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PREFACE

The goal of this research is to evaluate the efficacy of the hot-gas sheathe design

concept in reducing oxide scale in chloride process reactors. Titanium dioxide wall

deposition poses several concerns for the pigment industry. Oxide scale quickly forms in

the reactor and, depending on design, possibly on the reactant inlet nozzles plugging the

reactor and causing shutdown ofthe process for cleaning. The oxide scale growth also

causes the flow of gases to be diverted thereby hindering effective mixing and complete

reaction. Additionally, during scale growth, chunks of scale can break away causing

difficulty in recovering fine unifonn titanium dioxide particles.
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rewarding and I hope to provide applicable insight on gas-blanketed reactors. Financial

assistance provided by Kerr-McGee Corporation is also appreciated.
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NOMENCLATURE

A Titania particle surface area concentration (cm2/cm3
)

C Molar concentration ofTiC4 (kmoVm3
)

Cpj' Heat capacity of species j' (kJ/mol K)

E Activation energy (kJ/mol)

F; Momentwn source tenn (kg/m2
S2)

gi Gravitational forces in the i direction (m/s2
)

h Enthalpy (kJ/kmol)

The i direction

i' Species i'

J The j direction

j' Species j'

Jj' Diffusion tlux of species j' (kmoVm2 s)

k Arrhenius rate constant (S-I)

k' Rate constant (S-I mor l12)

keff Effective conductivity (kg mls2 K)

ks Surface reaction rate constant (cm/s)

kt Turbulent thennal conductivity (kg m/s2 K)

M Mass ofsystem (kg)

p Local static pressure (Pa)

R Total rate ofreaction (kmol/s)
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Rg Rate ofreaction in gas phase (kmol/s)

Rs Rate ofreaction on solid surface (kmol/s)

Sh Energy source term (kg/m S3)

Sm Mass source term (kg/mJ s)

t Time (s)

T Temperature (K)

Uj Velocity in the i direction (mls)

V Volume of the mixture (m3
)

V/ Volume occupied by species i' (m3
)

Xj Distance in the i direction (m)

~H Heat of reaction (kllmal)

J.i Dynamic viscosity (kg/m s)

r Density (kg/mJ
)

'rlj Stress tensor (kg/m S2)
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CHAPTER I

INTRODUCTION

Titanium Dioxide

There is currently a large market for high quality ceramic powders such as

titanium dioxide. Titanium dioxide, also called titania, is an essential aerosol component

for the production of nearly seven billion pounds ofwhite pigment per year (Braun,

1997). Titanium dioxide pigments are used in a variety of applications including paints,

coatings, dyes, paper, plastics, and pharmaceuticals.

Titania pigments dominate the industry due to their enhanced opacity and

lightness. Superior pigment performance ofTi02 is rooted in the characteristics of the

powder including particle size and shape, crystal phase, and composition. Titania

particles have an extremely high refractive index (2.74 for rutile crystal phase and 2.55

for anatase) (Jain et al., 1997) therefore offering maximum light scattering with very little

light absorption, a characteristic maximized between 0.15 and 0.25 micrometers particle

size (Akhtar et aI., 1991).

Pigment quality titanium dioxide must be manufactured from titanium ores:

ilmenite (FeTi03), rutile (Ti02), anatase (Ti02), brookite (Ti02), and leucoxene

(Ti02.xFeO.yH20) (Braun, 1997). Once processed, the end product is in either the rutile

crystal phase or the anatase phase. Ti02 powders were initially produced in the anatase

form, however, due to superior pigment perfonnance ofrotile and due to technological

developments, it has nearly replaced the demand for anatase titania (Braun, 1997).

1



Chloride Process

There have been two major processes for the production of titanium dioxide; the

sulfate process and the chloride process. The chloride process has largely taken the place

ofthe sulfate process because it yields more rutile product and is more ofa continuous,

less labor-intensive method. Titanium dioxide particles produced in aerosol reactors via

the chloride process have a narrower size distribution, a more spherical shape, and a

higher purity. The chloride process also presents advantages in easier waste disposal and

less energy consumption (Braun, 1997).

In the chloride process, titanium tetrachloride gas is reacted with hot oxygen to

yield titanium dioxide powder and chlorine gas. The balanced chemical equation is as

follows:

TiC4 (g) + O2 (g) ~ Ti02 (s) + 2Ch (g) till = -22.5 kJ/mol

In many commercial aerosol reactors, excess preheated oxygen or oxygen­

containing gas (between 800-1000 °C) is fed to the reactor in the presence ofa plasma or

liquid hydrocarbon-fed flame producing temperatures of2500-3000 °C (Hartmann,

1993). Titanium tetrachloride (around 450 °C) is introduced downstream, and reacts with

the hot oxygen to form titania particles. Hydrocarbon combustion products as well as

titanium tetrachloride additives such as AICh serve to promote rutilization of the titanium

dioxide (Powell, 1968).

The foremost problem with the chloride process is that many reactor designs have

issues with oxide scale and growth quickly forming in the vicinity of the initial reaction

and plugging inlet nozzles eventually causing shutdown ofthe process (Wilson, 1971).

There are many patented reactor designs claiming to reduce or altogether eliminate oxide

2



scale on the reactor surface. Several patented solutions include porous walls, inert gas

blankets at the reactor walls, cooled Ti02 film on the reactor wall, and many different

titanium tetrachloride nozzle designs.

Objectives

Kerr-McGee Corporation currently produces 535,000 tons per year of titanium

dioxide, ranking Kerr-McGee as the third-largest producer ofTi02 in the world (Kerr­

McGee, 2000). To remain competitive on the titania market, Kerr-McGee has

maintained continuous operation of their chloride process reactors by injecting sand into

the reactor to prevent scale buildup. However, eventual shutdown ofthe process is

necessary because the injected sand, scouring the internal reactor walls, wears down the

reactor wall surface.

The objectives of this research are to identify possible causes of Kerr-McGee

reactor oxide scale and to evaluate the potential of gas-blanketed reactor walls to reduce

or eliminate scale using computational fluid dynamics (CFD). CFD is sophisticated

computer software that thoroughly characterizes a real system by simultaneously

performing mass, energy, momentum, and species balances on the system Once solved,

the solution presents a realistic two- or three-dimensional profile ofthe system including

fluid velocities, pressures, temperatures, species concentrations and other profiles. The

software package used for this research contains FLUENT 5 and the included CAD

package, GAMBIT.
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CHAPTER II

LITERATURE REVIEW

Introduction

In this chapter, several areas ofresearch relating to titanium dioxide production

through the chloride process are discussed. First, an overview of literature published on

research invo lYing the titanium dioxide reaction and particle growth mechanisms is

presented. Next, a section is dedicated to a review of relevant publications on the

manufacture of titanium dioxide. The final section is a review of several patented reactor

designs with claims to reduce or eliminate particle accretion at the reactor walls.

Titanium Dioxide

Oxidation of titanium tetrachloride in an aerosol reactor at high temperatures and

nearly atmospheric pressures, known as the chloride process, produces titanium dioxide

powders, and is not completely understood since chemical reaction and particle growth

occur rapidly (Pratsinis and Spicer, 1997). Several studies have been performed on the

chloride process to produce more accurate models ofthe production and growth oftitania

particles. Specifically, the relative contributions ofgas phase and surface reaction

mechanisms, which yield titanium dioxide particles, have been researched at length.

