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CHAPTER I

RESEARCH PROBLEM

Introduction to the Problem

The World Health Organization defines osteoporosis as "a disease characterized

by low bone mass and microarchitectural deterioration of bone tissue, leading to

enhanced bone fragility and a consequential increase in fracture risk" (WHO Study Group

1994). Osteopenia, the loss of bone mass, is the result of altered bone remodelling. Bone

remodelling is controlled through the activity of osteoblasts and osteoclasts. Osteoblasts

are mononucleated cells derived from osteoprogenitor (stem) cells that synthesize and lay

down new bone matrix. Osteoclasts are multinucleated cells of monocyte lineage that

resorb old bone by secreting lysosomal enzymes, hydrogen peroxide, and free radical

into a resorptive compartment next to bone (Marks & Popoff 1988, Christenson 1997).

Osteoclastic bone resorption paired with osteoblastic bone formation is part of the normal

process of bone remodelIing regulated hy interactions between systemic and local factors

(Mundy 1999).

As aging occurs, the rate of bone resorption tends to exceed the rate of formation,

resulting in a net loss of bone. Bone mass rapidly increases during puberty and until 25 to

30 years of age, at which time peak bone mass is achieved (Parfitt et al. 1983). However,

the progressive loss of bone generally begins at about age 35 in most humans (Baron

1999). Factors affecting bone resorption include an individual's genetic potential,



environmental influences, nutrition, and weight-bearing activity (Seifert & Watkins

1997).

In 1892, Julius Wolff proposed the idea that bone increased its density and

strength in areas exposed to stress, while areas not physically stimulated become weaker

and less dense (Gooch & Tennant 1997). Lack of physical stimulation, or skeletal

unloading occurs primarily in circumstances of immobilization (such as paralysis),

prolonged bedrest, or space flight.

Oxidative damage is another factor influencing bone resorption. Osteoclasts are

generated from cells of the monocyte-macrophage lineage, which secrete oxygen-derived

free radicals that are involved in the cellular formation and activation of the osteoclast

itself (Garrett et al., 1990).

Other local factors responsible for influencing bone turnover are cytokines, such

as interleukin-1 (n....-1), interleukin-6 (ll.r6), and tumor necrosis factor-a (TNF-a), and

prostaglandins of the E-2 series such as PGE2 (Kenny & Prestwood 2000).

Nutrition is also very important in bone remodelling. In the past, research has

focused primarily on the impact of vitamin D and minerals, such as calcium and

phosphorus, on the skeleton. However, antioxidants have recently been suggested as

playing a role in bone metabolism (Seifert & Watkins 1997).

Vitamin E is a fat-soluble antioxidant that functions as a free radical scavenger to

prevent lipid peroxidation (Cohen & Meyer 1993). Vitamin E may suppress the

production of cytokines and prostaglandins that are involved in osteoclastic bone

resorption (Wu et aJ. 2001, van Tits et aJ. 2000, Devaraj & Jialal 1996,2000).

Vitamin E and other antioxidants may have a protective effect on bone (Xu et a1.1995,

Maiorano et al. 1999). However, minimal research has focused on vitamin E and its

effect on bone metabolism in a model undergoing rapid bone loss.
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Significance of Problem

The disability, mortality, and cost of osteoporosis represents a challenging public

health problem. It is estimated that approximately one-half of all women and one-quarter

of all men over age 50 are affected at an annual cost of over 10 billion dollars in the

United States alone. Additionally, the direct healthcare costs of osteoporosis are

estimated to be near 38 million dollars per day (Kenny & Prestwood, 2000). Due to the

increasing median age, the diagnosis, treatment and monitoring of osteoporosis and other

skeletal diseases has become a leading healthcare issue (Christenson 1997).

With prolonged stays in space becoming more common, bone loss resulting from

exposure to microgravity is also an important biomedical concern. Microgravity induced

osteoporosis was noted in the first human space flights in the early 70's. During the 237

day Soviet Soyuz T-lO mission, the three crewmembers lost an average of 13-19% of

bone (Stupakov et a1. 1984). Subsequently, Collett et al. (1997) found a 25% decrease in

bone mineral density of two astronauts after a 6-month spaceflight. The microgravity

induced bone loss in space is very similar to disuse-osteoporosis on eatth and bone

remodeling markers have been extrapolated to either condition (Christenson 1997).

On earth, the hindlimb unloaded (fll..U) animal model has proven useful to study

the effects of near weightlessness on bone and other physiological parameters (Morey

Holton 1998). Previous studies of weightlessness on bone have focused primarily on

parameters of bone metabolism without the addition of nutritional variables (Machwate et

al. 1993, Keila et al. 1994, Moos et al. 1994, Wronski & Morey 1983). This experiment

was designed to investigate the effects of vitamin E on bone metabolism in the hindlimb

unloaded rat.

Objectives

The following objectives were developed to investigate the effects of skeletal

unloading and three concentrations of vitamin E on bone in aged rats.
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1. To determine if hindlimb unloading and vitamin E have any effect on bone mineral

density or biochemical markers of bone remodelling in aged rats.

2. To investigate the changes in concentration of selected macro and trace elements in

the bone of hindlimb unloaded vitamin E supplemented aged rats.

3. To explore the impact of hindlimb suspension and vitamin E status on marrow

derived bone cells.

Hypotheses

The following hypotheses were developed f?r this study.

1. Hindlimb unloading, vitamin E status, or their interaction will not significantly alter

the bone mineral area, bone mineral concentration, or bone mineral density in aged

rats.

2. There will be no statistically significant effects of hindlimb unloading, vitamin E

status, or their interaction on biochemical markers of bone remodelling (i.e. serum

alkaline phosphatase, bone-specific alkaline phosphatase, serum osteocalcin, and

serum tartrate-resistant acid phosphatase) in aged rats.

3. There will be no statistically significant difference in the total bone content or

concentration of calcium, magnesium, copper, iron, and zinc due to hindlimb

unloading, vitamin E status, or their interaction in aged rats.

4. Hindlimb unloading, vitamin E status, or their interaction will not significantly alter

the initial viability, alkaline phosphatase secretion, osteocalcin secretion, or tartrate

resistant acid phosphatase activity in marrow-derived bone cells from aged rats.

Limitations

During hindlimb unloading, the age of the animal is very important. Most of the

research using the hindlimb unloaded rat has been performed on young growing rats.

Hindlimb unloading in young rats results in impaired bone formation, with little or no



increase in bone resorption. In aged rats, skeletal unloading appears to increase bone

resorption. However, the etiology of the increased resorption is not well defined.

Although the data from young growing rats has provided valuable infonnation regarding

the effects of loading on bone, caution must be used when extrapolating the information

to the adult human skeleton.

Fonnat of Thesis

The experiment included in this thesis is organized as an individual manuscript

and written using the Guide to Authors from the Journal of Nutrition (2000).
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CHAPTER II

REVIEW OF LITERATURE

Bone is a connective tissue composed of specialized cells and an extracellular

matrix. The extracellular matrix is formed by collagen fibers and noncollagenous

proteins (Baron 1999). The homeostasis and development of bone is maintained by a

delicate balance between bone formation and resorption (Lazner et a1.1999). This

equilibrium is controlled by the activities of osteoblasts and osteoclasts. Osteoblasts are

cells responsible for building new bone by synthesizing collagen and protein for the

matrix and promoting calcification (Marks & Popoff 1988). Osteoclasts are bone-lining

cells that resorb old bone by producing and releasing lysosomal enzymes, hydrogen

protons, and free radicals into a resorpti ve compartment next to bone, which dissolves the

mineral and degrades the bone matrix. (Baron 1999, Marks & Popoff 1988).

In ideal physiologic circumstances, resorbed bone is immediately replaced with

new bone by osteoblasts. However, there are many conditions in which bone resorption

exceeds the rate of formation, leading to demineralization and an increased risk of

fractures.

Age-associated osteopenia is one of the most common instances in which bone

resorption exceeds the rate of bone formation. Although there are many factors involved,
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a major cause appears to be a decrease in mechanical loading and usage (Bagi et aI.,

1993).

Local Regulators of Bone Metabolism

Prostaglandins are important local regulators in bone. They are fonned from

arachadonic acid via the cyclooxygenase pathway. Prostaglandin E2 (PGEz), is a known

stimulator of bone resorption. Numerous studies have indicated that in the presence of

PGEz, osteoclasts are activated and resorption occurs (Collins and Chambers 1991, Kaji

et aI. 1996, Akatsu et al. 1989). However, the exact mechanism is still unclear.

Akatsu et aI. (1989) hypothesized that certain prostaglandins stimulate bone

resorption by promoting the recruitment of osteoclasts. They cultured bone marrow cells

obtained from 7-9 week old male mice in varying concentrations of PGE), PGEz, and

PGF2o:. Tartrate-resistant acid phosphatase staining was used to determine the

development of osteoclastic cells and cyclic adenosine 3' ,5' -monophosphate (cAMP)

concentration was also measured in the cultures. Results indicated that PGE, and PGEz

were dose-dependently the most potent in inducing the fonnation of osteoclast-like cells.

They also determined the order of the potency of prostaglandins in inducing bone

resorption correlated with increasing cAMP production by bone cells, suggesting that

prostaglandins induce osteoclast-like cell fonnation by a mechansim involving cAMP.

These findings were similar to those of Kaji et al. (1996) and Yamaguchi et al. (1998),

that, in culture, PGEzstimulates osteoclast-like cell fonnation through an increase in

cAMP levels.
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Cytokines are molecules released by macrophages or lymphocytes which

modulate various cellular activities and play an important role in the regulation of bone

resorption and formation during remodelling (Zheng et al. 1992). Similar to

prostaglandins, certain cytokines, such as interleukin-l (IL-l) and tumor necrosis factor

alpha (TNF-a) are potent stimulators of bone resorption. Pacifici et al. (1987) found that

in disease states IL-l released in peripheral monocyte cultures was increased in

osteoporotic women with high bone turnover. Findings by Pfeilschifter et al. (1989)

suggest that IL-l and TNF-a act synergistically on the formation of osteoclasts. To

determine this they exposed human bone marrow cell cultures to varying concentrations

of both IL-l and TNF-a and observed the number of osteoclast-like multi-nucleated cells

formed. Their results indicated significant increases in osteoclast-like multi-nucleated

cell formation when TNF-a and rL-l were added together, suggesting that the extent to

which these cytokines may stimulate bone resorption is largely dependent on their

combined effects.

A later study by Cohen-Solal et a1. (1993) also suggested a possible synergistic

effect between IL-l and TNF-a on bone. However, they measured the production of

cytokines in the supernate of bone cultures obtained from pre- and post-menopausal

women. Their results indicated a significant correlation between bone-resorbing activity,

IL-l and TNF-a levels in the supernates.

Vitamin E and Local Regulators of Bone Metabolism

Abundant research has focused on the ability of vitamin E to suppress

inflammatory mediators. The activity of PGE2, a product of the cyclooxygenase pathway,

8



is dependent on the cyclooxygenase enzyme (COX-2). The COX-2 enzyme requires the

presence of oxidant hydroperoxide as an activator. Wu et a1. (2001) hypothesized that

vitamin E may suppress COX-2 activity by scavenging the oxidant hydroperoxide

necessary for activation and thereby decreasing PGEz production. To investigate the

effect of vitamin E on PGEz production, they used young (6 month) and old (24 month)

male mice fed diets containing 30 ppm (recommended) and 500 ppm (supplemental) a

tocopherol for 30 days. At necropsy, peritoneal macrophages were collected and

lipopolysaccaharide (LPS) stimulated PGEz production was measured in culture medium

by radioimmunoassay. Their results indicated that macrophages from old mice in the

control group produced significantly higher levels of PGEzcompared to the young mice.

However, vitamin E supplementation completely elimated the age-related increase in

PGEz production. There was no significant difference between PGEz production in the

young control group and old supplemented group.

Vitamin E has also been shown to suppress cytokine production. In two separate

studies, Devaraj and Jialal (1996 & 2000), found that vitamin E supplementation

significantly inhibited IL-l and TNF-a production in LPS stimulated monocytes in both

healthy and diabetic subjects. Furthermore, van Tits et al. (2000) also showed that

vitamin E supplementation significantly inhibited the release of ll.r1 and TNF-a in LPS

stimulated mononuclear cells.

Oxidation and Bone Resorption

Many different hormones and biochemkal factors are involved in bone

remodeling; however, the precise signaling processes are poorly understood.
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Abundant research has focused on the damaging effects of oxygen-derived free

radicals. A free radical is defined as any species capable of independent existence that

contains one or more unpaired electrons. The oxygen molecule, as it occurs naturally, is

considered a free radical due to the presence of two unpaired electrons in its outer orbital.

Osteoclasts are most likely derived from macrophages, which when stimulated, release O2

into the surrounding tissue fluid. In the tissue fluid, 02 promotes the formation of

hydrogen peroxides and the hydroxyl radical (Halliwell & Gutteridge 1985).

Garrett et al. (1990) investigated whether the formation and activation of bone

resorbing osteoclasts was associated with oxygen-derived free radical generation. The

experiment was conducted not only in vitro using fetal rat long bones and mouse

calvariae, but also in vivo. To determine the effect of oxygen-derived free radicals

generated in vivo, a solution of xanthine and xanthine oxidase was injected into the

subcutaneous tissue of the calvariae of 5 week old mice three times a day for 3 days.

