NOVELTY DETECTION FOR FUNCTION

APPROXIMATION

By
ARJPOLSON PUKRITTAYAKAMEE
Bachelor of Engineering
Chulalongkorn University
Bangkok, Thailand

1997

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2001

NOVELTY DETECTION FOR FUNCTION

APPROXIMATION

Thesis Approved:

(p WAdviser g

K’D _4 D
e

sty A Ol

Dean Qtye Bfaduate College

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Martin T. Hagan, for his moral support, guid-
ance, patience, and friendship throughoot my graduate studies. I also would like to thank
my other committee member, Dr. R.G. Ramakumar and Dr. Kejth A. Teague, for their use-
ful suggestions.

I wish to sincerely thank again Dr. Martin T. Hagan for his financial support and his
generosity to let me expenence this project.

Finalily. I would like to express my special appreciations to my parents and my sister

for their loving support and strong encouragement at the difficult times.

TABLE OF CONTENTS

Chapter Page
L. INTRODUCGTION ..ot cecniimistncsesseesatsesssacsrsstrstassnssessnsnrsessss sanssnsssrnnsassesans 1
I1. LITERATURE REVIEW oo cntinteamim st snses s ss s s srensssssnsssssssnrrssnssssanens 4

INErOAUCTION ...ttt e bbb e b e e e n e e nan e e neras 4
Single-Input NEUTONociii et e 4
Multiple-Input NEUTON ..c.oco.viiiiiicniiccr s e s 9
Network ATCRIECIUIES .. .e.vitiiiics e cve e se e e 10
A Layer of NEUTONSc.vovveciivie e et eesie s eie e e 10
Multiple Layers of NEUrons ... v, 11
Function APProXIMAtiOnc. vt ieoeriieseereeme e e eme e naeee e ene e rs s ae s aein 13
Novelly Detection in Neural NetWorkcccoc.cooiiiiiiiiiciei e, 16
| § (8 ot LTl 1T o RSSO RURRURRRRNE 16

What is Novelty Detection? ..ot e 17
Algorithms for Novelty Detection ..o 18
SUMMATY ..o tiitteritiee s e e rtr e e rseer st sr e ses seee e e s saare e s semr e e e s e an e s e aasescianesinmnieens 19
II1. NEURAL TREE ALGORITHM ...ocoriiireninrisestisssenecnmisnionsmssos s s 20
TREFOAUCTION ...ttt st et em e st n ettt n e e aen e 20
Neural Tree ALZOrthm. .. oo e 20
How the algorithm WOrKScveviicciic e 23
Application to Novelty Detection ... e 28
Simulation of a simple example........c.ciiiii 29

ROY0 D111 4 1 2 PR 42

Chapter Page

IV. THE GAUSSIAN KERNEL ESTIMATOR......covvimtiririmrennrrcssisiasnineesnsansione 44
11 o e (T34 To) (F TSSO P PP OUSUTPPPUN 44
Estimated density for novelty detection. ..ot 45
Background ..o e s 46

HISEOZIAM .. .cvis i ettt et e s e e 47
NAIVE BSHIMALOT .. cuvviiveiree et en seee et e e et e s arrensrr e s s e e 43

)G 10 T IS4 D1 1T SRR PR 50

The Gaussian Kemel eStimatOr.......c ittt ee s 52
One-dimensional datacocciveviiiiii e 52

The generalized model ... 54
Application to novelty detectton... USSR RUTRRS, 1o |
Simulation of the simple examplc #] ... 56

A way to improve the performance: Joint Density ..., 63
Simulation of the simple example #2cccoinioininiiicni 64
SUITHTIALY 11 et v vt emeeeeme et be e aat s as e eh et s e £E st eas e s mab a5 442t s 4k 2ea bt £r e 2me s eomn e e e e e nee e s 68
V. AUTOASSOCIATIVE MULTILAYER PERCEPTRONccoccumamammuacisersassonns 69
INEPOAUCHION ...t itieimii ittt e s e ettt fas et e e et e e emseseeens ere s 69
Autoassociative Multilayer PErCeptron.cocci i 69
Application to NOVEILY deteCtioNcvicvviciiiceiicie i s et e 71
Simulations of the simple example #] ... 74

A technique 1o IMProve effiCIBCYt 77
Simulation of the simple example #2 ... 78
SUIMIMIATY ..o et e 81

VI. MINIMUM DISTANCE ALGORITHMooimiicmcmicnrvnsnniscnsrisssee. 83

P61 o a1 T2 1 To 5 OO TSSO B3
Minimum Distance COmMPULALION.......ccoiiieeiiriieeiraire e e e ere e 83
Application to novelty detection........oooi it 84
Simulation of the simple example #1 ..o, 85

A Technique to Improve Performance: Minimum Weighted Distance................. B8
Simulation of the simple example #2 ... 92
Calculating the estimated deTivatiVe ... e e 96
How to speed up distance COMPULAtION «........ooviiriciiieeiicee e e99
The Kohonen rule ... e 100

How to use the Kohonen rule to speed up distance computation 102
SUIMIMNIATY e e e e et e s b st bttt sn e an e aeeeneas 103
Chapter Page

VI1. MINIMUM DISTANCE AND OUTLIER DETECTIONccniinnenenen.. 104

518 oo [0 Tl U T o F O ST PU SO 104
Principal component @analysiscovociimiiiini e e 105

Definition and derivationouvreoii oo i e 105
Outlier Detection using principal COMPONENScoiviiiiiiciiiinies i 110
The problem of outlier detection for novelty detection ..o 112
Minimum distance of the composite data set...................coooiiiiiiiiii i, 113

Application to novelty detectioNcuvvuivcversieee et e LES
Simulation of the simple examplec.c.cccoceivireciecinnc e sieeeceeeeeee 119

NYTE 131 ouT:) o O O P O ST 123
VIIL SIMULATION RESULTS ...cooninimimniimsinimnsenssseisssssesenissssarssesssnasniseneasnas 128
L1 CoTa 1 Lol Lo s WU OO RSO 125
Function approximation L..........cviriniii e 126
INEUTAL ET@E ... oot et iiitie ittt e e e et eae et et e es re e s m eemt e ee e mmeaesme e anae e ra e 129
The Gaussian kernel estimator (GKE)oocoiiiiioiie i s e sin v 133
The estimated density of INPUL........c.cociiii i 133

The estimated input-outPUt ENSILY...c.iiiiiiiiiciii i 137
Minimum distance algorithm........couviiei i e 141
The minimum distance of INPUL......cciii i 41

The minimum weighted distance ... e 145
Minimum distance with outher detectionccoiviiv i 149
ReSUlt SUMMATY - e e e et eee e 155
Function approximation I1 ... e e 157
INGULAL TTEE ... et e ettt et s e es 158
The Gaussian kernel estimator (GKE)coooeiiiooii e 161
The estimated density of INPUL.........cooiieiiiinic 162

The estimated INpUt-OULPUL AEMSILY ... ivviciviiieeiieir et e 164
Minimum distance algoTitimi e 168
MiInImUm diSEANCE ... et e 168
Minimum weighted GiStance. ... coooviiiiviiii i 171
Minimum distance and outlier dCIECHIONo.oieiimiiiiii e 174
ReESUIL SUNMATY ..t ettt s 180
SUTMIMIATY oo et em e e et ea s e ke e e e sbs ettt e bt aeb e 182

Summary of the TESUILS ..o e e 184
Recommendations fOr fULUIE WOTK ..ovu. e se s et e e ee e v e e s i b s 186
REFERENCES st itcrmterttareseareeonssmatsensssssomymsnssstosnmsesatmtttesnsssnssmymsnnsssnsmnnsnsssnnnranssanmnssns 188

v

LIST OF TABLES

Table Page
I Novelty detection decision vs. apProXimMAation EITOTco..overeeriieineesieneseeeeeeeeeenns 37
2 Percentage of misclassifications: The first test group ... 155
3 Percentage of misclassifications: The second test group.........cccocvovveivivinniineennann. 158
4 Percentage of misclassifications: Training data..............ccoooiiiiiiiiiin 156
5 Percentage of misclassifications: The first test groupc.cocviiiiinciiciee e 180
6 Percentage of misclassifications: The second test ZrOUPccovieiiiireiiiirinieiee 180
7 Percentage of misclassifications: Training data........cc.oooeoooiiiiveniiiiiiieiic e 181

Vil

LIST OF FIGURES

Figure Pape
IA SINGle NEUTOM ...ttt e s S
2 Pure Linear Transfer FUNCHOMcooiiriinn oo sa s s een s 6
3 Effect of WeBRE. ..o ettt e 6
4 EEECt Of BIAS ...viieios i et et e e et bbbt a e 7
5 Hyperbolic Tangent Sigmoid Function..........cc.ccooviiiiii e 8
6 Effect 0f Welght. oo e e e e e 8
T EEFECT Of BI&S ..ot ettt et a et ettt 9
8 Multiple-INPut NEUTOM ...ccoviin it ettt 9
9 A Single-Layer Network..............cooo. B O OOV PR RUROPTITOONS [
10 Three-Layer NEtWOIKcc.vioi oo ettt st et ee et e 12
11 An Example of Network for Function ApproxXimation ..., 14
12 Network Outputs and TaT@eLSooeiiiiiiiiics et e 15
13 Network Pouts and Targets on Testing Data ..o 17
14 4-Clll TTE . . i e ettt 2}
{5 Partitioned Cells in HYPEISPACEooviiiiiiici it 22
16 Initialized Divided HYPerspace ...t 25
17 TTEE SEUCKUTEeee e iee ittt ettt et e oottt et e et e e st eee e s a st araarbenen 26
I8 FUNCUON FUP) coeieiiis e ittt ettt s e e e 30

vinl

Figure Page

9

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Training dAtA ..o e e e e 31
Error between target and network output after training...........ccoocooeeicin, 31
Error between target and network output in the normalized hyperspace.................... 32
Testing and Training Data ... e 32
Error of the testing dataccccooriiniriiin e e e s 33
Initlalized Cells oo e 34
AT B-Cell TIE (oot ettt ettt et et et b et ee it et e 34
Partitioned Cells After TTAININE ..ooooriiiiii it 35
Abpormalities outside the Cells. ... 36
Error and Abnormalities of the 8-cell tree ... 38
Abnommalities from the 200-cell tree.........cooveirriiiiiici e 39
Error and abnormalities of the 200-cell tree ..o 39
Estimated density using neural tree algorithm..........coooeiii 4]
DONUL SRAPE ...c.uiitiiie it e se et sttt e a et et aha e 1 da e st et b en e s b e eneenae e 42

Effect of the smoothing parameter on the naive estimator (a) b = 0.03 (b) b = 0.3

(C) D = B o e et e i 50
The Gaussian kernel estimatorwith(a) b = 03 ()b =1 (c)bh =3 ... 53
Estimated Density with (a) b = 0.001 (b) 5 = 0.0l (c)bh = 0.1 (d) b = 1 57

Estimated Density and The Errors (a) 5 = 0.001 (b) & = 0.01 (¢) 4 = 0.1 and(d)

Figure Page

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Novelty Detection: Density of INPUL.......cooiiiiiiiii it ice e eeenn e 60
Estimated density of @ data Set........c..cov it 62
Estimated density and approximation error: b = 0.1164 ..., 65
Novelty detection: Density of tnput and output...................n. 66
Small-error and 1ow-density POINS.........oocciiiiiiiiiiicc e 67
Diagram of an autoassociative novelty detectorc....ooeoiiiiiriini i, 73
Autoassociative error of training data............cooveieiiin e 74
Autoassociative Error and Approixmation EfTOTSc.ooooviioiiiicrn e 75
Error and abnommalities it e e 76
Autoassociative Error versus Approximation Ermor ... 79
INOVEILY DEEECHONviei vt ceisisc st sr et e e r e e st e et e et sha e s amenst s sss b ereans 80
Minimum DIStance VErsus EITOTo it et 86
Error and abnommalitiesc..ocoooiiiiiiei e 87
Effect of the weighting factor 1o R ..o s 93
Approximation Error and minimum weighted distancecooocooo i 94
NOVEILY QIECHION ... b e et v 95
Graphical Representation of the Kohonen Ruleoooivcnnn 101
Data and CIUSIET CENLETSoire it e et st e 10]
A Data Set with OUtHErsc..oooooiviviiiii it e 110
A Transformed Data Set ... 11
The value of for the last PC of the training data...................coo 112

Figure Page

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

The value for the last PC of the testing data ... 113
Approximation Error and minimum distancecccoovvvcoiieveniiienieniieae e, 115
and the MINIMUM QISTANICEooviiiiie i e e 117
The value from the composite training data set..............cccocoiieciiviiiive e, 120
The value from the composite testing data set...........ccccoveiviiiicion i 1214
NOVEIY DELECHION ...oovieiitie ittt ettt en e ee et e e sesearsae e 123
Example plots of voltage and resistivity: Training datac.o.ccocoeevveeiiiiicienas. 128
Voltage and resistivity: Testing dataccoociiiiiiiiiiccice e 129
Error and abnormalities: The first test group (Neural Tree)........occoooveivvieiiers v 130
Error and abnormalities: The second test group (Neural Trec)ccocooovviiiiiinen, 132
Estimated density and approximation error: The first test groupccc.ocoveveeiiennnn. 134
Error and abnommalities: The first test group (GKE: tnput)............ccooooiiinnn . 138
Error and abnormalities: The second test group (GKE: input).....cc.ococvivirivienenens. 136
Estimated density and approximation error: The first test groupccooeeino 138
Error and abnormalities: The first test group (GKE: input and output).................... 139
Error and abnommalities: The second test group (GKE: input and output)............... 140
Minimum distance and approximation error: The first test group...........cccoccoeiee 142
Error and abnormalities; The first test group (Minimum distance)cc..c.cccoce.... 143
Error and abnonomalities: The second test group (Minimum distance) 144
The weighting factor and the correlation coefficient: The first test group 145
Minimum weighted distance and approximation error: The first test group 146

X1

Figure Page

80

81

82

83

&4

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Error and abnormalities: The first test group (Minimum weighted distance) 147

Error and abnormalities: The second test group (Minimum weighted distance)...... 148

Variance of principal components: Training data............cccoocoiveivcciinccn e, 150
Minimum distance and the sum-square value: The first test group...........ccooeee.... 151
Minimum distance and approximation crror: The first test group.........c.ooveeveennenn.. 152
Error and abnormalities: The first test group (Minimum distance and PCA) 153
Error and abnormalities: The second test group (Minimum distance and PCA) 154
Data points with large and small approximation error: Training data.................... 158
Novel Data: The first test group (Neural Tree).......coovoiiiiieni 159
Error and abnormalities: The first test group (Neural Tree)......cooooooiiiiieiiiianen, 159
Novel data: The second test group (Neural Tree) ... 160
Error and abnormalities: The second test group (Neural Tree) ... 161
Estimated density and approximation error: The first test groupcoovvrnirnn. 62
Error and abnormalities: The first test group (GKE: input)........ccocoooooiiiiin o, 163
Error and abnormalities: The second test group (GKE: input).....ccocooivivieron e 164
Estimated density and approximation error: The first test group ... 165
Error and abnormalities: The first test group (GKE: input and output).................... 166
Error and abnormalities: The second group (GKE: input and output)c.c.o.e 167
Minimum distance and approximation error: The first test group........ccccceeieae. 168
Error and abnormalities: The first test group (Minimum distance)c..cooerene 169

100 Error and abnormalities: The second test group (Minimum distance) 170

X1

Figure Page

101

102

103

104

105

106

107

108

The weighting factor and the correlation coefficient: The first test group 171
Minimum weighted distance and approximation error: The first test group 172
Error and abnormalities: The first test group (Minimum weighted distance) 173

Error and abnormalities: The second test group (Minimum weighted distance).... 173

Minimum distance and the sum-square value: The first test Broup..........ccooovve..n. 176
Approximation error and minimum distance: The first test groupc.o...coeo..e. 177
Error and abnormalities: The first test group (Minimum distance and PCA) 178

Error and abnormalities: The second test group (Minimum distance and PCA).... 179

xiii

CHAPTER 1

INTRODUCTION

One of the key tasks for neural networks is function approximation or plant identi-
fication. The ability of neural networks in these applications has been well documented.
However, a major factor that limits the usage of neural networks is the difficulty to identify
the rcliability of the neural network outputs. The procedure to determine whether or nol a
ncural network generates credible results is known as network validation or novelty detec-
tion. Our objective is to compare the performance of existing novelty detection methods as
well as to find improvements to these techniques.

We will start our work by reviewing the general structure of neural networks for
function approximation. A simple example will be used to show the ability of the ncural
network in performing this task. We will then demonstrate the main problem of functian
approximation using this example.

After the limitation of neural networks is shown. we will introduce existing novelly-
detection algorithms. The simple example will again be utilized to exhibit the capability of
each novelty detector.

We will propose a procedure to improve the performance of some algorithms, fol-

lowed by a demonstration of the ability of the modified novelty detcctor via the example.

We will show through the simple example and our real world applications that the modified
methods result in improvements in novelty detection.

Let us now outline the flow of this work. Chapter 2 will serve to review neural net-
work background material, starting from basic concepts to the general structure. One of the
main objectives of this chapter is to introduce common notation used in later chapters. We
will finish this chapter by introducing the use of neura) networks as function approximators.

In Chapter 3. we will introduce an existing algorithm known as the neural tree. We
wi]l explain how we can use this algorithm as a novelty detector. A simple example will be
used to illustrate the capability of this method. We end this chapter by introducing a mea-
sure of algorithm performance.

The most widely-used method for novelty detection will be described in Chapter 4.
The method i1s known as the Gaussian kernel estimator, in which the probability density
function will be involved. A technique for improving the performance will be described. Tt
wiil be followed by simulation results.

Chapter 5 will describe another algorithm, the autoassociative multilayer percep-

tron. The example will demonstrate the capability of this method. A technique for improv
ing performance will be described, followed by an application to the simple example.
Then, in Chapter 6, the simplest method, known as the minimum distance algo-
rithm, will be introduced. An example will be used to show the efficiency of this method.
An improvement to this algorithm, which is called the minimum weighted distance, will be
proposed, followed by an example. The mathematical framework that teads us to the idea

of the minyimum weighted distance algorithm will be discussed as well.

In Chapter 7 we explain the idea of principal components and outlier detection, and
explain a new technique that combines the knowledge of outlier detection with the mini-
mum distance algorithm. This is followed by an example.

Chapter 8 will be devoted to applying the techniques explained in Chapter 3, 4, 6.
and 7 to real world data. We will provide short explanations of these methods within this
chapter. A performance comparison of these algorithms on real world data will be summa-

rized at the end of this chapter.

A summary of the main results and contributions of this thesis, followed by recom-

mendations for future work will be contained in Chapter 9.

CHAPTER 2

LITERATURE REVIEW

Introduction

This chapter describes the fundamental concepts of the neural network and intro-
duces the associated notation. It will start with an analysis of a single-input neuron, which
is the smallest and the most basic component in the neural network. and this leads to more
complicated architectures. The simplest architecture has a single layer of neurons. The
more complex architectures have several layers. The multiple layer network has been wide-
ly used to perform pattern recognition. However, this chapter wil! focus on how 1he multi-
ple layer network can be used for function approximation.

After we introduce the basic neural network concepts, the concept of novelty detec-
tion in neural networks will be explained. We will define what novelty detector is and will
describe when it will be applied and how tf relates to neural network function approxima-
tors.

Single-Input Neuron

A neuron is the smallest processing unit in the neural network. It has a scalar inpul
p and a scalar output a. The input is multiplied by the scalar wejght w and then added to

the scalar bias & . Now, the output of the summer, whichis n = wp + b, will be fed o the

input of the transfer function f. The output of the neuron is described by the following

equation.

a = f(n) = flwp+b) (1
The weight and bias of a neuron can be any real value. They are adjustable parameters and
are adapted by some learning rule.
The transfer function of the neuron can be a very simple linear function, or it can be
a more complex nonlinear function such as the hard limit function (hardlim) or the loga-
rithmic sigmoid function (fogsig). The transfer function will be specifically chosen, de-

pending on a particular problem that the neuron is going to solve.

w n
p—_p'Z——E—Va

1
Figurc 1 A Single Neuron

As seen in Equation (1), the weight w controls the slope of the neuron oulput and
the bias b causes a translation in the neuron output. Next, we will give simple examples to
demonstrate how the weight and bias affect the output of the neuron. The insights provided
by these examples will be helpful when applying neural networks to the practical tasks that
wil) be described later.

Let the transfer function f be the pure linear function purelin. The relation be-

tween the neuron input and output is

a=f(wp+b) =wp+b (2

The following figure demonstrates this relationshipforw = | and b = 0.

" |

-3

-4

Figure 2 Pure Linear Transfer Function
The following figures show how changes to the weight and bias affect the response. Figure

3 illustrates the effect of changing the weight from 1 to 3. The effect of varying the bias is

shown in Figure 4.

Figure 3 Effect of Weight

6

Note that when setting b = 2, the graph will shift to the teft by —é . This is shown in Fig-

ure 4, where the graph shifts to the leftby 2 for b = 2 and w = 1.

Figure 4 Effect of Bias

In the next example, we let the transfer function f be the hyperbolic tangent sig-
moid. The hyperbolic tangent sigmoid function is a monotonically increasing function
shown in Figure 5. This function has been extensively used for function approximation

problems, as will be explained later in this chapter. The formula for this function is

firn) = (%)

Figure S Hyperbolic Tangent Sigmoid Function
The function output is bounded to the range of [-1,1], regardless of how large the input is.
The input-output relationship is almost linear in a small region near zero. The effect of

weight and bias are demonstrated in the following figures.

1.5

1 waight = 3
05
= 0
[
|
L
1
|

waight = 1

Figure 6 Weight Effect

Figure 7 Bias Effect

As in the case of the pure linear function, increasing the weight value increases the slope

of the graph. The bias shifts the center of the graph to the point —P-.
)3

v
Multiple-Input Neuron

Commonly, a neuron can have several inputs. R inputs connecting to a neuron are

expressed as pT = [Pl Pa .. pR:l . A neuron with R inputs is shown in Figure 8.

’——ndf—>u

Figure 8 Multiple-Input Neuron

The netinput for this neuronis n = w, |p;+w| ypy+ ... + w) ppp+b. Notice that the

number of weights equals the number of input elements R . The first weight subscript indi-

cates the destination neuron whereas the second subscript indicates the input element. For

example, w, ¢ means that this weight represents the connection to the first neuron from the
fifth input pg. We can write the net input n in matrix form:

n=Wp+b (4)
Then the neuron output a is written as:
a = f(n) = (Wp+b) (5)
Network Architectures
A single multiple-input neuron may not be able to perform all tasks. Several neu-
rons, operating in parallel, are called a ““layer”. A layer of neurons will be discussed next.

fotlowed by a discussion of multiple layers of neurons.

A Layer of Neurons
The architecture of a single layer of S neurons is shown in Figure 9. The archilec-
ture possesses R inputs, and § outputs. Note that the number of inputs R is not necessurily

equal to the number of outputs S.

]
~

Wi |
P]b

Pq

as

I’
W

[\ ad
[3%)

Pr

n
Ky
We R 2—>f——>“s

;

Figure 9 A Single-Layer Network

The input vector p is connected to each neuron through the weights, which will be

defined as W .

Wi Wy oo W\,/J

W= (W2 waa wz.‘R 6)

[Ws.1 Ws.2 - Ws g
A tayer of multiple-tnput neurons is sufficient to solve some problems, such us lin-
ear adaptive filtering, or simple pattern recognition tasks, etc. However, this structure is not
adequate for approximating arbitrary functions. The more general multiple layer architec-
ture will be introduced in the next section.
Multiple Layers of Neurons
This network consists of several layers, connected in series. Each layer has the same

structure as noted earlier. Because this architecture has several layers, the superscript will

A . . . k
be used to identify the layer number. Consequently, a weight can be written as w ;. where

k denotes the layer to which the weight belongs. A three layer network is shown in Figure

10.

2 Y nf»E W‘?Ilf)‘li1 . {Ii’
A ¥ b3 by
1
B

)
Wi

}] 2 I 3 1
n, l n3 "3 T
) f Y7)Y P SR
b b3 b3
]] |
PR l ng l n%z ng‘ 4
bl S A R
} bl wEs AL, Vs s Ry
Sk bg: \
]

Figure 10 Three-Layer Network

The first layer of neurons has R input elements, 5" neurons and §' outputs. The
second layer has s’ input elements, % neurons, and §* outputs. Likewise, the third layer

. 2. a 3 | .2 a .
contains S nput elements, S° neurons and §” outputs. §,S” and 5§ are the number of

neurons in the first, second and third layer, respectively. In the general case the number of

layers js arbitrary.
The weight in the first layer is expressed by the notation of W', This layer weight,
W' _is the matrix with dimension §' xR . Similarly. W and W* are the weights in the sec-

ond and third layer, respectively. W2 has dimension §%xs’ . while the size of wis

s2est. Generally, the weight matrix at layer k, wt , has dimension §5es* ™" A nework
comprised of R input elements. s'. 52, and S” neurons will be referred to as an
R-S'-5*-§ nework.

