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CHAPTER 1

INTRODUCTION

One of the key tasks for neural networks is function approximation or plant identi

fication. The ability of neural networks in these applications has been well documented.

However, a major factor that limits the usage of neural networks is the difficulty to identify

the reliability of the neural network outputs. The procedure to determine whether or not a

neural network generates credible results is known as network validation or novelty detec

tion. Our objective is to compare the performance of existing novelty detection methods as

well as to find improvements to these techniques.

We will start our work by reviewing the general structure of neural networks for

function approximation. A simple example will be used to show the ability of the neural

network in performing this task. We will then demonstrate the main problem of function

approximation using this example.

After the limitation of neural networks is shown. we will introduce existing novelty

detection algorithms. The simple example will again be utilized to exhibit the capability of

each novelty detector.

We will propose a procedure to improve the performance of some algorithms, fol

lowed by a demonstration of the ability of the modified novelty detector via the example.



We will show through the simple example and our real world applications that the modified

methods result in improvements in novelty detection.

Let us now outline the flow of this work. Chapter 2 will serve to review neural net

work background material, starting from basic concepts to the general structure. One of the

main objectives of this chapter is to introduce common notation used in later chapters. We

will finish this chapter by introducing the use of neural networks as function approximators.

In Chapter 3, we will introduce an existing algorithm known as the neural tree. We

will explain how we can use this algorithm as a novelty detector. A simple example will be

used to illustrate the capability of this method. We end this chapter by introducing a mea

sure of algorithm performance.

The most widely-used method for novelty detection will be described in Chapter 4.

The method is known as the Gaussian kernel estimator, in which the probability density

function will be involved. A technique for improving the performance will be described. It

will be followed by simulation results.

Chapter 5 will describe another algorithm, the autoassociative multilayer percep

tron. The example will demonstrate the capability of this method. A technique for improv

ing performance will be described, followed by an application to the simple example.

Then, in Chapter 6, the simplest method, known as the minimum distance algo

rithm, will be introduced. An example will be used to show the efficiency of thi method.

An improvement to this algorithm, which is called the minimum weighted di tance, will be

proposed, followed by an example. The mathematical framework that leads us to the idea

of the minimum weighted distance algorithm will be discussed as well.

2



In Chapter 7 we explain the idea of principal components and outlier detection, and

explain a new technique that combines the knowledge of outlier detection with the mini

mum distance algorithm. This is followed by an example.

Chapter 8 will be devoted to applying the techniques explained in Chapter 3. 4,6.

and 7 to real world data. We will provide short explanations of these methods within this

chapter. A performance comparison of these algorithms on real world data will be summa

rized at the end of this chapter.

A summary of the main results and contributions of this thesis, followed by recom

mendations for future work will be contained in Chapter 9.

3



CHAPTER 2

LITERATURE REVIEW

Introduction

This chapter describes the fundamental concepts of the neural network and intro

duces the associated notation. It will start with an analysis of a single-input neuron, which

is the smallest and the most basic component in the neural network, and this leads to more

complicated architectures. The simplest architecture has a single layer of neurons. The

more complex architectures have several layers. The multiple layer network has been wide

ly used to perform pattern recognition. However, this chapter will focus on how the multi

ple layer network can be used for function approximation.

After we introduce the basic neural network concepts, the concept of novelty detec

tion in neural networks will be explained. We will define what novelty detector is and will

describe when it will be applied and how it relates to neural network function approxima-

tors.

Single-Input Neuron

A neuron is the smallest processing unit in the neural network. It has a scalar input

p and a scalar output a. The input is multiplied by the scalar weight wand then added to

the scalar bias b. Now, the output of the summer, which is 11 = wp + b, will be fed to the

4



input of the transfer function f. The output of the neuron is described by the following

equation.

a = f( n) = f( wp + b) (1)

The weight and bias of a neuron can be any real value. They are adjustable parameters and

are adapted by some learning rule.

The transfer function of the neuron can be a very simple linear function, or it can be

a more complex nonlinear function such as the hard limit function (hardlim) or the loga

rithmic sigmoid function Oogsig). The transfer function will be specifically chosen, de

pending on a particular problem that the neuron is going to solve.

p
w

b

a

Figure I A Single Neuron

As seen in Equation (I), the weight w controls the slope of the neuron output and

the bias b causes a translation in the neuron output. Next, we will give simple examples to

demonstrate how the weight and bias affect the output of the neuron. The insights provided

by these examples will be helpful when applying neural networks to the practical tasks that

will be described later.

Let the transfer function f be the pure linear function purelin. The relation be

tween the neuron input and output is

5



a = f(wp + b) = wp + b (2)

The following figure demonstrates this relationship for w = 1 and b = O.

.. 0

-1

-1 o
p

2 3 4

Figure 2 Pure Linear Transfer Function

The following figures show how changes to the weight and bias affect the response. Figure

3 illustrates the effect of changing the weight from I to 3. The effect of varying the bias is

shown in Figure 4.

-1

-3 -2 -1 o
p

2 3 4

Figure 3 Effect of Weight
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Note that when setting b = 2. the graph will shift to the left by _£ .This is shown in Fig
w

ure 4, where the graph shifts to the left by 2 for b = 2 and w = I.

Figure 4 Effect of Bias

In the next example, we let the transfer function f be the hyperbolic tangent sig-

moid. The hyperbolic tangent sigmoid function is a monotonically increasing function

shown in Figure 5. This function has been extensively used for function approximation

problems, as will be explained later in this chapter. The formula for this function is

f(n) =
n -ne - e
n -n

e + e

7
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Figure 5 Hyperbolic Tangent Sigmoid Function

The function output is bounded to the range of [-1,1], regardless of how large the input is.

The input-output relationship is almost linear in a small region near zero. The effect of

weight and bias are demonstrated in the following figures.

1.5

0.5

'" 0

-0.5

-11-----.....--

welghl = 1

4

-1.5

-2'---~-'------''--~-~------'---'------'

-4 -3 -2 -1 0 2 3
P

Figure 6 Weight Effect



1.5

05

., 0

-0.5

-1 ~=-----;---

bias = 0

-1.5 -bIw

4
_2L---~-~~~~~~-~-~--"

-4 -3 -2 -1 0 2 3
p

Figure 7 Bias Effect

As in the case of the pure linear function, increasing the weight value increases the slope

of the graph. The bias shifts the center of the graph to the point _£ .
w

Multiple-Input Neuron

Commonly, a neuron can have several inputs. R inputs connecting to a neuron are

apressed as pT = ~I P2 ... PRJ. A neuron with R inputs is shown in Figure 8.

h

Figure 8 Multiple-Input Neuron

a

The net input for this neuron is n = w J ,PI + wI #2 + ... + w] RPR + h. Notice that the
" ,
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number of weights equals the number of input elements R . The first weight subscript indi

cates the destination neuron whereas the second subscript indicates the input element. For

example, wI 5 means that this weight represents the connection to the first neuron from the

fifth input Ps . We can write the net input 11 in matrix form:

11 = Wp+b

Then the neuron output a is written as:

a = f( n) = f( W p + b)

(4)

(5)

Network Architectures

A single multiple-input neuron may not be able to perform all tasks. Several neu

rons, operating in parallel, are called a "layer". A layer of neurons will be discussed next,

followed by a discussion of multiple layers of neurons.

A Layer ofNeurons

The architecture of a single layer of S neurons is shown in Figure 9. The architec

ture possesses R inputs, and S outputs. Note that the number of inputs R is not necessari Iy

equal to the number of outputs S.

10



Figure 9 A Single-Layer Network

The input vector p is connected to each neuron through the weights, which will be

defined as W.

(6)

WS,I wS,2 ... wS,R

A layer of multiple-input neurons is sufficient to solve some problems, such as lin

ear adaptive filtering, or simple pattern recognition tasks, etc. However, this structure is not

adequate for approximating arbitrary functions. The more general multiple layer architec-

ture will be introduced in the next section.

MuLtiple Layers ofNeurons

This network consists of several layers, connected in series. Each layer has the same

structure as noted earlier. Because this architecture has several layers, the superscript will

II



be used to identify the layer number. Consequently, a weight can be written as w\j, where

k denotes the layer to which the weight belongs. A three layer network is shown in Figure

10.

a 3
I

I
Wl,t

Pl- . I

a 3
2

'/ \'

PR j '.\
3a SJ

Figure] 0 Three-Layer Network

The first layer of neurons has R input elements, 5 I neurons and 51 outputs. The

second layer has 5 I input elements, 52 neurons, and 52 outputs. Likewise, the third layer

contains 52 input elements, 53 neurons and 53 outputs. 5', 52 and 53 are the number of

neurons in the first, second and third layer, respectively. In the general case the number of

layers is arbitrary.

The weight in the first layer is expressed by the notation of Wi. This layer weight,

Wi, is the matrix with dimension 5 IxR . Similarly, W
2

and W
3

are the weights in the sec-

ond and third layer, respectively. W
2

has dimension 52x5' , while the size of W
3

is

12
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S3xS2
. Generally, the weight matrix at layer k, W k

, has dimension SkxSk - I . A network

comprised of R input elements, Sl , S2, and S3 neurons will be referred to as an

123
R - S - S - S network.

The output of each layer is the input to the next layer, and is denoted ak
. For in-

stance, the output of the second layer is denoted a
2

. The last layer of the network is called

an "output layer". The other layers, which are internally connected between the input vector

and the output layer. are commonly called "hidden layers".

This structure of the network is powerful enough to estimate arbitrary functions, as

will be shown below.

Function Approximation

Multilayer networks have been broadly used as function approximators. For exam-

pIe, in control systems neural networks are used to mimic plants in order to get proper feed-

back signals. They have been widely used to compensate for channel fading in

telecommunication systems. Adaptive filtering is another application employing neural

networks. The function approximation abilities of neural networks are discussed below.

The multilayer network has several layers of neurons with Sk neurons in the k'll

layer. Normally, the number of layers of a network, N, is two or, at most, three. The number

of neurons in the hidden layer is heuristically specified, and depends on how complex the

function is. The number of neurons in the output layer depends on the number of outputs in

the desired function. Though it seems that the more neurons in the hidden layers, the better

a network can perform, it is possible that an overly complex network can overfit on a finite

13



training set. Thus, the appropriate number of neurons is dependent on the individual prob-

Let's assume that the hyperbolic tangent sigmoid is used in the first layer, and the second

(7)

/I -/I
e + e

/I -/I
e - e

tansig(n) =

14

J
WI,I 2

Wl,l

PI a 2

I
W 2,I

Suppose that the network is a two-layer 1 - 2 - 1 network, as shown in Figure 11.

a
2 = f(p)

= !(W
2
/(W

1
p + hi) + b

2
)

where/en) = purelin(n) = n and{(n) =

Figure 11 An Example of Network for Function Approximation

The input/output relation is shown in the following equation.

layer transfer function is linear.

lem.
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We have trained this network to approximate the function rCp) = p
4

over the range

P E [-1, I J . After training, the following weights and biases were obtained:

I [303J I [-3.2~ 2 [ ;'] 2 [ ~W = . ,b = .W = 1.22 1.22J and b = 2.42J
-3.03 -3.2

(8)

Figure 12 shows the network response as well as the target values p
4

. The network outputs

are very close to the targets. This is just an example that a multiple-layer network can be

used to approximate arbitrary functions.

1.21--~--r===;===,-~

1

- network output I
....... targel .

0.2

o

-0.2'--------'-----'-----'----..J
-1 -0.5 0 0.5

P

Figure 1.2 Network Outputs and Targets

There are many algorithms, such as the Levenberg-Marquardt algorithm. the Baye-

sian regularization algorithm, and the gradient descent algorithm, to train the weights and

biases. Such algorithms are in general called "backpropagation algorithms". and can be

found in many books and papers, such as [HaDeBe96], [HaMe94], [Fah189], etc. They gen-

erally minimize errors between targets and network outputs. The mathematical derivations

15
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of these algorithms will not be induded here since they are not the focus of this project.

Note that the error minimization process in a neural network is also called "training".

Now that we have discussed the basic concepts, we will next introduce the concept

of "novelty detection".

Novelty Detection in Neural Networks

Introduction

Recall from the last section that a network, given a sufficient number of neurons,

can be trained to approximate arbitrary functions. However, the performance of the trained

network will be dependent upon the data set that was provided during the training period.

In other words, a training algorithm minimizes the errors between the targets and network

outputs, for the training data set. When the network is subjected to data that were not in the

training (usually called "testing" data), what will the outputs of the neural network look

like? Will the network still approximate the function accurately? The following section will

descrihe this problem.

Consider the previous example in which Lhe network was trying Lo approx.imate the

function F(p) = / .The inputs p fed into the network during training process had the

range of [-1.1]. The outputs of the network eventually looked simi lar to the targets for this

range of input. Now, suppose that new inputs that are between [-2,2] are applied to the net

work. The results of this test are shown in Figure 13.

-

Iii
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16 1- network output I
14 target

12

10

8

'" 6

'*
2

0

-2
-2 -1.5 -1 -0.5 0 0,5 1.5 2

P

Figure 13 Network Outputs and Targets on Testing Data

In the region of input data between [- 1,1], which is the same as that of training data,

the network performs well, as expected. However, the network performs poorly outside this

region, producing very large errors between targets and outputs.

Unfortunately, in real world applications, it is difficult to tell when an input vector

falls outside the range of the inputs in the training set. Should we count on the network oUl-

puts? The next section will describe what we can do to alleviate such concerns.

What is Novelty Detection?

As shown in Figure 13, the network did not accurately approximate the function

outside the training range. Therefore, we need to be able to identify when an input vector

falls outside the range of the training data. This is called "Novelty Detection", In other

words, novelty detection methods should have the capability to detect input data that are

·'abnormal". We expect that this data will generate large errors. If we can detect whether or

not inputs are unusual, confidence in the network outputs would be stronger. Novel data

17



(which may cause considerable errors) would be rejected, whereas standard data (giving

desirable outputs) would be accepted.

Considering the example shown above, some might think that novel data could be

easily distinguished by picking up data points out of the training data range (bounded be

tween [-I, I] in this case). Then the rest, which occupied the interval [-2,-1] and [1,2], would

be novel points. In practical applications, the dimension of the input to the network will be

much larger than that of the input (one) shown in the example, making it much harder to

detect these "unseen" data points. When the dimension of the input is large, the distinction

between interpolation and extrapolation will be much more ambiguous. Therefore, differ

entiating the boundaries between normal and abnormal data is much more difficult, making

it harder to decide whether a specific input should be accepted or rejected. In the next sec

tion, some algorithms for novelty detection will be introduced.

Algorithms for Novelty Detection

As discussed thus far, whether or not the output of the network for a particular test

input should be relied on is dependent upon the difference between the test input and the

inputs in the training data. For example, in the above example, if an input was in between

the interval [-I, I], a corresponding output would be accepted, since the network was trained

to perform well in this interval. In contrast, if an input was out of the range [-1,1], a corre

sponding output would be disregarded. In other words, inputs will be identified when they

are not close to any training inputs. This concept leads to some existing algorithms, such as

the neural tree [Mart98] and the minimum-distance computation. They are similar, in that

they wi Jl flag any data as "abnormal" when the input vector is far from any training data.

18
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The performance of the minimum-distance algorithm could be improved by applying some

weighting factors, which will be explained in Chapter 6. The algorithm that uses the Gaus

sian kernel estimator model [Bish94], as elucidated in Chapter 4, works by means of com

puting the probability of the ex.istence of an input vector in the training data near the test

input vector.

Unlike the algorithms described above, we can also use autoassociative multilayer

perceptron for novelty detection [FrGoPr96]. This method, which will be explained in

Chapter 5, is used to recognize input vectors in the training data. An additional neural net

work is trained to memorize what the training inputs look like. Finally, the combination of

principal component analysis and newly-defined minimum-distance computation will be

discussed in Chapter 7.

Summary

In this chapter, the multilayer neural network was introduced. We described the

ability of the multilayer network to operate as a very general function approximator. These

multilayer function approximators are very good at interpolating between data points on

which they were trained. However, they are not good at extrapolating outside the training

set. The remainder of this thesis will present algorithms that can be used to detect when a

network is performing an extrapolation.

19



CHAPTER 3

NEURAL TREE ALGORITHM

Introduction

The neural tree algorithm, originally proposed by [Mart98], is the combination of

an unsupervised learning competitive network and a binary tree. The method takes advan

tage of fast learning, because it only deals with scalar information, unlike competitive net

works that require matrix computation. Therefore, the algorithm generally uses less

training time than competitive learning.

In this chapter, we will start by defining the notation used in this algorithm and by

explaining how they relate to the data distribution. Then the process of learning the data

distribution, i.e. training a tree, will be explained. After the tree is trained, the procedure for

using a neural tree for novelty detection will be explained, and simple computer simulations

will be shown. Finally, we will explain how to measure the effectiveness of a novelty-de

tection algorithm.

Neural Tree Algorithm

The neural tree hierarchically partitions a q -dimensional space into cells, separated

by hyperplanes orthogonal to coordinate axes. As with any common searching tree, the

neural tree contains nodes. The node that is at the top of the tree is called the root node,
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while the others are caned child nodes, or leaf nodes. Each node stores a "weight" W ij . The

/h hyperplane decision boundary is orthogonal to the j coordinate axis, and the position

of the hyperplane is at w along axis j . Below the last level of children nodes are the "cells".

A cell represents a certain region in the hyperspace that is hierarchically partitioned by the

weights. Note that an N -cell tree has N - I nodes that need to be trained. Figure 14 is an

example of a 4-cell tree structure (having 3 nodes). The "circles" represent nodes, and

"rectangles" represent partitioned cells. From Figure 14, the 2-dimensional hyperspace can

be divided into four cells as illustrated in Figure 15.

C2 C3

Figure 14 4-cell Tree

21

.....



...
C'

0.'

... ....
0.2 C'

<t 0

-0.2
C2 C3

-0.'

-0.•

-0.• .." .."
-1

_1 -0.' -0.' -0.' -0.2 0 0.2 0.' 0.• 0.•-,

Figure 15 Partitioned Cells in Hyperspace

The cell Cl occupies the region less than weight WI I along coordinate axis I, C2 is the

region between wI! and w31 along axis 1 and less than w22 along axis 2. Similarly, C3 is

restricted to the area greater than w31 along axis 1 and less than w 22 along axis 2. C4 oc-

cupies the area greater than W II along axis 1 and greater than w 22 along axis 2. Therefore,

the weights w ij determine the boundaries of cells. In the 2-dimensional hyperspace, any

dataPk = ~kl PkJT can be located in a certain cell byfirstcomparingits/" element

where j E 1,2, Pkj' with the root node wI)' If Pkj > wI)' the data Pk will be sent to the

right child node. Otherwise, it will be sent to the left child node. The scalar comparison wi II

keep going until there is no node left to be compared. For example, from Figure 14 and Fig-

ure 15, assume that Pkl < wI] , the data Pk will be sent to the left child node. However,

since there is no left child node under the root node, the scalar comparison is stopped and

Pk is belong to cell C 1 .
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The following section will describe the algorithm for adjusting the weights. Details

and proofs can be found in [Mart98].

How the aLgorithm works

In order to train a tree, we need to initialize it first. The initialization process can be

done in several ways. We can randomly select two values, j and w, for initializing a node.

However, the initialized tree may be a very poor fit to the data distribution, which can make

training difficult. Alternatively, all N - I nodes of an N -cell tree can be initialized by using

N random samples from the training data. This method will be sensitive to the selection of

the N sampled data points. To reduce the sensitivity to the sampled data, a method called

norminaL initialization can be applied, which considers the distribution of the entire train

ing data set before constructing a tree. This is explained in [MaRoGi85], and [RiGr9I]. In

this thesis, we will initialize the tree by sampling the training data set.