The balanced oxidation reaction for titanium tetrachloride is:

TiC4 (g) + 02 (g) ~ Ti02 (s) + 2Ch (g)

4
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TiC4 oxidation is carried. out both on the solid surface and in the gas phase. The rate of

reaction in the gas phase, Rg, and the rate of reaction on the solid surfuce, Rs, can be

summed to achieve the overall reaction rate, R (pratsinis and Spicer, 1998).

dC/dt = -R = -(Rg + Rs)

C is the concentration ofTiC4 vapor. Pratsinis et at. (1990) measured the oxidation rate

ofTiC4 in a furnace aerosol reactor between temperatures of700 and 1000 °C and initial

TiC4I02 ratios between 1:1 and 1:20 in excess argon. They found that the overall

reaction rate is first order with respect to TiC4 and zero order with respect to oxygen at

lower oxygen concentrations. However, at ratios of 10: 1 02ffiC4 and higher, the overall

reaction rate was found to be half order with respect to oxygen.

-d[TiC4]/dt = (k + k' [02]112)[TiC4]

The Arrhenius rate constants are given as k = 8.26 x 104 exp(-EIRT) S-1 and k' = 1.4 x 105

exp(-EIRT) (L/mol)ll2s-1, where E is given as 88.8 +/- 3.2 kJ/mol (Pratsinis et aI., 1990).

Pratsinis and Spicer (1998) define the rate of surface reaction, Rs, as follows:

Rs = ksA[TiC4]

where ks = 4.9 x 103 exp(-8993/T) cm/s. A is the total titania particle surface area

concentration (cm2/cm3
) and is a complex function of particle diameter, velocity, and

diffusivity.

There have been several publications with differing conclusions about the

mechanism of particle growth of titania. Akhtar et a1. (1991) studied experimentally the

effects of temperature, reactant concentration, and residence time on particle size.

Particle size distributions were measured at reactor temperatures ranging from 1,200 K to

1,723 K, at initial chloride concentrations ranging from 9.34 x 10-6 M to 1.56 X 10-5 M,

5
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and residence times from 0.8 s to 1.6 s. When a coagulation enhancement factor is

employed, the experimental results match closely with their theoretical predictions

assuming gas phase reaction and coagulation. Furthermore, coagulation is the more

significant growth mechanism due to the self-preserving size distribution in their hot-wall

reactor (Akhtar et aI., 1991). lang and Jeong (1995) also studied the effects of reactor

conditions on particle size. Experimental conditions ranged from 720°C to 1000 °C

reactor temperature and from 0.05 to 1.00 mol% titanium tetrachloride. They concluded

that when reactants were not preheated to the reactor temperature, surface reaction

kinetics has a propensity to increase the particle size distribution (Jang and Jeong, 1995).

According to Jain et al. (1997), who took particle size measurements within the inlet

chloride concentration range of4.7 x 10-8 to 5.5 x 10-6 mol/cmJ
, reaction is not a

significant growth mechanism relative to gas phase reaction and coagulation. These

publications seem to hold differing conclusions about the mechanism of particle growth

oftitania

Finally, Pratsinis and Spicer (1998) claim to reconcile the differing opinions on

particle growth by taking into account the inlet ratio of oxygen and titanium chloride.

High titanium tetrachloride concentrations (nearly stochiometric ratio ofreactants) result

in elevated concentrations oftitania nuclei. High concentrations of TiOz nuclei allow

greater surface area available f()r surface reactions to take place. If the reaction begins

with or proceeds to having a low TiC4/0z ratio, then the gas phase reaction and

coagulation dominate (Pratsinis and Spicer, 1998).

6
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Manufacture of Titanium Dioxide

Manufacture of titanium dioxide through the chloride process involves the

following steps:

1. Titanium ore is chlorinated., producing a mixture ofgases and unreacted

solids.

2. Titanium tetrachloride is separated from solids and purified.

3. Titanium tetrachloride is oxidized in a high temperature flame reactor.

4. The pigment particles are finished with grinding and a thin aqueous

coating (Braun, 1997).

Pulverized dry titanium ore and coke are reacted with hot chlorine between 900

°C and 1700°C and slightly above atmospheric pressure. The chemical reaction occurs

as follows:

Ti02 (s) + C (s) + 2Ch (g) ~ TiC4 (g) + C02 (g)

Since this reaction is exothennic, the reactor requires cooling. The product gases are then

removed from solids such as coke, titanium ore, iron chloride, and gangue (Braun, 1997).

The titanium chloride gas stream is then condensed. Next, the liquid chloride solution is

chemically treated to convert impurities to compounds that are either insoluble or have a

higher boiling point than titanium tetrachloride that can then be purified by distillation

(Powell, 1968). The TiC4 liquid is purified so that only a few parts per million of

impurities remain in solution (Braun, 1997). Once the titanium tetrachloride is purified,

it is then vaporized again and rutile-promoting additives such as AlCh are added to the

chloride. Very small concentrations of other metal ions may also be added to control

titania particle size.

7
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Titanium tetrachloride gas is then reacted continuously with excess hot oxygen to

yield titanium dioxide powder and chlorine gas. The chemical reaction occurs as follows:

TiC4 (g) + O2(g) ~ Ti02 (s) + 2Ch (g)

For a very rapid rate of reaction, heat is continually fed to the reactor in the form of a

plasma or liquid hydrocarbon-fed flame producing temperatures of 2500-3000 °C

(Hartmann, 1993). Titanium tetrachloride (around 450 °C) is commonly introduced

downstream ofthe oxygen and reacts with the bot oxygen to form titania particles and

chlorine gas. The reactor for this system must be designed to produce the desired particle

size while avoiding particle deposition and buildup (Braun, 1997).

Most ofthe product chlorine is recycled to be used for the chlorination ofthe

titanium ore. Ti02 particles arc mixed with water where residual chlorine and acids are

removed. The titanium dioxide particles are then coated with a thin layer, only a few

atoms thick, ofa precipitation ofoxyhydrates and oxides. Most common are the coatings

ofoxyhydrates of aluminum and silicon (Braun, 1997).

Lastly, the pigment particles are finished by dry grinding. Dry grinding does not

break crystals into smaller submicron sized crystals because the bond strengths and

density within the crystals are too high (Braun, 1997). Instead, the crystals are grown to

the desired size in the aerosol reactor. The dry grinding process is intended to break apart

agglomerations ofcrystals (Braun, 1997). The grinding is done by injecting the ri02 and

possibly steam into a centrifugal device that causes the Ti02particles to collide and to

break apart. Due to their higher mass, larger particles are forced to the outside edge

where they continue to collide; smaller particles are ejected. The pigment is then

separated and cooled (Braun, 1997).
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Patented Reactor Designs

There are several patents available that present unique reactor designs and

operating procedures for the production of titanium dioxide through the chloride process.

