the most negative value gives the

largest per unit decrease in Z and hence it is chosen as the new variable to enter the basis.

6. Determine the leaving variable from the basis and build new tableau

In order to decide which basic variable is going to be replaced, minimum ratio rule is

applied to calculate the limits for each constraint.

Row Number Basic Variable Upper Limit on X2

32/0.3 = 106.66

2

3

X g 24/0.2 = 120

42/0.07 =600

The minimum ratio appears in the fist row, which is called the pivot row. Thus when

the nonbasic variable X2 increases to its maximum of 106.66 units, the basic variable in

the pivot row (X7) reduces to zero. The new basis contains X2 , Xg, and X9 as basic

variables. The new canonical system is obtained by perfonning a pivot operation:

1. Divide the pivot row by 0.3 to make the coefficient of X 2 unity.

2. Multiply the pivot row by (-0.2/0.3) and add it to row 2 to eliminate Xs.

3. Multiply the pivot row by (-0.2/0.07) and add it to row to eliminate X9.

From Tableau 2 the new basic feasible solution is given by XI =0, X2 =106.7,

X3 =0, X4 =0, Xs =0, X6 =0, X7 =0, Xg =2.7, X9 =34.5, and Z =$37285.3. In order to

check whether this solution is optimal, the new relative profit coefficients have to be

calculated. This can be done by applying the inner product rule. On the other hand, it is

also possible to calculate the C -row coefficients through the pivot operation. Since X2

are the new basic variable, its relative profit coefficient in Tableau 2 should become zero.

This is done by either inner product operation or pivot operation.

Tableau 2

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB~Basis J XI X2 X3 X4 Xs X6 X7 Xg X9 Constant Ratio

0.8 X2 0.1] 0.5 -33 0 0 3.3 0 0 106.7 -32
1000 K~ 0 0 0.0 0.7 - J 0 -0.7] 0 2.7 4
1000 X9 0.1 0 0.2 0.2 0 -1.0 -0.2 0 1 34.5 148

CRow -162.9 0 -164.8 -897.3 1000 1000 1897.3 0 0 Z =$37285.3

:.~
..-~::,::
i:1
I!~
" ,)
"
"III;.

Since C is negative, Tableau 2 is not optimal. An improvement in the objective

function may be obtained by making~ a basic variable. The minimum ratio rule is

used to determine Xg as a fanner basic variable leaves the basis. At this stage, Z is

37285.3.

Tableau 3

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB~Basis Xl X2 X3 ~ Xs ~ X7 Xg X9 Constant Ratio

0.8 X2 0.25 1 0.5 0 -5 0 0 5 0 120 -24
0 X4 0.05 0 0 1 -1.5 0 -1 1.5 0 4 -2.7
1000 X2 0.12 0 0.17 0 0.35 -1 0 - 0.35 1 33.7 96

--
CRow -122.5 0 -164.8 0 -346 1000 1000 1346 0 Z =$33696

By this step, the value of objective function decreases to 33696. However,

Tableau 3 is not optimal, since C is negative. The further improvement is achieved by

having Xs as a basic variable. The minimum ratio rule is applied to detennine X9, the

former basic val;able, should leave the basis. Tableau 4 represents a new system with X2,

~, and Xs as new basic variables.

Tableau 4

~
0.2 0.8 0.65 0 0 0 1000 1000 1000

CB
Basis J XI X2 X:l X4 Xs ~ X7 Xg ~ Constant Ratio

0.8 X2 '2 1 2.86 0 0 -14.29 0 0 14.29 600 210
0 X4 0.57 0 0.7 I 0 -4.29 -1 0 4.29 148 209.3
0 & 0.35 0 0.47 0 1 -2.86 0 -1 2.86 96 203,6

CRow -1.4 0 -1.64 0 0 11.4 1000 1000 989 Z =$480

The value in C row is negative, therefore Tableau 4 is not optimal. X3 is selected to

substitutes for Xs as a basic variable and the value for Z reduces to 480.

:n

:.,.
,.'.
I •..

'-
'-"

Tableau 5

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB ~Basis J Xl X2 X2 XI X2 X3 ~ Xs X6 Con tant Ratio

0.8 X2 -0.12 1 0 0 -6.06 3.03 0 6.60 -3.03 18.18 150
0 & 0.05 0 0 1 -1.5 0 -1 1.5 0 4 88.89
0.65 X3 0.74 0 1 a 2.12 -6.06 0 -2.12 6.06 203.6 274.3

CRow -0.19 0 0 0 3.47 1.51 1000 997 998 Z =$146.9

Tableau 5 contains negative value in C row, therefore Tableau 5 is not optimal. The

nonbasic variable Xl replaces N as new basic variable and the value in Z decreases to

146.9.

Tableau 6

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB ~Basis J XI X2 X3 X4 Xs X 6 X7 X g X9 Constant Ratio

0.8 X2 0 1 0 2.69 -10.10 3.03 -2.69 10.10 -3.03 28.9 -2.87
0.2 XI 1 0 0 22.22 -33.33 0 -22.22 33.33 0 88.88 -2.67

0.65 X, 0 0 1 -1649 26.87 -6.06 16.5 -26.87 6.06 137.64 5.[3

CRow 0 0 0 4.12 -2.71 l.51 995.9 1003 999 Z =$130.4

Tableau 6 is not optimal since a negative value is still present in C row. To improve

the objective function, Xs is selected as a basic variable. The calculation of minimum

ratio determines X3 as a victim leaves the basis. The value in objective function is

improved to 130.4.

7. Reach the optimal solution

In Tableau 7, all the coefficients of the C row are nonnegative. This implies that no

further improvement in the objective function is possible. Hence, the current basic

feasible solution in the objective function A =259.6, B =80.7, C =0, XI =0, X2 =5.12,

•···
·••
••

,.

-
X3 = 0,~ = 0, Xs = 0, and~ = 0 is an optimal solution, and Z with 116.49 is the

optimal value for the linear program.

Tableau 7

0.2 0.8 0.65 0 0 0 1000 1000 1000
CB~Basis J X2 X2 X2 XI X2 X3 >4 Xs)4 Con tan! Ratio

0.8 X2 0 1 0.38 -3.51 0 0.75 3.51 0 -0.75 80.7
0.2 XI 1 0 1.75 -1 0 -7.52 -1.75 () 7.52 259.6
0 Xs 0 0 -0.6 L -0.6 L -0.23 0.61 - L 0.23 5. L2

CRow 0 0 O.LO 2.46 0 0.9 997.5 1000 1000 Z =$116.49
.._-

In summary, the computational steps of the simplex method in tableau fonn for a

maximization or minimization problem are as follows [37]:

Step 1. Express the problem in standard fonn.

Step II. Start with an initial basic feasible solution in canonical fonn and set up the

initial tableau.

Step III. Use the inner product mle to find the relative profit coefficient (C row).

Step IV. If all the C coefficient are nonpositive (for maximization) or nonnegative (for

minimization), the current basic feasible solution is optimal. Otherwise, select

the nonbasic variable with the most positive (for maximization) or most

negative (for minimization) value to enter the basis.

Step V. Apply the minimum ratio rule to detennine the basic variable to leave the basis.

Step VI. Perform the pivot operation to get the new tableau and the basic feasible

solution.

Step VII. Compute the relative profit coefficients by using the pivot operation or the

inner product rule. Return to Step IV.

....

......

-
2.9 Excel Solver

Microsoft Excel Solver is a Microsoft Excel add-in for optimization. An add-in is a

software program that extends the capabilities of larger programs. For example, there are

many Excel add-ins designed to complement the basic functionality offered by Excel.

Solver add-in consists of following files: Solver.xla, Solver32.dll, and Solvsamp.xls.

These files calculate solutions to what-if scenarios based on adjustable cells, constraim

cells, or cells that must be either maximized or minimized.