We first need to find an axis to which a decision hyperplane will be orthogonal, and

then we need to compute the location of the decision hyperplane on the axis. To locate the

axis, we compare the element of an incoming data vector and a previous vector that is lo

cated in the same partitioned cell. The element of the vector that shows the biggest differ

ence is selected as the axis that will be orthogonal to the hyperplane. Then, the location of

the hyperplane on the axis is found by computing the mean of the corresponding element

of the two data points. The initialization process will continue until the desired number of

cells is reached. Note that when the process is done, each partitioned cell will contain only

one data point. An example of the initialization process is given below.
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Assume that a four-cell tree is to be trained. Four sample vectors must be drawn

from the training data, and suppose that they are

--

(9)

First, the samples d I and d 2 will be compared in order to place the root node. The differ-

T
ence between the samples is Id l - d:d = [0.1 0.5J . Therefore, we will place the hyper-

I h . hI' (-0.8)+(-0.3) 055 1-: h d' hpane on t e P2 aXIS at t e ocatlon 2 = -. ,malUng t e root no e wetg t

W l2 = -0.55. Therefore, d 2 is in the cell above the boundary P2 = -0.55, and d l is in

the cell below the boundary.

Next, we will apply d 3 to the initialized node by comparing the second element of

d 3 , 0.7, with w 12 . It turns out that 0.7 > -0.55, and thus d 3 is in the cell above the bound-

ary P2 = -0.55, which is the same region as d 2 . Therefore, we will compute the differ-

T
ence between d2 and d 3 , Id2 - d 31 = [1.2 1.0J . Since the first element is greater than

the second, we will set up a hyperplane orthogonal to the PI axis at the location

(-0.4) + (O·~n = 0.2. thereby making w21 = 0.2.
2

Now, d 1 is below the boundary P2 = -0.55, d 2 is above P2 = -0.55 and less

than PI = 0.2. while d 3 is above P2 = -0.55 and greater than PI = 0.2. We will con-

tinue the initialization process by applying d 4 to the initialized tree by finding the cell that
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d4 falls into. Since 0.75 > -0.55 and 0.70> 0.2, d4 is in the same region as d 3 . We will

T
calculate the difference again, Id3 - d 41 = [0.10 0.05J . We therefore putthe new hyper-

1 h . hI' (0.8) + (0.7) 075 1.. 075 Wpane on t e P I aXIs at t e ocatlOn 2 =., resu tmg In w31 = . . e

now have the desired number of cells, and we therefore stop the initialization process. Fig-

ure 16 shows how the hyperspace is divided into 4 partitioned cells.

"" .."
0.1 ., 0

0.,

0.•

0.'

0.'
c,

<>~ 0

-<l.' .,
0

-<l.' .."
"'.1

"'.1 0·' C'

-\
-.().I -0.-, .." .." 0.' 0' 01 01.,

Figure 16 Initialized Divided Hyperspace

The corresponding tree structure that will represent the divided hyperspace is shown Figure

17.
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C3 C4

Figure 17 Tree Structure

After we have the initialized tree, the next step is to train those weights contained

in the tree. Suppose that a vector Pk = ~kl Pk2 .. , Pkj ... PkJ T flows to node i, which

stores weight W ij' at layer K. If Pkj ~ W ij • the vector Pk wi1\ be sent to the left chi Id node

directly under node i. Likewise, if Pkj > w ij , the vector will be forwarded to the right child

node directly under node i. Simultaneously, weight w ij will be updated according to the

following equation.

( 1) - () ()(JRCi)(Pkj ) l LCi )(Pkj ))w .. t+ -w .. t+11! -
I) I) n(i) n(i)

r 1-

where 11(/) is the learning rate at time t with

( (0)

: Pkj E L(i)

; Pkj ~ L(i)
(I J)

and

: Pkj E R(i)

: Pkj eo R(i)
( 12)
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where L(i) and R( i) are the unions of all partitioned cells belonging to the left or right sub

tree of node i , respectively. The tenns n,(i) and nr(i) are the number of partitioned cells

associated with the left and right subtrees under node i . Note that the learning rate 11 (t)

can be adjusted with time. Its value will be reduced during training so that the algorithm

will converge.

The algorithm is a top-to-bottom karning method; training the root node first and

then down to the lowest level of children nodes. We will apply the next input vector to the

root node and the method will be repeated. Notice that as long as data are applied to the

tree, the boundaries of the cells will gradually move in accordance with the weight update

in Equation (J 0). Therefore, the location of the hyperplanes of the partitioned cells at this

moment are still in transition. The tree will learn the data distribution until the final input

comes in. After training is complete, all the nodes in the tree will contain fixed weight val

ues. We can refer to a specific cell in the final tree by using the following notation:

--

(13 )

The meaning is that the cell C occupies the region from a, to bl in the first coordinate

axis, from G2 to b2 in the second ax is and so on. For example. recall Figure 15, cell C I

represents the region [(-00, W II)' (-00,00) J. The quantization range of the first coordinate

axis is defined as la I - btl, and is likewise to any other dimension. Notice that the quanti

zation range is now unmeasurable. The following section will describe how to make it mea

surable and how the neural tree algorithm relates to novelty detection. The convergence of

the algorithm was proven in [Mart98].
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Application to Novelty Detection

After training is complete, the neural tree contains fixed boundaries, which partition

the hyperspace into different cells. We would like to use the trained tree to detect future

inputs that are unlike the inputs used for training (i.e., we are looking for novel inputs).

There are two approaches to identify these novel data. The first approach is to compute

probability density of each cell. If the probability density of a cell is low, it indicates that

data within that cell is less likely to occur. Therefore, any data falling in a cell having low

probability density will be more likely to be rejected as novel data. For the second ap

proach, data will be identified as novel when it is outside of a cell. We will explain these

two approaches in the following paragraphs.

For the first method (identifying novel data by estimating the probability density),

Martinez [Mart98] suggested that the probability of a vector falling into a cell is equal to

h, where N is the number of cells. Therefore, in order to obtain the probabi lily density, we

need to divide the probability by the cell area in the two dimensional space (or volume in

high dimensional spaces). That means that if the volume of a cell is large, the probability

density of a vector falling into the cell will be low, thereby maki ng the data in the cell prone

to being rejecting as novel. As we mentioned at the end of the last section, some cells oc

cupied infinite area (in the two dimensional data). We need to limit the occupied region of

a cell. Martinez suggested using the maximum and minimum value of the training data.

That means that the unmeasurable value will be replaced by -lor I in the normalized hy

perspace. For example, in Figure 15, after training the tree, cell C I will occupy the region
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[ (-1, w II)' (-1, 1)] . Then, the area or volume of cell C 1 that was infinite is now comput-

able. Therefore, the probability density of cell C I will then be (~)/(I-I-w 111 x I-I - II) .

As we explained earlier, the density of a cell will be low if the volume of the cell is high.

And, any data falling in the cell will be more likely to be rejected as novd data since the

chance of such data occurring is small.

For the second approach, novel data will be identified when they are out of the cell

boundaries. In this case, the maximum or minimum values of training data ina cell may be

used to limit the cell size in every dimension. Note that we may use the other values such

as the maximum or minimum plus some margins to limit cell size. A further study of how

to choose an appropriate margin may be required. However, we will use zero margin in this

thesis. By applying this technique, every cell size will be fixed and finite. After we perform

this procedure, the tree can be used for novelty detection. After an input vector follows the

tree structure and is located at a cell, the algorithm determines whether the input vector is

more than a certain distance beyond the cell boundary. Abnormalities are identified when

ever input vectors are outside of their cells regardless of which boundaries they break.

We will show the simulation results of these two cases for novelty detection in thl'

following example.

SimuLation ofa simpLe exampLe

We will begin this section by demonstrating the capability of a neural network for

function approximation. Then, novelty detection using the neural tree algorithm with the

second approach we discussed in the last section will be applied. We will also show the
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simulation results using the first approach (density estimation) and will introduce the prob-

lem of utilizing this approach for novelty detection.

The following is a two dimensional example used to demonstrate novelty detection

employing the neural tree algorithm. This example will be used to demonstrate the other

algorithms as well.

In the example, a two-layer feed forward neural network, with 40 neurons in the

hidden layer and one neuron at the output layer, was trained to approximate the following

function.

t = F(p) ;Vp

= F(~I P2]1
sine lOJp7 + p;)

=
lOJp~ + P;

Figure 18 is a graph of the function F(p).

( 14)
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§
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"
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P,

Figure 18 Function F( p)
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Figure 19 shows where the training data is located.

-I -0.' -0.1 -0.4 -0.2 o
Po

o.t 0." ... o•

Figure 19 Training data

Figure 20 shows the error on the 638 training points from Figure 19. We can see that the

network provides an accurate approximation to the function for all training points .

• 10-1

'r--~--~---~--~---~--~-,

l.&

,..

Figure 20 Error between target and network output after training
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Figure 21 show the error between the output of the function and the output of the

function approximator. We can see that the errors out ide the training data are larger than

the errors within the training data region.

-I ~l .,

Figure 21 Error between target and network output in the normalized hyperspace

Assume that we are going to test the trained network using 437 new data points. The

testing and training points are shown in Figure 22.

--

-1
_1 -0.8 -0.6 0.4 -0.2 o

,I
0.2 0.4 0.6 0.8

Figure 22 Testing and Training Data
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Let's apply the 437 test inputs, pi, to the trained network. Figure 23 shows the er-

rors on the testing data.

,
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Figure 23 Error of the testing data

The large errors that occur in Figure 23 are for inputs outside the range of the train-

ing data. We would like to use a neural tree to detect inputs outside the range of the training

data. This would enable us to determine the reliability of the multilayer network output. In

this example we use the tree described in Figure 24 and Figure 25.
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Figure 24 Initialized Cells

CI C2 C3 C4 C5 C6 C7 C8

Figure 25 An 8-Cell Tree

After the tree structure was created, the training data were used to train the tree.

Training took about 0.55 seconds on a 300 MHz PC, with learning rate 11(/) 0.3 h= -,were
l

t is the number of data points that have been applied to the tree so far. The learning rate is

decreased during training to insure convergence. Now, after training the final weights are

shown in Equation (15).
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W II = -0.3379 11

w22 = 0.101022

w31 = -0.7153 31

W 42 = 0.549242

w51 = 0.139851

w61 = -0.100061

wn = -0.018272

Figure 26 shows the final partitioned cells.
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Figure 26 Partitioned Cells After Training

Every cell in the trained tree covers an infinite area, For example, cell C I covers

the Cl E [(-00, -0.7153), (-00,0.1010)1. Therefore, we need to limit the cell size. In this

example, the maximum or minimum values of the training-data points falling in a cell will

be used to limit the cell sizes. This approach gi ves cell C I a finite area, which is denoted

by CI E [(-I, -0.7153), (-1, 0.1010)] ; the minimum value of data within cell C 1 in the
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first dimension is -1 . This is also the smallest value for the second coordinate of training

data in cell C I .

Novelty detection can be implemented after every cell has bounded area. The algo-

rithm defines abnormal data as data outside of any cell. Figure 27 illustrates novelty detec-

tion by plotting training data, testing data, and identified abnormalities within the testing

data.
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Figure 27 Abnormalities outside the cells

The next step is to test whether data flagged as novel is correlated with large errors

in the multilayer network output. (Recall that the purpose of novelty detection in this thesis

is to identify inputs for which the trained multilayer network is unrdiable.) Before doing

so, we will introduce our indicators to measure the performance of novelty detectors.

When perfonning novelty detection to reject or to accept data, we can make two

types of erro rs . In the first case, we reject data, even though they create small errors. In
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the second case, we accept data even though they generate large errors. The following table

illustrates these ideas.

Table I Novelty detection decision vs. approximation error

Decision\Error Small Error Large Error
Accept Correctly-classified data Misclassified data

Reject Misclassified data Correctly-classified data

From the above table, one might ask how we decide what is a small error or what is

a large error. Throughout this thesis, we consider the error as unacceptable when its value

is greater than 0.15 in the normalized hyperspace, in which targets are bounded between

[-1,1] . The threshold used to accept or reject data will vary from algorithm to algorithm.

For each algorithm we will indicate the threshold we use.

An indicator we will use to measure the performance of the algorithm is the percent-

age of misclassified data points. Clearly, the larger the percentage of misclassified points,

the worse the algorithm. However, keep in mind that the percentage of misclassifications

depends on the definition of large error. For some applications, the error for abnormalities

is required to be very small to guarantee the reliability of the network output. For example,

if the large error (abnormality) is defined as the error greater than 0.01, the percentages of

misclassifications we will show throughout this thesis will be changed as well (since we

defined the large error as greater than 0.15). Note that from now on we will use the term

type I error to represent small-error data that is rejected by novelty detection. On the oth-

er hand, type II error will represent large-error data that is accepted by novelty detection.
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From the above example, the percentage of misclassified points for the neural tree

algorithm was 25.17%. Figure 28 illustrates the error of the testing data and the data marked

as abnonnal. (The abnormal data points are flagged with an x at the bottom of the figure.)
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Figure 28 Error and Abnonnalities of the 8-cell tree

We can see in Figure 28 that some large-error points were identified. This is be-

cause some testing data outside the training data region were undetected (shown in Figure

27). This is due to the fact that we do not have enough cells (we had only 8). Therefore,

increasing the number of cells will be a way to detect such data. By increasing the number

of cells to 200, the time used to initialize and train the 200-cell tree was 4,51 seconds. The

time utilized to identify abnormalities of the 437 testing points was 1.36 seconds. Figure 29

demonstrates data that the 2OG-cell tree decided to mark as abnormal.

38



-

0.1 I
· T__ I• T__

O~

0.1
•••••••••· . .. ~............ . .

•••••••••••••••0." ••• .•••• .."" ••••••••••••• ", ...• " •.•. . " " " " " . . ..... " " " " " " " " " " .. , .. " .. .. ".""" ~ " " " , , " " ..
0.2 ••.••.•••••••• "' ••••••••••••••••.•••••.

. " " , " , , " " " . " , . .. . .
• • •• • •• """""",," Ill" ,," .. " " " '" o' ••••••••.... """"." .. """ """" .. """ .

-<I.'

-0,'

... "." "' ... "".""" .. """.""""""" ...
. """" .• """",,"'''''''''·0.''''''''..... .

• • •• • •• "" 11 .. " " " " • •••• " " " " " " " " " " ••••••••

. ..""""""""" •••• It" " " " • , " " .
•••••• II' •••••• X~ ••••• " .. ......•••....••...... .· . .. . """"" " " .. " " .

-0.4 . . . • " • ••• •••••••••••• • • .. " ..·........ ... "e.. . .
• • •••••••••••••••••••••••••••••••••••

-<1.1

_, '--~,---'-,-----::'-_-'-:c_-'-_-'-_:'-7-_'----'_--'
-1 -0.' ..c.1 -0.4 -0.2 0.2 0." 0.' 0.'

Figure 29 Abnonnalities from the 2OG-cell tree

We can see that almost all of testing data outside training data region were identified as ab-

nonnalities.

Figure 30 shows the error from the function approximator on the testing data and

indicates data marked as abnormal.
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Figure 30 Error and abnormalities of the 2OG-cell tree

As seen in Figure 30, most of testing data were identified as abnormal. Although most of
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the testing data that fell outside our training data were detected in Figure 29, the number of

misclassification was 46.91 %. All of these misclassified points were classified as novel, al

though the errors were small (type I error). Although we can see that the percentage of mis

classifications for the 2oo-cell tree was larger than for the 8-cell tree, we should realize thaI

this percentage is from only one data set. The percentage we show here will not apply to

every data set.

From this chapter through Chapter 7, we will use only one simulated data set to

demonstrate how the novelty detection algorithms work. However, in Chapter 8, we will

apply real world data to various novelty detection algorithms. That chapter will provide

more thorough tests of the algorithms.

From the results we have so far, as we increase the number of cells in the neural tree

algorithm, the more abnormalities will be identified. However, any data point that is close

to the training data but is outside the cell boundaries will be discarded as abnormal. This

will increase the percentage of type I misclassification error.

Thus far, we flag novel data when they break cell houndaries. We will now use the

neural tree algorithm to estimate the density for novelty detection.

After training the 200-cell tree, infinite cells will be limited by using the maximum

and minimum value of input data, which is ) and -1 in this case. The area of each cell will

be calculated, and the probability density over cell Ci will be computed as (2~O)/Ai'

where Ai is the area of cell Ci. Figure 31 illustrates data having low and high density. The
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Figure 32 Donut Shape

If we flag novel data when they fall outside cell boundaries, we can see that there is

no way to detect data inside the inner circle. This is because the data in this region are al-

ways in the cell boundaries (a cell is shown in Figure 32), therefore type II errors may be

increased. If we use the density estimation approach, some data inside the inner circle may

be detected and some may be not. The final results will depend on how the cells are ar-

ranged.

The neural tree algorithm has a high percentage of misclassifications, but its major

advantage is its speed.

Summary

In this chapter, we introduced the fundamental ideas of the neural tree algorithm.

We defined the notation and terminology commonly used with this algorithm (e.g. tree,

node, cell, etc.) We explained how a tree divides the hyperspace, and how a tree is trained

to learn a data distribution. We then explained that, for novelty detection, we had to first

limit the size of cells. Abnormalities were indicated as data falling into low-density cells
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(density estimation approach) or as data located outside of the cells (cell boundary ap

proach). The ability of this algorithm was then demonstrated using a simple example. We

showed through the simulation results that increasing the number of cells increases the abil

ity of the neural tree to identify data outside the region of training data. We showed why

the density estimation approach tends to increase type I misclassification.

After we demonstrated the novelty-detection process, we introduced the perfor

mance measure - the percentage of misclassified data points. We suggested that a further

study on how to appropriately limit cells for novelty detection should be necessary.
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CHAPTER 4

THE GAUSSIAN KERNEL ESTIMATOR

Introduction

The Gaussian kernel estimator for novelty detection was fir t adopted by [Bish94],

and was thoroughly described in [Bish95]. This method is based upon lhe estimation of the

probability density function, as described in many stati tics books. Mo t real-world appli

cations and research involving novelty detection employ this method, as in [Bish94],

[NaCoRiToTa97], [TaNaToCo99J, or [HiAuOO].

Within this chapter. we will first give the reason why we are interested in u ing the

density function estimate for novelty detection. Then we will explain three well-known

methods for density estimation, which include histogram, naive estimator, and kernel esti

mator. A specific kernel function. the univariate Gaussian estimator. will be introduced.

followed by the generalized model for the multivariate case. Next, the procedure for adopt

ing this algorithm to novelty detection will be described. The algorithm will be demonstrat

ed through simulation example. After that. we will propose an idea to improve the

performance of the algorithm by incorporating the network output with the network input.

The improved algorithm will be illustrated with computer simulations. Finally, we will an

alyze a problem with the proposed algorithm.
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Estimated density for novelty detection

[Bish94] developed the novelty-detection method employing the Gaussian kernel

estimator by the error equation for training a function approximator:

N

sse = I JJ{a(Pi' W) - t j } 2f (p;, t;)dpdt

; = I

(16)

where a(Pi' W) is the output of a function approximator corresponding to the ;th training-

data input, Pi' through the network having weights W, Ii is the target and [(Pi' t i ) is the

joint probability density function of the input and target. By applying Bayes' rule, we will

replace the joint density with a product of fUdpi) and f(p;). When rearranging Equation

(16), we obtain

N N

i = I

where E is the expectation operation.

i = I

From Equation (17), we can see that the error equation is weighted by f(Pi) , which

represents the density function of the input data P . Aftertraini ng the function approximator

(minimizing the sse over a finite data set), we expect that the approximation is accurate in

regions that the density f(p;) is high. On the other hand, there is a small contribution to the

error minimization (Equation (17» from the regions where f(Pi) is low. Consequently, the

approximation should not be precise in these regions, thus resulting in large error from the

function approximator. Therefore, the density function f(Pi) can be an indicator to predict
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when the approximation is not accurate. In other words, we may use the density function

as novelty detector for function approximation. Unfortunately, the density function f(Pi)

is unknown, and therefore we have to estimate it. The next section is dedicated to reviewing

the density estimation, from the histogram to the Gaussian kernel estimator.

Background

The probability density function gives a description of the distribution of a random

variable p . Probabilities associated with p can be found by

(18)

Now, suppose that there is a set of observed data sampled from an unknown probability

density function. The method of predicting the unknown density function from the ob-

served data points is called "density estimation". Three density estimation methods will be

discussed here, starting with the well-known histogram, followed by the naive estimator,

and finally leading to the kernel estimator.

