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CHAPJ.ERI

ADVANCEMENTS IN MANNHEIMJA (FORMERt.YPASTEURELLA) HAEMOLYTICA RESEARCH ,-.

Since the classiification of M. haemolytica from Bacillus bovisepticus to Pasteurella

haemolytica (Newsom and Cross, 1932), there has been significant scientific advancement on the

role M. haemolytica plays in the onset of pneumonic pasteurellosis.

In 1978. Benson and colleagues --:demonstrated that bovine alveolar macrophages

challenged with M. haemolytica exhibited severe cytolytic and morphological changes caused by

t!he action of a tOJ<ilc factor being produced by M: haemolytica. In 1982, Shewen ,and Wilkie

demonstrated that the cytotoxin -was specific for bovine leukocytic cells, and was termed

"leukotoxin" (LKT). Shewen and Wilkie (1985) also demonstrated that lKT production was a result

of actively growing bacteria.

Genetic analysis of the genes encoding LKT lead to genetic manipulations and mutant

gene constructs. Lo and colleagues (1;985) cloned and expressed the lKT gene cluster and

demonstrated that homology exists between Escherichia coli a-hemolysin and M. haemolytica LKT

(Loet aI., 1987). This group of cytolysins, along with others, was subsequently termed the

Repeats in Toxin (RTX) family (Forestier and Welch, 1991) and characterized as pore formers

(Bhakdi et aI., 1986). Genetic analysis also resulted in a new classification for the organism from

Pasteuretla haemolytica to Mannheimia haemoJytica using 16s RNA sequencing and DNA-DNA

hybridizations to achieve information about the phylogenetic structure and taxonomic distances

within the P. haemolytica complex (Angen et aI., 199'9).

Siocombe and colleagues (1985) demonstrated the importance of neutrophils in the

pathogenesis of acute pneumonic pasteurellosis. When experimentally exposed to M. haemolytica
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calves with normal numbers of neutrophits deve'loped ll!Jng lesions, that consisted of necrosis of the

alveolar walls, intra-alveolar hemorrhage, a severe exudative and necrotizing broncl1opneumoni:a

with accumulation of proteinaceaous fluid in alveoli and lymphatics. Cattle depleted of neutrophils

had lungs that appeared grossly normal. Watson and col'leagues (1995) demonstrated that

neutrophil mediated injury involved three major mechanisms: release of reactive oxygen species,

secretion or rel~ease of enzymes form cytop1lasmic granules, and production of arachidonic acid

metabolites, which are all factors ill lesion fdrmation after the onset of shipping fever.

Ortiz-Carranza and Czuprynski (1992) showed that activation of bovine neutrophils by M.

haemolytica was Ca2+ dependent. Stevens and Czuprynski (1996) later demonstrated that at

sublytic concentrations, LKT can activate ruminant leukocytes leading to apoptosis, whereas lytic

concentrations of LKT inhibilted leukocyte function and is cytolytic (Clinkenbeard et aI., 1989b).

Perhaps the most beneficial contributions to research on M. haemolytica were made on its

mechanisms of binding. After binding its target cell, LKT is hypothesized to insert into target cells

membranes forming transmembrane pores (Moayeri and Welch, 1997; Bhakdi et aI., 1986). Brown

and coHeagues (1997) suggested that specific binding: sites for M. haemolytica LKT exist on bovine

leukocytes. Lally and colleagues (11999) ,confirmed these finding by demonstrating that the RTX

toxins recognize a ~2""intergrin on the surface of human target cells. Li and colleagues (1999)

defined the receptor as bov,ine CD18 and Jeyaseelan and colleagues (2000) further characterized

the receptor as LFA-1. Leite and collegues (2000) demonstrated that recombinant Intertukin-1 ~

accelerated the effects of LKT on neutrophils in a ~2""integrin dependent manner, thus increasing

~2-integrin affinity for LKT, resulting in a more avid biological response from host.

The studies above represent only a few of the significant findings that have paved the way

for current research on Mannheimia haemolytica.
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Chapter II

Uterature Review

Overview: Mannheimia (form.erly Pasteurella) haemolytica

n

Bovine pneumoni,c pasteurel.losis, or "shipping fever', was coined in North America by

Kinsley in 1915 (Gibbs et aL, 1984). Kinsley considered it to be the pulmonary form of

hemorrhaQiic septicemia. Hepburn (1925) later described it as a respiratory disease of cattle that

usually arose shortly after transport of either Irish or Orkney cattle ,to Aberdeenshire. Transit fever,

as defined by Anderson in 1939 (Gibbs et aI., 1984), was a disease which usuaUy. affects recently

weaned single-suckled calves shortly after they were housed in autumn. The causative agent was

later found to be Mannhejmia (formerly Pasteurella) haemo/ytica biotype A serotype 1. The

disease was caned "shipping fever" rather than "transit fever", because it occurred chiefly among

young cattle recenUy introduced to feedlot conditions (Gibbs et aL, 1984).

Pneumonic pasteurellas,s currently causes upwards of one billion dollars in annual losses

to the beef cattle industry in North America, which is greater than all other bacterial diseases

oombined (BabiUlk and Lawman, 1987). Based on capsular antigens or the lipopolysaccharide

complex, there ape 15 serotypes, within two biotype groups (A and T), and numerous untypable

strains of M. haemolytica (Carter, 1967; Tsai et aL, 1988). In clinically healthy cattle, M.

haemolytica' is present in low numbers in the nasal passages and those that are isolated are

predominantly biotype A serotype 2 (A2) which are rarely associated with shipping fever (Morek et

al., 1988; Morek et aI., 1989). Exposure of healthy cattle to stressful agents such as viral infection,

change in management practices (marketing, transportation, and processing), and change in

environmental (heaUcold) conditions, leads to an explosive growth and selective colonization by M.
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haemolylica in-the upper respiratory tract (Frank, 1979-; Frank, 1988; Jones, 1987). In theory, most

healthy cattle should not succumb to pneumonic pasteurellosis or become clinically ill when

infected because protective mechanisms should stop the progress of a M.. haemolytica infection.

However, the ability of the protective mechanisms.to cope with the infec~on is diminished by stress

or viral-induced respiratory disease: In stressed cattle, M. haemolytica can multiply rapidly ,in the

nasopharynx to form a large population (Frank and Smith, 1983) that travels from the nasopharyrlx

to the lungs in aerososolized droplets (Grey and Thomson, 1971). When large numbers of M.

haemolytica enter the lung they produce a devastating anterior ventral pneumonia, characterized

by extensive fibrin exudation, neutrophil and macrophage influx, capillary thrombosis, and foci of

coagulation necrosis surrounded by a zone of bacteria and degenerating- swirling inflammatory

ceUs (Whiteley et al., 1992). In natural cases, the most frequently involved portion of the lung is the

anterioventral area. Gross lesions often include acute fibrinous or serofibrinous pleuritis;

.interlobular septa are distended with serum and fibrin (Rehmtulla and Thomson et al., 1981). The

air passages are infiltrated with fibrinous exudates from the blood. The pneumonic areas are

clearty distinguished from the nonpneumonic areas.

Virulenc,e Factors

Virulence factors enhance the ability of bacteria to evade host defense mechanisms by

enhancing bacterial colonization and infiltration of host tissues. The four major virulence factors

associated with M. haemolytica are fimbriae, polysaccharide capsule, endotoxin

(lipopolysaccharide), and LKT (Confer et aI., 1990 ); others include protease, sialidase and outer

membrane components (Weekley, 1998).
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FIMBRIAE (PILI)

..

Surface proteins (adhesions) or bacterial capsules allow bacteria to adhere fa eukaryot·ic

cell surfaces. Informatlion on upper respiratory tract.-(URT) colonization of M. haemolytica is very

limi~ed. Two major alterations that lead to colonization of Ule URT by gram negative bacteria are

alterations in the mucocilliary apparatus (Pavia, 1987) and loss of fibronectin, an adhesive

glycoprotein (Woods, 1987), from epithelial cell surfaces.

