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INTRODUCTION

The advent of modern chemistry and materials science has expanded the employment

of ceramics well beyond that of structural materials through the creation of advanced

ceramics. Their uses span an extremely broad range of applications that take advantage of

their highly varied electrical, magnetic and chemical properties. Traditional ceramics are

those derived from naturally occurring raw materials, and include structural clayware

such as bricks, pipes, cements, glasses and refractories. Advanced ceramics are produced

by synthetic chemical routes or from naturally occurring materials that have been highly

refined. Their uses depend on mechanical behavior, electrical, magnetic and chemical

properties.

Ceramics are defmed as "the group of non-metallic, inorganic solid materials

produced by thermal processes"'. As opposed to metals and plastics, ceramics are hard,

non-combustible and usually non-oxidizable. They can be used in severe conditions, such

as high-temperature, and corrosive environments. In addition, many ceramics, described

as advanced or engineering ceramics, exhibit superior electronic, magnetic, optical or

mechanical properties when prepared using the appropriate technique. Due to these

unique characteristics, they have been increasingly sought for in industrial applications

such as energy development, advanced telecommunications, and aeronautics.

Examples of applications of advanced ceramics include:

Structural ceramics
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Bioceramic

Ceramic coatings

Mechanical seals

High temperature oxide superconductors

Regardless of the application, the materials must be highly stoichiometric,

homogeneous and of high purity, as each of these parameters is known to dramatically

affect the chemical and physical properties.

Ceramic materials can be classified according to their elemental composition as metal

nitrides, metal carbides, and metal oxide ceramics. The last category constitutes the most

important class of ceramic materials.

There are two main avenues of research in the ceramic field. The first one deals with

the development of new ceramic materials, and the second seeks one to improve the

characteristics and/or production cost of already known materials by designing n w

preparation techniques. Our research is based on the second approach and our main

objectives include the application of a new modified powder process with lower

preparative temperatures to the preparation of ferrites, a technological-essential class of

oxide ceramics. Ferrites are an important category of magnetic materials that have been

used in inductors, transformers (NiFe204 and ZnF~04), and in microwave devices such

as isolators and circulators (yttrium-based garnets, MgFe204 and MnFe204). They are

composed of iron oxide as the principle component, combined with a divalent metal

oxide to yield spinel ferrites: M(II)Fe(lII)204, or a with a trivalent metal oxide,
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(M(llI)3Fe(III)s012). The spinel ferrites, which are by far the most important in this otas

ofmaterials, were selected for the investigation ofthe new processing method.

A. Conventional Preparation Methods:

The conventional route for industrial production of metal oxide ceramic materials is

through powder processing. This technique is based on high temperature processing of

inexpensive raw materials. The conventional methods consist of mixing stoichiometric

amounts of the corresponding oxide powders usually the metal oxides or carbonates (e.g.

NiO and Fe203 for NiFe204 synthesis), after which the mixtures are ground. The powders

are then calcined, sometimes after compaction; sintering can be repeated several times

with intermediate grinding stages to optimize surface contact between particles. The

phase boundary reaction occurs at the points of contact between the two components and

later by counter diffusion of the metal cations through the product phase. The relative

simplicity of this process and the use of cost effective components such as oxides and

carbonates constitute the two major advantages of the powder processing method, also

known as the "ceramic method". However, the ceramic method suffers form several

disadvantages such as:

- High temperature treatments, which can result in loss of volatile oxides. In the

preparation of coatings from powders, high temperatures can also lead to irreversible

deterioration ofthe substrate.

- With the progress of the reaction, the diffusion paths 0 f the constituents through the

product phase become longer and the reaction rate slower. The intermittent grinding
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stages between heating cycles help, to some extent, optimize the surface contact betw en

unreacted metal oxide particles.

- Limited compositional control: Due to lack of monitoring ability the ideal

experimental conditions that will lead the Ieaction to completion are determined by trial

error. Therefore, the desired product is often mixed with small quantities of impurities

such as reactants or intermediate phases.

- Incomplete chemical homogenization.

B. Chemical Routes for Ceramics Synthesis:

Various "pre-ceramic" routes have been developed to overcome those limitations and

yield higher quality products with the desired shapes, forms, and purities for targeted

applications. Most have the objective of decreasing the diffusion path lengths of metal

ions by bringing down the particle size to a few hundred angstroms, and thus effect a

more intimate mixing of the reactants. The main chemical routes applied to oxide

ceramics synthesis according to a recent review 2 are:

- Metal Organic Chemical Vapor Deposition (MOCVD) techniques are based on the

formation of ceramic materials from thermal decomposition of metal organic gases on a

substrate. These methods are usually applied for deposition of thin films and allow large

area deposition capability, excellent composition control, film uniformity, and the

production of narrow size distribution nanophase particles. The main class of precursor

applied to MOCVD includes metal alkoxides, metal alkyls, and metal p-diketonates. For

example, Nickel and Zinc ferrite thin films were successfully grown by decomposition of

the metal salts of tetramethyl heptanedionate and the metal salts of acetylacetonate 3,
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Unfortunately, MOCVD methods require high cost reactors and are also limited by the

availability of volatile metal precursors possessing a large temperature window between

evaporation and decomposition 4.

- Spray drying and freeze-drying techniques are currently used industrially. The

freeze-drying method converts a liquid phase to a solid phase by rapid cooling of the

atomized solution. The desired product, a very fine powder, is obtained through

sublimation of the solvent from the solid phase, followed by thermal decomposition. For

example, the superconductor YBa2CU0(7-5) was prepared by freeze-drying a solution of

the corresponding metal nitrates and yielded a fine powder (particle size less than 5 ~m)

with greater compositional homogeneity than the conventional powder mixing process s.

- Hydrothermal oxidation and hydrolysis of metal organics. Examples of ferrite

preparations by hydrolysis of metal acetylacetonates, pentadionates and alkoxides m

aqueous ammonia or aminoalcohols have also been reported 6-10.

- Solution routes usually involve co-precipitation of the ceramic precursor from

homogenous solution followed by pyrolysis. Their numerous advantages over

conventional methods include improved stoichiometry control of the metals, lower

processing temperatures, and higher homogeneity. However they suffer from high cost of

precursors, shrinkage during thermal processing, the presence of carbon in the final

ceramics as a result of incomplete decomposition and, hence, the necessity for longer

processing time to avoid carbon incorporation II. Fe(II) oxalate is known to form solid

solutions with a number of oxalates of other divalent metals such as Zn2+, Co2+, NiH,

Mi+ and Mn2
+. Thermal decomposition of the oxalate solid solution precursors in the

800 to 1OOO°C range temperature yields fine ferrite particles II. However, the iron(llI) to
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divalent metal ratio in the materials obtained deviates from ideality due to ili diffi rent

solubilities of the Fe2
+ and M2

+ oxalates and thek tendency to form. supersaturated

solutions, unless the reaction conditions are carefully controlled 12. An e cellent example

of a crystalline precursor for stoichiometric ferrites is the mixed acetate, M3Fe6(C02

CH3)1703(OH).12pyridine (M = Ni, Co, Mn) reported by Wickham et aI. 13. When heated

to 800 to 11 OO°C this precursor yielded ferrites with a Fe(III):M(ll) ratio that deviated by

less than 0.01 from the ideal value of 2. While the mixed acetates were easily

recrystallized, this process had the drawback of requiring pyridine. Another successful,

inexpensive and more environmentally friendly precursor for nickel ferrite was prepared

using sodium iron Ethylene Diamine TetraAceto anq NiCh (4. The resulting crystalline

compound, [Ni(H20)6][FeCI(EDTA)Hh.xH20 was pyrolyzed to 900°C leaving a

crystalline residue consisting of stoichiometric nickel ferrite. Liquid metal carboxylates

previously investigated in MOCVD methods have also been applied to nickel ferrite

synthesis 15.

C. Hybrid Route for Ferrite Synthesis: The Modified Powder Processing Method:

Combining the numerous advantages of each method developed a hybrid method,

ahemative to the cost-effective conventional technique and the expensive precursor

methods of preparation of ceramics. This hybrid method consists of associating the

economical aspect of the conventional powder process by using an inexpensive raw

material as one reactant (such as F~03 or Ah03), and the strengths ofchemical methods

by coating the finely ground raw material particles with a second metal oxide phase. This

approach is illustrated in Figure 1 (B) in comparison to conventional powder processing
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(A). It provides a precursor mixture that has homogeneity in ermediate hetw en that 0

pure chemical routes and conventional powder processing and since the ions hav less

distance to trave~ the solid-state reactions are complete at lower temperatures and in 1 S5

time. It was found that the precursor powder prepared by this method conv rted to an

unusual foamed nanocrystalline ferrite at 800°C.

A

.- .- .- .- .- .-.-

t I

t I

t I
t I
t I
t I
t I
~~ ~ -.-..~ ~-..-.

B

Figure 1. Modified powder processing: Comparison of (A) conventional powder
processing and (B) continuous phase of a bimetallic oxide using liquid
metallorganic precursors 16.

- The first application ofthe modified powder processing method involved the use of

a finely groWld ferric oxide and a liquid nickel carboxylate for the synthesis of nickel

ferrite. The liquid metal carboxylate Ni(2-[2-(2-Methoxy)-Ethoxy]EthoxyAcetate]

)O.5H20 (Ni(MEEAh.O.5H20) was employed to uniformly coat the hematite powder

with a continuous film ofNiO 16. Pyrolysis of the precursor to 500°C produced a powder

with microscopic features similar to those of the starting iron oxide, suggesting a very

homogeneous coating of Fe203 particles with NiO. This was attributed to a possible in-
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situ CVD reaction during which Ni(MEEAh is partially voJatilizedat its d composition

point and uniformly deposited onto the Fe203 particles where it undergoes thermal

decomposition to form NiO. Upon heating to 800°C the material was compl tely

converted to small porous particles of trevorite, NiFe204 (crystallite size less than 18

nm). The striking difference of morphologies between the initial chunk-like particles and

the puffed trevorite particles is accounted for by the diffusion of F~03 to the NiO

interface, through the product phase as illustrated in Figure 2. Formation ofZnF~04was

demonstrated to occur via this solid-state mechanism 17.

10Expanded
"foam d"
ceramic

.-+

Continuous formation of
NiFe2040ccurs by diffusion
FeZ03 through the NiFez04

to the NiO interface

I.

Figure 2. Mechanism of ferrite formation by nickel oxide coated ferric oxide
powders 18.

Other MEEA salts were also successfully applied to ceramics preparation using the

modified powder processing described above. For example MgAh04 was obtained using

Mg(MEEA)2.2HzO and aluminum oxide. However, the morphology of the final product

did not exhibit the same features as NiFez04 described above 18. Despite the proven
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usefulness of the liquid MEEA for the preparation of spinels its high cost renders any

potential industrial application unlikely.