Solver add-in determines the optimum value for a formula in a particular cell, called

a target cell, on a Microsoft Excel worksheet. Solver adjusts the values of other cells that

are related to the target cell using an equation. After the user constructs and equation and

defines a set of parameters or constraints for the variables in the equation, Solver uses the

following elements to "solve" an equation:

Target cell The target cell is the ob.iective. It is the cell in the worksheet model that

is minimized, maximized, or set to a certain value.

Changing cells Changing cells are the decision variables. These cells affect the

value of the target cell. These cells are changed by Solver to find the optimum solution

for the target cell.

Constraints Constrains are restriction on the contents of cells. For example, one

cell in a worksheet model may be restricted to integer values, while another cell may be

restricted to being less than a given value.

To find optimal solution, Solver proceeds by first finding a feasible solution, and

then seeking to improve upon it, changing the decision variable to move from one

•···
..
t,

..

feasible solution to another until the objective function has reached its goal - optimal

value. The optimal value is displayed in the worksheet.

Solver offers many functions, however, the following three functions are

fundamental to create and solve a model: SolveJDK, SolverSolve, and SoverFinish.

Solver strongly relies on the spreadsheet to hold the input and output for its calculation.

A user can automate the creation and manipulation of Solver models by using a Visual

Basic for Applications macro.

2.10 Database Management System and Relational Database Model

A Database is a shared collection of logically related data (and a description of this

data), designed to meet the information needs of an organization [9]. Database

Management System (DBMS) is a software system that enables users to define, create,

and maintain the database and provides controlled access to this database [9].

Typically, a DBMS provides the following facilities:

• It allows users to define the database, usually through a Data Definition Language

(DDL). The DDL allows users to specify the data types and structures, and the

constraints on the data stored in the database.

• It allows users to insert, update, delete and retrieve data from the database, usually

through a Data Manipulation Language (DML). Having a central. repository for all

data and data descriptions allows the DML to provide a general enquiry facility to

this data, called a query language [9]. The most popular query language is Structure

Query Language (SQL), which is now both the standard and de facto language for

relational DBMSs.

17

"

~
I.,
'....
w.......
~;

~.,
'..

--

• It provides controlled access to the database. For example, it may provide a security

system, an integrity system, a concurrency control system, and a recover control

system, etc.

Relational Database Model is based on the concept of mathematical relations. In the

relational model, data and relationships are represented as tables, each of which consists

of series of row/column intersections with a unique name. Tables (or relations) are

related to each other by sharing a common entity characteristic. The relation type is

shown in a relational schema. A table yields complete data and structural independence

because it is a purely logical structure [49].

The relational database model has following advantages:

(1) Because the relational database model achieves both data independence and structural

independence, it becomes much easier to design the database and to manage its

contents.

(2) Less programming effort is required since the relational database model ha a

powerful query language, SQL, which makes ad hoc queries possible.

(3) The redundancy in the stored data (information) is reduced to minimum (by

normalization theorems) to save storage space and to simplify updating(insertion,

deletion, and updating) processes. The simplified updating process should result in

easy maintenance of data integrity [27].

(4) The dependencies between attri butes are preserved [27].

(5) The loss-less join properties are maintained during decomposition, such that the data

(information) can be easily retrieved without distortion [27].

,.

I.
II'.II
'.
'.'
'"

Microsoft Access is a typical relational data model. It is used to manage data in

three important ways:

• Reducing redundancy,

• Faciliting data sharing.

• Keeping data accurate.

2.11 Dynamic Link Library

A Dynamic Link Library (DLL) is the prototype for component objects. It is a

file of code containing functions that can be called from other executable (either an

application or another DLL). Programmers use DLLs to provide code that they can reuse

and to parcel out. A DLL cannot be run directly. DLL must be called from other

executing code [18).

An example would be that Microsoft has a DLL comctl32.dll, which does all the user

interface jobs (tool bars, text boxes, scroll bars, etc). Other programs use that DLL so that

they wi II not have to create their own edit box, etc.

Typically, a DLL provides one or more particular functions and a program accesses

the functions by creating either a static or dynamic link to the DLL. A static link remains

constant during program execution while a dynamic link is created by the program as

needed.

A DLL can be used by several applications at the same time. Some DLLs are

provided with Windows operating system and available for any Windows application.

Other DLLs are written for a particular application and are loaded with the application.

There are a few of advantages of DLL files:

.'.
r
j,
~....

•

1. Applications would link to this code library, thus saving greatly on duplication of

effort and storage space.

2. Applications that used the DLL system would behave exactly the same as all other

applications that used it.

40

..

-

Chapter III

Development and Implementation

3.1 Overview of the Features of the System

This system is characterized by the following aspects:

• A user-friendly interface that accepts user input data and displays the computed

results.

• A DBMS that stores information, such as crop names, crop growth stages, fertilizers,

fertilizer form and fertilizer placement methods.

• An Excel spreadsheet as a server to hold input data from table queries in the database

and to perform pre-calculation for its clients, VB engine and Solver.

• A Solver application as a server to provide optimization calculation service for Excel

on the client side.

• An OLE Container control as an entrance to various objects available within the

operating system that Visual Basic can't handle on its own, including Word

documents, and Excel spreadsheets.

• Application of COM technology to implement IPC, the communication between VB

and database adopting OLE DB technology - ADO, the communication between VB

and Excel using OLE DB technology - Automation, and the corporation of Excel

and Solver add-in relying on VBA. The three main software applications, Excel,

Fertilizer database, and Solver used in this project, provide service to each other,

commonly accomplishing the functionality of this system.

Figure 4 shows the general picture of this system.

-H

iii
"I
:~

iii
".

I User I I Other application (DSS offertilizer u e) I
~ .. ~

VB '-- ----,.. "

~
Fertilizer Products

Interface of Connectivity Database System
(A Visual Basic form with OLE Container control)

OLE Automation
~ ..

An OLE object
(Excel Application as a server for VB)

I I
,

Workbook(s)
Can be created directly

I Worlcsheet(s) I .. Application
I ..

Worksheet

WRange I A~

VBA--l Chart I
H Other Object I ~,

I Add-ins
I SOLVER..

Linear Programming
Model as a server for
Excel

I Other Object I

Figure 4. The structure of Optimal Fertilizer Investment System

3.2 Design and Implementation

3.2.1 Construct user graphic interface.

The User interface is what appears in this application's window when it runs. It

consists of various elements with which a user can interact and control the application.

The main part of the user interface is the POnTI. This is the window displayed at runtime,

and it acts as a container for all the elements contained in the interface. There are four

42

fonns created for the interface, each with different components.

Start Form This is the first view of this interface, and it functions as a door to this

system.

PictureBox Shows a picture that symbolizes the application of the software in

agriculture.

Next Command Button Is used as a switch to the next fonn.

Exit Command Button Allows a user to leave this system.

Prelnformation Form This form prompts users to input information, including crop

name, fertilizer placement phase, and fertilizer placement method, and then it displays

corresponding fertilizer form applicable to the fertilizer placement method.

Crop ListBox Lists all the names of the crops for user's selection.

Labell Shows the text either selected crop name or unapplied fertilizer code, depending

on whether crop name is highlighted or Ok button is clicked.

Label2 Shows the text either fertilizer placement method or fertilizer form, depending

on whether method name is highlighted or OK button is clicked.

TextBoxl Displays either crop name when a crop name is highlighted in the Listbox or a

unapplied fertilizer code and name on a crop when OK button is clicked.

TextBox2 Exhibits either method name when method is highlighted in the Method

TextBox or fertilizer form (solid or liquid) when OK button is clicked.

Option Box Array Lists crop phases, such as Preplant, Panting and PoscEmergence,

to allow user's selection.