The output of each layer is the input to the next fayer, and is denoted a* . Forin-

stance. the output of the second layer is denoted a’. The last layer of the network is called
an “output layer™. The other layers, which are internally connected between the input vector
and the output layer. are commonly called *“hidden layers".

This structure of the network ts powerful enough to estimate arbitrary functions, us
will be shown below.
Function Approximation

Multilayer networks have been broadly used as function approximators. For exam-
ple, in control systems neural networks are used to mimic plants in order to get proper feed-
back signals. They have been widely used to compensate for channel fading in
telecommunication systems. Adaptive filtering is another application employing neural
networks. The function approximation abilities of neural networks are discussed below.

: ok , A
The multilayer network has several layers of neurons with S neurons in the k'

layer. Normally, the number of Jayers of a network, N, is two or, at mosl, three. The number
of neurons in the hidden layer is heuristically specified. and depends on how complex the
function is. The number of neurons in the output layer depends on the number of outpuls in
the desired function. Though it seems that the more neurons in the hidden layers, the better
a network can perform, it is possible that an overly complex network can overfit on a finite

11

training set. Thus, the appropriate number of neurons is dependent on the individual prob
lem.
Suppose that the network is a two-layer | —2 — { network, as shown in Figure [I.

Let’s assume that the hyperbolic tangent sigmoid is used in the first layer, and the second

tayer transfer function is linear.

wl].l 2 '
p ?"l’ " 2
I =
]) | f » U
wi | y i,
.
]

Figure 11 An Example of Network for Function Approximation

The input/output relation is shown in the following equation.

a® = f(p)
= AW W'pab'y+ bY
| |
2 3 w b
fz [W;J wl~. :If1 :‘| P+ ' +bf

2 I (7)
Wal b,

I |
1w b 2

= [t w2 e 1

Wai b,

where fz(n) = purelin(n) = n and)‘J(n) = tansig(n) = cn— -
e +e

We have trained this network to approximate the function f(p) = p4 over the range

p € [-1, 1]. After training, the following weights and biases were obtained:

W - {—33;.()033]' b= [::ﬂ W= 122 12] and b = [5.4)] (8)

, 4
Figure 12 shows the network response as well as the target values p . The network outputs

are very close to the targets. This is just an example that a multiple-Jayer network can be

used to approximate arbitrary functions.

1.2 R e R 7
[_ { — network oulput | !
L largal | !
1 |
\ I
\ /
0.8 \ J i
\\ B
0.6 \\
A
0.4 \\ !
0.2 N yd
\'\‘\ - -
0 T - J
0.2t T .
-1 -05 o 05 1
p

Figure 12 Network Outputs and Targets
There are many algorithms, such as the Levenberg-Marquardt algorithm, the Baye-
sian regularization algorithm, and the gradient descent algorithm. to train the weights and
biases. Such algorithms are in general called “backpropagation algorithms™, and can be
found in many books and papers, such as [HaDeBe96], [HaMe94], {Fahl89], etc. They gen-

erally minimize errors between targets and network outputs. The mathematical denvations

of these algorithms will not be included here since they are not the focus of this project.
Note that the error minimization process in a neural network is also called “training™.
Now that we have discussed the basic concepts. we will next introduce the concept
of “novelty detection”.
Novelty Detection in Neural Networks
Introduction
Recall from the last section that a network, given a sufficient number of neurons,
can be trained to approximate arbitrary functions. However, the performance of the trained
network will be dependent upon the data set that was provided during the training period.
In other words, a training algorithm minimizes the errors between the targets and network
outputs, for the training data set. When the network is subjected to data that were not in the
training (usually called “testing” data), what will the outputs of the neural network look
like? Will the network still approximate the function accurately? The following section will
describe this problem.

Consider the previous example in which the network was trying to approximate the

function F(p) = p4 . The inputs p fed into the network during training process had the
range of [-1,1]. The outputs of the network eventually looked similar to the targets for this
range of input. Now, suppose that ncw inputs that are between [-2,2] are applied to the net-

work. The results of this test are shown in Figure 13.

'BI._ ~ -. ._ . -
| — network outpul
14 L target

N

Figure 13 Network Outputs and Targets on Testing Data

In the region of input data between (-1,1]. which is the same as that of training data,
the network performs well, as expected. However, the network performs poorly outside this
region, producing very large errors between targets and outputs.

Unfortunately, in real world applications, it is difficult to tell when an input vector
falls outside the range of the inputs ip the training set. Should we count on the network oul-
puts? The next section will describe what we can do to alleviate such concerns,

What is Novelty Detection?

As shown in Figure 13, the network did not accurately approximate the function
outside the traming range. Therefore, we need to be able to tdentify when an input vector
falls outside the range of the training data. This 15 called “Novelty Detection™. In other
words, novelty detection methods should have the capability to detect input duta that are
“abnormal”. We expect that this data will generate large errors. If we can detect whether or

not inputs are unusual, confidence in the network outputs would be stronger. Novel data

(which may cause considerable errors) would be rejected, whereas standard data (giving
desirable outputs) would be accepted.

Considering the example shown above, some might think that novel data could be
easily distinguished by picking up data points out of the training data range (bounded be-
tween [-1,1] in this case). Then the rest, which occupied the interval [-2,-1] and [1.2]. would
be novel points. In practical applications, the dimension of the input to the network will be
much larger than that of the input (one) shown in the example, making it much harder to
detect these “unseen” data points. When the dimension of the input is large, the distinction
between interpolation and extrapolation will be much more ambiguous. Therefore, differ-
entiating the boundaries between normal and abnormal data is much more difficult, making
it harder to decide whether a specific input should be accepted or rejected. In the next sec-
tion. some algorithms for novelty detection wili be introduced.

Algorithms for Novelry Dereclion

As discussed thus far, whether or not the output of the network for a particular tesi
input should be relied on is dependent upon the difference between the test input and the
inputs in the training data. For example, in the above example, if an input was in between
the interval [-],1], a corresponding output would be accepted, since the network was trained
to perform well in this interval. In contrast, if an input was out of the range (-1,1], a corre-
sponding output would be disregarded. In other words, inputs will be identified when they
are not close to any training inputs. This concept leads to some existing algorithms, such as
the neural tree [Mart98] and the minimum-distance computation. They are similar, in that

they will flag any data as "abnormal’™ when the input vector is far from any training data.

The performance of the minimum-distance algorithm could be improved by applying some
weighting factors, which will be explained in Chapter 6. The algorithm that uses the Gaus-
sian kernel estimator model [Bish94), as elucidated in Chapter 4, works by means of com-
puting the probability of the existence of an input vector in the trairing data near the test
input vector.

Unlike the algorithms described above, we can also use autoassociative multilayer
perceptron for novelty detection [FrGoPr96). This method, which will be explained in
Chapter 5, is used to recognize input vectors in the training data. An additional neural net-
work is trained to memorize what the training inputs look like. Finally, the combination of
principal component analysis and newly-defined minimum-distance computation witl be
discussed in Chapter 7.

Summary

In this chapter, the multilayer neural network was introduced. We described the
ability of the multilayer network to operate as a very general function approximator. These
multilayer function approximators are very good at interpolating between data points on
which they were trained. However, they are not good at extrapolating outside the training
set. The remainder of this thesis will present algorithms that can be used to detect when a

network is performing an extrapolation.

CHAPTER 3

NEURAL TREE ALGORITHM

Introduction

The neural tree algorithm, originally proposed by [Mart98], is the combination of
an unsupervised learning competitive network and a binary tree. The method takes advan-
tage of fast learning, because it only deals with scalar information, unlike competitive net-
works that require matrix computation. Therefore, the algorithm generally uses less
training time than competitive learning.

In this chapter, we will start by defining the notation used in this algorithm and by
explaining how they relate to the data distribution. Then the process of learning the data
distribution, i.e. training a tree, will be explained. After the tree is trained, the procedure for
using a neural tree for novelty detection will be explained, and simple compulter simulations
will be shown. Finally. we will explain how to measure the effectiveness of a novelty-de-

lection algorithm.
Neural Tree Algorithm

The neural tree hierarchically partitions a g -dimensional space into cells, separated
by hyperplanes orthogonal to coordinate axes. As with any common searching tree, the

neural tree contains nodes. The node that is at the top of the tree is called the root node,

20

while the others are called child nodes, or leaf nodes. Each node stores a “weight™ w,;. The

i hyperplane deciston boundary is orthogonal to the j coordinate axis, and the position
of the hyperplane is at w along axis j . Below the last level of children nodes are the “cells™.
A cell represents a certain region in the hyperspace that is hierarchically partitioned by the
wejghts. Note that an N-cell tree has N — | nodes that need to be trained. Figure 14 is an
example of a 4-cell tree structure (having 3 nodes). The “circles™ represent nodes. and

“rectangles” represent partitioned cells. From Figure 14, the 2-dimensional hyperspace can

be divided into four cells as illustrated in Figure 15.

C2 C3

Figure 14 4-cell Tree

& e

012

t co @
24
dd[
-8

| ~,)

7Y PR I I SRR, S "

-1 0.8 .6 1 0.2 Q 02 04¢ ae o 1

b\

Figure 15 Partitioned Cells in Hyperspace
The cell C1 occupies the region less than weight w | along coordinate axis I, C?2 is the

region between w), and wy, along axis | and less than w,, along axis 2. Similarly, C3 is

restricted to the arca greater than w,, along axis | and less than w,, along axis 2. C4 oc-

cupies the area greater than w,; along axis | and greater than w,, along axis 2. Therefore.
the weights w;; determine the boundaries of cells. In the 2-dimensional hyperspace, any

T th
data p, = {Pkl pk,] can be located in a certain cell by first comparing its j element

where j € 1.2, py,, with the root node Wy If Prj> Wiy the data p, wilt be senl 1o the

right child node. Otherwise, 1t will be sent to the left child node. The scalar comparison will
keep going until there is no node left to be compared. For example, from Figure 14 and Fig-

ure 15, assume that p,, <w, . the data p, will be sent to the left child node. However,

since there 1s no left child node under the root node, the scalar comparison is stopped and

p, is belongtocell C1.

The following section will describe the algorithm for adjusting the weights. Details
and proofs can be found in [Mart98].
How the algorithm works

In order to train a tree, we need to initialize it first. The initialization process can be
done in several ways. We can randomly select two values, j and w, for initializing a node.
However, the initialized tree may be a very poor fit to the data distribution, which can make
training difficult. Alternatively, all N - 1 nodes of an N -cell tree can be initialized by using
N random samples from the training data. This method will be sensitive to the selection of
the N sampled data points. To reduce the sensitivity to the sampled data, a method called
norminal Initialization can be applied, which considers the distribution of the entire train-
ing data set before constructing a tree. This 1s explained in (MaRoGi85], and [RiGr91]). In
this thesis, we will initialize the tree by sampling the training data set.

We first need to find an axys to which a decision hyperplane will be orthogonal, and
then we need to compute the location of the decision hyperplane on the axis. To locate Ihe
axis, we compare the element of an incoming data vector and a previous vector that is lo-
cated in the same partitioned cell. The element of the vector that shows the biggest differ-
ence is selected as the axis that will be orthogonal to the hyperplane. Then, the location of
the hyperplane on the axis is found by computing the mean of the corresponding element
of the two data points. The initialization process will continue until the desired number of
cells is reached. Note that when the process is done, each partitioned cell will contain only

one data point. An example of the initialization process is given below.

Assume that a four-cell tree is to be trained. Four sample vectors must be drawn

from the training data, and suppose that they are

d, = -0.50 d, = -0.40 dy = 0.80 d, = 0.70 (9)
-0.80 ~0.30 0.70 0.75
First, the samples d, and d, will be compared in order to place the root node. The differ-

T
ence between the samples is Id, - d3| = [0_1 0_5] . Therefore, we will place the hyper-

(-0.8) + (-0.3)
2

plane on the p, axis at the location = -0.55 . making the root node weight

wy, = —0.55. Therefore. d, is in the cel] above the boundary p, = -0.55,and d, is in
the cell below the boundary.
Next, we will apply d, to the initialized node by comparing the second element of

d4, 0.7, with w, . [t (urns out that 0.7 > -0.55, and thus d, is in the cell above the bound-

ary p, = =0.55. which is the same region as d, . Therefore, we will compute the differ-

T
ence between d, and d,, |d2 -dy| = [1_2]_0] . Since the first element ix greater than

the second, we will set up a hyperplane orthogonal to the p, axis at the location

(-0.4) + (0.8)

]

= 0.2, thereby making w,, = 0.2.

Now, d, is below the boundary p, = -0.55, d, is above p, = —0.55 and less
than p, = 0.2, while d, is above p, = -0.55 and greater than p, = 0.2. We will con-

tinue the initialization process by applying d, to the initialized tree by finding the cell that

d, falls into. Since 0.75 > -0.55 and 0.70 > 0.2, d, is in the same region as d,. We will

T
calculate the difference again, |d; - d,| = [0.]0 0}05:’ . We therefore put the new hyper-

(0.8) + (0.7)

plane on the p, axis at the location 5

= 0.75, resulting in wy, = 0.75. We

now have the desired number of cells, and we therefore stop the initialization process. Fig-

ure 16 shows how the hyperspace is divided into 4 partitioned cells.

“i o2 (3% [

Figure 16 Initialized Divided Hyperspace
The corresponding tree structure that wil} represent the divided hyperspace is shown Figuce

17.

28

(& 4

Figure 17 Tree Structure

After we have the initialized tree, the next step is to train those weights contained

r
in the tree. Suppose that a vector p, = [p“ Pig - Pij - pk‘;l flows to node i, which

stores weight wi;. at layer K. If Py S Wi the vector p, will be sent to the left child node
directly under node i. Likewise, if"’kj > w;; . the vector will be forwarded to the right child

node directly under node i. Simultaneoustly, weight wij will be updated according 10 the

following equation.

| N T T .
wi(t+ 1) = Wij(l)+n(1)(r)(Pyy) L(')(P’U))

: 10
n (i) n(i) (10
where N{t) is the learning rate at time ¢ with
L) | Py € L(1) .
'. 3 = \ (1)
L Py 0o ; Py € L)
and
L) 1 Pij € R(I) 02
ROPPH = Vo p, e RO

where L(1) and R(i) are the unions of all partitioned cells belonging to the left or right sub-

tree of node i, respectively. The terms n,(i} and n (i) are the number of partitioned cells

associated with the left and right subtrees under node i . Note that the learning rate n(r)
can be adjusted with time. Its value will be reduced during training so that the algorithin
will converge.

The algorithm is a top-to-bottom learning method; training the root node first and
then down to the lowest Jevel of children nodes. We will apply the next input vector to the
root node and the method will be repeated. Notice that as tong as data are applied to the
tree, the boundaries of the cells will gradually move in accordance with the weight update
in Equation (10). Therefore, the location of the hyperplanes of the partitioned cells at this
moment are still in transition. The tree will learn the data distribution until the final input
comes in. After training is complete, all the nodes in the tree will contain fixed weight val-

ues. We can refer to a specific cell in the final tree by using the following notation:

Ce |(a. b)), (az.bz),...‘(aq, bq)] (13)
The meaning is that the cell C occupies the region from a, to b, in the first coordinate
axis, from a4, 10 b, in the second axis and so on. For example, recall Figure 15, cell ()
represents the region [(—oe, w), (-2, #) | . The quantization range of the first coordinate
axis is defined as |a| - b)|, and is likewise to any other dimension. Notice that the quanti-

zation range is now unmeasurable. The following section will describe how to make it inea-
surable and how the neural tree algorithm relates to novelty detection. The convergence of

the algorithm was proven in [Mart98].

27

Application to Novelty Detection

After training is complete, the neural tree contains fixed boundaries. which partition
the hyperspace into different cells. We would like to use the trained tree to detect future
inputs that are unlike the inputs used for training (i.e., we are looking for novel inputs).
There are two approaches to identify these nove] data. The first approach is to compute
probability density of each cell. If the probability density of a cell is low, it indicates that
data within that cell is less likely to occur. Therefore. any data falling in a cell having fow
probability density will be more likely to be rejected as novel data. For the second ap-
proach. data will be identified as novel when it is outside of a cell. We will explain these
two approaches in the following paragraphs.

For the first method (identifying novel data by estimating the probability density),

Martinez [Mart98] suggested that the probability of a vector falling into a cell is equal to

/lV' where N is the number of cells. Therefore, in order to obtain the probability density, we

need to divide the probability by the cell area in the two dimenstonal space (or voluine in
high dimensional spaces). That means that if the volume of a cell is large, the probability
density of a vector falling into the cell will be low, thereby making the data in the cell prone
to being rejecting as novel. As we mentioned at the end of the last section, some cells oc-
cupied in(inite arca (in the two dimensional data). We need to limit the occupied region of

a cell. Martinez suggested using the maximum and minimum value of the training data.
That means that the unmeasurable value will be replaced by -1 or | in the normalized hy-

perspace. For example, in Figure 15, after training the tree, cell C1 will occupy the region

28

[(-1,wy)), (=1, 1)]. Then, the area or volume of cell Cl that was infinite is now comput-

able. Therefore, the probability density of cell C1 will then be (‘—IJ/(|— l-w, I| x|-1-1]).

As we explained earlier, the density of a cell will be low if the volume of the cell 1s high.
And, any data falling in the cell will be more likely to be rejected as novel data since the
chance of such data occurring is small.

For the second approach, novel data will be identified when they are out of the celi
boundaries. In this case, the maximum or minimurmn values of training data in a cell may be
used 10 limit the cell size in every dimension. Note that we may use the other values such
as the maximum or minirum plus some margins to limit cell size. A further study ot how
to choose an appropriate margin may be required. However, we will use zero margin in this
thesis. By applying this technique, every cell size will be fixed and finite. After we perform
this procedure, the tree can be used for novelty detection. After an input vector follows the
tree structure and is focated at a cell, the algorithm determines whether the input vector iy
more than a certain distance beyond the cell boundary. Abnommalities are identified when-
ever input vectors are outside of their cells regardless of which boundaries they break.

We will show the simulation results of these two cases for novelty detection in the
following example.

Simulation of a simple example

We will begin this section by demonstrating the capability of a neural network for

function approximation. Then, novelty detection using the neural tree algorithm with the

second approach we discussed 1n the last section will be applied. We will also show the

29

simulation results using the first approach (density estimation) and will introduce the prob-
lem of utilizing this approach for novelty detection.

The following is a two dimensional example used to demonstrate novelty detection
employing the neural tree algorithm. This example will be used to demonstrate the other
algorithms as weli.

In the example, a two-layer feed forward neural network, with 40 neurons in the

hidden layer and one neuron at the output layer, was trained to approximate the following

function.

-
Il

F(p) :Vp

Alpred)

sin(10 p? +p§)

(14)

2 2
10,/p| + p»

Figure 18 is a graph of the function F(p).

Figure 18 Function F(p)

30

Figure 19 shows where the training data is located.

o

oo

ooa
234

Soa
uo0 DOO CO0 D00 Soo

&
000 000 Ton

By
Dowdd odh

© Q0D OpQ NAaL Q30 gad 090 000 240 O00

b
0006 aed

00 QOO QOO GO DGd

¢ ooc 2aa

&

v
5

>

L L "
.8 -8 -4 =022 o [.3 (Y] [Y] [:3]
P,

Figure 19 Training data
Figure 20 shows the error on the 638 training points from Figure 19. We can see that the

network provides an accurate approximation to the function for all training points.

v
™

fro
w

o8 I

Wik

Figure 20 Error between target and network output after training

N

Figure 21 shows the ertor between the output of the function and the output of the

function approximator. We can see that the errors outside the training data are larger than

the errors within the training data region.

Figure 21 Error between target and network output in lhe normalized hyperspace

Assume that we are going (o test the trained network using 437 new data points. The

lesting and training points are shown in Figore 22.

o
Testag Data

fo—ogo—egoege—gre-—qpogpo—geepee—geo?

> Q€0 o420 000 OCOD COO DDhC OHOO COO &

o5 £@0 850 040 Q0D DOO0 00O DOS L0 _
400 pBS DAO TOS D08 Ao 000 COO]
ood 00T 0J0 09 Lfa Sfo oo Jao |

2 000 00O GNA DDL OCD Q0D Dac |
QGo $O2 000 O0a CO@ 400 AN

s 090 000 ODO QO
.o

9 €00 00D 1

Datn

Tiring

"
<
x
¥
x
x

&

<
0D URS 088 AARr800
00 CJ0 €98 @Re~BWOL UID
gl €00 000 DOO 0Q0 YL
2 Q¢ 200 0L QD¢ DO VOY
GoO Q40 Qor DULD QDU gap 99
T 9000 o0& 000 0DC 02P DAL CUn
Do0 QD0 CCD ODO TCO 20D QCU OO0
ooD RO3 CTO00 99¢ CO0O 40 QOg o900 o
00 <S02 o< 000 Q00 0L eoQc Coo0 000
Boa SO0 Q6 QOO V¢S Q02 OO0 OO0 00U O

© = o = =) o

a6

i)

Figure 22 Testing and Training Data
3}

Let's apply the 437 test inputs, p'\ to the trained network. Figure 23 shows the er-

rors on the testing data.

3. S R e B

[2h

Figure 23 Error of the testing data
The large errors that occur in Figure 23 are for inputs outside the range of the tramn-
ing data. We would like to use a neural tree to detect inputs outside the range of the training
data. This would enable us to determine the reliability of the multilayer network output. [n

this example we use the tree described in Figure 24 and Figure 25.

33

|

-1 01 -ba G4 =01 [} a2 64 ne o

C? c? 3 cd CS c6 (7 c8

Figure 25 An 8-Cell Tree

After the tree structure was created, the training data were vsed to train the tree.

Training took about 0.55 seconds on a 300 MHz PC, with learning rate 1 (1) =

. whiere

0.3
14

1 1s the number of data points that have been applied to the tree so far. The {earning rate is

decreased during training to insure convergence. Now., after training the final weights are

shown in Equation (15).

34

wy, = 0.1010,,

wy = -0.7153;,

wg, = 0.5492,, (15)
wg, = 0.1398;,

wey = ~0.1000¢,

wyy = -0.0182,,

Figure 26 shows the final partitioned cells.

— . |
- !
owr o <
osp ¥y 5 ce
04 N
: o
92}, . :
.
kil s, 3
a o . "7_
Py
ci [}
41
Yy ey
28
LJ " L/
' o8 LY} ot oy ® [o4 YY),

Figure 26 Partitioned Cells After Training
Every cell in the trained tree covers an infinite arca. For example, cell C1 covers
the Cl € [(—=ee, =0.7153), (=00, 0.1010) | . Therefore. we need to limil the cell size. 1n this
example, the maximum or minimum values of the training-data points falling in a cell will
be used to limit the cell sizes. This approach gives cell C1 a finite area, which 1s denoted

by C1 e ((-1,-0.7153), (-1, 0.1010) | ; the minimum value of data within cel} C1 in the

15

first dimension is —1 . This is also the smallest value for the second coordinate of training

dataincell C1.

Novelty detection can be implemented after every cell has bounded area. The algo-
rithm defines abnormal data as data outside of any cell. Figure 27 illustrates novelty detec-
tion by plotting training data, testing data, and identified abnormalities within the testing

data.

“recosboa

N trveanrtr et
i
vesveevcorsaneds
desradrbbassanse,
D
000088 -t)rre 00008
COREPErartoers s OBROR

————

|

Figure 27 Abnormalities outside the cells
The next step is to test whether data flagged as novel is correlated with large errors
in the multilayer network output. (Recall that the purpose of novelty detection in this thesis
is to identify inputs for which the trained multilayer network is unreliable.) Before doing
so, we will introduce our indicators to measure the performance of novelty detectors.

When performing novelty detection to reject or to accept data, we can make two

types of errors. In the first case, we reject data, even though they create small errors. In

16

the second case, we accept data even though they generate large errors. The following table

illustrates these ideas.

Table 1 Novelty detection decision vs. approximation error

Decision\Error Small] Error Large Error
Accept Correctly-classified data Misclassified data
Reject Misclassified data Correctly-classified data

From the above table, one might ask how we decide what is a small error or what is
a large error. Throughout this thests, we consider the error as unacceptable when its value
is greater than 0.15 in the normalized hyperspace, in which targets are bounded belween
[-1,1). The threshold used to accept or reject data will vary from algorithm to algorithm.
For each algorithm we will indicate the threshold we use.

Anindicator we will use to measure the performance of the algorithm is the percent-
age of misclassified data points. Clearly, the Jarger the percentage of misclassified points.
the worse the algorithm. However, keep in mind that the percentage of misclassifications
depends on the definition of large error. For some applications, the error for abnormalities
is required to be very small to guarantee the reliability of the network output. For example,
if the large error (abnormality) 1s defined as the error greater than 0.01, the percentages of
misclassifications we will show throughout this thesis will be changed as well (since we

defined the large error as greater than 0.15). Note that from now on we will use the term
type I error to represent small-error data that is rejected by novelty detection. On the oth-

er hand, type Il error will represent large-error dala that is accepted by novelty detcction.