These patents claim to reduce or eliminate oxide scale thereby achieving extended

operation times. Several patented solutions include porous walls, inert gas blankets at the

reactor walls, cooled Ti02 film on the reactor walL and many different titanium

tetracWoride nozzle designs. This section is a review ofseveral patented reactor designs

with claims to reduce or eliminate particle accretion at the reactor walls.

United States Patent #2.670,272

E. 1. du Pont de Nemours and Company (Nutting, 1954) patented a claim which

presents a "effective method for continuously producing pigmentary titanium dioxide by

the vapor phase oxidation at elevated temperatures of titanium tetracWoride without

encountering objectional scale formation ofdeposition on the reactor surfaces and

consequent apparatus plugging or inefficient operation" (U.S. patent # 2,670,272).

The design for this process is illustrated in Figure 1. Oxygen, or an oxygen

containing gas, enters the reactor continuously through conduit 4 while titanium

tetracWoride enters through conduit 11. Both gases are heated by furnace 2 and are

mixed and reacted in conduit 6. A cool inert liquefied gas, normally chlorine or nitrogen,

enters continuously through conduit 16 and into the reaction zone 6 through a porous

refractory wall 7. The porous wall is intended for the purpose of reducing or eliminating

oxide scale by:

9



1. Reducing mass transfer to the wall by means of an inert liquid being fed

through the porous wall thereby shielding the reactor wall from the

reacting gases.

2. Keeping the reaction zone wall cool to prevent surface reaction at the wall.

The rate of surface reaction is exponentially proportional to temperature.

9

Figure 1 Reactor (Patent # 2,670,272)

United States Patent #3,284,159

E. I. du Pont de Nemours and Company (Kruse, 1966) proposed a similar reactor

design for the production of Ti02. The difference between this design and the previous

design is that the porous wall was eliminated and replaced with a reactor zone wall thinly

coated with a metal oxide, preferably Ti02. The reactor zone wall is still cooled to

prevent surface reaction at the walL The thin layer of Ti02 is added by spraying or

10
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brushing an aqueous slurry ofTi02 onto the wall surface. The purpose ofthe Ti02 1ayer

is to reduce contaminates in the pigment that come from corrosion ofthe reactor wall

surfaces by the hot titanium chloride.

The reactor geometry is shown in Figure 2. Reactants enter the reactor, become

heated, and exit the reactor as in patent US 2,670,272. The reaction zone is now

surrounded with a cooling jacket 15 so that the reactor wall 7 is maintained between 450

°C and 500°C, but not below 136°C, the sublimation temperature of titanium

tetrachloride (powell, 1968).

,

Figure 2 Reactor (Patent # 3,284,159)

United States Patent #3,203,762

Cabot Corporation (Carpenter, 1965) patented a reactor design that incorporated a

flexible wall around the reaction zone that could liberate agglomerate continuously from

the wall. Figure 3 illustrates the reactor design proposed in this patent. Referring to the

design on the left of Figure 3, gas or liquid is introduced into pressure chamber 5 through

conduit 7. As the pressure increases or decreases in chamber 5, wall 3 is caused to flex.

11
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Wall 9 is solid. The more detailed design is included on the right in Figure 3. Oxygen

and carbon monoxide are fed into the reactor through conduit 24 and combust to preheat

reaction chamber 22. Additional oxygen and titanium tetrachloride are fed to the reaction

chamber through conduit 28. Meanwhile, wall lOis periodically caused to vibrate

thereby loosening Ti02 buildup accruing on the wall (powell, 1968).

Figure 3 Reador (Patent # 3,203,762)

United States Patent #3,311,452

Cabot Corporation (Goodgame, 1967) introduced a novel reactor design for the

continuous production of titanium dioxide with minimal scale buildup. The reaction

referenced in this process was the hydrolysis reaction of titanium tetrachloride; however,

the reactor design is also useful for eliminating scale accrued through the oxidation of

titanium tetrachloride. The concept employed in this patent is the use of an inert gas

blanket to coat the reaction chamber wall. The gas blanket also serves as an additional

source of heat for the hydrolysis or oxidation reaction.

Figure 4 is a two-dimensional illustration of this invention.

12
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Figure 4 Reactor (Patent # 3,311,452)

Carbon monoxide and air are combusted and introduced into reaction chamber 2 through

conduit 4 at a temperature ofabout 1200 0c. Titanium tetrachloride and dry air are

introduced into the reaction chamber through conduit 10 while hydrogen is fed to the

reactor though conduit 12. The hydrolysis reaction occurs in the reaction chamber 2 as

follows:

TiCl4 (g) + 2H2 (g) + O2 (g) ~ Ti02 (s) + 4HCl (g)

The hot gas milCture entering through conduit 4 forms the protective gas blanket at the

wall and must be supplied at a velocity equal to or greater than the velocity of the

reacting fluid to prevent oxide scale (Goodgame et a!., 1967). This patent is discussed in

more detail in the following chapter.

13
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United States Patent #3,351.427

Cabot Corporation (Wendell et aI., 1967) proposed that a high velocity spinning

mixture ofreaetants in a frusto-conical reactor design would eliminate oxide scaling. An

illustration ofthe invention is shown in Figure 5.

1------
I
I
I
I
I
I

I
I
1
I
I

,f '" .'-
./

Figure 5 Reactor (Patent # 3,351,427)

Fuel gas and titanium tetrachloride are introduced into the reactor through conduit

5 while oxygen or an oxygen-containing gas is fed through conduit 3. Both inlet streams

are fed at a linear velocity between 75 and 350 ft/s. When the reactant gases are fed into

the reaction chamber 1 tangentially as shown in Figure 5, a spinning effect is induced

therefore causing rapid mixing of the reactants. According to the inventors, this reactor

design provides for higher reactant mixing which eliminates pockets of higher

temperature and longer residence times (Powell, 1968).
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United States Patent #3,586,055

PPG Industries (Wilson, 1971) proposed a method of introducing reactant gases

into a reaction zone through concentric annuli separated by a stream of inert, usually

cWorine gas, to force the reaction downstream of the physical inlets_ Inlet distributor

plates designed for the even distribution ofgas in the inlet concentric tubes, combined

with the hot gas stream, significantly reduce oxide scale on the reactor inlets. Figure 6

illustrates the configuration of the oxygen and inert gas inlets.
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Figure 6 Reactor (Patent # 3,586,055)

Preheated oxygen flows downward through conduit 4 as chlorine and titanium

tetrachloride is fed through two separate concentric annuli. The distributor plate 6 is

added to insure more even flow though the annulus and more even mixing in the reaction

zone. This patent is discussed in more detail in the following chapter.

United States Patent #3,676,060

Montecatini Edison (Bedetti, 1972) patented a reactor design that consisted of

concentric annular inlets. The inner inlet is a mixture of hot oxygen and fuel while the

15



outer inlets are a relatively cool mixture of reactants. A recirculation zone is generated in

the center of the reaction zone formed by the swirling flow of the inlet gases. This

recirculation zone is maintained at an elevated temperature and heat is continuously fed

to the passing reactants by conduction and convection. This patent also suggests a thin

gas film coating the waIL of the reactor meant for preventing oxide scale buildup.