Though most applications in the real world deal with multiple variables, we will be-

gin with the univariate case because of its simplicity. Before starting the discussion, let's

define some notation that will be used throughout this chapter. Assume that a random vari-

able p consists of N real observations PI' P2' ... , PN sampled from a data set whose un-

derlying density is unknown and to be estimated. Then, the estimated density function of

these observations will be denoted as f .
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Histogram

The oldest and most extensively used method for estimating an unknown density

function is the histogram. It is mainly comprised of a series of boxes with heights indicating

how many data are contained in a certain region. To create a histogram, we begin by defin

ing a set of bins starting from the point Ao. Each bin is defined as the interval

lAo + mb, Ao+ (m + J)b), where m is an integer representing the bin number. Every bin

has width b. Then the histogram is defined as

f (A) = ~b (numbers of Pi in same bin as A) (19)

The estimated density is constant over each bin. The bin width b is sometimes called the

smoothing parameter. Note that in a more general form, the bin width can be adjustable

from bin to bin as well.

The accuracy of the histogram depends upon both the starting value and the bin

width. These values have to be chosen by experience and the choice may cause undesirable

effects, such as misinterpretation of the density estimate. Furthermore, though it is an ex

cellent tool to represent the approximate density for a single random variable, it does not

work well in high dimensional spaces. Even in two or three dimensions, it is extremely dif

ficult to create understandable figures. Moreover, the discontinuities between adjacent box

es are not desirable. The next method we will discuss known as the naive estimator is

designed to overcome some of the problems of the histogram.
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Naive estimator

The naive estimator is an alternative to the histogram. It eliminates some undesir-

able effects of histogram, especially the choice of origin value, as will be seen. From Equa-

tion (18), the density function can be rewritten as

f(A.) = lim 2IbP(A. - b < P < 'A. + b)
b~O

(20)

The right hand side can be estimated by computing the fraction of observed data falling

within the interval ('A. - b, A+ b), and can be written as

numbers of Pi falling in interval('A. - b, 'A. + b)
P('A.-b<p<A+b)== N (21)

Therefore, for a small enough value of b, Equation (20) can be reformulated and used as

an estimate

f ('A.) =
numbers of Pi falling in interval(A- b, A+ b)

2Nb
(22)

The above equation is a simple form of the naive estimator. The general form is

N

~ I (A-po)
f(A) = NbL w-----;!

i = 1

where w(A) is called the weight function and can be defined as

(23)

W(A) = {~ ; IAI < 1

; otherwise

(24)

In Equation (23), we are constructing a box of width 2b over the range (A - b, A. + b) and

48



-

height 2~b on each observed data point. After adding them together, the density estimate

is eventually obtained. Therefore, the naive estimator uses observations to be the reference

for each box, meaning that the center of each box is an individual observation. In the case

of the histogram, the origin value has to be initialized before making a box. That means that

the naive estimator is a modified version of histogram in which each sampled data point

creates its own histogram centered on itself.

The naive estimator eliminates the problem of setting up the origin value. Never

theless, the trouble of selecting the smoothing parameter and the discontinuity of the curve

still remain. The discontinuity of the curve is the most undesirable feature, because the de

rivative of the estimated density is infinite at every point Pi ± b, and is zero elsewhere.

Before going on to another section, let's consider how the estimate is affected by

changes in the smoothing parameter. When the parameter b is reduced, Equation (22) im-

plies that the interval 2b is decreased whereas the ordinate of each box 2~b is increased,

making the estimated density more jagged. The graphical presentation will look more noisy

when the parameter is smaller. On the other hand, when the parameter is increased, the dis

continuous characteristics will be reduced but some underlying information will be lost be

cause of too much overlap of the blocks. Figure 33 demonstrates the effect of varying the

smoothing parameter on the naive estimator.

49



--

u~ ._· •

1 't

1"1

..;- .i • i- ;- -i -. ~--

1"'r
I .

.J • • t ; ....--
Figure 33 Effect of the smoothing parameter on the naive estimator (a) b = 0.03 (b)

b = 0.3 (c) b = 3

As with the above explanation, the estimated density will be smeared if the smooth-

ing parameter is too small, and it will be obscured if the smoothing parameter lS too large.

Therefore, the choice of the smoothing parameter is one of the most critical steps in using

the nai ve estimator.

As noted above, the undesirable characteristic of the naive estimator is its disconti-

nuity. To overcome this problem. we will modify the weight function using a kernel func-

tion, as explained in the next section.

Kernel estimator

In order to obtain a continuous curve, we can modify the weight function. We will

replace the weight function w(A.) with the kernel function K(A.) , which satisfies the con-

dition

so



I K(A.)dA =

By substituting this kernel function into Equation (23), it becomes

N

i (A.) = ~b L K(A. ~Pi)
i = I

(25)

(26)

The kernel function is nonnally chosen to be symmetric and non-negative everywhere.

Some of examples of kernel functions are the biweight, triangular, and nonnal density func-

tion (the Gaussian function). By selecting a continuous kernel function, the density func-

tion estimate will also be continuous.

As with the naive estimator. the kernel estimator can be thought of as adding togeth-

er all of the kernel curves centered at the observations. In other words, rather than placing

a box of width 2b having a midpoint at the observations with height 2~b ' a kernel curve

with a specific interval and height constrained by its own properties is located on each ob-

servation. The density estimate at a point A. is obtained by summing all of the individual

kernel functions. Like the naive estimator, the smoothing parameter controls how smooth

the curve is. If the parameter is too large, the kernel functions overlap too much and are

smeared together. If the parameter is too small, the approximate density is just as mislead-

ing, and consists of a spike at each observation.

Therefore, though the estimate is continuous, the problem of how to select the value

of the smoothing parameter still remains. However, the kernel estimator has been one of

the most popular methods employed for density estimation thus far. In the next section, a
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certain kernel function called the Gaussian function will be deployed in order to perform to

novelty detection.

The Gaussian kernel estimator

In this section, one of the most well-known functions in the statistics, mathematics

and engineering fields - the Gaussian function - will be employed as the kernel function.

We will begin with the univariate case, followed by the generalized model in which any

number of dimensions can be used.

One-dimensional data

We generally choose a kernel function that is differentiable, symmetric and non-

negative. The Gaussian function with zero mean and variance of one

1 (I 2)g(x) = -exp --xJ2ir. 2
(27)

satisfies all of the above properties. Now, by substituting Equation (27) into the kernel

function in Equation (26), it becomes

N

1 1 (1(A-P,)2)
f (A) = Nb I J2ir. exp -2 T

i = 1

The above equation is the Gaussian kernel estimator for univariate density functions.

(28)

Notice that the smoothing parameter controlling the width of the Gaussian curve is

the standard deviation in the normal density function, while an observation Pi can be

thought of as the mean of the kernel curve. When the standard deviation of a normal densi ty
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function increases, the curve expands and the points far away from its mean have compa-

rable values to points close to the mean. In contrast, when the standard deviation decreases,

the shape becomes more like a spike, and the density at a small distance remote from the

mean is close to zero. Figure 34 shows what the estimated densities look like when the

smoothing parameter is varied. The estimated density computed from Equation (28) is ex-

hibited by the bold solid line, while individual kernels for the five observations are indicat-

ed by the thin lines. When the smoothing parameter is too small, several peaks pop up and

cou Id be misleadi ng. When the value is too large, it can smooth over much of the detai I in

the true density.
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Figure 34 The Gaussian kernel estimator with (a) b = 0.3 (b) b = I (c) b = 3

In the next section, the multivariate case will be discussed.
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The generalized model

Most applications involve high dimensional spaces. The higher the dimension, the

more difficult it will be to make accurate estimates of the density function and to represent

it graphically. However, let's modify our existing notation in order to represent high dimen-

sional data.

Suppose the random vectors PI' P2' ... , PN are sampled from a population with un-

known distribution. Also, assume that the size of each vector is q x I . Then, using the same

concept as the univariate case, the kernel estimator in Equation (26) can be rewritten as

N

i(A) = _1 ~ K(A-Pi)
NbqL b

i = J

where the kernel function has to abide by the condition

JK(A)tfA. = 1

(29)

(30)

Similarly, the Gaussian kernel function will be modified to fit into high dimensional spaces

using the following formula.

; "Ix (31 )

By substituting Equation (31) into the kernel function in Equation (29), it becomes
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ieA)
N

= 1 I ( I(A. - Pi)T(A - Pi))
NbqL, (21t)q/2 exp -2 -b- --b-

I = I

(32)

Now, the above equation is a generalization of the Gaussian kernel estimator. The smooth-

ing parameter b is heuristically chosen, depending on the problem that is going to be

solved. It has to be neither too large nor too small to obtain a desirable result. In the more

general form, the smoothing parameter could be a matrix, like the covariance matrix, and

the density estimate can be written as

(33)

where L is the smoothing-parameter matrix, which can be thought of as the covariance ma-

trix, and has the size q x q. The notation ILl represents th~ determinant of the matrix. No-

tice that (33) is the general form of (32) such that L = b2I q , and Iq is the identity matrix

with size q x q .

Note that the use of L = b
2
I q implies that the width of the Gaussian kernel placed

on each observation is equal in all directions, and that the data in each dimension is uncor-

related with each other. Although a smoothing parameter matrix should be used to efficient-
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ly estimate density functions for data that is not evenly distributed, a constant value will be

used in this thesis for novelty detection.

In the next section, we will explain how this density function estimator can be used

for novelty detection.

Application to novelty detection

We will use the estimated density function for novelty detection. The main idea is

the following. The estimated density function describes the distribution of the training data

set. If a new input vector is similar to vectors in the training set, we would expect that the

estimated density function will be relatively large at that point. If a new input vector is un-

like any vector in the training set, then the estimated density function should be small at

that point. Therefore, those inputs that have a small value for the estimated density will be

considered novel inputs.

In the next section we will revisit the example problem described in Chapter 3. We

will use it to test the Gaussian kernel estimate of the density function, Equation (33), with

2
covariance matrix Lp = b Iq :

~ -q/2 N (A- .)T(A_ ))f (A) = (27t) ",. exp P, Pi
Nbq L.J 2h2

;=1 .

(34)

Note that Pi is a training vector, corresponding to an observation Pi in Equation (33).

Simulation of the simple example #1

The following is the example illustrating the capability of the Gaussian kernel esti-

mation novelty detector. The regions for the testing and training data were shown in il. The
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input vector are two dimensional, and the number of training data is 638, thu giving

q = 2 and N = 638. Figure 35 show the estimated density for various values of the

smoothing parameter.

" "

Figure 35 Estimated Density with (a) b = 0.001 (b) b = 0.01 (c) b = 0.1 (d) b = I

Recall from the previous chapter that we want to use a novelty detector in combi-

nation with a multilayer network that has been trained for function approximation. If the

novelty detector flags data as being different than data in the training set. then we expect

that the multilayer network may perform poorly Olil that data. The novelty detector is a

warning system for the multilayer network. [n this context, we will test the Gaussian kernel

estimator on the function approximation problem described in the previous chapter.

Figure 36 plots the estimated den ity values versus the error of the multilayer net-

work on the 437-test points of the function approximation problem. (See Figure 22 for the
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location of the test points.) Figure 36 does indicate that the lower the estimated density is,

the more likely the error of the multilayer network will be large.
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Figure 36 Estimated Density and The Errors (a) b = 0.001 (b) b = 0.0\ (c) b = 0.\ and

(d) b = I

From Figure 36, we can see that there is a straight Iine and a scalar value R shown

on each graph. The straight line represents a linear regression between the two variables

- the network error and the estimated density in this case. The regression line will be used

to determine the density function value used to flag abnormal data. We will describe how

to determine this threshold value from the regression line later.

The R value represents the correlation coefficient between the network error and

the estimated density (-\ $ R $ 1) . If R value is positive (R > 0), it means that the error

tends to be high when the estimated density is high. On the other hand, if R < 0, it indicates
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that the error tends to be high when the estimated density is low. In addition, the greater the

magnitude of the correlation coefficient (IRI ~ I), the more correlation between the vari-

abIes. Therefore, when the R value is close to zero, it means that there is almost no corre-

lation between the two variables.

We can see in Figure 36 that the R values were negative, thus implying that when

the estimated density was low, the error tended to be high.

In order to decide which smoothing parameter values should be used for novelty de-

tection, Bishop [Bish94] suggested the method of choosing the b value by averaging the

distance to the ten nearest neighbors over the entire training data. By using this method, we

found that the b value for our example is 0.0836.

05r-~-~-~-------,

O. R • ..0.583

o.

-C.I

-C~O~----:'CO.1'----:O::":~ ---:-0.3=---0:'7.•-~0.':-5--::0.•--:'0.7
En..

Figure 37 Estimated density and approximation error: b = 0.0836

To use the density estimate for novelty detection, we must choose a threshold below

which the data will be flagged as novel. Based on Figure 36 (c), we found that the regres-

sion line that represents the network error and the estimated density with b = 0.0836 is
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density = -0.967 x error + 0.294 (35)

We will use Equation (35) to find the estimated density value (based on this data set) that

produces an approximation error of 0.15. By substituting 0.15 for the error tenn in Equation

(35), the corresponding estimated density is 0.149. That indicates that, based on this testing

data set, the estimated density for data points generating an error of 0.15 for the function

approximator is on average equal to 0.149. We will use this value of the estimated density

to be the threshold to reject novel data. In other words, any data generating an estimated

density less than 0.149 will be discarded as novel.

Figure 38 shows the approximation error of the neural network. The points thaI are

flagged with an x have estimated density values less than 0.149.

0.1

0.5

0.4

0.3

l
0.2

"

vv

-0,1 ------------- ••

-<>·'0'---'-c..-~,00--'-'-:-IO--:-'-'OO,------.,.,..'-:---JOO::"-:-----,""".,-------.~OO----'...

Figure 38 Novelty Detection: Density of input

As seen in Figure 36 (c) and Figure 38, the algorithm has a certain capability to pin

point which data should be discarded. The percentage of misclassified points when employ-
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ing this algorithm was 28.38%. All of the misclassifications were from small-error points

that were flagged as novel (type I error).

Note from Figure 37 that if we use density lower than 0.149 to reject novel data, the

percentage of misclassifications will be reduced. This is because the threshold we chose

(based on the regression line) discarded many data points with small errors. We found that

in this example the threshold that minimizes the percentage of misclassifications is around

0.005. For this threshold, the percentage of misclassifications is 7.32%. Around 5.49% out

of the 7.32% are type I misclassifications. Though there is a large difference between the

percentages ofmisclassifications for the two different thresholds in this example, when we

apply the algorithm to our real world data in Chapter 8, the difference is no larger than 2%.

Although the purpose of using the testing data is to set the threshold, it should be

noted that it is very difficult to have a general value for the threshold that will minimize the

percentage of misclassifications for all data sets. What we can generally say about setting

the threshold is that the higher the threshold, the more likely we will experience type II

error. On the other hand, the lower the threshold, the more likely we will face type I mis

classification. Therefore, the appropriate threshold value will depend on our application.

Even though the percentage of misclassifications in this case is much less than that

for the neural tree, we found that this algorithm sometimes can reject more training data

than any other method. This is due to the fact that the estimated density of some training

data can be lower than that of some testing data. Such training data are located in regions

far away from the majority, thereby reducing the effect of the kernel curves from adjacent
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training points. Figure 39 shows the estimated density of a one-dimensional data et with

the training data marked as x.

_,,--~_~~_---,---,_~_~~_~-.J

_1 -0.' ...0.' -0." -C.2 0.2 0" 0.. 0.'

Figure 39 Estimated density of a data set

From the figure, we can see that some training data points, for example at

p = -0.06, have very low density. Its value is even lower than some testing data points.

such as at p = -0.9 or p = -0.5. That means that these low-density training point are

more prone to being discarded as abnormalities than some testing points, whose errors for

the function approximator may be larger. We can see in Chapter 8 that this algorithm rejects

more training data as novel than any other novelty detector. A way to reduce this problem

is to reduce the value of the smoothing parameter.

As we explained earlier, the smaller the smoothing parameter, the smaller the re-

gion the kernel curve will cover. Thus, if we choose to have a small smoothing parameter,

the estimated density of the training data will he higher than testing points; however, the

density of the interpolations will be very low (see Figure 35 (a)). That indicates that we will
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discard these small-error points (interpolations) as abnormalities, thus increasing the per-

centage of misclassifications. Therefore, no matter how large the smoothing parameter, this

method tends to reject small-error points (either training data or interpolation points) as

novel data.

A way to improve the performance: Joint Density

Thus far, we have computed the estimated density of the input to the function ap-

proximator. Recall from Equation (16) that the probability density function that we actually

use to minimize the sum-square error is the joint density between the input and the target

of the network. Because the target is assumed to be unknown, it may be difficult to find the

joint density. However, in this section will propose a procedure for computing the joint den-

sity between network input and output. Then we will use the estimated joint density to de-

velop an improved novelty detection procedure.

One advantage of using the joint density is that if a network could not minimize the

errors very well on some of the training data, the joint density between the network inputs

and outputs for those training data could be rejected based on comparing with the joint den-

sity between the network inputs and targets. Also, there might be a regions close to training-

data inputs where the network did not minimize the error. This would cause the network

outputs from that region to be unreliable (computing the density of the network output

would be a good way to indicate such phenomena).

We can represent the joint density of two jointly Gaussian random vectors x and y

T
by creating an augmented vector Z = [x yJ .The new random vector z wi II also follow

the Gaussian distribution. Thus, for any training data, we will create the new composite
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vector r i = [Pi tJ T. For testing data, we need to propagate the input P~ through the func-

tion approximator to get the network output a;. Then we will augment the network input

and output to create the composite testing data ~j = [p; a~ T. Then Equation (33) can be

rewritten as

(36)

where Lr is the smoothing parameter matrix. Note that the structure of Lr is

(37)

Ci...
where L, is the smoothing parameter for the target, and Lp1 is the co-smoothing parameter

between the network input and target.

In the next section, the estimation of the joint density will be illustrated by using

the simple example we have used in previous sections.

Simulation of the simple example #2

In this example we will compute the joint density of training data, and compare with

that of testing data. We will use Equation (36) for estimating the joint density.

We assume that all elements of the augmented training vectors rare uncorrelated.

Therefore, Lr will be a diagonal matrix. By using the same criterion as we did in example
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#1 (set the b value equal to the average distance to the ten-nearest neighbors in the training

data), the b value in this case then is 0.1164. In other words, Lr in this example is equal to

0.1164
2

0 0

L r = 0 0.11642 0

o 0 D.1164
2

(38)

After we used Equation (36) for computing the estimated joint density, we obtained

the estimate shown in Figure 40.
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Figure 40 Estimated density and approximation error: b = 0.1164

We can see from Figure 4D that large-error data clearly have low density. This re-

lationship is clearer here than in example #L The regression line shown in the figure is

density = -D.318xerror+0.159 (39)

By substituting 0.15 for the error term, the corresponding density is equal to D.1113. We

will use this value as the threshold. Figure 41 demonstrates the network error, and abnormal

data are flagged with an x,
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Figure 41 Novelty detection: Density of input and output

The percentage of misclassifications in this case was 23.34%, which is a little bit

less than the result in example #1. All of the mi.sclassifications in this case were from type

I errors.

We found that the threshold that produces the fewest misclassifications is 0.04. For

this threshold, the percentage of misclassifications is 8.46%. Around 8% of the 8.46% are

type II errors. This is less than the percentage of misclassifications we obtained for the

threshold based on the regression line. However, in chapter g, where we apply this tech

nique to real world data, we found that the difference will not be this large.

From the results we obtained using the threshold of 0.04, the total misclassificatioll

is a little larger in example #1 (when we chose the threshold with fewest misclassifica

tions). This is due to the fact that there are some small-error data with low density marked

in Figure 40. Such data points are shown in the two-dimensional plot in Figure 41 .
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Figure 42 Small-error and low-density points

From Figure 42, we can see that these data occupied a region where the density of

training inputs is low, compared with the other regions containing training data. However,

the real problem is that the density of the targets for this data is very low, resulting in low

joint density around this region. Therefore, any data around this region will naturally have

low density, compared to the density in the other regions. This phenomenon makes the data

in this region (though their errors are small) more prone to being discarded as novel data

than data in other regions. This is the reason why some small-error points can have low den-

sity, and this is the main problem with this algorithm.