37

From the above example, the percentage of misclassified points for the neural trec

algorithm was 25.17%. Figure 28 illustrates the error of the testing data and the data marked

as abnormal. (The abnormal data points are flagged with an x at the bottom of the figure.)

Figure 28 Error and Abnormalities of the 8-cell tree
We can see in Figure 28 that some large-error points were identified. This 15 be-
cause some testing data outside the training data region were undetected (shown in Figure
27). This 1s due to the fact that we do not have enough cells (we had only 8). Therefore,
increasing the number of cells will be a way to detect such data. By increasing the number
of cells to 200, the time used to initialize and train the 200-cell trec was 4.51 seconds. The
time utilized to identify abnormalities of the 437 testing points was 1.36 seconds. Figure 29

demonstrates data that the 200-cell tree decided to mark as abnormal.

38

remseliiiiii
CEBEB . h e A
-0 SR8 E -
SPODBEBR " v a4«
I L I
D L LEREE X E N 1 IEECEEEE RN
[JXAERE Y RN N
AL LR L LAl
LA EE EE LN B I IR IR I
seoaessa
o1k
[}
I
W "
) £d | ~06 D4 -2 -] -3} o4 04 on 1

Figure 29 Abnormalities from the 200-cell tree
We can see that almost all of testing data outside training data region were identified as ab-
normalities.
Figure 30 shows the error from the function approximator on the testing data and

indicates data marked as abnormal.

:. HI‘ | ‘ |

| 1 ! .‘ |
T 'H M‘J L! "\ jl | M

L'J'lLJ_.'lIP i

Ermon

Figure 30 Error and abnormalities of the 200-cell tree

As seen in Figure 30, most of testing data were identified as abnormal. Although most of

kD)

the testing data that fell outside our training data were detected in Figure 29, the number of
misclassification was 46.91%. All of these misclassified points were classified as novel, al-
though the errors were small (type] error). Although we can see that the percentage of mis-
classifications for the 200-cell tree was larger than for the 8-cell tree, we should realize thal
this percentage is from only one data set. The percentage we show here will not apply to
every data set.

From this chapter thcough Chapter 7, we will use only one simulated data set to
demonstrate how the novelty detection algorithms work. However, in Chapter 8, we will
apply real world data to various novelty detection algorithms. That chapter will provide
more thorough tests of the algorithms.

From the results we have so far, as we increase the number of cells in the neural tree
algorithm, the more abnormalities will be identified. However, any data point that is close
to the training data but js outside the cell boundaries will be discarded as abnormal. Thiy
will increase the percentage of type I misclassification error.

Thus far, we flag novel data when they break cell boundanes. We will now use the
neural tree algorithm to estirnate the density for novelty detection.

After training the 200-cell tree, infinite cells will be limited by using the maximum

and minimum value of input data, which is | and —1 in this case. The area of each cell will
be calculated, and the probability density over cell Ci will be computed as (LJ/A,‘

200

where A, is the area of cel]l Ci. Figure 31 illustrates data having low and high density. The

40

Proe S0 ~tmened Jdomate s peemesl n desithn

Moo s see teal senne teaieine Jdoara an the sddbe of the Dol

e Thicnsbe e the coll=vaae b ool e boe - Lo T g @ s

s vy Bnee ateds connpared sl other cells Theretone i TR LT TR 1
Besclr detecton some e oo Feee el mas b | ool Tl pl
arpctret s e e e percontac ot ey Terro
b hin e chat b el g Lo ath et o b Y Popes Lo
e Lo e el 1o ! N ant peccenis D ivpe Yoorror i o Do ntetn
Comder e i (TR S TR UL PO RS T Y FYRRNT Y LR LT SYS TRRN T SR TRE RIS e e n

PP T

(e Y=1-T-T-7-1o]

000OooRAD

000000000
s LS TATeLRTutaTe Lo tulnbule

Figure 32 Donut Shape

If we flag novel data when they fall outside ce)} boundaries, we can see that there is
no way to detect data inside the inner circle. This is because the data in this region are al-
ways in the cetl boundaries (a cell i1s shown in Figurc 32), therefore type 11 errors may be
increased. If we use the density estimation approach, some data inside the inner circle may
be detected and some may be not. The final resuits will depend on how the cells are ar-
ranged.

The neural tree algonithm has a high percentage of misclassifications, but s mujor
advantage 1s its speed.
Summary

In this chapter, we introduced the fundamental ideas of the neural tree algorithm.
We defined the notation and terminology commonly used with this algorithm (e.g. tree,
node, cell, etc.) We explained how a tree divides the hyperspace, and how a tree is trained
to learn a data distribution. We then explained that, for novelty detection, we had to first

limit the size of cells. Abnormalities were indicated as data falling into low-density cells

42

{(density estimation approach) or as data located outside of the cells (cell boundary ap-
proach). The ability of this algorithm was then demonstrated using a simple example. We
showed through the simulation results that increasing the number of cells increases the abil-
ity of the neural tree to identify data outside the region of training data. We showed why
the density estimation approach tends to increase type I misclassification.

After we demonstrated the novelty-detection process, we introduced the perfor-
mance measure — the percentage of misclassified data points. We suggested that a further

study on how to appropriately limit cells for novelty detection should be necessary.

43

CHAPTER 4

THE GAUSSIAN KERNEL ESTIMATOR

Introduction

The Gaussian kernel estimator for novelty delection was tirst adopted by [Bish94},
and was thoroughly described in [Bish95]. This method is based upon the estimation of the
probability density function. as described in many statistics books. Most real-world appli-
cations and research involving novelty detection employ this method. as in |BishY4],
[NaCoRiToTa97]. [TaNaToCo099], or [HiAuw00).

Within this chapter. we will first give the reason why we are interested in using the
density lunction estimate lor novelty delection. Then we will explain three well-known
methods for density estimalion, which include histogram, naive cstimalor, andl kernel esti-
mator. A specific kernel function. the univariate Gaussian estimator. will be inlroduced.,
followed by the generalized model for the multvariate case. Nexl, the procedure for adopt-
ing this algorithm to novelty detection will be described. The algorithm will be demonstrit-
ed through simulation example. After that, we will propose an idea 1o improve the
performance of the algorithm by incorporating the network oulput with the netwark input.
The improved algorithm will be iflustrated with compuler simutations. Finally, we will an-

alyze a problem with the proposed algorithm.

Estimated density for novelty detection
[Bish94] developed the novelty-detection method employing the Gaussian kernel

estimator by the error equation for training a function approximator:
N
2
sse = ¥ [[{alps W)= 1,} f(p,, 1;)dpas (16)
r=1
where a(p;, W) is the output of a function approximator corresponding to the i training-

data input, p;. through the network having weights W, ¢, is the target and f(p;. 1,) is the
joint probability density function of the input and target. By applying Bayes’ rule, we will
replace the joint density with a product of f(r‘.|p,.) and f(p;). When rearranging Equation

(16), we obtain

N N
sse = ¥ [ta(p, W) - E(e|p) fpdp + ¥ [{ELZ |p;) - Elyp)*Ap))dp (17)

i= i=
where E is the expectation operation.

From Equation (17), we can see that the error equation is weighted by f(p,). which
represents the density function of the input data p . After training the function approximator
(minimizing the sse over a finite data set), we expect that the approximalion is accurate in
regions that the density f(p,) is high. On the other hand, there is a small contribution to the
error minimization (Equation (17)) from the regions where f(p;) is low. Consequently, the

approximation should not be precise in these regions, thus resulting in large error from the

function approximator. Therefore, the density function f(p;) can be an indicator to predict

45

when the approximation is not accurate. In other words, we may use the density function
as novelty detector for function approximation. Unfortunately, the density function f(p;)

is unknown, and therefore we have to estimate it. The next section is dedicated to reviewing
the density estimation, from the histogram to the Gaussian kemel estimator.
Background

The probability density function gives a description of the distribution of a random
variable p . Probabilities associated with p can be found by

P(c,<p<cy) = [f(R)dh Ve, <c, (18)

¢y

Now, suppose that there is a set of observed data sampled from an unknown probability
density function. The method of predicting the unknown density function from the ob-
served data points is called “density estimation”. Three density estimation methods will be
discussed here, starting with the well-known histogram, followed by the naive estimator,
and finally leading to the kernel estimator.

Though most applications in the real world deal with multiple variables, we will be-
gin with the univariate case because of its simplicity. Before starting the discussion. lel’s

define some notation that will be used throughout this chapter. Assume that a random vari-

able p consists of N real observations p, p,. ..., py sampled from a data set whose un-
derlying density is unknown and to be estimated. Then, the estimated density function of

these observations will be denoted as | .

16

Histogram
The oldest and most extensively used method for estimating an unknown density
function is the histogram. It is mainly comprised of a series of boxes with heights indicating

how many data are contained in a certain region. To create a histogram, we begin by defin-

ing a set of bins starting from the point A,. Each bin is defined as the interval
| Ao+ mb, Ay + (m+ 1)b), where m is an integer representing the bin number. Every bia

has width &. Then the histogram is defined as

-~

fA) = K/l—b-(numbers of p, in same bin as A) (19)

The estimated density is constant over each bin. The bin width 5 is sometimes called the
smoothing parameter. Note that in a more general form, the bin width can be adjustable
from bin to bin as well.

The accuracy of the histogram depends upon both the starting value and the bin
width. These values have to be chosen by experience and the choice may cause undesirable
effects, such as misinterpretation of the density estimate. Furthermore, though it is an cx-
cellent tool to represent the approximate density for a singte random variable, it does not
work well in high dimensional spaces. Even in two or three dimensions, it is extremely dif-
ficult to create understandable figures. Moreover, the discontinuities between adjacent box -
es are not desirable. The next method we will discuss known as the naive estimator is

designed to overcome some of the problems of the histogram.

47

Naive estimalor

The naive estimator is an alternative to the histogram. It eliminates some undesir-

able effects of histogram, especially the choice of origin value, as will be seen. From Equa-

tion (18), the density function can be rewritten as

AN = lim S P(A—b<p<heh) (20)
b—=02b

The right hand side can be estimated by computing the fraction of observed data falling

within the interval (A —b, A+ b), and can be written as

numbers of p; falling in interval(A-b. A + b)
P(A-b<p<Ai+b)= N (21)

Therefore, for a small enough value of b, Equation (20) can be reformulated and used as

an estimate

- numbers of p, falling in interval(A- b, A + b)
f(h) =

2Nb (22)
The above equation is a simple form of the naive estimator. The general form is
N
fy = & w(l_”"] 23)
~ Nb 2 b -
=
where w(A) is called the weight function and can be defined as
1
= Al <
w(l) = {2 A (24}
0 ;otherwise

In Equation (23), we are constructing a box of width 2b over the range (A - b, A + b) and

48

height ﬁ on each observed data point. After adding them together, the density estimate

is eventually obtained. Therefore, the naive estimator uses observations to be the reference
for each box, meaning that the center of each box is an individual observation. In the case
of the histogram, the origin value has to be initialized before making a box. That means that
the naive estimator is a modified version of histogram in which each sampled data point
creates its own histogram centered on itself.

The naive estimator eliminates the problem of setting up the origin value. Never-
theless, the trouble of selecting the smoothing parameter and the discontinuity of the curve

still remain. The discontinuity of the curve is the most undesirable feature, because the de-

rivative of the estimated density 1s infinite at every point p.+ b . and is zero elsewhere.

Before going on to another section, let’s consider how the estimate is affected by

changes in the smoothing parameter. When the parameter b is reduced, Equation (22) im-

plies that the interval 2b is decreased whereas the ordinate of each box ﬁ 18 increused,
?

making the estimated density more jagged. The graphical presentation will look more noisy
when the parameter is smaller. On the other hand, when the parameter is increased, the dis-
continuous characteristics will be reduced but some underlying information will be lost be-
cause of too much overlap of the blocks. Figure 33 demonstrates the effect of varying the

smoothing parameter on the naive estimator.

49

—
_c
1| mavars Dom

Figure 33 Effect of the smoothing parameter on the naive estimator (a) & = 0.03 (b)
b =03 ()b =3

As with the above explanation, the estimated density will be smeared if the smooth-
ing parameter 1s too small, and it will be obscured if the smoothing parameter is too large.
Therefore, the choice of the smoothing parameter 1s one of the most critical steps in asing
the naive estimator.

As noted above, the undesirable characteristic of the naive estimator is its disconti-
nuity. To overcome this problem, we will modify the weight function vsing a kernel func-
tion, as explained in the next section.

Kernel estimator

In order to obtain a continuous curve, we can modify the weight function. We wilj
replace the weight function w(A) with the kernel function K(A), which satisfies the con-
dition

50

j K(A)dh = | (25)

By substituting this kernel function into Equation (23), it becomes

foo = L5 () 2o

i=1
The kemel function is normally chosen to be symmetric and non-negative everywhere.,
Some of examples of kernel functions are the biweight, triangular, and normal density func-
tion (the Gaussian function). By selecting a continuous kernel function, the density func-
tion estimate will also be continuous.

As with the naive estimator, the kernel cstimator can be thought of as adding togeth-

er all of the kernel curves centered at the observations. In other words, rather than placing

a box of width 25 having a midpoint at the observations with height L a kernel curve

2Nb’

with a specific interval and height constrained by its own properties is located on cach ob-
servation. The density estimate at a point A is obtained by summing all of the individual
kemel functions. Like the naive estimator, the smoothing parameter controls how smooth
the curve is. If the parameter is too large. the kernel functions overlap too much and wre
smeared together. If the parameter is too small, the approximate density is just as mislead-
ing, and consists of a spike at each observation.

Therefore, though the estimate is continuous, the problem of how to select the value
of the smoothing parameter still remains. However, the kernel estimator has been one of

the most popular methods employed for density estimation thus far. In the next section, a

A

certain kernel function called the Gaussian function will be deployed in order to perform to

novelty detection.
The Gaussian kernel estimator

In this section, one of the most well-known functions in the statistics, mathematics
and engineering fields — the Gaussian function — will be employed as the kernel function.
We will begin with the univariate case, followed by the generalized model in which any
number of dimensions can be used.
One-dimensional data

We generally choose a kernel function that is differentiable, symmetric and non-

negative. The Gaussian function with zero mean and variance of one

g(x) = Lexp(——%xz) 27

Jan

satisfies all of the above properties. Now, by substituting Equation (27) into the kernel

funclion in Equation (26), it becames

i 1

N
fh - Nb;ﬁexp(-i(’“;"'f]

N

2
1 1(A-p;)
J2mNb }Z CXP[_E b’ }

The above equation is the Gaussian kernel estimator for vnivariate density functions.

Notice that the smoothing parameter controlling the width of the Gaussian curve ix

the standard deviation in the normal density function. while an observation p; can be

thought of as the mean of the kernel curve. When the standard deviation of a2 normal density

52

function increases, the curve expands and the points far away from its mean have compu-
rable values to points close to the mean. In contrast, when the standard deviation decreases,
the shape becomes more like a spike, and the density at a small distance remote from the
mean is close to zero. Figure 34 shows what the estimated densities look like when the
smoothing parameter is varied. The estimated density computed from Equation (28) is ex-
hibited by the bold solid line, while individual kernels for the five observations are indicat-
ed by the thin lines. When the smoothing parameter is too small, several peaks pop up and
could be misleading. When the value is too large, it can smooth over much of the detail in

the true density.

Figure 34 The Gaussian kernel estimator with (@) b = 03 (b)b =1 (¢)b = 3

In the next section, the multivariate case will be discussed.

53

The generalized model

Most applications involve high dimensional spaces. The higher the dimension. the
more difficult it will be to make accurate estimates of the density function and to represent
it graphically. However, let’s modify our existing notation in order to represent high dimen-

sional data.

Suppose the random vectors py, p,, -... py are sampled from a population with un-

known distribution. Also, assume that the size of each vectoris g X | . Then, using the same

concept as the univariate case, the kernel estimator in Equation (26) can be rewritten as

f00 = ——2 (32) 29)

i=)
where the kernel function has to abide by the condition
j K(AMdh = 1 (30)
R’l
Similarly, the Gaussian kernel function will be modified to fit into high dimensional spaces

using the following formula.

By substituting Equation (31) into the kernel function in Equation (29), it becomes

54

hl

o0 S (2;)mexp@;f‘;"")’(’“;""D

V(h-p)) (32)

= 4/22 exp[

Nb"(z n)

(27) "”2 [(A-p,) (k—p,»)]
Nb? 2b*

i=t
Now, the above equation is a generalization of the Gaussian kernel estimator. The smooth-
ing parameter b is heuristically chosen, depending on the problem that is going to be

solved. Tt has to be neither too large nor too small to obtain a desirable result. In the more
general form, the smoothing parameter could be a matrix. like the covariance matrix, and

the density estimate can be written as

(33)

N
-)92 ((A-p) T (A-p))
- - 2

where X is the smoothing-parameter matrix, which can be thought of as the covariance ma-

trix, and has the size g x ¢ . The notation |Z| represents the determinant of the matrix. No-
tice that (33) is the general form of (32) such that ¥ = bzlq , and Iq is the identity mutrix
with size g X q .

Note that the use of £ = bllq implies that the width of the Gaussian kernel placed

on each observation is equal in all directions, and that the data in each dimension 1s uncor-

related with each other. Although a smoothing parameter matrix should be used to efficient-

55

ly estimate density functions for data that is not evenly distributed, a constant value will be
used in this thesis for novelty detection.

In the next section, we will explain how this density function estimator can be used
for novelty detection.
Application to noveity detection

We will use the estimated density function for novelty detection. The main idea is
the following. The estimated density function describes the distribution of the training data
set. If a new input vector is similar o vectors in the training set, we would expect that the
estimated density function will be relatively large at that point. If a new input vector is un-
like any vector in the training set, then the estimated density function should be small at
that point. Therefore, those inputs that have a small value for the estimated density will be
considered novel inputs.

In the next section we will revisit the example problem described in Chapter 3. We

will use it to test the Gaussian kernel estimate of the density function, Equation (33), with

,
covariance matrix Er’ =b lq:

"

FO) = (34)

(2n)79"? " (A-p;)
_ 2 exp| - >

Nb? 2b

7"‘9,‘)]
i=1

Note that p; is a training vector, corresponding to an observation p; in Equation (33).

Simulation of the simple example #1
The following is the example illustrating the capability of the Gaussian kernel es(i-

mation novelty detector. The regions for the testing and training Jdata were shown in). The

56

inpul vectors are two dimensional. and the number of training data is 638. thus giving
g = 2 and N = 638. Figure 35 shows the estimated density for various values of the

smoothing parameter.

Lo

Figure 35 Estimated Density with () & = 0.001 (b)y b = 0.0) (¢) b = 0.1 (d) b = |
Recall fram the previous chapter that we want 1o use a novelty detector in combi-
nation with a multilayer netwark that has heen trained for function approximation, 1f the
novelty deteclor flags data as being difterent than dala in (he training set, lhen we expect
that the multilayer network may perform poorly on thal data. The navelty delector is «
warning system for the multilayer network. [n this context, we will test the Gausstan kemel
estimator on the function approximation prohlem described in the previous chapter.
Figure 36 plots the estimated density values versus the error of the multtlayer nel-

work on the 437-test points of the function approximation problem. (See Figure 22 for the

27

location of the test points.) Figure 36 does indicate that the lower the estimated density is,

the more likely the error of the multilayer network will be large.

Figure 36 Estimated Density and The Errors (a) b = 0.001 (b)s = 001 (¢)h = 0.1 and
(d)b =1

From Figure 36, we can see that there is a straight line and a scatar value R shown
on each graph. The straight line represents a linear regression between the two varisbles
— the network error and the estimated density in this case. The regression Jine will be used
to determine the density function value used to flag abnormal data. We will describe how

to determine this threshold value from the regression line later.
The R value represents the correlation coefficient between the network error and
the estimated density (-1 S R < 1).If R value is positive (R > 0), it means that the error

tends to be high when the estimated density is high. On the other hand, if R < 0, it indicates

58

that the error tends to be high when the estimated density ts low. In addition, the greater the
magnitude of the correlation coefficient (|R| — 1). the more correlation between the vari-
ables. Therefore, when the R value 1s close to zero, it means that there is almost no corre-
lation between the two variables.

We can see in Figure 36 that the R values were negative, thus implying that when
the estimated density was low, the error tended to be high.

In order to decide which smoothing parameter values should be used for novelty de-
tection, Bishop [Bish94] suggested the method of choosing the b value by averaging the
distance to the ten nearest neighbors over the entire training data. By using this method, we

found that the b value for our example is 0.0836.

D§r

oot

bﬁ- by

Figure 37 Estimated density and approximation error: # = 0.0836
To use the density estimate for novelty detection, we must choose a threshold below

which the data will be flagged as novel. Based on Figure 36 (c), we found that the regres-

sion line that represents the network error and the estimated density with & = 0.0836 is

59

density = -0.967 x error+0.294 (35)
We will use Equation (35) to find the estimated density value (based on this data set) that
produces an approximation error of 0.15. By substitating 0. 15 for the error term in Equation
(35), the corresponding estimated density is 0.149. That indicates that, based on this testing
data set, the estimated density for data points generating an error of 0.15 for the function
approximator is on average equal to 0.149. We will use this value of the estimated density
to be the threshold to reject novel data. In other words, any data generating an estimated
density less than 0.149 will be discarded as novel.

Figure 38 shows the approximation error of the neural network. The points that are

flagged with an x have estimated density values less than 0.149.

]
ol HH—

i. | { [\ ' I i
. } |I| l': ']' 3\ ” i ||\ l ‘ |i. | |

kIlJ | % JlllLJI

* |

-o\L © e D At e et e e e = M m -
03 —— — —_—

- - . S . .
% w 59 2% o - b 2] (1%} o

Figure 38 Novelty Detection: Density of input

As seen in Figure 36 (¢) and Figure 38, the algorithm has a certain capability to pin-

point which data should be discarded. The percentage of misclassified points when employ-

60

A HICIITAINGY 3

ing this algorithm was 28.38%. All of the misclassifications were from small-error points
that were flagged as novel (type 1 error).

Note from Figure 37 that if we use density lower than 0.149 to reject novel data, the
percentage of misclassifications will be reduced. This is because the threshold we chose
(based on the regression line) discarded many data points with small errors. We found that
in this example the threshold that minimizes the percentage of misclassifications is around
0.005. For this threshold, the percentage of misclassifications is 7.32%. Around 5.49% out
of the 7.32% are type I misclassifications. Though there is a large difference between the

percentages of misclassifications for the two different thresholds in this example, when we

apply the algorithm to our real world data in Chapter 8, the difference is no larger than 2%.

Although the purpose of using the testing data is to set the threshold, it should be
noted that it is very difficult to have a general value for the threshold that wil]l minimize the

percentage of misclassifications for all data sets. What we can generally say about setting

the threshold is that the higher the threshold. the more likely we will experience type Il

error. On the other hand, the lower the threshold. the more likely we will face type I mis-

classification. Therefore, the appropriate threshold value will depend on our application.
Even though the percentage of misclassifications in this case is much less than that
for the neural tree, we found that this algorithm sometimes can reject more training dalta
than any other method. This is due to the fact that the estimated density of some training
data can be lower than that of some testing data. Such training data are located in regions

far away from the majority, thereby reducing the effect of the kernel curves from adjacent

6l

R HICLITJAIANYY T iver e wuat IV 1N

training points. Figure 39 shows the estimated density of a one-dimensional data set with

the training data marked as x.

Figure 39 Estimated density of a data set

From the figure, we can see that some training data points, for example at
p = —0.06, have very low density. Its value is even lower than some Lesting data points,

suchasat p = -0.9 or p = -0.5. That means that these low-density training points are
more prone to being discarded as abnormalities than some testing points, whose errors for
the function approximator may be larger. We can see in Chapter 8 that this algorithm rejects
more training data as novel than any other novelty detector. A way to reduce this problem
is 1o reduce the value of the smoothing parameter.

As we explained earlier, the smaller the smoothing parameter, the smaller the re-
gion the kernel curve will cover. Thus, if we choose to have a small smoothing parameter.,
the estimated density of the training data will be higher than testing points; however, the

density of the interpolations will be very low (sec Figure 35 (a)). That indicates that we will

A TICLITAINID 2 1vs 0 wrials Y N N

discard these small-error points (interpolations) as abnormalities, thus increasing the per-
centage of misclassifications. Therefore, no matter how large the smoothing parameter, this
method tends to reject small-error points (either training data or interpolation points) as
novel data.
A way to improve the performance: Joint Density

Thus far, we have computed the estimated density of the input to the function ap-
proximator. Recall from Equation (16) that the probability density function that we actually
use 10 minimize the sum-square error is the joint density between the input and the target
of the network. Because the target is assumed to be unknown, it may be difficult to find the
joint density. However, in this section will propose a procedure for computing the joint den-
sity between network input and output. Then we will use the estimated joint density to de-
velop an improved novelty detection procedure.