Loss of fibronectin, which exposes receptors on cells and permits binding of gram-negative

bacteria, appear to be a key event in favoring ·colon~zation of the human URT (Woods, 1987;

Proctor, 1987). Fimbriae of some gram-negative bacteria are composed of proteins that can act as

lectins in recognizing specific cell surface receptors. Specific receptors for fimbriae are present on

eukaryotic cells, and the ,fimbriae-receptor interacUon overcomes normal repulsive torces exerted

between bacteria and eukaryotic cells. M. haemolytica is reported to produce two types of

fimbriae, a large rigid nonflexible structure of 12 Ilm diameter, and a small, thin flexible structure of

5 nm diameter (Morek et 811., 1987; Morek et aL, 1988). Potter and colleagues (1988) reported that

the Ilarg'e, rigid fimbriae of M. haemolytica A1 were readily purified by mechanical shearing' and

centrifugation and is comprised of a 35kDa subunit. Structures resembling fimbriae were seen by

transmission electron microscopy on M. haemolytica adherent to tracheal epithelium in a naturally

infected calf (Morek et aI., 1989).

Electron microscopic studies by others have failed to demonstrate fimbriae on the surface

of M. haemofytica. Morek and colleagues (11987) noted that mechanical factors such as agitating

the culture could prevent demonstration o~ fimbriae. Clarke and colleagues (2000) examined

adherence of M. haemolytica to mammalian tissue culture cells and found that M. haemolytica did

adhere to Madin-Darby bovine kidney ceUs and bovine turbinate cells, suggesting an important role
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of adherence jin the initial 'path0gienesis· of shipping fever Ipnewmoni:a. . Thmugh ,eleotron

microscopic s~ud,ies, Clarke and colleagues (2001) also found that epithelial cell cilia .and stJIrface

mucus played a rol'e in M. haemolytica adherence. M. haemolytica adherence maybe brouglilt forth

by a variety of virulence factors, but whether these factors are specific or nonspecific in their. host

interactions are unknown. The'difference in percent adherence detected between a single strain of

M. haemolytica fA1 and. A2; may be related to serovar-specific expression of bacterial adhesions,

but this has yet to be determined (Clarke,·QOOO).... . '.

'-; ..

CAPSULAR POL YSACCHARIDE .

M. haemofytica ~produces a polysaccharide capsule (glycocalyx) during logarithmic growth

phase (Corstvet et aI., 1982). M. haemolytica from infected calvres had greater quantities of

capsular material than organisms grown in culture (Morclk et aL, 19'88). Capsular material w,as aliso

seen ultrastucturally on M. haemolytica within the alveoli of experimentally and naturally-infected

cattle. (Morek et 811., 1988; Morek et aI., 1989; Whiteley et aI., 1992). Examination of purified

capsules from five serotypes of M. haemolytica showed that these bacterial capsules were

compl'ex polysaccharides.. Th,e capsule of each serotype has adifferellt sugar composition (Adlam

et aI., 1986) and is attached to alveolar repithrelium via the capsule (Morek et aI., 1988). Also,

microcolonies of the organism were seen encased in amorphous capsular material within alveoli

(Morck et aL, 1989).

Studies by Czuprynski and colleagues (1998) revealed that M. haemolytica capsular

polysaccharidre might be an important virulence mechanism. Using bovine neutrophils, they

demonstrated that M. haemolytica capsu'lar polysaccharide increased dilrected migration and

diminished phagocytosis alld kililing of M. haemolytica, but not Escherichia coli. The results of
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these studies indicate that M. haemolytica capsular material may be important for adherence of the

organism to alveolar and bronchiolar surfaces and attraction of neutrophils to the sites of

colonization (Confer et al.,. 1990). Capsular material inhibits neutrophil functions by decreasing

their abiHty to phagocytize and protect the host from bacterial invasion. Capsular material may also

inhibit complement-mediated serum kilUng.

Cilar~e and colleagues (2000) explored the role of the capsul:ein adherence of M.

haemolytica. Mean % adherence to bovine nasopharyngeal tissue of capsulated M. haemolytica

was significantly higher than that of de-capsulated M. haemolytic8, further demonstrating the

potential role of the capsule in adherence and initial pathogenesis of bovine respiratory disease,

L1POPOLYSACCHARIDE (ENDOTOXIN)

Lipopolysaccharide (LPS) is a major component of gra'm-negative bacterial outer

membranes. M. haemotytica LPS is similar to LPS produced by other gram-negative bacteria

having amphiphilic properties and a hydrophobic fatty-acyl-containing lipid A; a highly charged and

hydrophilic core oontaining 2-keto-3-deoxyoctosnic acid (KDO) substituted with phosphate and

ethanolamine; and a polar, noncharged, hydrophilic repeating polysaccharide containing an 0

specific chain (Luderitz et aL, 1982),

LPS is apparent in most LKT preparations and its separation from LKT is rigorous (Yoo et

aI., 1995). The quantity of endotoxin in dried M. haemolyfica cell walls ranges trom 12 to 25 %

(Keiss et al., 1964). M. haemolytica LPS introduced into sheep's lung caused influx of neutrophils

and accelerated lesion development (Brogden et al., 1984). Its been proposed that LPS may be

necessary for maximal production of some RTX toxins (Czuprynski and Welch, 1995). LPS pre

treatment of rabbit lungs caused an increase in thromboxane release after addition of E. coli
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hemolysin (Walmrath et aI., 1994). Also, mutations in genes involved with UPS synthesis were

shown to reduce production and activity of E. coli hemolysin (Bauer and Welch,1997; Stanley et ai,

19'93).

LPS enters cells by interacting withfspecific~receptors via the core polysaccharide orey

linsertion into the cell membranes via the lipid A p.ortion of the molecule (Bradley 1985; Morrl,son

and Rudbach, 1981; Haeffner-Cavaillon et ,aI:, 1985,)~ LPS binds with a drculating b~ood protein

(lipopolysaccharide binding protein (LPB]), which binds to CD14 mollecul:es. At low doses the LPS

complex can directly activate a cascade of Gytokines and other'mediators (~NF, IL-1, Il-'6, IL-8,

NO, and PAF). At moderate doses LPS induces fever and ,increases synthesis of acute phase

reactants. Finally, higher doses of LPS result in endotoxic shock, which' is characterized by

systemic vasodilation (hYP0tension), dimir:lislhed myocardial contractility,. widespread endothel;ial

injury, and activation of the ooagl.lllation cascade (Parrillo, 1993; Ognibene, 1997; Glauser, 1996).

Sublethal intravenolls and intraarter,ial injections of M. haemo/ytica LPS In sheep caused an initial

increase in pulmonary arterial pressure followed by a decrease in cardiac output with reduction in

left. arteriall, pulmonary venous, and systemic blood pressure ('Keiss et aI., 1964).

Whiteley and colleagues (1990) found that when endotoxin was rieleased into the

inflammatory exudate of the alveo,lus it was localized in alveolar macrophages, neutrophils in the

al!veolus, and neutrophils in the bronchial lymph nodes of calif lungs experimental:ly infected with M.

haemolytica A1. Intravenous infusion of M. haemolytica LPS in calves induced release of

thromboxane A2, prostaglandins, serotonin, cAMP, and cGMP,. which may mediate endotoxic

effects (Emau et aI., 1984; Emau et all., 1987). M. haemolytica LPS also caused direct cell

membrane damage to bovine pulmonary endotheli'al cells along with enhanced neutrophil

adherence to and arachidonic-acid release from endothelium, indicating endothelial cell activa.tion

(Confer et al., 1990).
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LEUKOTOXIN • t,

. ,~

Bacterial cytolysins disrupt target cells by decreas'ing their plasma membrane integrity:

Bacterial cytdlysins may be distinguished as pore-forming cytolysins (that,dismpt osmotic integrity).

enzymatically active cytolysins' (which degrade ,membralil~ 'lipids), or surfactant cytolysins (which

solubilized cell membranes in a detergent-like action) based upon- the:ir mechanisms of action

against host target ceilis.