In this section, we proposed a technique to improve the performance of the Gauss-

ian kernel estimator for novelty detection. We expected that any data generating unreliable

output but falling in the regions whose density of input are somewhat high (from the over-

lapping of kernels) should have low density. Unfortunately, we found that data points oc-

curring in the regions where the density of inputs and targets is low could have low joint

density as well. These data points were therefore detected as novel data.
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Summary

We began this chapter by deriving the error equation for training a function approx-

imator. We concluded that the error of the function approximator depends on the joint den-

sity between target and input data. However, since the target is unknown, we factorized the

joint density using Bayes' rule, and used only the density of the input data. Because the den-

sity function of the input data is unknown, we have to estimate it.

We introduced three methods for density estimation, and concluded that the Gaus-

sian kernel estimator is the most desirable method. However, there is a smoothing param-

eter required by the estimator. We demonstrated that if the parameter is not set correctly the

algorithm will perform poorly.

When using the Gaussian kernel estimator, we found that the lower the estimated

density, the more likely we were to find large errors in the function approximator. We then

proposed a way to improve the performance of the novelty detector by estimating the joint

density between network input and output for testing data, and comparing it with the den-

sity between network input and target for training data. The simulation results showed that

the joint density estimate had an improved capability of identifying abnormalities, and re-

duced the percentage of mjsclassified points.
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CHAPTER 5

AUTOASSOCIATIVE MULTILAYER PERCEPTRON

Introduction

One of the most common uses of neural networks is to solve pattern recognition

problems. In Chapter 2, the general structure of multilayer neural networks was introduced.

Frosini and Gori proposed a new approach )n [FrG096] for using multilayer networks to

recognize their data and to perform novelty detection. Their application was the detection

of bogus banknotes.

In this chapter, we will use multilayer networks as novelty detectors, to recognize

data unlike training data. We will start this chapter by briefly recapitulating the neural net-

work structure. The definition of a new novelty detection will be given, followed by a de-

scription of how we can use such a neural network to identify abnormalities. A simple

simulated example will be used for demonstration. After that, we will propose a technique

to improve the performance of this method. Finally, the simulation outcomes with this new

technique will be shown.

Autoassociative Multilayer Perceptron

Note that multilayer perceptron is another name for multilayer neural network,

which was previously described in Chapter 2. The word autoassociative is used because

the targets of these neural networks are the same as the inputs to the networks.
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The major difference between the autoassociative multilayer perceptron and the

multilayer network function approximator is the target output. For the function approxima-

tor network, the target output is the output of the function we wish to approximate. For the

autoassociative network the target output is the same as the network input.

Note that the objective of training a network is to minimize the sum-square errors

sse, or mean-square error mse, between network outputs and targets. Since the output of

the autoassociative multilayer perceptron is not in scalar, mse can be written in the form

of vectors as:

mse

N

= .!. '" eTeN £.J i i

i = I

N

= ~ I (t j - a)T(t i - a i)

i = I

N

= ~ I (Pi - a,.)T(Pi - a j )

i = I

(40)

...

where N indicates the number of training data vectors, Pi is the illl input vector, and a i is

the corresponding network output.

From Equation (40), we can see that the quantity written as (Pi - ai)T(Pi - a i) IS

the squared error of the /11 observation. The error itself can be calculated through the 2-

norm operation.
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norm(e;) = Ileill

T 1/2
= «e;) ei) (41)

T 1/2
= «p;-a) (Pi-a))

We will call the quantity, norm(e;), in Equation (41) "autoassociative error".

In this section, we defined the structure of the neural network used for novelty de-

tection. The major difference between the network for novelty detection and that for func-

tion approximation is the number of neurons in the output layer. We will describe in the

next section how we can bring this new neural network to be our novelty detector for func-

tion approximation. The simulation results will be also provided.

Application to novelty detection

Recall that we want to use a novelty detector in combination with a multilayer net-

work that has been trained for function approximation. If the novelty detector flags data as

heing different from data in the training set, we then expect that the multilayer network may

perform poorly on that data. That means that the novelty detector is a warning system for

the multilayer network. In this chapter, we want to test the autoassociative multilayer per-

ccptron on the function approximation problem.

We will create a neural network with the structure described in the previous section

(autoassociative multilayer perceptron). We will use this network for novelty detection.

Since two kinds of multilayer neural networks are in use, we will call the neural network

utilized for novelty detection as the novelty detection (NO) network. The main idea for us-

ing the NO network to be a novelty detector for the function approximator is provided ill

the following.
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Although the ND network seems to perform a linear function (the output is the same

as its input), Hwang and Cho showed in [HwCh99] that the nonlinear transfer function. e.g.

the hyperbolic tangent sigmoid, in the hidden layers is necessary for novelty detection.

They concluded that the nonlinear transfer functions create output-constrained hyperplanes

on which all output vectors 8; are projected. Therefore, when we minimize the square error

(train the ND network), the hyperplanes will be moved toward the vicinity of the training

vectors. Consequently, the squared error of the data points within the constrained hyper-

planes will be small, while that of data points far away from such hyperplanes will not be

minimized and this will result in large squared error (and autoassociative error). This is the

reason why the ND network can "recognize" training data.

We would like to train the NO network with the data we used to train the function

approximator so that the autoassociative error for these data is small. Therefore, if a new

testing vector is similar to a training vector, the autoassociative error of this vector will be

small. We then expect that the error of the function approximator would be small as well

(since the testing input is similar to a training input). For a new vector much different from

training data, the autoassociative error of this point will be large since it is not in the con-

strained hyperplanes, and the error from the function approximator of this data should also

be large. Therefore, those inputs that have a large autoassociative error will be considered

novel points. Figure 43 demonstrates the diagram for the ND network for the function ap-

proximator.
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Figure 43 Diagram of an autoassociative novelty detector

In the next section, we will revisit the example problem described in the previous

chapters. We will use it to show the ability of this method.

73



Simulations of the simple example #1

The ND network was designed with a three-layer architecture to recognize the trai n-

ing data shown in Figure 19. We used 20 neurons in the first layer and 10 neurons in the

second layer. The number of neurons in the output layer must be two, since the input vec-

tors p have two elements. This made the architecture of the NO network 2 - 20 - 10 - 2 .

We then used the Levenberg-Marquardt algorithm [HaOe96] to train the ND network (note

that we also tried the Bayesian regularization algorithm and the results were not much dif-

ferent). In this example, the mean-square error was driven down to the order of to-II. Fig-

me 44 il1ustrates the errors of the ND network for the training data.

Figure 44 Autoassociative error of training data

The NO network generates output vectors that are very similar to the training inputs.

The maximum autoassociative error for the training data was 6.13 x 10-5
. After the train-

ing process of the ND network is complete, the next step is to apply testing data pI to the

NO network and to compute the autoassociative errors - the error between the testing data
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pt and the corresponding NO-network outputs. Now, we want to see whether the error from

the function approximator correlates with the autoassociative error. Figure 45 shows the

correlation between the autoassociative errors from the ND network and the errors from the

function approximator on the test data points shown in Figure 22.

.,
::1:

• ,0'"
I.S

0 0
0

R.O.768 0 0
0 0

0
00

0

0
0 0

0 0

! 00
0

0
0

~
0 0 0

0; 0 0 0 0
0 0 0

I
0 0 0

0 0
0 0 0 0 0

o.S
0

0 0

0
0

0
0

0

0.2 0.3 0.' O.S 0.1 0.1

E'""

Figure 45 Autoassociative Error and Approximation Errors

As seen in Figure 45, the correlation (indicated by the R value) between the autoas-

ing that there exists some correlation between these two variables.

sociative errors and the errors from the function approximator was somewhat high. imply-

Once again, to set up the threshold to discard abnormalities, we consider the regres-

sion line shown in Figure 45. The equation for the line in Figure 45 is

autoassociative error = 0.00189 x error + 6.66 x 10-
5

(42)

From Equation (42), the autoassociati ve error that corresponds to a network error of 0.15

is 3.50 I x 10-4. We will use this value as the threshold to reject novel data. Figure 46 dem-

onstrates the network errors, and novel data are flagged with an x.

7'5



0.7

0.0

O.S

o.•
O.J

~

O.2

O. 1

0

-<>. 1

-<>.2
0

l~ '-' u V \J w IV LLu \.. 11

so ,DO 150 :200 260 )00 360 400 4.10

Figure 46 Error and abnonnalities

As with previous methods, there are two types of misclassifications. In type I mis-

classification, the autoassociative error is greater than 3.50 I x 10-
4

(data flagged as nov-

eI), but the approximation error is less than 0.15. In type II misclassifications, the

autoassociative error is less than 3.501 x 10-
4

, but the approximation error is greater than

0.15. For this test, the total misclassifieation rate was 6.63%. Most of these misclassifica-

tions (4.81 %) was of type I.

If we choose a threshold of 4.0 x 10-4, the percentage of misclassifications is

5.72%. Around 3.41 % of this 5.72% is from type I error. We can see that type I misclassi-

fications are reduced when we increase the threshold. It should be noted that it is very dif-

fieult to have a threshold minimizing the percentage of misclassifications for every data set.

However, what we ean say in general about setting the threshold is that the higher the au-

toassociative error we choose for the threshold, the more likely we will reduce type I mis-

classifications (type II error increases). On the other hand, the Lower the autoassociative
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error we select for the threshold, the more likely we will reduce type II misclassification

(type I error increases). It will depend on the application what type of misclassifications we

can tolerate. For this thesis, we will use the threshold based upon the regression line.

From the simulation results, we can conclude that the autoassociative errors from

the ND network are correlated with the network errors. As we can see in Figure 45, some

data points generating large approximation errors have small autoassociative errors, while

some creating acceptable approximation errors make large autoassociative errors. These

data points will increase the percentage ofrnisclassifications. Therefore, in the next section,

we will propose a technique to reduce the percentage of misclassifications.

A technique to improve efficiency

In the previous chapter, we described our technique to improve the efficiency of the

Gaussian kernel estimator. We will use a similar procedure in this chapter. For our training

data, we will incorporate the target with the input to create new training vectors

r i = [Pi tJ T, and we will incorporate the output of the function approximator to make

new testing data r; = [pJ aJ T. That means that we will train an NO network with the new

augmented training data r. Furthermore, in order to get new testing data, we need to prop-

agate our testing input P; through the function approximator to get the network output a;,
and then stack these two variables. Finally, these new testing data will be applied to be the

inputs of the NO network. The advantage of using this method is described in the following.
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If we have testing data p; close to the training data p, but the function approxima-

tor turns out an eccentric output, the NO network will generate large autoassociative error.

For example, assume that the function approximator creates a large error for one of its train-

ing points, Pi <lti - ail is big). We also assume that the original ND network can recognize

our training data Pi (output of the ND network is very similar to the input Pi)' The autoas-

sociative error from the original ND network is thus small, since Pi is in the constrained

hyperplane (since it is a training vector for the ND network). However, when we use the

new ND network trained with the augmented training vectors r, the autoassociative error

from the NO network for [Pi aJ T should be large, since [Pi aJ T is not close to our train-

ing data and thus is not in the constrained hyperplane (rather, r i = [Pi tJ T is in the con-

strained hyperplane). Therefore, we would be able to reject this point as abnormal for the

function approximator.

In the next section, we will use the new training data set r to train another ND net-

work, and will apply the new testing data r l
to the ND network. We will also show the cor-

relation between the autoassociative error and the network error and will discuss whether

or not it is improved over the original method.

Simulation of the simple example #2

In this example, the new data set is now three-dimensional. The number of neurons

in the hidden layers remain the same as in the previous example. Therefore, the ND net-

work has the structure 3 - 20 - 10 - 3. We will again use the Levenberg-Marquardt algo-
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rithm for training the NO network to recognize the data set r. The mean-square error was

driven down to about the same level as in the previous case, and the maximum autoasso-

ciative error from the training data was 6.14 x 10-5
.

After the NO network was trained, we applied the testing data set r ' to the NO net-

work. Note that we propagate testing inputs p' (shown in Figure 22) through the function

approximator to obtain the network outputs at, and then stack them to obtain the inputs to

the NO network. Figure 47 demonstrates the correlation between the errors of the function

• 10'",.•r-:--~---~-~~-~--,

approximator and the autoassociative error from this NO network .
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Figure 47 Autoassociative Error versus Approximation Error

The correlation coefficient value in this case was higher than the previous case

(0.883 vs. 0.756). Also, the data points generating large errors are more distinguishable

from data points creating small errors (compare Figure 45 and Figure 47).
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Again, we consider the regression tine in order to set up the threshold for rejecting

novel data. From Figure 47, the regression line is

autoassociative error = 0.0035 x error - 4.06 x I O-~ (43)

From Equation (43), the autoassociative error corresponding to the network error of 0.15 is

4.844 X 10-4
. We will use this value as the threshold for our novelty detector. In Figure 48

we plot the approximation error on the testing set and indicate with an x all points that have

autoassociative error greater than 4.844 x 10-4.
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Figure 48 Novelty Detection

In this case, the total percentage ofmisclassified points was reduced to 5.72% (com-

pared with 6.63% with the previous method). All of the misclassifications in this case were

from type II.

Note that some other threshold may reduce the percentage of misclassifications. For

example, if we choose the threshold to be 2 x 10-
4

, the percentage of misclassifications is
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3.66%. Around 2.97% of the 3.66% were type II error. There is no general threshold to min-

irnize the percentage of rnisc1assifications for every data set. However, when we reduce the

threshold from 4.844 x 10-4 to 2 x 10-4 , type II error decreases and type I error increases.

Therefore, the higher the autoassociative error threshold, the higher the type II error (and

less type I errors) will decrease. On the other hand, the lower the autoassociative error

threshold, the more likely type I error will be increased (and type II errors decreased).

As demonstrated in this experiment, the technique of augmenting the input vectors

with the target output does reduce the percentage of misclassifications. The percentage er-

ror for this method is lower than any other method we tested, and the method does not re-

quire us to set parameters (as in the smoothing parameter of the Gaussian kernel estimator).

However, the training time for this method can be very long.

Summary

In this chapter, the multilayer neural network architecture was briefly reviewed. We

slightly changed the multilayer structure to fit the novelty detection problem. The modified

structure has the number of neurons of the output layer equal to the input dimension and

the target output of the novelty detection (NO) network was the same as the network input.

The error of the ND network was called the autoassociative error.

We used the autoassociative error to decide whether or not we would discard data

as too novel for accurate function approximation. The simulation results showed that when

the autoassociative error from the NO network was large, the more likely we would find

large errors for the function approximator.
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Finally, we introduced a new technique to improve the performance of this algo-

rithm by making use of network outputs and targets (as in the previous chapter). The sim-

ulation outcomes demonstrated a better performance in terms of fewer misc1assifications.
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CHAPTER 6

MINIMUM DISTANCE ALGORITHM

Introduction

In this chapter, a new novelty-detection method will be introduced. The fundamen-

tal idea behind this method is based on the 2-norm between training vectors and testing vec-

'c-....
::!·.,....
!i~'·.,
·"

This algorithm is based on the idea that any two vectors that are close together

will be described.

tors. We will first describe how the new novelty detection method can be employed,

followed by simulation results. After that, we will propose a technique to improve the effi-

ciency of this algorithm based on a derivation of the error equation. The simulation results

Minimum Distance Computation

of the modified version will be illustrated. Fi nally, a procedure to speed up the computation

would contain similar properties (information), therefore the function approximator should

turn out comparable outcomes. The measurement of distance between any two vectors wi II

be computed by the 2-norm of the difference between the two vectors. This 2-norm is writ-

ten as:

(44)

where a j and b j are the two vectors that we will measure the distance between.
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As discussed in previous chapters, the objective of this thesis is to develop proce-

dures to detect when a new input to a multilayer network function approximator is unlike

inputs contained in the training set for the approximator. When we have a new input to the

multi layer network, we will want to know how close that input is to inputs contained in the

training set. For that purpose we will measure the distance from the new input to every in-

put in the training set. The minimum of these distances wi II be used to measure the similar-

ity of the new input to training inputs,

We will explain how the concept of minimum distance can be applied to novelty

detection in the following section. We will also provide computer simulations of this tech-

nique.

Application to novelty detection

Recall that we need a novelty detector since we would like to flag data on which the

multilayer function approximation network will perform poorly (generate large error). In

this chapter we will use the minimum distance algorithm as a novelty detector. The main

idea of this method is the following. Because errors on the training data are made small dur-

ing the training process, any new data that is similar to some training data (has a small min-

imum distance) should also produce a small approximation error. On the other hand, new

data with a large minimum distance to the training set can be expected to produce a large

error for the function approximator. Therefore, we will flag any data for which the mini-

mum distance is high.

Equation (45) expresses the distances from a testing vector p; to all of the N train-

ing data inputs Pi
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d =

lip) -p;11
IIp2 - p;11 (45)

The minimum distance is the minimum element of the above vector

dm = mined) (46)

As we explained earlier, we expect that the bigger the value of dm ' the more likely

there will be a large error for the function approximator. Note that if the testing vector is

one of the training vectors, the minimum distance dm will be equal to zero, and we will

accept such data since the error of any training vectors should be small.

In the next section, we will revisit the example we have used in the previous chap-

ters. We will use it to test the minimum distance method, Equation (45) and Equation (46),

for novelty detection.

Simulation of the simple example #1

The following simulations will illustrate the results of novelty detection employing

the minimum distance algorithm. We use Equation (45) to find the distances of each testing

vector to the 638 training vectors (shown in Figure 19), and then Equation (46) is uti lized

to find the minimum distance. We repeat this method for all of the 437 testing vectors

(shown in Figure 22). Figure 49 shows the minimum distance values of all 437 testing vec-

tors versus the errors obtained from the function approximator.
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Figure 49 Minimum Distance versus Error

From the figure, we can see that as the minimum distance value increases, the more

likely we will find large errors. Also, the fairly high correlation coefficient (R value) im-

plies that there exists a correlation between the minimum distance and the error from the

..

function approximator.

To create a threshold to reject novel data, the regression line shown in Figure 49 will

be used. We found that the regression line in this case was

dm = 0.702 x error+ 0.0518 (47)

~.

::n
~..,.,

After substituting 0.15 in theerrorterm, the corresponding minimumdistanceequalsO.1571.

(We will be using 0.15 as an arbitrary point to represent large approximation error.) That

indicates that, on the average for this data set, data points generating an approximation error

of 0.15 are a distance of 0.1571 from their closest training vectors. We will use this value

to be the threshold for the novelty detector. In other words, any data generating a minimum

distance larger than 0.1571 will be considered as novel data. Figure 50 demonstrates the

graph showing the network errors for this testing data, and novel data are flagged with an x.
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Figure 50 Error and abnormalities

There are two types ofmisclassifications. In type I misclassifications, the minimum

distance is greater than 0.157 I (data flagged as novel), but the approximation error is less

than 0.15. In the type II misclassification, the distance is less than 0.1571, but the approx-

imation error is greater than 0.15. For this test case, the total misclassification rate was

12.82%, and most of this misclassification (12.58%) was of type I.

We found that the threshold that produces the fewest misclassifications in this ex-

ample is 0.25. The error rate is 6.87% and around 3.89% (out of 6.87%) are type I errors.

Although the purpose of using the testing data is to set up the threshold to reject novel data,

it should be noted that it is very difficult to have a general value for the threshold that will

minimize the percentage of misclassifications for all data sets. What we can generally say

about ~etting the threshold is that the lower the threshold, the more likely we will experi-

ence type I errors. On the other hand. the higher the threshold, the more likely we will

have type II errors. Therefore, the threshold of 0.25 tends to give us more type II errors than

the threshold of 0.] 571. That means that if another test set is quite similar to this test set,

87

...
~

~ ".. ;1
~ "



"'""

the threshold of 0.25 would be better than 0.1571. In contrast, if another test set is different

from this test set (i.e. it has data with large errors and small minimum distances), the thresh-

old of 0.) 571 should outperfonn. However, in our case, we will use the threshold based on

the regression line.