One advantage of using the joint density is that if a network could not minimize the

errors very well on some of the training data, the joint density between the network inpuls

and outputs for those training data could be rejected based on comparing with the joint den-

sity between the network inputs and targets. Also, there might be a regions close to training-
data inputs where the network did not minimize the error. This would cause the network
outputs from that region to be unreliable (computing the density of the network output

would be a good way to indicate such phenomena).
We can represent the joint density of two jointly Gaussian random vectors X and y
. T .

by creating an augmented vector z = [x Y:I . The new random vector z will also follow

the Gaussian distribution. Thus, for any training data, we will create the new composite

63

A TICHIDAMNYY T I\l o weial iy 1N

T .
vector I'; = [p’. ’J . For testing data, we need to propagate the input p)‘ through the func-
tion approximator to get the network output a}. Then we will augment the network input

r
and output to create the composite testing data [3j = [p'- aﬂ . Then Equation (33) can be
J

rewritten as

N T-1
-4/1
- (2m)~? B-T)Z(B-T)
F®) = BB 5 exp| - (36)
N|Z] 72, 2
t=1
where Z- is the smoothing parameter matrix. Note that the structure of X is

r X

Ir = ; " (37)
Zpl zl

where L, is the smoothing parameter for the target. and I, is the co-smoothing parameter

between the network input and target.

In the next section, the estimation of the joint density will be iliustrated by vsing
the simple example we have used in previous sections.
Simulation of the simple exumple #2

In this example we will compute the joint density of training data, and compare with
that of testing data. We will use Equation {36) for estimating the joint density.

We assume that all elements of the augmented training vectors T are uncorrelated.

Therefore, - will be a diagonal matrix. By using the same criterion as we did in example

A PR ZAINO 1w o woai iV 1IN

#1 (set the b value equal to the average distance to the ten-nearest neighbors in the training

data). the b value in this case then is 0.1164. In other words, Z- in this example is equal to

0.11642 0 0
Ir=| o ol1164> 0 (38)
0 0 0.1164°

After we used Equation (36) for computing the estimated joint density, we ohtained

the estimate shown in Figure 40.

| BRI

U} emal-pror WL e kow denaly
|

6.8 L_ S N T L
)

X oz 03 04 33 4 7]
Ems

Figure 40 Estimated density and approximation error: b = 0.1164
We can see from Figure 40 that large-error data clearly have low density. This re-
Jationship is clearer here than in example #1. The regression line shown in the figure is
density = —0.318 xerror+ 0.159 (39)
By substituting 0.15 for the error term, the corresponding density is equal to 0.1113. We

will use this value as the threshold. Figure 41 demonstrates the network error, and abnormal

data are flagged with an x.

65

A HCTHIAIND JiIvi O varl Iy INO

07— . s

. |
our l !
|

!

o
-~

Froe

Figure 41 Novelity detection: Density of input and output

The percentage of misclassifications in this case was 23.34%, which is a little bit
less than the result in example #1. All of the misclassifications in this case were from 1ype
I errors.

We found that the threshold that produces the fewest misclassifications is 0.04. For
this threshold, the percentage of misclassifications 1s 8.46%. Around 8% of the 8.46% are
type Il errors. This is less than the percentage of misclassifications we obtained for the
threshold based on the regression line. However, in chapter 8, where we apply this tech-
nique to real world data, we found that the difference will not be this large.

From the results we obtained using the threshold of 0.04, the total misclassification
is a Jittle larger in example #1 (when we chose the threshold with fewest misclassifica-
tions). This is due to the fact that there are some small-error data with low density marked

in Figure 40. Such data points are shown in the two-dimensional plot in Figure 4].

A TICHITIAIND Tivwi O wia iy 1M

Figure 42 Small-error and low-density points

From Figure 42, we can see that these data occupied a region where the density of
training inputs is low, compared with the other regions containing training data. However,
the real problem is that the density of the targets for this data is very low, resulting in low
joint density around this region. Therefore, any data around this region will naturally have
low density, compared to the density in the other regions. This phenomenon makes the data
in this region (though their errors are small) more prone to being discarded as nove] data
than data in other regions. This is the reason why some small-error points can have low den-
sity, and this is the main problem with this algorithm.

In this section, we proposed a technique to improve the performance of the Gauss-
ian kernel estimator for novelty detection. We expected that any data generating unreliubljc
output but falling in the regions whose density of input are somewhat high (from the over-
Japping of kernels) should have low density. Unfortunately, we found that data points oc-
curring in the regions where the density of inputs and targets is low could have low joint

density as well. These data points were therefore detected as novel data.

67

Summary

We began this chapter by deriving the error equation for training a function approx-
imator. We concluded that the error of the function approximator depends on the joint den-
sity between target and input data. However, since the target is unknown, we factorized the
joint density using Bayes’ rule, and used only the density of the input data. Because the den-
sity function of the input data is unknown, we have to estimate 1t.

We introduced three methods for density estimation, and concluded that the Gaus-
sian kernel estimator is the most desirable method. However, there is a smoothing param-
eter required by the estimator. We demonstrated that if the parameter is not set correctly the
algorithm will perform poorly.

When using the Gaussian kernel estimator, we found that the fower the estimated
density, the more likely we were to find large errors in the function approximator. We then
proposed a way to improve the performance of the novelty detector by estimating the joint
density between network input and output for testing data, and comparing it with the den-
sity between network input and target for training data. The simulation results showed that
the joint density estimate had an improved capability of identifying abnormalitics, and re-

duced the percentage of misclassified points.

68

CHAPTER 5

AUTOASSOCIATIVE MULTILAYER PERCEPTRON

Introduction

One of the most common uses of neural networks is to solve pattern recognition
problems. [n Chapter 2, the general structure of multilayer neural networks was introduced.
Frosini and Gori proposed a new approach in [FrGo96] for using multilayer networks 1o
recognize their data and to perform novelty detection. Their application was the detection
of bogus banknotes.

In this chapter, we will use multilayer networks as novelty detectors, to recognize
data unlike training data. We will start this chapter by briefly recapitulating the neura) net-
work structure. The definition of a new novelty detection will be given, followed by a de-
scription of how we can use such a neural network to identify abnormalities. A simple
simulated example will be used for demonstration. After that, we will propose a technique
to improve the performance of this method. Finally, the simulation outcomes with this new
technique will be shown.

Autoassociative Multilayer Perceptron

Note that multilayer perceptron is another name for multilayer neural network,
which was previously described in Chapter 2. The word autoassociative is used because
the targets of these neural networks are the same as the inputs to the networks.

69

The major difference between the autoassociative multilayer perceptron and the
multilayer network function approximator is the target output. For the function approxima-
tor network, the target output is the output of the function we wish to approximate. For the
autoassociative network the target output is the same as the network input.

Note that the objective of training a network is to minimize the sum-square errors

$se, or mean-square error mse , between network outputs and targets. Since the output of

the autoassociative multilayer perceptron is not in scalar, mse can be written in the form

of vectors as:

N
mse = 1%’2 ele,
I=1
N
- Al]z(t,.-a,)r(t,-a,.) (40)
i=1
N
1
=52 (Pi-2)7(p, -)

j

where N indicates the number of training data vectors, p; is the i' tnput vector, and a; is
the corresponding network output.

From Equation (40), we can see that the quantity written as (p, - a,)7(p, - a,) is

the squared error of the i"" observation. The error itself can be calculated through the 2-

norm operation.

70

norm(e;) = “e,-"

O (41)

T 1/2
((p)’_ a") (p[_ a,))

We will call the quantity, norm(e;), in Equation (41) “autoassociative error”.

In this section, we defined the structure of the neural network used for novelty de-
tection. The major difference between the network for novelty detection and that for func-
tion approximation is the number of neurons in the output layer. We will describe in the
next section how we can bring this new neural network to be our novelty detector for func-
tion approximation. The simulation results will be also provided.

Application to novelty detection

Recall that we want to use a novelty detector in combination with a multilayer net-
work that has been trained for function approximation. If the novelty detector flags data as
heing different from data in the training set, we then expect that the multilayer network may
perform poorly on that data. That means that the novelty detector is a warning system for
the multilayer network. In this chapter, we want to test the autoassociative multilayer per-
ceptron on the function approximation problem.

We will create a neural network with the structure described in the previous section
(autoassociative multilayer perceptron). We will use this network for novelty detection.

Since two kinds of multilayer neural networks are in use, we will call the neural network

utilized for novelty detection as the novelty detection (ND) network. The main idea for us-

ing the ND network to be a novelty detector for the function approximator is provided in

the following.

71

A DBICUTZA NG T 1w O vaniDL Yy 1MO)

Although the ND network seems to perform a linear function (the output is the same
as its input), Hwang and Cho showed in (HwCh99] that the nonlinear transfer function, e.g.
the hyperbolic tangent sigmoid, in the hidden layers is necessary for novelty detection.

They concluded that the nonlinear transfer functions create output-constrained hyperplanes

on which all output vectors a; are projected. Therefore, when we minimize the square error

(train the ND network), the hyperplanes will be moved toward the vicinity of the training
vectors. Consequently. the squared error of the data points within the constrained hyper-
planes will be small, while that of data points far away from such hyperplanes will not be
minimized and this will result in large squared error (and autoassociative error). This is the
reason why the ND network can “recognize” training data,

We would like to train the ND network with the data we used to train the function
approximator so that the autoassociative error for these data is small. Therefore. if a new
testing vector is similar to a training vector, the autoassociative error of this vector will be
small. We then expect that the error of the function approximator would be small as well
(since the testing input is similar to a training input). For a new vector much different from
training data, the autoassociative error of this point wil be large since it is not in the con-
strained hyperplanes, and the error from the function approximator of this data should also
be large. Therefore, those inputs that have a large autoassociative error will be considered
novel points. Figure 43 demonstrates the diagram for the ND network for the function ap-

proximator.

72

Small-Error Dala

Accept/
Reject
lle]

Filter Qut

— ™ Those Rejected Points

Threshold
+

Novelty Deteclion
Neural Network

Function Approximator
Neural Network
Training Data

Testing Data

Figure 43 Diagram of an autoassociative novelty detector

In the next section, we will revisit the example problem described in the previous

chapters. We will use it to show the ability of this method.

73

Simulations of the simple example #1

The ND network was designed with a three-layer architecture to recognize the train-
ing data shown in Figure 19. We used 20 neurons in the first layer and 10 neurons in the
second tayer. The number of neurons in the output layer must be two, since the input vec-
tors p have two elements. This made the architecture of the ND network 2 -20-10-2.
We then used the Levenberg-Marquardt algorithm [HaDe96) to train the ND network (note

that we also tried the Bayesian regulanzation algorithm and the results were not much dif-

ferent). In this example, the mean-square error was driven down Lo the order of o' Fig-

ure 44 illustrates the errors of the ND network for the training data.

.{ L I | ;’n'fjd ‘bﬁ“m ||

o 100 - ZQG.) »0

Figure 44 Autoassociative error of training data

The ND network generates output vectors that are very similar to the training inputs.
. . . -5 :
The maximum autoassociative error for the training data was 6.13 x 10"~ . After the train-

ing process of the ND network is complete, the next step is 10 apply testing data p' to the

ND network and to compute the autoassociative errors — the error between the testing duta

74

p’ and the corresponding ND-network outputs. Now, we want to see whether the error from
the function approximator correlates with the autoassociative error. Figure 45 shows the

correlation between the autoassociative errors from the ND network and the errors from the

function approximator on the test data points shown in Figure 22.

: .
5 - .
i >
i ‘ : _ ‘
5 il
< o o e |
ok} o
[/5 >

E,‘Q',ﬁo.-‘f

Tyl 2

{F g% o

q 8
3 ey ez 23 Y o8 YR}

Figure 45 Autoassociative Error and Approximation Errors
As seen in Figure 45, the correlation (indicated by the R value) between the autous-
sociative errors and the errors from the function approximator was somewhat high, iniply-
ing that there exists some correlation between these two variables.
Once again, to set up the threshold to discard abnormalities, we consider the regres-

sion Jine shown in Figure 45. The equation for the line in Figure 45 is

autoassociative error = 0.00189 X errar + 6.66 x IO_5 (42)

From Equation (42), the autoassociative error that corresponds to a network crror of 0.15

is 3.501 x 107" . We will use this value as the threshold to reject novel data. Figure 46 dem-

onstrates the network errors, and novel data are flagged with an x.

7S

—_— e

T I O VAR 1%

v

F LI TAINS
= FAY I

AISHE

:: ” |
It

03~ l

" ..)| | \' | i

o I J | | l
1l
0______1,_' Y, FAVRANL '
| . J
N |

Figure 46 Error and abnormalities

As with previous methods, there are two types of misclassifications. In type 1 mis-

. -4
classtfication, the autoassociative error is greater than 3.501 x 10~ (data flagged as nov-

el), but the approximation error is less than 0.15. In type II misclassifications, the

- . -4 o .
autoassociative error is less than 3.501 x 10 , but the approximation error is greater than
0.15. For this test, the total misclassification rate was 6.63%. Most of these misclassifica-

tions (4.81%) was of type 1.
If we choose a threshold of 4.0 x 107 the percentage of misclassifications is
5.72%. Around 3.41% of this 5.72% is from type I error. We can see that type | misclassi-

fications are reduced when we increase the threshold. It should be noted that it is very dif-

ficult to have a threshold minimizing the percentage of misclassifications for every data sct.
However, what we can say in general about setting the threshold is that the higher the -

toassociative error we choose for the threshold, the more likely we will reduce type I mis-

classifications (type 1l error increases). On the other hand, the lower the autoassociative

76

o

AHSHIAIND F IV O wNOLY 1340

error we select for the threshold, the more likely we will reduce type Il misclassification
(type [error increases). It will depend on the application what type of misclassifications we
can tolerate. For this thesis, we will use the threshold based upon the regression line.
From the simulation results, we can conclude that the autoassociative errors from
the ND network are correlated with the network errors. As we can see in Figure 45, some
data points generating large approximation errors have small autoassociative errors, while
some creating acceptable approximation errors make large autoassociative errors. These
data points will increase the percentage of misclassifications. Therefore, in the next section,
we will propose a technique to reduce the percentage of misclassifications.
A technique to improve efficiency
In the previous chapter, we described our technique to improve the efficiency of the
Gaussian kernel estimator. We will use a similar procedure in this chapter. For our training

data, we will incorporate the target with the input to create new training vectors

T - . :
r,= tp| ,J , and we will incorporate the output of the function approximator to make

.

. ! . . .

new testing data [; = [p' ail . That means that we will train an ND network with the new
)

augmented training data I". Furthermore, in order to get new testing data, we need 1o prop-

. , ! . .
agate our testing input p; through the function approximator to get the network output a}[.

and then stack these two variables. Finally, these new testing data will be applied to be the

inputs of the ND network. The advantage of using this method is described in the following.

77

AISHIAING F 1w 0 wial ity 1%(3

If we have testing data p]'- close to the training data p, but the function approxima-
tor turns out an eccentric output, the ND network will generate large autoassociative error.
For example, assume that the function approximator creates a large error for one of its train-

ing points, p; (|1‘- - a,-‘ is big). We also assume that the original ND network can recognize
our training data p, (output of the ND network is very similar to the input p,). The autoas-

sociative error from the original ND network is thus small, since p; is in the constrained
hyperplane (since it is a training vector for the ND network). However, when we use the

new ND network trained with the augmented training vectors I, the autoassociative error

T T
from the ND network for [Pi aJ should be large, since [p'. ”J 1s not close to our train-

-
ing data and thus is not in the constrained hyperplane (rather, [; = [Pi IJ is in the con-

strained hyperplane). Therefore, we would be able to reject this point as abnormal for the

function approximator.

In the next section, we will use the new training data set I' to train another ND net-

work, and will apply the new testing data I™' to the ND network. We will also show the cor-
relation between the autoassociative error and the network crror and will discuss whether
or not it is improved over the original method.
Simulation of the simple exumple #2

In this example, the new data set is now three-dimensional. The number of neurons
in the hidden layers remain the same as in the previous example. Therefore, the ND net-
work has the structure 3 — 20 — 10 - 3. We will again use the Levenberg-Marquard algo-

78

JAISHIAINGD JIVIS wAOLEY (%0

rithm for training the ND network to recognmize the data set I". The mean-square error was

driven down to about the same level as in the previous case, and the maximum autoasso-
ciative error from the training data was 6.14 % 107

After the ND network was trained, we applied the testing data set I to the ND net-
work. Note that we propagate testing inputs pl (shown in Figure 22) through the function

. . ! . .
approximator to obtain the network outputs a , and then stack them to obtain the inputs to
the ND network. Figure 47 demonstrates the correlation between the errors of the function

approximator and the autoassociative error from this ND network.

i
i P
| |
26")]
! Y os
] ot
] 2 ' -
£ © .
t 5
; 1% ’ 1
: |
1. {
<
=
ot ne -

Figure 47 Autoassociative Error versus Approximation Error
The correlation coefficient value in this case was higher than the previous case
(0.883 vs. 0.756). Also, the data points generating large errors are more distinguishable

from data points creating small errors (compare Figure 45 and Figure 47).

79

e

y)

e L

AISEAAINGT 9% WIAI(

Again, we consider the regression line in order to set up the threshold for rejecting

novel data. From Figure 47, the regression line is

autoassociative error = 0.0035 X error - 4.06 x 107 (43)

From Equation (43), the autoassociative error corresponding to the network error of 0.15 is

4.844 x 10 . We will use this value as the threshold for our novelty detector. In Figure 48

we plot the approximation error on the testing set and indicate with an x all points that have

.. 4
autoassociative error greater than 4.844 x 10

P - :
(X f | l‘
| =
. a
“r ‘ RN | |
| R

63 I ‘I | |
! K NENN ;
|| nu | :
| \RIREIW |] '
{ Il |I|| H[' i.HilIH f j| | «C
b b I 'I'u._’\ru'_ ﬂl_.'l)'r'll,j' A | P
| L
T | -
[P S -,
Y 0) 50 200 0) [72) 10 o 17

Figure 48 Novelty Detection
In this case, the total percentage of misclassified poinis was reduced 10 5.72% (com-
pared with 6.63% with the previous method). All of the misclassifications in this case were
from type II.

Note that some other threshold may reduce the percentage of misclassifications. For

. -4 . e .
example, if we choose the threshold tobe 2 x 10, the percentage of misclassifications is

80

3.66%. Around 2.97% of the 3.66% were type Il error. There is no general threshold to min-

imize the percentage of misclassifications for every data set. However, when we reduce the

threshold from 4.844 x 10™ 0 2x 107 . type Il error decreases and type [error increases.
Therefore, the hig her the autoassociative error threshold, the higher the type Il errors (and

less type I errors) will decrease. On the other hand, the lower the autoassociative error
threshold, the more likely type I error will be increased (and type 11 crrors decreased).

As demonstrated in this experiment, the technique of augmenting the input vectors
with the target output does reduce the percentage of misclassifications. The percentage er-
ror for this method is lower than any other method we tested, and the method does not re-
quire us to set parameters (as in the smoothing parameter of the Gaussian kernel estimator).
However, the training time for this method can be very long.

Summary

In this chapter, the multilayer neural network architectuse was briefly reviewed. We
slightly changed the multilayer structure to fit the novelty detection problem. The modilied
structure has the number of neurons of the output layer equal to the input dimension and
the target output of the novelty detection (ND) network was the same as the network input.
The error of the ND network was called the autoassociative error.

We vsed the autoassociative error to decide whether or not we would discard data
as 100 novel for accurate function approximation. The simulation results showed that when
the autoassociative error from the ND network was large, the more likely we would find

large errors for the function approximator.

&1

1irs

o LRI
. H

[A N N A B I W)

iy

sl A . .

Finally, we introduced a new technique to improve the performance of this algo-
rithm by making use of network outputs and targets (as in the previous chapter). The sim-

ulation outcomes demonstrated a better performance in terms of fewer misclassifications.

82

s ¥

VY (%)

s s

HAINTT 4iViC WAl

AISE

CHAPTER 6

MINIMUM DISTANCE ALGORITHM

Introduction

In this chapter, a new novelty-detection method will be introduced. The fundamen-
tal idea behind this method is based on the 2-norm between training vectors and testing vec-
tors. We will first describe how the new novelty detection method can be employed,
followed by simulation results. After that, we will propose a technigue to improve the effi-
ciency of this algorithm based on a derivation of the error equation. The simulation results
of the modified version will be illustrated. Finally. a procedure to speed up the computation
will be described.

Minimum Distance Computation

This algorithm is based on the idea that any two vectors that are close together
would contain similar properties (information). therefore the function approximator should
turn out comparable outcomes. The measurement of distance between any two vectors will
be computed by the 2-norm of the difference between the two vectors. This 2-norm is writ-

ten as:

la;~bj = ((a,-b) (a;~b)1'" (44)

where a; and bj are the two vectors that we will measure the distance between.

83

s

1§ AUV vNOHY D50

o~ -

o/ |

are v e

ALISH

As discussed in previous chapters. the objective of this thesis is to develop proce-
dures to detect when a new input to a multilayer network function approximator is unlike
inputs contained in the training set for the approximator. When we have a new input to the
multilayer network, we will want to know how close that input is to inputs contained in the
training set. For that purpose we will measure the distance from the new input to every in-
put in the training set. The minimum of these distances will be used to measure the similar-
ity of the new input to training inputs.

We will explain how the concept of minimum distance can be applied to novelty
detection in the following section. We will also provide computer simulations of this tech-
nique.

Application to novelty detection

Recall that we need a novelty detector since we would like to flag data on which the
multilayer function approximation network will perform poorly (generate large error). [n
this chapter we will use the minimum distance algorithm as a novelty detector. The main
idea of this method is the following. Because errors on the training data are made small dur-
ing the training process, any new data that is similar to some training data (has a small min-
imum distance) should also produce a small approximation error. On the other hand. necw
data with a large minimoum distance to the training set can be expected to produce a large
error for the function approximator. Therefore, we will flag any data for which the mini-

mum distance is high.
Equation (45) expresses the distances from a testing vector p; to all of the N train-
ing daia inputs p,

®4

f]
P, - Py
d = Pz-P} (45)

{
L pN - pj A
The minimum dtstance is the minimum element of the above vector

d_= min(d) (406)

m

As we explained earlier, we expect that the bigger the value of d_, the more likely

m?
there will be a large error for the function approximator. Note that if the testing vector is

one of the training vectors, the minimum distance 4,, will be equal to zero, and we witl

accept such data since the error of any training vectors should be small.

In the next section, we will revisit the example we have used in the previous chap-
ters. We will use it 1o test the minimum distance method. Equation (45) and Equation (46),
for novelty detection.
Simulation of the simple example #1

The following simulations will illustrate the results of novelty detection employing
the minimum distance algorithm. We use Equation (45) to find the distances of cach testing
vector to the 638 training vectors (shown in Figure 19), and then Equation (46) is utilized

to find the minimum distance. We repeat this method for all of the 437 testing vectors

(shown in Figure 22). Figure 49 shows the minimum distance values of all 437 esting vec-

tors versus the errors obtained from the function approximator.

88

BTN

4 2 35%1) 12 88 260 W oL

ALSEHAAING | 4IViC ViINOIHT ixU

. - o ALY

Figure 49 Minimum Distance versus Error
From the figure, we can see that as the minimum distance value increases, the more
likely we will find large errors. Also, the fairly high correlation coefficient (R value) im-
plies that there exists a correlation between the minimum distance and the error from the
function approximator.
To create a threshold to reject novel data, the regression Jtne shown in Figure 49 will
be used. We found that the regression line in this case was

d, = 0702x%error+0.0518 (47)

After substituting 0.15 in the error term, the corresponding minimum distance equals0.1571.
(We will be using 0.15 as an arbitrary point to represent large approximation error.) That
indicates that, on the average for this data set, data points generating an approximation error
of 0.15 are a distance of 0.1571 from their closest training vectors. We will use this value
to be the threshold for the novelty detector. In other words, any data generating a minimum
distance larger than 0.1571 will be considered as novel data. Figure 50 demonstrates the

graph showing the network errors for this testing data, and novel data are flagged with an x.

86

i

o
v

- oy M

4 rd Jry my

7

ALSHAAIR T 41V VRN

PR VT

T |
|] ‘ 1 ‘ |
o3 I | ! :i |L i ;‘ |
Mi l .}\ ||| I |:; K "l |l ||I

| |
o.__J'n___JllL- |__.I:- .I JJ |I | Il|| |_,| ,‘U | | | ,I y J g |I ! [|
a1 C R m e e em e mm e e W om -
L |
02— .- . s . . . |
] %0 100 150 00 20 0 ssa wo wa

Figure 50 Error and abnormalities

There are two types of misclassifications. In type I misclassifications, the minimum
distance is greater than 0.1571 (data flagged as novel), but the approximation error is less
than 0.15. In the type II misclassification. the distance is less than 0.1571, but the approx-
imation error is greater than 0.15. For this test case, the total misclassification rate was
12.82%, and most of this misclassification (12.58%) was of type 1.