Application Method TextBox Illustrates corresponding fertilizer placement method when

a crop phase is detennined.

41

-

ADO Data Control Is used to access fertilizer database through ADO objects, hidden

from the user.

Back to Start Commend Button Is used to switch back to Start Form.

Next Command Button Triggers a switch to the next Form.

Combination Fonn This form allows users to check the fertilizers that are either

unavailable or having side-effect on certain crop or both. It shows the groups of

fertilizer codes that are unused because they are proper subset of another group,

then displays the possible combination of fertilizer codes from the MixTable,

that are mutually compatible and safe to mix with other fertilizers.

Unavailable fertilizer CheckBox Lists all the fertilizers in the same form. This is a

multiple CheckBox that allows a user to check more

than one fertilizer names that are currently unavailable

on the fertilizer market.

OK Command Button Confirms the input in the Unavailable fertilizer CheckBox.

When this button is clicked, the unavailable fertilizers are fixed.

Unused Combination CheckBox Shows all the fertilizer combinations, compatible and

incompatible, based on the fertilizers stored in

the MixTable.

Possible Combination ListBox Demonstrates the fertilizer group with all compatible

fertilizers.

ADO Data Control Is used to access fertilizer database through ADO objects, hidden

from the user.

Back to Start Commend Button Is used to switch back to Start Form.

44

Next Command Button Triggers a switch to the next Form.

Optimization Form This form prompts users to input the requirements of N, P, and K,

displays the fertilizer names after removing all undesirable fertilizers, and then shows the

optimal result.

N, P, and K Requirement Label Displays the text of N, P, and K on the Fonn that a user

cannot edit.

N, P, and K TextBox Displays the contents of required N, P, and K input by the

users, that can be edited.

OK Commend Button Represents the confirmation action that is carried out when

a user clicks the button.

OLE Control Is used to insert objects from Microsoft Excel into the VB application,

hidden from the user.

ADO Date Control Is used to access Fertilizer database through ADO objects, hidden

from the user.

DataGrid control Displays one or more rows in a table or query from the Ferti lizer

database. It grants a user the permission to add, delete, or update data

in the database.

User Select Command Button Allows a user to select the fertilizers.

Selected Command button Confirms the selected ferti lizers by the user.

Do Solver Command Button Drives Solver to compute optimization value.

Report Picture Box Displays the computed optimized results in the fonn of

recommendation report, including the optimal mixture of fertilizers

and the minimal cost to purchase the mixture.

Print Command Button Triggers a print action.

Back to Start Command Button Brings a user back to the Starting Form, optional.

Exit Button Allows a user to leave this system.

3.2.2 Design and implementation of database

This database, named Fertilizer, has relational database structure. This structure is

developed emulating the criteria, that are removing data redundancy, keeping data

consistent, and improving data accessibility and responsiveness. Furthermore, the

selection of fertilizer blending can be the optimum one only by considering all the

biological (crop), biochemical (fertilizer/crop), chemical (fertilizer/fertilizer), and

physical (fertilizer form/fertilizer placement method). Therefore, the relationship among

crop, crop growth period, fertilizer, fertilizer form, and fertilizer placement method must

be all concerned when designing this database.

Design ofdatabase

The design of this database goes through following stages:

Conceptual database desi gn

This is the process that constructs a model of the information used in an enterprise,

independent of all physical consideration [9].

The conceptual design includes:

(l) identifying entities and relationships.

The entities consists of Crop, Method, Fertilizer, and MixTable.

- Crop entity contains the information about crop and unapplied fertilizers on the crop.

40

- Method entity stores the data related to crop growth phase, fertilizer placement

method, and fertilizer form.

- Fertilizer entity includes the data pertaining to fertilizer, such as the contents of N, P,

and K in one fertilizer, fertilizer form and fertilizer price.

- MixTable entity stores the information of unmixed fertilizers.

There exist three relationships among these entities.

a. The relationship between Fertilizer and Crop is one-to-many. One crop cannot be

applied by more than one type of fertilizers and one type of fertilizer may not apply on

more than one crop.

b. The relationship between Method and Fertilizer is one-to-many. One form of fertilizer

could be applied to different placement methods.

c. The relationship between Fertilizer and MixTable is one-to-many. One fertilizer may

be incompatible with more than one other fertilizers.

(2) Determine attribute domains

Crop table

• Crop_Code Crop code, primary key, not null. Text in the range of 1-9999, in

ascending order.

• Crop_Name Crop name, not null. Character in the range of a-z.

• Unapplied_FertilizecCode Unapplied fertilizer code, foreign key, not null. Text in

the range of 1-9999.

Method table

• Growgh_Phase_Code Code for crop growth phase, primary key, not null. Text in

the range of 1-9999, in ascending order.

47

• PlacemenCMethod_Code Fertilizer placement method code, primary key, not null.

Text in the range of 1-9999.

• ApplyMethod Fertilizer placement method. primary key, not null. Text with 25

characters in the range of a-z.

• FertilizecFonn Fertilizer fonn, foreign key, not null. Text with 10 characters in

the range of a-z.

Fertilizer table

• FertilizecCode Fertilizer code, primary key, not null. Text in the range of 1-9999.

• Fertilizer_Name Fertilizer name, foreign key, not null. Text with 25 characters in

the range of a-z.

• Common_Name The alternate names for fertilizers. Text in the range from 1-99

with dash in between.

• N The content of Nitrogen in the fertilizer per pound. Decimal number in the

range of 0.00-99.00.

• P The content of Phosphorous in the fertilizer per pound. Decimal number in the

range of 0.00-99.00.

• K The content of Potassium in the fertilizer pound. Decimal number in the range

of 0.00-99.00.

• Fonn Fertilizer form, foreign key, not null. Text with 10 characters in the range

of a-z.

• Price Fertilizer price per pound, currency in U.S donar.

MixTable

• Fertilizer ill, primary key, not null. Text in the range of 1-9999.

41\

• Name The fertilizer name, primary key, not null. Text with 25 character in the

range of a-z.

• F1 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

• F2 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

• F3 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

• F4 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

• F5 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

• F6 Unmixed fertilizer name. Text with 25 characters in the range of a-z.

Logical database desi gn

This is the process that constructs a model of the information used in an enterprise

based on a specific data model, but independent of a particular DBMS and other

physical considerations [9].

The logical design includes mapping the conceptual data model to logical data mode,

validating the logical model with the technique of normalization, and drawing the Entity

Relation Diagram (E-R Diagram). After logical design, all undesirable features are

eliminated from this data mode1.

(1) Normalization.

Normalization is an effective means of ensuring that the models structurally are

consistent and logical and have minimal redundancy. Normalization often is executed as

a series of steps. Each step corresponds to a specific normal form that has known

properties[9]. As normalization proceeds, the relations become progressively more

restricted in format, and also less vulnerable to update anomalies [9]. In this project all

49

tables shown in Figure 5 are in the Third Normal Fonn after nonnalization.

Crop Table

Crop Code

Method Table

I Growth Phase

Fertilizer Table

Place Method Code ApplyMethod I Fertilizer_Form I

Fertilizer Code Fertilizer_Name Common_Name N_Content

IFertilizerJorm I Price

MixTable

[__ID --'-I_F_e_rl_ili_"Z_er_N_::J PI I F2 I P3 I P4 LrJ
FigureS. The relations in the Third Normal Form

(2) Draw Entity-Relation Diagram (shown in Figure 6.).

Establishing and Loading the database

1) Create Table

- Open Microsoft Access 2000.

- Open blank database.

- Create database name "Fertilizer".

- Create tables using Design View.

- Specify the primary keys and foreign keys in each table.

- Save created tables.

'if)

--

MixTable

~mmon_Nam0

Price

Fertilizer Foml

Fertilizer Code

Method

Crop

Growth Pbase Code

Place Method Code

Figure 6. An E·R diagram for the Fertilizer database.