This research focuses on the application of the modified powder processing method

for low temperature preparation of ferrites py utilizing more economical precursors. In

this study, a variety of metal carboxylates were applied to the modified powder

processing method, and the nature of the metal organic compound correlated with the

morphology (microscopy, surface area, crystallite size) of the desired final product and

the processing temperature necessary for completion of the solid state reaction. In

addition to the influence of the metal carboxylate characteristics on the final product, the

nature of the starting iron oxide source was also investigated. The six coordination

compounds investigated were Nickel and Zinc acetates, gluconates, and acetylacetonates.

D. Solution Growth Method for Nickel Hydroxide:

The solution growth method, also called Chemical Bath Deposition (CBD) of films is

similar to the Chemical Vapor Deposition (CVD) in the gas phase. The film growth takes

place "via reaction near room temperature between dissolved precursors (ions) in a

metastable environment" 19. This technique has been thoroughly investigated for the

deposition of sulfide films such as CdS 20, Pb(l-x)HgxS 21 or ZnS 22, which have important

applications as optoelectronic materials. For example, uniform CdS films were grown

from an aqueous alkaline solution containing thiourea, which provided the sulfur ions,

and cadmium-ammonia complex ions. Under basic conditions SC(NH2h is slowly

hydrolyzed, releasing sulfide ions that combine with metal ions to fonn films on

substitutes immerse in the chemical bath 22. A slightly different approach was developed
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for the growth of ammonium dihydrogen phospha e crystals. Th growth solution

consisted of a saturate{j aqueous solution of ADP prepared at 45°C. Crystal growth was

initiated by a highly controlled temperature decrease to 30°C (0.1 to O.3°C/day) 23. The

solution growth method for preparation of films of nickel hydroxide was also investigated

as a very inexpensive method of coating iron oxide particles with NiO. The solution

growth process could also be used for the growth of Ni(OH)2 films for electrode

materials. The method involves dissolution of Ni(OH)2, in concentrated aqueous

ammonia as nickel hexa-ammine complex (see equations 1 and 2). As ammonia

evaporates, the equilibria of equations 1 and 2 are displaced to the left, resulting in the

slow precipitation ofnickel hydroxide in the form ofa thin film.

( Ni2+ + 20K

~<__> [Ni(NH3)6]2+

(1)

(2)

Ni(OH)2 occurs in two crystallographic forms, one of which is isomorphous with

Mg(OH)2 and is called ~ nickel hydroxide. The second fo~ alpha Ni(OH)2, is actually a

series of compounds containing a variable excess of water molecules and foreign ions

intercalated between Ni02 slabs 24. The conventional a-Ni(OH)2 designation for such

compounds includes a large set of disordered Ni(II) hydroxides which tend to convert to

the beta phase in alkaline media. a-Ni(OH)2 has been shown to be a better electrode

material, and therefore is of great interest to battery manufacturers who devoted

numerous studies to the development of new processes for stabilization of a-Ni(OH)2. A

common technique consists of the stabilization of the alpha fonn through partial
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substitution of nickel(In with aluminum(llJ) resulting in the formation of a Double

Layered-Hydroxide. The doping of Ni(OHh with Al(Ill) using the solution growth

process was attempted by saturating the solution growth bath with aluminum hydroxide,

as a first approach, and by addition of a sodium aluminate solution to the Ni(OH)2

saturated concentrated ammonia solution.

The nickel hydroxide solution growth process was applied in this investigation to

synthesis of trevorite (NiFe204) as a means of coating fine iron oxide particles with

Ni(OH)2 which resulted in a highly homogeneous and inexpensive ceramic-precursor.

As with the field of ceramics in genera~ improvements in the properties of ferrites

have been made through close control of preparation conditions and innovations in

processing. The research reported herein is based on the development and application of a

new economic procedure for ferrite synthesis with reduced processing temperatures

through uniform coating of iron oxide particles with divalent metal oxides. The new

preparative methods allow for improved homogeneity and phase purity as compared to

conventional powder processing and also provide the ability to control the microstructure

ofthe resulting ceramic materials.
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EXPER~NTALSECTION

A. Instrumentation and Chemicals

All chemicals were of reagent purity and were used without further purification.

Aluminum powder (Valimet), Nickel hydroxide Ni(OH)2 (Strem), Nickel acetate

Ni(CH3C02h.4H20 (Aldrich), Nickel acetylacetonate Ni(CsHs02)2.11.2%H20 (Strem),

Nickel oxide NiO (Strem), Aqueous ammonium hydroxide NfLtOH ACS reagent

(Scientific Products), Zinc Acetate Zn(C02CH3)2.2H20 (Aldrich), zinc acetylacetonate

Zn(CsHs0 2)l.7.5%H20 (Strem), zinc gluconate Zn(C6H 11 0 7)2 (Alpha Aesar), Alpha iron

oxy-hydroxide a FeOOH (Strem), gamma iron oxide y Fe203 (Nanophase), Ferric oxid

(coarse) Fe20J (Fisher Scientific), a Iron oxide (hematite) high purity Fe203 (Puratronic,

Alpha Aesar), Ferrous gluconate Fe(II)(C~1107)2.2H20 (Alpha Aesar), Ferric

acetylacetonate Fe(III)(CsHs02)3 (Strem), Ferrous chloride FeCh.4H20 (Aldrich), ferric

cWoride FeCl].6H20 (Matheson, Coleman & Bell), sodium hydroxide (Spectrum),

Sodium nitrite NaN02 (Fisher Scientific), hexamethylenetetramine N4(CH2)6 (Matheson,

Coleman & Bell), Ethyl alcohol CH3CH20H USP grade (pharmco Products), N,N

dimethylformamide (E.M. Science), D-gluconic acid 45~50% solution C6H I20 7(Aldrich).

Water was purified by reverse osmosis and then deionized before use. Thermogravimetric

studies were performed on a Seiko EXSTAR 6000 TGIDTA 6200 instrument under a
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100mJ/min flow of nitrogen. Infrared spectra were collected by diffuse reflectance of

ground powder diluted in KBr on a Nicolet Magna-IR 750 FTIR Spectrometer. Bulk.

pyrolyses at various temperatures were performed in ambient air in a temperature

programmable muffle furnace using a temperature ramp of l°C/min and a hold time of 14

hours. X-ray powder diffraction patterns were obtained on a Broker AXS D8 Advanc

diffractometer using copper Ka (1.5418 A) radiation. Surface area measurements were

performed on a Quantachrome Nova 1200 iilstrument by nitrogen adsorption and the

BET six-point methods. Samples were prepared prior to surface analysis by degassing

under vacuum at 100°C. Scanning electron micrographs were taken on -a JEOL JXM

6400 Scanning Electron Microscope.

B. Precursor Synthesis for NiF~04

Nickel gluconate hydrate preparation:

1.86 grams (0.020 moles) of Ni(OH)2 and 17.44 grams of a 45-50% solution (0.040

moles) of D-gluconic acid were added to 250 ml of distilled water. The solution was

heated under reflux and with constant stirring for two days. The resulting green solution

was concentrated by evaporating 2/3 of the solvent under reduced pressure in a water

bath at a temperature range of 50-60°C. Nickel gluconate was isolated by precipitation

from the dark green solution after addition of 700 ml of methanol. The resulting pale

green solid was collected by filtration using a medium porosity fritted glass filter, then

washed twice with 200 ml of methanol, and dried under vacuum overnight. The reaction

yielded 8.11 g (yield: 83.69%). Nickel gluconate hydrate Ni(4HIl07k2H20.
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(484.69g/mol). IR (cm-1)(KBr) 3498(s,br), 2886(s), 2823(m) 1642 s) 1553(m), 1479(m),

1295(m), 1138(m), 1103(rn),885(m), 749(s)

Lepidocrocite (y FeOOH) preparation 25:

59.6 grams (0.302 moles) of ferrous chloride tetrahydrate was dissolved in 1.5 liter

ofdeionized water, followed by filtration of residual Fe(OHk The filtrate was added to a

solution of 83.9 grams (0.600 moles) of hexamethylenetetraamine in 300 ml of distilled

water. A blue green precipitate (Fe(OHh) formed. Then a solution of 21.0 grams (0.304

moles) of sodium nitrite was added with constant stirring. The mixture was heated to

about 60°C and allowed to stand for three hours with occasional agitation. The oxidation

that produces y-FeOOH proceeded with evolution of considerable quantities of nitrous

oxide gas. The supernatant liquid was drained off and the precipitate was washed

thoroughly with warm water and dried at 60°C in an air oven overnight. The reaction

yielded 26.2 grams (97.7%). IR (cm-1)(KBr) 3196(s,br), 1891 (m), 1635(m), 1506(m),

1346(w), 1166(m), 1024(s), 880(w), 747(m).

Hematite (a Fe203) nanoparticle synthesis 26;

1.08 grams (4.00 mmoles) of FeCh.6H20 were added to 200 ml of water containing

0.0125 gram (0.0901 mmole) of NaH2P04.H20. The solution was heated in a tightly

capped Pyrex flask in a preheated oven at 100°C for 2 days and 17 hrs. The resulting

orange suspension was centrifuged until the solution turned clear and a brown solid

accumulated at the bottom of the plastic tube. The desired product, F~03, was collected

14



by fIltration using a 20lJ,m nylon membrane and washed wilh 200 ml of distill d water.

The fine powder was dried under vacuum in air overnight.

General procedure for precursor preparation:

The experiments listed in Table 1 consisted of the pyrolysis of 5 mmoles of Ni(L)2

with 5 mmoles of an iron oxide powder of specific form (a, y), or 10 mmoles of Fe(Lh,

or Fe(Lh with 5 mmoles of NiO powder, L being an acetate, gluconate, or

acetylacetonate ligand. Due to the small amount aVaIlable of nanoparticulate F~03,

experiment #5 was prepared with only 2.2 mmoles of Ni(acetate)2 and 2.2 mmoles of

Fe203. A predetennined volume of the appropriate solvent was added to the rnetal

organic reactant and gently heated (about 50°C) to obtain a clear homogeneous solution.

The metal oxide powder was rapidly added to the warm solution and slowly stirred as the

precursor cooled down and thickened to a paste. The first combustion at 450°C was

performed in a muftle furnace using a 1°C/min heating rate in a Pyrex beaker. The brown

solid collected was then weighed and ground. A fraction was conserved in a vial for X

ray and microscopy studies while the rest was pyrolyzed to SOO°C. Reaction compl.etion

temperature was determined by coJlecting the X-ray diffraction pattern of the sintered

sample, starting at 800°e, and working by increments of 50°C until disappearance of the

starting metal oxide peaks.

Metal gluconates and acetates are conunon water-soluble organometallic compounds.

Water 2.5 ml was sufficient to dissolve the metal precursor as described above. Exp. #5

only required 1ml. On the other hand the solubility of metal acetylacetonates in water

was not sufficiently high to reach complete dissolution ofthe metal precursor, even under

15



heating. N,N-Dimethylformamide (DMF) was instead preferred and only necessitated 2

mL to appropriately dissolve the precursor. In order to estimate the importance of the

solvent on the solid-state reaction completio~ Experiment #4 was carried out without

addition ofwater.