M. haemolytica produces a leukotoxin (lKT) that belongs to the Repeats in Toxin (RTX)

family (Forestier and Welch, 1991). The RTX toxins represent the largest family of gram-negative

pore forming cytolysins and can be distinguished by a number of common traits (Ludwig and

Goebel, 1999). The C-terminal half of RTX toxin proteins includes, a tandem array of glycine and

aspartate rich nonameric repeats that contain a consensus sequence.(UXGGXG[N/D]DX). RTX

toxins are post-transcriptionally activated and theilr secretion proceeds via a type 1 secretion

pathway, allowing translocation across both the inner and outer membrane of bacteria in one step.

RTX toxin activity is Ca2+ dependent. The genes spedfically requi~ed for synthesis, activation and

secretion are clustered on bacterial chromosomes or pl,asmids as four contiguous genes (C-A-B-

D). Gene C encodes the act:ivator protein, A is the structural gene,and both Band Dencode the

ABC (AlP binding cassette) protein and the MFP (membrane fusion protein) component of the

ABC exporter. Some members of the RTX family include Escherichia coli a-hemolysin,

Actinobacillus pfeuropneumoniae hemolysins and cytolysins, Actinobacillus

actinomycetemcomitans leukotoxin, Vibrio cholerael!eukotoxin, Bordetella pertussis adenylate

cyclas,e toxins, and many more.
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The LKT determinant from M. haemolytica'has been cloned (Lo et aI., 1985; Strathdee and

LO, 1989a). Four open reading frames encoding polypeptides of molecular sizes 19.8, 101.9;

709.7, and 54.7 kDa can be deduced form the nucleotide sequence (La et at., 1985; Strathdee and

Lo, 1989a). Thus four open reading frames designated (ktC, IktA, IktB, ·and lidO respectively, in the

order of their genetic organization. LktA encodes the structural polypeptide of the toxin that is

activated by' an intracellular~component encoded by IktC, whereas IktB and IkiD encode asecretion

function (Strathdee and Lo, 1989b). LldA consist of 953, amino a.cids with a molecular size of 101.9

kDa. Two large hydrophobic domains, which are involved' with interactions between the toxin and

its target cell membrane, can be found on the molec~!e (Lo, 1990). The chromosomal lktCABD

operon resembles the E. coli a-hemolysin determinant With repect to gene organization and

transcriptional polarity (Lo et aI., 1987; Hi,ghlander et aI., 1989, 1990; Strathdee and Lo, 1989a,b).

The proteins encoded by the Ikt genes are structural and functional homologs to the hly

determinants respectively. The amino acid sequence for Ikt A is 36.4% identical to that of E. coli

hfyA. The most pronounoed structural· difference between these two toxins is that IktA has a

shorter repeat domain, consisting of only eight instead of 13 consecutive glycine-rich nonapeptide

repeats (Strathdee and La, 1987).

The cytotoxicity of M. haemolytica was first reported in 1978 (Benson et aI., 1978). M.

haemo/ytica LKT tS unique among the RTX toxin family. It is cytolytic for ruminant leukocytes ollly

(Shewen and Wilkie, 1982) and does not affect leukocytes from other species. Forestier and

Welch (1991) took advantage of lid and HJy gene sequence similarities to examine the domains

responsible for their different target cell, specificities. They proposed of model for interaction of

hlyA and lktA with host cells. The model assumed that the amino terminal portion of IldA was

responsible for its interactions with ruminant leukocytes while positions 563 and 739 contained the
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structure responsible for HlyA erythrocyte !Iysis. It was later demonstrated that a unique interaction

between RTX toxins and ~2 intergrins exsisted, whereby RTX tmdns utilized these receptors to

destroy host immune cells (Lally et 811 .. , 1997). 'Binding of M. haemolytica to ilts target cell was

defined more specifl:caUy as bovine CD18, the p2-chain of the p2-integrin heterodimer (Li et 811.,

1999). - J

LKT is a heat-liable protein exotoxin that is oxygen stab'lie, non-dialyzable, water soluble,

and is produced during logarithmic growth phase' (Baluyut et 811., 1981; Chang et al.. 1986;

Sutherland and Redmond, 1986; Shewen and Wilkie, 1985) .. Binding of LKT(I'yt':c concentrations)

to its target oeU, via bovine CD18, causes formatibn of a non-funct:i:onal transmembrane pore

(approximately the diameter of sucrose 0.001 to 0.002 ~m) (Clink,enbeard et 811., 1989b). Pore

formation allows the dissipation of the transmembrane electrochemical 'gradients of K+ and Na+

causing an osmotic imbalance. Thus the cytoplasm is hypertonic as compared to the outside of

the cellI. In order to correct this imbalance, H20 diffuses into ~he cell" resulting in a swollen cell

(Clink08nbeard et 811., 1989c),. Cell swelling is followed by the subsequent formation of large

cytoplasmic defects, which lis a Ca2+ dependent process (Clinkenbeard et 811., 198981). Target cells

exposed to LKT in media lacking Ca2+ are protected against toxin induoed cytolysis (Clinkenbeard

et 811., 198981; Clinkenbeard et 811., 1989b). Ca2+ aliSO mediates LKT induced cytolysis by activating

m'embrane phospholipases (Wang et aI., 1999) or by causing disruption of the cytoskeleton,

thereby resulting in cytolysis.

Although the ability of LKT to selectiv,ely destmy the leukocytes of their infected host is an

obvious advantage for the bacteria, the activation of leukocytes by low concentrations of LKT may

be of even greater importance. Low concentrations of LKT activate bovine neutrophils resulting in

stimulated oxidative burst, release of secondary granules, cytoskeletal alterations (Czuprynski et
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aI., 1991; .Maheswaran et aI., 199.2), and the secretion of inflammatory mediators (5-

hydroxyeicosatatraenoic acid and leukotriene 84) in a dose dependent manner {Clinkenbeard et

aI., 1994; Hendricks et aI., 1992). Stevens and Czuprynski {1996) also reported that at low

concentrations of lKT, bovine leukocytes were induced to undergo changes consistent with

apoptosis in vitro; observing ~eiosis, chromatin condensation, and nuclear fragmentation,. which
r

are accepted criteria for apoptotic determination.

Likewise, the effect of LKT 0111 platelets may be important in the pathogenesis of

pneumonic pasteurellosis. Leukotoxin-damaged platelets could release fibrinogen and vasoactive

compounds contributing to the formation of thrombi and fibrin leakage into alveolar spaces,

typically associated with pneumonic pasteurellosis (Clinkenbeard and Upton, 1991). Although M.

haemolytica LKT is species-specific for ruminant leukocytes, LKT exhibits low level, non species-

specific hemolytic activity (Murphy et ai, 1995), which is less efficient than its leukolytic activity.

Since LKT causes hemolysis it has been suggested that it can bind erythrocytes nonspecifically,

independent of its species specific receptor, CD18 (U et aI., 1999; Sun et aI., 1999). lKT binding

to erythrocytes may not be mediated by a protein receptor (Li et ai, 1999). Instead, LKT binding to

erythrocytes may involve direct interaction of LKT with membrane phospholipids. Sun and

colleagues (1999) proposed two types of LKT binding to lymphoid cells. A high-affinity LKT binding,

that leads to efficient leukolysis, and in some lymphoid cells from reputed LKT-nonsusceptible

species, a low affinity L.KT binding with low efficiency increase in intracellular Ca2+ concentration

without leading to leukolysis. Non-specific binding of RTX toxins to non-susceptible target cells

has been observed (Sato et 811., 11993; Sun et aI., 1997). Non-specific binding of RTX toxins to

erythrocytes most likely involves a domain of RTX toxins that differs from the domain used with

binding of species specific bovine CD18.
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THE ROLE OF Jh-INTEGRINS IN THE PATHOGE'NESIS OF BOVINE RESPIRATORY DISEASE

Summary: Bovine Respiratory Disease Pathogenesis

1Stress plays a critical role in shipping fever pathogenesis. Exposure to vkal infections

(Bovine Herpes Virus or Paralnflunenza), change in management practices (weaning and

transport), and change in environmental conditions (fluctuation in temperatures) may lead to

growth and colonization of M. haemolytica in the Lpper respiratory tract of cattle (Frank et aI., 1983;

Confer et aI., 1990; Whiteley et aI., 1990).