"1

2) Loading date into each table.

Figure 7,8,9,10, and 11 show the tables, Crop. Method, Fertilizer, and Mix-Table,

respectively.

Wheat
Potato 06

R~as~____ -'0-6--
Tobaco !l

::;~;:_-_-~~_-_--t8==-e::..:r.:...:.m.:...:u,-=d.::...,a iLr..:;.as::..:s=--____[
Peanuts
So beans
Mun beans -

~~------+--'c:...::o--'-w.L-::-ea:.:..::s---=_=t=---------
Guar I

I~"I-- ----- ---- ----- t --
Small Grains fa! ~r~~
8ar~L 1--
Le umes in Pasture
Alfalfa 01

22 i Sor hum.~u_dal!_H_a_~i_=0-=-2----- _
23 --I Garden 1
24 ! Lawn __-+-1 _
25 :Native Hay
26 Hair Vetch
27 Other Clover
28 Millet

Figure 7. Crop table.

Figure 8. Method table.

Ammonium sui hate 0.00 Solid._.-
Ammonium sui hate nitrate 0.00 Solid

_ Urea _ O~~d
_Supe~~~I!i Ie hos h ~ _ _ _ __ __ 'n _ OWlSolid
Diammonium hos hate 118-46-0 I 0.18 0.46 0.00 Solid
K-chloride 0-0-62 0.00 OlIO 062! Solid
Anhyjrous Ammonia !B2'()·O O.!!2 9.OJI 0001 Liquid
Urea Ammonium Nitrate Solution 32'()-0 0.32 0.00 Om1lil}.l:!id __
Meth lene Ureas 141-0-0 0.411 0.00 0.001 Solid

.~mJ~I!l.~~!yol!P~e!!ate Liqui!L 1~.~'() 0._12, 0.40 O.oO~Liquid
__ ~monium Phos hate Sulf~ -J6-29-~ ,--_~~Q.~._ 0.00 Soli~_

Ammonium Phos hate Nitrate 30-23-0 0.30 0.23 0.00 Solid
Granular Momoammonium Phos 110-52-0 0.10 0.52 0.00 Solid
Ammonium Nitrate Liqutor '80-0-0 0.80 000 000 Liquid
Ammonium Pol has hale Solid 11-55-0 0.11 0.55 0.001 Solid

--+ --
~~::r,;:;;;;n-_oIoo!!>.:~~~~W:-.~''''''·~''':_-*L""-,.a- dooI.LIl''''--....IoIooo'''--....IoLlollo\;,,,,,,,,·.......'''---l<o.!.I.'LI.Jo'oo1~

Figure 9. Fertilizer Table.

Figure 10. MixTable.

1.2.3 Algorithm for Selection of Fertilizer Blending

Selecting optimal fertilizer mixture is the goal pursued by this project. To reach this

goal, following algorithm is implemented.

1. Detennine fertilizer form.

This system prompts a user to input the information about crop growth pha e. Based

on this input, several corresponding fertilizer placement methods show up. The user

selects one among these methods. Both crop growth phase and fertilizer placement

method determine the fertilizer form in the method table. By querying this table with the

information about crop growth phase and fertilizer application method, the corresponding

fertilizer fonn can be fixed.

2. Retrieve all the fertilizers in the specified form.

The Fertilizer table contains all the fertilizers in either dry or liquid form. Based on

the fertilizer form known from the previous steps, a query in the Fertilizer table can

provide the user with a group of the fertilizers in the same fonn.

3. Record inapplicable fertilizers.

By identifying the crop name input by the user, a search is conducted in the crop

table for the fertilizer code that has side-effect on the specified crop. If the search is

successful, the found fertilizer code is compared with each in the group of fertilizers. If a

match occurs, the matched fertilizer code in the group is recorded.

2. Record unavailable and incompatible fertilizers.

Some fertilizers may be unavailable at times, and some may harm the crop when

applied on because the chemical reactions occur among incompatible fertilizers. To

remove these undesirable fertilizers from the fertilizer group, following steps are taken:

(1) Prompt the user to check the unavailable fertilizers listed in Unavailable Fertilizer

CheckBox in Combination Form. After the user confinn this action by clicking OK

button, these unavailable fertilizers are recorded.

'i4

(2) Compare the code, inapplicable or unavailable, with those in the previous group. Any

match leads to the code in the combination being excluded from the precious group.

The remaining fertilizers fonn new group.

(3) Make all the possible combinations with the fertilizers in the MixTable. These

combinations are either compatible or incompatible. Each incompatible combination

is indicated by a check mark.

(4) Remove all the checked combinations and those belonging to the proper subset of

some other combination. The left combinations maintain the fertilizers all compatible

with one other.

(5) Concatenate these compatible combinations with the new group, respectively. The

set of new combinations are provided to Solver.

3.2.4 Access database from Visual Basic using ADO

Visual Basic 6.0 goes with ADO Data Control that accesses databases through the

ADO objects. The ADO Data Control i the door of this system to Fertilizer database.

To access the database through ADO, following properties are set up:

(1) ConnectingString It contains all the information required to connect to Fertilizer

database, including:

- Provider: the name of the OLEDB driver that ADO uses to acce s the Database.

For Access database it is MicrosoftJet.OLE DB. 4.0.

- Data Source: the name of an Access database - the full path to the Access database

file (.mdb) where the database is stored. For example, c:\my document\

OptimalFert3\Fertilizer.mdb.

- Security Information: Set to True for security, otherwise set to False.

For querying data from the database for Pre Information form, the Connecting String

is set as:

fnnPrelnfor.Adodcl.connectionString ="Provider =microsoft.Jet.OLEDB.4.0,-Data

Source="& VB.App.Path & "Yertilizer.mdb; Persist security Info =False".

(2) RecordSource This represents a database object, such as a table or query, that

specifies the rows. In this project SQL statements embedded in VB code are

employed to set RecordSource. RcordSource makes up the RecordSet.

For example, to match the crop name input by a user with that stored in Crop

table in the database, following SQL statement is used:

Adodc1.RecordSource = "SELECT *FROM Crop WHERE CropName

="& "'''& Textl.Text & .. ,,,

(3) RecordSet It is a table or query on which the retrieval, searching, or updating of data

can be conducted. For example, to add to the ListBox the name and code of a

fertilizer specified by the user, the RecordSet would be set as:

FnnCombin.List2.Add Item AdodcI.Recordset.Fields ("Name"). Value + "," +

Adodcl.l Recordset.Fields ("Fertilizer_Code"). value

3.2.5 Displaying of Recordset by DataGrid control

DataGrid control maps an entire table (or Recordset) on a grid that is placed on a VB

Form. This control not only displays the Recordset but also allows direct editing of these

Recordset, as well as the addition of new rows and the deletion of existing ones. Any

change to the field is committed to the database automatically.

For setting DataGrid control several work must be done:

(1) Placed DataGrid control on the Form

(2) Set data binding properties

• Set the DataSource (the name of the ADO Data Control on the Form)

• Set each column in DataField of the control to their corresponding field names in

the database

• Set allowance for adding, deleting, and updating data in the database

(3) Build Bookmark for manual selection of fertilizers

3.2.6 Realization of OLE Automation

OLE is a way for applications to exchange both data and functions. End users can

put together the pieces they need to create their own all-in one software. To incorporate

OLE function into the VB application for this project, an OLE container is used. This

container hides all the complexity of OLE, and it allows its VB code to directly

manipulate the objects in Excel, such as cells, range, worksheet, functions, and formula.

(1) To link objects in an OLE Container control, following steps are taken:

a. Place a new OLE Container control on the ftmSolver

b. Select Create New Object option in the property window of OLE Container

Control.

c. Create OLE object with VB code.