From the simulation results in this example, we can see that there is a relationship

between the minimum distance and the error from the function approximator. However, as

shown in Figure 49, there exist some points creating large approximation errors but having

minimum distances that are similar to data points that have small approximation errors. In

the next section, we will explain a technique to improve the performance of this algorithm.

A Technique to Improve Performance: Minimum Weighted Distance

In the previous chapter, we proposed that instead of just using network inputs, the

network outputs a and targets t could be also used for novelty detection. In this chapter,

we will modify the minimum distance algorithm in order to include network outputs. First,

we will start this section by deriving the error equation for the function approximator, using

the Taylor's series expansion.

For an input vector p; to the function approximator, the error between the corre-

sponding network output a; and the target t; can be written as:

....~
=~.....
~b.

~ ;;r:
.:...
~ :
:~

~ I:'.:..

I I I
e· = (. - a·

J J J

t I= F(p.)-a.
J J

(48)

where F is the function we want to approximate.
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Now we will use the Taylor's series to expand the function F about the training in-

put vector that is closest to the vector p;. Therefore, Equation (48) can be rewritten as fol-

lows:

of(p{ t /
F(po) + op (Pj - Po) + ... - uj

P =po

t dF(p{ t= (F(po)-a)+dP (Pj-Po)+"·
P = Po

(49)

....

Recall that by using Equation (45) and Equation (46) to find the minimum distance,

respect to the input and is evaluated at the training vector.

we are able to indicate which training vector is closest to the testing vector. Let us assume

."~:,.
".

= argmin(d) . Thus, the last expression in Equation (49) can be written as:
P

Pm

that Pm is the training vector closest to p;. In other words, Pm can be found by finding

T

where Po is a training vector, and ~;(P) is the first derivative of the function with

P=PIl

T
e' = (t - al) + dF(p)
J In} dp

t
(Pj - Pm) + ...

P = Pm

(50)

Now, if we assume that the higher-order terms in Equation (50) can be ignored, then we can

rewrite it as:

(51 )
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We can see from Equation (S 1) that the error from the function approximator e;

does not depend only on the distance between testing vector p; and the closest training vec-

T
tor p , but also on the gradient evaluated at the training vector aaF(p) and on the

m p
p=p",

distance between the target tm and the network output ofthe testing vector a;. Therefore,

if the underlying function F at the training vector Pm is fairly steep (the derivative at the

point is very large), the error of the function approximator could be large even though the

minimum distance between the testing vector and the training vector is small. Similarly, if

the distance between target tm and a; is large even though the distance between these input

vectors is small, the error can be large.

Unfortunately, the underlying function F in general is unknown, therefore it is im-

possible to calculate its gradient (which is a vector of size q xl) at any training data point.

We first considered calculating the derivative of the function approximator F; however,

we found that this did not improve the novelty detection. We will explain in the next section

how to calculate the estimated derivative. We will also explain why we cannot use it for

novelty detection, and how it can be used for other work.

Though Equation (51) is not directly useful for error estimation, it gives us an idea

that the error depends not only on the distance between the two input vectors. Therefore,

we will modify our previous distances d (Equation (45» to make them depend on another
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computable tenn - the distance between target and network output. Equation (52) shows

our new measurements:

lip; -Pili + alit) - a;11

d(l = lip; - P211 + allt2 - a;1I

(52)

where a is greater than or equal to zero (a ~ 0). We will call the elements of d(l weighted

distances, because they include the distance between the targets and network outputs. As

before, we will obtain the minimum value of the weighted distances by computing

(53)

We will call d~ the minimum weighted distance. The effect of a will be discussed further.

As shown in Equation (52), if we set a = 0, the minimum weighted distance will

be equal to the minimum distance. Increasing the weighting factor will strengthen the effect

of the difference between targets and network outputs and will neutralize the distance of

the input data. For example, assume that Pk is a training data point that generates large

error, thereby making the value Iltk - akll high. When we substitute p; with Pk in Equation

(45), the term lip; - Pkll will be zero, thus causing zero minimum distance (dill =0). How-

ever, the weighted minimum distance will not equal zero, because alltk - akll will not be

zero. Choosing an appropriate value of a will he important for successful novelty detec-

tion. We will discuss this further in the next section.
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We will demonstrate the ability of this method for novelty detection using our pre-

vious example. The effect of u on the perfonnance of the novelty detector will be demon-

strated through computer simulations.

Simulation of the simple example #2

We will illustrate the use of the minimum weighted distance computation for nov-

elty detection through a simple example. We will show the effect of varying u on the cor-

relation coefficient R between the error of the function approximator and the minimum

weighted distance.

First, we need to propagate a testing vector p; through the function approximator

to get the network output a;. Equation (52) and Equation (53) are then used to find the min-

imum weighted distance at a specific value of u for the 437 testing vectors. After that, we

compute the correlation coefficient (R) between the two variables - the approximation

error and the minimum weighted distance - for the 437 testing data. Figure 51 demon-

strates the relationship between the weighting factor and the correlation coefficient.
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Figure 5 I Effect of the weighting factor to R

We can see from Figure 51 that when the value of a is increased, the correlation

coefficient R is raised as well. This is because the effect of distance hetween target and net-

work input is added to the distance between the input vectors. And as we expected, when

the value of a is too large (more than 5.1 in this case), the R value begins to drop. We ex-

pect that the curve shown in Figure 51 may change if we use a different testing set. How-

ever, for our simulations, we will choose the weighting factor that maximizes the

correlation coefficient in this test set (a =5.1) .

After choosing the value of a = 5.1 , we plotted the error from the function ap-

proximator and the minimum weighted distance in Figure 52.
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Figure 52 Approximation Error and minimum weighted distance

As shown in Figure 52, the correlation coefficient is very high, and most data points
'~.

For the error of 0.15, the minimum weighted distance is equal to 0.7198. That means that.

on the average for this data set, the error of 0.15 corresponds to the minimum weighted dis-

follow the regression line. Therefore, the regression line in this case may be able to repre-

...
'";...
~I.....
"I.....
"., :'.".
~:

'II
·li
-.AI
".
'"
''''I

(54)d~~1 = 4.37 x error + 0.0643

From the result shown in Figure 52, the regression line was

sent these two variables more precisely than the regression line shown in Figure 49.

tance of 0.7198. Therefore, in order to reject any data generating errors greater than 0.15,

we will set up the threshold so that any data generating minimum weighted distance (with

a. = 5.1 ) larger than 0.7198 will be considered as novel. Figure 53 plots the network errors

for the testing data, and novel data are identified with an x .
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Figure 53 Novelty detection

There were 5.03% of misclassified points using this method. We found that 3.66%

out of 5.03% misclassifications were type I errors. The rest of the misclassified data points

(1.37%) were type II.

If we choose the threshold to be 0.9 rather than 0.7198, we will get only 4.34% mis-

classified data. Most of the misclassifications (around 4.11 % out of 4.34%) are type II er-

ror. As we can see, though the total percentage of misclassifications is reduced by a certain

amount (4.34% versus 5.03%), the percentage of type II is fairly increased (4.11 % versus

1.37%). It will depend on the application what types of misclassifications one can tolerate.

However, in our case, we will stick with the threshold obtained from the regression line.

As we can see from the simulation results, the percentage of misclassifications was

reduced after we included the distance between targets and network outputs Lo the distance

measure. The execution time in this case was slightly longer than computing minimum dis-

tance.
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Note that although this algorithm worked somewhat well for this data set, we found

that the weighting factor we used in the example was not always best for other data sets.

Therefore, if we computed the percentage of misclassifications on another data set, its value

would not be this low. We will introduce another novelty detection method in the next

chapter - minimum distance with outlier detection. We found that a parameter in that

method worked well for a variety of data sets.

Recall that we introduced the minimum weighted distance because the error from

the function approximator depends on three tenns, and the derivative tenn in Equation (51)

is unknown. Furthennore, we briefly mentioned that the estimated derivative is not helpful

for novelty detection. In the next section, we will explain in detail how to compute the es-

timated derivative of the function approximator, the reason why the obtained value is not

useful for novelty detection, and what is the advantage of finding the estimated derivative.

Calculating the estimated derivative

Recall from Equation (48) that we began with the error equation and expanded it

using the Taylor's series. We then searched for the training vector closest to the testing

input, Pm = argmin( d) . so that the higher-order tenns of the series could be ignored. re
p

suIting in Equation (51). Now, since having the multilayer network to approximate the orig-

inal function F, we came up with an idea to estimate the derivative of a function F from

the function approx.imator F. Then the estimated derivative will be substituted into Equa-

tion (51) to obtain the estimated error. The method to derive the estimated derivative fol-

lows.
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Apply the chain rule to the k -layer network F (function approximator):

a A d k k
()pF(p) = r:Jpa (n )

= (~n\ak-I))T~a\l)
ap ank

= (adpn\l-l)y/(n
k

)

= (~l-ICnk-I))T_a_nk(l-I)/(/)
ap aak - 1

= c~apl- I (nk
- I)rWkT/(nk)

= (~nk-l(l-2))T_a_ak-l(nk-l)wkT/(nk)
ap dnk - l

= (ddpnk-ICak-2)YJ:l-I(nk-l)wkT!(i)

= (~l-2(nk-2))T_d_nk- J(ak - 2)yk-1 Cn k - I )WkTIc nk)
dp aak - 2 .

= (dd
p
l-2(nk - 2)rW k - I Tyk-I (nk - I )WkTI(nk )

where y'(n') is the derivative of the transfer function rat layer I:

(55)

a j I 0 0-, (n,)
dnl

0 aJ ( 0
F'(n') =

-, Cn 2) ...
dn 2

(56)

0 0 a j {... -, (ns)
ans

For example, if we use the hyperbolic tangent sigmoid function at layer I, Equation (56)

1)7



becomes

1 1
a j (l- a l) 0 0

1/(01
) 0 1 1

= a2(l- a2) 0
(57)

0 0 I I
.. , as'(l-as')

If we continue to apply the chain rule to the fIrst tenn in Equation (55), we will

eventually obtain the derivative of the function approximator (the k-Iayer network):

(58)
" ..
"

We can use the above equation to estimate the derivative of the function F at any training
" ..
"....
" -

T

data point, ~F(P) , by using the following equation:

P P= Pm

(59)

"....
"e:

I I I I I I-I I-I I-I
where om = W Pm + b and om = W F (Om) + b , Note again that Pm is ob-

tained by computing Pm = argmin(d) .
P

By substituting Equation (59) into Equation (51), we expected that the error could

be estimated. Consequently, we would be able to reject the input vector P; as novel if the

estimated error is large, Unfortunately, we found that this estimated derivative (shown in
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Equation (59» will not accurately approximate the error for extrapolations. For example,

refer to Figure 12 and Figure 13. Though the function approximator could accurately pre

dict the values between p = -I and p = 1, the estimated derivative at training points

p = -I and p = I were incorrect. (Note that the estimated derivatives were very accurate

for all other training points.) Therefore, when using Equation (51) and Equation (59) to e 

timate the error for extrapolations (for inputs greater than 1 or less than -1 ), we wi11 obtain

incorrect estimated errors. This is due to the fact that the derivative we calculated is for the

function F , not for the underlying function F. We found that Equation (51) and Equation

(59) are very good tools to estimate the error for interpoLations, but this is not the ob

jective of this thesis.

For real world applications in which the underlying function we want to estimate is

unknown, we cannot check whether or not we have the precise estimated derivative at the

training data points. Therefore, we finally conclude that the estimated derivative is not gen

erally useful for novelty detection.

How to speed up distance computation

We discussed earlier that the execution time of a novelty detector can sometimes be

long. In this section, we will propose a technique to reduce the execution time for the min

imum distance algorithm by using the Kohonen rule. The following section will briefly de

scribe what the Kohonen rule is and how we can use this for novelty detection. The details

of the Kohonen rule can also be found in [HaDe96].
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The Kohonen ruLe

The Kohonen rule is an algorithm that can be applied to a certain type of neural net-

work. This algorithm allows unsupervised learning, meaning that there are no targets for

corresponding inputs. The rule gives the network the capability to learn associations be-

tween data that are similar. After learning, the network will be able to perform some tasks

such as pattern recognition [HaDe96]. The following equation expresses the Kohonen rule:

iW ( t ) = iW ( t - 1) + 1'\ (P( t) - jW ( t - I )) (60)

where jW is the ,,;til cluster center", p is the input vector, t is the iteration number, and 11

is the learning rate. Only the cluster center that is closest to the input vector is updated.

We will first initialize our cluster centers by randomly selecting them from our in-

put vectors, or by setting them all to zero. When an input vector p(t) is closest to the /"

cluster center, the learning, Equation (60), occurs by moving the /" cluster center toward

the input vector. Figure 54 demonstrates how a cluster center learns on an input vector. We

can see that the cluster center moves along a line between the old cluster center and the in-

rut vector.
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Figure 54 Graphical Representation of the Kohonen Rule

Nonnally, the number of cluster centers is much less than the number of data points,

so that each cluster center will represent nearby data. Figure 55 shows data and four cluster
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how we can use this algorithm to speed up our minimum distance computation follows.

that each cluster center is located near the middle of each data group. The explanation of

centers obtained after using Equation (60) for 500 iterations. We can see from this figure
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Figure 55 Data and cluster centers
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How to use the Kohonen rule to speed up distance computation

We first assume that data points shown in Figure 55 are the two-dimensional N

training input vectors p for a function approximator. Assume that we have a testing vectur

T
p; = [-0.8 0.9J whose the minimum distance needs to be computed. We have to calcu-

late the distances between the testing vector and all of the traini ng vectors. We can see that

some training vectors are clearly far away from the testing vector, but we stilJ have to com-

pute all distances. Rather than cakulating distances to every training data point, we first

compute distances between the testing vector and the cluster centers, and then select the

minimum one. Assume cluster center jW is closest to the testing vector. We can now quick-

ly obtain the minimum distance dm from the testing vector to the entire training set by find-

ing the minimum distance from the vector to only the training data within the jW cluster

"
~~

"'"
"::1
~.
'I.:

~. ~.....
\' .

center. For example, for the testing vector p;
T

= [-0.8 0.9J ,we will obtain the minimum
....

distance by calculating distances from p; to the traini ng data located in the fourth quadrant.

From data shown in Figure 55, if the number of training data within each cluster center

(over each quadrant in this case) is about the same, the execution time will be four times

faster. Note that the decreased computation time is proportional to the number of cluster

centers.

In order to use this method, we need to choose the number of cluster centers. If the

number of cluster centers is small, there will be a large number of vectors in each cluster,

and the computation of minimum distance may take too much time. If the number of cluster
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centers is large. it may take too much time to compute the minimum distance to the cluster

centers. Also, the larger the number of cluster centers, the longer it may take to train the

cluster centers. A compromise must be made to choose the optimal number of clusters.

Summary

We introduced a new method for novelty detection that calculates the minimum dis-

tance from a testing vector to the vector in the training set. The minimum distance can be

used to reject novel points. This method was acceptable because the computation time was

not too high and the percentage of misclassified points was small. We then proposed a tech-

nique to reduce the percentage of misclassified data by incorporating network outputs in

the distance calculation.

We concluded from the analysis in this chapter that the estimated derivative was

useful for error estimation when interpolating but was not appropriate for novelty detection.

Finally, we proposed a way to speed up the computation time by applying the Kohonen rule

to the training data set before calculating the minimum distance.
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CHAPTER 7

MINIMUM DISTANCE AND OUTLIER DETECTION

Introduction

The intention of this chapter is to improve the efficiency of the minimum distance

algorithm in tenns of decreasing the percentage of misclassified data. In the previous chap-

ter, we proposed the minimum weighted distance to improve the efficiency; however, the

weighting factor with the highest correlation coefficient in general is unknown and varies

from data set to data set. We found that the outlier detection using principal components is

another approach that can reduce the percentage of misclassifications when we use it with

the minimum distance algorithm. In addition, the parameter in the outlier detection method

works well for many data sets.

This chapter will begin with the definition and derivation of principal components.

We will then discuss outliers and will explain how to distinguish them by employing prin-

cipal components. We then will describe how the outlier-detection method can be used for

novelty detection through the minimum distance algorithm. Finally, a computer simulation

employing a modified version of the minimum distance algorithm with outlier detection

will be illustrated.
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Principal component analysis

Principal component analysis was initially presented by [PearOl], and progressively

developed by Hotelling, whose papers can be found in [Hote133], and [Hote136]. It is a

well-known multivariate technique whose objective is to reduce the dimension of a data set,

while preserving as much information and variation as possible. Each data vector is trans-

formed to a principal component vector, in which the elements are uncorrelated, and or-

dered such that the first few principal components (PC) retain most of the variation in the

original data, The following subsection will describe how to transform data to prillcipal

componellts,

Definition and derivation

First let's define some notation that will be used in this chapter. Assume that x is a

q x I random vector with computable covariance matrix, The first step in principal com-

ponent analysis is to create a linear function of x, which is denoted u;x and is called the

first PC, that has the maximum variance, Note that u is a unit vector with q elements:

(61 )

The next step is to find another linear transformation u;x that is uncorrelated with the first

PC u;x and that maximizes the variance, It is called the second Pc. The process continues

so that, at the klh stage of transfonnation, a linear function of x having maximum variance

is uncorrelated with the previous k - 1 linear functions, In other words, the k
lJr

PC, uJx,
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is uncorrelated with the previously-transformed variables u;X, u;x, ...,u;_Ix. The vec-

T
tor Uk has the form

(62)

Assume that the transformation is recalculated until the /Jr PC is found. Now, one might

question how large r should go. The largest number that r can be is q, the dimension of

the vector x. However, it is hoped that r will be much less than q. It is hoped that x can

be closely approximated by a small number of principal components.

T III
We next want to show how to find the constant vectors uk to create the k Pc.

Suppose that a random vector x has covariance matrix L. Assume that the covariance ma-

trix is written as

Ell E I2 E)q

L
T E21 E22 E2q= E[(x-Jlx)(x-Jlx ) 1 =

Eql Eq2 EqG

(63)

'";i•
...~

where Eij indicates the covariance between the i
1h

and /" elements of x and can be calcu-

Jated as.

Eij = cov(x i ' x)

=E[ (x; - Jlx)(xj - Jlx) ]
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Now, for the first PC, we want to find the a linear function of the random vector that

has maximum variance, meaning that the transformation has to maximize the variance of

That means that to maximize the variance of u;xwe must maximize u;LUI' This is a con-

[
T T TTl= E (Ulx-Ulllx)(UIX-Ulllx)

T T= E[u 1(x -Ilx )(x -llx) ud
T T

= u I E[(x-llx )(x-llx) ]u,

T= U 1LU 1

(65)

'.·::
:I·

strained maximization, since u must be a unit vector. The constraint can be written

T
'\) I'\) I = 1. Using the method of Lagrange multipliers, we then maximize

"

.'··
';

(66)
··

where A is a Lagrange multiplier. By differentiating Equation (66) with respect to U I and

setting it equal to zero, wt= obtain

:::
:

(67)

where I is a q x q identity matrix. From Equation (67),we can see that A is an eigenvalueq

of L, U I is the corresponding eigenvector, and the maximum value of Equation (65) be-

comes

(68)
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Therefore, A should be maximized for the first Pc. In other words, the transforma-

tion for the first PC is the eigenvector of the covariance matrix that corresponds to the larg-

est eigenvalue.

For the second PC, we need to find the linear function of x, U;x, that has maximum

variance; i.e. u;1:u2, and is uncorrelated with the first PC u;x. As with first PC, we need

to create a constraint u;u 2 = 1. However, in this case, the correlation between u;x and

u;x wi II be equal to zero.

[
T T TTl= E (u2X-u2Ilx)(UIX-UIJlx)

T T= E[u2(x-llx)(x-Jlx) u l ]

T T= u2Ef(x-Jlx)(x-llx) ]\)1

T= \)2I.u I

From Equation (67), the above equation leads to

Equation (70) becomes another constraint.

,
•-,:.
~ ..
' ..
: ..
i __

(69)
~ ....