All pyrolyzed samples apparently possessed similar morphological aspects (compact

powders) with the exception of experiments which included Nickel(ll) and Fe(II)

gluconate, whose thermal decompositions were accompanied by a "foaming" process,

yielding powders with higher surface area.
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Table 1. Nickel Ferrite Precursor Compositions

# Nickel source Weight Iron source* Weight Solvent NiFe20..**

1 Nickel gluconate 2.43 a Fe203HP 0.799 H2O 1.104

2 Nickel acetate 1.25 a Fe203 HP 0.799 H2O 1.16

3 Nickel acetate 1.25 a Fe20J 0.799 H2O 1.15

4 Nickel acetate 1.24 a Fe203 HI' 0.799 H2O 1.16

5 Nickel acetate 0.55 a Fe203 Np. 0.351 H2O 0.501

6
Nickel acetyl

1.46 a Fe20J HP 0.800 DMF 1.17
acetonate

7 Nickel gluconate 2.42 y Fe20J 0.799 H2O 1.12

8 Nickel acetate 1.25 y Fe203 0.800 H2O 1.13

9
Nickel acetyl

1.44 y Fe203 0.798 DMF 1.12
acetonate

10 Nickel gluconate 2.42 y FeOOH 0.994 H2O 1.16

11 Nickel acetate 1.24 yFeOOH 0.993 H2O 1.16

12
Nickel acetyl

1.44 yFeOOH 0.995 DMF 1.16
acetonate

13 Nickel acetate 1.24 a FeOOH 0.858 H2O 1.13

14 NiO 0.372
Iron (Ill) acetyl

3.53 DMF 1.12
acetonate

15 NiO 0.373
Iron (11)

4.82 H2O 1.13
gluconate

* NP: Nano particles HP: High purity
** yields are in mol%
Weights in grams
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C. Synthesis of Precursors for ZnFe,04~

General procedure for precursor preparation:

The preparation ofprecursors for zinc ferrite was identical to that for nickel ferrite. A

predetennined volume of the appropriate solvent is added to 5 rnmoles of the metal

organic reactant and gently heated (about 60°C) to obtain a homogeneous clear solution.

The metal oxide powder is rapidly added to the warm solution and gently stirred as the

precursor cools down and thickens to a paste. The consistency of the precursors after

cooling was visibly different from that of the nickel ferrite precursors: The samples did

not harden in a thick solid but instead retained a very homogeneous gel-like appearance.

The products ofpyrolysis at 450°C provided valuable information concerning the sample

homogeneity and decomposition process. The precursors prepared with zinc acetate

hydrate (see Exp # 2, 5, 8, 10) yielded a brownish-red powder covered with a very fine

white particles ofZnO, suggesting a poor coating ofthe iron oxide particles.

The thermal decomposition of precursors containing metal gluconate produced

powders, which exhibited similar features to those observed for nickel ferrite

preparations: large volume and apparent high surface area (58.8 m2jg).

The precursor compositions and the various solvents used for sample preparations are

showed in Table 2.
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Table 2. Zinc Ferrite Precursor Compositions

# Zinc source Weight Iron source* Weight Solvent ZnFeZ04**

1 Zinc gluconate 2.55 a. Fe203 HP 0.798 H2O 1.18

2 Zinc acetate 1.10 a. Fe203 HP 0.793 H2O 1.09

3
Zinc acetyl

1.42 a. Fe203 HP 0.799 DMF 1.127
acetonate

4 Zinc gIuconate 2.55 y Fe203 0.793 H2O 1.18
I

5 Zinc acetate 1.10 y Fe203 I 0.799 IbO lo12
I

6
Zinc acetyl

1.42 y Fe203 0.799 DMF 1.11
acetonate

7 Zinc gluconate 2.55 yFeOOH 0.993 H2O 1.20

8 Zinc acetate 1.10 YFeOOH 0.994 H2O 1.19
II

Zinc acetyl I:

9 1.42 yFeOOH 0.995 [ DMF 1.18
acetonate I

10 Zinc acetate 1.10 a. FeOOH 0.858 H2O 1.16

11 ZnO 0.407
Iron acetyl

3.53 DMF 1.19
acetonate

12 ZnO 0.408 Iron gluconate 4.82 H2O 1.19

* HP: High purity
** yields in mol%
Weight: grams
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D. Solution Growth Process for Nickel hydroxide synthesis:

Beta Nickel Hydroxide Synthesis:

Concentrated ammonium hydroxide (40 ml) of was saturated with nickel hydroxide

by stirring with 2 grams of Ni(OH)2 for 1 hour and thirty minutes in a 50 ml beaker at

room temperature. Excess Ni(OH)2 was collected by filtration using a 20 ~m nylon

membrane and stored under vacuum overnight. The blue solution was stored in the fume

hood Wltil complete evaporation of the solvent; as NH3 is slowly evolved, Ni(OH)2 was

deposited as a thin film on the flask walls. The precipitate was collected, placed under

vacuum overnight and weighed. IR (cm-I)(KBr) 3638 (s, sh), 1483 (m), 1355 (m)., 833

(w), 582 (m)

Concentration of [Ni(NH3)6f+ in saturated ammonia solution:

The solubility product, Ps of nickel hydroxide in concentrated aqueous ammonia was

determined using the weight of solid deposited by complete evaporation of a known

amount of saturated solution.

Alpha Nickel Hydroxide Preparation by Substitution with Aluminum(Ill):

- Stabilization of a-Ni(OH)2 by addition of AI(OH)3 to ammonium hydroxide

solution: Prior to adding Nickel hydroxide, 40 ml of NH3 solution was saturated with

aluminum hydroxide. The time necessary for the solution to reach saturation was

estimated at 45 min. Excess AI(OH)3 was filtered using a pre-weighed nylon membrane

and placed under vacuum overnight. The exact A13
+ content of the solution was
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determined by subtracting the weight of Al(OHh introduced in the solution from that of

the excess solid previously filtered. Weight: 0.0618 grams in 40 ml ~OH solution.

[At3+]=0.022 mollL present in the amine complex form.

Excess Ni(OH)2 powder was then added and the nickel saturated solution was isolated

as described above. The light green solid collected after evaporation of solvent was put

under vacuum and weighed (0.565 grams).

IR(KBr)(cm-l) 3517(s,br), 2985(m), 2831 (m), 1497(m,sh), 1355(s,sh), 870(m,br),

450(w).

- Stabilization of a-Ni(OH)2 by addition of a sodium aluminate solution to solution

growth bath:

Sodium aluminate solution (0.33 M):

Aluminum powder (1.78 grams, 0.066 mole) was slowly added to 200 mJ of freshly

distilled water containing an excess (6.03 grams, 0.15 mole) of NaOH. The highly

exothermic reaction proceeded with rapid evolution of hydrogen gas and was carried out

in an icy water bath and under careful stirring.

The amount of sodium aluminate necessary for stabilization of the alpha structure was

determined by addition of increasing volumes of the 0.33 M NaAI(OH)4 solution to 40 mJ

of Ni(OH)2-NH3 solutions. The Ni(OH)2 phase precipitated was identified by X-Ray

diffraction and infrared spectroscopy. NaAI(OH)4 solution (6 ml of the 0.33 M) was the

volume required for addition to 40 mJ of the growth solution, for the stabilization of alpha

nickel hydroxide. IR (cm·1)(KBr) 3457 (s,br), 1360 (s), 854 (br).
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Solution Growth Process for Nickel Ferrite synthesis:

O.904grams (5.66 mmoles) ofy-F~03 were added to 42 ml ofNH3-Ni(OH)2 solution

in a 500 ml high density polyethylene bottle with a narrow neck. Proper stirring was

provided by horizontal rotation of the opened bottle on a roller mill. As NH3 slowly

evaporated a brown precipitate formed. After a month and a half, aU the solvent has

evolved and the brown solid accumulated on the bottle wall was scraped off and weighed.

Total yield: 1.48 grams. Weight expected for stoichiometric proportions: 1.43 grams. IR

(cm-l)(KBr) 3637(s,s), 3436(m,br), 1601(m), 1384(m,s), I073(w), 833(w), 696(rn),

643(m), 446(w), 424(w). Thermal decomposition at 900°C of 0.492 grams of sample

yielded 0.400 grams ofdark brown nickel ferrite. Yield: 90.52 %
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RESULTS AND DISCUSSION

A. Modified Powder Process for Ferrites Synthesis:

1. Introduction:

- Structure of ferrites

The term "ferrite" is used to describe a class of magnetic oxide compounds, which

contain iron oxide as a principle component 27 and includes both the garnet and spinel

crystal structures. Among the different types of ferrites, the spinel ferrites, which are

isostructural to MgAh04, are by far the most important in this class of materials. Their

common formula is MFe204. where M stands for divalent metals such as Nickel(JI),

Copper(lI), Zinc(II) etc. Their structure is based on a cubic close packed arrangement of

anions (02
) in which cations occupy the interstitial sites in an ordered manner. A single

unit cell of the spinel structure is composed of four atoms of oxygen, eight tetrahedral

sites and four octahedral sites. In the case of the normal spinel structure, the Fe3
+ cations

half of the octahedral sites occupy while the M2
+ cations occupy one-eighth of the

tetrahedral holes. However certain compounds adopting the spinel structure, known as

inverse spinels, possess a different arrangement of cations where the M2
+ cations occupy

octahedral sites and the Fe3
+ cations are equally distributed between octahedral and

tetrahedral sites.
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- Applications of ferrites:

Spinel ferrites combine a wide range of useful magnetic properties with relatively

low electrical conductivity. Thus unlike magnetic alloys and metals, they display low

eddy current loss in alternating current applications and they are particularly useful in the

radio frequency range. The magnetic moment of the ferrite materials arises from the

unpaired d-electrons of the metal transition ions of both iron and M. Within the solid

structure these magnetic moments align themselves through interaction with the bridging

oxygen anions (the superexchange interaction), whereby the moments of both Fe3+ and

M2
+ are aligned, but are anti parallel to each other. The resulting magnetic moment per

formula unit is, therefore, a superposition of these two antiparallel magnetic moments.

The spinel ferrites magnetic properties have led to numerous applications in recording

heads, core materials for transformers, inductors, TV deflection units and recording tape

27. Philips first commercially introduced them under the trademark "Ferrocube" 28. Ferrite

powders can also be used to fabricate microwave elements such as isolators, phase

shifters, circulators and limiters.