United States Patent #3,725,526

Montecatini Edison (Pieri et aI., 1973) patented another reactor design with a

recirculation zone is maintained at an elevated temperature. Figure 7 is a two­

dimensional illustration of their invention.

J

Figure 7 Reactor (Patent # 3,725,526)

Referring to Figure 7, hot preheated oxygen and fuel gas, usually carbon

monoxide, at about 700°C - 900 °C is fed through the annular conduit 1 into the

combustion zone 2. The preheated oxidizing gas is passed through a helical vane to

16



induce a swirling effect. The oxygen/carbon monoxide mixture is burned in an auxiliary

flame reaching a temperature of about 1,800 °C - 2,300 0c. Preheated titanium

tetrachloride and a rutilizing agent are fed into the reactor through conduit 4 at an angle

between 1 and 45 degrees. This patent says little about addressing the problem of

product deposition in the reactor except that if the titanium tetracWoride stream were

introduced upstream of the conical zone, the inclined wall is useful to prevent deposition.

Summary

This chapter discussed several areas of research relating to titanium dioxide

production through the cWoride process. Included in this chapter were a review of

literature published involving research on the titanium dioxide reaction and particle

growth mechanisms; a review of relevant publications on the manufacture of titanium

dioxide; and a review ofseveral patented reactor designs with claims to reduce or

eliminate particle deposition on the reactor walls. Clearly, a hot gas layering the walls of

the reaction chamber, either through annular or porous wall inlets, is a promising method

of eliminating Ti02 particle deposition in the reactor.
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CHAPTERID

CFD ANALYSES

Introduction

Computational fluid dynamics (CFD) is sophisticated computer software that

enables the study of fluid systems. CFD software simultaneously calculates mass,

momentum, energy, and species transfer, as needed, to present a complete profile of the

system of interest. To carry out these calculations, the program must first be furnished

with the system geometry and boundary conditions. The geometry must then be meshed

into an adequate, dense network ofnodes where the calculations will be performed using

a numerical integration technique.

The commercial CFD software used for this research is FLUENT 5. Thi

software is designed to provide a rough estimate ofthe flow profiles ofa system and is

not intended to be used in determining the final design ofequipment without additional

analyses and experimentation (Fluent Incorporated, 1998).

This chapter begins with an overview ofthe transport equations used to model the

aerosol reactor systems. Next, a description of the common analysis variables of the

various gas-blanketed reactor systems is presented. Finally, the geometries and boundary

conditions are presented for each reactor.

Fluid Mechanics Equations

Fluid mechanics is based on three basic laws of conservation: mass, momentum,

and energy. The equation for conservation of mass, also called the continuity equation,

18

...



-

and the equation for conservation ofmomentum are solved for all flowing systems. For

systems with heat transfer or with compressible flow, the energy equation is included in

the analysis. In addition, a species balance is performed when there are reactions

included in the analysis and several turbulence models are available to be chosen by the

user when the flow is turbulent.

Mass Balance

The continuity equation, valid for compressible and incompressible flow is

calculated in FLUENT as follows:

where p is the density of the fluid, t is time, Uj is velocity in the i direction, Xi is distance

in the i direction, and Sm is a source term. For steady-state calculations completed in this

study, 8pj8t = 0 and the source term Sm=O; therefore this equation can be simplified to:

8ax (pu/) = 0
I

In this work, the individual species densities, p/, are calculated as linear functions

oftemperature except for the density oftitamum dioxide which is constant; and the total

mixture density, p, is calculated using the volume-weighted-mixing-law:

I" '
p= V~PI v.'

I

where V is the volume of the mixture and V/ is the volume occupied by species i',

Momentum Balance

The steady state conservation of momentum equation is calculated in FLUENT as

follows:
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o . iJp 0'(1)
-(puu )=--+-+pg +FOx I I Ox Ox I I

I I I

where p is the local static pressure and Fj is a general source term. To simplify the

problem at hand, with high velocity low density gases, aU gravitational forces, gi, are set

to zero and there are no external source terms, Fj. For a constant volume system and in

rectangular coordinates, the stress tensor, 'I)' is calculated in FLUENT as:

meaning the fluid is treated as Newtonian. J..l is the viscosity of the mixture and is

calculated via the mass-weighted-rnixing-law:

where M is the mass of the fluid system and Mi' is the total mass of species i' in the

system. In the cylindrical coordinate system, the radial component of the momentum

balance can be written as follows:

Energy Balance

FLUENT solves the steady-state energy balance equation as follows:

2
P u,

E=h--+-
P 2

where keff is the effective conductivity (k + kt), kt is the turbulent thermal conductivity

calculated by the turbulence equations, T is temperature, J/ is the diffusion flux ofspecies
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j'. and Sh is a general source tenn. The enthalpy, h, is defmed for an incompressible gas

as:

h="m'h'+P
~ ) ) p

where mj' is the mass fraction of species j' and h/ is defined as:

Tref is 298.15 K and Cpj' is the heat capacity of species j'. Since the chemical reaction

studied in this work is only slightly endothermic, Mf = -22.5 kl/mol, a heat ofreaction

term, Sh, was not included in the energy balance equation to reduce computational time.

Analyses of Chloride Process Reactors

All analyses in this work have been carried out using the segregated, 3-

dimentional., steady state solver in FLUENT. To use the segregated solver means that the

continuity, momentwn, and sometimes energy and species equations are solved in

succession. Also solved in each analysis is the RNG turbulence model. The RNG model

is more accurate and reliable than the standard k -E model due to several added features

including: an analytical formula filT Prandtl numbers, and higher accuracy for lower

turbulent number flows and swirling flows (Fluent Incorporated, 1998).

To perform a CFD analysis, the fluid properties must be specified in the solver.

In FLUENT, the system must be initialized with a fluid filling the entire volume; and the

fluid chosen cannot be one of the fluids flowing in through an inlet. It is also necessary

to have the initial fluid not be one of the reactants or a relativdy dense fluid causing

convergence problems. The initial fluid used in this research is called nitrogen and is

given the properties of oxygen. Convergence can be verified with the depletion of
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nitrogen since nitrogen is not one of the inlet flowing fluids or a reaction product. Table

1 lists the fluid properties for the four species used in this research, oxygen, titanium

tetrachloride, titanium dioxide, and chlorine.

Table 1 Fluid Properties (Fluent Inc.)

Oxygen Titanium Titanium Chlorine
Tetrachloride Dioxide

Density (kg/mJ
) Piecewise Piecewise 4250 Piecewise

linear linear linear
Heat Capacity 919.31 560 905 650
(Jlkg-K)
Thermal 0.0246 0.017 0.09 0.0082
Conductivity
(W/m-K)
Viscosity 1.91ge-5 2.2e-5 0.009 1.33e-5
(kg/m-s)
Molecular 32 189.7 79.9 70.9
Weight
(kg/kgmol)
Standard State 0 -7.2086e+8 2397000 2816.454
Enthalpy
(Jlkgmol)
Standard State 205026.9 49322 54332 222988
Entropy
(J/kgmol-K)
Reference 298.15 298.15 298.15 298.15 ,

Temperature
(K)

Piecewise-linear functions of temperature are used for density for the three fluids. Table

2 lists those values.