2Bacte'rial colonization is facilitated by fimbriae and/or capsular polysaccharide on the

surface of M. haemofytica which aid in adhere to eukaryotic cell surfaces. The loss of fibronectin

on epithelial cell surfaces also allow bacterial colonization because it exposes receptors on cells

,and permits binding of gram-negative bacteria (Woods, 1987; Proctor, 1987). Alterations in

mucocilliary apparatus also playa role in M. haemolytica colonization (Pavia, 1987).

Once M. haemolytica colonizes the lower airways, 3endotoxin, or lipopolysaccharide

activates Hageman factor XII, thus initiating the coagUlation cascade, kinin system and

plasminogen activators (Morrison and Rudbach, 1981). LPS a~so initiates the onset of both the

classical and alternative pathways of complement activation (Morrison and Ulevitch, 1978;

Morrison and Rudbach, 1981). LPS activates alveolar macrophages to produce cytokines IL-1 and

TNF-alpha, and the lipid mediaters PAF, LTB4, LTC4, and LT04 both directly (Bradley, 1985) and

indirectly via complement activation (Morrison and Ulevitch, 1978; Morrison and Rudbach, 1981).

It-1, TNFa, PAF, and LTB4 am chemotactic for neutrophils and other leukocytes, they increase the

expression of adhesion molecules and stimulate monocytes to produce IL-8. IL-8 is important in
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neutrophil migration, and has an autocrine:effect on ,alveolar macrophage activation .. LPS is also

cytolytic for alveolar macrophages, causin!!J cytolysis and release of nitric oxide, reactive oxygen

intermediates, and other proteases (Whiteley et aI., 1990; Himsay et aI., 1981).

/32-integrin's rote in LKT- target cell interaetians ~

The Ih·integrins are a family of heterodimeric transmembrane surface glycoproleins that

mediate cell to cell interactions during an inflammatory response (larson and Springer, 1990). The

~2-integrins are composed of a cytoskeletally attachedp2-chain (CD18) that is linked to one of

three a-chains. These g'lycoproteins are common'ly referred ~o as LFA-1 (al, ~2 or CD11a/CD18),

I

Mac-1 (aM, .P2 or CD11b/CD18) or p150, 95 (aX, ~2 or CD11c/CD18). The p2-integrjns interact

with intracellular adhesion molecules (ICAMS) on 'endothelium were their primary role is

extravasation and migration toward chemoattractants. Leukocyte adhesion deficilency (LAD) is an

immunodeficiency mari<ed by the absence of one of the three a chains and/or the common Pl-

chain on the surface of leukocytes.. This disorder is associated with severe and recurrent bacterial

infections, impaired extlfavascular targeting and accumulation of myeloid leukocytes, altered wound

healing, and significant morbidity is caused by absent or greatly diminished surface expression of

inte'grins of the ~2 class (Harris et 811., 2001). A number of distinct (3-chain mutations have been

characterized, which either affect the amount of the (3-chain pr,ecursor synthesized or affect the

ability of the ~-chain to associate with the a chain in the endoplasmic reticulum after synthesis,

including undetectable ~-chain mRNA and protein precursor and ilow levels of (3-chain mRNA and

protein precursor (Kishimoto et aL, 1987).
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L:FA-1. is diistributed highly among cells of the ~lymphocytiG, granulocytic~ and monocytie

lineages (Springer 'etaL, 1987). LFA-11 cSurface distribution ranges fFom 1-5,600 to 40,000' s,it~s per

peripheral lymphocyte, and is expressed mostly on T lymphocytes. LFA-1 :is pres~nt on 500;0 of

bone marrow cells ~nd is first detecteq dur;ing the pre-B cell and late myeloblast stages. .LFA-'1 is

not seen on myeloid and erythroid cells and is absent on macrophages, unless,stimulated by LPS

or interferon y (IFN y} (Shevach, 1993).

Mac-1 and p150,96 show simila~ties with respect to expressi,on and function. Mac-1 is

present on granul~ocytes, monocytes, and differentiated myeloid cell lines, Mac~1 is not ,present ,on

myeloid precursor cells. The p150,95 is expressed on,mor:1ocytes and granulocl'ytes and is absent

form tile majority of p~ripheral·lymphocytes. The p150,9S:is present on tissue macrophages in

much higher numbers than that cOt Mac-1 suggesting that after monocytes enter tissues and

difteretiate inlto macrophages the expression shifts from Mac-1 to p150,.95 (Shevach, 1993).

During log phase g:rowth M. haemolytica 4secretes LKT (Shewen and Wilkie, 1985), LKT

binds to leukocytes via bovine CD18 (U et aI., 1999) causing afunctional but uncharacterized pore.

This pore causes the dissipa.ion of the electrochemical gradients of Na+ and K+ (Clinkenbeard et

aI., 1989c). The inside of the cell becomes hypertonic as compared to that of the outside. In order

to correct this osmotic imbalance, extracellular water moves into the celli resulting in a swollen cell.

The dissipation of Na+ and K+ is followed by the subsequent influx of extracellular Ca2+causing the

dissociation and or polymerization of actin filaments resulting in membrane damage, ultimately

leading to total cytolysis of the cell (Clinkenbeard et aI., 1989c). Membrane damage may also be

mediated by Ca+2 dependent activation of cystolyic phospholipase A21 leading to elaboration of

Iysophospholipids, which are known to have detergent I!ike effects on membrane phospholipids

(Wang et aI., 1999).
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As the onset of acute inflammation ensues, the neutrophils are the first to the site ot

inflammation. 5Neutrophil migration is mediated by soluble inflammatory mediators (TNFlX. IIL-1,

IL-B, PAF, and LTB4). T-hese cytok!ines increase the "expr,ess'km .of intracellular adhesions

mol!ecules on the surface of endothelium (I-GAM 1) ancHhe surface· of neutrophi,ls (LFA-1 and Mac

1). Neutrophils are slowed in the ·blo~ stream through interactioljls between E and Pselectins and

the Siayl-Lewis X ~eceptor:ll(}cated on the surface of neutrophils (McEver and Cummings, 1997).

Once they are slowed in circula~ion, they adhere to en,dothellium through the interaction of the 1

CAMs and LFA-I. Neutrophils a~e then. allowed to squeeze ~hrough the endothelium through

interaction with (PECAMS) CD31, in a process known as diapedesis, after which they migrate

toward the inflammatory stimulus through achemical gradiient formed by cytokines (Butcher, 1991).

6Acute PuJmo~ary Damage is initiated by the onset of acute inflammation characterized

by neutrophil accumulation. LKT acti,vation results in release of neutrophilic enzymes such as

collagenase, elastase, and reactive oxygen intermediates (Watson et 811., 1995). The release of

enzymes from neutrophils cause g~eneration of LT84, and PGE2, which both mediate tissue

damage that occur during neutrophil activation. The end result is a pnuemonic f1bropurulent lesion

characterized by severe congestion, massive fibrin exudation in air spaces, hemorrhage, and red

discoloration. (Rehmtulla and Thomson, 1981; Slooombe et aL, 1995).

The final sta9le of shipping fever pneumonia is the onset of 7chmnic inflammation

(Rehmtulla and Thomson, 1981; Whiteley et aI., 1990).
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1l2-ilntegrin Capping ,I'
" I ' t ..

1

Membrane dynamics play a crucial role in (}2""integnin's, interaction with their ligand." III

order to control cell adhesion and communication after ligand binding, transmembrane proteins

undergo redistribution and clustering in the area of intracellular contact (Singer, 1992). This

phenomema. is -known as oapping.