:

-1-..·
:t:

~I
:1I-.
·~

(70)

Now, we have two constraints: the first is u;u 2 = I and the second is u;\)1 = o.

By using Lagrange multipliers, we then maximize the quantity:

(71 )

By differentiating the above equation with respect to \)2' and setting it equal to zero, it be-
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comes

(72)

After multiplying Equation (72) by u;, we obtain

(73)

The first two terms of the above equation are equal to zero from Equation (70), and the last

term is u;U 1 = I, making the value of ~ zero. We then conclude from Equation (72) that

L.u:! - AU 2 = 0

(L.- AIq)u2 = 0
(74)

The above equation is the same as Equation (67). A is the eigenvalue of the covariance ma-

trix and u 2 is the corresponding eigenvector.

Therefore, to maximize u~LU 2 = u~AIqu 2 = Au~u 2 = A, A shou Id be as large

as possible but not equal to A, . This is the second largest eigenvalue, A2 . If A2 equals AI

then U l = u 2 ' making the covariance u~U I not equal to zero. We can conclude thaI the

second PC can be computed by finding the second largest eigenvalue, and using the corre-

sponding eigenvector as our vector u 2 . Generally speaking, the k
1h

PC is u[x, where ur

is the eigenvector of the covariance matrix that corresponds the k
1h

largest eigenvalue, Ak ·

Thus far, we have described principal components and explained how to obtain

them. In the next section, we will describe outlier detection using principal components.

After explaining outlier identification, we will relate outlier deteotion to novelty detection.
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Outlier Detection using principal components

We will first define what we mean by outliers in a data set. We will demonstrate

with a two-dimensional ex.ample. Outliers are generally defined as observations that are in-

consistent with the remainder of the data. We would like to detect these outliers. Figure 56

illustrates a data set with outliers.

o

_~,L--0-=",':----:-0'="",0--<>'-="'--0-::,:-'--:---~o.z=---:o~.• --="o.o:----:o'="",,-----'

P.

Figure 56 A Data Set with Outliers

We can see that there are five observations that do not follow the majority's under-

lying correlation. Notice that the outliers are located far away from the densely-populated

area. However, no matter which ax.is, P I or P2' we consider, these outliers fall within the

points, thereby making it difficult to detect them.

Now, we will use principal components to detect such observations. After we com-

pute the covariance of the data set, find the eigenvalues and the corresponding eigenvec-

tors. We will then transform the data set in Figure 56 to the principal components, as shown

in Figure 57.
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Figure 57 A Transformed Data Set

Because the principal component analysis has decoupled the variables, we can now

detect those fi ve outliers by considering the second Pc. There are several ways to detect

outliers employing principal components, for example [GnKe72], [Hawk74], or [Hawk80].

However, we will use the method proposed in [Rao64] for our outlier detection. [Rao64]

suggested that the sum square of the last v pes can detect outliers:

q

(75)

k:q-v+l

where Zjk is the k'h PC of the /'1 observation. The value of v can be found by experiment.

We have found that one value will be acceptable for different data sets. If the value ~ of

any data is high, we will pinpoint that data as an outlier. As shown in Figure 57, five obser-

vations have a ~ value (with v = I), greater than any other data points.
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We have described the idea of an outlier and have introduced a technique to detect

outliers using principal components. In the next section, we will describe a problem that

occurs if we use only outlier identification to solve novelty detection.

The problem of outlier detection for novelty detection

One might think that outlier detection could be used as a method for novelty detec-

tion. However. there is one problem. The training data used for function approximator can

be more scattered than testing data. Therefore, if we utilize outlier detection, the ~ value

for training data are sometimes higher than that for testing data, thereby making the algo-

rithm useless for novelty detection. Figure 58 shows the value of ~ for the last PC of the

638-training data points (shown in Figure 19) and Figure 59 shows the ~ value for the 437-

testing data points (shown in Figure 22).
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Figure 58 The value of ~ for the last PC of the training data
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Figure 59 The value ~ for the last PC of the testing data

From the above figures, the value ~ for the training data can be much higher than

for the testing data, although the errors for the training data are much smaller than that for

'I,".:-

the testing data. Note that this result is also true for the composite data set we will describe
'.

in the next section.

.
'.

Even though principal components could not be directly applied to novelty detec-

tion, we found that we can use it as a constraint for the minimum distance algorithm. We

will describe this modified algorithm in the next section.
'..

Minimum distance of the composite data set

Recall from Chapter 6 that we developed a novelty detector employing the mini-

mum distance algorithm. We wanted to improve the performance of the novelty detector

(reducing the percentage of misclassifications) by incorporating the effect of the network

outputs and targets. We began from the error equation, and finally obtained the minimum

weighted distance. However, one drawback of the minimum weighted distance is that the
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weighting factor a producing the highest perfonnance varies from data set to data set. That

means that the a giving the lowest percentage of misclassifications in one data set may per-

form poorly on another data set. Therefore, the purpose of this section is to use the mini-

mum distance without the weighting factor.

In Chapter 4 and Chapter 5, we found that we can include the effect of network out-

puts by adding them to the input vectors. In other words, for any training vector, the com-

posite vector for the /h observation will be rj = [Pj t~ T. And for any testing vector, we

use the network output in place of the target. The augmented vector for the k'll observation

will be r~ = [p~ aJ T. This means that we need to propagate our testing input p~ through

the function approximator to get a~ before creating the augmented testing vector. Then, we

will use these composite vectors to compute the minimum distance for each new testing

vector r~. Therefore, if a testing input is very close to one of the training inputs but pro-

duces an eccentric output, the minimum distance for the composite testing vector will be

larger.

We can use minimum distance calculations on the augmented data vectors to per-

form novelty detection. However, we found that we can improve the efficiency of this

method by combining it with the method of outlier identification. The following section

will illustrate how outlier detection can improve the performance of the novelty detection.
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Application to novelty detection

Recall that the objective of this thesis is to identify data on which the function ap-

proximator may perform poorly, The percentage of misclassification is the parameter we

will use to compare the performance of each novelty detector. The goal of this chapter is to

combine the minimum distance algorithm for the composite data with outlier detection. The

minimum distance algorithm is already described in Chapter 6. Furthermore. we also ex-

plained in the last section how we obtain the composite data set for training and testing data

that will be used to compute the minimum distance, In this section, we will explain how the

outlier detection can reduce the percentage of misclassified points when using the mini-

mum distance algorithm on the composite data.

We will start this section by computing the minimum distance of the augmented

testing data for the simple example that we used in previous chapters. Figure 60 is a scatter

plot relating the minimum distance between the 638-training vectors and the 437-testing

vectors to the error from the function approximation.
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Figure 60 Approximation Error and minimum distance
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We can see from Figure 60 that the correlation coefficient R between the network

error and the minimum distance is higher than the R value in the previous chapter (compare

with Figure 49). However, we can see that there are also some large-error points having the

same minimum distance as small-error points.

As in previous chapters, we will use the regression line to determine the threshold

for novelty detection. In this case, the regression line is

dm = 1.04 X error + 0.0598 (76)

The threshold required to reject errors greater than 0.\5 is 0.2158. If we reject data with

minimum distance greater than 0.2158, the percentage of misclassified points is 8.70%.

Most of the misclassifications (around 8.47% out of 8.70%) were from type I errors.

Although the percentage of misclassifications using this method (computing the

minimum distance for the augmented data set) was acceptable, we found that the percent-

age of misclassified points could be lower if we utilize outlier detection. Figure 61 shows

the sum-square values of the last two PC (~, using v = 2 in Equation (75», versus the

minimum distances. The figure also indicates points where the network errors are less than

0.15. (We will explain why we chose v = 2 in the following example.)
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From th ab v ti ure, we can see that data with, mall minim m di ta ce (less th n

O. ) have, mall error'. the minimum distance is hetw en 0.2 a d .3, the Sl all- ITor

data re lore likely t a S I ' than 0 . On th th r hand, the large-elTor pits

tend d traIl wher tl e s 1-, qu e alue is large. linin UJ 1 di 'ta ce

as gr ater than O. , the ot distinguish betw n large a d small- IT r oint. This

reo ult i understandable becau the larger th minimum distanc ,the lore likely larg er-

rors can be found. in th t stin point is far from a sm II-error data point trai ing dat ).

B sides,atacertain mi i umdistance,thelar er impli sthedatapointlendst befar

away from the den,'el -populated ar a 0 cupi d by the trainina data. Th refor , w uld

Iik to a c pt th s data ha in small minimum distan (close to trai ing data) a d small

S alue (l ing in th hUll -populated area). On th other ha d, e will eli card a y ector

havi ery larg minimLl1 distance or any data creatin s me hat large minimum dis-
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tance but very large ~ (lying in regions far from the densely-populated area of the training

data).

We decided that the rejection region should be T{ < dm $ ~ and ~ > r or

dm > r;. Recall from Equation (76) that we selected the threshold based on the regression

line. The notation -I denotes such threshold. Then, r: is the minimum distance around

75% of rt, while r; is the minimum distance around 125% of yn. In other words,

r is the average value of ~ between the small-error points and the large-error points with-

in the range of t{ < dm ::; r; .In other words,

I1+J1
2

(77)

(78)

,
a
•

~ :
•

where Dis the average ~ value of the small-error points between the range r: < dill ::; r;..

Similarly. J1 is the average ~ value for the large-error points within the range of

r: < d
m

$ r;.. Note again that the small-error point is defined as the vector generating ap-

proximation error less than 0.15.

With the threshold we created. it means that any data generating minimum distance

less than t{. and also any data point making minimum distance within the range (r:. t; 1

with ~ less than f. will be accepted. From the rejection region w~ described above, for
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any composite training data, although they can have very high ~ (greater than r), their

minimum distances are small so they are not detected as novel data.

In this section, we explained how to incorporate the method of outlier identification

with the minimum distance algorithm. The threshold for discarding abnormalities was in-

troduced as well. We will demonstrate the ability of this algorithm in the following exam-

pIe.

Simulation of the simple example

This section will illustrate the ability of the minimum distance algorithm with out-

Iier detection constraints. First, we will transform the three-dimensional training data to

principal components. The unbiased estimate for the covariance matrix is

[

0.5182 -0.000 I -0.0008~
L = -0.0001 0.1824 -0.0012

-0.0008 -0.00 12 0.1020

The eigenvalues and eigenvectors of the covariance matrix are

AI = 0.5182, u~ = [1.0000 -0.0003 -0.0019J

A2= 0.1824, U; = [0.0003 0.9999 -0.0149J

A) = 0.1020,u; = [-0.0019 -0.0149 -0.9999J

(79)

(80)

We decide to use the last two pes to compute ~ (i.e. set v = 2 in Equation (75))

since it has the smallest percentage of misclassified points. However, we found that this

value worked best for different data sets as well. After setting the v value, u; and u;
shown in Equation (80) will be used to transfonn the training data to the second and third
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T T
PCs. We calculate Zi2 = u2r j and Zi3 = u 3r j for all i in the training data. We are now

ready to compute ~ for the i'h training data:

2 2
~i = Zi3 + Zi2

Figure 62 plots ~ for the composite training data.
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Figure 62 The value ~ from the composite training data set

(81)

I,
•
•·,

It
,I

!'

For the testing data, we first need to propagate the input vector p; through the func-

tion approximator to get the network output a;. Then, we compute the second PC

Z;2 = u;r; and the third PC Z;3 = u;r; to obtain

Figure 63 illustrates the value ~: for the 437 testing data points.
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Figure 63 The value ~{ from the composite testing data set

We can see from the figures that ~{ values for the testing data were higher than ~

value for some training data. This phenomenon does not generally happen, e pecially when

the network outputs for the testing data are bounded within the normalization range, which

is [-1,1] . The data we use in Chapter 8 is another example showing that although the SUITI-

square value ~I of augmented testing data could be lower than that of composite training

data, the testing data created large errors. As we explained, this is the reason why we cannot

use only outlier detection for novelty detection. The next procedure is to find the minimum

distance of the augmented testing vectors. The minimum distance for the 437 testing vec-

tors is shown in Figure 00.

After calculating both the minimum distance and ~ for the composite testing data,

we plotted the values in Figure 61. Based on this figure and Equation (76), we found that

the minimum distance yd was 0.2158. Then, T{ = 0.7Syd = 0.16]8 and
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r; = 1.25 -t = 0.2697 . Within the range of (0.1618, 0.2697} , we found that the average

~ value for small-error points is 0.6702, while the average ~ value for large-error points is

1.3414. r is then equal to 0.6702 ; 1.3414 = 1.0058. (Notice that within the same range

of minimum distance, small-error points have on-average smaller sum-square value than

large-error data. This can help us distinguish small-error points and large error poinls with

in the range of minimum distance.)

From the values we obtained, it means that any data generating minimum distance

less than 0.1618 will be accepted. In addition, we will accept any data having minimum dis

tance in the range (0.1618,0.2697] , as long as ~ is less than 1.0058. In other words, the

rejection region is

(0.1618 < dm S; 0.2697 and ~' > 1.(058) or (dm > 0.2697) (83)

Equation (83) means that any data generating minimum distance within the range

(0.1618, 0.2697] with ~ greater than 1.0058, and any data with mi nimum distance larger

than 0.2697 will be considered novel. Figure 64 demonstrates the network errors, and novel

data identified by this algorithm are flagged with x.
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Figure 64 Novelty Detection

The percentage of misclassifications for this algorithm is 8.24%. All of the misclas-

sifications were from the small-error points in the rejection region (type I errors).

There exists another rejection region that makes fewer misclassifications than the

number we showed. It will depend on the application as to what types of misc1assifications

we can tolerate more. For example, we can increase the thre holds T{, ~ or r to obtain

less type I error.

From the simulation outcomes, we can see that the percentage of misc1assifications

is somewhat low. Also, the execution time for this method was acceptable. Although this

algorithm seems to have very promising results, the main drawback is a complicated thresh-

old for discarding abnormalities.

Summary

The purpose of this chapter was to use a minimum distance algorithm that includes

network outputs but does not include a weighting factor. We saw in the last chapter that the

weighting factor can vary from one data set to another. We found that a principal compo-
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nent method for outlier detection could improve the efficiency of the minimum distance al

gorithm. We found that, at a certain value of minimum distance, the principal component

statistic could differentiate between large and small errors. This phenomenon could reduce

the percentage of misclassified data. The simulation results showed that the percentage of

misclassified points for the new algorithm was acceptable. The computation time for this

algorithm is comparable to the minimum distance algorithm.

The new algorithm has one parameter that must be set. Although we originally set

it heuristically, it turned out to work for many different data sets. One drawback of the

method is that it requires a somewhat complicated thresholding mechanism.
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CHAPTER 8

SIMULATION RESULTS

Introduction

We will dedicate this chapter to demonstrating the performance of the various nov

elty-detection algorithms we described in the previous chapters on two real world applica

tions. First, we will describe the data sets (e.g. training data, and two sets of testing data).

After that, we will discuss the outcomes from the following methods:

1. Neural tree

2. Gaussian kernel estimator and joint density

3. Minimum distance and the minimum weighted computation

4. Minimum distance with outlier detection using principal components analysis

We chose all the methods we discussed in this thesis except the autoassociative

multilayer perceptrons. The time required for training the autoassociative perceptrons was

too long for our high dimensional data.

After showing the simulation results for these methods, we wi II summarize the per

formance of each algorithm in terms of the percentage ofmisclassified points. including the

two types of misclassifications made by the novelty detectors.
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Function approximation I

In this section, we will briefly describe the function we are going to estimate, and

some details of training data and testing data for the first data set.

Formation resistivity is a key parameter for estimating the presence of oil or gas.

Signal transmitters (coils) energized by alternating current (AC) at frequencies ranging

from 8-40 kHz create an oscillating magnetic field. This magnetic signal causes induced

currents, which are approximately proportional to the conductivity (reciprocal to resistivi

ty), of the earth formation. The currents then contribute to induced voltages at receiver

coils. We will process the received voltages to obtain the values of formation resistivity.

Generally speaking, the activated voltage is a non-linear function of the formation resistiv

ity.

Since the parameter we are interested in is the formation resistivity, we use a neural

network to model the inverse of the non-linear function. In other words, neural networks

(function approximators) arc used to convert the received voltage to the formation resistiv

ity. That means that the input to the function approximator is the voltage, and the outpUI

of the function approximator is the formation resistivity. We have several neural networks

for different receiver coils, but we will discuss only one coil, which is Coil_Ie.

At CoiCLc, we collected 19,558 data points, which consisted of the induced volt

ages (inputs) and the resistivity values (targets). We used most of them (L 3, 175 points) to

train our neural network. The rest of the collected data points were used as the validation

data set during the training process. This error from the validation data set was monitored
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during training so that we could stop training the neural network if the error from this data

set increased.

For Coil_Ie, the structure of the neural network was 51 - 20 - 10 - I, meaning that

we used the induced voltages from 51 different depths to predict the resistivity at one cen

tral depth. After we completed training, the function approximator could correctly estimate

the resistivity for training data and validation data. The maximum error for the network out

put was 0.232. (Note that this is an error on data that has been normalized to the range

[-1.1] .) There were 0.29% of the total training data that generated errors larger than 0.15.

We also have nine testing sets, each containing 581 data points. However, we will

demonstrate the results of only six test sets (set aI, set 02, set 06, set 08, set] 0, and set 11).

We will divide these testing data into two groups. The first test group consists of set aI, set

06, and set 10, while the remaining sets are placed in the second test group. For the first test

group, we will assume that we know the error from the function approximator; however,

the errors from the second test group are presumed unknown. We will find the threshold to

reject abnormalities from the first test group, and will use the second test group to compute

the percentage of misclassifications based on the threshold. The threshold we create should

apply to arbitrary data sets. We will use the percentage of misclassifications to compare the

performance of the various novelty detectors. Figure 65 shows some example plots of volt

age and resistivity utilized for training our neural network.
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The plot. demonstrating voltage and re istivity used for testing the neural n t ark

are shown in Figur 66.
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First, we need to specify the number of cells for the tree. A 5,OOO-cell tree was ini-

tialized to partition the fifty-one dimensional space. Then we applied the 13,175 training

vectors, using the same learning rate we used in Chapter 3. After limiting the size of every

cell with infinite volume, we applied our testing data to the trained tree to find abnormali-

ties. The algorithm to define novel data was the same as the example in Chapter 3 (data are

identified as novel if they are outside of the cell boundaries). Although we do not need to

separate testing data into two groups for this algorithm, since the threshold to identify ab-

normalities is defined by the algorithm, we will show the number of misclassifications of

the two test sets separately. Figure 67 illustrates the error from the function approximator

for the first test set, and the abnormalities identified by the 5,OOO-cell tree.
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Figure 67 Error and abnormalities: The first test group (Neural Tree)
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There are two types of misclassifications made by a novelty detector. For type I

misclassification, data points generating small approx.imation error are flagged a novel da

ta. For type II misclassification, data points generating large approx.imation error are

flagged as nonnal. (Note again that approximation errors greater than 0.15 will be consid

ered large error for this thesis.)

Recall that the neural tree algorithm flags data as novel when they are out of the cell

boundaries. From Figure 67, we can see that most of the data points were identified as novel

data for the function approximator. The percentage of misclassifications was 67,87%. All

ofthe misclassifications were from small-error points that were flagged as novel data (type

I error). This number is ex.tremely high (similar to the simple example shown in Chapler

3). This may be due to the fact that flagged data are close to the training inputs but they are

out of the cell boundaries. We found that around 93.8% of the 5,000 cells are limited by the

training data, compared with 31 % of the 200 cells in the example in Chapter 3. With a very

high percentage of limited cells, testing data close to training data (which are used to limit

cells) are more likely to be out of the cell boundaries. We expect that the result for the sec

ond group will not be much different.

Next, we applied the second test group to the tree. Figure 68 shows the network er

rors for the second test group and the abnormalities.
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Figure 68 Error and abnormalities: The second test group (Neural Tree)

We can see from Figure 68 that most data were marked as novel points. The per-

centage of misclassifications to this case was 67.01 %, which is about the same as the firsl

test set. All of the misclassifications also were from type I error. This result is similar to

what we expected from the first group.