Histological data showed that the in vivo treatment of calvarial bone with xanthine and

xanthine oxidase dramatically increased the number of osteoclasts and resorption surfaces

in histologic sections. In vitro, nitroblue tetrazolium (NBT) staining of mouse calvaria

was used as a marker of free radical production in resorbing bone. Bone resorption was

stimulated by parathyroid hormone (PTH), IL-la, and tumor necrosis factor (TNF).

Microscopic examination found large, NBT-positive osteoclasts adjacent to areas of

resorption, but few NBT-positive osteoclasts were seen in the control bones. They were

able to confirm that when free oxygen radicals were generated in the bone environment,

osteoclasts were formed, and bone resorption occurred.
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Furthurmore, Key and collegues (1994) concluded that exposure of bone matrix to

superoxide generated directly within the ruffled border resulted in bone resorption. They

obtained cells from the tibiae of rats weighing approximately 135g and identified

osteoclasts by staining for the presence of tartrate-resistant acid phosphatase (TRAP).

Tartrate-resistant acid phosphatase positive cells were incubated in the presense of NBT,

NBT plus superoxide dismutase (SOD), or NET plus human recombinant calcitonin

(hCT). Analysis of NET staining in or around the osteoclasts was detennined using

microspectrophotometric densitometry with digitizing software. The greatest optical

density was apparent in cells incubated in NET alone. A significant, 1.84 fold reduction

in NET staining was observed in cells incubated with NBT and SOD when compared to

those incubated in NBT alone. In these conditions, SOD does not cross the cell

membrane, thus, any reduction in NBT staining is attributed to superoxide generated

upon or diffusing to the external membrane of the osteoclast. Osteoclasts incubated with

NET and hCT also had a significantly reduced optical density when compared to controls.

From this, they were able to conclude that superoxide is one of the oxygen-derived free

radicals produced by osteoclasts and that the production of oxygen-derived free radicals is

inhibited by SOD and hCT. A previous study by Key et al. (1990) supports the idea that

exposure of bone to superoxide generated within the ruffled border results in increa ed

resorption and that the addition of SOD significantly reduces the degradation of bone.
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Vitamin E and Bone Metabolism

Vitamin E is a fat-soluble vitamin that functions to protect the membrane integrity

of cells. This is achieved by vitamin E's ability to prevent the oxidation of unsaturated

fatty acids contained in the phospholipids of cellular membranes (Knight 2000). Vitamin

E acts as an antioxidant by reacting with lipid peroxy radicals to form a vitamin E radical.

Vitamin E radicals are insufficiently reactive to abstract hydrogen ions from the

membrane lipids. Therefore, vitamin E terminates the chain reaction of lipid

peroxidation. Vitamin E radicals are fairly stable because the unpaired electron on the

oxygen atom can be delocalized into the aromatic ring structure which increases its

stability (Scarpa et a1. 1984).

Because it has been shown that bone resorption is linked to free radical production

(Garrett et a1. 1990, Key et al. 1994) and that vitamin E suppresses oxidation, research

has been conducted to determine the effect of vitamin E on bone metabolism.

Neve et al. (1993) examined the effect of vitamin E on bone physiology in both

young and old, male and female CBA mice. In an 8 x 2 factorial design, animals were

supplemented with 0.25% dl-alpha-tocopherol added to their usual pelleted diet. Young

animals were necropsied at 7 weeks and old animals at 22 months. Femurs were removed

for analysis. All animals in the supplemented group showed significantly higher bone

mineral content in the upper half of the femur compared to those in the control group,

regardless of sex or age. This study indicated a benefical effect of vitamin E on bone

mass. However because oxidative stress was not measured in the mice, the researchers

12
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were unable to determine if the beneficial effect was due to vitamin E's ability to prevent

oxidative stress or by some other mechanism.

In another study, Xu et a1. (1995) found that vitamin E supplemention in chicks

significantly increased bone mineral apposition rates. Their study investigated the effect

of vitamin E and and various lipids on epiphyseal growth plate cartilage development and

trabecular bone fonnation. In a 2 x 2 factorial design, chicks were supplemented with 30

or 90 ill dl-a-tocopherol acetate/kg of diet. Thirty ill/kg served as the control diet and 90

IU/kg as 3 times the recommended level. Diets also contained either anhydrous butter oil

(BSO), 40 g/kg diet, or soybean oil (SBO),lOO g/kg diet. Animals consumed their

respective diet for 14 days and were then necropsied. Chicks consuming 90 ill vitamin

E/kg had significantly increased zonal thickness of the lower hypertrophic chondrocyte

zone and increased growth plate thickness when compared to chicks consuming 30 ill/kg.

The effect of vitamin E on labeling measures of trabecular bone was dependent on lipid

source. Chicks consuming 90 ill/kg vitamin E with SBO had a higher total labeled bone

surface and bone formation rate, than those consuming 90 ill vitamin E/kg wi th BSO or

those consuming 30 ill vitamin Elkg with either lipid source. Their findings indicated

that free radical production may not only increase osteoclastic activity, but also inhibit

osteoblastic activity, making vitamin E vital for the protection of chondrocyte membranes

and matrix vesicles from oxidation. They suggest that vitamin E may improve normal

maturation and differentiation of chondrocytes and benefit matrix vesicle-initiated

mineralization. In a related study examining the influence of vitamin E on metacarpal

growth plate evolution and collagen characteristics in suckling lambs, Maiorano et a1.

(1999) found a significant vitamin E effect on thickness of the metacarpal growth plate

13



proportional to vitamin E dose. Their findings correlate with those of Xu et al. (1995)

that vitamin E protects chondrocyte membranes from lipid peroxidation and inhibits

cartilage resorption.

Assessment of Vitamin E Status in Rodents

The American Institute of Nutrition (AIN) rodent diets are nutritiona.lly adequate,

semi-purified, standardized diets fonnulated for growth, pregnancy and lactation, and

maintaining the health of rodents during nonna! husbandry. The AIN-93G diet is

recommended during growth, pregnancy, and lactation. However, the AIN-93M diet is

lower in fat and protein, and is recommended for optimum nutrition during adulthood.

Fat source and amount have been shown to affect the vitamin E requirement in

rodents. The AIN recommends increasing the amount of vitamin E when the amount of

fat is increased in the diet (Reeves et a1. 1993). Meydani et al. (1987) found that

consumption of n-3 fatty acids reduced vitamin E concentrations in serum and tissues

more than n-6 fatty acids. In an additional study (Meydani et al. 1988), they reported that

fish oil moderated the increase in plasma a-tocopherol levels after vitamin E

supplementation.

The AIN-93G diet contains 70 g soybean oil/kg of diet. The recommended

amount of supplemental vitamin E for this source and amount of fat is 75 IV u

tocopherol acetate/kg of diet. Hypothesizing that vitamin E is beneficial in preventing

age-associated lipid peroxidation and eicosanoid production, the AIN committee retained

the amount of vitamin E in the AIN-93M diet at 75 IV a-tocopherol acetate/kg of diet as

14



in the AIN-93G diet. However, the amount of fat in the maintenance diet is only 40 g

soybean oil/kg diet (Reeves et a1. 1993).

Serum or plasma a-tocopherol is commonly measured to determine vitamin E

status in rodents. Meydani et a1. (1987) measured the serum a-tocopherol concentration

in 3-month old male mice. Mice were fed a diet containing either 30 IU/kg or 500 ill/kg

a-tocopherol acetate for 1.5 months. Tocopherol-stripped com oil was used as fat source

in the diets. Serum vitamin E, determined by high-performance liquid chromatography

(HPLC), was 2.9±0.4 and 7.2±O.3 J.!g!ml in mice fed the 30 ill/kg and 500 ill/kg diets,

respectively. Chen et a1. (1995) measured the serum a-tocopherol concentrations in

weanling, male rats fed 0, 100,5000, and 15000 ppm vitamin Elkg diets for 2 months.

Com oil stripped of a-tocopherol was used as a fat source and supplied 14% total weight

of diet. Serum a-tocopherol concentrations ranged linearly from 0.2±O.03 Ilg!ml for the 0

ppm a-tocopherol/kg diet to 13.6±2.1 /lg!ml for the 15000 ppm a-tocopherol/kg diet.

Additionally, Lehmann (1981) reported a linear increase in plasma a-tocopherol

concentrations ranging from 1 to 7.5 Ilg!ml in male weanling rats consuming 0,5, 10,20,

and 500 ppm a-tocopherol acetate/kg diet for 2.5 months.

Vitamin E deficiency is rare and no defined deficiency diseases have been

established. However, increased susceptibility to oxidative damage has been associated

with vitamin E deficiency. Hemolysis, measured in vitro using hydrogen peroxide as an

oxidizer, is often used to measure vitamin E adequacy in subjects (Boda et a1. 1998).

Studies have shown that excess a-tocopherol is not mutagenic, carcinogenic, or

teratogenic in rats (Abdo et a1. 1986, Dysmsza & Park 1975). However, rats fed
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extremely high doses have experienced an assortment of other effects. At very high doses

a-tocopherol may cause hemorrhaging and interfere with blood coagulation. Abdo et al.

(1986) examined the effect of 13 weeks of d-a-tocopherol supplementation in 1 month

old Fischer 344 rats. Vitamin E dosage (125, 500, or 2000 mglkg body weight) was

administered daily in corn oil by gavage. They found vitamin E to dose-dependently

increase time required for blood to clot. Increases in prothrombin time were observed in

animals receiving the 500 mglkg a-tocopherol dose; however, prothrombin time was

increased by 8.6 seconds in animals receiving the 2000 mglkg dose when compared to

animals receiving the 500 mg/kg dose. In a similar study, Yang and Desai (1977)

examined the effects of diets containing 0, 25, 250, 2500, 10000, and 25000 IU u

tocopherol/kg diet in weanling Wistar rats. Prothrombin time was measured at 9, 12, and

16 weeks of supplementation. They observed no increase in prothrombin time even when

dietary vitamin E was as high as 25000 IU/kg diet. Their results differed from those of

Ahdo et al. (1986) who found an increase in prothrombin time in animals consuming

excessive amounts of a-tocopherol. However, because neither study measured plasma or

tissue concentrations of vitamin E, it is difficult to assess the true vitamin E status of the

animals.

Mechanical Loading and the Human Skeleton

Mechanical loading plays an important role in the achievement and maintenance

of peak bone mass. Over a century ago, Julius Wolff hypothesized that "mechanical

stress determined the form and function of bone" (Gooch 1997). Mechanical loading

affects bone structure by enhancing the periosteal apposition rate during growth and
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inhibiting age-related bone loss in adults. Strain or stress applied to bone enables

osteoblasts to fonn new bone on existing surfaces (Parfitt 1987). Loading of bones is

achieved through weight-bearing exercise and by hydrostatic pressures generated within

the body. Regions of the skeleton which are exposed to the greatest weight-bearing load

express a higher bone mineral density than areas exposed to less of a load (Iwamoto et al.,

1999). Interstitial fluid pressures also increase the weight-bearing load on bones. Gravity

creates a fluid pressure gradient from the top to the bottom of the body. Therefore, bones

most affected by interstitial pressure are those of the lower body. such as the tibia and

calcaneus (Turner 2000). Bailey et al. (1999) conducted a 6-year longitudinal study to

investigate the effect of physical activity on bone mineral accrual in growing adolescents.

Results were compiled from 68 boys and 72 girls, all of Caucasian descent. They found a

greater peak bone mineral accrural rate and a 9% - 17% greater total body bone mineral

content in children from the highest physical activity quartile compared to those in the

lowest quartile. Their results further demonstrated that bone remodelling is affected by

everyday physical activity.

Mechanical Unloading and the Human Skeleton

Mechanical unloading has many detrimental effects on the human skeleton.

Unloading most often occurs in bedridden, or immobilized (paralysis) persons, and also

in astronauts, who are exposed to microgravity.

Much of the information concerning the impact that unloading has on the human

skeleton comes from studies examining astronauts. Reports on microgravity induced

bone loss originated in the early 1970's, shortly after the first human space flights. The
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Skylab flights of 1973 provided valuable information concerning the homeostasis of

bone. Loss of bone density from the calcaneus was greater in astronauts aboard the longer

flights than in those aboard the shorter flights. However, decreases in the bone mineral

density of bones in the upper torso, such as the radius and ulna, were minimal (Vogel et

aI., 1977). More recently, Vico et a1. (2000) measured the bone mineral density of the

tibia and radius in fifteen cosmonauts aboard the Russian MIR space station. Length of

stays ranged from 1 to 6 months. Bone mineral density (glcm3
) was measured in the tibia

and radius of the cosmonauts by a pQCT system called Densiscan. They found a 1.7%

decrease in bone mineral density of the tibia after one month of spaceflight and 5.4%

decrease after 6 months. By contrast, no significant reduction was seen in the radius at

any flight duration. This evidence supports the hypothesis that bones exposed to higher

levels of hydrostatic pressure and weight-bearing load are the most sensitive to increased

resorption in the absence of stimulation.