In addition to electronic components, ferrites have also been used as catalysts for a

variety of reactions such as selective N-monomethylation of aniline catalyzed by

Zn(l_x)CoxFe204 and Zl1(I-x~ixFe204 29,30, and non oxidative dehydrogenation of

cyclohexanol over Cu-Fe304 31. Their catalytic strength is attributed to the ease with

which iron changes oxidation states between +11 and +111. A valuable advantage, from a

commercial standpoint, is their good stability under highly reducing reaction conditions:
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while F~03 catalysts lose their activity upon reduction to FeO and Fe metal, the spinel

lattice is retained as reduction of Fe3
+ to Fe2+ takes place, allowing reoxidation to the

original state. Magnesium ferrite belongs to a class of catalysts that are very effective for

oxidative dehydrogenation of hydrocarbons with 4 to 6 carbon atoms; Goodrich-Gulf

Chemicals developed superior commercial catalysts, MgCrF~04 and ZnCrFe204, for

oxidative dehydrogenation of butene to butadiene 32,33. A previous study on the

dehydrogenation of isopropanol over MgFe204 demonstrated that decomposition of the

alcohol takes place on the Fe3
+ sites. Adsorption of the isopropanol molecules, the rate

limiting step, occurs by transfer of electrons from the adsorbate to Fe3
+, this process is

facilitated by a low n-type conductivity activation energy 34. This is consistent with the

fact that the catalytic activity was attenuated when the ratio of (Fe3
) octa / (Fe3

) letta

decreased, Fe3
+octa being more readily available to isopropanol molecules than Fe3

+tetrl.

Therefore the catalytic activity largely depends on the cation distribution and also

correlates with the electrical and magnetic properties ofthe ferrite catalyst investigated.

This research is focused on the development of a new method for preparation of metal

ferrites, with the main objectives being the synthesis of stoichiometric ferrites at low

temperatures by combining a metal oxide powder and a metal organic compound. Other

attributes for the new techniques included phase purity, simplicity of the procedure, and

economic viability. This new "modified powder processing" method, which allows the

use readily available chemicals, has the ability of yielding advanced ceramic materials at

a much lower cost than common chemical techniques. It may also be less expensive than

conditional powder processing once costs of fuel and rejected products are factored in.
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The approach initially adopted for the sample preparation consisted of the dissolution

of the metal-organic compound in 50 mL of water, followed by the addition of a

stoichiometric amount of metal oxide powder. Removal of the solvent by rotary

evaporation at 1.9 Torr in a 60°C water bath yielded a very inhomogeneous looking dark

green solid. It was concluded, that this method was inappropriate for oxide particle

coating due to the low solubility of certain metal-organic compounds in water. The

solvent removal step caused the acetylacetonate compound to precipitate on the surface

of the flask and form large green aggregates. Consequently the more convenient and

rapid "crucible" technique as it had been reported earlier 15 was chosen.

2. Reaction Yields Analysis:

All experiments formed ferrites with yields below complete conversion of the

reagents, as listed in Table 1 and 2, but since unreacted metal oxide peaks were seldom

observable on X-ray powder patterns, the stoichiometry seems to have been conserved.

However, when grouping the precursors according to the type of iron oxide utilized,

nickel and zinc ferrite yields exhibit similar trends as shown in Figure 3. Yields were

closest to total conversion for samples containing gamma iron oxyhydroxide (NiFe204

precursors 10, 11, 12, and ZnFe204 precursors 7, 8, 9). The commercially available iron

oxide powders were used without further purification or drying, and, therefore, may have

contained adsorbed molecules unaccounted for in the molecular weight. In the case of

iron oxyhydroxide, which had to be prepared, a small amount of iron reagent was

pyrolyzed to 450°C to determine the exact water content and molecular weight. Thus the

yield of ferrites from y-FeOOH were closest to unity.
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Figure 3. Nickel and Zinc Ferrite Yields (mol%)

In addition to molecules adsorbed on oxide powders, partial evaporation of the metal

organic precursor during thermal decomposition can also account for low yields.

Depending on the ligand and the metal atom, a small fraction of the compound is evolved

and undergoes pyrolysis in the gas phase. The extent of this effect was evaluated for each

precursor by heating a pre-weighed amount ofthe metal organic compound at 450°C. The

resulting powder was considered to be pure metal oxide, since 450°C is well above the

decomposition temperatures of most of the metalorganic compounds utilized. The metal

oxide yields reported in Table 3 illustrates the degree of volatility of each organometallic

reagent. Acetylacetonate metal salts are common reagents for Chemical Vapor

Deposition and have high volatility, a subsequent fraction of M(acac)2 evolved during
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thermal treatment is deposited back onto the precursor surface, but a small amount is not

recovered. It should be noted that the trends observed in Table 3 match those in Figure 3;

precursors containing gluconate metal salts produced ferrites in markedly higher yields

than did acetate and acetylacetonate precursors.

Table 3. Metal Oxide yield at 450°C from Pyrolysis ofM(II)(Lh (mol %)

Ni(gluconateh - 2H20 98.1

Ni(acach - H2O 97.2

Ni(acetate)2 - 2H2O 99.89

Zn(gluconate)2 - H2O 100
"-

Zn(acach - H2O 92.57
,

._.,",,-,""

Zn(acetateh - H2O 94.88

3. Reaction Completion Temperatures:

The plots of reaction completion temperatures of nickel ferrite and zinc ferrite versus

iron oxide form are showed in Figures 4 and 5. The influence of the iron oxide type on

the processing temperature, when combined with the same metal organic reagent, is

represented by a single plot. The impact of the organometallic reagent on the completion

of the solid-state reaction is studied by comparing the various plots. Reported

temperatures for nickel ferrite preparation using the conventional method range from

1100 to 1200°C. The modified powder process allows one to obtain nickel ferrites at

temperatures comprised between 860 and 1100°C. In the same fashion, zinc ferrites are

prepared at temperatures as low as 750°C and up to 900°C, which is considerably lower

than the 1000 to 1100°C necessary for their conventional synthesis from metal oxide
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powders. The gap between processing temperatures for complete .nickel and zinc ferrite

formations is accounted. for by the difference in activation energies of the cation diffusion

process, which was established to be the rate-controlling step of ferrite solid-state

reactions 35. The reported activation enthalpies for NiF~04 and ZnF~04 fonnation were

120 kcallmol and 80 kcallMol respectively.

- Iron Oxide Dependence on the NiFe204 Processing Temperature:

The plots of nickel metalorganic salts in Figure 4 show a common drop in processing

temperatures when combined with y-Fe203 instead of a-Fez03, with a slightly sharper

decrease in the case of Ni(acetate)2. Two aspects of the reaction must be considered to

account for this trend: first, the thermal behavior of y-Fez03 and, second, the

microstructural properties of each starting metal oxide powder. The a structure is the

thermally stable form of iron oxide, and exposure of the metastable y-phase to heat results

in its irreversible transformation into a-FeZ03, usually at temperatures ranging from 400

to 550 °e, depending on the microstructural properties 36. The starting y-phase possesses

an inverse spinel structure with lattice parameter a=8.352 A, and consists of face centered

cubic (fcc) stacking of 0 2
- and random distribution of Fe3+ in both octahedral and

tetrahedral sites along with a high concentration of cation vacancies 37. Investigation of

the nature of the y to a phase conversion revealed the transformation takes place along

the [110] direction of the spinel lattice in a topotatic fashion and is accompanied by the

restacking ofOz- from fcc to hcp ionic arrangement (a=5.035 A, c=13.75 A) 38. Phase

transformations are characterized by an increase in reactivity and are therefore more

favorable to chemical reactions with surrounding metal oxide particles, which results in

early ferrite nucleation 39. Previous studies on the comparison of the preparation of
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ferrites with a and y iron oxides reported lower sintering temperatures and incr ased rates

of"ferritization" when the y form was employed 40.42.
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Figure 4. Nickel Ferrite Processing Temperatures

Microstructure is an essential factor in the improvement of reactivity of the starting

metal oxide powders. For example, smaller particles have high surface energy, and are

characterized by a low particle volume:particle surface ratio, they spontaneously attempt

to minimize the latter by reacting with surrounding material and thereby increase their

volume:surface ratio. Surface area measurements allow one to estimate the specimen

grain size, hence the reactivity, and the surfac·e available for NiO deposition around the

iron oxide particles. The surface areas of the iron oxide powders investigated are listed in

Table 4. The surface area measurements are in good agreement with the trends observed

in Figure 4 where the processing temperature drops more or less sharply for each nickel

precursor in the series a-Fe20J, y-Fe20J, y-FeOOH. The values reported in Table 4
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suggest the particle size of gamma iron oxide is considerably smaller than that of the

alpha iron oxide powder. In order to properly estimate the effect of the structure of Fe203

the formation temperature, NiFe204 was prepared with a-Fe203 nanoparticles and

Ni(acetate)2, and a-FeOOH-Ni(acetateh. Both precursors yielded pure nickel ferrite at

IOOO°C, which is slightly lower than the 900 and 950°C required for trevorite preparation

from the y-Fe203-Ni(acetateh and y-FeOOH-Ni(acetateh. It can be concluded than the

choice ofthe iron oxide phase influences the completion temperature of nickel ferrite but

to a rather small extent.
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Iron Oxide

gamma FeOOH

Figure 5. Processing Temperatures of ZnFe204 (OC)

On the other hand, the zinc ferrite plots of total conversion temperatures versus iron

oxide source (see Figure 5) do not display the same characteristics as those of nickel

ferrite. If all three plots are considered, no clear pattern is discernable. Zinc gluconate and
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zinc acetate precursors have lower formation temperatures when pyrolyzed with y-Fe203,

whereas no coherent dependence on the iron oxide form is observed in the case of zinc

acetylacetonate precursors.

r

Table 4. Iron Oxide Powder Surface Area Measurements:

Iron Oxide powder Surface area (m2/g)

y-Fe20 3 83.2

a-Fe203 ] 5.4
--_._- ..

y-FeOOH 183.3

a-FeOOH 62.0_._---_ ...