We found that the threshold that produces the fewest misclassifications in this ex-
ample 15 0.25. The error rate is 6.87% and around 3.89% (out of 6.87%) are type] errors.
Although the purpose of using the testing data is to set up the threshold to reject novel data,
it should be noted that it is very difficult to have a general value for the threshold that will
minimize the percentage of misclassifications for all data sets. What we can generally say

about setting the threshold is that the lower the threshold, the more likely we will experi-

ence type 1 errors. On the other hand, the higher the threshold, the more likely we will
have type Il errors. Therefore, the threshold of 0.25 tends to give us more type 1l errors than
the threshold of 0.1571. That means that if another test set is quite similar to this test set,

87

L6 P4 Fada det mmo.,

4 ¢

the threshold of 0.25 would be better than 0.1571. In contrast, if another test set is different
from this test set (.. it has data with large errors and small minimum distances), the thresh-
old of 0.1571 should outperform. However, in our case, we will use the threshold based on
the regression line.

From the simulation results in this example, we can see that there ts a relationship
between the minimum distance and the efror from the function approximator. However, as
shown in Figure 49, there exist some points creating large approximation errors but having
minimurn distances that are similar to data points that have small approximation crrors. In
the next section, we will explain a technique to improve the performance of this algorithin,
A Technique to Improve Performance: Minimum Weighted Distance

In the previous chapter, we proposed that instead of just using network inputs, the
network outputs a and targets ¢ could be also used for novelty detection. In this chapter.

we will modify the minimum distance algorithm in order to include network outputs. First,
we will start this section by denving the error equation for the function approximator, using

the Taylor’s series expansion.

, { . .
For an input vector p, to the function approximator, the error between the corre-

sponding network output a; and the target t}'- can be written as:

EI = fl—a’
J J ,/ [(48)
= Flp)-q

where F is the function we want to approximate.

88

NG | iVIS YINOST (AU

€ - 4% a2

1

PRSP

A D!

Now we will use the Taylor's series to expand the function F about the training in-

put vector that is closest to the vector p}. Therefore, Equation (48) can be rewritten as fol-

lows:
aF(p)’
&= FRg+ 3o 0 | (=) + -
P=Pn
IF(p)’ :
= (F(pgy) a)+a (Pj—Pp) + .. (49)
P =Po
IF(p)”
= (1,){)+B_P) (P,‘Po)"’
P -
P =P
. . 3F(p)’ . .
where p,, is a training vector, and F is the first derivative of the function with
P =Po

respect to the input and is evaluated at the training vector.
Recall that by using Equation (45) and Equation (46) to find the minimum distance,

we are able to indicate which training vector is closest to the testing vector. Let us assume
. . 1 R
thal p,, is the training vector closest to p;. In other words, p,, can be found by finding

p, = argmin(d) . Thus, the last expression in Equation (49) can be written as:

' +E’_Ir(l))r

gJ'. = (1,,—a;) 3 (pj'.—pm)+ (50)

P=P-

Now. if we assume that the higher-order terms in Equation (50) can be ignored, then we can

rewrite it as:

", OF(P)’

&)= (1= a)+3 (Pj=Pp) (1)

P=P~

89

We can see from Equation (51) that the error from the function approximator e)'-

does not depend only on the distance between testing vector pJ‘- and the closest training vec-

r
tor p,., but also on the gradient evaluated at the training vector B_F(p) and on the

op
P=P-
distance between the target ¢, and the network output of the testing vector a;. Therefore.,

if the underlying function F at the training vector p,, is fairly steep (the derivative at the

point is very large), the error of the function approximator could be large even though the

minimurn distance between the testing vector and the training vector is small. Similarly, if

the distance between target ¢ and a; is large even though the distance between these input

vectors is small, the error can be large.
Unfortunately, the underlying function F in general is unknown, therefore it is im-

possible to calculate its gradient (which is a vector of size g x 1) at any training data point.

P

We first considered calculating the derivative of the function approximator F ; however,
we found that this did not improve the novelty detection. We will explain in the next section
how to calculate the estimated derivative. We will also explain why we cannot use it for
novelty detection, and how jt can be used for other work.

Though Equation (51) is not directly useful for error estimation, it gives us an idea
that the error depends not only on the distance between the two input vectors. Therefore,

we will modify our previous distances d (Equation (45)) to make them depend on another

90

v 1A

LTINS TEyif

computable term - the distance between target and network output. Equation (52) shows

Our new measurements:

p;—p,“ +alr, —a}“

{
o . - —-a.
d’ = p] p2H+a 12 a}

1

o) - ool + oty -2

(32)

where o is greater than or equal to zero (a 2 0). We will call the elements of d“ weighted
distances, because they include the distance between the targets and network outputs. As

before. we will obtain the minimum value of the weighted distances by computing

d® = min(d®) (53)

n
We will call d,o,: the minimum weighted distance. The effect of ¢« will be discussed further.

As shown in Equation (52), if we set oo = 0, the minimum weighted distance will
be equal to the minimum distance. Increasing the weighting factor will strengthen the eftect

of the difference between targets and network outputs and will neutralize the distance of

the input data. For example, assume (hat p, is a training data point that gencrates large

error, thereby making the value ||r, — ;|| high. When we substitute pj'. with p, in Equation

(45), the term "p; - pk“ will be zero. thus causing zero minimum distance (d,, = 0}. How-

ever, the weighted minimum distance will not equal zero, because a||r, — a,| will nol be

zero. Choosing an appropriate value of o will be important for successful novelty delec-
tion. We will discuss this further in the next section.

9t

We will demonstrate the ability of this method for novelty detection using our pre-

vious example. The effect of a on the performance of the novelty detector will be demon-
strated through computer simulations.
Simulation of the simple example %2

We will illustrate the use of the minimum weighted distance computation for nov-
elty detection through a simple example. We will show the effect of varying a on the cor-
relation coefficient R between the error of the function approximator and the minimum

weighted distance.

First, we need to propagate a testing vector p)'- through the function approximator

to get the network output ajl-. Equation (52) and Equation (53) are then used to find the min-
imum weighted distance at a specific value of a for the 437 testing vectors. After that, we
compute the correlation coefficient (R) between the two variables — the approximation

error and the minimum weighted distance — for the 437 testing data. Figure 51 demon-

strates the relationship between the weighting factor and the correlation coefficient.

92

a
£
¥ ~ -

Corvatetn vowtiowy (R}

) u‘[
ore e
[-3 L}

10 "
Walgfravg tecacr Lagre)

Figure 51 Effect of the weighting factor to R
We can see from Figure 51 that when the value of o is increased, the correlation
coefficient R israised as well. This is because the effect of distance between target and net-
work input is added to the distance between the input vectors. And as we expected, when

the value of & is too large (more than 5.1 in this case), the R value begins to drop. We ex-
pect that the curve shown in Figure 51 may change if we use a different testing set. How-

ever, for our simulations, we will choose the weighting factor that maximizes the
correlation coefficient in this test set (¢ = 5.1).

After choosing the value of o = 5.1, we plotted the error from the function ap-

proximator and the minimum weighted distance in Figure 52.

9}

! Recus

Figure 52 Approximation Error and minimum weighted distance
As shown in Figure 52, the correlation coefficient is very high. and most data points
follow the regression line. Therefore. the regression line in this case may be able to repre-
sent these two variables more precisely than the regression line shown in Figure 49.

From the result shown in Figure 52, the regression line was

&> = 43T xerror+0.0643 (54)

m
For the error of 0.15, the minimum wcighted distance is equal to 0.7198. That mcanx that,
on the average for this data set, the error of 0.15 corresponds to the minitnum weighted dis-
tance of 0.7198. Therefore, in order to reject any data generating errors greater than 0.15,
we will set up the threshold so that any data generating minimum weighted distance (with

« = 5.t)largerthan 0.7198 will be considered as novel. Figure 53 plots the network csrors

for the testing data, and novel data are identified with an x .

94

[} ———— e ——- . -1

|
1! ! |

. ik N }‘ |'\|, i'i ' |\ M I' \ | ‘

I.III_J"I l' '\JI\JI._,II'IU _ L ' _'-_-: i_J__ i

Figure 53 Novelty detection

There were 5.03% of misclassified points using this method. We found that 3.66%
out of 5.03% misclassifications were type 1 errors. The rest of the misclassified data poinis
(1.37%) were type IL.

If we choose the threshold to be 0.9 rather than 0.7198, we will get only 4.34% mis-
classified data. Most of the misclassifications (around 4.1 [% out of 4.34%) are type Il er-
ror. As we can see, though the total percentage of misclassifications is reduced by a certain
amount (4.34% versus 5.03%), the percentage of type Il is fairly increased (4.11% versus
1.37%). It will depend on the application what types of misclassifications one can tolerate.
However, in our case, we will stick with the threshold obtained from the regression line.

As we can see from the simulation results, the percentage of misclassifications was
reduced atter we included the distance between targets and network outputs to the dislance
measure. The execution time in thys case was slightly longer than computing minimum dis-

tance,

95

Note that although this algorithm worked somewhat well for this data set, we found
that the weighting factor we used in the example was not always best for other data sets.
Therefore, if we computed the percentage of misclassifications on another data set, its value
would not be this low. We will introduce another novelty detection method in the next
chapter - minimum distance with outlier detection. We found that a parameter in that
method worked well for a variety of data sets.

Recall that we introduced the minimum weighted distance because the error from

the function approximator depends on three terms, and the derivative term in Equation (51)

is unknown. Furthermore, we briefly mentioned that the estimated derivative is not helpful !EB
- N

for novelty detection. In the next section, we will explain in detail how to compute the es- ;-';':
timated derivative of the function approximator, the reason why the obtained value is not ‘!E
B

useful for novelty detection, and what is the advantage of finding the estimated derivative.] ;3
>

Calculating the estimated derivative . f_
3%

Recall from Equation (48) that we began with the error equation and expanded i1 2

using the Taylor’s series. We then searched for the training vector closest to the testing

input, p,, = argmin(d) ,sothatthe higher-order terms of the series could be ignored, re-
P

sulting in Equation (51). Now, since having the multilayer network to approximate the orig-

inal function F, we came up with an idea to estimate the derivative of a function F from

a

the function approximator F . Then the estimated derivative will be substituted into Equa-
tion (51]) to obtain the estimated error. The method to derive the estimated denvative fol-

lows.

96

IS

Apply the chain rule to the & -layer network F (function approximator):

P
. ITRVA “1
_ (aiak (¥ |)) 2_} f(a* 1)/1((5
P oa
T .
= [iak_ '(n*- l)) WkT/((nk) (55)
op |
T - e
- (aink— (2t --2)] 3_I2A ! (n* I)WATjk(nA) o
g on :3':
(9 k-, k-2 N k-1 ko kT/k k -E:)
_ [a_n (a)) FOaf T hwr i oh 3
{ i
T . o
_ (aiak—z(nk—z)J 2-2"1 PSRN SR k-l)wﬂfk(nk) ,:"j
R :
= (5ot) W TE W 5
P 123
=
./] |.‘:}
where F (n') is the derivative of the transfer function / at layer /: f:gﬁ
i//(”,‘) 0 0
an,
a I
. 0 Ay o
F,(nl) = anlz : {56)
0 0 il/(ni,)
" '

For example, if we use the hyperbolic tangent sigmoid function at layer /, Equation (56)

Y7

becomes

ay(l-ay) 0 .. 0
/ {
NN -
1

I 0 0 ...ag,(l—-as,)

If we continue to apply the chain rule to the first term in Equation (55), we will
eventually obtain the denvative of the function approximator (the 4-layer network):
i 7.1 T.2 N Tok-1, - Thk &
aiF(p) = wE YWY R @Y. WA TR T et ywr Aok (58)
P

We can use the above equation to estimate the derjvative of the function F at any training

oF(p)|
data point, of(p) , by using the following equation:
dp
pP=p~
) T
sFpy| _3Fp)
0 ~ad
P P =P~ P ‘P - P-

. | .
= w' TR @HWTE) W) L) X (59)

where n,l" = Wlpm +b' and n; = W' l(nf71 'Y+ b’ . Note again that p,, is ob-

tained by computing p,, = argmin(d)
p
By substituting Equation (59) into Equation (51), we cxpected that the error could

. - { .
be estimated. Consequently, we would be able 1o reject the input vector p, as novel if the

estimated error is large. Unfortunately, we found that this estimated derivative (shown in

98

Equation (59)) will not accurately approximate the error for extrapolations. For example.

refer to Figure 12 and Figure 13. Though the function approximator could accurately pre-
dict the values between p = —1 and p = 1, the estimated derivative at training points

p = -1 and p = 1 were incorrect. (Note that the estimated derivatives were very accurate
for all other training points.) Therefore, when using Equation (51) and Equation (59) to es-
timate the error for extrapolations (for inputs greater than 1 or less than —1), we will obtain

incorrect estimated errors. This is due to the fact that the derivative we calculated is for the

function F , not for the underlying function F. We found that Equation (51) and Equation

(59) are very good tools to estimate the error for interpolations , but this is not the ob-
jective of this thesis.

For real world applications in which the underlying function we want to estimate is
unknown, we cannot check whether or not we have the precise estimated denvative at the
training data points. Therefore, we finally conclude that the estimated derivative is nol gen-
erally useful for novelty detection.

How to speed up distance computation

We discussed earlier that the execution time of a novelty detector can sometimes be
long. In this section, we will propose a technique to reduce the execution time for the min-
imum distance algorithm by using the Kohonen rule. The following section wil briefly de-
scribe what the Kohonen rule is and how we can use this for novelty detection. The delails

of the Kohonen rule can also be found in (HaDe96].

99

The Kohonen rule

The Kobonen rule ts an algorithm that can be applied to a certain type of neural net-
work. This algorithm allows unsupervised learning. meaning that there are no targets for
corresponding inputs. The rule gives the network the capability to learn associations be-
tween data that are similar. After leamning, the network will be able to perform some tasks

such as pattern recognition [HaDe96]. The following equation expresses the Kohonen rule:

W) = wi-1)+n(p()-w(-1)) (60)

. w A “
where ;w is the *i " cluster center”, p is the input vector, ¢ is the iteratyon number, and 1

is the learning rate. Only the cluster center that is closest to the input vector 1s updated,

We will first initialize our cluster centers by randomly selecting them from our in-
, . . i
put vectors, or by setting them all to zero. When an input vector p(t) is closest 10 the '

.) . Nl
cluster center, the learning, Equation (60), occurs by moving the i" cluster center toward

the input vector. Figure 54 demonstrates how a cluster center learns on an input vector. We

can see that the cluster center moves along a line between the old cluster center and the in-

put vector.

P IILS

~
~
24

i o0

l}v , n

»n
'y s []
| 7 \ -y
osl .
o |

L/ . .
b/ L |
Iy e
L/

| |
2 os 1} 1§}

Figure 54 Graphical Representation of the Kohonen Rule
Normally, the number of cluster centers is much less than the number of data points,
so that each cluster center will represent nearby data. Figure 55 shows data and four cluster
centers obtained after using Equation (60) for 500 iterations. We can see from this figure
that each cluster center is located near the middle of each data group. The explanation of

how we can uvse this algorithm to speed up our minimum distance computation follows.

e
« Duwiy |

g =y

|
. - i
.
04 ..
. O
‘ L.
o2 Ly
|
I
< 0 \
|‘-
202 o N
Q4 @ N
H ‘e .
| o .
2 , o i
T !
F1Y
bk S S S N TR e W B g
M 5B 08 A4 02 S 03 o4 o8 T

Figure 55 Data and cluster centers

101

How to use the Kohonen rule 1o speed up distance computation
We first assume that data points shown in Figure S5 are the two-dimensionat N
training input vectors p for a function approximator. Assume that we have a testing vector

‘
P;

J

T
= [_0_3 0_9] whose the minimum distance needs to be computed. We have to calcu-

late the distances between the testing vector and all of the training vectors. We can see that
sorme training vectors are clearly far away from the testing vector, but we still have to com-
pute all distances. Rather than calculating distances to every training data point. we first

compute distances between the testing vector and the cluster centers, and then select the

R N

minimurn one. Assume cluster center i\ is closest to the testing vector. We can now quick-
Jy obtain the minimum distance d,, from the testing vector to the entire training set by find- 2

ing the minimum distance from the vector to only the training data within the w cluster
. 1 T . . - &
center. For example, for the testing vector p; = [_0.3 0.9] , we will obtain the minimum R

distance by calculating distances from p;- to the training data located in the fourth quadrant.

From data shown in Figure 55, if the number of training data within each cluster center
(over each quadrant in this case) is about the same, the execution time will be four times
faster. Note that the decreased computation time is proportionat to the number of cluster
cenfers.

In order to use this method, we need to choose the number of cluster centers. If the
number of cluster centers is small, there will be a large number of vectors in each cluster,

and the computation of minimum distance may take too much time. If the number of clusler

102

centers is large, it may take too much time to compute the minimum distance to the cluster
centers. Also, the larger the number of cluster centers, the longer it may take to train the
cluster centers. A compromise must be made to choose the optimal number of clusters.
Summary

We introduced a new method for novelty detection that calculates the minimum dis-
tance from a testing vector to the vector in the training set. The minimum distance can be
used to reject novel points. This method was acceptable because the computation time was
not too high and the percentage of misclassified points was small. We then proposed a tech-
nigue to reduce the percentage of misclassified data by incorporating network outputs in
the distance calculation.

We concluded from the analysis in this chapter that the estimated derivative was
useful for error estimation when interpolating but was not appropriate for novelty detection. .
Finally. we proposed a way to speed up the computation time by applying the Kohonen rule w

to the training data set before cajculating the minimum distance.

102

CHAPTER??

MINIMUM DISTANCE AND OUTLIER DETECTION

Introduction

The intention of this chapter is to improve the efficiency of the minimum distance
algorithm in terms of decreasing the percentage of misclassified data. In the previous chap-
ter, we proposed the mimimum weighted distance to improve the efficiency: however, the
weighting factor with the highest correlation coefficient in general is unknown and varies
from data set to data set. We found that the outljer detection using principal componenis is
another approach that can reduce the percentage of misclassifications when we use it with
the minimum distance algonthm. In addition, the parameter in the outlier detection method
works well for many data sets.

This chapter will begin with the definition and derivation of principal components.
We will then discuss outliers and will explain how to distinguish them by employing prin-
cipal components. We then will describe how the outlier-detection method can be used for
novelty detection through the minimum distance algorithm. Finally, a computer simulation
employing a modified version of the minimum distance algorithm with outlier detection

will be illustrated.

Principal component analysis

Principal component analysis was initially presented by [PearQ1], and progressively
developed by Hotelling, whose papers can be found in {Hotel33), and (Hotel36]. Itis a
well-known multivariate technique whose objective is to reduce the dimension of a data set,
while preserving as much information and variation as possible. Each data vector is trans-
formed to a principal component vector, in which the elements are uncorrelated, and or-
dered such that the first few principal components (PC) retain most of the variation in the
original data. The following subsection will describe how to transform data to principal
components,

Definition und derivation
First let’s define some notation that will be used in this chapter. Assume that x isa

g x 1 random vector with computable covariance matrix. The first step in principal com-
ponent analysis is to create a linear function of x, which is denoted v x and is called the

first PC. that has the maximum variance. Note that v is a unit vector with ¢ elements:
o1 = [0 vy vy (61)

The next step is to find another Jinear transformation \);x that is uncorrelated with the first

PC DTX and that maximizes the variance. It is called the second PC. The process continues

so that, at the K stage of transformation, a linear function of x having maximum variance

. . th T
is uncorrelated with the previous k — 1 linear functions. In other words, the k= PC, v;x.

105

RIS

l-l-l-; 0-

12U Wy

A : . . T, ..T T
is uncortelated with the previously-transformed variables v x, v,x, ..., v; _ x. The vec-

-
tor v, has the form

UkT = {u“ Vg .- qu] (62)

Assume that the transformation is recalculated until the r” PC is found. Now. one might
guestion how large r should go. The largest number that r can be is g, the dimension of
the vector x. However, it is hoped that » will be much less than g. It 1s hoped that x can
be closely approximated by a small number of principal components.

T h
We next want to show how to find the constant vectors v, to create the k" PC.

Suppose that a random vector x has covarniance matrix Z. Assume that the covariance ma-

trix is written as

I T
E|) By oo £y,
T €y €3 - €
L= E[(x-p)(x-p)]=|"2"22 " (63
E41 g2 oo €yl

.y . th Sh
where E, indicates the covariance between the i and j = elements of x and can be culcu-

lated as.

£, = cov(x; xj)

E[(x, -,)(x -1y)]

(64)

-
where E is the expectation and My = Elx] = [pn My, oo ux‘] .

Fram

SR ey e e P
Pt

V ey el ST b 1 -"A'I‘,U' yraur v

va i om

Now, for the first PC, we want to find the a linear function of the random vector that

has maximum variance, meaning that the transformation has to maximize the variance of

T

var(U,Tx) E[(‘L)Z-X - E[U,Tx])(U,Tx - E[U,Tx])T]

E[(UITX - ulTpx)(\)Tx - UIT“x)q

E[UT("_“X)("_PX)TD;] (65)

u.TEl(x — Ry)(x - ux)Tlv.

il

;
v, Zv,

. , T T .
That means that to maximize the variance of v;x we must maximize v; Zv, . This is a con-

strained maximization, since v must be a unit vector. The constraint can be written

‘\)’{‘0] = 1. Using the method of Lagrange multipliers. we then maximize

UIEV, - MU, - 1) (66)
where A is a Lagrange multiplier. By differentiating Equation (66) with respect to v, and

setting it equa) to zero, we obtain

(Z-A v, =0 (67)
where [1sagx g identity matrix. From Equation (67),we can see that A is an eigenvalue
of I, v, is the corresponding eigenvector, and the maximum value of Equation (65) be-
comes

UTZU] = u,TMqu = ku,Tul = A (68)

107

Fat 0 % a0 W 1 T 2eL s

ol - igs @l ¥

F RN T

Therefore, A should be maximized for the first PC. In other words, the transforma-
tion for the first PC is the eigenvector of the covariance matrix that corresponds to the larg-

est eigenvalue.

. . . T .
For the second PC. we need to find the linear function of x. v, X . that has maximum
; . T . . T)
variance; i.e. ©V3Zv,, and is uncorrelated with the first PC v x . As with first PC, we need
. T)) , T
to create a constraint v,V, = 1. However, in this case, the correlation between v, X and

T
L,y will be equal to zero.

1l

cov(u{x. fo) E[(ng - E[U;Xl)(UITx - E[vITx })T]

1]

E[(ng - U;px)(urx - D,Tpx)7t|

T T C
= E[vy(x-p)N x—p) vy) (69)
T T
= DyEf(x-p)(x -y) T,
= U;Zn,
From Equation (67). the above equation Jeads to
cov(u?x.n{x) = U:_,rEU, = U;rkllqul = llug‘ul (70)
Equation (70) becomes another constraint,
Now, we have two constraints: the first is vguz = | and the second is Ugv, = 0.
By using Lagrange multipliers, we then maximize the quantity:
VIV, - AV, - 1) = B(vju, - 0) (71)

By differentiating the above equation with respeclt to v, . and setting it equal to zero, it be-

108

L]
. -

.
re

.-

r A #l Ja

0. Wt

._ ‘ R
Fesr e et NP X | ld Fdd) FE SIS

d1 s aa e

comes

Lv,-Av,-%v, = 0 (72)
After multiplying Equation (72) by ‘UZ-, we obtain

T T
U,sz—kulul—ﬁvlru, =0 (73)

The first two terms of the above equation are equal to zero from Equation (70). and the last

term is U,Tvl = 1, making the value of ¥ zero. We then conclude from Equation (72) that
(74)

The above equation is the same as Equation (67). A is the eigenvalue of the covariance ma-

trix and v, is the corresponding eigenvector.
. T T T
Therefore, to maximize vV Ev, = VAl v, = Avyv; = A, X should be as large
as possible but not equal to A . This is the second largest eigenvalue, A, . If X, equals X
: : T
then v} = v, . making the covariance v,V not equal to zero. We can conclude that the
second PC can be computed by finding the second largest eigenvalue, and using the corre-
. . . th . T A
sponding eigenvector as our vector v, . Generally speaking, the ¥~ PCis v, x, wherc v,

. . . . 1} ,
is the eigenvector of the covariance matrix that corresponds the & ’ largest eigenvalue, A, .

Thus far, we have described principal components and explained how to obtain
them. In the next section, we will describe outlier detection using principal components.

After explaining outlier identification, we will relate outlier detection to novelty detection.

109

Outlier Detection using principal components

We will first define what we mean by outliers in a data set. We wiil demonstrate
with a two-dimensional example. Outliers are generally defined as observations that are in-
consistent with the remainder of the data. We would like to detect these outliers. Figure 56

illustrates a data set with outliers.

1t)

Iy

T A M

0.4 -Oe LX] 1

Figure 56 A Data Set with Outliers

We can see that there are five observations that do not follow the majority’s undery-
lying correlation. Notice that the outliers are located far away from the densely-populated
area. However, no matter which axis, p, or p,. we consider, these outliers fall within the
points, thereby making it difficult to detect them.