Table 2 Density as a Function of Temperature

Oxygen Titanium Chlorine
Tetrachloride

Temperature (K) 300 300 300
Density (kg/m)) 1.3 20 2.95
Temperature (K) 2000 2000 i 2000
Density (kg/m)) 0.2 3 10.44
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FLUENT can currently model particle flow simulations; however, the discrete

phase must be initialized as an inlet boundary condition. FLUENT cannot currently

model a reaction-to-particle system without a complex User Defined Function (UDF),

which is currently unavailable to users. The titanium dioxide in this study was

consequently modeled as a high density, low volume fluid with all the properties of the

solid titanium dioxide with the exception ofviscosity. Therefore, the density of titanium

dioxide is modeled as a constant and not as a function of temperature.

The mixture properties must also be established by specifying which mixing law

calculation is to be used for each property. For each case study, the density of the

mixture is calculated using the volume-weighted-mixing-Iaw as described earlier because

titanium dioxide solid is being approximated as a fluid. Using the volume-weighted­

mixing-law, as opposed to the ideal gas law. yields a more accurate approximation of the

pressure profile, thus a more accurate flow profile. Thermal conductivity and viscosity

are calculated using the rnass-weighted-rnixing-Iaw as described earlier in this chapter. A

constant total mixture diffusivity is used to facilitate convergence.

Finally, the eddy-dissipation reaction model in used in each case study. The

eddy-dissipation model is ideal for near instantaneous reactions where the reaction rate is

mostly dependant on the rate of mixing (Fluent Incorporated, 1998). The use of this

model is necessary because a hydrocarbon combustion that significantly increases the

reactor temperature is usually integrated in each reactor. FLUENT cannot perform two

reaction calculations where both reactions have oxygen as a reactant and one reaction rate

is oxygen-dependant (Aggus, 2000). Because of this reason, the hydrocarbon reactions
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are not included and the TiC4 - 02 reaction should not be modeled with the Arrhenius

equation because the reactor temperature is too low.

All analyses are presented with the assumption that titanium dioxide can be

approximated as part of the continuum fluid. To separate the titanium dioxide into a

discrete phase, a UDF would be required to simulate the gas-to-solid particle reaction and

would have to include the initial parameters of the solid particles such as trajectory,

particle diameter, particle density, and temperature.

To perform an accurate mass balance - to achieve accurate velocity profiles - the

actual density of solid titania is used in the calculations. Difficulties arise in the analyses

when attempting to calculate a mixture viscosity and a mixture diffusivity. For each

species in FLUENT, a fluid viscosity must be specified and used in one of the available

mixing laws (i.e. mass weighted mixing law) to calculate the mixture viscosity. A

relatively high value for viscosity was assumed to approximate the viscous forces on the

particles. Changes in the approximated viscosity would affect the calculated pressure

drop from the momentum balance.

Also approximated was the mixture diffusivity. Since the main profile of interest

in the analyses is the species distribution, a constant mixture diffusivity is the most

significant assumption made. Ideally for a fluid mixture, each binary diffusivity should

be entered into FLUENT mixture properties. Binary diffusivities, including those of

titania and various gases, can be found in reference tables or can be calculated. However,

the titania is being approximated as a fluid in FLUENT, therefore the diffusion of interest

is that seen by the bulk fluid and is not numerically the diffusion of gas into the solid

titania particle as given in tables, but a much larger diffusion approximating the flux of
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each gas species between particles. Therefore, the binary titania-gas diffusivities should

be large, not small, relative to gas-gas diffusivity.

Two additional analyses were perfonned separately from the ones presented, one

with a 50% increase in the mixture diffusivity, the other with a 50% decrease. Both

analyses show little difference from each other or from the original diffusivity used.

Results are presented in Appendix D.

Cabot Reactor Patent # 3,311.452

Cabot Corporation was one of the first companies to patent a Ti02 reactor design

incorporating the use of a hot gas sheathe to protect the walls from oxide scale buildup.

In 1967, Cabot Corporation proposed this design specifically for the hydrolysis of TiC4

to Ti02 with a hot gas sheathe protecting the yellow highlighted wall surface in Figure 8.

This patent claims that no accretion occurs on the yellow higWighted wall after one week

of operation when the hot combustion gas is introduced through Inlet 1 instead of through

Inlet 2.

The hot gas sheathe is not the only approach used in this patent for the reduction

ofTi02 accretion. The knife-edge inlet is a widely used approach for reducing oxide

scale buildup in c.Woride process reactors and is the large reason for the reduction of

oxide scale in this reactor. The reason this method is somewhat effective is that it

decreases the reactor surface area where the reactants mix and react to a single point or

line. As seen in Figure 8, the red higWighted region is the knife-edge where the reactants

all meet and is the point where the reaction is initialized when the combustion gases are

introduced through Inlet I.
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Table 4 Inlet Boundary Conditions CASE I

Mass Flow Rate (kg/s) Temperature (K)
Oxygen (Inlet 4) 0.445 1228

Chlorine Inlet 1

I
Inlet 2 1228

0.5 0.5
Titanium Tetrachloride 2 672

(Inlet 3)

Table 5 Inlet Boundary Conditions CASE II

Mass Flow Rate (kg/s) Temperature (K)
Oxygen (Inlet 4) 0.445 1228

Chlorine Inlet I

I
Inlet 2 1228

4 1.5
Titanium Tetrachloride 2 672

(Inlet 3)

Table 6 Inlet Boundary Conditions CASE III

Mass Flow Rate (kg/s) Temperature (K)
Oxygen (Inlet 3) 0.445 1228

Chlorine Inlet 1 Inlet 2 1228
0.5 0.5

Titanium Tetrachloride 2 672
(Inlet 4)

Table 7 Inlet Boundary Conditions CASE IV

Mass Flow Rate (kg/s) Temperature (K)
Oxygen (Inlet 3) 0.445 1228

Chlorine Inlet 1

I
Inlet 2 1228

4 1.5
Titanium Tetrachloride 2 672

(Inlet 4)
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a flow rate of 53 mls for the momentum of the chlorine stream at the reactor entrance to

equal the momentum ofthe oxygen stream.

SummaI)'

This chapter discussed four chJoride process reactor systems that were analyzed

using computational fluid dynamics software, FLUENT, and the continuity, momentum,

and energy equations used to perform the analyses. Two of the reactor systems were

patented gas-blanketed reactors that claim to reduce Ti02 accretion using the gas layer.

The third and fourth analyses are on Kerr-MeGee's current reactor both without and with

an added gas layer to separate the inflowing reactants to meet concurrently at the reactor

walls.
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CHAPTER IV

RESULTS OF CFD ANALYSES

Introduction

This chapter discusses the results obtained by analyzing the four chloride process

reactors discussed in the previous chapter. The analyses are aimed at determining the

efficacy ofa chlorine gas blanket to reduce oxide accretion at the reactor walls by

examining the walls for both titanium dioxide and an oxygen/chloride mixture. Also, the

effect of the gas blanket on mixing is examined by determining the total mass of titanium

dioxide exiting the reactors.