Capping was first characterized by Roger Tayllor-and Philip Duffus (1971) through studies

with fluorescently conjlugated ilmmunoglobulin antibodies. These researchers demonstrated that

when spleen cells were treated at 0° C, surface fluorescence was entirely ring.:like, however when

treatment of ce'lls with a fluorescent ta!!Jged, antibody was carried out at 37°C. the percentage of

f1uoresoence remained the same but~seen at ollly one pole of the cell. Tayl'or and Duffus showed

that cap formation was a metabolically dependent active process which coUilld be induced or

inhiibited and was completely reversible.

The actin cytoskeleton plays a pi'vatol role in p2-integrin membrane distribution. The actin

cytos!ke,lleton acts as a bridge that brings membrane components together to activate signaling

events. The p. cytoplasmic domain has been demonstrated to be associated with the cytoskeletal

components ofa-adlin, vinculin, filamin, and or talin (Pavolko and LaRoche, 1993; Pardi et 811.,

199'5; Sharma et 811.,19'95; Burn et 811.,1988). Treatment at ceilis with cytocalasin DJ which disrupts

the cytoskeleton, has been shown to result in activation of LFA-1, which is directly associated wtth

receptor capping. Thus, cyMoskeletal constraints keep LFA-1 immobile.

The release of lFA-1 from the cyloskeleton is also thought to be regulated by calpain, a

cyteine pro~ease that is actIvated by local Ca2+ fluxes (Stewart et 811., 1998). Proteins identified as
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potential calpain targets :include talin, filamin, and a-actinin, aU of which are involved in restraint of

LFA-1 to the cytoskeletal network.

132-lntegrins are signaling receptors, as well as targets of intracellular s:ignals. p:z-Integrins

are capable of activating non-receptor tyrosine kineses (Dib and Anderson, 2000). These, along

with their downstream effectors, mediate a' signaling cascade that causes cytoskeletal

rearrangements, resulting in increased adhesion, increased cell motility,'and changes in cell shape

Sampath and cdlleagues' proposed this possible "mechanism of capping: LFA-1 is released

from the cytoskeleton as a result of proteolysis of talin by calpain. These events lead to

mobilization of the integrin. Alpha adinin then binds the cytoplasmic domain of the ~2 subun!it.

stabilizing the interaction between the cyoskeleton and the integrin, \which leads to strong adhesion

at the site of receptor aggregation after receptor mobilization (Sampath et aI., 1998).
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CHAPTERIU

SUMMARY

Mannheimia haemolytica is the p.rimary pathogen involved in the bovine respiratory

disease complex. This bacterium produces an ,exotoxin, known as :Ieukotoxin (LKT), whose target

cen specificity is mediated by recognition ofia ~2-integrin. LKT specifically intoxicates leukocytes

from ruminants with no affect on leukocytes from other species. It has been hypothesized that LKT

inserts into target cell membranes forming transmembrane pores followed by cell swelling,

membrane degene~ation, and cytolysis. To further understand the mechanisms by which LKT

intoxicates target cells, we used immunogold electron microscopy (immunoEM) to localize lKT,

CD11a, and CD18 on the surface of bovine lymphoma ceUs (BL3) before and after lKT exposure.

Ceilis (Bl3) were incubated I with monoclonal antibodies (mAb) specific for LKT, CD111 a, or CD18

and labeled with goat anti-mouse Ig8 conjugt;lted to 15nm gold partides. Expression of both

CD11a and CD18 increased in response 10 LKT stimulation as seen by flow cytomelry. Prior to

lKT exposure .immunoEM revealed thatCD11a and CD18 were dispersed evenly throughout BL3

cell plasma membranes. After 1 min LKT exposure, immunoEM revealed that LKT, CD11 at and

CD18 were associated with degenerative areas of BL3cell pl,asma membranes, with CD18

locallized to both intact and degenerative areas after LKT exposure. ImmunoEM did not detect LKT

or CD11 a in association with intact areas after lKT exposure, they were only seen in association

with degenerative areas of Bl3 cell plasma membranes. Rapid re-distribution and increased

expressiion of LFA-1 are key s~eps in the cascade of ,events that occur between LKT binding and

transmembrane pore formation.
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CHAPTER IV

liNTRODUCTION

.'.

Central to the understanding of shipping fever'pneumonia are the mecllanisms involved in

the interaction of Mannheim;a haemoJytica leukotoxin (LKT)., the most 'important virulence factor

associaled with shipping f'ever pneumonia" with its target cell. lKT belongs to the repeats in toxin

family (RTX) (Forestier and We!lch, 1991) and its species specificity 'for ruminant leUkocytes

(Shewen and Wilkie, 1982) is mediated by recog!nition of a ~2""integrin (Li et aL, 1999; Jeyaseelan

et aI., 2000). The 132-i;ntegnns consist of one of three a..chains paired with one p-chain and are

commonly referred to as lFA-1 (al, !32'or CD1talCD18), Mac-1 (aM, 132 or CD11bfCD16) or p150,

95 (aX, ~2 or CD1 k/CD18) (Larson and Springer, 1990). This group of heterodimeric

transmembrane receptors interacts with jntr.acellular adhesion molecules (ICAMS) on endothelium

where their primary role is extravasation and migratiO'n toward chemoattractants during an

inflammatory response.

The dynamics of membrane receptors is crucial to ~2-integrin interactions with ligand. In

order to control Dell adhesiOn and communication after ligand binding, transmembrane proteins

underglo redistribution in the area of intracellular contact (Singer, 1992). The redistribution of

membrane receptors, also known as capping, is a lempemture dependent, cytoskeletally driven,

metabolically dependent active process that may be induced (e.g.colchicine) or inhibited (e.g.

cytochalasin B) (Bourgu1gnon and Bourguignon, 1984; Taylor et aI., 1971). This phenomenon was

first described by Taylor and colleagues (1971) who demonstrated that immunoglobulin's (19)

distribution on resting lymphocytes is diffuse, while polar distribution may be induced by the
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interaction of the anti-Ig antibodies with the Ig molecules of the cell membrane, suggesting a

po,ssible mechanism for lymphocyte triggering by antigen.

It is hypothesized that initial binding of LKT via its receptor involves a change in LKT

conformation (Moayeri and Welch, 1997) followed by its insertion into target cell membranes

causing mhe formation of a transmembrane pore (Bhakdi et aI., 1986). Pore formation results in a

cascade of cytolytic events. These include, the dissipatior:l of the electrochemical gradients of K+

and Na+, the diffusion of H20 resulting in a swollen cell, the rapid infl:ux of extraceUular Ca2+

(Clinkenbeard et aI., 198'9'a), membrane degeneraUon, and cytolysis (Clinkenbeard et a'l., 1989b).

While the mechanisms that occur after pore fonnation ,have been well defined, the mechanisms

that occur between LKT receptor recognition and pore formation have yet to be elucidated.

The ~2-integ!rins, are signaling receptors, however, they are also targets of and are

functionally affected by intracellular signals (Dib and Andersson, 2000). The ~z-integrins are

composed of a cytoskeletally attached ~2-chains (CD18). Tyrosine phosphorylation of CD18

regulates cytoskeletal rearrangement (Dib and Andersson, 2000), which regulates cell motility and

effects ~2-integrin membrane distributions (Southwick and Stosse', 1983). A recent report shows

that Mannheimia haemotytica LKT induces tyrosine phosphorylation of the CD18 tail of LFA-1 in

bovine leukocytes, thus inducing their biologiical effects (Jeyaseelan et aI., 2001). In this study, we

used immunoEM to test the supposition that LKT intoxication of BL3 cells illvolves the rapid

redistribution of LFA-1 molecules on BL3 cell plasma membranes prior to pore formation.
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CHAPTER V

MATERIALS AND METHODS

Cultivation of Tissue Culture Cells

Tissue culture cells (BL3) were obtained from and cultured as indicated by the American

Type Culture Collection, Rockville, MD, USA. Briefly, bovine lymphoma cells (BL3) were grown in

suspension culture in 50% Leibovitz L-15e-50% Eagte minimal essential. medium (GIBCO

Laboratories, Grand Island, NY} with 20% fetal bovine serum to which l-glutamine (2mmoI/L),

gentamicin (50 mg/L), and NaHC03 (2.2 giL) was added at 37°C with 5% CO2 (GIBCO

Laboratories, Grand Island, NY).