Now, we will use principal components to detect such observations. After we com-
pute the covariance of the data set, find the eigenvalues and the corresponding eigenvec-
tors. We will then transform the data set in Figure 56 to the principal components, as shown

in Figure 57.

1o

N
°

o8+ 1

Figure 57 A Transformed Data Set
Because the principal component analysis has decoupled the variables, we can now
detect those five outliers by considering the second PC. There are several ways to detecl
outliers employing principal components, for example [GnKe72], [Hawk74], or {Hawk80].

However, we will use the method proposed in [Rao64] for our outlier detection. (Rao64]

suggested that the sum square of the last v PCs can detect outliers:
2
g = Z 4k (75)
k=g-v+]
where z; is the k" PC of the j”' observation. The value of v can be found by experiment.

We have found that one value will be acceptable for different data sets. If the value & of
any data is high, we will pinpoint that data as an outlier. As shown in Figure 57. five obser-

vations have a £ value (with v = 1), greater than any other data points.

We have described the idea of an outlier and have introduced a technique to detect
outliers using principal components. In the next section, we will describe a problem that
occurs if we use only outlier identification to solve novelty detection.

The problem of outlier detection for novelty detection

One might think that outlier detection could be used as a method for novelty detec-
tion, However. there is one problem. The training data used for function approximator can
be more scattered than testing data. Therefore, if we utilize outlier detection, the & value
for training data are sometimes higher than that for testing data, thereby making the algo-
rithm useless for novelty detection. Figure S8 shows the value of & for the last PC of the

638-training data points (shown in Figure 19) and Figure 59 shows the £ value for the 437-

testing data points (shown in Figure 22).

A . |
e 1
§°‘|i | \ !l | 0 ‘i I

Miuli \ |i| i\\ i‘. l\ ‘ =| | H i\i i jilil 'ii’l ;l'i ‘ Ii| |”| l

T f‘wa.wwW il

Ovesrveinn

Figure 58 The value of & for the last PC of the training data

Figure 59 The value & for the last PC of the testing data

From the above figures, the value & for the training data can be much higher than
for the testing data, although the errors for the training data are much smaller than that for
the testing data. Note that this result is also true for the composite data set we will describe
in the next section.

Even though principal components could not be directly applied to novelty detce-
tion, we found that we can use itas a constraint for the minimum distance algorithm. We
will describe this modified algorithm in the next section.

Minimum distance of the composite data set

Recall from Chapter 6 that we developed a novelty detector employing the mini-
mum distance algorithm. We wanted to improve the performance of the novelty detector
(reducing the percentage of misclassifications) by incorporating the effect of the network

outputs and targets. We began from the error equation, and finally obtained thec minimum

weighted distance. However, one drawback of the minimum weighted distance 1s that the

13

weighting factor @ producing the highest performance varies from data set to data set. That

means that the & giving the lowest percentage of misclassifications in one data set may per-

form poorly on another data set. Therefore, the purpose of this section is to use the mini-

mum distance without the weighting factor.

In Chapter 4 and Chapter 5, we found that we can include the effect of network out-

puts by adding them to the input vectors. In other words, for any training vector, the com-

. .th . . T
posite vector for the j observation will be I“) = [Pj t.| . And for any testing vector, we

use the network output in place of the target. The augmented vector for the k" observation

.
will be I‘L = [P'L aﬂ . This means that we need to propagate our testing input pz through

. . ! ’ .
the function approximator to get a, before creating the augmented testing vector. Then. we

will use these composite vectors to compute the minimum distance for each new testing

4 ’ . B , N .
vector I, . Therefore., if a testing input is very close to one of the training inputs but pro-

duces an eccentric output, the minimum distance for the composite testing vector will be
larger.

We can use minimum distance calculations on the augmented data vectors to per-
form novelty detection. However, we found that we can improve the efficiency of this
method by combining it with the method of outlier identification. The following section

will illustrate how outlier detection can improve the performance of the novelty detection.

114

Application to novelty detection

Recall that the objective of this thesis is to identify data on which the function ap-
proximator may perform poorly. The percentage of misclassification is the parameter we
will use to compare the performance of each novelty detector. The goal of this chapter is to
combine the minimum distance algorithm for the composite data with outlier detection. The
minimum distance algorithm is already described in Chapter 6. Furthermore, we also ex-
plained in the last section how we obtain the composite data set for training and testing data
that will be used to compute the minimum distance. In this section, we will explain how the
outlier detection can reduce the percentage of misclassified points when using the mini-
mum distance algorithm on the composite data.

We will start this section by computing the minimum distance of the augmented
testing data for the simple example that we used in previous chapters. Figure 60 1s a scatter
plot relating the minimum distance between the 638-training vectors and the 437-testing

vectors to the error from the function approximation.

2 0% o4 N oe 5

Figure 60 Approximation Error and minimum distance

s

We can see from Figure 60 that the correlation coefficient R between the network

error and the minimum distance is higher than the R value in the previous chapter (compare
with Figure 49). However, we can sce that there are also some large-error points having the
same minimum distance as small-error points.

As 1n previous chapters, we will use the regression line 10 determine the threshold
for novelty detection. In this case, the regression line is

d, = .04 xerror+0.0598 (76)

The threshold required to reject errors greater than 0.15 15 0.2158. If we reject data with
minimum distance greater than 0.2158, the percentage of misclassified points is 8.70%.
Most of the misclassifications (around 8.47% out of 8.70%) were from type 1 errors.

Although the percentage of misciassifications using this method (computing the
minimum distance for the augmented data set) was acceptable, we found that the percent-

age of misclassified points could be lower if we utilize outlier detection. Figure 61 shows
the sum-square values of the last two PC (§, using v = 2 in Equation (75)). versus the
minimum distances. The figure also indicates points where the network errors are less than

0.15. (We will explain why we chose v = 2 in the following example.)

116

Fvove sl and the novimuon disbane s

Fiotin the abov e Mznreovee comsee thar dat with sl rommaonany distanee dies s thang
02 lave sialtercors Wiienthe nunmonm distmee s between O 2 and .30 the small-ciro
data were inore Tikely o have 2 Fess than one On the other hanas the Lirge-enor pomts
tended ol where the i sgrice valoe s larees Howeverosw hen thee oy Jrstainee
was oreater than 003, the & cannot distmguiish betw cen laree and <mall croor poinis This
result i~ nnderstandable because the Targer the micimum distance. the more likely large er-
rors cun he lound. sinee the westg point is ar tromy o small-evror dala pomt tirammng dedan.
Bestdes ata ¢ /e mnnmm distance., ilie larcor S inplies the date pointiends o be Tar
avay tronn the denselvepopolaied area seenpied by thie tainine davae Therciores e would
ke to aceept these dat havme small minimum distaaee colose o aming ditn and <mall
S value (hving in the biehly populited arens On the other hand wesalbdiscard aoy vecior

hay e very larae M dstmee oo any data arcating soomew had bavee nondumnn die

tance but very large € (lying in regions far from the densely-populated area of the training

data).

We decided that the rejection region should be 7'{ <d, < Tg and € > 7 or
d, > Tg Recall from Equation (76) that we selected the threshold based on the regressien
line. The notation T denotes such threshold. Then, 7‘,1 is the minimum distance around
75% of T%. while Tg is the minimum distance around 125% of T°. In other words,

79=0757" 15= 1257 a7

7" is the average value of £ between the small-error points and the large-error points with-

in the range of 7‘!1 <d, < Tg In other words,

(78)

. . 1 !
where 7§ is the average & value of the small-error points between the range T, <d,< Tz .
Similarly, YJ;L is the average & value for the large-error points within the range of

1 . o :
T‘,’ <d,< T, . Note again that the small-error point is defined as the vector generating ap-

proximation error less than 0.15.

With the threshold we created, it means that any data generating minimum distance

: A - {
less than 7‘,’ and also any data point making minimum distance within the range (T’,. Tz J

with £ less than T:‘ will be accepted. From the rejection region we described above, for

118

any composite training data, although they can have very high £ (greater than 7). their
minimum distances are small so they are not detected as novel data.

In this section, we explained how to incorporate the method of outlier identification
with the minimum distance algorithm. The threshold for discarding abnormalities was in-
troduced as well. We wil} demonstrate the ability of this algorithm in the following exam-
ple.

Simulation of the simple example

This section will illustrate the ability of the minimum distance algorithm with out-

lier detection constraints. First, we will transform the three-dimensional training data to

principal components. The unbiased estimate for the covariance matrix is

0.5182 —-0.0001 —0.0008
Z = {_0.0001 0.1824 —0.0012 (719
—0.0008 —0.0012 0.1020

The eigenvalues and eigenvectors of the covariance matrix are

)
Ay = 0.5182,v; = [1.0000 ~0.0003 ~0.0019)

T
A, = 0.1824,v; = [0.0003 0.9999 ~0.0149)] (80)

]
Ay = 0.1020,v; = [0.0019 ~0.0149 ~0.9999]

We decide 10 vse the last two PCs 10 compute § (i.e. set v = 2 in Equaton (75))

since it has the smallest percentage of misclassified points. However. we found that this

A T T
value worked best for different data sets as well. After setting the v value, v, and v,

shown in Equation (80) will be used to transform the training data to the second and third

e

T T
PCs. We calculate z;, = v, and z;3 = v3T; forall ; in the training data. We are now

dh L
ready to compute & for the i training data:

2 2
& = zj3+2; 8D

Figure 62 plots & for the composite training data.

Figure 62 The value & from the composite training data set
For the testing data, we first need to propagate the input vector p; through the func-

tion approximator to get the network output a}'.. Then. we compute the second PC

T . t Tt .
2,"2 = ‘02]";- and the third PC 23 = V3 l"j to obtain

2 2
g = (23) +(zjp) (82)

Figure 63)llustrates the value é,’ for the 437 testing data points.

| | |
1] ! |
) HHTH
Ay |
i A (l' -|l| muyann ‘ i |
b | Il L\m h |
I ";g: WIH

Figure 63 The value ?’;’ from the composite testing data set

We can see from the figures that ﬁ' values for the testing data were higher than §
value for some training data. This phenomenon does not generally happen, especially when

the network outputs for the testing data are bounded within the normalization range, which

is [-1.1]. The data we use in Chapter 8 is another example showing that although the suin-

square value £' of augmented testing data could be lower than that of composite trayning
data, the testing data created large errors. As we explained, this is the reason why we cunnot
use only outlier detection for novelty detection. The next procedure is to find the minimum
distance of the augmented testing vectors. The minimum distance for the 437 testing vee-
tors is shown in Figure 60.

After calculating both the minimum distance and & for the composite testing data,

we plotted the values in Figure 61. Based on this figure and Equation (76), we found thal

!
the minimum distance 7% was 0.2158. Then, 7| = 0.75T" = 0.1618 and

121

Tg =].25’[d = 0.2697 . Within the range of (0.1618, 0.2697] . we found that the average

€ value for small-error points is 0.6702, while the average & value for large-error points is

1.3414. 7i’ is then equal to 0’6702; 1.3414 = 1.0058 . (Notice that within the same range

of minimum distance, small-error points have on-average smaller sum-square value than
large-error data, This can help us distinguish small-error points and large error points with-
in the range of mmimum distance.)

From the values we obtained, it means that any data generating minimum distance

Jess than 0.1618 will be accepted. In addition, we will accept any data having minimum dis-
1ance in the range (0.1618, 0.2697], as long as & is less than 1.0058. In other words, the
rejection region is

(0.1618 < d, <0.2697 and g'> 1.0058) of (d,,>0.2697) (83)
Equation (83) means that any data generating mimimum distance within the range
(0.1618, 0.2697] with & greater than 1.0058, and any data with minimum distance larger
than 0.2697 will be considered novel. Figure 64 demonstrates the network errors, and novel

data identified by this algorithm are flagged with x.

122

ar

Y] {
|
l
|

Envor
hd
©

- ~

Figure 64 Novelty Detection
The percentage of misclassifications for this algorithm is 8.24%. All of the misclus-
sifications were from the small-error points in the rejection region (type I errors).
There exists another rejection region that makes fewer misclassifications than the

number we showed. Tt will depend on the application as to what types of misclassifications

S
we can tolerate more. For example, we can increase the thresholds T‘,l T‘z or T to obtain

less type I error,

From the simulation outcomes, we can see that the percentage of misclassifications
is somewhat low. Also, the execution time for this method was acceptable. Although this
algorithm seems to have very promising results, the main drawback is a complicated thresh-
old for discarding abnormalities.

Summary

The purpose of this chapter was to use a minimum distance algorithm that includes

network outputs but does not include a weighting factor. We saw in the last chapter that the

weighting factor can vary from one data set to another. We found that a principal compo-

123

nent method for outlier detection could improve the efficiency of the minimum distance al-
gorithm. We found that, at a certain value of minimum distance, the principal component
statistic could differentiate between large and small errors. This phenomenon could reduce
the percentage of misclassified data. The simulation results showed that the percentage of
misclassified points for the new algorithm was acceptable. The computation time for this
algorithm is comparable to the minimum distance algorithm.

The new algorithm has one parameter that must be set. Although we originalily set
it heuristically, it turned out to work for many different data sets. One drawback of the

method is that it requires a somewhat complicated thresholding mechanism.

CHAPTER 8

SIMULATION RESULTS

Introduction

We will dedicate this chapter to demonstrating the performance of the various nov-
elty-detection algorithms we described in the previous chapters on two real world applica-
tions. First, we will describe the data sets (e.g. training data, and two sets of testing data).
After that, we will discuss the outcomes from the following methods:

[. Neural tree

2. Gaussian kemnel estimator and joint density

3. Minimum distance and the minimum weighted computation

4. Minimum distance with outlier detection using principal components analysis

We chose all the methods we discussed in this thesis except the autoassociative
multilayer perceptrons. The time required for training the autoassociative perceptrons was
too long for our high dimensional data.

After showing Lhe simulation results for these methods, we will summarize the per-
formance of each algorithm in terms of the percentage of misclassified points, including the

two types of misclassifications made by the novelty detectors.

125

Function approximation 1

In this section, we will briefly describe the function we are going to estimate, and
some details of training data and testing data for the first data set.

Formation resistivity is a key parameter for estimating the presence of oil or gas.
Signal transmitters (coils) energized by alternating current (AC) at frequencies ranging
from 8-40 kHz create an oscillating magnetic field. This magnetic signal causes induced
currents, which are approximately proportional to the conductivity (reciprocal to resistivi-
ty), of the earth formation. The currents then contribute to induced voltages at receiver
coils. We will process the received voltages to obtain the values of formation resistivity.
Generally speaking, the activated voltage is a non-linear function of the formation resistiv-
ity.

Since the parameter we are interested in is the formation resistivity, we use a neural
network to model the inverse of the non-linear function. In other words, neural networks
(function approximators) arc used to convert the received volitage 1o the formation resistiv-
ity. That means that the input to the function approximator is the voltage. and the ourpii
of the function approximator is the formation resistivity. We have several neural netwarks
for different receiver coils, but we will discuss only one coil, which is Coil_lc.

At Coil_lc, we collected 19,558 data points, which consisted of the induced volt-
ages (inputs) and the resistivity values (targets). We used most of them (13,175 points) to
train our neural network. The rest of the collected data points were used as the validation

data set during the training process. This error from the validation data set was monitored

126

during training so that we could stop training the neural network if the error from this data
set increased.

For Coil_lc, the structure of the neural network was 51 — 20 — 10 - | . meaning that
we used the induced voltages from 51 different depths to predict the resistivity at one cen-
tral depth. After we completed training, the function approximator could correctly estimate
the resistivity for training data and validation data. The maximum error for the network out-

put was 0.232. (Note that this is an error on data that has been normalized to the range

(~1.1].) There were 0.29% of the total training data that generated errors larger than 0.15.
We also have nine testing sets, each containing 581 data points. However, we will

demonstrate the results of only six test sets (set 01, set 02, set 06, set 08, set 10, and set 11).
We will divide these testing data into two groups. The first test group consists of set 01, set
06, and set 10, while the remaining sets are placed in the second test group. For the first test
group, we will assume that we know the error from the function approximator: however,

the errors from the second test group are presumed unknown. We will find the threshold to
reject abnormalities from the first test group. and will use the second test group to compule
the percentage of misclassifications based on the threshold. The threshold we create should
apply to arbitrary data sets. We will use the percentage of misclassifications to compare the
performance of the various novelty detectors. Figure 65 shows some example plots of volt-

age and resistivity utilized for training our neural network.

127

|

|
1

—

=

Fcaee 65 Fxaniple plots of voltage and resstivaty . Prawme dat
The plois demon-liating veltage and resistivity used tor tostime the neral nems ork

me shown in Fienie 66,

Fonre G0 Vodene e el resg-nis . It s
I e folloss e sectore s salbapply anr festies vector v the Tancta appa
e T aletormmne the e oo s o the pesg=tv ity et gt Phevewc ol brear thee abaline
TR VTRl STREATR) LRSI P TEPE TN P AT SO RIRTH G F TR O
Sourdd tree
Ve sl b e vl meninal tree alocnithing bon gerecits cbemes o Reter h.1|-1.-;

Peon e ol o the nearal tree af o nbmnn atad heewe foonee o Lot ey et g

First, we need to specify the number of cells for the tree. A 5,000-cell tree was ini-
tialized to partition the fifty-one dimensional space. Then we applied the 13,175 training
vectors, using the same learning rate we used in Chapter 3. After limiting the size of every
cell with infinite volume, we applied our testing data to the trained tree to find abnormali-
ties. The algorithm to define novel data was the same as the example in Chapter 3 (duta are
identified as novel if they are outside of the cell boundaries). Although we do not need to
separate testing data into two groups for this algorithm, since the threshold to identify ab-
normalities is defined by the algorithm, we will show the number of misclassifications of
the two test sets separately. Figure 67 illustrates the error from the function approximator

for the first test set, and the abnormalities 1dentified by the 5,000-cell tree.

Figure 67 Error and abnormalities: The first test group (Neural Tree)

130

There are two types of misclassifications made by a novelty detector. For type [
misclassification, data points generating small approximation error are flagged as novel da-
ta. For type Il misclassification, data points generating large approximation error are
flagged as normal. (Note again that approximation errors greater than 0.15 will be consid-
ered large error for this thesis.)

Recall that the neural tree algorithm flags data as novel when they are out of the cell
boundaries. From Figure 67, we can see that most of the data points were identified as novel
data for the function approximator. The percentage of misclassifications was 67.87%. All
of the misclassifications were from small-error points that were flagged as novel data (type
[error). This number is extremely high {similar to the simple example shown in Chapier
3). This may be due 10 the fact that flagged data are close to the training inputs but they are
out of the cell boundaries. We found that around 93.8% of the 5,000 cells are limited by the
training data, compared with 31% of the 200 cells in the example in Chapter 3, With a very
high percentage of limited cells, testing data close to training data (which are used to limit
cells) are more likely to be out of the cell boundaries. We expect that the result for the sec-
ond group will not be much different.

Next, we applied the second test group to the tree. Figure 68 shows the network er-

rors for the second test group and the abnormalities.

131

L]

cA.

Lot bt

Figure 68 Error and abnormalities: The second test group (Neural Tree)

what we expected from the first group.

ing data were inside the 5,000 cells.

We can see from Figure 68 that most data were marked as novel points. The per-
centage of misclassifications in this case was 67.01%, which is about the same as the first

test set. All of the misclassifications also were from type [error. This result is similar to

When we applied the training data to the novelty detector, we found that the per-
centage of misclassifications was equal to 0.29%. All of the misclassifications were from

the large-~error points flagged as normal data (type Il error). This is because all of the train-

In this section, we used the neural tree algorithm to identify abnormalities for the
function approximator. In the next section, the Gaussian kernel estimator will be utilized as

our novelty detector for the function approximator.

132

The Gaussian kernel estimator (GKE)

In this section, we will use the Gaussian kernel estimator from Chapter 4 to estimate
the density of inputs to the function approximator, and to estimate the joint density between
the inputs and the target outputs. The estimated density will be used to identify novel data
for the function approximator.

The estimated density of input

We will use the Gaussian kernel estimator to estimate the density function of the
input to the function approximator. If the estimated density is low for a new input, we will
reject that input as novel. The details of this algorithm were explained in Chapter 4.

For the smoothing parameter matrix, we will use the same approach as we used 1n

Chapter 4 — the average distance to the ten-nearest neighbors. We found that the smooth-

ing parameter matrix in this case will be:

006982 0 ... 0
s =| 0 00898 .. 0 &)
| 0 0 .. 006987

The matrix in Equation (84) is 51 x S1 since the dimension of the input to the function ap-

proximator is S1. After using Equation (33), we obtained the estimated density for the first
test set. Figure 69 plots the estimated density versus the error from the function approxima-

tor for the first test group.

. 1™ Faet ot groap

|
i
I

|

i
i
|
|

@6 o PO ‘
|
1
|

i i
M e e e L
o ots (A LRLY 07 a2% 03 oM od Cu o5
€rren

Figure 69 Estimated density and approximation error: The first test group
To create the threshold for discarding novel data, we consider the regression line

shown in Figure 69. The equation for that line is
. 36 36
density = —6.1756 x 107 Xerror+ 1.1663 x 10 (85)

From Equation (85). the density that corresponds to an error of 0.15 is 2.3993 x 10™° . This

means that, on average for the first test group, data points having a density of

23993 x 10°° generate an error for the function approximator of 0.135. Therefore, we will
use this value as the threshold to reject novel data. In other words, any data generating an
estimated density less than the threshold will be considered as novel. The errors from the
function approximator and the novelties for the first test group identified by the Gaussjan

kernel estimator are shown in Figure 70.

134

L

[A g
N il | Ky
BPRTLA lll AR -IJur\f-'(x

Figure 70 Error and abnormalities: The first test group (GKE: input)
We found that the percentage of misclassifications was 62.25%. About 61.79% oul
of 62.25% were from type] errors.
Next, the second test group will be applied to the novelty detector with the specificd
threshold in order to test whether the novelty detector can identify abnormalities from an-
other testing region. Figure 7| illustrates the error from the function approximator, and the

data points detected as novel data for the second test group.

135

[SRR et v

i
L,

4

4,

Figure 71 Error and abnormalities: The second test group (GKE: input)

We can see that the algorithm not only identified abnormalities, but small-error
points as well. The percentage of misclassifications in this second test set was 51.58%. The
majority of these misclassified points (around 50.03% out of 51.58%) were type | errors.

When the training data were applied to the novelty detector using the Gaussian ker-
nel estimator with the threshold we described above, the percentage of misclassified points
was equal to 34.73%. Most of the misclassifications (around 34.64% out of 34.73%) were
from type I errors.

The misclassification percentages for the two test groups are fairly high but less
than that from the neural tree algorithm. However, the percentage of misclassifications was
very high in the training data set. This might be due to the fact that the smoothing parameter

matrix is not well-fitted and the threshold we set up from the first test group is too high for

116

the training data. We already discussed in Chapter 4 that this method tends to have many
type I misclassification.

In this section, we vsed the Gaussian kernel estimator as the novelty detector for the
function approximator. We found that the percentage of misclassifications was reduced
when compared with the neural tree algorithm. In the next section, we will incorporate the
effect of the network output to compute the estimated joint density.

The estimated input-output densiry
We assume in this case that our smoothing parameter matrix is the identity matrix.

Each element of the input is uncorrelated. The diagonal elements are calculated by using

the average distance 1o the ten nearest neighbors. The smoothing parameter (52 %X 52) was

00771 0 ... 0
s.=| O 00771 ... 0
| 0 0 ..00777

(86)
The following figures demonstrate the simulation results by showing the relationship be-

tween the error from the function approximator and the estimated density.

137

" F el ot Doup

Figure 72 Estimated density and approximation error: The first test group
To reject novel data, the regression line will be used. The regression line in this case

was
. 35 34
density = -2.4606 X 107" X error+4.4895x 10 (87)
After substituting 0.15 into the error term in Equation (87). the corresponding density is

7.9865 x 10™ . That means that, based on the first test group, data points generating an cr-

ror of 0.15 have estimated joint density around 7.9865 x 10> . Therefore, 7.9865 x 10™
will be used as the threshold to reject abnormal data. Therefore, any composite data gener-
ating joint density lower than this threshold will be considered novel. Figure 73 iflustrates

the network errors and novel data are flagged with an x.

138

' |
1 | |

P bl |
| ot
L& M 1?-"*‘\ 1 'Ill Jil ‘.".-11)"‘.b

Figure 73 Error and abnormalities: The first test group (GKE: input and output)
The percentage of misclassifications in this case was 60.01%. The majority of the
misclassifications (around 59.44% out of 60.01%) were type 1 errors, and the rest of the
misclassifications was type Il errors,
The second test group is now applied to the novelty detector with the specified

threshold. Figure 74 illustrates the network errors and flags novel data.

136

Er vt et

Figure 74 Error and abnormalities: The second test group (GKE: input and output)

The percentage of misclassified points for the second test group was 50.14%,
Around 49.22% out of 50.14% were from type I errors.