Cabot Reactor Patent # 3,311,452

As detailed in Chapter Ill, four separate runs were performed on the Cabot reactor

design.

CASE I CASE II
Inlets 1 & 2: Low Momentum Chlorine Inlets 1 & 2: High Momentum Chlorine

Gas Gas
Inlet 3: Titanium TetracWoride Inlet 3: Titanium Tetrachloride

Inlet 4: Oxygen Inlet 4: Oxygen
CASE III CASE IV

Inlets 1 & 2: Low Momentum Chlorine Inlets 1 & 2: High Momentum Chlorine
Gas Gas

Inlet 3: Oxygen Inlet 3: Oxygen
Inlet 4: Titanium Tetrachloride Inlet 4: Titanium Tetrachloride

Inlet numbers are presented in Figure 16.
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In Case I, cWorine gas is fed to the r ctOT at a low flow rate relative to th flow
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rates of the reactants. The chlorine gas is not expected to provide a effective gas

sheathe to prevent oxide deposition. The f; Howing fi res show mole fractions of

oxygen, titanium etrachloride, chlorine, and tita ium dioxide in a two-dimensional,

vertical, longi dinal slice of the reactor. M Ie fraction is defined as the number of oles

of sp cies i divided y the total nu ber of mol s in the system.
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Figure 17 (Cabot Case I) Mole Fraction O2

Figure 17 shows the oxygen exiting the inlet nozzle and expanding around the

surfaces adjacent to the inlet due to the sudden pressure drop highlighted in the following

figure.
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ole Fraction iCL.Figure 18 (Cabot Case I
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versa.

It can be seen from Figure 17 and Figure 18 that a mixture of oxygen and titanium

tetrachloride does not exist on any surface in the reactor. he wall surface surrounding

the titanium tetrachl ride inl t is dark blue in the oxygen concentration profile and vice

Figure 19 (Cabot Case I) Ie Fraction Ch
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igure 19 how that chlorine does not overcome the flow of 0 gen a d tita: ium

tetrachloride and d es not coat most wall of the react r.

-

ig re 0 ( bot C se I) ole Fraction TiOz

Figure 20 shows titanium di xide just u stream of e north wall of the oxygen

inlet and along the divergi g wall just d wnstream of the oxyge inlet The titanium

dioxide may also be starting to plug the 0 t r chlorin inlet

Case II is identic 1to Case I except with an increa e in chlorine gas flow rate

Th flow rate is set so that the momen m of the chlorine gas equals that of the oxygen

The following figures show mole fractions of each species.
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Figure 2] and Figure 22 show that a mixture of oxy en and ti aniu tetrachloride

does not exist on any reactor surface; her ore, a retion is not initiated by su ace

reaction on the reactor walls.
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With the hot chlorine gas sheathe, the titanium dioxide does n t igrate to the

surfaces surrounding the reactant inlets as illustrated in Figure 24. Shown in dark blue,

there is a zero mole fraction of titanium ioxide near the surfaces of the reactor

surrounding the reactant inlets.
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ex hanged. T foHowing figures show mol fractio s of ch les.
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Figure 28 (Cabot C se III) Mole Fracti n i02

The results of Case II are similar to Case I in that the reactants do not co-exi ton

any surface of the reactor due to the reactor d sign~ however, the titan·um dioxide freely

migrates to th reactor walls.

Case V, like Case II, incorporates an increased chlorine flow rate. The following

figures illustrate species mole fractions.
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As in each of the other abot an lyses, Figure 29 and Figure 3 how in the dar

blu , zero mole fTacti n regions, that xygen and itanium tetrachlori e do not coexist n

any reactor all.
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The chlorine gas layer in Case IV, as in se II forces the reaction to occur

downstream 0 the inlet nozzle walls and prevents titani m dioxid fro migrating to the

reactor walls near the inlet surfaces

The very low flow rates/pressures of the chlorine gas streams in Cases I and 1Jl

ca se the analyses to be very susceptible to deviations from symmetry due to the
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asymmetric mesh. For example, average mesh volumes may be slightly larger on one

side of the reactor.

Because the inlet flow rates and the rate ofreaction are identical in each case, the

rate of mixing can be evaluated by examining the mass flow rate oftitanium dioxide

exiting the reactor. The following table illustrates these results.

Table 10 Cabot Reactor Ti02 Flow Rates

Case I 0.730 kg/s Ti02

('aselI 0.830 kg/s Ti02

Case III 0.718 kg/s Ti02

Case IV 0.833 kg/s Ti02

This table shows that for Cases I and III, when the chlorine gas is fed at a low

flow rate, the setup with the chloride fed through the inner nozzle provides for slightly

better reactant mixing. For Cases II and IV, when the chlorine gas is fed at a high flow

rate, the setup with the oxygen fed through the inner nozzle gives better mixing. In both

setups, feeding the chlorine in at the higher flow rate provides for a significantly higher

yield of titanium dioxide.

PPG Industries Reactor Patent # 3,586,055

In the PPG reactor design, the reactants are intended to be fed concentrically to

the reaction zone. The patent proposes distributor plates, which should distribute flow

into the combustion chamber more evenly and thus reduce scale growth. The following

results show the flow conditions for the PPG reactor prior to the proposed distributor

plates.

The results from the analysis performed with a low chlorine gas flow rate are

presented below as Case I. The two-dimensional contours of species mole fraction are

presented to illustrate where in the reactor each chemical species is flowing.
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F'gure 33 and Figure 34 show the mole fractions of 0 g n d titanium

tetrachloride, r pectively. It can be seen from Figure 34 that the momentum ofth

chloride, on e injected into the conce tnc annulus, carries the g to t e oppo ite ide of

the tube. The chlorine gas, shown in i re 35 behaves in the same way, buil i g up on

the pposite side of the chlorin inlet. The resultant pressure diffi rentiat causes the fl ids

to flow into the combustion chamber unevenly resulting in significant a flow of th

hlorine into the titanium annulus as s own in Figure and of the oxide into the

chlorine annulus as sh wn in Figure 36.
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scale that would obstruct flow.

To detennine the impact of the chlorine gas blanket 0 oxide accretion, an

These results confirm th t this r ct r configuration would immediately accrue oxide

:i..

ole ractio Ti02e

dioxide i residing 0 the reactor wall and in the

igure 36 (PPG ea tor

From Figure 3 ) the titani

additional analysis on the PPG reactor w s rna e with an increased chlon e ga flow rate

chi nne gas deli ery ann Ius where there is a light blue, no -zero mol fractio color

he results of this analysis are presented below as ase I .
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..