Preparation of Mannheimia haemolyfica LKT

LKT preparaUons were made form wild type M. haemolytica strain SH1217 and mutant

strain SH1562 that contains a non-polar insertion in the IktC gene that produces inactive pro-LKT

(Fedorova and Higl1lander, 1997; Sun and Clinkenbeard, 199B). LKT p~eparations were late

logarithmic phase 60% ammonium sulfate concentrated culture supernatants produced in RPMI

1640 medium (Sigma Chemical Co.). The concentrated culture supernatants (CCS) were dialyzed

against phosphate buffered sal'ine (PBS), pH 7.2.

22



LKT activity assay

r I

..

Quantification of LKT activity was determined by leakage of the large cytoplasmic enzyme,

lactate dehydrogenase (LDH), from BL3 cells as described previeusly (Clinkenbeard et aI., 1989a}.

LKT activity was quantified as toxic units (TU), which were determined by graphing specific LDH

leakage versus the culture supernatant dilution factor. One TU was defined as the dilution factor of

LKT which caused specific LDH leakage of 50% for 4 X 106 BL3 cells. Concentrated culture

supernatant (CCS) preparations of LKT (50~1) were serially diluted in a round bottom 96·well

microliter plate containing 100~1 of RPMI 1640 (pH 7.2) (Sigma Chemical Co.}. A BL3 cell

suspension (100~; 4 X 106 cel1s/ml) was added to each well and the plate incubated at 37°C for

120 minutes. Exposure ended by centrifugation at 2,000 x g for 5 min and 100JlI of supematant

was placed in a flat bottom 96-well micmtiter plate. Flat bottom plate was warmed to 37°C and
I

100~1 of LDL-50 (LDH assay reagent. re-hydrated by addition of 25ml H20; Sigma Chemical

Company) was placed in each weilL LDH activity was measured in a thermally controlled kinetic

microtiter plate reader (therrnomax) at 340nm for .2 minutes at 37°C. Data was reported as 10-3

aD/min. Triton X-100 (1 %) was used to assay maximal LDH leakage, and buffer or cells only were

used in place of LKT sample to measure background LDH leakage.

LKT Exposure

Pre- and post-fix1ed BL3 cells (2 X 106 cells/ml) were exposed to M. haemolytica strain

SH1.217 CCS LKT or SH1562 mutant strain ees pro-LKT (UO dilution. 347 TU) for 1 minute at

37°C and immediately centrifuged at 10,000 x9 for 3 min. Unbound CCS LKT was discarded and
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cell pellet gently washed by re-suspension in 1ml of phosphate buffered saline + 1% bovine serum

albumin (PBSA) (pH 7.2). Celils were oentrifuged at 10,000 x9 for 3 minutes and cell pellet was re

suspended in 4% paraformaldehyde and 0.2% glutera!dehyde in 0.05% cacodylate buffer (pH 7.4)

(fixative) for 20 minutes and washed 3x, as indicated above, centrifuging .a1.10,OOO x 9 for 3 min

between each wash.

Immunohistochemistry

. . ,t

Fixation and immunogold staining techniques were modified based on a previously

described method (Jiaviriyabopnya et aI., 1991). Pr~-fi~ed BL3 :ce:lls were incubated in 10ml

fixative for 20 minutes ~nd gently washed 3x, by re-suspension in PBSA, centrifuging at 2,000 x 9

for 5 minutes after each wash. BL3 cells (2x106cell/ml), pre- and post-fixed, were blocked for 15

minutes in PBSA and subsequently incubated with a 1:10 anti-C018 mAb (BAQ30A) or a 1:10 anti

C011 a mAb {F1 0-150) (VMRD; Pullman, WA, USA.) for 90 min, and washed as indicated above 3x

in 1ml of PBSA, centrifuging at 10,000 x 9 for 3 minutes after each wash. Cells were then

incubated with a 1:10 goat anti-mouse Ig8 F(ab)2 gold conjugated (15nm particle size) (E~ectron

Microscopy Sciences; Fort Washington, PA, USA) for 90 minutes at 37°C and washed 3x, as

indicated above.

BL3 cells exposed to LKT were incu.bated with 1:10 murine anti-LKT C6 (Murphy et aI.,

1995), 1:10 anti-COlla mAb, or 1:10 anti-C018 mAb tor 90 min at 37°C and washed 3x as

indicated above. BL3 cells were then incubated with 1:10 goat anti-mouse Ig8 F'(ab}2 gold

conjugated (15nm particles size) for 90 min and wash 3x, as indicated above, in PBSA.
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Fixation and Embedding

Gold-labeled cells were fixed in 4% paraformaldehyde and 0.2% gluteraldehyde in 0.05%

cacody,iate (pH 7.4) for 2 hours at 20°C. Oells were washed 3x in PBSA as indicated (centrifuging

at 10,000 x 9 for 3 minutes for the first two washes, and at 10,000 x 9 10 minutes for the last

wash). Cel~ls were post fixed in osmium tetroxide lin O:2M cacodylate buffer for 3 hours and washed

(without re-suspending cell pellet) 3x10 minutes 'in 0.1 Mcacodylate buffer, Cells were dehydrated

in ethanol series (50, 70,90,95, and 100%[3x]) for fifteen minutes and infiltrated with 1:1 I..R whIte

resin and 100% ethanol for 24 hours at 4°C. Cells w~re further infiltrated by replacing 1:1 LR

White resin and 100% ethanol with 100% LR White for 24 hours at 4°C.' Cells were embedded

with 100% LR White resin by placing in oven at 65°C for 48 hours. Thin sections (70-90nm

thickness) were cut f~om blocks using aDiatome and placed on nickel coated grids. Sections were

stained for 15 minutes in uranyl acetate and for 10 minutes in lead citrate. Grids were examined

on the JEOL 100 CXII transmission electron microscope.

Flow Cytometry

BL3 cells (2 X 106 ceIIs/mI RPMI 1640), both LKT unexposed and LKT exposed (as

indicated above), were incubated in the dark for 1hour at 4°C 1:500 (O.2f.tg) with anti-CD11 a (F1 0

150), anti-CD11b (MM12A), anti-CD11c (BAQ153A), or anti-CD18 (BAQ30A) (VMRD; Pullman,

WA. USA). Cells were washed 3x as indicated above in PBS +0.1% Na azide, and incubated for 1

hour, in the dark, with 1:500 (0.2Ilg) Alexa-Fluor 488 goat anti-mouse IgG polyclonal antibody (A

11001). Cells were washed 3x as indicated above and analyzed fo.r presence of CD11 a, CD1,1 b,
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CD11c, and CD18 using FACSCal,ibur flow cytometer (Becton Dickinson, San Jose, CA), 10,000

even~s per sample.

St.atistical Analyses and ImmunoEM Quantification ~ ,

Gold labeling was quantified by a single individual (n=15 BL3 cells f treatment group). The

use of a light microscope was employed to quantify gol~ label on low magnification negatives. The

amount of degenerative and intact membrane was measured on BL3 cells exposed to lKT by a

single individual using a circular rotary measuring tool. Gold label data colleted were analyzed by

t-test using GraphPad Prism®, (GraphPad Software, San Diego, California, USA,

www.graphpad.com). In all cases, p <0.05 was considered statistically significant.
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CHAPTER VI

RESULTS

Expression of p2-integrins on BL3 cells increased after exposure to LKT for 1 minute at

37°C as indicated by the increase in fluorescent intensities when LKT exposed Bt3 cells were

subsequently fixed and incubated with anti-CD11 a, CD11 b, CD11c, and CD18 followed by addition

of Alexa-Fluor 488 goat anti-mouse IgG polyclonal antibody. After LKT exposure LfA-1 had the

largest increase in expression and made up the highest percentage of BL3 cell's J"h-integrin

e'xpression. Expression of all three a-chains and the common t3-chain increased as a result of

LKT stimulation when compared to their constitutive expression prior to LKT stimulation (Table 1).