4. X-ray Study ofNickel Ferrite Formation:

Figure 6 shows the X-ray diffraction patterns of the products obtained by heating the

Ni(acach-y-Fe203 precursor at three different temperatures: 300°C (a), 600°C (b),

lOOO°C (c). NiO (a), y-Fe203 (b), a-Fe203 (c), and NiFe204 (d) X-ray patterns are shown

in Figure 7. The removal of the acetylacetonate ligands occurs gradually over a wide

temperature range, as shown in the TGA diagram Figure 8, and is fairly complete by

350°C. The initial weight loss is attributed to the evaporation of the water of hydration

and ofN,N dimethylformamide. The pyrolysis of Zinc and iron(III) acetylacetonates have

been thoroughly investigated 43,44, and presumably, that of Ni(acac)2 is similar. It was

demonstrated that both acac salts undergo the same decomposition reactions but at

different temperatures. The first step following release of the coordination water results

in the formation of the metal acetate with evolution ofpropyne 43, Partial combustion of

the acetate ligands occurs at 300°C with release of acetone vapor, and formation of a

32



solid phase consisting of a metal oxide-metal carbonate mixed phase isomorphous to the

corresponding metal oxide. The decomposition then goes to completion upon release of

carbon dioxide gas over a wide temPerature range extending up to 600°C. The TGIDTA

study of Ni(acac)2 showed the decomposition was complete by 300°C and was then

followed by a slight weight gain of 1.9% attributed to nickel metal oxidation to metal

oxide. This was confirmed by the precursor powder pattern at 300°C where the

characteristic peaks of nickel oxide and nickel metal (29 = 44.5 and 51.9) were identified.

c)

b)

a)

2-T"""" - sc.Ie

Figure 6. XRD ofNi(acac)2-y-Fe203 Pyrolyzed at 300°C (a), 600°C (b) and IOOO°C (c)
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Due to a significant overlapping of NiFe204, trevorite, and y-Fe203 (maghemite)

powder patterns (see Figure 7), the X-ray patterns of Ni(acac)2-y-Fe203 at 300°C and

lOOO°C are almost identical, and evaluation of the solid-state reaction progression at

300°C is impossible. An X-ray diffraction study of the y to a-Fe203 transformation

revealed the structural conversion started at 400°C and was complete by 550°C (powder

patterns not shown). The existence of intense hematite (a-Fe203) peaks in the precursor

diffraction pattern at 600°C (Fig. 6 (b)) confirms the iron oxide phase conversion took

place, and was unaffected by the presence of nickel oxide. This suggests that all of the

iron oxide present in the sample at this stage of the reaction is in the alpha form

Therefore, it may be concluded that the set of peaks which match both NiFe204 and
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maghemite patterns should be assigned to trevorite. Thus, in the course of the pha

transfonnatio~a fraction of the iron oxide has reacted with nickel oxide to form nick I

ferrite. Comparison of the NiFe204 peak intensities on the Ni(acac)ry-Fe203 X-ray

pattern at 600°C with that ofNi(acac)2-a-Fe203 at the same temperature, demonStrated a

more advanced stage of the nickel ferrite formation in the latter. The y-Fe203 smaller

particle size is an important factor in the nucleation step of solid state-reactions, and the

fact that y-Fe203 powder has a higher surface area than the a-Fe203 powder couId

account for the improved NiFe204 growth.

5. Morphology Study ofthe Metal Ferrite Powders:

The SEM micrographs ofNi(acetateh-y-Fe203 at 450°C (a) and 850°C (b) shown in

Figure 9 provide a good illustration of the modified powder process. The starting y iron

oxide is a fme powder with particle size in the 80-90 om as determined by SEM

microscopy (Figure 10). After Ni(acetate)2 is coated onto the iron powder and

decomposes at 450°C, a solid is created that is composed of what appears to be smooth

nickel oxide films with embedded iron oxide grains (Figure 9 (a». When the mixture is

heated to 850°C and it converts to nickel ferrite, the resulting solid still maintains a sheet

like appearance but has become significantly more porous. There are large micron-sized

pores similar to those present at 450°C but there are also numerous smaller pores that

approximate the size of the original iron particles. As a result of the macroporous nature

of the nickel ferrite product, it still maintains a significant surface area of 14.3 m2/g. In

general sintering would be expected to lead to densification and collapse of porous

networks. In fact this has occurred since the total surface area has dropped but this
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appears to be due to the loss of small pores in the web-like strands of the final product.

The opening of larger pores is the result of the mechanism of solid-state reaction between

NiO and Fe203. In this reaction, NiFe204 forms at the interface between the nickel and

iron oxide. Then subsequent formation of nickel ferrite occurs by diffusion of iron oxide

through the nickel ferrite barrier film to the point where it can react with nickel oxide.

Since nickel oxide does not diffuse inward, the result is an outward migration of iron. In

the case of this precursor, the iron flows into the sheet-like networks of nickel oxide,

leaving pores behind and generating a web-like morphology for the final product. The

observed behavior is different than that of Ni(MEEAh in which uniformly coated

particles puffed into broccoli flower-like collection of small particles. Thus, it has been

demonstrated that the morphology at the deposited nickel oxide, as controlled by the

choice of nickel precursor, has a tremendous influence on the morphology of the final

product.
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a)

Figure 9. SEM ofNi(acetateh-y-Fe203 Pyrolyzed at 450ae (a) and 800ae (b)
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Figure 10. SEM ofy-Fe20J (x 12,000)

Thus, as expected, Ni(acac)2 produced more homogeneous coating of nickel oxide.

The SEM images ofNi(acac)2-y-Fe20J pyrolyzed at BO°C (a), 450°C (b), and 1000°C

(c) are shown in Figure 11. Crystals of dehydrated Ni(acac)2 are clearly visible (Figure

Il(a) and cover much of the iron oxide particles so that the latter may be described as

embedded within the crystals. The intervention of an intermediate phase such as the

Ni(acach melt at 230°C, resuhed in a very homogeneous solid with highly uniform flat

surfaces. Subsequent thermal treatment to 450°C caused the structure to densify, and

produce a very compact material mostly consisting of NiO, and y-Fe203 as evidenced by

the X-ray pattern. Presumably the temperature gap between the melting point and the

decomposition temperature allowed for Ni(acach to uniformly diffuse and deposit on the

iron particles before decomposing to nickel oxide. Sintering to 1000°C resulted in a very
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fme powder of crystallite and particle sizes of 48.9 nm and 250 om, and lower porosity

than Ni(acetateh-'Y-Fe203. However, the morphology of the final ferrite was completely

different than that from the Ni(MEEAh experimentsl5 since this product consists of

micron-sized grains of nickel ferrite (see Figure 11 (b». The difference between the two

procedures may arise from difference in the extent of nucleation of nickel ferrite. In the

case of Ni(MEEAh no intermediate formation of NiFe204 was observed before a very

abrupt transition from a NiO-a-Fe203 mixture to NiFe204. On the other hand, the XRD

pattern of the Ni(acac)2 precursor at 600°C contained reflections from all three crystalline

phases. The cause of this difference might be attributed to two separate phenomena, one

physical and one chemical. As previously demonstrated, the phase transition from 'Y to a

Fe203 can influence nucleation of NiFe204 if nickel ions were migrated into lattice

positions that were being vacated by ferric ions. If this were the case, the Ni(MEEAh

experiments which were performed with a-Fe203 would not have benefited from this

phase transition. Secondly. Baron et al. have demonstrated the metal acetylacetonates can

undergo metal ion exchange with aluminum-oxygen polymers, producing Al(acac)J and

substituting a new metal with the metal oxide backbone 45. A similar phenomenon in the

Ni(acach-'Y-Fe203 mixture would lead to significant mixing of iron and nickel and the

surface ofthe iron oxide and promote nucleation ofNiFe204.

The use of metal gluconates as the oxide coating source led to yet another

morphology. Gluconate salts tend to caramelize upon heating in a similar fashion to

glucose from which it is derived. Dehydration and combustion of this sticky intermediate

leads to an expanded foamy solid. The morphology ofthe resulting ferrites (see Figure
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c)

b)

a)

Figure 11. SEM ofNi(acach-y-Fe203 Precursor Pyrolyzed at BO°C (a), 450°C (b), and
1000°C (c).

41



12) is a tortuous web-like material with large pores. The walls of the metal oxide network

appeared to be non porous and as a result, the overaU surface area is low. Figure 13

shows a characteristic X-ray pattern of ZnFe204 from the pyrolysis of Zn(gluconateh-Y

Fe203 at 600°C and 850°C.

Figure 12. SEM ofZn(gluconate)2-y-Fe203 Precursor Pyrolyzed at 850°C
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Figure 13. XRD Patterns ofa-Fe203 (a), ZnO (b), ZnFe204 (c), Zn(gLuconate)ry-Fe203
PyroLyzed at 600°C (d) and 850°C (e),

Precursors containing a or y iron oxyhydroxide did not exhibit morphological

features particularly different from the samples containing iron oxide. Although the

particle and crystallite sizes did change with the nature of the iron source, the

morphology seemed to be more dependent on the metal ligand type.
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6. Zinc Ferrite Crystallite Size Study:

The crystallite size and its distribution determinations were performed using th peak

broadening theory, and IllOre specifically the Warren-Averbach method 46. Di:ffraction is

only sensitive to structurally coherent domains that diffract in phase; a particl is made up

of many of these microdomains, also called crystallites 47. The crystallite size is the

average size ofall microdomains 48.

The zinc ferrite powders, which were obtained at lower sintering temperatures than

Ni.F6204, were selected for a crystallite size study, which aims at demonstrating the

strong influence of the nature of the precursor on the microstructural properties of the

fInal product. A similar comparison could not be made in the case of nickel ferrite

because some of the products had undergone extensive grain growth and did not display

broadened X-ray reflections. The clear dependence of the ferrite crystallite size with the

precursor is illustrated in Figure 14. Each experimental point represents a precursor

whose sintered zinc ferrite has the crystallite size indicated on the abscissa.
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Figure 14. ZnFe204 Crystallite Size Measurements Using Line-broadening Method
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The nature of the metalorganic compound not only influences the morphology ofth

product but it also has a dramatic effect on the microstructural properties of the ferrite .

There is a consistent decrease in .final crystallite size in the sequence of the acetat , acac,

and gluconate ligands. It should be noted the same trend is observed for each category of

iron oxide, and it is in agreement with the crystallite size and surface area measurements

listed in Table 5. The latter were performed after pyrolysis at 450°C of the various zinc

compounds, this temperature being approximately that of ferrite nucleation. Although one

material may possess a lower crystallite size than another, this does not mean its grain, or

particle, size follows the same tendency. Surface area measurements, which are more

representative of the sample particle size, allowed us to examine the particle size trend of

the ZnO precursors, wIDch was confirmed to be the same as that of crystallite size 49,50,

In addition to the ferrite crystallite size dependence on the zinc ligand type, there is also

good agreement between the zinc oxide and zinc ferrite surface areas listed in Table 6.

The agglomeration process leading to particle growth is specific to each zinc precursor. It

can be concluded that the particle and crystallite growth patterns of the zinc oxide

precursors are retained when combined with iron oxide powder in ferrite synthesis.

Table 5. Crystallite Size and Surface Area Measurements of Zinc Precursors

Pyrolyzed at 450°C

Zinc precursor Surface area (m2jg) Crystallite size (A)

Zn(gluconate)2 19.8 16

Zn(acach 10.1 22.3

Zn(acetate)2 7.9 31.6
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The iron oxide form affected the final crystallite size in a less consistent fashion. The

crystallite sizes of ferrites from the precursors containing zinc gluconate decreased

sharply when changing from pure Fe203, to y-FeOOH, to y-Fe203, which is consistent

with the iron oxide surface area measurements listed in Table 4. However it appears that

for the ferrites with larger sizes, ie. from zinc acetate and zinc acac precursors, the

difference between the y-oxyhydroxide and iron oxide samples is greatly attenuated.

Several factors have to be considered to account for this phenomenon. First, the surface

area measurements ofy-FeOOR and y-Fe203 at 450°C reveal a sharp drop from 183.2 to

55.4 m2/g for the oxyhydroxide, while the fine iron oxide powder only decreased from

83.2 to 47.5 m2/g. Therefore, the heat treatment greatly diminished the initial SA gap

determined between the two powders at room temperature. However, this effect is only

noticeable for precursors with large crystallite size, (i.e. Zn(acac)2 and Zn(acetateh.