During the 180 day Euromir 95 space mission, a study (Caillot-Augus eau et aI.,

1998) was conducted to measure the variations in biochemical markers of bone formation

and resorption. Before, during, and after the flight, blood and urine samples were

collected from four male cosmonauts for evaluation of serum alkaline phosphatase

(ALP), osteocalcin (BOP), and type-l procollagen (PICP) as markers of bone formation,

and urinary pyridinoJine excretion as a marker of bone resorption. Serum ALP, BOP, and

PICP were decreased by 28%, 27%, and 38%, respectively, during the flight when

compared to preflight values, and returned to normal approximately 7 days after landing.

Conversely, total urinary pyridinoline in urine was increased by 35% during the

spaceflight when compared to control values, indicating an increase in bone resorption.
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Although a good model for study, space flights are generally limited in number of

subjects and frequency. Therefore, ground-based models have been developed for

examining the effect of unloading on the human skeleton. Currently, the most popular

model is prolonged bedrest using a head down tilt to simulate cephalic fluid shifts.

Studies using this model have provided data similar to that of spaceflight studies.

Leblanc et a1. (1990) reported that in six male subjects subjected to 17 weeks of bedrest,

the most extensive bone loss occurred in bones of the lower body such as the calcaneus,

while bone density increased in the skull. However, bone mineral density was found to

remain normal in bones of the forearm.

To most effectively research the phenomenon of bone loss, a bone sample is

necessary. However, with respect to experimental ethics, a bone biopsy is generally

considered as being too invasive. Therefore, the only bone samples available for

laboratory tests have been those obtained from animal models.

Mechanical Unloading and the Rat Skeleton

As an animal model, the rat has been used extensively in spaceflight research.

Histomorphometric analyses on the skeleton of 2.7 month old rats flown aboard the 18.5

day COSMOS 1129 mission indicated an inhibition of periosteal bone formation in the

tibia and humerus as compared to control rats. However, the decreased rate in the

humerus was not as marked as in the tibia. The periosteal bone formation rate (10-3

mm3/day) observed in the tibia of flight rats was 55% less than that of vivarium controls.

Although not as severe, a 39% decrease in periosteal bone formation was found in the

humerus of flight rats when compared to vivarium controls (Wronski & Morey, 1983).
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Additionally, Vico et al. (1993) reported a 43% reduction in the primary spongiosa width

of rats flown aboard the 14-day Cosmos 2044 flight as compared to vivarium controls

suggesting altered longitudinal bone growth. Moreover, Patterson-Buckendahl et a1.

(1987), observed a a 22% decrease in serum osteocalcin of 2-month old, male rats

subjected to a 7-day spaceflight. Third lumbar dry bone weight decreased by 17.5% in

flight animals, while dry weight of the humerus decreased by 13% in flight animals

compared to preflight controls. They also observed a decrease in the mineral content of

the vertebrae and humerus of flight animals.

On earth, a hindlimb unloaded (ffi.,U) model has been developed to study the

impact of mechanical unloading on bone formation and resorption in rodents. This model

enables researchers to examine in detail the physiological and cellular mechanisms of the

skeletal response to mechanical loading.

Hindlimb Unloading and Bone Studies

In the ffi.,U model, orthopedic traction tape, placed along the tail, is used to attach

the rat to a pulley, elevating the hindlimbs and placing the rat in a 30° head-down angle.

The head down tilt produces a cephalic fluid shift similar to space flight. Because the

forelimbs are normally loaded, they can provide internal controls. The forelimbs also

allow for ambulation, eating, and grooming (Morey-Holton and Globus 1998).

Globus et a1. (1986) investigated the effect of hindlimb unloading on 2.5 month

old rats. Rats were randomized into groups and suspended for 2-15 days, then necropsied

and bones collected. Final body weight of rats unloaded for 15 days was not significantly

different from controls, however it was reduced by 5%. After 15 days of skeletal
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unloading, the dry weights of the tibia and L-l vertebrae had decreased to 81% and 78%

of the control values, respectively. Atomic absorption spectrophotometry was used to

measure the calcium concentration in selected bones. The calcium concentration,

expressed as milligrams of calcium to miHigrams of fat-free weight, was significantly

lower in suspended animals than in the control group, resulting in a lower percentage of

mineralized bone in unloaded rats. However, changes in mineral concentration were not

observed in the humerus or C-l vertebrae suggesting minimal hormonal stress to the

animal. Novikov and llyin (1981) also found decreases in the bone calcium concentration

of rats subjected to hindlimb unloading. Their study examined the age related reactions

of bones to unloading. Rats 1.5,2.5, and 6 months old were suspended for 22 days and

necropsied. Calcium concentrations in the proximal and distal epiphysis and the

diaphysis of the femur were measured using flame absorption spectrophotometry.

Animals in all three groups had significantly decreased calcium concentrations in the

distal epiphysis as compared to the controls. In all three groups calcium concentration in

the distal epiphysis decreased by 9%, but a significant decrease (9%) in calcium

concentration of the proximal epiphysis was found only in rats aged 2.5 months.

Although not significant, a 6% decrease in calcium concentration was observed in the

proximal epiphysis of rats aged 1 and 6 months. No significant differences were found in

calcium concentrations of the diaphyses in any groups. However, in this study, mineral

concentration was only measured in the femur and not the normally loaded bones. In 5

month old female rats suspended for 28 days, Shaw et al. (1987) observed a non

significant 6% decrease in the calcium concentration of the femur compared to controls.

The calcium concentration was measured fluorimetricalJy and expressed as micrograms
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of calcium per milligram dry bone weight. Vailas et al. (1988) also fluorometrically

measured the calcium concentration of the femur mid-diaphysis from 3.5 month old rats

subjected to 28 days of hindlimb unloading. They found no significant differences in

calcium concentration (j..lglmg dry weight) between groups. However, calcium

concentration was decreased hy 3.5% in unloaded animals compared to controls. Similar

final body weights were found between groups.

Furthermore, in 1991, Vico et a1. compared bone histomorphometric data of 3.5

month old rats subjected to 7 days of spaceflight versus 7 days of hindlimb unloading.

Final body weights of rats subjected to both spaceflight and hindlimb unloading were

significantly less than body weights at baseline. Final body weight of rats in the

spaceflight group was 9% less than the spaceflight controls and final body weight of

hindlimb unloaded rats was 15% less than hindlimb unloaded controls. The mean

thickness of the primary spongiosa and loss of trabecular bone was significantly higher in

flight animals than in hindlimb unloaded animals. The decrease in trabecular density

(43%) was also more dramatic in flight animals. However, an increased number of

osteoclasts (113%) and active resorption surfaces (107%) were observed in suspended

animals, but not in flight animals, suggesting that bone resorption as a result of hindlimb

unloading may be mediated through the production of stress hormones. However,

corticosterone levels were not measured in their study. Morey-Holton and Globus (1998)

have concluded that in studies in which growing animals fail to gain weight and

resorption is increased, stress may be a factor. To investigate this, Halloran et al. (1988)

conducted a study to determine whether the inhibition of bone formation induced by

skeletal unloading is a consequence of increased plasma glucocorticoids. Male, 125-175
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gram Sprague-Dawley rats were hindlimb unloaded for 7 days. Ambulatory animals were

pair fed and acted as controls. Plasma corticosterone was detennined by

radioimmunoassay on plasma collected every 6 hours for 24 hours on day 3 of unloading.

No significant differences in plasma concentrations of corticosterones were found

between groups. The 24-hour mean plasma concentrations of corticosterone were nearly

identical in ambulatory (9.7 Ilgldl) and hindlimb unloaded (9.4 Ilgldl) animals. No

significant difference in final body weight was observed between groups. The results

suggest that inhibition of bone fonnation in skeletally unloaded rats is not a consequence

of increased plasma glucocorticoids.

Mechanical Unloading and Bone Cell Cultures

Cell cultures have been used to examine what effect microgravity plays on bone

directly at the cellular level. CarmeJiet et al. (1997) examined the effect of 9 days at zero

gravity on cells of the human osteosarcoma cell line MG-63 aboard the Foton 10 satellite.

Cells were cultured in Dulbecco's modified eagle medium (DMEM) supplemented with

fetal calf serum and antibiotics for 9 days, then detached with trypsin and replated. After

treatment with Vitamin D3 and TGF-Ih, cells were scraped, lysed in Tris (20mM) and

sonicated. Alkaline phosphatase (ALP), protein, and DNA contentrations were measured

on the lysate. Osteocalcin was also measured in the culture medium. They found a

significant decrease in ALP activity of cells at microgravity compared to controls. Gene

expression of collagen type 1, ALP, and osteoca1cin was also significantly decreased at

microgravity as compared to controls.
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Cultured cell lines provide substantial infonnation regarding the effect

rnicrogravity has on bone cells. However, primary cultures from marrow-derived cells

have granted a better understanding of the uncoupling of bone remodelling that occurs

during unloading.

Machwate et al. (1993) examined the effect of skeletal unloading on marrow

derived cells obtained from I-month old male rats. Animals were hindlimb unloaded for

14 days, necropsied, and bone marrow collected from the right tibia. Collected cells were

cultured in DMEM until preconfluency and detached with trypsin. As a marker of

proliferation, cellular DNA synthesis was measured using CH]thymidine incorporation.

Alkaline phosphatase activity was measured by scraping the cell layer into distilled water

and sonicating cells to release ALP. Significantly decreased DNA synthesis, indicated by

eH]thymidine incorporation was observed in cells of unloaded animals, but not controls.

The ALP activity measured in bone marrow cells was not significantly different between

hindlimb unloaded and control animals. In a similar study using I-month old male rats

immobilzed via sciatic neurectomy, Keila et al. (1994) found reduced ALP activity in

cells from immobilized rats; however, [3H]thymidine incorporation was not significantly

different between immobilized and sham-operated animals. These inconsistencies may

be attributed to different techniques and methods used for culturing the cells.

Indicators of Bone Fonnation

Osteoblasts are cells responsible for bone fonnation. Osteoblastic cells are rich in

the enzyme alkaline phosphatase (ALP), which is often used as an indicator of bone

fonnation.

24



[n response to mechanical unloading, Machwate et al. (1993) found a significant

decrease (21-24%) in the serum ALP concentration of rats subjected to a 14-day tail

suspension as compared to a control group. In a similar study, Keila (1994) also found a

significant decrease in ALP positive marrow cells in rats unloaded by sciatic neurectomy.

Osteocalcin is also often measured as an indicator of bone fonnation. In 1985,

Delmas et a1. correlated serum osteocalcin levels to indices of bone turnover in humans.

Synthesized by the osteoblast, osteocalcin is the most abundant noncollagenous protein in

bone. To become functional, osteocalcin is dependent on vitamin K for the gamma

carboxylation of its three glutamate residues to fonn gamma-carboxyglutamic acid (Ola).

In the absence of adequate vitamin K, not all of the Ola residues are carboxylated, which

decreases its function (Booth 1997). Caillot-Augusseau et aI. (2000) measured the

concentration of undercarboxylated osteocalcin (Voc) in the serum of two males,

collected prior to, during, and after a 21-day spaceflight. They found a 23% increase in

serum Voc after 8 days of spaceflight, that decreased to preflight concentrations upon

landing. Their results suggested that decreases in the carboxylation of osteocalcin may be

correlated with spaceflight associated osteopenia.

In a study examining the effect of a 14-day tail-suspension on plasma osteocalcin

levels, Machwate et a1. (1993) found a 29% decrease in plasma osteocalci n of un loaded

animals compared to ambulatory controls. Similarily, Patterson-Buckendahl et al. (1989)

found a significant decrease (20%) in serum osteocalcin, measured by radioimmunoassay,

of unloaded animals after 5 days of suspension. However, values returned closer to

normal after 15 days suggesting that unloading and not environmental stress affected

bone fonnation.
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Indicators of Bone Resorption

Acid phosphatase is one of several enzymes produced by osteoclasts to aid in the

digestion of bone matrix constituents (Marks and Popoff 1988). Studies have

demonstrated that an effective way of differentiating osteoclasts from other endosteal

cells is by examining the presence of acid phosphatase activity, which shows resistance to

inhibition by sodium tartrate (Hammerstrom et al., 1971).

It has been demonstrated that bone resorption in vitro results in greater

concentrations of acid phosphatase in culture media (Susi et a1. 1966). Kalu (1990),

investigated the effect of ovariectomy on the proliferation of tartrate resistant acid

phosphatase (TRAP) cells in cultures of bone marrow cells from ovariectomized and

sham operated rats. Marrow cells were harvested and cultured in a-minimal essential

medium for 8 days. After 8 days, cultures were terminated and plates were stained for

TRAP-positive cells using a commercially available kit. His results indicated that

overiectornized rats form significantly more TRAP-positive cells in culture than sham

operated rats.
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CHAPTER ill

MATERIALS AND METHODS

Animals and Diets

Using a 2x3 factorial design, ninety-seven, male Sprague-Dawley rats (Harlan

Teklad, Indianapolis, In) were randomly placed on a diet of 15, 75, or 500 ill dl-a

tocopheroUkg diet and assigned to hindlimb unloaded (!aU) or control (ambulatory)

groups. The diet was based on a diet recommended for rodents (AIN-93M, powder). Diets

were prepared by Harlan Teklad and contained tocopherol stripped soybean oil as a fat

source (40g/kg diet). Animals were separated into 3 replications (n=25, n=35, n=36) due

to a limited number of cages adaptable to hindlimb unloading. The replicate groups were

obtained so that all rats were approximately 11 months of age at the time of unloading.

The animals were individually housed and kept in an environmentally controlled

laboratory at the Oklahoma State University Laboratory Animal Resource Center (LAR).