Figure 37 throug xygen, itanium t trachloride,

and especially titanium dioxide in the cWo .ne an I s. The' ncrea e of chlorine ga

flow rate intensified the e eet seen in Case I wit the inlet chlorine gas carried to the side

of the annulu opposite to the inlet boundary Without deflector plates, increa ing the

chlorine gas flo rate increases the inclination of this reactor desig to become plugged

with oxi e scale.
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err- Gee Corpo tion R to

The foll wing figur com ar the flow profiles 0 e anal zed Kerr- c

reactor with the fl profiles of the a1t red reactor with a chlorine gas i et. Firs, 0-

dim nsional concentration profil s along the length of the reactor are pre ented oil ed

by two-dimensional concentration profiles through the chloride i ets as shown in igure

41 and Figure 42, r pecti el

Fig re 41 . Reactor ngit di 2- R nd ri g

igure 42 KM Reactor 2-D Rendering
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\lowing are pictures of i02 mo e action t n In I ngitudinal pI

original and alt red, re pectivel

ector-Lon itudin

2.114-01

'~1

igure 43 Mole raction Ti02
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igure 44 Mole Fracti n Ti02 ( I ered KM Reactor-Longitudin I

Figure 43 and Figure 44 show a slight improvement over the current KM reactor

with regards to oxide near the wall. The addition of a chlorine gas-blanket just before the
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chloride injectors seem to cause Impr verne in redu ing oxide accr io on th

r ct r walls downstream 0 the chloride inlets. However, do er look at h chlorid

inlet wal s is r Ulre.

3.m.-ol

2.7liI~1

2-..01

2.12lo-01

l.8ll1..o1

ure 45 ole raction Ti02 (KM Rea tor)

Figure 46 Mole raction Ti02 Altered KM Reac or)

The previous two illustrations present the titanium dioxide mole fraction in a slice

plane through the chloride inlets, original and altered, respectively. The original KM

reactor shows minute titanium dioxide in the chloride spool and nozzles possibly due to
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meshing difficulty an or low convergen . However, it can e clearly n fr m the

second figure that the titanium dioxi e is ill on ev n 0 e eight reactor all b n

t e hloride nozzl s.

Also importan are r ctant gas concentrati ns near th w 1. The fall wing

]lustrations of xygen and ftaniu tetrach oride a for the 0 'gi al
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p evlO s fi s s ow lar e concentrations f ot titani chJorid d

oxy en on the reactor wall be ee e hlorid ozzl ge and ti lUm

tet ac coexist on the walls be een the chlorid zzl in early stoic . C

mount.

h following figures sh
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Figure 49 shows oxygen r ov from four 0 e ig t cto all b n the

chloride now . Compare ith Figure 47, Fi re 9 sh ws a significant decrea

the amount of xygen at the alls. he st nce f oxygen a d titanium t ride

on the walls sh wn in Fi re 49 and Figure 50 contribute to the oxide at the wall wn

in Figure 4 .

Since t e mixing control ed reaction te is ed i the alysis, the mi i gate

can b ext apolated by the rate 0 produ ion ofTi02. Th the

original err-M Gee reactor wi h t e tered version i tot m ss flow rate ofTi02

through ev faces do stream ofthe hloride inlets. The chart shows a decrease in

Ti 2 prod etion for the lfst 30 cm past the chi ride inlets and then a significant increa e

in the last 40 cm. ince the hlorin strea se es to hi der reactio near the chloride

inlets and t drive the reactants away from the reactor walls, the mixing rate is red ced

for the first 30 em in the altered rea tor d th the mixing is increased ue to higher

turbulence caused by a higher mixture density becau e more fluid is being fed throug

the reactor per unit time.
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Figure 1 TiOz Flow Rates vs. istan e Down tream Reactor
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Ti02 m Ie fr ction pr files or the e en faces pr ar

illustrated below for b th reactors.
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Figure 52 and Figure 53 show that there is a narrower distribution ofTi02

concentration per face in the altered Kerr-McGee reactor. The color scale on the left side

ofFigure 52 and Figure 53 show that mole fraction range oftitania for the original Kerr-

McGee reactor is 0.00-3.09 (mol/mol) while the range for the altered reactor is 0.00-2.11

(mol/mol). In addition, each face in Figure 54 has a slightly more uniform color than

those in Figure 53. The increase in total yield oftitania and the narrower and more

uniform concentration profile ofthe altered reactor prove the increased rate ofmixing in

the altered Kerr-McGee reactor.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Hot gas wall sheathing is a method used frequently to reduce oxide scale on

commercial reactor walls. Two patents using this method, the commercial reactor in use

by Kerr-McGee, and an altered Kerr-McGee incorporating a gas sheathe were each

evaluated in FLUENT, a finite volume analysis software. These analyses were

performed to determine the efficacy of the chlorine gas blanket to reduce oxide buildup in

said reactors. This method, ifeffective, may contribute to eliminate the 250 lhslhr of

sand Kerr-McGee currently injects into the reactor to prevent scale buildup.

Cabot Reactor Patent # 3,311,452

The results on the four analyses performed on the Cabot reactor design show that

with a very small chlorine gas flow rate, the design of the reactor is such that the

reactants, oxygen and titanium tetrachloride, will not coexist on any surface in the reactor

thereby initiating surface reaction on the reactor wall. However, hot titanium dioxide

does migrate to most reactor surfaces in both analyses with a low chlorine gas flow rate.

With a cWorine gas flow rate equalizing the momentum ofthe chlorine stream with the

momentum ofthe oxygen stream at the entrance point, all titanium dioxide is swept far

away from the walls of the reactor. Turbulence and mixing are significantly increased.

Between the two analyses with a high chlorine gas flow rate, CASE IV, with the titanium

tetrachloride delivered axially and the oxygen delivered radially downstream ofthe

chloride inlet gives a higher mixing rate thus a greater Ti02 yield at the outlet plane.
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PPG Industries Reactor Patent # 3,586,055

Analyses of the PPG Industries reactor design verifies the patent claim that

without distributor plates, chlorine and titanium tetrachloride gases fed to the reactor

form a high pressure zone in the concentric annuli opposite the side of the gas inlets. The

gases are then fed unevenly into the reaction zone causing severe backflow and uneven

mixing in the reaction zone. Increasing the chlorine flow rate to equalize the momentum

of the chlorine gas to the momentum of the oxygen stream intensifies the problem as the

pressure gradient across the chlorine annulus is increased thereby causing a more uneven

flow field in the reaction chamber. Without the addition ofa design change, such as the

addition ofdistributor plates, the chlorine gas sheath is not a viable method of preventing

oxide deposition in this reactor.

Kerr-McGee Reactor

Kerr-McGee currently maintains continuous operation of their chloride process

reactors by injecting a scouring agent into the reactor to prevent scale buildup. The Kerr-

McGee reactor was modeled in FLUENT without the scouring agent and the initial points

of deposition were identified. A chlorine gas-blanket inlet was added to the current Kerr-

McGee reactor immediately upstream of the initial points ofdeposition and inlet

conditions of the chlorine gas were set to equilibrate the momentum of the oxygen stream

with the chlorine stream. The results of the analysis show that although the addition of

the gas increases the turbulence and mixing rate downstream in the reactor, it will not,

with the given flow rate and design angle, prevent oxide accretion on the reactor wall.

A recommendation for future study is to decrease the angle of the chlorine inlet

and to adjust the chlorine flow rate as needed, preferably to 26.5oos0 (mls) where 0 is the
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angle between the chlorine inlet and the axial Line of the reactor. Decreasing eshould

serve to keep the chlorine gas closer to the reactor wall where needed and out of the bulk

fluid, and serve to decrease the amount of chlorine required, thereby preserving the

particle size distribution.