Secondly, the sintering temperature is of great importance when analyzing the ferrite

crystallite size.

Table 6. Zinc Ferrite Surface Area at Reaction Completion Temperature (m2/g) :

Precursor Sintering Temperature
Surface Surface Area

Area at 800°C

Zn(gluconateh - y Fe203 800 25.9 25.9

Zn(acac)2 - y Fe203 850 20.3 24.3

Zn(acetate)2 - y Fe203 750 10.0 9.7

Zn(gluconateh - y FeOOR 850 6.56 6.02

Zn(acach - y FeOOR 800 3.40 3.40

Zn(acetaten - y FeOOR 850 3.05 3.42
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High temperature treatments resuh in the reduction of grain interfaces and therefore

promote the crystallite and particle growth. Zn(acac)ry-Fe20J has a final sintering

temperature 100°C higher than that of Zn(acetateh-y-Fe203, and 50°C above that of

Zn(gluconate)2-y-Fe203' This would account for the unusually high Zn(acac)ry-Fe203

crystallite size which causes the Zn(acac)2 plot of Figure 14 to deviate strongly from a

regular drop.

Crystallite Size Distribution:

Regardless of the compound of interest, as the average crystallite size decreases the

crystallite size (C.S.) distribution plot flattens, mostly caused by an irregular

agglomeration process. For example, of all the zinc oxides obtained from pyrolysis of the

zinc metalorganic compounds described earlier, Zn(gluconate)2 has the narrowest

crystallite size distribution, plotted in Figure 15. These results are consistent with the

experimental data in Table 9. This effect is also quite noticeable in the C. S. distributions

of the three zinc ferrite powders prepared with y Fe203, shown in Figure 16 and the C.S.

distributions of the zinc ferrites from Zn(gluconate)2 precursors. The dependence on the

iron oxide form is also illustrated in Figure 17.
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7. Conclusion:

A new economic method, the modified powder process, was developed for the

synthesis of an important class of metal oxide ceramic: the ferrites. This new technique,

which allows the synthesis of nickel and zinc ferrites at temperatures as low as 750°C, is

based on the pyrolysis of a precursor consisting of a fine iron oxide powder combined

with an organometallic compound M(Lh. Upon heating, the decomposition of M(L)2

leads to the coating of the iron oxide particles with the corresponding meta1(ll) oxide,

resulting in an highly stoichiometric homogeneous mixture of F~03 and M(ll)O. Based

on previous studies and the final ferrite powder morphologies, it was concluded that the

solid-state mechanism following MFe204 nucleation takes place through diffusion of iron

oxide through the ferrite phase to react with the outer layer ofmetal oxide.

The iron oxide phase was shown to have a slight influence on the final sintering

temperature. For a. and y iron oxide powders of similar particle size the ferrite nucleation

was found to occur at lower temperatures for the precursor Ni(acetate)2-y-Fe203 and

resulted in reaction completion at 900°C, while pure ferrite was obtained at 1000°C from

Ni(acetateh-a.-Fe20). Presumably, this effect is caused by an increase in reactivity during

the phase conversion of gamma iron oxide to the alpha structure throughout the 450 to

550 temperature range. The microstructure of the ferrite powder was not affected by the

nature of the iron oxide powder phase.

The coordination compounds investigated in the present study were the nickel and

zinc acetates, gluconates, and acetylacetonates. The nature of the organic ligand did not

affect the final processing temperature to a great extent, however it was demonstrated it is

a determinant factor when considering the morphology of the ferrite powder. For
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example, pyrolysis ofllie NiFe204 precursor Ni(acetate)ry-Fe20) produced a of web-like

material with large pores with high surface area, whereas the thermal decomposition of

Ni(acac)2-y-Fe203 resulted in a pore free very fme material. Crystallite size study from

X-ray line broadening theory of the metal oxide reactants and metal ferrite confirms the

strong correlation between the sintered product and its reactants, the ferrite was shown to

retain the microstructural characteristics of the initial precursor components.

The new modified powder process allows one to prepare low temperature ferrites

with advanced microstructural features at a lower cost than most chemical techniques.

Furthennore, the ferrite powder morphological characteristics can be tailored by using a

specific metalorganic compound for precursor preparation. Further study of the modified

powder process with a wider variety of coordination compounds would most likely result

in the production of a range of metal oxide ceramics with diverse morphologies.
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B. Ni(OHh Solution growth process:

1. Introduction:

In the previous sections, it was shown that metalorganics are quite suitable for

producing metal oxide coating in the modified powder process. The moderate cost of

these reagents is offset by the ability to readily control the morphology of the final

product. Nevertheless even more economical metal oxide precursors are desirable.

Therefore, a solution growth process that could be used to coat iron oxide powders with

nickel hydroxide was developed.

Nickel hydroxide can crystallize in two polymorphs: alpha and beta Ni(0H)2' Both

are described as layered structures, each layer consisting of Ni02 slabs. The hydroxyl

ions form a hexagonal close-packed structure with Ni(IT) occupying octahedral interstices

one plane out of two. The beta structure is the most stable and characterized by the

absence of O-H bonding between adjacent layers, as evidenced by the strong narrow

stretching vibration VOH band at 3600 cm· l
• The lattice parameters for ~-Ni(OH)2 in the

hexagonal system are a = 3.12 A and c = 4.605 A (interlayer spacing) 24. On the other

end, the a-Ni(OH)2 structure (formula 2Ni(OH)2.3H20), with interlayer spacing c = 8.05

A, consists of parallel and equidistant Ni(0H)2 layers randomly oriented and separated by

intercalated water molecules hydrogen-bonded to the hydroxyl groups. In certain cases,

protons, alkali ions and even anions can be reversibly intercalated and removed during

electrochemical cycling. When immersed in alkaline environment, a-Ni(0H)2 becomes

unstable, and as the intercalated molecules are slowly eliminated and transforms into the

beta phase 24.
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Beyond the application as a source for a nickel oxide coating in the modified powder

process, nickel hydroxide has numerous other applications, that could benefit .from a

process for generating Ni(0H)2.

Nickel hydroxide has been extensively applied as active material for positive

electrode of secondary alkaline batteries because of its remarkable cycling reversibility.

During the oxidation process, ~ and a-Ni(0H)2 are respectively converted to the ~ and y

NiOOH phases. The oxidation and reduction reactions involved are shown in Figure 18.

1: Charge

~IID

HI.<:-lIiii~

ex

2: Discharge K: monovalent cation

~(JJJI

L

Figure 18. Bode diagram 52

On prolonged charging ~-Ni(0H)2 is converted to y-NiOOH causing irreversible

damage to the electrode due to the accompanying mechanical deformation 53. On the

contrary, a-Ni(0H)2 is reversibly cycled to y-NiOOH without any mechanical alteration.

Due to the alpha phase instability in alkaline environment, ~-Ni(0H)2 is frequently

preferred for precursor material in alkaline batteries. The first nickel-based rechargeable
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cell, invented by Thomas Edison in 1890, consisted of a nickel hydroxide cathode

coupled with an iron anode and an alkaline electrolyte using potassium hydroxide (Ni /

2NiOOH / Fe). Despite a very long cycle life and robustness, the Ni/Fe alkaline cell

suffers from deficiencies stemming from the iron electrode, which tends to undergo self

discharge on standing as a result of corrosion 54. The invention of this rechargeable nickel

battery paved the way for the development of other types of nickel-based cells, the

common nickel cadmium cell (Ni-Cd), the Ni-Zn cell, the Ni-hydrogen battery

(aerospace batteries), and nickel metal hydride cells used for the powering of portable

electronic devices such as the lap-top computers, wireless telephones and more recently

electric vehicles. The Ni-Cd alkaline battery is the most widely manufactured despite a

modest specific energy (30-40 Wh/kg). It is commonly used in replacement for lead/acid

batteries in the automotive industry (ignition, starting, and lighting) and in certain

airplanes. Ni-MH rechargeable cells incorporate a different type of anode that allows

hydrogen storage in a specialized metal structure, an alloy of composition AB5 (example:

LaNi5) or AB2• Upon discharge, hydrogen is inserted within the alloy lattice without

bonding to it, and is released during the charging process (see Equation 3 below). One

drawback to the Ni-MH cell is rapid self-discharge, reliable means for hydrogen storage

still needs to be found.

Alloy + H20 + e-. ~ A/loy[H] + OH- (3)

Ni-MH rechargeable battery: Anode reaction
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In general, nickel-based batteries are excellent for applications that requir

rechargeable batteries that take very little time to recharge) and will survive under less

than optimal conditions.

Nickel hydroxide electrode designs 55:

The active material in a Ni(OH)2 electrode can be contained in nickel-plated steel

strips crimped together to form pockets (pocket plate cell) commonly used in CdlNiOOH

batteries. Ni(OH)2 can also be mixed with carbon, bonded by a polymer and rolled into

sheets; this so-called bonded electrode is the cheapest but subsequent swelling during

cycling causes irreversible damage. Finally) the highest quality nickel hydroxide

electrode consists of a sponge-nickel plaque with Ni(OH)2 filled-pores. This relatively

expensive long-lasting electrode is mostly utilized in the aerospace industry.

Preparation Methods for Nickel Hydroxide:

The quality of a nickel-based positive electrode is directly dependent on the chemical

and physical characteristics of the active material. In order to produce an electrode with

high charge rate and good charge-discharge characteristics, Ni(OH)2 needs to possess

high surface area, narrow particle diameter distribution and a globular form (low

crystallinity) 56.

- Electrosynthesis:

Electrosynthesized nickel hydroxide (ESN), designated as pure alpha Ni(OH)2 with

surface area 17 to 21 m2/g, was obtained by cathodic reduction of a nickel nitrate solution

(pH=3.5) using a three electrode assembly 57. The electrogeneration of base through
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nitrate ion reduction causes nickel hydroxide to slowly precipitate onto the platinum

cathode. Nickel hydroxide prepared in this fashion possesses higher oxidizing power

characterized by the excess charge on the nickel cation (+2.03) and formation of proton

vacancies. These proton layer vacancies would account for the higher proton diffusion

coefficient observed in ESN and for the faster kinetics of the a-Ni(0H)2 to y-NiOOH

phase transition as compound to that for f3-Ni(0H)2 to f3-NiOOH 24.

- Precipitation methods:

Ni(OH)2 precipitation usually takes place upon addition of a strong base (e.g. 1M

potassium hydroxide) to a nickel nitrate solution 58, 59. This preparation method yields

beta nickel hydroxide with coarse particles having a diameter of 1 to several hundred ~m

with irregular form and low density, and therefore undesirable for electrode application

58. Micron-sized f3-Ni(OH)2 powder was obtained by converting nickel oxalate precipitate

to Ni(OH)2 in a sodium hydroxide solution 60. A variation of the precipitation reaction

consists of adding an excess of ammonia to a nickel salt solution. On boiling this

solution, f3-Ni(OH)2 slowly precipitates from the Ni(ll) hexa-ammine solution 61. The

method can be used to prepare f3 nickel hydroxide having a high density but the lack of

control over the deposition rate and the solution pH often results in irregular particle

diameter distribution.