Animals were maintained on a 12: 12 hour light/dark cycle and had ad libitum access to

deionized water at aU times during the study. The project was approved by the

Institutional Animal Care and Use Committee at OSU, protocol #733 (Appendix A).

Guidelines for the ethical care and treatment of animals established by the committee

were strictly followed.

After arriving at the housing unit, rats were initially fed a diet of standard chow

and allowed to acclimate to the environment for several days. They were then fed the

AIN-93M powdered diet containing no vitamin E for 10 days. After the 10 day period,

rats were placed on their assigned vitamin E diet (low, recommended, or high), which
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was consumed for 2 months. At this point rats were sedated with an intraperitoneal

injection of ketamine (50 mg/kg body weight) and xylazine (2.5 mg/kg body weight) for

full body scanning on the DEXA, tail blood was collected, and animals assigned to the

hindlimb unloading group were placed in suspension according to the method of Wronski

and Morey-Holton (1979). The tails of animals to be unloaded were cleaned using

isopropyl alcohol and coated with tincture of benzoin. A I-em wide strip of orthopedic

tape was attached laterally along each side of the tail to form a loop near the end of the

tail. The tail was then wrapped with a cotton gauze and secured with 3 strips of tape. The

loop was attached to a pulley system allowing the hinquarters of the animal to be

elevated. placing the animal in a 30° head-down hilt. The animals maintained free

movement about the cage using their forelimbs. Rats continued to consume their

assigned diets for the 28 day suspension period. Ambulatory rats acted as controls and

were pair-fed their respective diets according to the food consumption of the hindlimb

unloaded animals during replication #1. For replications #2 and #3, feeding of the

ambulatory animals was based on consumption data from the first replication.

Necropsy

After 28 days of suspension, hindlimb unloaded and control rats were anesthetized

with an intraperitoneal injection of ketamine (100 mg/kg body weight) and xylazine (5

mg/kg body weight), and exsanguinated from the abdominal aorta. Collected blood was

allowed to clot and centrifuged at 1500 RPM for 20 minutes at 4°C to separate serum.

Aliquots of serum were frozen and kept at -20°C unil further analysis.

Femur, tibia, humerus, and vertebral columns were collected from animals and

carefully cleaned of adhering tissue without removal of the periosteum. The vertebral

column was first frozen at -20°C and lumbar vertebrae were separated and cleaned of all

adhering tissues at a later date. Cleaned bones were stored at -20°C until further analysis.
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Isolation of Bone Marrow Cells

At necropsy, the right tibia of each animal was carefully removed, cleaned of all

soft tissues, and dipped briefly in 95% ethanol before being placed in O.OIM sterile

phosphate buffered saline (PBS) (Sigma P-4417) supplemented with 2% antibiotics

(10,000 units penicillin and 10 mg streptomycin in 9% NaCI, Sigma P-0781). Tibias

were processed using sterile techniques in a laminar flow hood. The epiphyseal area of

each tibia was carefully removed with bone cutters and cut transversely with a scalpel.

Bone marrow was then flushed out with PBS and collected marrow cells were centrifuged

in a sterile tube for 10 minutes at 1000 RPM and room temperature. Supernate was

discarded and cells pellets were resuspended in bicarbonate-buffered a-Minimum

Essential Medium (a-MEM)(Sigma M-0644), containing 10% heat-inactivated fetal

bovine serum (FBS)(Gibco 16000-004),5 X 10,8 M Vitamin D3 (Sigma), and 2%

antibiotics. Suspended cells were passed through a cell strainer to remove marrow debris.

Cell viability was assessed using the trypan blue exclusion technique.

Approximately 100 ,.d of cell solution was added to 100 III of trypan blue (Gibco 15250)

and allowed to sit for 5 minutes. The cell suspension was placed into a hemacytometer

and viable and non-viable cells were counted for 10 squares. Viable cells were identified

as those not taking up the blue dye. Viable cell concentration was calculated as: cells/ml

= average viable cell count/square x dilution factor x 104
. Total number of cells was

calculated as: total cells = cells/ml x original volume. After assessing viability and cell

concentration, cells were plated in 24-well plates at 0.5 X 106 cells/cm2 with 8-12 wells

per rat. Cultures were incubated at 37°C in a humidified atmosphere with 95% air and

5% CO2. Media was changed every third day by carefully aspirating off spent media and

replacing it with 0.5 ml of fresh media, warmed to 37°C. Media changes continued until

cells reached pre-confluency at 2 weeks. Confluency was determined by cellular

coverage in the well; preconfluency was designated as 80-90% coverage. Pictures were

taken periodically throughout cellular differentiation and growth.
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When cells reached pre-confluency, plates were centrifuged for 10 minutes at

1000 RPM and room temperature. Supernate from each well was collected into a 15ml

conical tube on ice, and then aliquoted into microcentrifuge tubes and frozen at -20°C for

furthur analyses of alkaline phosphatase and osteocalcin.

To measure the alkaline phosphatase activity (ALP) of lysed cells, 0.5 ml PBS

was added to 2 wells from each animal and wells were sonicated (Sonics & Materials,

Inc., VC-300 Sonicator, Danbury, CT) for 30 seconds. Cell lysate was collected into

microcentrifuge tubes on ice and immediately frozen at -20°C until further analysis.

After collection of supernates, 4 wells from each animal were stained for tartrate

resistant acid phosphatase (TRAP) activity using a commercially available kit obtained

from Sigma (387-A). TRAP positive cells were identified as those staining positive for

tartrate resistance with 3 or more nuclei.

Biochemical Analyses

Serum and cell lysate ALP activity was measured on the COBAS Para II clinical

analyzer by a colorimetric method using a commercially available kit from Roche

Diagnostics (Roche Diagnostic Systems, Indianapolis, IN). Alkaline phosphatase

hydrolyzes 4-nitro-phenylphosphate to the 4-nitrophenoxide ion (Tietz 1987). The 4

nitrophenoxide ion has a strong absorbance at 405nm which is proportional the ALP

activity in the sample.

Serum tartrate-resistant acid phosphatase (TRAP) was also determined

colorimetrically using a kit obtained from Roche Diagnostics. For this measurement, a

naphthylphosphate is hydrolyzed by acid phosphatase to a-naphthol, which combines

with Fast Red TR (diazotized-2-amino-5-chlorotoluene) to produce a dye which absorbs

at 405 nm (Babson et a1. 1959, Hillman 1971). The increased rate in absorbance is

proportional to the acid phosphatase activity in the sample. When L-tartrate is added to
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the reagent, acid phosphatases resistant to tartrate are inhibited, but all other acid

phosphatases in the sample are absorbed at 405 nm.

For determining antioxidant capacity, the ferric reducing ability (FRA) was

measured. The procedure developed by Benzie and Strain (1996) for determining FRA is

performed on the clinical analyzer. At low pH's, antioxidants will cause a ferric

tripyridyl triazine (Fe3
+-TPTZ) complex to be reduced to the ferrous (Fe2+) form. The

Fe2
+ forms an intense blue color with a 593 run maximum absorption. Intensity of

absorption is proportional to the total antioxidant capacity in the sample.

Serum osteocalcin and cell culture supernate osteocalcin were measured using a

rat specific immunoradiometric assay (IRMA) kit obtained from Immutopics (Cat # 50-

1500, San Clemente, Ca). In this assay serum or cell culture media is incubated with an

antibody coated bead and osteocalcin contained in the sample is immunologically bound

to the bead and forms a sandwich complex. After incubation, the bead is washed to

remove any unbound labeled antibody and the radioactivity bound to the bead is

measured using a gamma counter (Packard Cobra n, Downers Grove, ll). Radioactivity

of the antibody complex bound to the bead is directly proportional to the amount of rat

osteocalcin in the sample.

Serum vitamin E concentration of samples collected prior to suspension and at

necropsy was determined using high performancex liquid chromatogrophy (HPLC).

The method used was modified from Ortega et a1. (1998) and Bieri et a1. (1979).

Standard solutions were prepared in 25, 50, and 100 Ilglml concentrations from a-

tocopherol (Sigma, T-325l) dissolved in 95% ethanol (ETOH). Internal standard (5000

Ilglml) was prepared by dissolving a-tocopherol acetate (Sigma, T-3376) in ETOH.

Serums were mixed with internal standard (200 Ill) and vitamin E was extracted using

hexane. Samples were centrifuged and the hexane layer carefully removed into a

microcentrifuge tube and evaporated under nitrogen. Vitamin E was then redissolved by

the addition of methanol (75 Ill) and diethyl ether (25 Ill). Ten Ill's of each sample was
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injected in dup}jcate into a C-18 column (Supelco, Bellfonte, Pa). A UV detector (Waters

Tunable Absorbance Detector, Milford, Ma) was used with wavelength set at 290 nm.

Mobile phase was a methanol:water mixture (95:5) at a flow rate of 2 ml/minute. Run

time for the analysis was 16 minutes and retention time for a-tocopherol, 9 minutes and

a-tocopherol acetate, 13 minutes.

Serum and urinary corticosterone were measured by radioimmunoassay with a kit

obtained from Diagnostic Products Corporation (Catalog #TKRC 1). In this assay rat

corticosterone competes with corticosterone in the sample for antibody sites on the

polypropylene tube. The radiolabeled corticosterone bound to the tube is then counted in

a gamma counter to obtain a number which reflects corticosterone present in the sample.

Bone Analysis

Each right femur and third lumbar vertebrae was thawed and placed in a weighing

boat. Bones were covered with approximately 2 ern saline solution and individually

scanned by Dual Energy X-ray Absorptiometry (DEXA) (Hologic QDR 4500A,

Waltham, MA.) using the small animal high resolution mode to determine bone mineral

area (BMA), bone mineral content (BMC), and bone mineral density (BMD).

Femurs were fractured, marrow was removed, and bones were extracted for ALP

and total bone protein (TBP). The procedure was based on the method of Farley et al.

(1992). Alkaline phosphatase and TBP were extracted using a solution of 0.01% Triton

X-IOO with 0.02% sodium azide for 72 hours at 4°C. After incubation, tubes were

centrifuged and extract decanted. Bone alkaline phosphatase was measured on the extract

using the clinical analyzer and reagents from Roche Diagnostics. The mechanism of the

reaction is listed above for the serum ALP. Total bone protein of the extract was

determined by a biuret method on the clinical analyzer with a kit obtained from Roche

Diagnostics. In this method divalent copper reacts with the peptide bonds of proteins
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under alkaline conditions to fonn a biuret complex which absorbs at 540 mn (Henry et ai.

1974).

To detennine density by displacement, third lumbar vertebrae were soaked

overnight in Type I water and then placed in a dessicator with vaccum for 1 hour. A

density determination kit (Mettler :ME-33340, Mettler Instruments, Grelfensee,

Switzerland) was used to measure underwater weight and air weight. Density by

displacement was calculated using Archimedes' principle.

Mineral Analyses

Third lumbar vertebrae and femurs were analyzed for mineral content. The bone

samples were placed into pre-weighed, acid-washed tubes and dried in an oven for 24

hours at 100°e. Bones were cooled in the dessicator and dry weights recorded (dry

weight). Bones were then wet and dry ashed according to a modification of the method

of Hill et a1. (1986). Blank tubes were prepared and carried throughout the procedure for

calibration of the machine. Bone samples were placed in a heating block at 105°e and

wet ashed using concentrated double distilled nitric acid (GFS Chemicals, Columbus,

OH), 30% hydrogen peroxide (JT Baker, Phillipsburg, NI) and Type I water. After bone

fragments disintegrated, hydrogen peroxide was periodically added until bubbling ceased

and samples were white in color. Tubes were left in the heating block until all liquid had

evaporated and then placed in a muffle furnace at 375°e for 48 hours. Wet and dry

ashing was repeated until bones were completely ashed. Weights were recorded when

samples were completely ashed (ash weight).

After bones were fully ashed, the mineral residue was dissolved into a solution of

1.5 ml concentrated double distilled nitric acid and 1.5 ml distilled water (stock solution).

Stock solutions were further diluted for specific mineral analysis using 0.05% double

distilled nitric acid for magnesium, iron, copper, and zinc. For calcium determination,

stock solutions were diluted with a solution of 0.5% nitric acid and 0.5 % lanthanum
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chloride. Mineral analyses were perfonned using flame atomic absorption spectroscopy

with an air-acetylene flame and deuterium background correction (perkin Elmer Model

5100PC Atomic Absorption Spectrophotometer, Norwalk, CT) at the most sensitive

wavelength for each element.