To prevent deposition, Kerr-McGee requires no more that a 10% increase in

chlorine gas in the system. With the altered design, there is an 80% (by mass) increase of

chlorine in the system. Reducing the angle of the chlorine gas inlet to nearly parallel

with the axial direction of the reactor would reduce the required chlorine by half.

Therefore, the minimum chlorine deliverable to prevent deposition on just the TiC4

nozzle area causes an increase ofchlorine in the reactor of 40%. With the dimensions

used for the chlorine gas inlet, a chlorine gas wall sheathe cannot be used for the

reduction of wall scale and remain under the limit of chlorine gas in the system.
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C SE I

Figure 54 presents th two- imensional density profile of the ase I abot

r ctOT. The density ranges from 0.7 to 16.3 kglm3 and is th

and is highest in the itanium tetrachloride inlet.
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Figure 54 (C bot a e I) De ity Profile

Figure 55 presents the turbul nt rate 0 reaction (kmol/s) and qualitatively where

the reaction takes place in the reactor.
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Figure 56 presents a close-up view in the reaction area of the mole fraction of

titania and shows a non-zero titania mole fraction on several fthe reactor surfaces.

Fig r 56 Cabot Ca e I Clo e-up Mol raction Ti02

Figure 57 and Figure 58 present the pressure profile in Pascal (gage) and the

velocity profile in mls of the Case I Cabot reactor.
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Figure 59 presents a close-up view of the velocity vectors in the reaction region of

the Case I Cab t reactor. Velocity vectors are us ful in identifying re~ions of backflow

and swirling.

68



7.1110

•• .(l()

. . .
...... .

• • 0"'

'. "
.......

" ..

ASEII

re 59 ( abot a P 10 ity Veto Profi e

Figure 60 presents the two-dimensional density profile of the Case II Cabot

react r. Like all ther cas s, the d nsity ranges fro .7 to 16.3 kglm3 and is the lowest

in the oxygen inlet an is highest in the titanium tetrac loride inlet.
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r 61 presents th pr ssure rofi Ie oe n Comp ing

ase to Case I it can be een that e inner hlo·ne str does nth v e

th igher re sure 0 the xygen i let een in ase I and the chlori e gas is able to v

the oxygen 0 stream.
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Figure 62 presents the reaction rat p ofile for ase n d in t e dim Ions

t e ce ter of the react r.would appear s an annulus do
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Figure 63 presents the velocity pr file for Case Il ab t

(no slip a the wa boundary conditi ) t 7.61 mJ .

ctor and
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. igure 64 (Cabot Case IT) Velocity Vector Prorde
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CASElli
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igure 5 ( a ot a e IT) 10 e- p eloci ector . rofile

Figure 66 presents th two-dimension ] densit r file of the C e III Ca ot

reactor. It can be con lrmed in his figure that the locations ofth chloride and oxygen

inlets h ve been switched.
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Figure 66 (Cabot ase ill) Den ity Pro de
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Fig re 67 ( ot a e 10) Pr sure Profile

igure 68 prese ts . e turbulent r etio p file fi rase III and is similar t that

o Case I. It can be seen from all Cabot reaction p ofiles that reaction does n t rea ily

occur on the wall surfaces.

2.JI4~1

2_...<rl

~1

1.-...01

,_~,

lm.~1

l.bo~1

• .21.-02

1_-02

._...Q2 z~
OJDtoOO

-

Figure 68 (Cabot C e UI) Reaction Profile
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CASE IV

Fig re 71 C b t Ca lose-up Velocity Veet r rofil

igure 72 pre ent the density profile of the abot Ca e [ reactor. he hi her

flow rate of chlori e swe ps he chlorid further downstream and away from the inlets.
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Figur 73 (C re P otiJe

Figure 74 pre e t the reaction rate rofile for the Cabot Case IV reac or.

Compared to a e II, Figure 62, this reaction pro de is in more defined annular shape

due to the c ang of reactant inlet po ition .
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D B

Low

Addition PPG R Its

igure 78 presents the density profiJ fthe Cas I P reactor profile. T e high

de sity red regio 's clearly pure tit ium tetrachJori e and the dark blue re ion i low

density oxygen.
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Figure 78 (PPG Reactor a e I) en ity Profile

Figure 79 presents th pressure pro Ie for the P ase reactor The titanium

tetrachloride is bei g fed at a higher . essure tha the oxygen and the pressure

differential across the chloride annulus can be seen in the figure.
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Figure 79 (P G eactor Case I) re ure Profile

Figure 80 presents the turbul nt rea tion rate of the PPG reactor for Case I.

Qualitativel ,the r ction takes place in the blue-gre n region and near the annulus wall

separating the oxygen inlet and the chlo .ne inlet.
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ig re 8 (PPG Reactor Ca e I) Reaction Profil

Figure 81 and Figure 82 present the velocity magnitude and velocity vector

profiles, respectively. The oxygen is delivered at the highest velocity at 62 3 mls.
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P R ct r Case V loci rofi e

igure 82 (PPG Reactor Case I) Velocity Vector Prom

High Chlorine Flow (Case II)

Figure 83 presents the density profile of the Case II PPG reactor profile.
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In ase 11, the delive

gas as seen in Figure 84.
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re s re ofthe c I ri e gas excee s that of the chloride

Figure 84 (PPG Reactor a en) Pre ure Profile

Figure 85, compared with Figure 80, shows that Jess reaction is taking place in

Case II than in Case I Figure 85 also shows that reaction is taking place in the chlorine

inlet and most quickly on the reactor wall.
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R ul

and can be compare t he density pr file of the altered Kerr-Me ee reactor, igu e 91.

The orange in the upper side of the titanium tetrachloride pool can only be xplai ed by

convergence error.
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Figure 87 (Kerr-Me ee Reactor De ity P ofile
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Fi re 89 pre ents the turbulent rate of reaction profile for the original Kerr-

Me reactor.
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Figure 89 (Kerr-McGee Re ctor) Reaction Profile
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he elocity profile (m! ) for the original Kerr- cGee reactor i rented in

re 90. Dark blue walls call attention to the no-slip boundary condition.
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Figure 90

AJtered Kerr-McGee Reactor

elocity Profile
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igure 92 (Altered err- cGee Reactor) Pr u e Profile

Figure 93 presents the tur ulent rate f r ction for the aJtered e -McG e

reactor. Compared to igure 89, the reaction is aetuaJl occurring her away om the

reactor walls.
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Figure 93 (Altered Kerr-McGee Reactor) Re ction Profile
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Fi e 94 presents the velocity mag itude profile ( ) of the al ered K IT- cGee

reactor. e addition of the cWorine gas increases t I elocity of the y tern.
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Figure 94 ( t red err-Me
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PPE IX

en iti ity of Diffu iv' on t ot

he fl llowing figures present th mol ctions of titania for t 0 cas tudi s

where the diffusivity was fluctuated by +50% (Figure 95) and -50% ). The

analyses were performed on the altered Kerr-Me ee r ctor. There is very littl

difference in the following figures.
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Figure 95 Mole raction of Titania (+50% D'ffu ivity)
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