For example, to create an Excel application as a object of OLE control, following

statement is used:

Set objl = CreateObject ("Excel.application")

57

d. Open an existing Excel file with VB code.

For instance, the VB statement:

Objl. Workbooks. Open FiLename: = VB.App.Path & "'FertiLizerl.xLs"

is used to open the existing Excel file that contains Solver and Macro.

(2) Using VB code manipulate range object, cell object, SUMPRODUCT, constraints,

objective function, and variable cells that used to be manual operations. The OLE

object objlcan only host the objects listed in Excel.

Because Solver is an Excel add-in rather than an Excel object, OLE cannot control

Solver. Therefore, this application has to resort to an Excel spreadsheet as interface on

which Solver can work. Furthermore, the data retrieved from database must be written

into Excel spreadsheet. This is the job of VB code.

For instance, to write to Excel spreadsheet the requirements of N, P, and K from the

user, the VB code can be:

.Range ("83"). VaLue =Text2(O).Text

.Range ("84"). VaLue = Text2(1).Text

.Range ("85"). Value = Text2(2).Text

.Range ("87"). Value = "Amount offertilizer"

To write to the Excel spreadsheet the contents of N, P, and K in a fertilizer and their

prices stored in the database,

the VB statements are:

.Range ("E3"). Value =frmPrelnfor.Adodc1.Adodc1.Recordset.fields("N"). VaLue

.Range ("£4"). VaLue = fnnPrelnfor.Adodc1.Adodc 1.Recordset.fields("P"). VaLue

.Range ("£5"). Value =frmPrelnfor.Adodc1.Adodc1.Recordset.fieLds("K"). Value

.Range ("E8"). Value =frmPreinfor.Adodc1.Adodcl.Recordset.fields("Price"). Value

To calculate the optimal result based on the contents of N, P, and K and the prices of

the fertilizers, using SUMPRODUCT function in Excel, following VB statements are

used:

.Range("C3").Value =SUMPRODUCT("E3:H3", "E 7:H7")

.Range("C4").Value =SUMPRODUCT("E4:H4", HE 7:HT')

.Range("C5"). Value = SUMPRODUCT("E5:H5", "E7:H7")

However VB code is unable to drive solver directly, therefore another programming

language, VBA embedded in Excel, is employed.

3.2.7 Implementation of Solver with VBA

OLE Automaton allows manipulation of objects exposed by another application

from what within user's Visual Basic for applications (VBA).

In this project, the interface accepts from a user the inputs, such as the requirements

of N, P, and K, and then places into Excel spreadsheet the table query results, uch as the

contents of N, P and K as well as the prices of the fertilizers. After setting the positions

of the inputs as well as the formula for objective function and constraint equations,

Visual Basic calls Excel YEA functions to drive Solver for computation.

Solver add-ins is a member of Dynamic Link Libraries and is used to extend the

functionality in Excel. To use Solver add-in functions in a VBA (VBA macro), a

reference is in advance set up to the Solver add-in, located in /office/Solver/folder. The

path for the reference is: manual bar\micro\VB project\reference\browser.

From VBA program, five Solver DLLs, SolveReset, SolverAdd, SolverOK,

SolverSolve, and SoverFinish, are called to solve the optimal model.

SolverReset function erases all cell selections and constraints from Solver Parameters

dialog box and restores all settings in the Solver dialog box to their defaults. This

function is equivalent to choosing Solver from the Tools menu and choosing the Reset

All button in the Solver Parameters dialog box. The syntax for the SolverReset function

IS:

Sol verReset()

SolverAdd function adds a constraint to the current problem. This function is equivalent

to choosing Solver form the Tools menu and choosing the Add button in the Solver

Parameters dialog box. The syntax for the SolverAdd function is:

SolverAdd(CellRef=, Relatin:=, FonnulaText:=)

CellRef. Is a reference to a cell or a range of cells on the active worksheet and form

the left hand side of the constraint.

Relation. Specifies the arithmetic relationship between the left and right sid s, or

whether CellRef. must have an integer value at the solution.

Relation Relationship

1 <=

2 =

3 >=

4 Int (CellRef is an integer variable)

FormulaText. Is the right hand side of the constraint and will often be a single number,

00

but it may be a fonnula or a reference to a range of cells.

SolverOK function defines a basic Solver model. This function is equivalent to clicking

Solver on the Tools menu and then specifying options in the Solver Parameters dialog

box. The syntax for the SolverOK function is:

SolverOK (SetCell, MaxMin Val, ValueOF, ByChange)

SetCell. Specifies the target cell.

MaxMinVal. Corresponds to whether or not a user wants to solve the target cell for a

maxmum value (1), a minimum value (2), or a specific value (3).

ValueOf. Specifies the value to which the target cell is matched.

Bychange. Specifies the cell or range of cells that will be changed.

SolverSolve function solves the model using the parameters specified with SolverOK.

Executing the SolverSolve function is equivalent to clicking Solve in the Solver

Paramters Dialog Box. The syntax for the SolverSolve function is:

SolverSolve(UserFinish, ShowRef)

UserFinish. Indicates whether or not the user want to finish solving the model. To

return the result without displaying the Solver Results dialog box, set this

argument to TRUE, otherwise set this argument to FALSE.

ShowRef. Identifies the macro that is called when Solver returns an intennediate

solution. The ShowRef argument should be used only when TRUE is passed

to the StepThru argument of the SolverOptions function.

SolverFinish function indicates what to do with the final results and what kind of report

to create once the solution process is completed. The syntax for the SolverFinish

function is:

()]

SolverFinish (KeepFinal, ReportArray)

KeepFinal. Indicates what to do with the final results: If keepFinal is 1, the final

solution values are kept in the changing cells, replacing the values. If

KeepFinal is 2, the final solution values are discarded, and the former value

are restored.

ReportArray. Specifies an array which indicates the type of report Microsoft Excel wi II

create when the solution is reached. If ReportArray is set to 1, Microsoft

Excel creates an Answer Report. If set to 2, Microsoft Excel creates a

Sensitivity Report, and if set to 3, Microsoft Excel creates a Limits Report.

This process from setting spreadsheet to computing optimal value through Solver is

quite difficult and complicate. However, with the help of OLE Automation this process

goes automatic and unperceived.

Chapter IV

Results

Following steps will lead to an optimal solution:

1. Enter Starting Form.

a. Click on TrySolverl.exe to enter the Optimal Fertilizer Investment System.

b. A picture shows up. This picture symbolizes the application of computer software in

agriculture.

c. Click on the Next button to switch to PreInformation Form.

eStarting Form is shown in Figure 11.).

Figure 11. Starting Form.

2. Work in Prelnformation Form.

a. Select one crop by highlighting the crop name in the Crop Selecting ListBox, using the

scroll bar when needed.

b. The selected crop name appears in the Unapplied Fertilizer Code TextBox.

c. Click on OK button, and then the unapplied fertilizer code on the specified crop are

shown in the Unapplied Fertilizer Code TextBox.

d. Choose one from fertilizer application phases, Pre-Plant, At Planting, and

Post-Emergence, in the Operation Box Array.

c. The corresponding fertilizer placement method is displayed in the Application Methods

TextBox.

f. Select one method from fertilizer placement methods by highlighting the method title.

g. The selected method title can be seen in the Fertilizer Fonn TextBox.

Crop SeIecti'lg List

Wheat
Potato
R e rass

Bermudagrass
Peanuts
Soybeans
Mungbeans
Cowpeas
Guar
Small Grains for Grazing
Barley
Legumes in Pasture
Alfalfa
Sorghum-Sudan Hay
Garden
Lawn

Figure 12. Prelnfonnation Form.

,.,

h. Click on OK hutton, and then the corresponding fertilizer form are shown in the

Fertilizer Form TextBox.

i. Click on Next button to switch to Combination Form.