Exposure of BL3 cells (2 X 106cells/ml) to LKT (1:10 dilution, 347 TU} for 1 min at 37°C

resulted in a loss of normal membrane morphol'ogy for 18.9 ± 0.5% (n=15) of the membrane's

circumference. Loss of membrane integrity was typically restricted to one area of the cell and was

marked by loss of intact plasma membrane. Fixation in 4% paraformaldehyde and 0.2%

gluteraldehyde in 0.05% cacodylate buffer prior to LKT exposure inhibited LKT-induced plasma

membrane damage (Figure 1).

The percent of totalglold label specific for anti-LKT that localized to degenerative areas of

Bl3 cell plasma membranes was statistically greater (p <0.05) than gold label specific for anti-LKT

associated with intact areas (Figure 2). Pre-fixed BL3 cells exposed to LKT exhibited almost

undetectable amounts of gold label specific for anti-LKT (data not shown). However, when un

fixed BL3 cells were exposed to LKT, immunoEM revealed that gold label specific for anti-lKT was

associated with degenerative areas of BL3 cell plasma membranes (Figure 3), no gold label

specific ~or anti-LKT was associated with intact areas (Figure 3). Use of pro LKT resulted in no
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LKT-induced cytolysis and gold labeling was not seen wIth either intact or degenerative regions of

BL3 cell plasma membranes when the primary antibody was omitted (data not shown).

Prior to exposure of BL3 cells to lKT, immunoEM revealed that gold label specific for anti

CD11 aand anti-C018 surround the entire circumference of BL3 cell plasma membranes (Figures 4

and 5). Following exposure of BL3 cells to LKT, the number of gold particles specific anti-CD11 a

were significantly increased and the percent of label on degenerative areas was increased

compared to the percent of total label associated with intact areas of BL3 cell plasma membranes

{p < a.05} (Figure 2). After addition of tlKT for 1 minute, ImmunoEM revealed gold label specific

for anti-CD11a was associated with only degenerative areas of BL3 cell plasma membranes

(Figure 6). Gold particles (15nm) specific for anti-CD11a were not seen in association with intact

areas (Figure 16). In contrast, LKT exposed BL3 cells labeled with gold specinc for anti-CD18 did

not differ statistically in the percent of total gold label associated with degenerative areas of Bl3

cell plasma membranes when compared with intact areas (p > 0.05) (Figure 2}. After addition of

LKT for 1 minute ImmunoEM revealed that gold label specifIC for anti-CD18 was found associated

with both degenerative and intact areas of BL3 cell plasma membranes (Figure 7) with 47.5 ± 7.0%

of gold label concentrated in degenerative areas.

Redistribution of gold label specific for anti-CD11 a and anti-CD18 from thejr native

distribution (around the enure circumference of BL3 cell plasma membranes) to their distribution

after LKT exposure (degenerative areas of BL3 cell plasma membranes) was characterized by the

decreased amounts of gold particles seen in association with intact areas of BL3 cell plasma

membranes after LKT exposure. The amount of gold label surrounding BL3 cell plasma

membranes decreased signif!cantly (p <0.05) after LKT exposure (Figure 8).
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After LKT exposure CD18 is localized on both ifiltact and degener;ative areas of BL3 cell

plasma membranes. The amount of gold label specific. for anti-CD18 associated with degener,attve

areas was comparable to that seen assoc.iated with degenerative areas of BL3 cells exposed to

LKT and labeled with anti-CD11 a. There was not astatistical difference in the amount of gold 'label

associated witt! degenerative areas of BL3 cells labeled with either anti-CD18 or anti- CD1i 1a

(p > 0.05) (Figure 9).
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Table 1. p2-lntegrin expression on LKT exposed and unexposed BL3 ceHs.*

p2-lntegrin ExpressIon

p2-lntegrin

C011a
C011b
C011c
CD18

-LKT

8.6%
7.1%

53.3%
80.1%

+ LKT

95.1%
67.7%
93.1%
98.7%

* Bl3 cells (2 x 106 ceUsfmt) were exposed to lKT for 1 minute at 37°C, rinsed, and fixed. Fixation
was followed by incubation with antibody specific for CD11a, b, c, or CD18 for 30 minutes at aoc
and rinsed. Cells were incubated with Alexa-Fluor 488 goat anti-mouse IgG polyclonal antibody
(A-11001) for 30 minutes at DoC, rinsed, and analyzed on FACSCalibur (10,000 events/sample).
Values represent percent fluorescent intensity before (-LKT) and after (+LKT) exposure.
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Figure 1. Electron micrographs of BL3 cells exposed to LKT for 1 minute at 37°C. Fixation in 4%
paraformaldehyde and 0.2% gluteraldehyde in 0.05% cacodylate buffer inhibited LKT induoed
plasma membrane damage (top; 9,OOOx), while no fixation resulted in an 18.89 ± 0.5% loss of
normal pllasma membrane morphology (n=15) (bottom; to,285x). Bar = 1J.!ffi.
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Figure 2. Distribution of LKT, CD11 a, and CD18 on BL3 cells after 1 minute LKT exposure. The
percent of total gold label (15nm) that localized to degenerative regions after LKT exposure was
significantly higher than that found on intact membrane for both LKT and CD11a, There was not a
significant difference in the percent of gold label specific for anti-CD18 that localized to either
degenerative or intact areas of BL3 cells (p > 0.05), Left y-axis is average number of gold particles
per cell (black; n=15). Right y-axis is percent gold label detected in association with either
degenerative (shaded) or intact (white) membrane. Asterisks represent values significantly
different from the percent of total gold label seen in association with intact plasma membrane
before LKT exposure (p < 0.05).
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Figure 3. Immunogold localization of LKT on BL3 cells (top left; 7,613x, bar = 2j.lm). Gold
particles (15nm) specific for anti-LKT localized to degenerative regions of BL3 cell plasma
membranes (while frame; 65,250x, bar =O.5Ilm). Gold label were not detected on intact areas of
BL3 cell plasma membranes (black frame; 27,066x, bar =O.5I-lm).
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Figure 4. Immunogold localization of CD11 a on pre-fixed BL3 cells (top; 9,318x, bar = 2J.!m).
Gold particles (15nm) specific for anti-CD11 a were dispersed diffusely around entire BL3 cell
plasma membranes (black frame; 54,OOOx, bar =O.5J.!m).

34



·'

•. 'i: ... ,. .:

j

'.

Figure 5. Immunogolid localization of CD18 on pre-fixed BL3 cells (top; 10,OOOx, bar = 1flm).
Gold particles (15nm) specific for anti-CD18 were dispersed diffusely around entire BL3 cell
plasma membranes (black frame; 75,600, bar =0.2flm).
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Figure 6. Immunogold localization of CD1: 1a on BL3 cells exposed to LKT for 1 minute at 37°C
(top left; 5.324x, bar = 211m). After LKT exposure, 15nm gold particles specific for anti-CD11 a
localized to degenerative regions of BL3 cell plasma membranes (white frame; 66,700x. bar =
O.5Ilm). After LKT exposure gold label was no longer seen in association w~th intact areas of BL3
cell plasma membranes (black frame; 12,938x, bar = 111m).
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Figure 7. lmmunogold localization of CD18 on BL3 ceHs exposed to LKT for 1minute at 37°C (top
left; 6,023x, bar =2~m). After LKT exposure 15nm gold particles specific for anti-CD18 localized
to both degenerative (white frame; 45,500x, bar =O.51lm) and intact (black frame; 58,800x, bar =
O.5~m) regions of BL3 cell plasma membranes.
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Figure 8. Localization of LKT, CD11a, and CD18 on intact BL3 cell membranes after LKT
exposure. The was not a statistical difference in the amounts of gold label specific for anti-LKT in
association WIth intact BL3 cell plasma membranes either before or after LKT exposure (p> 0.05).
The amount of gold label specific for both anti-CD11 a and anti-CD18, in association with intact
membrane, decreased as a result of LKT exposure. Black bar represents amount of label on pre
fixed cells; for CD11a and CD18 prior to LKT exposure (n=15). White bar represents the amount of
label present on intact membrane after LKT exposure (n=15). Asterisks represent values
statistically different from the LKT un-exposed group (p <a.05).
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CHAPTERVn