Statistical Analyses

Data analysis involved computation of means and standard error of the means for

each of the treatment groups using SAS (version 8.0. SAS Institute, Cary, NC). Analysis

of variance and least square means were calculated using the general linear model

procedure and the means were compared using the least significant difference between

groups. The differences were considered significant at p<O.05.
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CHAPTER IV

HINDLIMB UNLOADING AND VITAMIN E INFLUENCE
BONE COMPOSITION IN AGED

SPRAGUE-DAWLEY RATS

Tracy L. Riggs, Brenda J. Smith, Sloan Martin, Bahram Arjmandi,
Edralin Lucas, and Barbara 1. Stoecker

Department of Nutritional Sciences, College of Human Environmental Sciences

Oklahoma State University

Stillwater, Oklahoma

ABSTRACT

The effects of hindlimb unloading, vitamin E, and their interaction on bone were

investigated. Using a 2 X 3 factorial design, ninety-seven, II-month old, male, Sprague

Dawley rats were either hindlimb unloaded (HLU) or remained ambulatory (AMB) as

controls. After 10 days on a diet containing no vitamin E, rats in each group were

randomly assigned to one of three dietary treatments containing 15, 75, or 500 IV dl-a-

tocopherol/kg diet, which was consumed for the 2 months prior to unloading. After 28-

days of HLU, rats were necropsied and bones were collected for detennination of bone

mineral density and mineral concentrations. Selected biochemical measures of bone

fonnation and resorption v,'ere also performed. Serum vitamin E was dose-dependently
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elevated (p<O.OOOI) by dietary vitamin E treatment. Bone resorption, as indicated by

serum tartrate-resistant acid phosphatase, was elevated (p<O.OOOI) in unloaded animals,

but was not affected by diet. Serum and bone alkaline phosphatase and serum

osteocalcin, markers of bone formation, were not significantly affected by diet or

unloading. Hindlimb unloading significantly reduced bone protein extracted from the

femur. Bone mineral density, measured by dual-energy x-ray absorptiometry (DEXA), of

the third lumbar vertebrae (L3), femur, and humerus was significantly reduced by fll.,U.

but not by diet. fll.,U significantly reduced iron concentration in the femur of unloaded

animals; furthermore, HLU significantly decreased the total content of calcium,

magnesium, iron, and zinc in the femur. In L3. HLU significantly reduced the total

content of calcium, magnesium, copper, iron, and zinc. Diet had no effect on mineral in

the femur or L3, except that, the L3 of animals on the 75 ill diet had higher total

(p<0.0172) bone iron when compared to animals on the 15 ill and 500 ill diets.

These findings suggest that the osteopenia associated with hindlimb unloading in

aged rats is a result of increased bone resorption and not diminished fonnation.

However, we were unable to establish any protective effect of these doses of vitamin E

on bone in this model. Further studies are needed to investigate the increased bone

resorption observed in HLU aged rats, and to investigate the possible protecti ve effect of

vitamin E on bone.
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INTRODUCTION

As the skeleton ages, the rate of bone resorption tends to exceed the rate of

formation, resulting in a net loss of bone (Parfitt et aI.1983). Although many factors are

involved, a major cause appears to be a decrease in mechanical loading and usage (Bagi

et aI.I993). Loading of bones is achieved through weight-bearing exercise and by

hydrostatic pressures generated within the body. In the absence of mechanical stimuli,

regions of the skeleton exposed to the greatest weight bearing load suffer a more dramatic

bone loss than areas with a smaller load (Iwamoro et al. 1990). Much of the information

concerning what impact unloading has on the human skeleton comes from studies

examining astronauts. Reports on microgravity-induced bone loss originated in the early

1970's, shortly after the first human space flights. Studies indicated significant losses of

bone density from bones normally exposed to the greatest weight bearing loads, while

bone loss was minimal from hones with normally low weight bearing loads (Vogel et al.

1977, Vico et al. 2000). Similar results have also been found in studies using prolonged

bed rest with a head down tilt to simulate cephalic fluid shifts (Leblanc et al. 1995). As

an animal model, the rat has been used extensively in spaceflight research. However, the

development of ground based models has been promoted by extensive costs and limited

space aboard flights. On earth, the hindlimb unloading model has proven useful to study

the impact of weightlessness on bone. In this model, the head down tilt produces a

cephalic fluid shift similar to space flight and, because the forelimbs are normally loaded,

they can provide internal controls (Morey-Holton & Globus 1998). Hindlimb unloading

has been shown to induce a reduction in the mineral apposition rate of young growing

animals (Machwate et al. 1993). However, what effect hindlimb unloading plays on
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mineral concentrations of bone is not well understood. Globus et a1. (1986) and Novikov

and llyin (1981) reported decreased bone calcium concentrations in hindlimb unloaded

animals, while Shaw et al. (1987) and Wronski and Morey (1983) have observed minimal

differences in calcium concentrations of unloaded bones. These inconsistencies may be

attributed to differences in the procedures used to detennine minerals, age or sex of

animals, and length of unloading period.

Another factor influencing bone resorption is the presence of oxygen-derived free

radicals. Research has shown that production of free radicals in the bone environment

leads to osteoclast activation and subsequent bone resorption (Garrett et a1. 1990, Key et

al. 1994). Recent studies examining the effect of supplemental antioxidants, most

notably vitamin E, on bone quality, have indicated a possible protective effect (Maiorano

et a1.1999, Neve et a1. 1993, Xu et a1. 1995). Considerable research has been conducted

concerning vitamin E and its benefits against oxidative stress. However, very little

research has focused on vitamin E and bone physiology.

This study was conducted to detennine if hindlimb unloading, vitamin E, or their

interaction affect bone density or selected biochemical markers of bone metabolism in

aged rats. We also investigated the changes in concentrations of selected macro and trace

elements in the unloaded rats.

MATERIALS AND METHODS

Animals and Diets

Using a 2 X 3 factorial design, ninety-seven, male Sprague-Dawley rats (Harlan

Teklad, Indianapolis, In) were randomly fed a 15, 75. or 500 IU dl-a-tocopherollkg diet
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and assigned to hindlimb unloaded or control (ambulatory) groups. The diets (Harlan

Teklad) were based on diet recommendations for rodents (AIN93M) (Reeves et al.1993)

and contained tocopherol stripped soybean oil as a fat source (40glkg diet). The animals

were individually housed in an environmentally controlled laboratory. Animals were

maintained on 12: 12 light/dark cycles and allowed free access to distilled water

throughout the study. Guidelines for the ethical care and treatment of animals established

by the Animal Care and Use Committee at OSU were strictly followed.

After a 10-day initial washout peri.od on a diet with no vitamin E, animals then

consumed their assigned diet for the 2 months prior to unloading. Hindlimb unloading

was perfonned according to the method of Wronski and Morey-Holton (1979).

Orthopedic tape, placed laterally along each side of the tail, was used to attach a clip near

the end of the tail. The clip was attached to a pulley system allowing the hindquarters of

the animal to be elevated, placing the animal in a 30° head-down tilt. The animals

maintained free movement about the cage using their forelimbs. Rats continued to

consume their assigned diets for the 28-day unloading period. Ambulatory rats acted a

controls and were pair-fed their respective diets.

Necropsy

After 28 days of suspension, animals were anesthetized intraperitoneally with

ketamine (90mglkg body weight) and xylazine (5mg/kg body weight) and exsanguinated

from the abdominal aorta. Collected blood was allowed to clot, centrifuged, and serum

aliquots frozen at -20°C until further analysis. The right femur, right humerus, and third

lumbar vertebrae were collected from animals, cleaned of adhering tissues, and frozen at

-20°C until further analysis.
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Biochemical Analysis

Serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP)

were measured on the COBAS Fara II clinical analyzer using the appropriate reagents

from Roche Diagnostics (Roche Diagnostic Systems, Indianapolis. IN). Ferric reducing

ability (FRA) was measured on the clinical analyzer according to the method of Benzie

and Strain (1996). Serum osteocalcin was measured using a rat specific IRMA kit

obtained from Immutopics (Cat # 50-1500). A rat corticosterone kit (Diagnostic Products

Corporation, Catalog #TKRCl) was used to measure both serum and urinary

corticosterone levels by radioimmunoassay. Vitamin E concentration was determined

using high precision liquid chromatography (HPLC) on blood serum collected prior to

unloading and at necropsy according to the methods of Ortega et a1. (1998) and Bieri et

al. (1979). Vitamin E was extracted from serum using hexane and samples were injected

into a C-18 column (Supelco, Model# 504971., Bellfonte, PA). A UV detector (Waters

Tunable Absorbance Detector, Milford, MA) was used with wavelength set at 290 nm.

Mobile phase was a methanol:water mixture (95:5) at a flow rate of 2 ml/minute.

Bone Analysis

Right femur, right humerus, and third lumbar vertebrae were thawed and then

individually scanned by Dual Energy X-ray Absorptiometry (DEXA) (Hologic QDR

4500A, Waltham, MA) to detennine bone mineral area (BMA), bone mineral content

(BMC), and bone mineral density (BMD).

Prior to ALP extraction, femurs were fractured by another graduate student for a

different aspect of this project. Fractured femurs were then extracted for bone ALP and
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total bone protein using a solution of 0.01% Triton X-loo with 0.02% sodium azide,

according to the method of Farley et al. (1992). Extract ALP was measured on the

clinical analyzer in the same manner as serum ALP, described above. Total bone protein

of the extract was determined by a biuret method with a kit obtained from Roche

Diagnostics.

Third lumbar vertebrae and femur were ashed using a series of wet and dry

ashing steps according to a modification of the method of Hill et al. (1986). After bones

were completely ashed, the mineral residue was solubilized and analyzed for calcium,

magnesium, iron, copper, and zinc using a flame atomic absorption spectrophotometer

with an air-acetylene flame and deuterium background correction (Perkin Elmer 5100PC

AAS, Norwalk, CT).

Statistical Analyses

Data analysis involved computation of means and standard error of the means for

each of the treatment groups using SAS (version 8.0, SAS Institute, Cary, NC). Analysis

of variance and least square means were calculated using the general linear model

procedure and the means were compared using the least significant difference between

groups. The significance level was set at p<0.05.

RESULTS & DISCUSSION

Vitamin E status was determined by measuring serum a-tocopherol

concentrations prior to unloading and after the 28-day unloading period. Serum vitamin E

concentrations were dose-dependently affected by dietary vitamin E concentrations, both

prior to unloading and after as evidenced by a significant difference (p<O.OOI) among
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vitamin E groups (Table 1). After 2 months of diet consumption, serum a-tocopherol

concentrations in the animals consuming 75 IV and 500 IV a-tocopheroUkg diet were

increased by 84% and 189% respectively, when compared to the animals consuming a 15

IV/kg a-tocopherol diet.

Although numerically smaller, similar percentage differences between vitamin E

groups have been reported by Meydani et al. (1988) and Lehmann (1981). In 1987,

Meydani et al. reported that a-tocopherol concentrations, in mice fed a 500 IV/kg diet,

were 148% higher than concentrations in mice fed a 30 IV/kg diet. In our study, the a-

tocopherol concentrations of animals consuming the 15 IUlkg and 75 IV/kg diets

appeared to increase with time as evidenced by a 46% increase in serum a-tocopherol,

between baseline (2 months on diet) and necropsy (3 months on diet) in animals on the 15

IU/kg diet, and a 25% increase in animals on the 75 IV/kg diet. However, serum a-

tocopherol concentration in animals on the 500 fUlkg diet increased only by 8%,

suggesting a possible plateau effect at high levels. A plateau effect, at approximately 3 to

4 times the unsupplemented concentration, has been observed in humans consuming large

amounts of supplemental a-tocopherol. (Devaraj et a1.1997, Jialal et al. 1995).

The final body weight of unloaded animals was significantly lower (p<O.OO 1)

than that of ambulatory animals; however, a-tocopherol in the diet had no effect on final

body weight (Table 2). The weight loss as a result of hindlimb unloading in this study

differs from the results obtained from studies examining young growing rats (Globus et

a1. 1986, Halloran et al. 1988). Although Globus et a1. (1986) reported no significant

difference in final body weights of 2.5 month old rats unloaded 15 days as compared to

controls, the final body weight of unloaded animals was 5% less than that of controls.
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The final body weight of unloaded rats in our study was only 6% less than that of

controls. These statistical inconsistences may at least be partially attributed to a smaller

number of animals in the studies with insignificant weight differences. The studies by

Globus et al. and Halloran et al. involved ::::60 and 42 rats, respectively. The final number

of rats in our study was more than 90 animals. Furthennore, patterns of weight loss in

mature animals, similar to the ones we observed, have been reported in other studies

(Vico et al. 1998, Smith 1999).

The question of what role stress plays on the body weight of unloaded animals

remains unclear. Halloran et al. (1988) reported that the inhibition of bone fonnation in

young hindlimb unloaded animals was not a consequence of increased plasma

glucocorticoids or increased sensitivity to glucocorticoids. To examine this in our study,

we measured both serum and urinary corticosteriod levels. Serum corticosteroid

concentrations reflected no significant difference between the AMB and HLU groups

(Table 3) and was measured in only 32 of the animals. Urinary corticosterone wa also

measured and reflected no significant differences between HLU and AMB animals. The

kit used for urinary corticosterone was developed for the measurement of serum

corticosterone and nonnallevels for urinary corticosterone were not available.

In this model, the humerus provides an internal control for distinguishing between

local and systemic responses to hindlimb unloading. Ideally, no significant differences in

bone mineral density would be observed between the humerii of unloaded and

ambulatory animals. However, one might hypothesize that bone mineral density in the

humerus would increase during hindlimb unloading. During hindlimb unloading, the 30°

head down tilt imposed on animals increases the hydrostatic pressure in the forelimbs.
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Interstitial fluid pressures increase the weight-bearing load on bones, and thereby,

increase bone mineral density (Turner 2000). Observed bone mineral density decreases

in the humerii of unloaded animals would suggest the bone loss associated with hindlimb

unloading was at least somewhat the result of a systemic response to suspension (such as

stress) and not only a result of the actual lack of weight-bearing activity. In our animals,

we estimated the bone mineral area (BMA), bone mineral content (BMC), and bone

mineral density (RMD)(glcm2
) of the humerus using dual-energy x-ray absorptiometry

(DEXA). We observed a 3% decrease (p<0.0001) in the humoral bone mineral density of

unloaded animals compared to the control, but the level of vitamin E in the diet did not

effect BMA, BMC, or BMD (Table 4). These results differ from those obtained in other

HLU studies that observed no significant differences in the humoral bone mineral density

of unloaded and ambulatory rats (Globus et aI. 1986, Smith et aI. 1999).