(Prelnformatin Form is shown in Figure 12).

3. Manipulate in Combination Form.

a. Indicate one or more fertilizers, either unavailable or undesirable, by checking in the

box on the left of the fertilizer name in the Select Unavailable Fertilizer CheckBox,

using scroll bar when needed.

b. Click on OK button to confirm the "indication" operation.

c. A group of combinations of fertilizer codes is shown in the Select Unavailable

Fertilizer CheckBox. They are either with the check mark in the left check box or not.

The checked combinations having incompatible fertilizers within them are removed

from the set of combinations. The unchecked combinations contain all the fertilizer

compatible with each other.

d. The unchecked combinations are displayed in the Possible Combination TextBox.

Each of which is respecti vely concatenated with the other safe fertilizers to form new

combinations that are provided to Solver, respectively.

c. Click on Next button to switch to Optimization of Fertilizer Investment Form.

(Combination Table is shown in Figure 13).

4.0perate in Optimization of Fertilizer Investment Form.

a. Enter the requirements of N, P and K in the corresponding TextBox.

b. Click on OK button to confirm the requirement inputs.

~05

~06

~01,02

~01,04

~01,05

~01,06

~ 02,04
~

03,05
04,05
01,02,04

11-' ··II·¥"~I';." ;.;;...~ 01 ,02,05

Figure 13. Combination Form.

c. Click the User Select Mode button to change from automatic selection mode to user

selection mode. This operation is optional.

d. Choose one or more preferable fertilizers from the TextBox, Fertilizer Information

Selection and Add Table, using the scroll bar when needed. This operation is optional.

e. Click on Selected button to confirm the chosen fertilizers. This is an optional

operation.

6(,

-

Math lene Ureas Monoammonium Pho Ammonium Phosot

Methylene Ureas
046 0.41
- ----o 0

o 0

G

$0.66 $0.78--+-------r ---
0.41 0.12 0

- -- _Q _ ----- 0.51: 0

o 0,

0.34
0,
0,

$0.61

142.7199482

145.3831056

Ammonium Nitrate

I

Ammonium Nitrate

Total Cost

Price offartilizar

Figure 14. The optimal results on the Spreadsheet.

f. Click on Do Solver button to trigger Solver for optimal computation. Figure 14 shows

the computed results written on Excel spreadsheet after using Solver:

- Individual fertilizer name, contents of N, P, and K, and price in each combination.

- The required contents of N, P and K for reaching a yield goal.

- The contents of N, P, and K obtained from each combination after applying Solver.

- The total cost for satisfying the requirements of N, P, and K in each combination

after running Solver.

g. The optimal solution is displayed in the TextBox, Report of Optimization for Fertilizer

Purchase. This solution includes the fertilizer names with the needed pounds of the

fertilizers in the blending and the total cost for this blending.

67

h. Click on the Print Report button to get a written report.

1. Click on the Restart button to return to the Starting FOnTI. This operation is optional.

j. Click on the Exit Application button to leave this system.

(Optimization of Fertilizer Investment Form is shown in Figure15.).

Report of Optimization for Fertilizer Purchase

The optimal blending of fertiliZers is:

onium /oItrste 36 Ibs
8ssium N~rllle 91 Ibs

Sl4Jerphosph-Triplephosph 70 Ibs

iIh ITlinin8I totel cost S142.72

FigurelS. The Optimization of Fertilizer Investment Form.

-

Chapter V

Conclusions and Future Work

5.1 Summary

This study builds an Optimal Fertilizer Investment System to assist farmers in

detennining fertilizer investment. This system consists of a relational database to store

fertilizer infonnation, an Excel spreadsheet to hold the data retrieved from the database, a

computing tool, Solver, to calculate optimal solution, and a user graphic interface to

allow a user interactive with this system.

The function of this system depends on some technologies, algorithm and

programming languages .

• ADO offers a simple, high-level view of the Fertilizer database. Its basic objects help

establish a connection to this database, execute commands against the database, and

retrieve infonnation from the database. In this project ADO functions as a bridge

between Visual Basic and Fertilizer database, making the access to database through

VB possible.

• OLE Automation connects Visual Basic to Excel spreadsheet. This connection

contributes to the exposure of Excel objects to VB application and makes it feasible

while working in VB environment, using Excel functions to directly manipulate

spreadsheet.

• The algorithm for finding the compatible fertilizer combinations is crucial to the

implementation of this system. The algorithm is based on the biological, biochemical,

chemical, and physical considerations of the fertilizers and tries to make all possible

fertilizer combinations with no fertilizer and no compatible situation being

ignored. As the algorithm proceeds, the fertilizers in each combination become

progressively more restricted in compatibility. After removing all the combinations

with the fertilizers, inapplicable, unavailable, undesirable, and incompatible, the

remaining combinations contain all the fertilizers compatible one another.

• Visual Basic is critical for this system. It runs through the process, directly or

indirectly controlling or participating the execution of each software application in this

system.

• Visual Basic for Applications successfully fills the gap between VB and Excel Solver.

Substituting for VB, it effectively drives Solver for an optimal solution.

5.2 Conclusions

• This project provides the users with an optimal solution for fertilizer investment and

frees users from the difficult tool operation. Users interact with this system only

through a user graphic interface, and simple keystrokes and mouse clicks can help them

to gain an optimal result.

• This project realizes the interprocess communications with COM technology. Visual

Basic, Fertilizer database, and Excel are mutually independent software applications.

With COM technology, these software are integrated into a complete and integrate

application. Each component of this application provides to and receives from each

other the services as COM objects. They communicate and cooperate, commonly

satisfying the requirements for this system.

70

•

5.3 Future Work

This system was designed as a desktop application to run on a Windows operating

system with MS Office installed. In the future, a new feature, using either ActiveX

Controls or Java Applets, should be added to this system so that wherever a user is able to

use this system through a web browser, such as Netscape or Microsoft IE. The feature

will all.ow more users to benefit from this system.

71

-

BIBLIOGRAPHY

[1] Aaron, Bud., Thompson, Ben. ActiveX. Schoolcraft, MI: Prima Communications,
Inc., 1996.

[2] Appleman, Dan. Dan Appleman's Developing COM/ActiveX Components with
Visual Basic 6. Indianapolis, IN: Sams.net, 1999.

[3] Black, Charles A. Soil Fertility Evaluation and Control. Boca Raton, Flolida:
Lewis Publisher, 1993.

[4] Box, Don. Essential COM. Reading, Mass.: Addition Wesley 1998.

[5] Chappell, D. ActiveX OLE A Guide for Developers & Managers. Washington:
Microsoft Press, 1996.

[6] Chappell, D. Understading ActiveX and OLE. Washington: Microsoft Press,
1996.

[7] Collings, Gilbert H. Commercial Fertilizers Their Sources and Use. New York:
McGraw-Hill Book Company, Inc., 1990.

[8] Connolly, Thomas M. Database Systems: A Practical Approach to Design,
Implementation and Management. Harlow, England;
Reading, Mass: Addison-Wesley, c1999.

[9] Ernst, W., Kottler John J. Presenting ActiveX. Indianapolis, IN: Sams.net, 1996.

[10] Gass, Saul 1. Linear Programming Methods and Applications. New York:
McGraw - Hill Book Company, 1969.

[11] Gary T., Leavens, Murali. Foundations ofComponent-based Systems. Cambridge
[England]; New York: Cambridge University Press,
2000.

[12] Getz, Ken.

(13] Holzner, Steven.

VBA Developer's Handbook. San Francisco: Sybex, c J997.

ADO Programming in Visual Basic 6. Upper Saddle River,
NJ: Prentice Hall PTR, 2000.