In order to prevent the transformation from f3-NiOOH to y-NiOOH during

overcharging, elements such as Co, Zn, or Cd can be added in very small quantity to the

nickel hexaammine solution. The hydroxides are then precipitated by injection of an
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aqueous sodium hydroxide. The presence of these additives is thought to change the

interlayer bonding forces of the nickel crystal lattice. through substitution of Ni ions with

the element. thereby reducing the formation ofy-NiOOH 62.

Stabilized alpha nickel hydroxide

Much effort has been devoted to developing processes that would slightly alter the

chemical composition of alpha Ni(OH)2 and stabilize its structure in alkaline medium.

Compounds of formula N41-x)Alx(OH)2(C03)xf2.0.66 H20. known as Ni-AI Layered

Double Hydroxides (LDHs), have structural features very similar to those of a Ni(0H)2.

A stable aluminum-substituted alpha phase was synthesized by addition of NaOH to a

solution containing the metal nitrates with ratio Ni:Al = 4: I and sodium carbonate 63. The

structure was retained upon aging in a IM KOH solution for a month. The substitution of

Ni(lI) ions by AI(III) increases the number of intercalated anions to maintain the charge

neutrality within the structure thereby enhancing the bonding strength between NiO slabs.

- Chimie douce process:

Another approach to nickel hydroxide and nickel oxyhydroxide synthesis consists of

simultaneous exchange and intercalation reactions based on NaNi02• which exhibits the

same typical Ni02 slabs with smaller interlayer spacing c = 5.2 A 64. Upon immersion in

water, sodium nickelate exchanges intercalated Na+ for H30+, which leads to the release

of OH-. Depending on the solution pH. the amount of H30+ inserted varies: Acidic pHs

favor the formation of PNi(III)OOH by promoting complete removal of Na+ and H20

molecules. On the other hand, the insertion of hydronium ions at neutral pH generates a
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layered phase with interlayer spacing approaching that ofr NiOOH-Na.zH20 (c ~ 7A).

No hydrolysis reaction was observed in basic medium. Alpha-Ni(OH)2 is obtained by

reducing the Ni ion from oxidation state ~ 3 to 2 using hydrogen peroxide as a reducing

agent. Stabilization of this a-type phase in basic medium was achieved by partial

substitution of nickel with cobalt using a solid solution with formula NaCoxN~J-xP2 as

starting reagent.

Solution growth also known as chemical bath deposition is a promising alternative to

metallorganic deposition for the preparation ofmetal oxide coatings such as those used in

the modified powder process. The typical solution growth process cannot be used for

deposition of divalent third-row transition metal oxide for several reasons. In the usual

process the anion required for the desired material (e.g. sulfide) is generated slowly in the

form ofa strongly chelated metal so that the constituent cations and anions are assembled

into a thin film by an ion-by-ion deposition process. Since oxide ions are protonated by

water, the direct solution growth metal oxide films from aqueous is precluded for most

metals. However, hydroxides can be prepared by solution growth by using the hydrolysis

ofurea to slowly raise solution pH. Unfortunately, for the metals of interest in this study,

nickel and zinc, this metal would lead to deposition of carbonate rather than the

hydroxides. Therefore, in this investigation, a new method was developed for solution

growth ofnickel hydroxide. This new process takes advantage of the strong complexation

of nickel by ammonia (Kf [Ni(NH3)6]2+ = 5.5x 108 65) to overcome the insolubility of

Ni(OH)2 in water (Ksp = 2.Ox 10-15 66). Once a solution is saturated with Ni(OH)2 it is

susceptible to deposition of this metal hydroxide as the ammonia evaporates from the

solution (see Equation 7).
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Addition of nickel hydroxide to concentrated ammonia leads to formation of a dark

2. Determination ofSolubility ofNi(OH)2 in Concentrated Aqueous Ammonia:

The concentration of nickel hexammine was determined by measuring the weight of

Ni(OH)2 deposited after complete evaporation of the solvent. and drying of the solid

under vacuum. The experiment was perfonned five times in the same conditions. The

concentrations calculated are listed in table 7.

Table 7. [Ni(NH3)6]2+ concentrations (mol/I.,):

Weight ofNi(OH)2 dissolved in 40 mL
0.517 0.545 0.501 0.529 0.488ammonia solution (grams)

[[Ni(NH3)6f+] (mollL) 0.139 0.147 0.135 0.143 0.132

The standard deviation s is determined to characterize the variability of the

experimental Ni2+ concentrations listed in table 7. The average [Ne+]av calculated is

0.139 mollL and s computed with the 5 experimental [Ni2+] concentrations is s = 6.02xlO-

3, s being as follows:

s =

N.L ([ Ni 2+ L - [Ni 2 + Lv )2

N - I

i= integer between 1 and N number ofexperimental figures

N= number ofexperimental figures = 5
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The chemical equation representing the overall equilibrium (see Equation 7) is the

sum of the Ni(OH)2 dissolution reaction (see Equation 5) and the Ni(ll) complexation

reaction with ammonia (see Equation 6).

p~ (5)

Where [Ni(NH3)lj, [NH3] and [OH-] are concentrations in mollL

Ps is computed by using the average [Ni(NH3)6f+ concentration determined above

(0.139 M). [OK]tot in the ammonia solution after saturation with Ni(OH)2, is detennined

by measuring the pH (13.7). [NH3] is the concentration after complexation ofNe+ with 6

ammonia equivalents, where [NH3] initial is the concentration of the initial ammonium

hydroxide solution 46. [NH3]equilibrium was calculated by subtracting the concentration of

[NI-4+] formed at equilibrium from the remaining as follows:

= 14.53 - 6xO.139-10-<J·3 +2xO.139

= 13.47 M

By using Equation 8, Ps can be easily calculated and is found to be 8.23

The pKs determined experimentalIy is significantly higher than the theoretical value

of 6.0 calculated as the sum of the pKr and pKsp • In other words, the solubility of nickel

hydroxide in cone. ammonia is about two orders lower than predicted. The theoretical

61



value does assume ideal behavior (ie. low collcentrations where activity is proportional

to concentration) and zero ionic strength. Since the experimental conditions deviate

significantly from these assumptions, this could account for a discrepancy in the values of

pKs. As well, assumptions made concerning the speciation of Ni(OH)2 in the aqueous

ammonia solution could be enormous- for example, formation of [Ni(OH)(NH3)sr

complex could lead to significant perturbation of the experimental result. Also the

concentration of water in concentrated ammonia is reduced to 40 M from 56 M for pure

water this too, could have a major effect on solubility. Evaporation of ammonia during

the dissolution of Ni(OH)2 may also playa minor role in the depressing the final nickel

concentration. The results do also show, however, that simple use of formation constant

and solubility products do not make an adequate prediction of the solubility of the metal

hydroxides in concentrated ammonia.

The solution growth ofNi(OH)2 depends on the slow formation of hexa-aqua nickel

(II) cone. as the ammonia evaporates form solution. Either this ion, or an intermediate

ammonia complex [Ni(H20)x(NH3)(6-xi+, interacts with hydroxide ion to form a

hydroxide complex, probably occurs by deprotonation of the coordinated aqua ligand.

The addition of a second hydroxide ion or deprotonation of a second aqua ligand could

generate a Ni(OH)2 complex that would be prone to precipitation. For solution growth of

nickel hydroxide films to occur, it is desirable that the second reaction occur on the

surface of the substrate or that the putative Ni(OH)2 complex diffuse and deposit

precipitating from the bulk solution.
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3. Ni(OID2 Thin Film From Solution Growth Method:

The rate of deposition of Ni(OH)2 was determined by placing 30 mI of Ni(OH)r

saturated ammonia in, eight identical beakers. The amount of nickel hydroxide deposited

after various time intervals was determined by emptying the remaining solution from the

beaker, placing under vacuum overnight, and weighing. After 120 hours, the solution was

colorless indicating that all the nickel(II) initially dissolved had precipitated. The plot of

Ni(OH)2 film weight versus time is shown in Figure 19. The deposition occurs

progressively at a almost constant rate up to 90 hours, then slows down and stops after

l20mn. The deposition doeS' occur as a solution growth process and yields homogeneous

pale green films on the sides of the beaker.

The morphology of Nickel hydroxide prepared from the ammonia solution is quite

unusual, as illustrated on the scanning electron micrograph shown in Figure 20. Large

spheres with a diameter of 3.8 ~m appear to consist of extremely small needles of

Ni(OH)2. Despite the very porous looking microstructure and a rather small particle size

the surface area measurement listed in Table 8 is surprisingly small possibly due to the

adsorbed and intercalated water molecules.
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Figure 19. Nickel Hydroxide Deposition Rate
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Figure 20. SEM of ~-Ni(OH)2 from Solution Growth

A typical X-ray diffraction pattern for nickel hydroxide synthesized by the ammonia

solution growth is shown in Fig. 21 (a) with a common Ni(OH)2 pattern obtained from

another precipitation method 63 Fig. 21 (b) as a basis for comparison. The considerably

higher intensity of certain reflections of the ammonia grown hydroxide is an indication of

a larger crystallite size in specific crystallographic directions including [001], [101], and

[102]. The increase in crystallite size is also accompanied by a decrease of the NiO inter

planar distance from 4.59 Ato 4.72 A, as evidenced by a shift towards smaller d of the

001 plane reflection peak. As a result of the doo I change, the d-spacings of the peaks

including (101) and (102) are also slightly displaced but to a lesser extent. This suggests

the slow precipitation ofNi(OH)2 from aqueous ammonia yields a highly ordered. layered

compound, in contrast with the poorly crystallized Ni(OH)2 from the rapid precipitation

of a nickel nitrate solution. Previous work on the preparation of nickel hydroxide from

hydrothermal treatment reported 67 an identical X-ray Ni(OH)2 pattern and
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microstructural characteristics. This two-step method consisted of hydrothermally

treating at 200°C an aqueous suspension of turbostratic a-Ni(OH)2 previously prepared

by the precipitation by treatment ofa nickel nitrate solution with base 67.
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Figure 21. XRD of ~-Ni(OH)2 from Solution Growth Method (b), and from Precipitation
Method from a Ni(N03h solution with Strong Base(a)

Infrared spectroscopy is a good indicator of short-range structure and very useful for

characterizing Ni(OH)2 phases. The formation of the pfonn of Ni(OH)2 demonstrated by

using X-ray diffraction was confmned in the infrared spectrum showed in Figure 22. The

existence of an intense sharp absorption at 3642cm-1 is characteristic of O-H stretching

vibration, VOH, of non hydrogen-bonded OR groups. The broad shoulder at 3400cm-1 is

attributed to the VOH of hydrogen-bonded OR groups of adsorbed water molecules. A

weak irregular band from 1500 to 1696 em-I includes the water angular deformation at

1653 em-I and adsorbed ammonia molecules defonnation vibration.
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Figure 22. Infrared Spectrum of P-Ni(0H)2 from Solution Growth Method

The thermal decomposition pattern shown in Figure 23 is very similar to those

published in early studies 58, 68, 69. Gradual elimination of adsorbed molecules such as

water constitutes the first weight loss. The slightly endothermic process stops at 180°C.