Femur dry weight and femur ash weight were significantly reduced by hindlimb

unloading, however, no diet effect was observed (Table 5). An interaction between diet

and hindlimb unloading was observed in femur BMA. Femur BMA in ambulatory

animals on the 75 IU/kg diet was significantly greater than femur BMA of hindlimb

unloaded animals on the 75 and 500 fU/kg diets. Hindlimb unloading significantly

reduced femur BMC and BMD by 6.5% and 3.lJ%, respectively. Diet had no effect on

BMC or BMD. For comparison, in cosmonauts, a 1.7 % decrease in tibial BMD was

observed after one month of spaceflight, which increased to 5.4% after 6 months in space

(Vico et al. 2000).

Neither HLU nor diet created any significant changes in femur mineral

concentrations of calcium, magnesium, copper, or zinc, however HLU decreased
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(p<O.009) the mineral concentration of iron in unloaded rats, compared to controls (Table

6). Moreover, lll.-U significantly decreased the femoral total mineral content of calcium,

magnesium, iron, and zinc, but not total copper content (Table 7). These results are in

agreement with those of Valias et al. (1988) and Shaw et al. (1987) that 28 days of lll.-U

does not decrease calcium concentration in the femur. The 15.3% decrease in femur iron

concentration is perplexing. Prior to ashing, bone marrow was rinsed from the femurs to

prevent mineral in the marrow from affecting the samples. The decrease could possibly

suggest that iron was being removed from bone matrix for uti Iization elsewhere in the

body. Hindlimb unloading did not significantly decrease total copper content of the

femur. Copper is involved in collagen crosslink formation (Siegel 1978). If other

constitutents of bone mineral were depleted, a decrease in copper would also be expected.

Our results may possibly be attributed to the procedure used for measuring copper

content. Concentrations of copper in the sample were very close to the detection limits of

flame atomic absorption spectrophotometry and the resulting variability of the samples

was high. A more sensitive measure, such as furnace atomic absorption

spectrophotometry, may have reduced variability and detected a more significant

depletion of copper.

Hindlimb unloading significantly reduced third lumbar dry weight and ash weight

(Table 8). Diet did not affect third lumbar dry weight, but a nearly significant (p<O.056)

diet effect was observed in third lumbar ash weight (Table 8). Animals assigned to the

75 IU/kg vitamin E diet had the greatest ash weight, while animals assigned to the 15

IV/kg diet had significantly less ash weight than the 75 ill group. Ash weight for the SOD

IV/kg vitamin E was intermediate and did not differ from either the 15 or 75 ill/kg diets
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(Table 7). Third lumbar BMA was not significantly affected by HLU or diet, however,

BMD was significantly reduced in HLU animals (Table 8). A diet and HLU interaction

was observed in L3 BMC. Third lumbar BMC was significantly less in hindlimb

unloaded animals compared to ambulatory, regardless of diet. Ambulatory animals on

the 75 IU/kg diet had a significantly greater BMC compared to ambulatory animals on

the 15 and 500 IU/kg diets, however, no difference in BMC was observed between

ambulatory animals on the 15 or 500 IU/kg diets. In addition, no significant diet effect

was observed in the BMC of fll..,U animals on the 15,75, or 500 IU/kg diets. Femur

BMD and L3 BMD were positively correlated (r=.68, p<O.OOl). Interestingly, decrease

in BMD from the third lumbar (10.3%) was more than double that of the femur (3.9%).

This may be explained, in part, by bone biology. The high percentage of trabecular bone

in the vertebrae is more sensitive to changes in bone turnover than the predominatel y

cortical bone of the femur (Baron 1999). However, in theory, because the femur is

normally loaded at a greater amount than the vertebrae, it would be expected to be more

sensitive to hindlimb unloading. These findings may corroborate that bone loss occurring

during unloading, in aged rodents, is more the result of systemic factors or cell to cell

interactions such as cytokines and not necessarily unloading or related fluid shifts.

In the L3, hindlimb unloading significantly reduced the mineral concentrations of

calcium and zinc, but did not affect magnesium or iron (Table 9). A fll..,U and diet

interaction (p<0.0258) was observed in L3 copper concentration. Ambulatory animals on

the 500 IU vitamin E diet and HLU animals on the 15 IU diet had significantly lower L3

copper concentration than HLU animals on the 500 IU diet. Diet did not affect the L3

mineral concentrations of calcium, magnesium, or zinc; however, iron concentration was
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higher (p<O.O 172) in animals assigned to the 75 IU/kg vitamin E diet compared those

assigned to the 15 IU and 500 ill vitamin Elkg diets (Table 9). Total calcium,

magnesium, copper, iron, and zinc contents in the L3 were significantly reduced by

hindlimb unloading (Table 10). A diet effect was observed on total iron content of the L3.

The 75 ill/kg vitamin E diet significantly increased the iron content of the L3 when

compared to the 15 ill and 500 ill vitamin E diets.

In this study, markers of bone formation, alkaline phosphatase (ALP) and

osteocalcin were measured in the blood serum collected at necropsy. Twenty-eight days

of hindlimb unloading and vitamin E supplementation did not significantly affect either

serum ALP or serum osteocalcin concentrations (Table 11). Bone ALP extracted from the

femur was not significantly affected by diet or HLU, however it tended to be higher

(11 %) in HLU animals compared to AMB (Table 12). Extracted bone protein was

reduced (p<0.0103) in HLU when compared to AMB, with diet having no effect (Table

12). Mechanical unloading has been shown to decrease ALP positive marrow cells in

young growing rats (Machwate et al. 1993, Keila 1994), however ALP has not been

previously examined in unloaded aged rats. Furthermore, Risteli and Risteli (1993)

reported that ALP reached a maximum during matrix mineralization and then decreased

as mineralization declined. Machwate et al. (1993) and Patterson-Buckendahl (1989)

have reported decreases in serum osteocalcin of rats unloaded for short durations, but

values returned closer to normal after 15 days of unloading. However, it should be noted

that their observed osteocalcin concentrations (nglml) were more than 100 fold greater

than osteocalcin concentrations in the present study. One possible explanation for the

variation could be the dependence of osteocalcin on vitamin K to become activated.
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Research has suggested that very high doses of a-tocopherol inhibit platelet aggregation

and adhesion in vitro (Calzada et at. 1997> Freedman et aI. 1996) and that the

hemorrhagic effects can be reversed by administering supplemental vitamin K (Abdo et

at. 1986). With this infonnation, one might expect vitamin E to dose-dependently affect

osteocalcin levels; however, we observed no difference in osteocalcin concentration by

vitamin E group. Additionally, Machwate and Patterson-Buckendahl were measuring

osteocalcin in a young animal, undergoing rapid bone development, while we were

examining a mature animal at or near its peak bone mass.

Hindlimb unloading significantly increased (p<O.OOO 1) serum tartrate-resistant

acid phosphatase (TRAP) concentration (Table 11). Few studies have measured serum

TRAP, however increases in the numbers of TRAP positive cells in vitro have been

observed in models of rapid bone loss (Susi et a1. 1966, Kalu 1990).

Vitamin E dose-dependently increased the serum antioxidant capacity. The ferric

reducing ability (FRA) was significantly affected by diet (Table 11). A positive

correlation (r=.55, p<O.OOOl) was established between final serum vitamin E and FRA.

The FRA of rats consuming the 500 ill/kg vitamin E diet was 27.9% greater than the

FRA of rats on the 15 IU/kg vitamin E diet. There appeared to be no effect of unloading

on FRA. These results help to further solidify the effectiveness of vitamin E as an

antioxidant.

Although vitamin E supplementation improved the antioxidant potential of the

aged rats in this study, it did not provide protection against osteopenia. Twenty-eight

days of hindlimb unloading induced significant osteopenia in the unloaded bones of aged

rats. Along with bone loss, there were also alterations in the mineral components of
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bone. The bone loss observed in this study was apparently a result of increased

resorption and not diminished fonnation as reported in other studies. Further research

into the etiology of age-associated hone loss occurring during unloading is needed due to

the high incidence of osteoporosis and its related costs.
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Table 1. Vitamin E concentrations measured by high performance liquid chromatography (HPLC) on serum
collected prior to hindlimb unloading and at necropsy from rats fed the IS, 7S, or SOO ill vitamin Elkg
diet.!

N Baseline (Jlg/mJ) N Final (Jlg/rnl)

AMB, E-15 6 1O.43±2.43 15 IS.4S±1.19

AMB,E-75 14 20.94±2.19 13 2S.38±2.S3

AMB, E-SOO IS 29.78±2.20 IS 32.17±2.20

HLU, E-IS 11 11.40±1.24 17 16.70±1.10

HLU, E-75 14 19.85±2.08 15 2S.49±1.77

lJ1 HLU, E-500 14 34.20±3.40 14 37.2S±2.94
.P0-

E-IS 17 11.06±1.14c 32 16. 12±O.80c

E-7S 28 20.40±1.49t> 28 25.44±1.48b

E-SOO 29 31.91±2.003 29 34.62±1.8S3

AMB 3S 22.93±1.78 43 24.28±I.S7

HLU 39 22.61±2.08 46 25.82±1.67

Source of Variation p-values

HLU 0.4850 0.1239

DIET <0.0001 <0.0001

DIET*HLU 0.4734 0.3251

'Values represent means ± SEM. Values with different subscripts for the same parameter are significantly
different (p<0.05).
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Table 2. Final body weights of ambulatory (AMB) and hindlimb unloaded
(HLU) rats fed the 15, 75, or 500 IV vitamin E diet. I

N Final Body Weight Change in Body
(g) Weight (g)

AMB, E-15 15 496±6 -4±7

AMB, E-75 15 499±8 5±7

AMB,E-500 16 494±9 1l±7

HLU, E-15 16 463±8 -18±9

HLU, E-75 15 461±9 -16±1l

HLU, E-500 14 472±12 -22±1O
V\
V\

E-15 31 479±6 -8±6

E-75 30 480±7 -6±7

E-500 30 484±8 -5±7

AMB 46 497±5 7±4

HLU 45 465±5 -19±6

Source of Variation p-value

HLU <0.0001 <0.0001

DIET 0.9400 0.9854

HLU *DIET 0.6700 0.5731

IVaJues represent means ± SEM. Values with different subscripts for the
same parameter are significantly different (p<0.05).
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Table 3. Corticosteriod levels measured in the serum and urine of ambulatory (AMB) and hindlimb
unloaded (HLU) rats fed the 15, 75, or 500 ill vitamin Elkg diet.!

N Serum Corticosterone
(nglml)

AMB, E-15

AMB, E-75

AMB, E-500

HLU, E-15

HLU, E-75

HLU, E-500

5
5

5
6

6

5

239.27±11.06

231.22±33.85

225.65±21.74

264. 14±31.78

261.78±7.66

245.42±16.92

N

10

9

8

7

10

10

Urinary Corticosterone
(nglmJ)

597.1O±118.00

325.94±138.23

389.46±126.74

189.69±112.98

364.52±100.79

362.22±123.46

E-l) 11 252.84±17.69 17 429.34±95.35

E-75 11 247.86±15.73 19 346.24±81.96

E-500 10 235.53±13.40 18 374.33±86.22

AMB 15 232.05±12.96 27 445. 19±74.65

HLU 17 257.80±11.96 27 318.34±64.14

Source of Variation p-values

HLU 0.1930 0.1974

DIET 0.7787 0.9240

DIET*HLU 0.9731 0.1719

1Values represent means ± SEM.
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Table 4. Humerus bone mineral area (BMA), bone mineral content (BMC), and bone mineral
density (HMD) measured by dual-energy x-ray absorptiometry (DEXA) of ambulatory (AMB)
and hindlimb unloaded (ID...U) rats fed the 15, 75, or 500 IU vitamin Elkg diet. I

N Humerus BMA Humerus BMC Humerus BMD
(cm2

) (g) (g/cm2
)

'J>
-.l

AMB, E-15

AMB, E-75

AMB, E-500

ID...U, E-15

ID...U, E-75

HLU, E-5oo

15

15

16

16

16

15

1.43±O.015 0.317±O.005 0.221±O.002

1.46±0.018 0.327±O.007 0.223±O.002

1.43±O.020 0.314±O.007 0.220±O.002

1.43±0.014 0.308±O.004 0.215±0.002

1.41±O.016 0.299±0.005 0.212±O.002
1.39±O.016 0.300±O.006 0.215±O.002

0.221±O.001

0.214±O.001

0.218±O.00l

0.217±O.002

0.217±O.002

0.319±0.004

0.302±O.003

0.312±O.003

0.312±O.005

0.307±0.OO5

p-value

ID...U <0.0188 <0.0002 <0.0001

DIET 0.1787 0.4964 0.9616

HLU*DIET 0.2821 0.2295 0.2218

E-15 31 1.43±O.01O
E-75 31 l.44±O.O13
E-500 31 1.41±O.013

AMB 46 l.44±O.OlO
ID...U 47 1.41±O.OO9

Source of Variation

IValues represent means ± SEM. Values with different subscripts for the same parameter are
significantly different (p<O.05).