[14] http://cs.nyu.edu/faculty/overton/g22_lp/encyc/article_web.htm1

[15] http://msdn.microsoft.com/library/officedev/office97/0RKht/036.htm#ORK036C1

72

________J

[16] http://solo.abac.com/dllarchive/define.html

[17] http://www,fertilizer.org/PUBLISHJPUBMA /introd2.html

[18] http//www.jics.cs.vtk.eduJEXCEUexcel.html

[19] http://www.microsofLcomffechNet/VBAlProdFactlvbaprim.a p

[20] http://www.vbexplorer.com/wrox/vbcpmsamp.asp

[21] Jones, Walken B. Excelfor Windows 95 Power Programming with VBA. Forster
City, CA:IDG Books Worldwide, 1996.

-

[22] Jones, Ulysses. Fertilizers and Soil Fertility. Reston, Virginia: Prentice-Hall
Company, 1982.

[23] Lamport, Leslie. On 1I1.terprocess Communication. Palo Alto, California:
Digital System Research Center, 1986.

[24] Laney, Jeff. ActiveX and COM - Part I. Developer Zone: National
Instruments, 2000.

[25] Litwin, Paul. Microsoft ActiveX Data Objects (ADO) Programming.
http://www.microsoft.com/accessdev/alticle/mov202.html. 2000.

[26] Lomax, Paul., VB &VBA in a Nutshell: The Language. Sebastopol, CA:
0'Reilly & Associates, Inc., 1998.

[27] Lu, H. COMSC 5423 Lecture Notes. Stillwater, OK: Oklahoma State
University, 1998.

[28] Marshall, Donis. ActiveXiOLE Programming: Building Stable Components with
Microsoft Foundation Class. Gilroy, CA : CMP Books, 1998.

[29] Microsoft Corporation. About Interprocess Communications. Win32 Software
Development Kit: Microsoft Corporation, 1992-1995.

[30] Microsoft Corporation. Automation Programmer's Reference: Using ActiveX.
Washington: Microsoft Press, 1997.

[31] Mojica, Jose. ActiveX controls with Visual Basic 5.0. Forster City, CA:
IDG Books Worldwide, 1997.

[32] Murty, Katta G. Linear Programming. New York: John Wiley & Sons, Inc,
1983.

73

[33] Neou, Vivian. ActiveX to Go. New York: Simon & Schuster Trade, 1997.

-

[34] Nering, Evar D., Tucker, Albert W. Computer Science and Scientific Computing
Linear Programs and Relate Problem. San
Diego, CA: Academic Press, Inc, 1993~

[35] Novalis, Susan.

[36] Petroutsos, E.

Access 2000 VBA Handbook. San Francisco:
SYBEX, 1999.

Mastering Visual Basic 6.0. Alameda, CA: SYBEX Inc.,
1999.

137] Ravindran, A., Don, Phillips T., James, Solberg J. Operations Research Principles
and Practice. New York:
John Wiley & Sons, 1987.

[38] Platt, David S. The Essence ofCOM with Active X A Programmer's
Workbook. Reston, VA: Prentice - Hall, PTR, 1998.

[39] Ren, J. A Decision Support System for Fertilizer Use (Master's Thesis for
the Department of Computer Science). Stillwater, OK: Oklahoma
State University, 2000.

[40] Roff, Jason T. Petrusha, Ron. ADO: ActiveX Data Objects. Sebastopol,
CA: O'Reilly & Associates, Inc., 2001.

[41] Rogerson, Dale. Inside COM: Microsoft's Component Object Model. Redmond:
Microsoft Press, 1997.

[42] Shelly, Gary B. Microsoft Office 97: Advanced Concepts and Techniques. Mass.:
Cambridge, Course Technology, 1999.

[43] Siberschatz, A., Korth, H.F., Sudarshan, S. Database System Concepts. New
York: McGraw-Hill, Inc., 1997.

[44] Soil Improvement Committee California Fertilizer Association. Western Fertilizer
Handbook. Danville, IL: Interstate Publishers, Inc., 1985.

[45] Stockton, R.S. Introduction to Linear Programming. Homewood, lL:
RichardD. Irwin, Inc., 1971.

[46] Swanson, Leonard W. Linear Programming Basic Theory and Applications.
McGraw-HiD: Book Company, 1980.

[47] Taylor, Harold H. Fertilizer Use and Price Statistics, 1960 - 1993. Herndon,
VA: United State, Department of Agriculture, 1994.

74

[48] Taylor, Harold H.

[49] Ullman, J.D.

[50] Whigham, David.

[51] Esposito, D.

[52] Esposito, D.

Price Prospects for Major Primary Commodities 1990
2005. Agricultural Products Fertilizers Tropical Timber,
volume II. Washington, DC: The World Band, 1990.

Principles ofDatabase and Knowledge-base System.
Rockville, MD: Computer Science Press, cl988-c1989.

Quantitative Business Methods Using Excel.
Oxford, New York: Oxford University Press, 1998.

With Further ADO: Coding Active Data Object 2.0 with
Visual Studio 6.0. Microsoft System Journal,
14(2): 17-32,1999.

Exposing Your Custom Data in a Standard Way Through
ADO and OLE DB. Microsoft System Journal,
14(6): 35-50,1999.

-

[531 Box, D., Brow, K., Ewald, T. J., Sells, C. Effective COM Programming: Seven
Tips for Building Better COM-based
Applications. Microsoft System Journal,
11(5): 63-80, 1996.

[54] Rauch, S.

[55] Stanley, J.T.

[56] Hopkins, S.

[57] Schultes, S.

[58] Vaughn, W.R.

[59] Roberts, B.

[60] Vogel, P.

Talk to Any Database the COM Way Using the OLE DB
Interface. Microsoft System Journal, Microsoft Inc.,
11(7): 19-32,1996.

Extend Office 2000 Applications with Custom-Coded
Add-Ins. Inside Microsoft Visual Basic, Microsoft Inc.,
August, 2000.

Connect Objects. Visual Basic Programmer's Journal,
Microsoft Inc., 10(9), 2000.

Use SOL with ADO. Visual Basic Programmer's Journal,
Microsoft Inc., 10(7),2000.

ADO Command Strategies. Visual Basic Developer,
Microsoft Inc., October, 2000.

An ADO Command Factory for Stored Procedures. Smart
Access, Microsoft Inc., pp. 26-38, September, 2000.

COM Add-ins in Detail. Microsoft Office & Visual Basic
For Applications Developer, April, 2000.

7S

APPENDIXES

Appendix A. Acronyms and Abbreviations

-

Acronym
ADO

API

COM

DBMS

DDE

DDL

DLL

DML

EXEs

Gill

IDE

IPC

LP

MS

OCX

OLE

OLE DB

OSU

RDBMS

RPC

Explanation
ActiveX Data Object

Application Programming Interface

Component Object Model

Database Management System

Dynamic Data Exchange

Data Definition Language

Dynamic Link Libraries

Data Manipulation Language

Executable

Graphic User Interface

Integrated Development Environment

Interprocess Communications

Linear Programming

Microsoft

OLE Controls

Object Link Embedded

Object Link Embedded Database

Oklahoma State University

Relational Database Management System

Remote Process Call

76

SFUDSS

SQL

VB

VBA

Soil Fertilizer Use Decision Support System

Structured Query Language

Visual Basic

Visual Basic for Applications

77

-

Appendix B. GLOSSARY

ActiveX Control A control using ActiveX technologies that can be downloaded and

executed by a Web browser. ActiveX is a set of rules for how applications should share

information. Programmers can develop ActiveX controls in a variety of languages,

including C, C++, Visual Basic, and Java. ActiveX controls have full access to the

Windows operating system and are currently limited to Windows environments.