When we applied the training data to the novelty detector, we found that the per-

centage of misclassifications was equal to 0.29%. All of the misclassifications were from

the large-error points flagged as normal data (type II error). This is because all of the train-

ing data were inside the 5,000 cells.

In this section, we used the neural tree algorithm to identify abnormalities for the

function approximator. In the next section, the Gaussian kernel estimator will be utilized as

our novelty detector for the function approximator.
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The Gaussian kernel estimator (GKE)

In this section, we will use the Gaussian kernel estimator from Chapter 4 to estimate

the density of inputs to the function approximator, and to estimate the joint density between

the inputs and the target outputs. The estimated density will be used to identify novel data

for the function approximator.

The estimated density of input

We will use the Gaussian kernel estimator to estimate the density function of the

input to the function approximator. If the estimated density is low for a new input, we will

reject that input as novel. The details of this algorithm were explained in Chapter 4.

For the smoothing parameter matrix, we will use the same approach as we used in

Chapter 4 - the average distance to the ten-nearest neighbors. We found that the smooth-

ing parameter matrix in this case will be:

Lp =

0.0698
2

o

o

o
"0.0698~

o

o
o

2
... 0.0698

(84)

The matrix in Equation (84) is 51 x 51 since the dimension of the input to the function ap-

proximator is 51. After using Equation (33), we obtained the estimated density for the first

test set. Figure 69 plots the estimated density versus the error from the function approxima-

tor for the first test group.
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Figure 69 Estimated density and approximation error: The first test group

To create the threshold for discarding novel data, we consider the regression line

shown in Figure 69. The equation for that line is

. 36 36
densIty = -6.1756 x 10 xerror+1.1663xlO (85)

From Equation (85), the density that corresponds to an error of 0.15 is 2.3993 x 10
35

. This

means that, on average for the first test group, data points having a density of

2.3993 x 10
35

generate an error for the function approximator of 0.15. Therefore, we wi 11

use this value as the threshold to reject novel data. In other words, any data generating an

estimated density less than the threshold will be considered as novel. The error from the

function approximator and the novelties for the first test group identified by the Gaussian

kernel estimator are shown in Figure 70.
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Figure 70 Error and abnormalities: The first test group (GKE: input)

We found that the percentage of misclassifications was 62.25%. About 61.79% out

of 62.25% were from type I errors.

Next, the second test group will be applied to the novelty detector with the specified

threshold in order to test whether the novelty detector can identify abnormalities from an-

other testing region. Figure 71 illustrates the error from the function approximator, and the

data points detected as novel data for the second test group.
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Figure 71 Error and abnormalities: The second test group (GKE: input)

We can see that the algorithm not only identified abnormalities, but small-error

points as well. The percentage of misclassifications in this second test set was 51.58%. The

majority of these misdassified points (around 50.03% out of 5 I.58%) were type I errors.

When the training data were applied to the novelty detector using the Gaus ian ker-

nel estimator with the threshold we described above, the percentage of misclassified points

was equal to 34.73%. Most of the misclassifications (around 34.64% out of 34.73%) were

from type I errors.

The misclassification percentages for the two test groups are fairly high but less

than that from the neural tree algorithm. However, the percentage of misclassifications was

very high in the training data set. This might be due to the fact that the smoothing parameter

matrix is not well-fitted and the threshold we set up from the first test group is too high for
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the training data. We already discussed in Chapter 4 that this method tends to have many

type I misclassification.

In this section, we used the Gaussian kernel estimator as the novelty detector for the

function approximator. We found that the percentage of misclassifications was reduced

when compared with the neural tree algorithm. In the next section, we will incorporate the

effect of the network output to compute the estimated joint density.

The estimated input-output density

We assume in this case that our smoothing parameter matrix is the identity matrix.

Each element of the input is uncorrelated. The diagonal elements are calculated by usi ng

the average distance to the ten nearest neighbors. The smoothing parameter (52 x 52) was

0.0771
2

0

o 0.0771
2

o
o

o o 0.0771 2

(86)

The following figures demonstrate the simulation results by showing the relationship be-

tween the error from the function approximator and the estimated density.
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Figure 72 Estimated density and approximation error: The first test group

To reject novel data, the regression line will be used. The regression line in this case

. 35 34
density = -2.4606 x 10 xerror+4.4895 x 10 (87)

After substituting 0.15 into the error term in Equation (87), the corresponding density is

7.9865 X 10
33

. That means that, based on the first test group, data points generating an er-

ror of 0.15 have estimated joint density around 7.9865 x 10
33

. Therefore, 7.9865 x 10
33

will be used as the threshold to reject abnormal data. Therefore, any composite data gener-

ating joint density lower than this threshold wi 11 be considered novel. Figure 73 illustrates

the network errors and novel data are flagged with an x .
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Figure 73 Error and abnormalities: The first test group (GKE: input and output)

The percentage of misclassifications in this case was 60.01 %. The majority of the

misclassifications (around 59.44% out of 60.01 %) were type I errors, and the rest of the

misc1assifications was type II errors.

The second test group is now applied to the novelty detector with the specified

threshold. Figure 74 illustrates the network errors and flags novel data.
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Figure 74 Error and abnormalities: The second test group (OKE: input and output)

The percentage of misclassified points for the second test group was 50.14%.

Around 49.22% out of 50.14% were from type I errors.

If we applied the training data to the novelty detector. the percentage of misclassi-

fications was equal to 35.39%. We found that around 35.31 % out of 35.39% were the type

I errors. The rest of the misclassified data points were type II error.

We can see from the results that the joint density (between input and output) pro-

vided lower misclassifications for both the first and second test groups. However. for the

training data, the percentage of miscJassified points using the joint density (between inputs

and output) is larger than the percentage of misclassifications using the density of inputs.

That means that some training data have very low density compared with the joint density

of some novel data. These low-joint-density points in the training data are the points in re-
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gions where the density of target outputs and inputs are low. We also experienced this phe

nomenon when illustrating the simulation results in Chapter 4 (i.e. simulation #2)

In this section, we showed the simulation results for novelty detection using the

Gaussian kernel estimator method to estimate the joint density. The results illustrated that

the joint density between inputs and outputs tended to distinguish novel data clearer than

the estimated density of the input alone. In other words, the percentage of misclassifications

for the joint density is lower than that for the estimated density of inputs. In the next section,

we will test the minimum distance algorithm for novelty detection.

Minimum distance algorithm

This section will illustrate the ability of minimum distance and minimum weighted

distance as the novelty detectors for the function approximator. Refer to Chapter 6 for the

details of these two methods.

The minimum distance of input

The minimum distance algorithm for novelty detection will be shown in this sec

tion. We first compute the minimum distance from the testing inputs to the training inputs.

Figure 75 presents the correlation between the error from the function approximator and the

minimum distance on the first test group.
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Figure 75 Minimum distance and approximation error: The first test group

From Figure 75, we found that the regression line that represented the relationship

between the minimum distances and the errors for the first test group was

dm = 0.276xerror+0.108 (88)

After substituting 0.15 in the error term, the corresponding minimum distance is 0.1494.

We will use this value as the threshold to identify novel data. Figure 76 illu trates the errors

from the function approximator, and novel data are flagged with x.
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Figure 76 Error and abnormalities: The first test group (Minimum distance)

We can see that there were many points detected as novel data though they gener-

ated small errors. The percentage of misclassified points was 34.31 %. The majority of the

misclassifications (around 28.86%) were from type I errors.

Next, we applied the second test group to the novelty detector. Figure 77 shows the

network error and the abnormalities identified by minimum distance with threshold of

0.1494.
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Figure 77 Error and abnormalities: The second test group (Minimum distance)

Most large-error points in this test set were identified. However, we missed many

data points with small errors (as in the first test group). The percentage ofmisclassifications

in this data set was about the same (35.23%). Around 34.65% out of35.23% were from type

I errors.

If we applied the training data to the novelty detector using the minimum distance

algorithm with the threshold obtained above, the percentage of misclassifications was equal

to 0.29%. All of the misclassifications were from type I errors. This is due to the fact that

any training data will have zero minimum distance.

In this section, the results of novelty detection using the minimum distance algo-

rithm were demonstrated. The percentage of misclassifications was about 34-35%. In the

next section, we will test the minimum weighted distance for novelty detection.
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The minimum weighted distance

In this section, we will utilize the minimum weighted distance for novelty detection.

Refer to Chapter 6 for the detai Is of this method. We will start this section by demonstrating

the effect of the weighting factor on the correlation coefficient for the first test group. In

other words, the inputs of the first test group were applied to the function approximator to

get the network outputs. After that, the minimum weighted distances in the first test set

were calculated at a specific weighting factor. The correlation coefficient between the er-

rors from the function approximator and the minimum weighted distances (for the first test

group) are plotted in Figure 78 as we varied the value of the weighting factor.
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Figure 78 The weighting factor and the correlation coefficient: The first test group

For small values at weighting factor, the correlation coefficient R between error

and the minimum weighted distance increases with the increased weighting factor. Further-

more, when the weighting factor is 0.5 the correlation coefficient is highest. Therefore, we

decided to use this weighting factor for novelty detection. Figure 79 illustrates the error of
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the function approximator and the minimum weighted distance of the three testing sets (the

first test group) at a weighting factor of 0.5.
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Figure 79 Minimum weighted distance and approximation error: The first test group

From Figure 79, we will use the regression line to create the threshold for discarding

novel data. The regression line for the first test group was

d~5 = 0.51 xerror+0.122 (89)

By substituting 0.15 into the error term, we get the minimum weighted distance 0.1985.

That means that, at the weighting factor 0.5, data points generating the error 0.15 have min-

imum weighted distance 0.1985. Therefore, in order to identify data points with errors larg-

er than 0.15, the minimum weighted distance 0.1985 will be used as the threshold. Figure

80 shows the network errors and the identified abnormalities.
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Figure 80 Error and abnormalities: The first test group (Minimum weighted distance)

We found that the percentage ofmisclassifications was 19.40%. The major misclas-

sifications 07.10% out of 19.40%) were from type I errors. The rest (2.30%) were from

type II errors.

Next, we will apply the second test group to the function approximator to get the

network outputs. The minimum weighted distance at the weighting factor 0.5 for this data

set will be then computed. These minimum weighted distances for this test group will be

filtered by using the threshold we created from the first test group. Any data points gener-

ating minimum weighted distance larger than the threshold will be discarded as abnormal-

ities. Figure 81 demonstrates the error from the function approxirnator for the second test

group. and the detected abnormalities are flagged with x.
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Figure 81 Error and abnormalities: The second test group (Minimum weighted distance)

The percentage of misclassifications in this case was equal to 30.36%. The majority

of the misclassified points (around 29.78% out of 30.36%) were from type I errors. We can

see that the percentage of misclassifications was reduced by a certain amount for both leSI

sets, compared with the percentage of misclassifications from the minimum distance algo-

rithm.

If we applied the training data (inputs to the function approximator) and the corre-

sponding network outputs to the novelty detector using the minimum weighted distance,

the percentage of misclassifications was equal to 0.29%. AI1 of the misclassifications were

from the type II errors.

In this section, we used the minimum distance and the minimum weighted distance

algorithm for novelty detection. The minimum weighted distance algorithm turned out
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slightly fewer misclassifications than the minimum distance method. In the next section,

we will show the result of novelty detection using minimum distance with outlier identifi-

cation.

Minimum distance with outlier detection

This section will present the simulation results for the minimum distance with out

lier detection algorithm for novelty detection. Chapter 7 ex.plained the details of this meth

od.

First, we need to create composite training data by combining the targets and the

inputs to the function approximator. These composite training data will be used to compute

the minimum distance to the composite testing data, which combines between the network

outputs and inputs.

Nex.t, we will compute the covariance matrix for the composite training data. The

eigenvectors of this covariance matrix will be used to transform the composite training data

to principal components. Then, the transformed data set (i.e. principal components) will be

utilized to compute the sum-square value in the process of outlier identification. The v val

ue, which determines which principal components we will use to compute the sum-square

value, was selected by looking at the ordered variance of the transformed data set. Figure

82 shows the ordered variance of each principal component of the composite training data

in Coil_Ie.
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Figure 82 Variance of principal components: Training data

We will utilize the last PC to the PC that first gives variance equal to or above 0.02

for calculating the sum-square values. In this case, the variance of the third PC is 0.0302.

Therefore, we will use the last PC to the third PC for outlier detection. Note that this value

produced the fewest misclassifications for every coil (not only for Coil_l c). By using this

criterion, the v value shown in Equation (75) for Coil_Ie was set to 50. After computing

the sum-square values from the third PC to the 52/
h

PC, the highest sum-square value for

the composite training data was 0.6574.

We need to transform the augmented testing data to the principal components via

the eigenvectors and then compute the sum-square value of the last 50 PCs. Figure 83 plots

the minimum distance between the composite training data and the augmented testing data

(the first test group) versus the sum-square values. The data points in the first test group

having small error (i.e. less than O. J5) are indicated by an x.
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Figure 84 Minimum distance and approximation error: The first test group

The regression line is

dm = 0.487 x error+ 0.1149 (90)

The minimum distance corresponding to an approximation error of 0.15, Td' is 0.188.

Next, for minimum distances between 0.75 x 0.188 = 0.141 and 1.25 x 0.188 = 0.235,

the sum-square value will be considered. Within this range, the average of the sum-square

value for the small-error points, r1, is 0.0684, while that for the large-error points (i.e. ap-

proximation error greater than 0.15), I1., is 0.1946. Therefore, any data yielding minimum

distance between 0.141 and 0.235 and producing the sum-square value greater than

0.0684 + 0.1946
2 = 0.1315 will be considered novel. In addition, data generating mini-

mum distance larger than 0.235 is also presumed novel. In other words, the rejection region

for discarding novel data is

(0.141 < dill $ 0.235 and ~ > 0.1315) or (dm > 0.235)
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Figure 85 plots the network error for the first test group. The abnormalities are

flagged as x.

u'

I-..

,. _ _ ClCI--

! e·
Ji.

---

I ,
, '.,1'

"I
u~

! ..'

'I

Figure 85 Error and abnormalities: The first test group (Minimum distance and peA)

Most large-error points in set Oland set 10 were identified as novel; however, in set

06 and set 10, many small-error points were detected as novel. The percentage of misclas-

sifications was 10.44%. The majority of misclassifications (9.46% out of 10.44%) were

from type 1.

Next, we will apply the second test set to the novelty detector to verify that the re-

jcction region works. Figure 86 demonstrates the network error for the second test group,

The abnormalities identified by the novelty detector are indicated by an x.
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From Figure 86, we can see that some abnormalities in set 08 and all novel data in

set 11 were identified, although some small-error points in every set were also detected.

The total percentage of misclassifications for this test group was 15.37%. Most of misclas-

sifications (14.91 % out of 15.37%) were from type I errors.

The percentage of misclassified data points was equal to 0.22% if we applied the

training data to the novelty detector. Around 0.19% (out of 0.22%) were from type 1I errors.

Note that all of the data detected as novel for the training data set were from the rejection

region of (0.141 < dm $ 0.235 and ~ > 0.1315) .

From these results, this method provided the lowest percentage of misclassifica-

tions for the first test group and for the training data relative to another method.

In the next section, we will summarize the results for all of the algorithms.
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Result summary

Table 2 summarizes the results from the first test group for all of the novelty detec-

tors.

Table 2 Percentage of misclassifications: The first test group

Algorithm
Percentage of misclassifications

Type I Type II Total

Neural tree 67.87 0 67.87

Density of input 61.79 0.46 62.25

Density of input and 59.44 0.57 60.01
output

Minimum distance 28.86
I

5.45 34.31

Minimum weighted 17.10 2.30 19.40
distance

Minimum distance 9.46 0.98 10.44
and outlier detection

Table 3 summarizes the results for the second test group.

Table 3 Percentage of misclassifications: The second test group

Algorithm
Percentage of misclassifications

Type I Type II Total

Neural tree 67.01 0 67.01

Density of input 50.03 1.55 51.58

Density of input and
49.22 0.92 50.14

output

Minimum distance 34.65 0.58 35.23

Minimum weighted
29.78 0.58 30.36

distance

Minimum distance
14.91 0.46 15.37

and outlier detection

We can see that the neural tree algorithm turned out the highest percentage of mis-

classifications for both test groups. The minimum distance of the composite data with the
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outlier detection provided the minimum percentage of misclassification for both the first

and the second test groups. The Gaussian kernel estimators tended to reject more small-er-

ror points than any other method, excluding the neural tree. The minimum weighted dis-

lance had fewer misclassifications than the minimum distance algorithm for both test

groups.

Table 4 shows the percentage of misclassifications when we applied training data

to the novelty detectors. Note again that the percentage of large-error points (i.e. error

greater than 0.15) in the training data set was 0.29%.

Table 4 Percentage of misclassifications: Training data

Algorithm
Percentage of misclassifications

Type I Type II Total

Neural tree 0 0.29 0.29

Density of input 34.64 0.09 34.73

Density of input and
35.31 0.08 35.39

output
Minimum distance 0 0.29 0.29
Minimum weighted

0 0.29 0.29
distance

Minimum distance
0.03 0.19 0.22

and outlier detection

The joint dens~ty using the Gaussian kernel estimator had the highest percentage of

misclassifications in the training data set. The majority of misclassified points were from

the small-error data flagged as novel points (Type I). However, it gave the lowest percent-

age of misclassified points for the large-error data (i .e. error greater than 0.15). The mini-

mum distance with outlier detection had the lowest percentage of misclassifications for the

training data set.
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In the next section, we will utilize another application to test the performance of the

various novelty detectors.

Function approximation II

We will begin this section by briefly describing the data set in this part, followed by

the simulation results of each novelty detector.

For this example, we will create a neural network to model a diesel engine. The in

puts to the function approximator are comprised of speed and fueling, while the output is

torque. We chose to have a two-layer network, with 20 neurons in the first layer. The output

layer must have one neuron. In other words, our neural network structure is 2 - 20 - I .

We collected 1,049 observations from speed, fueling, and torque. The observations

were divided into two groups - 599 samples used for training, and 450 samples used for

validation. The network was trained using the Bayesian regularization algorithm. The error

from the validation set monitored so that we could stop training if the error increased. Note

that we normalized our data within the range [-I, I).

After training the network, we found that the function approximator was generally

accurate. However. 12.69% ofthe training data still yield large approx imation error. Figure

87 shows the locations of the training inputs, and the red points represent data producing

large approximation error.
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Figure 91 Error and abnormalities: The second test group (Neural Tree)

In this test set, there are 35.56% misclassifications. Around 16% are type I error,

and 19.56% are type II error. Although type I error increases by a certain amount from the

first test group, it is still less than type II error. We also found that the percentage of lim iteu

cells is only 12.5%. Therefore, when compared with the previous example, we are less

likely to find data points close to training data hut outside the boundaries, thereby reducing

the probability of existing type I misclassification.

Now, when we applied the training data to the novelty detector, there were 12.69%

misclassifications. All of the misclassifications are type II errors. This is because all of

these large approximation error points are within the cells (since they are training data).

In the next section, we will test the performance of the Gaussian kernel estimator.

The Gaussian kernel estimator (GKE)

In this section, we will use the Gaussian kernel estimator to estimate the input den-

sity, and to estimate the input-output density of the function approximator. The estimated

density will be used to identify novel data.
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The estimated density of input

For the smoothing parameter matrix, we will use the same approach that we used in

the previous example - the average distance to the ten-nearest neighbors. We found that

the smoothing parameter matrix in this case is:

L
p

= rO.0517
2

0 1
l 0 0.0517~

(92)

After using Equation (33), the estimated density for the first test group is obtained.

Figure 92 plots the estimated density versus the approximation error for the first test group.

R • ..0.425

o

20 0
o

I"
i 0I ,. 0

" •
o

o

...