Table 5. Femur bone mineral area (BMA), bone mineral content (BMC), and bone mineral density (BMD) measured by dual-energy x-ray absorptiometry
(DEXA); femur dry weight and ash weight of ambulatory (AMB) and hindlimb unloaded (HLU) rats fed the 15, 75, or 500 ill vitamin E/kg diet.

N FemurBMA FemurBMC FemurBMD Femur Dry Weight Femur Ash Weight
(cm2) (g) (glcrn2) (g) (g)

AMB, E-15 15 2.523I±O.0309a.b 0.6594±0.0105 0.2613±0.OOI9 0.9609±O.0397 0.6902±O.OI14

AMB,E-75 14 2.6015±0.0394a 0.6925±O.0140 O.266O±O.0018 1.0000±O.0686 0.7172±0.0269

AMB. E-500 16 2.5112±O.0355a,b 0.6490±0.0161 0.2579±O.0032 0.9302±O.0426 0.6711±0.0191

HLU. E-15 13 2.5123±0.0253a.b 0.6369±O.OO89 0.2535±O.0025 0.8833±0.O317 0.6481±O.O1l4

HLU, E-75 15 2.4368±O.0278b 0.6139±O.0113 O.2518±O.0030 0.8657±O.0320 0.6336±0.0124

HLU, E-500 14 2.5041±O_0381b O.6272±O.0169 0.2500±O.OO35 0.8831±O.0440 0.6387±O.0169

Vl
00 E-15 29 2.5178±O.0198 0.6486±O.OO71 0.2575±O.0017 0.9234±0.0262 O.6707±0.0090

E-75 29 2.5163±0.0281 0.6519±O.0115 0.2587±O.0022 0.9305±O.0385 O.6740±0.O162

E-500 30 2.5079±O.0255 O.6388±O.0116 0.2542±0.OO25 0.9082±O.0304 0.656O±0.0130

AMB 45 2.5432±O.0208 0.666O±O.OO83 0.2616±O.0015 0.9621±0.0290 0.6918±O.0117

HLU 42 2.4832±O.0181 0.6258±O.OO73 0.2518±O.0017 0.8771 ±O.0204 0.6396±O.0204

Source of Yariation p-value

HLU <0.0254 <0.0003 <0.0001 <0.0002 <0.0004
DIET 0.9457 0.5309 0.1972 0.6600 0.4780

HLU*DIET 0.0346 0.0643 0.4431 0.4271 0.3021

IYalues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<0.05) .
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Table 6. Femur calcium, magnesium, copper, iron, and zinc concentrations determined by flame atomic absorption spectrophotometry in ambulatory (AMB)
and hindlimb unloaded (HLU) rats fed the 15, 75, or 500 ill vitamin Elkg diet. I

AMB, E-15

AMB, E-75

AMB, E-500

m...U, E-15

m...U, E-75

m...U, E-500

N

14

13

16

12

14

13

Calcium Magnesium
(mg/g) (mg/g)

235.59±12.89 3.841±O.188

237.03±16.70 3.950±0.248

256.28±12.93 4. 140±O.185

242.13±11.98 3.995±O.l70

250.11±13.66 4.080±0.l20

249.46±12.99 4.135±O.194

Copper
(JLg/g)

3.382±0.668

3.293±0.567

4.116±0.814

3.876±1.025

3.621±0.686

3.420±0.840

Iron
(Il-g/g)

17.19±1.60

17.59±2.40

19.08±1.40

J4.32±1.56

16.50±1.23

J5.82±1.69

Zinc
(JLg/g)

219.23±12.30

221.74±13.92

226.36±11.99

225.93±14.03

224.88±11.33

226.75±13.43

U'I
\Q E-15 25 238.61±8.72 3.905±O.l29 3.599±0.575 15.93±l.14 222.32±9.10

E-75 26 244.35±10.47 4.020±0.154 3.470±0.445 17.0l±1.26 223.37±8.72

E-500 29 253.36±9.10 4.138±O.132 3.804±O.579 17.62±l.11 226.53±8.78

AMB 42 244.05±8.00 3.982±O.01l7 3.636±0.41O 18.03±l.OO 222.61±7.15

HLU 48 247.38±7.34 4.076±O.I09J 3.626±0.471 15.64±O.85 225.85±7.26

Source of Variation p-value

m...U 0.1354 0.1382 0.9130 <0.0086 0.0984

DIET 0.1536 0.1216 0.9171 0.2355 0.6814

HLU*DIET 0.4616 0.4487 0.6844 0.6195 0.4707

IValues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<0.05).
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Table 7. Femur total calcium, magnesium, copper, iron, and zinc content measured by flame atomic absorption spectrophotometry in ambulatory (AMB)
and hindlimb unloaded (ffi.,U) rats fed the 15,75, or 500 IV vitamin Flkg diet.!

N Calcium Magnesium
(mg) (mg)

AMB,E-15

AMB, E-75

AMB, £-500

ffi.,U, £-15

ffi.,U, E-75

m..U, E-500

14

12

16

11

14

13

221.52±6.73 3.624±O.107

226.62±1O.82 3.780±0.153

233.90ilO.20 3.792iO.143

2l4.7l±8.04 3.609±0.124

21O.19±6.24 3.436±O.089

212.58±5.35 3.489±O.086

Copper
(~)

3.20±O.60

3.10±0.52

3.75±O.75

3.51il.Ol

2.98±O.48

2.87±O.66

Iron
(llg)

15.95±l.16

15.83±1.33

17.19iO.96

12.54±1.24

13.93±O.95

12.97±1.03

Zinc
(~)

205.74±5.90

212.17±8.06

205.56i7.62

199.48i8.03

189.54±4.03

189.82i4.55

0\
25 202.85i4.820 E-15 218.38±5.12 3.617±O.079 3.33±O.55 14.45±O.90

E-75 26 217.42±6.oo 3.594±O.090 3.04±O.34 14.8l±O.81 2oo.40±4.89

E-5oo 29 224.76i6.49 3.652±O.090 3.35±O.51 15.30±0.80 198.50±4.83

AMB 42 227.72±5.37 3.731±O.On 3.38±O.37 16.39±O.64 207.5l±4.12

ffi.,U 38 213.37±3.73 3.501±O.056 3.09±O.40 13.20±0.60 192.77±3.27

Source of Variation p-value

ffi.,U <0.0393 <0.0291 0.6968 <0.0001 <0.0051

DIET 0.7975 0.9599 0.8753 0.4764 0.5349

ffi.,U*DIET 0.5827 0.3597 0.6592 0.5307 0.3212

'Values represent means i SEM. Values with different subscripts for the same parameter are significantly different (p<0.05).



Table 8. Third lumbar bone mineral area (BMA), bone mineral content (BMC), and bone mineral density (BMD) measured by
dual-energy x.-ray absorptiometry (DEXA); third lumbar dry weight and ash weight; and density by displacement of ambulatory
(AMB) and hindlimb unloaded (HLU) rats fed the 15, 75, or 500 IU vitamin Elkg diet. I

N L3BMA USMC L3BMD L3 DryWt L3 Ash Wt
(cm2

) (g) (glcm2
) (g) (g)

AMB, E-15 14 0.7654±O.0096 0.1879±O.0037b 0.2454±O.OO35 0.2697±0.OO50 0.1728±O.0040

AMB,E-75 12 0.7854±0.0550 0.2156±0.0069a 0.2565±O.0045 0.2990±0.OO80 0.1963±O.OO57

AMB,E-500 14 0.7837±O.0158 0.1946±O.OO70b 0.2473±O.0044 0.2837±0.0092 0.1785±0.0068

HLU, £-15 14 0.7684±0.0151 0.1734±O.0042c 0.2256±O.OO29 0.2550±0.0061 0.1583±O.0043

HLU, E-75 15 0.7599±O.0083 O.1737±O.0032c 0.2284±O.0030 0.2551±0.0065 0.1593±O.0043

HLU. £-500 16 0.7679±O.OI66 0.1726±O.0055' 0.2243±0.0032 0.2548±0.0092 O. I602±O.0054
0-......

£-15 28 0.7669±O.0083 0.1806±O.0031b 0.235S±O.0029 0.2623±0.0041 O.16S5±O.0032b

£-75 27 0.7712±O.0243 0.1923±O.0054a 0.2409±O.0037 0.2746±0.0066 0.1757±O.0050·

£-SOO 30 0.7753±O.OI14 O.1829±O.0048b 0.2350±0.0034 0.2683±O.0069 0.1687±O.OO4Sa.b

AMB 40 0.7778±O.0171 0.1985±O.0038 0.2494±O.0024 0.2834±O.0047 O.1818±O.0035

HLU 45 O.7654±O.0079 0.1732±O.OO25 0.2261±O.OO17 0.2550±0.0043 0.1593±O.OO27

Source of Variation p-values

HLU 0.4111 <0.0001 <0.0001 <0.0001 <0.0001

DIET 0.8534 <0.0238 0.1096 0.1424 <0.0564

HLU*DIET 0.9211 0.0507 0.6221 0.2441 0.1051

IValues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<0.05).
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Table 9. Third lumbar calcium, magnesium, copper, iron, and zinc concentrations determined by flame atomic absorption spectrophotometry in ambulatory (AME) and
hindlimb unloaded (HLU) rats fed the 15,75, or 500 IV vitamin E/kg diet. l

N Calcium Magnesium Copper Iron Zinc
(mg/g) (mg!g) (p.g!g) (p.g!g) (p.g!g)

AMB, E-15

AMB, E-75

AMB,E-500

HLU, E-15

HLU, E-75

HLU, E-500

14

12

14

14

15

16

199.31±2.70 :l.61±O.071 4.69±O.118a.b 86.13±3.79 288.18±10.55

202.02±5.63 3.64±O.093 4.50±0.094a.b I 13.39±14.35 282.67±5.37

198.29±2.05 3.59±O.074 4.38±O.106b 96.39±4.63 270.87±9.22

193.86±6.30 3.46±O.066 4.39±0.121b 92.22±7.71 264.03±1O.03

I 89.33±3.08 3.58±O.115 4.69±O.l41 a.b 99.03±7.81 265.79±7.02

186.74±9.72 3.51±O.l09 4.81±O.1643 83.71±4.31 267. 14±6.45

a.. E-15 28 196.58+3.41 3.54±O.0498 4.54±O.088 89.18±4.26b 276.10±7.51N

E-75 27 194.70+3.16 3.61±O.0726 4.60±0.089 lOS.41±7.683 273.29±4.78

E-500 30 192.32+S .IS 3.54±O.0672 4.61±O.107 84.96±3.11 b 268.88±5.42

AMB 40 199.71±1.96 3.61±O.045 4.52±O.064 94.40±5.06 280.47±5.17

HLU 45 189.89±3.94 3.S2±O.058 4.69±O.086 94.46±3.89 265.72±4.42

Source of Variation

HLU <0.0382 0.2052 0.3031 0.S317 <0.0246

DIET 0.7758 0.6344 0.9245 <0.0172 0.40S6

HLU*DIET 0.8122 0.9230 <0.0258 0.4420 0.3992

lVa]ues represent means ± SEM.



Table 10. Third lumbar total calcium, magnesium, copper, iron, and zinc content measured by flame atomic absorption spectrophotometry in ambulatory (AMB)
and hindlimb unloaded (HLU) rats fed the 15, 75, or 500 IU vitamin Elkg diet. l

1

N Calcium Magnesium
(mg) (mg)

AMB, E-15

AMB, E-75

AMB, E-500

HLU, E-15

HLU, E-75

HLU, E-5oo

14

12

14

14

15

16

53.80±1.38 0.975±0.029

60.91±2.49 1.086±0.036

56.36±2.16 1.021±O.044

49.61±2.38 0.88510.032

48.28±1.43 0.913±O.037

47.14±3.42 0.885±0.027

Copper
(gg)

1.26±O.029

1.35±O.057

1.24±O.042

J.l2±O.033

1. 19±O.027

1.22±O.059

Tron
(gg)

23.13±0.95

34.42±4.90

24.24±1.17

23.37±1.98

25.64±2.63

21.03±0.95

Zinc
(gg)

77.59±2.83

84.53±2.80

76.91±3.82

67.05±2.56

67.59±1.99

67.84±2.55

l

0\
23.25±1.0Sbw E-15 28 51.70±1.41 0.930±0.023 J.l9±O.025 72.32±2.13

E-75 27 53.62±l.SI 0.990±0.030 1.26±0.033 29.55±2.71 a 75.11±2.32

E-500 30 51.59±2.J9 0.949±O.028 1.23±O.036 22.53±0.79b 72.08±2.36

AMB 40 56.73±1.21 1.025±O.022 1.28±O.025 26.91±1.71 79.43±1.89

HLU 45 48.31±1.44 0.894±O.018 1.18±O.0~5 23.30±1.14 67.51±1.35

Source of Variation p-value

HLU <0.0001 <0.0001 <0.0025 <0.0335 <0.0001

DIET 0.4181 0.1l70 0.2062 <0.0038 0.2863

HLU*DIET 0.2777 0.5520 0.1743 0.2025 0.2723

lValues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<O.05).