If we applied the training data to the novelty detector. the percentage of misclassi-
fications was equal to 35.39%. We found that around 35.31% out of 35.39% were the type
[errors. The rest of the misclassified data points were type II error.

We can see from the results that the joint density (between input and output) pro-
vided lower misclassifications for both the first and second test groups. However, for the
training data, the percentage of misclassified points using the joint density (between inputs
and output) is larger than the percentage of misclassifications using the density of inputs.
That means that some training data have very low density compared with the joint density

of some novel data. These low-joint-density points in the training data are the points in re-

140

gions where the density of target outputs and inputs are iow. We also experienced this phe-
nomenon when illustrating the simulation results in Chapter 4 (i.e. simulation #2)

In this section, we showed the simulation results for novelty detection using the
Gaussian kerne! estimator method to estimate the joint density. The results illustrated that
the joint density between inputs and outputs tended to distinguish novel data clearer than
ithe estimated density of the input alone. [n other words, the percentage of misclassifications
for the joint density is lower than that for the estimated density of inputs. In the next section,
we will test the minimum distance algorithm for novelty detection.

Minimum distance algorithm

This section will illustrate the ability of minimum distance and minimum weighted
distance as the novelty detectors for the function approximator. Refer to Chapter 6 for the
details of these two methods.

The minimum distance of input

The minimurm distance algorithm for novelty detection will be shown in this sec-
tion. We first compute the minimum distance from the testing inputs to the training inputs,
Figure 75 presents the correlation between the error from the function approximator and the

minimum distance on the first test group.

14]

Cal Vo/3e 01, Set D4 Sl 1D

b
o
4

€3 DX oa 35 DS

Figure 75 Minimum distance and approximation crror: The first test group
From Figure 75, we found that the regression line that represented the relationship

between the minimum distances and the errors for the first test group was

d, = 0276 xerror+0.108 (88)

After substituting 0.15 in the error term, the corresponding minimum distance is 0.1494.

We will use this value as the threshold to identify novel data. Figure 76 illustrates the errors

from the function approximator, and novel data are flagged with x .

142

Gt e 1 — -

Cot ot

., N
II”‘ o
v ._-\-'-‘IWJ,J\ "1.'.'?1‘. l/« -:.‘.m J.

Figure 76 Error and abnormalities: The first test group (Minimum distance)

We can see that there were many points detected as novel data though they gener-
ated small errors. The percentage of misclassified points was 34.31%. The majority of the
misclassifications (around 28.86%) were from type | errors.

Next, we applied the second test group to the novelty detector. Figure 77 shows the
network error and the abnormalities identified by minimum distance with threshold of

0.1494.

143

Gt Nty Ot et

-Hﬂ!!':

1‘|||||| ‘

Figure 77 Error and abnormalities: The second test group (Minimum distance)

Most large-error points in this test set were identified. However, we missed many
data points with small errors (as in the first test group). The percentage of misclassifications
in this data set was about the same (35.23%). Around 34.65% out of 35.23% were from type
I errors.

If we applied the training data to the novelty detector using the minimum distance
algorithin with the threshold obtained above, the percentage of misclassifications was equul
to 0.29%. All of the misclassifications were from type I errors. This is due to the fact that
any training data will have zero minimum distance.

In this section, the results of novelty detection using the minimum distance algo-
rithm were demonstrated. The percentage of misclassifications was about 34-35%. In the

next section, we will test the minimum weighted distance for novelty detection.

144

The minimwm weighted distance

In this section, we will utilize the minimum weighted distance for novelty detection.
Refer to Chapter 6 for the detaiis of this method. We will start this section by demonstrating
the effect of the weighting factor on the correlation coefficient for the first test group. In
other words, the inputs of the first test group were applied to the function approximator to
get the network outputs, After that, the minimum weighted distances in the first test set
were calculated at a specific weighting factor. The correlation coefficient between the er-
rors from the function approximator and the minimum weighted distances (for the first test

group) are plotted in Figure 78 as we varied the value of the weighting factor.

Cod 1</ S0t DY, St DO, Smt 10
- T T —

e e BV I I
(X4 2 at h] 3K] 48
Weaptmg § ncior [nipha)

Figure 78 The weighting factor and the correlation coefficient: The first test group

For small values at weighting factor, the correlation coefficient R between error

and the minimum weighted distance increases with the increased weighting factor. Further-
more, when the werghting factor s 0.5 the correlation coefficient is highest. Therefore, we

decided to use this weighting factor for novelty detection. Figure 79 illustrates the error of

145

the function approximator and the minimum weighted distance of the three testing sets (the

first test group) at a weighting factor of 0.5.

Cod Ve S 01, St (. S 10

[Y Y —— BN —

2

Figure 79 Minimum weighted distance and approximation error: The first test group
From Figure 79, we will use the regression line to create the threshold for discarding
novel data. The regression line for the first test group was

4% = 051 xerror+0.122 (%9)

By substituting 0.15 into the error term, we get the minimum weighted distance 0.198S.

That means that, at the weighting factor 0.5, data points generating the error 0.15 have min-
imum weighted distance 0.1985. Therefore, in order to identify data points with errors lurg-
er than 0.15, the minimum weighted distance 0.1985 will be used as the threshold. Figure

80 shows the network errors and the identified abnormalities.

146

- e — -

Com oy

LI | | [
,I'-I'III (I il
Lorasanh {l'-l‘vl IIl B R -.’.d-!‘ ﬁp

Figure 80 Error and abnormalities: The first test group (Minimum weighted distance)

We found that the percentage of misclassifications was 19.40%. The major misclas-
sifications (17.10% out of 19.40%) were from type I errors. The rest (2.30%) were from
type 1l errors.

Next, we will apply the second test group to the function approximator o get the
network outputs. The minimum weighted distance at the weighting factor 0.5 for this data
set wil] be then computed. These minimum weighted distances for this test group will be
filtered by using the threshold we created from the first test group. Any data points gener-
ating minimum weighted distance larger than the threshold will be discarded as abnormal-

tties. Figure 81 demonstrates the error from the function approximator for the sccond test

group, and the detected abnormalities are flagged with x.

147

e el Lt

i
N

Figure 81 Error and abnormalities: The second test group (Minimum weighted distance)

The percentage of misclassifications in this case was equal to 30.36%. The majority
of the misclassified points (around 29.78% out of 30.36%) were from type I errors. We can
see that the percentage of misclassifications was reduced by a certain amount for both test
sets, compared with the percentage of misclassifications from the minimum distance algo-
rithm.

If we applied the training data (inputs to the function approximator) and the corre-
sponding network outputs to the novelty detector using the minimum weighted distance,
the percentage of misclassifications was equal to 0.29%. All of the misclassifications were
from the type 11 errors.

In this section, we used the minimum distance and the minimum weighted distance

algorithm for novelty detection. The minimum weighted distance algorithm turned out

148

slightly fewer misclassifications than the minimum distance method. In the next section,
we will show the result of novelty detection using minimum distance with outlier identifi-
cation.

Minimum distance with outlier detection

This section will present the simulation results for the minimum distance with out-
lier detection algorithm for novelty detection. Chapter 7 explained the details of this meth-
od.

First, we need to create composite training data by combining the targets and the
inputs to the function approximator. These composite training data will be used to compute
the minimum distance to the composite testing data, which combines between the network
outputs and inputs.

Next, we will compute the covariance matrix for the composite training data. The
eigenvectors of this covariance matrix will be used to transform the composite training data
to principal components. Then, the transformed data set (i.e. principal components) wil} be
utilized to compute the sum-square value in the process of outlier identification. The v val-
ue, which determines which principal components we will use to compute the sum-square
value, was selected by Jooking at the ordered variance of the transformed data set. Figure
82 shows the ordered variance of each principal component of the composite training data

in Coil_lc.

149

Figure 82 Variance of principal components: Training data
We will utilize the last PC to the PC that first gives variance equal to or above 0.02
for calculating the sum-square values. In this case, the variance of the third PC is 0.0302.
Therefore, we will use the last PC to the third PC for outlier detection. Note that this value

produced the fewest misclassifications for every coil (not only for Coil_Ic). By using this

criterion, the v value shown in Equation (75) for Coil_lc was set to 50. After computing

the sum-square values from the third PC to the 52" PC, the highest sum-square value for
the composite training data was 0.6574,

We need to transform the augmented testing data to the principal components via
the eigenvectors and then compute the sum-square value of the last S0 PCs. Figure 83 plots
the minimum distance between the composite training data and the augmented testing data
(the first test group) versus the sum-square values. The data points in the first test group

having small error (i.e. less than 0.15) are indicated by an x.

150

Faowre =5 ST destanne coand thie <o sauare vadone The st s croup

Moo et thees by s e e e oo el 00 2 e ol
il crror ot Lizaba = st sdue Tess than 001 Fo v ditan o beracen i 15
and 025 e s vadues Tess i 0 D il me the dereae s popbated arenal i
Py i e ot poant - ol ol cren

Secvt e wll crcate the reyecten e preny for dscanddie o e dldor thaee o crron

[R KR S ENEN IR [RYENS YN PO St S bt necd ook tate pronnamg destone o D

M whow s the relanonsbupy Bevs con e e e eror e o s

Col 12/ Sat 03, St 08, St 10

Figure 84 Minimum distance and approximation error: The first test group

The regression line 1s
d, = 0487 xerror+0.1149 (90)
The minimum distance corresponding to an approximation error of 0.15, 7 ,, is 0.188.
Next, for minimum distances between 0.75 x 0.188 = 0.141 and 1.25 %< 0.188 = 0.235,

the sum-square value will be considered. Within this range. the average of the sum-square

value for the small-ecror points, T% is 0.0684, while that for the large-error points (i.e. ap-

proximation error greater than 0.15), 71[;‘ .18 0.1946. Therefore, any data yielding minimum

distance between 0.141 and 0.235 and producing the sum-square value greater than

0.0684 + 0.1946
2

= 0.131t5 will be considered novel. In addition, data generating mini-

mum distance larger than 0.235 is also presumed novel. In other words, the rejection region

for discarding novel data is

(0.14t <d,, <0.235 and £ > 0.1315) or (d,, > 0.235) 91)

152

Figure 85 plots the network error for the first test group. The abnormalities are

flagged as x.

I
. WL |
o b Ly Ll . |
- > « ' . -
) I[| ‘| -) j .‘J l- __.‘l-
L I N U I

a — - ww em == o wm o=

<= 3 - . e = B - = -

B4 ™ o
- et e

[y

4l N il
AN TN

Figure 85 Error and abnormalities: The first test group (Minimum distance and PCA)
Most large-error points in set 01 and set 10 were identified as novel; however, in set
06 and set 10. many small-error points were detected as novel. The percentage of misclas-
sifications was 10.44%. The majority of misclassifications (9.46% out of 10.44%) were
from type L.
Next, we will apply the second test set to the novelty detector to verify that the re-

jection region works. Figure 86 demonstrates the network error for the second test group.

The abnormalities identified by the novelty detector are indicated by an x.

153

L] e

Figure 86 Error and abnormalities: The second test group (Minimum distance and PCA)
From Figure 86, we can see that some abnormalities in set 08 and all nove] data in
set 11 were identified, although some small-error points in every set were also detected.
The total percentage of misclassifications for this test group was 15.37%. Most of misclas-
sifications (14.91% out of 15.37%) were from type | errors.
The percentage of misclassified data points was equal to 0.22% if we applicd the
training data to the novelty detector. Around 0.19% (out of 0.22%) werc from type 1l errors.

Note that all of the data detected as nove! for the training data set were from the rejection

region of (0.141 <d, < 0.235 and & >0.1315).

From these results, this method provided the lowest percentage of misclassifica-
tions for the first test group and for the training data relative to another method.

In the next section, we will summarize the results for all of the algorithms.

154

Result summary

Table 2 summarizes the results from the first test group for all of the novelty detec-

fors.

Table 2 Percentage of misclassifications: The first test group

_ Percentage of misclassifications
Algorithm Type | Type I1 Total
Neural tree 67.87 0 67.87

Density of input 61.79 0.46 62.25

Density of input and 59.44 0.57 60.01
output

Minimum distance 28.86 5.45 34.31

Minimum weighted 17.10 2.30 19.40
distance |

Minimum distance 9.46 0.98 10.44

and outlier detection

Table 3 summarizes the results for the second test group.

Table 3 Percentage of misclassifications: The second test group

Aleorithm Percentage of misclassifications i
gort Type I Type I Total]
Neural tree 67.01 0 67.01
Density of input 50.03 1.55 S1.58
Density of input and 4922 0.92 50,14
output
Minimum distance 34.65 0.58 35.23
Mimmum weighted 2978 0.58 30.36
distance
Minimum distance 14.9) 0.46 15.37
and outlier detection

We can see that the neural tree algorithm turned out the highest percentage of mis-

classifications for both test groups. The minimum distance of the composite data with the

158

outlier detection provided the minimum percentage of misclassifications for both the first
and the second test groups. The Gaussian kermel estimators tended to reject more small-cr-
ror points than any other method, excluding the neural tree. The minimum weighted dis-
tance had fewer misclassifications than the minimum distance algorithm for both test
groups.

Table 4 shows the percentage of misclassifications when we applied training data
1o the novelty detectors. Note again that the percentage of large-error points (i.e. error

greater than 0.15) in the training data set was 0.29%.

Table 4 Percentage of misclassifications: Training data

Algorithm Percentage of misclassifications
5 Type I Type 11 Total
Neural trce 0 0.29 0.29
Density of input 34.64 0.09 34.73
Density of input and 3531 0.08 3539
output
Minimum distance 0 029 0.29
Mlmmgm weightled 0 029 0.29
distance
Minimum distance 0.03 0.19 0.22
and outlier detection

The joint density using the Gaussian kernel estimator had the highest percentage of
misclassifications 1n the training data set. The majority of misclassified points were {rom
the small-error data flagged as novel points (Type [). However, it gave the lowest percent-
age of misclassified points for the large-error data (i.e. error greater than 0.15). The mini-
mum distance with outlier detection had the Jowest percentage of misclassifications for the

trajining data set.

156

In the next section, we will utilize another application to test the performance of the
various novelty detectors.
Function approximation I1

We will begin this section by briefly describing the data set in this part, followed by
the simutation results of each novelty detector.

For this example, we will create a neural network to model a diesel engine. The in-
puts to the function approximator are comprised of speed and fueling, while the output is
torque. We chose to have a two-layer network, with 20 neurons in the first layer. The outpul
layer must have one neuron. In other words, our neural network structure is 2 - 20 - | .

We collected 1,049 observations from speed, fueling, and torque. The observations
were divided into two groups — 3599 samples used for training, and 450 samples used for
validation. The network was trained using the Bayesian regularization algorithm. The errar
from the validation set monitored so that we could stop training if the error increased. Note
that we normalized our data within the range [-1.1].

After training the network, we found that the function upproximator was generally
accurate. However, 12.69% of the training data still yield large approximation error. Figure
87 shows the locations of the training inputs, and the red points represent data producing

large approximation error.

157

FY

Fromre »7 Dk pomts wtl Ly

Wecabos e aneethier D50 abe

Jarid ~nall APPEes Ao e I rannm

v ihions taed o ety e saanple 10 oh

e Lot the Dest tosb chongs iy ondey oot ap panacter - ik as e dheshiodd e die

e dara The cober 225 obsers atnon

verty e portormeme s of novelis dete

< w il be nsesd tor the scvomd st 2o order

tors Pl focatioms ol these esuny ol woll b

Poovwr v e nest e ctyear srlone o the perbormiome s ot the penral e el e

T vh weo o see el s o

Lisr v 0 =l]]f“ (FTR ETAT B TRT E B Ut

Nearal e

i1l pnple. s a il ose o

Fhea e appls B S99 ranme vedlog

de Nt ot th

bt o et e s

pihed Qe gyt e here e T i e

e the penvonygeaoc o the e tooe nee o

il

Mub o] toopaanliien the toco dimncraomel

i the <ot leatome vl et e g
chb et sl s appis o

Frosd bl 1he aloorithing cile e n

RIS

ot s the sirne ws e cxample m Clhapiter S adars e wentifwed as novel it they are oul

stde ol ihe cell bonndiresy Brpoee B8 demonstnies the oo porests wlersifed s sl

T . T Y
I & T o B j. P -
9“{'5. e u®™ o . aadth N ST Y
Prome sy Nencb Dyae The taer e cronpecScaal boees
N e e o thie nomee ot mos e dateom e Testgusdiant e sleamened e
meecel Bronre &9 oetrates the approsaation crron for the Gt e setsand the abooral

ks pleniebredd B rhe 0o ci peee

ooore 59 Fovon il ahnest il Dl Tiess best crenpos S enal Treae

| here are 25 11 s bas st nesnts e botal Ao 104 e s e T errons Wy

s e s Coses The poreenee ol U e T ey Brss o aions o the noorins

we e met Daeve - o bope Derronrs asom e presious evample This s bocanse manm
]

Fpoe-crror data pomts are swotbun the cell o s phienomenon woas discussedom G hapter

SR ORI e thie secord 1est srop beothe trmned tree Frgure 90 et iate s e

ot panporoted b ihe 2ot-cel) pee

P o Sl dare Tl secomubn v e eyl T

ure S Shoee

Wi ettt the resnlei= gane sl Leodes tirsg lest cronp b

Qe iatiort crren s nosel ot Lo the o e - REIE

] e L
ri'\ "lﬁ|!ll ‘II “I H
b ||h||v 11T, "(u”

-a.qr- ———— 4 — . - - 4
-2 \ 1 g i g =)
o

7 100) 00

Erce
o
u

< ST
e

Figure 91 Error and abnormalities: The second test group (Neural Tree)

In this test set, there are 35.56% misclassifications. Around {6% are type 1 error,
and 19.56% are type Il error. Although type I error increases by a certain amount from the
first test group, it 1s still less than type 11 error. We also found that the percentage of limited
cells 18 only 12.5%. Therefore, when compared with the previous example, we are /ess
likely to find data points close to training data but outside the boundaries, thereby reducing
the probability of existing type I misclassification.

Now, when we applied the training data to the novelty detector, there were 12.69%
misclassifications. All of the misclassifications are type II errors. This is becaose all of
these large approximation error points are within the cells (since they are training data).

In the next section, we will test the performance of the Gaussian kernel estimator.
The Gaussian kernel estimator (GKE)

In this section, we will use the Gaussian kernel estimator to estimate the inpul den-
sity, and to estimate the input-output density of the function approximator. The estimated

density will be used to identify novel data.

161

The estimated density of input

For the smoothing parameter matrix, we will use the same approach that we used in
the previous example — the average distance to the ten-nearest neighbors. We found that

the smoothing parameter matrix in this case is:

)
s . 005177 0 92)

r 2
0 0.0517

After using Equation (33), the estimated density for the first test group is obtained.

Figure 92 plots the estimated density versus the approximation error for the first test group.

Font 10 group

» o AV VRV
R- 0425 s

|

r 1

s
o . c
|

|
10}
i

T dmatsd Dermay

01 02 3] 04 o< 08 07 (A

Figure 92 Estimated density and approximation error: The first test group

Again. the figure indicates that. at the low density value, we are more likely to find
large-error points. We found that the regression line for this data set is

density = —23.338 xerror + 8.5863 (93)

When substituting 0.15 in the error term, we end up with 5.075. We will use this valuc to

be the threshold to reject novel data.

162

After using this threshold, we found that there are 36.89% misclassified points, and
all of the misclassifications are type I errors. Figure 93 shows the novel data indicated by

the atgorithm.

W
I. ﬁ I II| |1- I; l:[J I,l!;g: |'L||l', - |I .||I|.' I‘ll
P! ” llll‘. :i,' ll;) |‘ | f”

Figure 93 Error and abnormalities: The first test group (GKE: input)
Next, we applied the second test group and computed the density with the same
smoothing parameter matrix. The density is fed to the novelty detector. The graph showing
the approximation errors and novel data pinpointed by the algorithm for the second test

group i1s shown in Figure 94.

163

Lo li ‘ _ "|.|

| li f

y | '\‘11 |l|,. il

——

Figure 94 Error and abnormalities: The second test group (GKE: input)

We found that there are 43.11% misclassified points and all of these are 1ype [er-
rors. When applying the training data (inputs) to the novelty detector, we found that the per-
centage of mjsclassifications are 31.05%. All of the misclassifications are type I errors.

We can see from the results that the percentage of type I misclassifications is very
high. This outcome is similar to what we had in the previous examples, and it follows the
analysis we gave in Chapter 3 that this method tends to reject more small-error points, thus
causing more type I errors.

In this section, we applied the Gaussian kernel estimator to estimate the density of
inputs to the function approximator. In the next section, we will use the estimator to con-
pute the density of inputs and outputs of the function approximator.

The estimated input-outpit density

In this part, we will use the Gaussian kernel estimator to compute the density of in-

puts and outputs of the function approximator. Since we have two dimensions for the inputs

and the outputs are in one dimension, the composite data are tn three dimensions.

We will use the same method to compute the smoothing parameter matrix, the ten-

nearest neighbors for the b value. By using this algonthm, the smoothing parameter matrix

will be:

0.08462 0 0
=1 0o 00846> 0 (94)
0 0 00846

After using Equation (36), we plot the estimated density and the approximation er-

ror for the first test group as follows:

m-nurm?;ﬁn-_nm - an

g — e . s _ - h
n o 02 (] 04 04 oe -3 oe

Figure 95 Estimated density and approximation error: The first test group
Again, the graph demonstrates a relationship between the approximation error and
the estimated density. We found that the regression line in this example is
density = —42.61 xerror+ 15.711 95)
Once again, we substitute 0.15 into the error term to obtain the threshold. From the equa-

tion, the density threshold is equal to 9.31. We will use this value 1o reject any data gener-

165

ating density lower than 9.31 as novel data. After discarding novel data based upon the
threshold, there are 36% musclassified data in this case, which 1s slightly less than the per-
centage of misclassifications when we computed the density of inputs. All of the misclas-
sifications are from type I errors. Figure 96 shows the novel data identified by the

algorithm.

b ' lK'i e

| L ! |Ii : [| i
'lu_'| i | !!w It H; i
'L II |'I l II i |

I LL ” |I.|! 'l‘ 1Ir y lllldll il

Figure 96 Error and abnormalities: The first test group (GKE: input and output)
Now, we applied the second group (composite data) to the density estimator. Figurc

97 illustrates the novel data identified by the novelty detector.

166

tme pointe

Figure 97 Error and abnormalities: The second group (GKE: input and output)

We found that there are 43.11% misclassifications for this group. Again, all of the
misclassifications are from type [error. The percentage of misclassifications in this case is
about the same as the outcome from the densities of inputs. However, we found that a
strong relationship exists when we reduce the smoothing parameter matrix from the valie
we used. This effect is similar to the previous example (function approximator I). There-
fore, a further analysis may be necessary for choosing the smoothing parameter matrix to
reduce the percentage of misclassifications.

When we applied the training data to the novelty detector, we found that there are
29.88% misclassifications, and all of these are from type I error. We can see that the per-
centage of misclassifications are less than the outcome when we utilized the density of in-
puts for novelty detection (29.88% versus 31.05%).

In this section, we applied the Gaussian kernel estimator to estimate the density of

the inputs and outputs of the function approximator. The results showed that the percent-

167

ages of misclassifications were reduced when we used both the outputs and inputs to com-
pute density (when compared with the results from using only density of inputs).
Minimum distance algorithm

In this section, we will test the performance of novelty detector using minimum dis-
tance and minimum weighted distance algorithms.
Minimum distance

By using Equation (45) and Equation (46) to compute the minimum distance of
each testing data, we end up with Figure 98. The figure illustrates the approximation errors

and the minimum distances for the first test group.

X1 {88 Grong
[1.] -
R-0413 T
07 %
2
< [a7 og
=]
os s ¢ Q%@b & s
e 0,9 [} % o 62:-_'J -
< o on 2 e
.05 - 0‘- e 08 o
o4 2 o Al e
f ’ ‘
a

5o] ’
53 9 -

02k

Figure 98 Minimum distance and approximation error: The first test group
As we see, when minimum distance gets higher, itis likely to find more large-error
points. On the other hand, when minimum distance is low, we are likely to have more

small-error data. Another parameter that indicates this relationship is the correlation coef-

ficient (R value). This value is quite high implying that there is a relationship between the

168

approximation errors and minimum distances. From the figure, we found that the regres-
sion line is

d, = 0.8264 x error+0.0344 (96)
By substituting 0.15 in the error term, we obtain d,, = 0.1584 . We will use this value to

be the threshold. For the first test group, Figure 99 shows the approximation errors and the

data points identified by the algorithm as novel data.

< r ;| (. |
E ts‘“ ;'I'ﬂ \Iﬂf M ‘|) I
'J lrJlﬁ(l\' J.~.-J (r |I Jl Illr '1“1 H-1||| Lil

Figure 99 Error and abnormalities: The first test group (Minimum distance)

We found that there are 21.78% misclassifications in the first test group. The ma-
jority (16.44% out of 21.78%) are from type II error. That implies that, for this data set, we
have many data close to training data that generate large errors (since type I1 misclassifica-
tions are quite high, compared with the example of the function approximator I). This phe-
nomenon makes some sense, because even the training data gencrate large approximation

errors (see Figure 87).