-10O~-:OC:-.I---=.c:-.,---=Oc:-.. ---=Oc:-.• ---=.:':-.• ---=0:':-.• ---=.:':-.7--:'••
E_

Figure 92 Estimated density and approximation error: The first test group

Again, the figure indicates that, at the low density value, we are more likely to find

large-error points. We found that the regression line for this data set is

density = - 23.338 x error + 8.5863 (93)

When substituting 0.15 in the error term, we end up with 5.075. We will use this value to

be the threshold to reject novel data.
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After using this threshold, we found that there are 36.89% misclassified points, and

all of the misclassifications are type I errors. Figure 93 shows the novel data indicated by

the algorithm.
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Figure 93 Error and abnormalities: The first test group (OKE: input)

Next, we applied the second test group and computed the density with the same

smoothing parameter matrix. The density is fed to the novelty detector. The graph showing

the approximation errors and novel data pinpointed by the algorithm for the second test

group is shown in Figure 94.
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Figure 94 Error and abnonnalities: The second test group (GKE: input)

We found that there are 43.11 % misclassified points and all of these are type I er-

rors. When applying the training data (inputs) to the novelty detector, we found that the per-

centage of misclassifications are 31.05%. All of the misclassifications are type I errors.

We can see from the results that the percentage of type I misclassifications is very

high. This outcome is similar to what we had in the previous examples, and it follow the

analysis we gave in Chapter 3 that this method tends to reject more small-error points, thus

causing more type I errors.

In this section. we applied the Gaussian kernel estimator to estimate the density of

inputs to the function approximator. In the next section, we will use the estimator to com-

pute the density of inputs and outputs of the function approximator.

The estimated input-output density

In this part, we will use the Gaussian kernel estimator to compute the density of in-

puts and outputs of the function approximator. Since we have two dimensions for the inputs

and the outputs are in one dimension, the composite data are in three dimensions.
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We will use the same method to compute the smoothing parameter matrix, the ten-

nearest neighbors for the b value. By using this algorithm, the smoothing parameter matrix

will be:

0.08462 0 0

Lr = 0 0.08462 0

o 0 0.0846
2

(94)

After using Equation (36), we plot the estimated density and the approximation er-

ror for the first test group as follows:
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Figure 95 Estimated density and approximation error: The first test group

Again, the graph demonstrates a relationship between the approximation error and

the estimated density. We found that the regression line in this example is

density = - 42.61 x error + 15.711 (95)

Once again, we substitute 0.15 into the error term to obtain the threshold. From the equa-

tion, the density threshold is equal to 9.31. We will use this value to reject any data gener-
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ating density lower than 9.31 as novel data. After discarding novel data based upon the

threshold, there are 36% misclassified data in this case, which is slightly less than the per-

centage of misclassifications when we computed the density of inputs. All of the misclas-

sifications are from type I errors. Figure 96 shows the novel data identified by the

algorithm.
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Figure 96 Error and abnormalities: The first test group (GKE: input and output)

Now, we applied the second group (composite data) to the density estimator. Figure

97 illustrates the novel data identified by the novelty detector.
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We found that there are 43.] 1% misclassifications for this group. Again, all of the

misc1assifications are from type I error. The percentage of misclassifications in this case is

about the same as the outcome from the densities of inputs. However, we found that a

strong relationship exists when we reduce the smoothing parameter matrix from the value

we used. This effect is similar to the previous example (function approximator I). There-

fore, a further analysis may be necessary for choosing the smoothing parameter matrix to

reduce the percentage of misclassifications.

When we applied the training data to the novelty detector, we found that there are

29.88% misclassifications, and all of these are from type I error. We can see that the per-

centage of misc1assifications are less than the outcome when we utilized the density of in-

puts for novelty detection (29.88% versus 31.05%).

In this section, we applied the Gaussian kernel estimator to estimate the density of

the inputs and outputs of the function approximator. The results showed that the percent-
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ages of misclassifications were reduced when we used both the outputs and inputs to com-

pute density (when compared with the results from using only density of inputs).

Minimum distance algorithm

In this section, we will test the perfonnance of novelty detector using minimum dis-

tance and minimum weighted distance algorithms.

Minimum distance

By using Equation (45) and Equation (46) to compute the minimum distance of

each testing data, we end up with Figure 98. The figure illustrates the approximation errors

and the minimum distances for the first test group.
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Figure 98 Minimum distance and approximation error: The first test group

As we see, when minimum distance gets higher, it is likely to find more large-error

points. On the other hand, when minimum distance is low, we are likely to have more

small-error data. Another parameter that indicates this relationship is the correlation coef-

ficient (R value). This value is quite high implying that there is a relationship between the
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approximation errors and minimum distances. From the figure, we found that the regres-

sion line is

dm = 0.8264 x error + 0.0344 (96)

By substituting 0.15 in the error term, we obtain dm = 0.1584. We will use this value to

be the threshold. For the first test group, Figure 99 shows the approximation errors and the

data points identified by the algorithm as novel data.
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Figure 99 Error and abnormalities: The first test group (Minimum distance)

We found that there are 21.78% misclassifications in the first test group. The ma-

jority (16.44% out of21.78%) are from type II error. That implies that, for this data set, we

have many data close to training data that generate large errors (since type II misclassifica-

tions are quite high, compared with the example of the function approximator I). This phe-

nomenon makes some sense, because even the training data generate large approximation

errors (see Figure 87).
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Next, we applied the second test group to the novelty detector. Figure 100 demon-

strates the approximation errors and novel data are identified by x.
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Figure 100 Error and abnormalities: The second test group (Minimum distance)

We found that around 33.33% are misclassifications. Again, most of these misclas-

sified points (18.22% out of 33.33%) are from type II errors. We can also see that we had

more type II misclassifications when compared with the Gaussian kernel estimator. How-

ever, this algorithm turned out less total misclassifications than the Gaussian kernel estima-

tor.

When applying the training data set to the novelty detector, we found that 12.69%

are misclassified, and all of these are from type II error. This is due to the fact that the min-

imum distances of training data equal zero, which is less than the threshold (0.1584). There-

fore, the novelty detector accepts all of these points as old data.

In this example, we applied the minimum distance algorithm to be a novelty detec-

tor for the function approximator. The results showed that the percentage of misclassifica-
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tions was less than the outcomes from the neural tree and the Gaussian kernel estimator. In

the next section, we will test the performance of minimum weighted distance for novelty

detection.

Minimum weighted distance

In this section, we will apply the minimum weighted distance for novelty detection.

We will use Equation (52) and Equation (53) to find minimum weighted distances

for the first test group. After computing the correlation coefficient (R value) between the

minimum weighted distances and the approximation errors for different values of weight-

ing factor «(X.), we obtain Figure 101. This figure illustrates the effect of weighting factor

to the correlation coefficient as we varied the value of weighting factor.

F.~I"'9'0'4'
071

0.7

0,8V

0."

[

10
.

1157

~o ..
.j
!o..

0.14

o.OJ

002

0.8t

° . • • '0
W~9tlldof('Iphe)

Figure 101 The weighting factor and the correlation coefficient: The first test group

We can see from the figure that when we added the effect of the difference between

the targets and network outputs, the correlation coefficients are higher. However, when the

weighting factor is too high, the R value will be lower. In this data set, the weighting factor
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a = 4.35 causes the highest correlation coefficient (R = 0.71 ), which is higher than the

R value in the case of using minimum distance (R = 0.61).

We will then use the weighting factor a = 4.35 for our novelty detector. At this

weighting factor, Figure 102 shows the correlation between the minimum weighted dis-

tances and the approximation errors for the first test group.
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Figure 102 Minimum weighted distance and approximation error: The first test group

Now, we will use the figure to create the threshold to reject novel data. We found

that the regression line for this data set is

~35 = 1.3198xerror+0.1158 (97)

After substituting 0.15 into the error term, we obtain 0.3137 for the minimum weighted dis-

ranee at weighting factor of 4.35. We will use this value to be the threshold to discard novel

data. That means that any data generating minimum weighted distance (at a = 4.35) larg-

er than 0.3137 will be identified as novel. Figure 103 shows the approximation errors and

novel data are marked with x.
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Figure 103 Error and abnormalities: The first test group (Minimum weighted distance)

We found that there are 19.11 % misclassifications. Most of the misc1assifications

(12% out of 19.11 %) are from type II error. The percentage is slightly less than we had us-

ing minimum distance.

Next, the second test group will be applied to the novelty ddector. Figure 104 illus-

trates the nove] data for the second test group.
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Figure 104 Error and abnormalities: The second test group (Minimum weighted distance)
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In this data set, 33.33% are misclassifications. Around 18.22% out of 33.33% are

from type 11 error. We can see that the percentage of misclassifications in this case is equal

to the case for minimum distance. This result is a good example showing that, for different

data sets, the performance of the weighting factor can vary. In this particular case, the per

formance of the minimum weighted distance is equal to the performance of minimum dis-

tance.

When the training data set is applied to the novelty detector, there are 12.69% mis

classifications. Around 10.35% out of 12.69% are from type II error. Although type II mis

classification in this case is less than minimum distance, the total percentage of

misclassifications is equal. This is due to the fact that we choose the best weighting factor

based on the first test group, not the training data set. This is another example showing the

flaw of this algorithm.

In this section, we demonstrated the performance of the novelty detector employi ng

minimum distance and minimum weighted distance. The outcomes illustrated that the per

formance of minimum weighted distance is better for the first test group. However, it also

showed the drawback of minimum weighted distance on the second test group and the train

ing data set. In the next section, we will use outlier detection and minimum weighted dis

tance of composite data for novelty detection.

Minimum distance and outlier detection

In this section, we will apply outlier detection using principal component analysis

and minimum distance on composite data for novelty detection.
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We begin this example by creating composite training data by augmenting the tar-

gets and the inputs to the function approximator. These composite training data will be used

to compute the minimum distance for the composite testing data, which includes both net-

work inputs and outputs.

Next, we will compute the covariance matrix from the composite training data. The

covariance matrix is

r
O.3438 0.0816 0.0789~

L = 0.0816 0.1002 0.0987

0.0789 0.0987 0.1195

With the above equation, the associated eigenvalues and eigenvectors are as follow

AI = 0.4083, u; = [0.8692 0.3441 0.3552J

Az= 0.1447, u; = [-0.4937 0.5638 0.6621J

A3= 0.0105, U; = [0.0276 -0.7508 0.6599J

(98)

(99)

The eigenvectors will be used to transform the composite training data to principal compo-

nents. Then we will utilize the principal components to compute the sum-square value in

th~ process of outlier identification. The v value, which determines which principal com-

ponents we will use to compute the sum-square value, was selected by looking at the or-

dered variance of the transformed data set - the ordered eigenvalues. By using the same

criterion as the previous example - use from the last PC up to the PC giving variance equal

to 0.02 or above. For this example we will use the second and third PC's.
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In order to compute the percentage of misclassified points, we fir t need to have the

regression line between the approximation error and the minimum distance (for the first test

group). The relationship between these two variables is shown in Figure 106.
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Figure 106 Approximation error and minimum distance: The first test group

The regression line shown in the figure is

dm = 0.8976 x error + 0.0585 (100)

By substituting 0.15 in the error term, the corresponding minimum distance, Td , is 0.1931.

Any data generating minimum distance greater than 1.25 x 0.1931 = 0.243175 will be

discarded as novel data. On the other hand, we will accept any data producing minimum

distance less than 0.75 x 0.1931 = 0.144825 as standard data. Based on the first test

group, within the minimum distance range (0.75 x 0.1931, 1.25 x 0.1931 ] , the average

sum-square value for data points generating approximation error less than 0.15, 1}, is

0.3285, while that for data creating approximation error greater than 0.15, ri, is 0.3615.
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Therefore, data having minimum distance within this range will be considered novel if their

0.3285 + 0.3615
sum-square values are greater than 2 = 0.345. The rejection region is as

follows

(0.144825 < dm $ 0.243175 and ~ > 0.345) or dm > 0.243175

We mark novel data with an x in Figure 107.

(10 1)

Figure 107 Error and abnormalities: The first test group (Minimum distance and PCA)

We found that there are 21 .33% misclassified points in total. The majority (16% out

of21.33%) are from type II error. The result showed fewer misclassifications than any oth-

er method, except minimum weighted distance. This is because we maximized the correla-

tion coefficient in the first test group in the case of minimum weighted distance.

Next, we will use the rejection region shown in Equation (101) for the second test

group. Figure 108 illustrates the novel data and approximation error for the second test

group.
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Figure 108 Error and abnonnalities: The second test group (Minimum distance and peA)

There are 30.67% misclassifications. Most of these misclassifications (20.89%) are

from type II error. This method produced fewer misclassifications than any other method.

If we apply the training data to the novelty detector, there are 10.68% misclassifi-

cations. All of the misclassified points are from type II error. This percentage from this al-

gorithm is less than for any other method.

What we can notice from this example is that type II error is always the majority of

the total percentage of misclassifications (which is different from the first approximalor).

The main reason is that the second function approximator did not estimate its target as well

as the first one does. Thus, this outcome is likely to increase type II misclassification.

In this section, we utilized the minimum distance algorithm and outlier detection

employing principal components analysis over the composite data for novelty detection.

The result is promising in terms of the percentage of misclassifications. We wi II summarize

the outcomes of all of the novelty detectors in the next section.
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Result Summary

We will summarize the perfonnance of the novelty detectors in terms of percentage

of misclassified points. We begin with Table 5, which shows the percentages of miscla si-

fied points for the first test group.

Table 5 Percentage of misclassifications: The first test group

Algorithm
Percentage of misclassifications

Type I Type II Total

Neural tree 5.78 17.33 23.11

Density of input 36.89 0 36.89

Density of input and 36 0 36
output ,

Minimum distance 5.33 16.44 21.78

Minimum weighted 7.11 12 19.11
distance

Minimum distance 5.33 16 21.33
and outlier detection

The percentages of misclassifications for the second test group are summarized in

Table 6.

Table 6 Percentage of misclassifications: The second test group

Algorithm
Percentage of misc1assifications

Type! Type II Total

Neural tree 16 19.56 35.56
, Density of input 43.11 0 43.11

Density of input and
43.11 0 43.11

output

Minimum distance 11.56 21.78 33.33

Minimum weighted
15.11 18.22 :B.33

distance

Minimum distance
9.78 , 20.89 30.67

and outlier detection
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We can see that the Gaussian kernel method (density of input and density of input

and output) turned out the highest percentage of misclassifications for both test sets, with

very high percentage of type I error. The minimum weighted distance provided the mini-

mum percentage of misclassifications for the first test set. (This is because we optimized

the weighting factor from this test group.) However, for the second test group, the mini-

mum weighted distance did not provide the best outcome (since the effect of weighting fac-

tor varies from data set to data set). Minimum distance with outlier detection produced an

acceptable result for the first test group, but had the fewest misclassifications for the second

test group.

Next, Table 7 shows the percentage of misclassifications when we applied training

data to the novelty detectors. Note again that the percentage of large-error points (i.e. error

greater than 0.] 5) in the training data set was 12.69%.

Table 7 Percentage of misclassifications: Training data

Algorithm
Percentage of misclassifications

Type I Type II Total
Neural tree 0 12.69 12.69

Density of input 30.89 0 30.89
Density of input and

29.88 0 29.88
output

Minimum distance 0 12.69 12.69
Minimum weighted

0 12.69 12.69
distance

Minimum distance
0 10.68 10.68

and outl.ier detection

The density of input using the Gaussian kernel estimator had the highest percentage

of misclassifications in the traini ng data set. The majority of misclassified points was from
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type I error. It provided no type II misclassifications. Therefore, the density approximation

method might be well fitted to problems where one needs very reliable network outputs.

Finally, minimum distance with the outlier detection had the lowest percentage of misclas

sifications for training data set.

Summary

In this chapter, we tested and compared the ability of the novelty detectors de

scribed in Chapter 3 to Chapter 7 using two real-world applications. We began each appli

cation by explaining the objective for function approximation. We also described the

training data and testing data for each application. After that, we used testing data to dem

onstrate and compare the capability of each novelty detector in terms of the percentage of

misclassifications.

The objective of the first application was to estimate the resistivity of the earth for

mation in order to explore for existing oil or gas. In terms of the percentage of misclassifi

cations, the simulations showed that the neural tree algorithm provided the highest

percentage of misclassifications for both test groups. The minimum distance with outlier

detection produced the fewest errors on every data set, e.g. the first, second test groups and

the training data. For the misclassifications in the training data set, the joint density between

input and output method produced the most misclassifications; however, it had the fewest

type II errors.

For the second application, the objective was to estimate the torque of the diesel

engine system. The simulation indicated that the method of estimating density of input had

the most misclassifications for every data set. The minimum weighted distance algorithm
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yielded the lowest percentage of misclassified points for the first test group. However. the

minimum distance of composite data with outlier detection produced the lowest misclassi

fications for the second test group. For the training data. the minimum distance with outlier

detection yielded the fewest misclassifications. The Gaussian kernel estimator had no type

II misclassifications on any data set.
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CHAPTER 9

CONCLUSIONS

In this chapter, we will briefly summarize the results of our work. It will be fol

lowed by recommendations for future work.

Summary of the results

We started this work by proposing a problem for function approximation: neural

networks are very good at interpolating while poor at extrapolating. We have discussed the

key novelty-detection methods to distinguish between data that require interpolation and

data that require extrapolation. Each of these methods has its own advantages and draw

backs in terms of misclassified data. One of the contributions of thi work is to compare the

performances of each algorithm in terms of the percentage of misclassifications.

The neural tree algorithm is a very fast method. It can be implemented as an online

novelty detector. However, in some applications, the percentage of misdassifications can

be very high for small-error points that are identified as novel data (type I errors). On the

other hand, the autoassociative method, although providing very good results in terms of

the percentage of misclassifications, is very slow to train. Therefore, this method is not fea

sible for data having very high dimension.

The estimated density for inputs and the estimated joint density between inputs and

targets using the Gaussian kernel are somewhat slow relative to other algorithms, and have
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a slightly higher percentage of misclassifications, especially for type I errors. This is due to

the fact that these methods tend to reject training data or interpolation points whose approx

imation errors are smalL A main drawback of the density estimation is the smoothing pa

rameter that we must heuristically choose, which sometimes may not be well-suited to the

true density.

The minimum distance algorithm has its own strengths in that both the computation

time and the percentage of misclassifications are acceptable. There is no unknown param

eter in this algorithm, making this algorithm the simplest algorithm to implement. We pro

posed a method to decrease the percentage of misclassifications by using the minimum

weighted distance. A major drawback of the minimum weighted distance is the weighti ng

factor, which is a varying parameter for different data sets. In other words, the weighting

factor with the best result for novelty detection on one data set may not perform well on

another data set. Another contribution derived from the minimum distance algorithm is the

analysis for the approximated gradient to estimate the error of the function approximator.

We concluded that the estimated derivative was not helpful for novelty detection for func

tion approximation, but it was useful for estimating errors for interpolations. We also pre

sented a way to reduce the computing time for the minimum distance algorithm by applying

the Kohonen rule.

Another major contribution of this work is to apply outlier detection using principal

components to the minimum distance algorithm. This method has several advantages over

the minimum distance algorithm because of acceptable computing time, and a small per

centage of misclassifications. Although this method seems to be very effective, the main
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disadvantage of this algorithm is the complicated threshold, and there is a parameter to be

chosen in the process of the outlier detection.

We applied some of our novelty detectors to solve the real world applications.

which were described in Chapter 8. We found that minimum distance with outlier detection

had the best results. Furthermore, the simulation results confirm that the neural tree algo

rithm is very fast.

Recommendations for future work

In real world applications containing very high dimensional data. we concluded that

it is almost impossible to utilize the autoassociative multilayer perceptron as our novelty

detector, though this algorithm performed very wen in our simple example. Future work

could reduce the dimension of the data before applying them to train the perceptron. By em

ploying a principal component transformation to decrease the number of dimensions, the

network could be more efficiently trained.

The minimum weighted distance is another area for future work in that there is an

unknown weighting factor in the algorithm. Thus, it will be desirable to have an in-depth

analysis for predicting what range the maximum weighting factor should have in order to

increase the correlation coefficient.

In the algorithm which uses minimum distance and outlier detection, a potential fu

ture task would be to discover a technique to get rid of the unknown parameter in the pro

cess of the outlier identification.

Finally, a combination of the joint density using the Gaussian kernel and the mini

mum distance algorithm may be used to improve the efficiency of identifying novel data
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and to reduce the percentage of misclassifications, especially type I errors (small-error

points flagged as novel data).
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