The dehydrated sample then undergoes dehydration to yield NiO at 500°C with release of

heat. The decomposition of Ni(0H)2 grown from the sulfate or nitrate salt solutions 53

usually extends over a wider temperature range necessary to pyrolyze the adsorbed

anions such as SO/-, CO/- and N03- present in the mother solution.
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Figure 23.TGA ofP-Ni(OH)2 from Solution Growth Method

4. Aluminum Doped Alpha Ni(OID2~

The success of the solution growth process for /3-Ni(OH)2 prompted an investigation

of the possibility of forming a-Ni(OH)2 by solution growth. Since it was known that

substitution of aluminum for nickel ions can influence the formation of a-Ni(OH)2,

aluminum ions were introduced into the solution growth bath. The first approach to

accomplish this that was investigated was the saturation of the solution growth solution

of concentrated aqueous ammonia with both nickel and aluminum hydroxides. The

solubility of the latter species is much lower than Ni(OH)2 and was determined accurately

by saturated pure concentrated Ni(OH)2 with AI(OH)3. Three estimates of [AI(OH)4r

concentration were obtained by using the same approach as that employed for

[Ni(NH3)6f+. The results are listed in Table 9. The average [Al(OH)4l concentration

calculated is 2x 10-2 M with a standard deviation of s=9 .22x10-4.
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Table 8. Surface Area of J}and a.-Ni(OH)2 from Solution Growth Method

Compound Surface area (m2/g)

P-Ni(OH)2 from solution growth 20.6

a Nio.87Alo.I3(O!1h.13 37.1

a Ni(OH)2-NaAl(OH)4 28.3

Evaporation of ammonia from the Ni(OH)2/AI(OH)3 solution in concentrated ammonia

led to co-precipitation of the metal hydroxides as a single phase, N~I-x~lx(OH)(2+x),

Assuming that all the nickel and aluminum ions are incorporated into the precipitate, x

can be calculated from the relative solubilities of the metals. This gives a formula of

Nio.87Alo 13(OH)2.13 for the precipitate. The X-ray pattern of this material (Figure 24 (a))

demonstrates that the aluminum content is sufficiently high for formation of the a

Ni(OH)2 structure.

Table 9. Concentration of [AI(OH)4r in Concentrated Aqueous Ammonia (molfL):

0.0201 0.0193 0.0205

The XRD reflections are broad and asymmetrical indicating the disordered nature of

the stacking sequences of the material 70. The particle size calculated from the scanning
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electron micrograph ranges form 0.20 to 1.7~ the largest particles visibly consist of

aggregates of smaller spherical particles (not shown). Alpha Ni(OHh can be indexed on a

hexagonal cell 63 whose lattice parameters can be computed using the following formula:

1 1 ( 2 2) [2
-2-=-2 h +hk+[ +-2

d hk/ a c

h, k, I are the Miller indices which define a crystallographic plane in three

dimensions. The reflections at 2e=11.6 (do()J=7.63A) and 35.1 (dI02=2.55A) were used to

determine the cell parameters c and a: a=3.5 A, c= 22.9 A. The infrared spectrum of

Nio.87Alo.13(OH)2.13 shown in Figure 25 shows the characteristic broad VOH absorption

band at 3483 cm-1 for the hydrogen-bonded hydroxyl group ofcx.-Ni(OH)2'

..... ~
'''''''---,

-_1

i:J
.....

..

b)
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Figure 24. XRD ofN~1-x)AlxCOH)(2+x) (a), and Ni(OH)2-NaAl(OH)4 (b)
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Figure 25. Infrared Spectrum ofN41.x)Alx(OH)(2+x)

Doping ofNi(OH)2 with aluminum was also achieved by simply introducing sodium

aluminate into the solution growth bath. The advantage of this approach resides in the

fact that it provides better control of aluminum concentration than saturation of ammonia

solution with aluminum hydroxide. Thus it is possible to readily determine the

Ni(II)/Al(III) ratio required for formation of alpha Ni(OH)2. However, it was necessary

to collect the green precipitate before complete evaporation of the solvent to prevent

crystallization ofexcess sodium aluminate onto the nickel hydroxide precipitate.

The various X-ray patterns of Ni(OH)2 from the growth solution containing

NaAl(OH)4 (0.33M) are shown in Figure 26. The addition of 1 ml ofNaAl(OH)4 (0.33M)

(see Fig. 26. (b) was sufficient to precipitate some a.-Ni(OH)2 along with the

predominantly-formed J3 phase. The formation of a.-Ni(OH)2 is progressively favored as

the volume of NaAl(OH)4 introduced increases (see Fig. 26 (c) and (d)). A pure
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crystalline alpha form is precipitated from a solution containing 6 mJ of NaAI(OH)4 and

40 rnL ofNi(OHh-conc. aqueous ammonia solution, as illustrated by Figure 26. (e). The

transmission electron micrograph shown in Figure 27 reveals the presence of large

(0.45j.lm) spherical Ni(OH)2 particles along with blocks of materials composed of sheets

that are delaminated at the edges. The [Ni2+]: [AI3] ratio for formation of the pure alpha

phase was 2.81: 1 , which is significantly lower than the 6.69: I ratio determined for

Nio.87Alo.17(OH)2.13. By using [Ni(NH3)6f+ and [AI(OH)4l The Lattice parameters of the

precipitated layered double hydroxide c and a were determined using the 003 and 110

reflections (a=2d11O) values: a=3.5 A; c=23.2 A. The a parameter is higher than the

typical 3.0 to 3.1 A reported in the literature 63.70. Since AJ(IIJ) is smaller than Ni(II), this

indicates the content of AI(III) necessary to stabilize the alpha structure by the solution

growth method is smaller than that required by the nitrate solution precipitation method.

In the latter method, the LDH is obtained at a ratio ofNi:AJ of 6.69: 1. In the 2.6-3.2 A

region, a broad asymmetrical band, typical ofturbostratic structures is seen. These X-ray

reflections indicate the disordered nature ofthe Ni02 slabs stacking.

The presence of aluminum ions not only causes the formation of a-Ni(OH)2 but it

also has a profound effect on the morphology of the product. Unfortunately, the

aluminum-containing chemical baths are not amenable to solution growth of a-Ni(OH)2

thin films. However this failure is compensated by the ability to form free-standing films

at the solution/air interface, along with additional precipitated material at the bottom of

the bath. Presumably, the difference from the aluminum-free deposition is a result of

substitution ofaluminum ions for nickel ions in the Ni(OH)2 as it forms.
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Figure 26. XRD ofSolid from 40 mL Ni(OHh-~OH (a), with 1 mL (b), 2 mL (c),
4 mL (d), and 6 mL (e) ofNaAl(OH)4 (0.33 M) Solution

Figure 27. TEM ofNi(OH)2-NaAl(OH)4 Precipitate

This would produce positively charged particles that would repel each other and resist

aggregation into a precipitate on a ftlm. However, as the ammonia rapidly evaporates

from solution the particles are carried to the air/solution interface where they aggregate
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into a film of average thickness 0.10 mm. Possibly, the linking of the particles occurs as

the ammonia is lost from nickel ions on the surface of the particles causing particles to

link. together by formation of hydroxide bridges. Once the original film forms as a skin

over the surface ofthe solution, it continues to grow thicker as more material deposits on

its bottom. The net result is an opaque green film that is smooth on the upper surface and

rough on the lower side due to random aggregation ofparticles. The films are somewhat

brittle but can be removed from the deposition bath and manipulated carefully by hand.

Thus, free-standing films of aluminum-stabilized Ni(OH)2 were readily prepared and the

se could be promising electrode materials.

While in the absence of aluminum, the Ni(OH)2/concentrated ammonia solution

mainly deposits thin coatings on the container wall or suspended substrates, it also forms

extremely thin, optically transparent skins at the air-water interface. Presumably the

thinness is a result of the Ni(OH)2 forming films on all available surfaces with a

preference for the solid-liquid interface.

5. Solution Growth Method for Nickel Ferrite Synthesis:

In order to apply solution growth of Ni(OH)2 to the modified powder process, it was

necessary to use a container whose walls were resistant to the growth of the nickel

hydroxide film. It was found that a plastic such as polypropylene was suitable and allow

the deposition to occur only on the non-oxide substrate. Thus, a non crystalline iron oxide

and sufficient Ni(OH)2 concentrated ammonia solution to provide the necessary amount

of nickel for stoichiometric NiFe204 were placed in an open polypropylene bottle. The

mixture was rotated slowly on a roller mill to ensure even coating of the iron oxide
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particles. In this manner a ferrite precursor was obtained that converted to nano-sized,

high surface area NiFe204 at 900°C (see Table 10). The average crystallite size obtained

from diffraction line broadening of X-ray pattern peaks is 22.4 nm, and the average

particle size estimated from SEM micrographs is 150 nm. The as-prepared precursor

morphology is illustrated by the scanning electron micrograph shown in Figure 28. Large

I3-Ni(OH)2 aggregates are not observable indicating homogeneous coating of Ni(OH)2

onto the a-Fe203 particles Upon pyrolysis to 900°C little change in particle size is

observed (see Figure 29). This indicates the sintering process, which would have caused

the particle size to increase, was greatly minimized by the homogeneous NiO coating of

the iron oxide particles.

Table 10. Surface Area Measurements ofNi(OH)z-a-Fe20] Precursor and NiFe204:

Processing Surface area
temperature (m2/g)

25 103.5

900 47.1
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Figure 28. SEM ofas-prepared Ni(OH)2-y-Fe203

Figure 29. SEM ofNiFe204 from Pyrolysis ofNi(OH)2-y-Fe203 Precursor at 900°C
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6. Conclusion:

Pure ~-Ni(OHh films were successfully grown from concentrated aqueous ammonia

previously saturated with Ni(OH)2' The solubility product of nickel hydroxide in

concentrated aqueous ammonia detennined is 8.24. The highly crystalline material

consists of large aggregates of small needles of Ni(OH)2. a-Ni(OH)2 was successfully

stabilized by doping with aluminum. The double-layered hydroxide prepared from

saturation with aluminum hydroxide is Nio.87AIo.J3(OH)2.13. Ni(OH)2 being an electrode

material of great interest to battery manufacturers, the solution growth process seems to

be a promising technique to deposit Ni(OHh films directly onto a substrate for

application as electrode materiaL

The solution growth method tor Ni(OH)z synthesis was successfully applied to the

preparation of a nickel ferrite precursor, which produced fme NiFez04 with particle size

only a few run larger than the precursor particle size at 450°C. The fact that the sintering

process was greatly reduced indicates the quality of the NiO coating onto iron oxide

particles was remarkable.
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