169

Next, we applied the second test group to the novelty detector. Figure 100 demon-

strates the approximation errors and novel data are identified by x.

[
o
o

Il .|I it l.|| fl slml n |
i ‘l'e i Hr ¥ -" il i f

||| -. ,. i -h'-':.ﬁ

Figure 100 Error and abnormalities: The second test group (Minimum distance)

We found that around 33.33% are misclassifications. Again, most of these misclas-
sified points (18.22% out of 33.33%) are from type 11 errors. We can also see that we had
morc type 11 misclassifications when compared with the Gaussian kernel estimator. How-
ever, this algorithm turned out less total misclassifications than the Gaussian kernel estima-
tor.

When applying the training data set to the novelty detecior, we found that 12.69%
are misclassified, and al] of these are from type Il error. This is due (o the fact that the min-
imum distances of training data equal zero, which is less than the threshold (0.1584). Therc-
fore, the novelty detector accepts all of these points as old data.

In this exarople, we applied the minimum distance algorithm to be a novelty detec-

tor for the function approximator. The results showed that the percentage of misclassifica-

170

tions was less than the outcomes from the neural tree and the Gaussian kernel estimator. In
the next section, we will test the performance of minimum weighted distance for novelty
detection.
Minimum weighted distance
In this section, we will apply the minimum weighted distance for novelty detection.
We will use Equation (52) and Equation (53) to find minimum weighted distances
for the first test group. After computing the correlation coefficient (R value) between the
minimum weighted distances and the approximation errors for different values of weight-
ing factor (o), we obtain Figure 101. This figure illustrates the effect of weighting factor

to the correlation coefficient as we varied the value of weighting factor.

DR L 2. ! —_— Lo i .
[} 1 2 3 4 -3 e 7 » ° 13
Waelghtng laomon (i

Figure 101 The weighting factor and the correlation coefficient: The first test group
We can see from the figure that when we added the effect of the difference between

the targets and network outputs, the correlation coefficients are higher. However, when the

weighting factor is too high, the R value will be lower. In this data set, the weighting factor

M

a = 4.35 causes the highest correlation coefficient (R = 0.71), which is higher than the
R value in the case of using minimum distance (R = 0.61).

We will then use the weighting factor o = 4.35 for our novelty detector. At this
weighting factor, Figure 102 shows the correlation between the minimum weighted dis-

tances and the approximation errors for the first test group.

B (ol growd

K007

w

Figure 102 Minimum weighted distance and approximation error: The first test group
Now, we will use the figure to create the threshold to reject novel data. We found

that the regression line for this data set is

4P = 13198 x error + 01158 97)
After substituting 0.15 into the error term, we obtain 0.3137 for the minimum weighted dis-
tance at weighting factor of 4.35. We will use this value to be the threshold to discard novel
data. That means that any data generating minimum weighted distance (at & = 4.35) larg-
er than 0.3137 will be 1dentified as novel. Figure 103 shows the approximation errors and
novel data are marked with x.

172

I |

\“" |

l.,l'_'

£ ool |
l |
“ |
0|*

-5 - .

ifaee wo.
22 —
] 50

e R

fonl tan grong

W |
b

” o :t

r]

i
]hi

i " i '
|i| ! 1

Figure 103 Error and abnormalities: The first test group (Minimum weighted distance)

We found that there are 19.11% misclassifications. Most of the misclassifications

(12% out of 19.11%) are from type Il error. The percentage is slightly less than we had us-

ing minimum distance.

Next, the second test group will be applied to the novelty detector. Figure 104 illus-

trates the novel data for the second test group.

Earox

Second el group

Figure 104 Error and abnormalities: The second test group (Minimum weighted distance)

173

In this data set, 33.33% are misclassifications. Around [8.22% out of 33.33% are
from type Il error. We can see that the percentage of misclassifications in this case is equal
to the case for minimum distance. This result is a good example showing that, for different
data sets, the performance of the weighting factor can vary. In this particular case, the per-
formance of the minimum weighted distance is equal to the performance of minimum dis-
tance.

When the training data set 1s applied to the novelty detector, there are 12.69% mis-
classifications. Around 10.35% out of 12.69% are from type H error. Although type Il mis-
classification in this case is less than minimum distance, the total percentage of
misclassifications is equal. This is due to the fact that we choose the best weighting factor
based on the first test group, not the training data set. This is another example showing the
flaw of this algorithm.

In this section, we demonstrated the performance of the novelty detector employing
minimum distance and minimum weighted distance. The outcomes ifiustrated that the per-
formance of minimum weighted distance is better for the first test group. However, it also
showed the drawback of minimum weighted distance on the second test group and the train-
ing data set. In the next section, we will use outlier detection and minimum weighted dis-
tance of composite data for novelty detection.

Minimum distance and outlier detection
In this section, we will apply outlier detection using principal component analysis

and minimum distance on composite data for novelty detection.

174

We begin this example by creating composite training data by augmenting the tar-
gets and the inputs to the function approximator. These composite training data will be used
to compute the minimum distance for the composite testing data, which includes both ne(-
work inputs and outputs.

Next, we will compute the covariance matrix from the composite training data. The
covariance matrix 1s

0.3438 0.0816 0.0789

X = [0.0816 0.1002 0.0987 (98)
0.0789 0.0987 0.1195

t

With the above equation, the assoctated eigenvalues and eigenvectors are as follow

]
A, = 0.4083,v| = [0.8692 03441 0.3552]
7&'2

T
0.1447,v; = [0.4937 0.5638 0.6621] (99)

It

-
A3 = 0.0105,v3 = {00276 -0.7508 0.6599]

The eigenvectors will be used to transform the composite training data to principal compo-
nents. Then we will utilize the principal components to compute the sum-square value in
the process of outlier identification. The v value, which determines which principal com-
ponents we will use to compute the sum-square value, was selected by looking at the or-
dered variance of the transformed data set — the ordered eigenvalues. By using the same

criterion as the previous example — use from the last PC up to the PC giving variance equal

to 0.02 or above. For this example we will use the second and third PC’s.

175

. Ui iThe - Cony Do onnpte the e st o e
s sy saabues Proore 103 b T ITE "o e sitnd the =i UL e 1o
IR TR N RN TSN
Proove TOS NTinsmnng shsviee and the siesoare value Dhe fmad teal crongs
Progn e abarcc Do e e oo sec Uil tor soandd oo o~ T s scptint cab
(b v oe ol b Y rskan Fhov vy whon porragns cbtane e - el
it Bikely vod e e c e e ot vwe an sec e thie ccampne ihe il
SR RTRITRTRNTY i st bl e brean barce crvon poant o the peecvgon vl
Pe-mdts PO ot bt e e T b o e the toa b e can
vt e ctato et he b o pespagbaed e ol the s b ot vep 1ol
cRecill thar the estmmation Toa Hie wamnme bt s et ae pres e e prectons csanphe
Phcrederes ot bieeh mommonn drstaees e onadten w beave the o poant= are dmedense by pops
vlaee o sy b paspaiontedd sreae T oo appaos i e ol vt Woth
the e e plianatno i 1t NERR T Ttk by i I ITRE L1
(I PRRSRTITR § FTRTE BETANY | I S AT plable TR pes b aften

In order to compute the percentage of misclassifie

d points, we first need to have the

regression line between the approximation error and the minimum distance (for the first test

group). The relationship between these two variables is shown in Figure 106.

Firel lowt 9rous
as- e —— e
oy Reoe? r:?
5 o
s aw
(=]
< e %ko%
i o 2 L 0&6
e Yo 0 o
[a0 oooo o o
1 : ;
ol g
H & /{ -
|] o P BT
-~ Q>0
P o 4 /
- g
o :
i - z
asf EY ; 2 g
v 0
al o - -
B - o o
e R o
L ' 3 =3
S0 -,
Bigede® L ®
o 2
otfg, PO o o S @ o
a

Figure 106 Approximation error and minimum dis

The regression line shown in the figure is
d, = 0.8976 x error+ 0.0585

By substituting 0.15 in the error term, the corresponding m

tance: The first test group

(100)

inimum distance, 7 ,,is 0.1931.

Any data generating minimum distance greater than .25 x 0.1931 = 0.243175 will be

discarded as novel data. On the other hand, we will accept

any data producing minimum

distance less than 0.75 x0.193} = (0.144825 as standard data. Based on the first test

group, within the minimum distance range (0.75 x 0.193],

1.25 % 0.1931], the average

sum-square value for data points generating approximation error less than Q. 15, 7§ is

0.3285, while that for data creating approximation error greater than 0.15, TE‘ 15 0.3615.

177

Therefore, data having minimum distance within this range will be considered novel if their

0.3285 + 0.3615
2

surn-square values are greater than = 0.345 . The rejection region is as

follows

(0.144825 <d, <0.243175 and € >0.345) or d,,> 0.243175 (101)

We mark novel data with an x in Figure 107.

Firt toul grovgp

03
o

Figure 107 Error and abnormalities: The first test group (Minimum distance and PCA)
We found that there are 21.33% misclassified points in total. The majority (16% out
of 21.33%) are from type 11 error. The resuit showed fewer misclassifications than any oth-
er method, except minimum weighted distance. This is because we maximized the correla-
tion coefficient in the first test group in the case of minimum weighted distance.
Next, we will use the rejection region shown in Equation (101) for the second test

group. Figure 108 illustrates the novel data and approximation error for the second test

group.

178

—
‘"I[i |
. ‘ : | |
9 \ | i i |] ‘I l.‘I

- o

|
a,ﬂ |||'|
.| 5

I I i :'-' b
. '|II) | "ﬁ“hlt., ||' M' JIH

Eenr

Figure 108 Error and abnormalities: The second test group (Minimum distance and PCA)
There are 30.67% misclassifications, Most of these misclassifications (20.89%) are
from type 11 error. This method produced fewer misclassifications than any other method.

If we apply the training data to the novelty detector, there are 10.68% misclassifi-
cations. All of the misclassified points are from type Il error. This percentage from this al-
gorithm is less than for any other method.

What we can notice from this example is that type 11 ervor ts always the majority of
the total percentage of misclassifications (which is different from the first approximator).
The main reason is that the second function approximator did not estimate its targel as well
as the first one does. Thus, this outcome is likely to increase type 11 misclassification.

In this section, we utilized the minimum distance algorithm and outlicr detection
employing principal components analysis over the composite data for novelty detection.
The result is promising in terms of the percentage of misclassifications. We will summarize

the outcomes of all of the novelty detectors in the next section.

179

Result Summary
We will summanze the performance of the novelty detectors in terms of percentage
of misclassified points. We begin with Table S, which shows the percentages of misclassi-

fied points for the first test group.

Table 5 Percentage of misclassifications: The first test group

Algorithm Percentage of misclassifications
Type | Type Il Total
Neural tree 5.78 17.33 23.11
Density of input 36.89 0 36.89
Density of input and 36 0 36
output
| Minimum distance 533 16.44 21.78
| Minimum weighted 7.11 12 19.11
distance
Minimum distance 5.33 L6 21.33
and outlier detection

The percentages of misclassifications for the second test group are summarized in

Table 6.
Table 6 Percentage of misclassifications: The second test group
_ Percentage of misclassifications
Algorith — -
Igorithm Type 1 Type I1 Total
Neural tree 16 19.56 35.56
i Density of input 43.11 0 43.11
Density of input and 4311 0 4311
output
Minimum distance [1.56 21.78 33.33
Minimum weighted 15.11 18.22 3333
distance
Minimum distance 9.78 20.89 30.67
and outlier detection

180

We can see that the Gaussian kernel method (density of input and density of input
and output) turned out the highest percentage of misclassifications for both test sets, with
very high percentage of type 1 error. The minimum weighted distance provided the mini-
mum percentage of misclassifications for the first test set. (This is because we optimized
the weighting factor from this test group.) However, for the second test group, the mini-
mum wejghted distance did not provide the best outcome (since the effect of weighting fuc-
tor varies from data set to data set). Minimum distance with outlier detection produced an
acceptable result for the first test group, but had the fewest misclassifications for the second
test group.

Next, Table 7 shows the percentage of misclassifications when we applied training
data to the novelty detectors. Note again that the percentage of large-error points (i.e. error

greater than 0.15) in the training data set was 12.69%.

Table 7 Percentage of misclassifications: Training data

. Percentage of misclassifications
Algorithm
Type 1 Type I1 Total
Neural tree 0 12.69 [2.69
Density of input 30.89 0 30.89
Density of input and 19 88 0 26 88
output _]
Minimum distance 0 12.69 12.69
Mlmmgm weighted 0 19 69 1269
distance
Minimum distance 0 10.68 10.68
and outlier detection

The density of input using the Gaussian kemel estimator had the highest percentage

of misclassifications in the training data set. The majority of misclassified points was from

181

type [error. It provided no type Il misclassifications. Therefore, the density approximation
method might be well fitted to problems where one needs very reliable network outputs.
Finally, minimum distance with the outlier detection had the lowest percentage of misclas-
sifications for training data set.

Summary

In this chapter, we tested and compared the ability of the novelty detectors de-
scribed in Chapter 3 to Chapter 7 using two real-world applications. We began each appli-
cation by explaining the objective for function approximation. We also described the
training data and testing data for each application. After that, we used testing data to dem-
onstrate and compare the capability of each novelty detector in terms of the percentage of
misclassifications.

The objective of the first application was to estimate the resistivity of the earth for-
mation in order to explore for existing oil or gas. In terms of the percentage of misclassifi-
cations, the simulations showed that the neural tree algorithm provided the highesl
percentage of misclassifications for both test groups. The minimum distance with outlier
detection produced the fewest errors on every data set, e.g. the first, second test groups and
the training data. For the misclassificauons in the training data set, the joint density between
input and output method produced the most misclassifications; however, it had the fewest
type Il errors.

For the second application, the objective was to estimate the torque of the diesel-
engine system. The simulation indicated that the method of estimating density of inpul had

the most misclassifications for every data set. The minimum weighted distance algorithin

182

yielded the lowest percentage of misclassified points for the first test group. However, the
minimum distance of composite data with outlier detection produced the lowest misclassi-
fications for the second test group. For the training data, the minimum distance with outlier

detection yielded the fewest misclassifications. The Gaussian kernel estimator had no type

II misclassifications on any data set.

183

CHAPTER 9

CONCLUSIONS

In this chapter, we will briefly summarize the results of our work. It will be fol-
lowed by recommendations for future work.
Summary of the results

We started this work by proposing a problem for function approximation: neural
networks are very good at interpolating while poor at extrapolating. We have discussed the
key novelty-detection methods to distinguish between data that require interpolation and
data that require extrapolation. Each of these methods has its own advantages and draw-
backs tn terms of misclassified data. One of the contributions of this work is to compare the
performances of each algorithm in terms of the percentage of misclassifications.

The neural tree algorithm is a very fast method. It can be implemented as an online
novelty detector. However, in some applications, the percentage of misclassifications can
be very high for small-error points that are identified as novel data (type I errors). On the
other hand, the autoassociative method, although providing very good results in terins of
the percentage of misclassifications, is very slow to train. Therefore, this method is not fea-
sible for data having very high dimension.

The estimated density for inputs and the estimated joint density between inputs and

targets using the Gaussian kemnel are somewhat slow relative to other algorithms, and have

184

aslightly higher percentage of misclassifications, especially for type I errors. This is due to
the fact that these methods tend to reject training data or interpolation points whose approx-
imation errors are small. A main drawback of the density estimation is the smoothing pa-

rameter that we must heuristically choose, which sometimes may not be well-suited to the
true density.

The minimum distance algorithm has its own strengths in that both the computation
time and the percentage of misclassifications are acceptable. There is no unknown param-
eter in this algorithm, making this algorithm the simplest algorithm to implement. We pro-
posed a method to decrease the percentage of misclassifications by using the minimum
weighted distance. A major drawback of the minimum weighted distance is the weighting
factor, which is a varying parameler for different data sets. In other words, the weighting
factor with the best result for novelty detection on one data set may not perform well on
another data set. Another contribution derived from the minimum distance algorithm is the
analysis for the approximated gradient to estimate the error of the function approximator.
We concluded that the esttmated derivative was not helpful for novelty detection for func-
tion approximation, but it was useful for estimating errors for interpolations. We also pre-
sented a way to reduce the computing time for the minimum distance algorithm by applying
the Kohonen rule.

Another major contribution of this work i1s to apply outlier detection using principal
components to the minimum distance algorithm. This method has several advantages over
the minimum distance algorithm because of acceptable computing time, and a small per-

centage of misclassifications. Although this method seems to be very effective, the main

185

disadvantage of this algorithm is the complicated threshold, and there is a parameter to be
chosen in the process of the outlier detection.

We applied some of our novelty detectors to solve the real world applications,
which were described in Chapter 8. We found that minimum distance with outlier detection
had the best results. Furthermore, the simulation results confirm that the neural tree algo-
rithm is very fast.

Recommendations for future work

In real world applications containing very high dimensjonal data, we concluded thal
it is almost impossible to utilize the autoassociative multilayer perceptron as our novelty
detector, though this algorithm performed very well in our simple example. Future work
could reduce the dimension of the data before applying them to train the perceptron. By em-
ploying a principal component transformation to decrease the number of dimensions, the
network could be mare efficiently trained.

The minimum weighted distance is another area for future work in that there is an
unknown weighting factor in the algorithm. Thus, it will be desirable to have an in-dcpth
analysis for predicting what range the maximum weighting factor should have in order 1o
increase the correlation coefficient.

In the algorithm which uses minimum distance and outlier detection, a potential fu-
ture task would be to discover a technique to get rid of the unknown parameter in the pro-
cess of the outlier identification.

Finally, a combination of the joint density using the Gaussian kernel and the mini-

mum distance algorithm may be used to improve the efficiency of identifying novel data

186

and to reduce the percentage of misclassifications, especially type I errors (small-error

points flagged as novel data).

X7

[AdWe99]

(Bhar00]

[Bish93]

[Bish94]

[Bish995]

{Fahlg89]

[FrGo%6])

(GnKe72]

(HaDe9%6]

REFERENCES

J. FE. D. Addison, S. Wermter and J. Maclntyre, “Effectiveness of feature
extraction in neural network architectures for novelty detection,” in

Proceedings of the 9th International Conference on Artificial Neural
Networks, vol. 2, pp. 976-981, 1999,

S. Bhartiya, “Enhancements for Model Predictive Control and Inferen-
tial Measurement,” Ph.D. Dissertation, Oklahoma State University,
Sdllwater, 2000.

C. M. Bishop, “"Neural network validation: an illustration from the mon-
itoring of multi-phase flows,” in Proceedings of the 3rd International
Conference on Artificial Neural Networks, pp. 41-45, Brighton, UK,
1993.

C. M. Bishop, “Novelty detection and neural network validation.” in
Proceedings of the IEE Vision, Image and Signal Processing, vol. 14),
pp. 217-222, 1994.

C. M. Bishop, Neural Networks for Pattern Recognition, New York:
Oxford University Press, Inc., 1995.

S. E. Fahlman, “Fast learning variations on back-propagation: An
empirical study,” in Proceedings of the 1998 Connectionist Models
Summer School, D. Touretzky, G Hinton and T. Sejnowski, eds.. San
Mateo, CA: Morgan Kaufmann, pp. 38-51, 1989. (Chapters 12-19)

A. Frosini, M. Gori and P. Priami, YA Neural Network-Based Model for
Paper Currency Recoginition and Verification,” IEEE Transactions on
Neural Networks, vol. 7, no. 6, pp. 1482-1490, 1996.

R. Gnanadesikan and J. R. Kettenring, “Robust estimates, residuals, and

outlier detection with multiresponse data,” Biometrics, vol. 28. pp. 81-
84, 1972.

M. T. Hagan, H. B. Demuth and M. Beale, Neural Network Design,
Boston: PWS Publishing Co., 1996.

188

(HaMe%4]

[Hawk74])

(Hawk80)

[HiAu00)

{Hotel33]

[Hotel36]

[HwCh99]

(Joll86]

[MaRo85}

[Mart98]

[NaCo97]

[Pear01]

|PeMa96]

M. T. Hagan and M. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. S,
no. 6, pp- 989-993, 1994. (Chapter 12)

D. M. Hawkings, “The detection of errors in multivariate data using
principal components,” J. Amer. Statist. Assoc., vol. 69, pp. 340-344,
1974.

D. M. Hawkings, Indentification of Outliers, London: Chapman and
Hall, 1980.

S. J. Hickinbotham and J. Austin, “Neural networks for novelty detec-
tion in airframe strain data,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 6, pp. 375-380, 2000.

H. Hotelling, "“Analysis of a complex of statistical variables into princi-
pal components,” J. Educ. Psychol., vol. 24, pp. 417-441, 498-520,
1933,

H. Hotelling, “Simplified calculation of principal components,™ Psy-
chometrika, vol. 1, pp. 27-35, 1936.

B. Hwang and S. Cho, “Characteristics of Autoassociative MLP as a
Novelty Detector,” in Proceedings of the International Joint Conference
on Neural Networks, vol. S, pp. 3086-3091, 1999.

1. T. Jolliffe, Principal Component Analysis, New York: Springer-Ver-
lag Inc., 1986.

J. Markhoul. S. Roucos and H. Gish, "Vector quantization in speech
coding.” in Proceedings of IEEE. vol. 73, no. il. pp. 1551-1588, Nov.
1985.

D. Martinez, “Neural tree density estimation for novelty detection,”
IEEE Transactions on Neural Networks, vol. 9, no. 2, pp. 330-338,
1998.

A. Nairac, T. Corbett-Clark, R. Ripley, N. Townsend and L. Tarassenko.
“Choosing an appropriate model for novelty detection,” in Proceedings
of the S5th International Conference on Artificial Neural Networks, pp.
117-122, Cambridge, 1997.

K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Phil. Mag., vol. 2, pp. 559-572, 1901.

T. Petsche, A. Marcantonio, C. Darken, S. J. Hanson, G M. Kuhn and 1.
Santoso, "“A neural network autoassociator for induction motor failure

prediction,” Advances in Neural Information Processing Systems, vol.
8. pp. 924-930, 1996.

189

(PoGi90]

[Rao64)

fRi1Gr91]

[Silv86)

(TaHa9%5]

[TaNa99]

[TaNa99)

[WaMe95]

T. Poggio and F. Girosi, “Networks for approximation and leaming,” in
Proceedings of the [EEE, vol. 78, no. 9, 1990.

C. R. Rao. “The use and interpretation of principal component analysis
in applied research.” Sankhya A, vol. 26, pp. 329-358, 1964.

E. A. Riskin and R. M. Gray, “A greedy tree growing algorithm for the
design of variable rate vector quantizers,” IEEE Transactions on Signal
Processing. vol. 39, pp. 2500-2507, 1991.

B. W. Silverman, Densiry Estimation, New York: Chapman and Hall,
1986.

L. Tarassenko, P. Hayton, N. Cerneaz and M. Brady, “Novelty detection
for the identification of masses in mammograms.” in Proceedings of the
4th International Conference on Artificial Neural Networks, pp. 442-
447, 1995,

L. Tarassenko, A. Nairac, N. Townsend, I. Buxton and P. Cowley,
“Novelty detection for the identification of abnormalities.” Interna-
tional Journal of Systems Science, 1999.

L. Tarassenko, A. Nairac, N. Townsend and P. Cowley, “Novelty Detec-
tion in Jet Engine,” in IEE Colloquium on Condition Monitoring:
Machinery, External Structures and Health, pp. 4/1-4/5, 1999.

D. Wackerly, W. Mendenhall I1I and R. L. Scheaffer, Mathematical Sta-
tistics with Applications, Fifth Edition, Boston: PWS Publishing Co..
1995,

190

VITA

Arjpolson Pukrittayakamee
Candidate for the Degree of
Master of Science
Thesis: NOVELTY DETECTION FOR FUNCTION APPROXIMATION
Major Field: Electrical Engineering
Biographical:

Personal Data: Born in Bangkok, Thailand. on June 10, 1977, the son of Ongarj and
Boontida Pukrittayakamee.

Education: Graduated from Traim Udom Suksa School, Bangkok, Thailand, in
April 1993; received Bachelor of Engineering degree in Electrical Engineer-
ing from Chulalongkorn University, Bangkok, Thailand, in April 1997.
Completed the requirements for the Master of Science degree in Electrical
Enginecring at Oklahoma State University in December, 2001.

Experience: Employed by The National Electronics and Computer Technology
Center (NECTEC) as an Engineer from 1997 to 1998; employed by Electri-
cal and Computer Engineering department, Oklahoma State University. as
a Research Assistant from 2000 to 2001.

Professional Status and Memberships: Licensed as a First-level Engineer in Power
System from and Member of Engineering Institute of Thailand under H.M.
the King's Patronage since June. 1997,