DISeUSSION

Immunohistochemical labeling 'techniques have been previously employed at lhelight and

electron microscopic levels to localize M. haemolytica lKT in tissue sections of pneumonic lungs

from bovine inoculated witl:t M. haemofytica (Whiteley et aI., 1990). 'These findings suggest that

LKT associates primarily with membrane ·frag'ments from degenerating inflammatory cells in the

alveolus, with no immunoreactivity on' areaS of lung 'sections with intact .inflammatory cells

(Whiteleyet. aI., 1990). We demonstrated that LKT localized to precise degenerative regions of

plasma membranes on individual cultured BL3 cells. Our study differed from that of Whiteley and

colleagues in that pathology 'samples from cattle experimentally infected with M. haemolytica were

used, whereas our study used isolated cells exposed to LKT. Their method was less definitive in

several ways" LPS, a major component ,of M. haemolytica outer membranesl plalyed a major role

in damage of lung sectllions during their studies. They were unable to provide estimations of lKT

exposure time because exposure time estiimations during experimental infections are ,less efficient

than when using CCS LKT, from which reactions Gan be initiated and terminated more readily.

Finally, they used wllole lun,g sections, which provided a less accurate estimation of exact LKT

localization on individual inflammatory cells. In this study, LKT binding was examined at more

stringent ultrastructural levels and precise regions of LKT localization on BL3 cells was determined

at a specific time point during e'xposure.

Gold label specific for anti-LKT was readily detected after exposure of BL3 cells to LKT.

However, when BL3 cells were pm-fixed very little gold label was detected. Plausible explanations

for the extremely low amounts of 15nm golld particles specific for anti-LKT after 1 min LKT
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exposure on pre-fixed BL3 cells may be the result of fixation in 4% parafomlaldehyde and 0.2%

gluteraldehyde in 0.05% cacodylate buffer. Fixation cross-links proteins to flxedcytoskeletal and

membranous constituents throughout th~ cell (Bozzola and Russelh 1992). These constituents of

the cell are unified into a s:ingle interlocking structure or. meshwork held together by a multitude of

fixative molecu1les. Cross-linkage of the ~2-integJins may have masked the epitopes responsible

for interaction of LKT with ils target cell receptor. Fixation also compromis~s antigenicity. The type

of fixative used, and its ~ncentration detennil)e tAe extent of antigenic reducUon. Gluteraldehyde

has the ability to denature proteins and low concentrations of gluteraldehyde have less denaturing

effects than higher 80ncentrations. Although fixation of BL3 cells was mild and followed by

adequate rinsing, fixative residue may, have slightly denatured LKT decrea~ing its affinity by some

degree, thus LKT woulq not·be able to recognize its receptor on pre-fixed BL3 cells.

The a-chain of the j)2-integrin helerodimer, CD11a, was dispersed diffusely throughout

BL3 cell membranes prior to LKT exposure. After 1 minute LKT exposure CD11 a redistributed to

areas of degeneration. CD18 was also dispersed evenly throughout BL3 cell plasma membranes

prior to LKT exposure, however, only a portion of CD18 was located in degenerative areas of the

membrane after LKT exposure. CD18 is associated with one of three alpha chains, CD11 a, b, or c,

with that of CD11 a expression be.iog the highest of the total fh-integrin expression on Bl3 cells

after 1 min lKT exposure. When compared with gold label specific for anti CD18 that localized in

degenerative areas of BL3 membranes, the amounts of 15nm gold particles specific for anti-CD11a

were not statistically different (Figure '9). Thus, the amount of CD18 represented in areas of

degeneration may be that of the CD11 afCD18 heterodimer, further supporting the role of

redistribution of LFA-1 after 1 min LKT exposure. We only examined localization of CD11 a after
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lKTexposure. No experiments were oone with either CD11b,prC011c. Whether tilese subunits

redistribute is unknown. 't

Flow cytometry showed an rficreasein 'I}t-integrin expression afterBt30elts were exposed

to U<T for 1 minute at 37°C. however, immunoEM revealed a slight decrease ingold label after

LKT exposure. Gold labeling lS not as efficient as 'fluorescent labeling, and has the potential to be

fost dUring tissue processing for electron microscopy. Vigorous rinsing 'steps, sectioning, and grid

g;taining aU contribute to the foss of 15nmgotd particles during the tissue processing steps. These

complications decrease the amounts of gold labet that are detected after tKT exposure.

Leukotoxin-induced plasma membrane defects were visible after BL3 ceUs were exposed

to LKTfor 1 minute at 31°C. This; contrasts with earUer reports that variable-sized membrane

defects are not evident untit after 20 'minutes of exposure to lKT (Clinkenbeard at at, 1989c).

Previous reports have shown that lKT stimulates the production of leukotriene B4 (lTB4), which

involves the subsequent increase of phospholipase A2 (PLA2) activity (Wang et aL, 1999).

Phospholipase A2 damages plasma membranes by hydrotyzing phospholipids. This leads to the

elaboration oflysophospholipids, which have detergent like effects on membranes (Wang et aI.,

1999). Although lKT-induced cytolysis is inhibited by fixation, no reports show that lKT-induced

PlA2 activity is inhibited by fixation. Thus, the plasma membrane defects that are present after 1

minute LKT exposure may be the result of LKT-induced PLA2 activity, which continues to hydrolyze

membrane phospholipids even after termination of the exposure. In addition, factors may be

differences in exposure temperatures, in LKT concentrations, or inadequate reaction termination

during experimentation. Increased temperatures may potentiate the lytic effects of lKT on BL3

cells,. and likewise increased concentrations of LKT may cause plasma membrane damage to

become evident at earlier time periods during LKT exposure. Consideration should also be given
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to the centrifugation and washing steps, upon which LKT may have continued to react w~th Bl3

cells. BL3 ceilis were exposed to LKT for 1: minute, immediately spun down, washed, and fixed.

What may have been theoretically a 1 minute exposure could have resulted in a 10-15 minute

exposLlre. . (

Jeyaseelan and colleagues (2001) found that tKT induced a species-specific nonreceptor

tyrosine kinase signaling cascade resulting in tyrosine-phosphorylation of the CD18 (~-chain) tail of

LFA-1. Their results support our supposition that LKT causes rapid redistribution of lFA-1.

Engagement of ~2-lntegrins induces activation of tyrosine kinases that lead to phosphorylation of

proteins involved with changes in the actin cytoskeleton resulting in cytoskeletal rearrangements

that control ceU motility and activation (Dib and Anderson, 2000)., Since the.jH;hain of the ~2

Integrins is I,inked to the cytoskeleton, rearrangement of cytoskeletal components also results in

redistribution of the ~2-lntegrins. Thus, LKT induced tyrosine phosphorylation of the CD18 tail of

LFA-1is acontributing factor in lFA-1 redistribution after LKT exposure.

Our findings indicate that binding of LKT to Bl3 cells results in rapid redistribution and

increased expression of the f)2-integrins. ImmunoEM demonstrated that LKT exposed BL3 cells

caused rapid redistribution of CD11 a from a diffuse pattern on BL3 cells to only areas of

degeneration along with LKT. In lieu of these similarities in localization, there arises speculation of

some involvement of receptor redistribuC.ion in aggregation of LKT to specific sites on Bt3 cell

membranes were pore formation lTIight be initiated. Amplification of the ~z-integrins by

recombinant bovine interleukin-1 ~ was shown to enhance binding and amplify the biological effects

of LKT (leite et aI., 2000). The action of LKT on BL3 cells caused increased ~z-integrin

expressions (Table 1). Thus, LKT may act in an autocrine manner; increasing ~2-in'egrin

expression and redistribution to enhanoe lKT binding and induced cytolysis.
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