ActiveX Data Object (ADO) A Microsoft's newest high-level interface for data

objects. ADO can be used to access all sorts of different types of data, including web

pages, spreadsheets, and other types of documents. Together with OLE DB and ODBC,

ADO is one of the main components of Microsoft's Universal Data Access (UDA)

specification, which is designed to provide a consistent way of accessing data regardless

of how the data is structured.

Add-in A software program that extends the capabilities of larger programs. For

example, there are many Excel add-ins designed to complement the basic functionality

offered by Excel. In the Windows environment, add-ins is becoming increasingly

common thanks to OLE 2.0.

ADO Data Control A form of an ActiveX controls that represents the ActiveX Data

Objects (ADO) and accesses database through the ADO objects. ADO Data Control is

placed on a Form and functions as a user application's visual gateway to a database. A

user can set it up to "see" any table or query in a database with point-and-c1ick

operations.

Application Program Interface (API) An abbreviation of application program

interface, a set of routines, protocols, and tools for building software applications. API

78

-

makes it easier to develop a program by providing all the building blocks. A programmer

puts the blocks together. Most operating environments, such as MS-Windows, provide

an API so that programmers can write applications consistent with the operating

environment.

Component Object Model (COM) A model for binary code developed by Microsoft

that enables programmers to develop objects that can be accessed by any COM-compliant

application. Both OLE and ActiveX are based on COM.

Control (1) An object in a window or dialog box. Examples of controls include

push-buttons, scroll bars, radio buttons, and pull-down menus. (2) An OLE or ActiveX

object.

Data Definition Language (DDL) A descriptive language that allows the Database

Administrator or user to describe and name the entities required for the application and

the relationships that may exist between the different entities.

Data Manipulation Language (DML) A language that provides a set of operations to

support the basic data manipulation operations on the data held in the database. Data

manipulation on operations usually include insertion of new data into the database, the

modification of data stored in the database, the retrieval of data contained in the database,

and the deletion of data from the database.

Database A shared collection of logicall y related data (and a description of this data),

designed to meet the information needs of an organization.

DataGrid Control A form of an ActiveX control that comes with Visual Basic and can

be used to map an entire tables or queries. DataGrid control calls direct editing of its

cells, as well as the addition of new rows and the deletion of existing ones.

79

-

Dynamic Link Libraries (DLL) A library of executable functions or data that can be

used by a Windows application. A DLL provides one or more particular functions and a

program accesses the functions by creating either a static or dynamic link to the DLL. A

static link remains constant during program execution while an dynamic link is created

by the program as needed. DLLs can also contain just data. DLL files usually end with

the extension .dll,.exe., drv, or Jon. A DLL can be used by several applications at the

same time.

First Normal Form The first state of tables in the normalization for table design. In

the First Normal Ponn, there is exactly one value in the section of each row and column.

Interprocess Communication (IPC) A capability supported by some operating

systems that allows one process to communicate with another process. The processes can

be running on the same computer or on different computers connected through a network.

IPC enables one application to control another apphcation, and for several applications to

share the same data without interfering with one another. LPC is required in all

multiprocessing systems.

Linear Programming (LP) A standard tool that allocates a finite set of resources in an

optimal way. Linear program is specific class of mathematical problems, in which a

linear function is either maximized or minimized subject to given linear constraints. This

problem class is broad enough to encompass many interesting and important applications

yet, specific enough to be tractable even if the number of variable is large.

Microsoft Access A typical PC-based DBMS that is capable of storing, sorting, and

retrieving data for a variety of applications. This DBMS package provides the tools to

create tables, queries, forms, and reports, and to develop customized database

80

-

applications using the Microsoft Access micro language or the Microsoft Visual Basic for

Application language. Microsoft Access can be used as a standalone system on a single

PC or as a multi-user system on a PC network.

Microsoft Excel A business application for accounting and financial calculations,

however, also powerful to perform many of calculations that scientists and engineers use.

Excel has sufficient numeric precision to represent most of the values in calculations of

interest to those in technical fields. There are also facilities for creating user-defined

functions and automating often-repeated task/calculations with macros. Excel gains its

popularity due to this feature that makes information easy to present in meaningful way.

Object Link Embedded (OLE) An abbreviation of Object Linking and Embedding

that is a compound document standard developed by Microsoft. It enables users to create

objects with one application and then link or embed them in a second application.

Embedded objects retain their original format and links to the application that created

them.

Object Link Embedding for Database (OLE DB) A set of data objects defined by

Microsoft that allows OLE-oriented applications to share and manipulate sets of data as

objects. OLE DB provides access to any data source, including relational and non

relational database, e-mail, file systems, text, graphics, custom business objects, and

more. OLE DB is an object-oriented specification based on a C++ API. As components

can be thought of as secure, reusable object, components can be retrieved as both data

consumers and data providers at the same time. Consumers take data from OLE DB

interfaces and providers expose OLE DB interfaces.

81

-

Relational Database Management System (RDBMS) A type of database management

system (DBMS) that stores data in the form of related tables. Relational databases are

powerful because they require few assumptions about how data is related or how it will

be extracted from the database. As a result, the same database can be viewed in many

different ways. An important feature of relational systems is that a single database can be

spread across several tables. This differs from flat-file databases, in which each database

is self-contained in a single table. Almost all full-scale database systems are RDBMS's.

Second Normal Form The second state of tables in the normalization in the table

design. In the Second Normal Form, every non-primary key is fully and functionally

dependent on the primary keys.

Solver A Microsoft Excel add-in that is a software program developed for extending the

capabilities of lager programs. Solver add-in consists of following files: Solver.xla,

Solver32.dll, and Solvsamp.xls. These files calculate solutions to what-if scenarios based

on adjustable cells, constraint cells, or cells that must be either maximized or minimized.

Solver changes the decision variable to move from one feasible solution to another until

the objective function has reached its optimal value.

Structured Query Language (SQL) An abbreviation of structured query language that

is a standardized query language for requesting information from a database.

Historically, SQL has been the favorite query language for database management systems

running on minicomputers and mainframes. Increasingly, however, SQL is being

supported by PC database systems because it supports distributed databases. This

enables several users on a local-area network to access the same database simultaneously.

82

-

Third Normal Form The third state of tables in the normalization in the table de ign.

In the Third Normal Form, no non-primary key attribute is transitively dependent on the

primary key.

Update Anomalies The problem resulted from redundant data in the relations. They

can be classified as insertion anomaly, deletion anomaly, and modification anomaly.

Visual Basic (VB) A programming language and environment developed by Microsoft.

Based on the BASIC language, Visual Basic was one of the first products to provide a

graphical programming environment and a paint metaphor for developing user interfaces.

The Visual Basic programmer can add a substantial amount of code simply by dragging

and dropping controls, such as buttons and dialog boxes, and then defining their

appearance and behavior.

Visual Basic for Applications (VBA) A powerful language and development

environment built into the Microsoft Office family of applications, which provide

developer with professional quality development tools for building custom solution

VBA comprises a VBA engine and an integrated development environment (IDE) with a

full-featured editor, debugger, and OLE browser. It supplies basic control structures,

math and string functions, and variable manipulation capabilities that enable developers

to learn a single language and development environment which can then be used across

multiple applications.

83

VITA

Li Wang

Candidate for the Degree of

Master of Science

Thesis: OPTIMAL FERTILIZER INVESTMENT SYSTEM A COM - BASED
APPLICATION

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Arts degree in Information Science from Beijing
Polytechnic University in China, in July 1983; Attended Southern Polytechnic
State University, Marietta, Georgia, from January 1997 - May 1998; Completed
the requirements for the Master of Science degree in Computer Science at
Oklahoma State University in December 2001.

Professional Experience: Teaching Assistant in Computer Science Department,
Oklahoma State University, from August 2000 to May 20001. Column Editor for
the journal, Study ofPolitical Science, in the Institute of Political Science of

Chinese Academy of Social Sciences, from July1983 to September 1990.

-