Table II. Serum parameters measured on blood collected at necropsy from ambulatory (AMB) and hindlimb unloaded (HLU) rats 15, 75, or 500 ill vitamin EJkg
diet.'

N Alkaline Phosphatase Tartrate-Resistant Add Ferric Reducing Ability of N Osteocalcin
(ukatIL) Phosphatase (uIL) Plasma (JLmollL) (nglml)

AMB, E-15 15 1.65±O.13 4.43±O.29 553±35 10 23.65±3.64

AMB, E-75 15 1.57±O.08 4.27±0.24 575±20 11 24.13±3.58

AMB, E-5oo 16 I.85±O.17 4.04±O.21 659±35 12 26.45±3.92

HLU, E-15 17 1.60±0.12 5.73±O.l7 533±26 12 27.97±3.17

HLU, E-75 16 l.54±O.13 5.47±0.23 578±20 12 27.21±3.55

HLU, E-5oo 16 I.82±O.14 5.38±O.23 727±47 12 27.58±3.282

0"- E-15 32 1.62±O.09 5.12±O.20 542±21 b 22 26.0J±2.38
~

E-75 31 1.56±O.08 4.91±O.20 576±14b 23 25.74±2.49

E-500 32 1.83±O.11 4.71±0.19 693±30a 24 26.99±2.52

AMB 46 1.69±O.08 4.24±O.14 597±19 33 24.83±2.1O

HLU 49 1.65±O.08 5.53±0.12 611±22 36 27.59±1.88

Source of Variation p-values

HLU 0.7265 <0.0001 0.5004 0.1718

DIET 0.0990 0.2346 <0.0001 0.7959

HLU*DIET 0.9911 0.9688 0.3544 0.8764

IValues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<0.05).
20ne animal from this group was omitted due to an unusually high value.



Table 12. Alkaline phosphatase (ALP) and total protein extracted from the femur of ambulatory (AMB) and hindlimb
unloaded (HLU) rats fed the 15,75, or 500 IV vitamin Elkg diet. I

N Bone ALP Bone Protein Bone Protein
(ukat/mg soluble bone protein) (mg protein/whole bone) (mg protein/g bone)

AMB,E-15 14 17.64±3.86 0.809tO.106 0.865tO.126

AMB, E-75 15 17.50±7.04 1.110±0.150 1.230±0.178

AMB, E-500 16 10.80±3.40 0.955±O.117 1.037±O 131

HLU, E-15 16 19.68t3.34 0.663±0.104 0.763±0.119

HLU, E-75 16 20.54t3.63 0.689±0.101 0.836±O.133

HLU, E-500 16 17.43±4.68 0.824±0.07~ 0.995±0.11O

0-
'-"

E-15 30 18.73±2.50 0.731tO.074 0.810±0.086

E-75 31 19.07t3.83 0.892±0.096 1.027±O.114

E-500 32 17.ll±2.84 0.889±0.069 1.016±O.084

AMB 45 17.29±2.83 0.961tO.073 1.048±0.O86

HLU 48 19.22±2.23 0.725±0.054 0.865±O.070

Source of Variation p-value

HLU 0.6462 <0.0103 0.0762

DIET 0.8790 0.2887 0.1893

HLU*DIET 0.9722 0.3111 0.2599

IValues represent means ± SEM. Values with different subscripts for the same parameter are significantly different (p<0.05).



CHAPTER V

CELL CULTURE

RESULTS AND DISCUSSION

The primary goal of bone research is an understanding of bone cell biology in the

living organism. Bone cell culture has developed as a means of isolating bone cells to

produce cell popuLations of known composition that employ the characteristics of cells in

vivo and allow researchers to study the systemic and local factors that affect bone, in an

in vitro environment. Thus, "any understanding of bone cell regulation is a key

ingredient in understanding not only the development, maintenance, and repair of the

skeleton, but also the prevention and treatment of skeletal disorders" (Marks & Popoff

1988).

The impact of hindlimb unloading and vitamin E status on cultures of marrow

deri ved bone cells was examined as part of this study. Throughout the course of this

study many problems arose which affect the results of this chapter. Primary bone cell

culture is a very delicate science and generally requires much practice and experience to

perfect the technique. The large number of animals in this study and the three separate

replications of the experiment provided an excellent opportunity to develop cell culture

technique. Cells obtained from animals in replication #1 of the experiment were used to

establish opti mal assay conditions. These cells were cultured in different media and with
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varying growth factors to determine the most appropriate methodology for the rest of the

experiment. We planned to use cells obtained from the animals of rep.lications #2 and #3

to provide the actual data and results for the experiment. However, during the incubation

period of replication #2 cell death occurred prior to termination of the experiment. This

dramatically reduced the number of samples in the experiment and increased dependence

on replication #3 to provide results. Cells from replication #3 were successfully cultured

until pre-confluency and harvested for measurement of bone remodelling markers.

Photographs were taken throughout the course of cellular differentiation and growth, and

are included in Appendix B. However, attempted measures of cellular secretion of

alkaline phosphatase (ALP), osteocalcin, and tartrate-resistant acid phosphatase (TRAP)

were unsuccessful.

Alkaline phosphatase, a marker of bone formation, was measured on the lysate of

sonicated cells and in the cell media supernate. No detectable levels of ALP were

observed in the lysate and minute levels were measured in the supernate. These results

could possibly be attributed to the sensitivity of the kit used to measure ALP. The lysate

and supernate ALP were measured with a kit that is normally used to detect ALP levels in

plasma and serum. A more sensitive procedure might have produced valid results. I.n a

similar study Machwate et al. (1993) measured the ALP activity in bone marrow cells

obtained from rats subjected to 14 days of hindlimb unloading. Their technique involved

scraping the cell layer into distilled water and then sonicating the cells. In this study,

cells were sonicated while still attached to the wells. Sonicating cells while in the well

was very awkward and difficult and could possibly be a reason that no detectable levels

of ALP were detected in the lysate. In the future, using a more sensitive measure for
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detecting ALP and detaching cells from the well prior to sonicating may help to eliminate

some of this error.

Osteocalcin, also a marker of bone formation was measured in the cell media

supernate by radioimmunoassay. Again, no detectable levels of osteocalcin were

observed in the supernate. Although the kit was appropriate for measuring osteocalcin in

cell culture media, the osteocalcin concentration in the supernate was apparently below

the minimum threshold detectable by the kit.

To measure bone resorption, cell plates were stained for TRAP positive cellular

activity. Osteoclasts, bone resorbing cells, secrete the acid phosphatase enzyme to break

down bone mineral and bone matrix. Tartrate-resistant acid phosphatase staining was

performed using a commercially available kit (Sigma). However, in our experiment,

tartrate-resistant cells were not distinguishable from other cells. Lack of experience in

cell staining is the most likely cause of this error. Others staining for TRAP activity have

report.ed increases in the number of TRAP-positive cells in cultures obtained from models

undergoing rapid bone loss (Kalu 1990).

All cells were plated in 24-well plates at a similar initial density. To accomplish

this, initial bone cell viability was measured in the bone marrow of each rat. Data is

reported from replications #2 and #3 of the experiment (Table 1). Hindlimb unloading

significantly reduced the initial number of viable bone marrow cells. A diet effect

(p<0.0471) was also observed in initial cell viability. Animals on the 75 IV/kg vitamin E

diet had significantly more viable cells than animals on the 500 IV/kg diet. However,

cell viability did not differ significantly between animals on the 15 ill/kg and 75 IV/kg

diets, or between animals on the 15 ill/kg and 500 IV/kg diets. This indicates that

68



vitamin E at the 75 IU/kg diet was more effective than the 500 ill/kg diet at protecting

the cellular integrity of marrow cells.

In addition to initial cell viability, percent of viable versus non-viable cells was

assessed. However, there was no significant affect of~U or diet on the percentage of

viable cells (Table 1).

The main goal of bone cell culture is to isolate cell populations of known

composition. However, none of the common methods currently used to isolate bone cells

produce a pure population, where every cell type is identifiable. Because osteoclasts are

derived from hemopoietic origin, bone marrow cultures have been used primarily to

study their biology. Osteoblasts, however, have been isolated primari Iy by the sequential

enzymatic digestion of bones. The failure of this experiment to observe biochemical

indicators of bone formation in marrow cultures may be attributed to the fact that

osteoclastic activity in the cultures was far outweighing osteoblastic activity in the

cultures, regardless of diet or m..u. However, because no data are available to determine

osteoclastic activity, this cannot be determined. Additionally, altered bone remodeling

displayed in vitro may be a result of culture conditions and not necessarily the

physiological state of the animal. Although bone cell culture provides valuable insight

into bone physiology, its limitations must be considered when extrapolating the

information to bone remodeling in vivo.
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Table 1. Initial cell viability and percent of viable bone marrow cells obtained from
ambulatory (AMB) and hindlimb unloaded (HLU) rats fed the 15, 75, or 500 IV
vitamin Elkg diet. I

N Initial Cell Viability
(Total Viable Cells)

AMB, E-15 10 6.61 X lO6 ± 5.21 X 105

AMB, E-75 9 7.39 X 106 ± 4.63 X 105

AMB, E-500 12 5.95 X 106 ± 3.73 X 105

HLU, E-15 11 5.44 X lOG±3.17 X 105

HLU, E-75 11 5.76 X lOG ± 3.02 X 105

HLU, E-500 12 5.15 X 106±4.32 X 105

E-15 21 6.00 X lO6± 3.19 X 105a,b

E-75 20 6.49 X 106 ± 3.19 X 105a

E-500 24 5.55 X 106 ± 2.91 X 105h

AMB 31 6.58 X 106± 2.72 X 105

HLU 34 5.44 X 106 ± 2.07 X lO5

Source of Variation p value

HLU <0.0006

DIET <0.0471

DIET*HLU 0.6076

Percent Cell Viability
(% Viable Cells)

93.53±O.69

94.63±O.53

94.45±0.78

94.79±O.54

94.22±0.66

93.04±O.46

94. 16±0.45

94.40±0.42

93.77±0.48

94.20±0.40

94.02±O.34

0.7408

0.5200

0.0756

lValues represent mean ± SEM. Values with different subscripts for the same
parameter are significantly different (p<0.05).
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Summary

The effects of hindlimb unloading, vitamin E, and their interaction on bone were

investigated. Using a 2 X 3 factorial design, ninety-seven, ll-month old, male, Sprague

Dawley rats were either hindlimb unloaded (HLU) or remained ambulatory (AMB) as

controls. After 10 days on a diet containing no vitamin E, rats in each group were

randomly assigned to one of three dietary treatments containing 15, 75, or 500 IV dl-a.

tocopherollkg diet, which was consumed for the 2 months prior to unloading. After 28

days of HLU, rats were necropsied and bones were collected for determination of bone

mineral density and mineral concentrations. Selected biochemical measures of bone

formation and resorption were also performed. Serum vitamin E was dose-dependently

elevated (p<O.OOOl) by dietary vitamin E treatment. Bone resorption, as indicated by

serum tartrate-resistant acid phosphatase, was elevated (p<O.OOO 1) in unloaded animals,

but was not affected by diet. Serum and bone alkaline phosphatase and serum

osteocalcin, markers of bone formation, were not significantly affected by diet or

unloading. Hindlimb unloading significantly reduced bone protein extracted from the

femur. Bone mineral density, measured by dual-energy x-ray absorptiometry (DEXA), of

the third lumbar vertebrae (L3), femur, and humerus was significantly reduced by HLU,
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but not by diet. HLU significantly reduced iron concentration in the femur of unloaded

animals; furthennore, HLU significantly decreased the total content of calcium,

magnesium, iron, and zinc in the femur. In L3, HLU significantly reduced the total

content of calcium, magnesium, copper, iron, and zinc. Diet had no effect on mineral in

the femur or L3, except that, the L3 of animals on the 75 IV diet had higher total

(p<0.0172) bone iron when compared to animals on the 15 IV and 500 IV diets.

Hindlimb unloading significantly reduced the total numher of viable bone marrow cells.

Vitamin E at 75 IV/kg diet increased (p<0.0471) cell viability when compared to the 500

IU/kg diet.

Results of Hypothesis Testing

The following hypotheses were developed for this study:

1. Hindlimb unloading, vitamin E status, or their interaction will not significantly alter

the bone mineral area (BMA), bone mineral concentration (BMC), or bone mineral

density (B.MD) in aged rats.

Hypothesis #1was rejected because DEXA scans showed significant reductions in

B.MD of the humerus, L3, and femur of hindlimb unloaded animals. A diet and HLU

interaction was observed in L3. Third lumbar BMC was significantly less in hindlimb

unloaded animals compared to ambulatory, regardless of diet. Ambulatory animals on

the 75 IU/kg diet had significantly greater BMC of the L3 compared to ambulatory

animals on the 15 and 500 IV/kg diets. An interaction between diet and HLU was

observed in femur BMA. Femur BMA in ambulatory animals on the 75 ill/kg diet was
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significantly greater than femur BMA of hindlimb unloaded animals on the 15 and 500

IU/kg diets.

2. There will be no statistically significant effects of hindlimb unloading, vitamin E

status, or their interaction on biochemical markers of bone remodeling (i.e. serum

alkaline phosphatase, bone-specific alkaline phosphatase, serum osteocalcin, and

serum tartrate-resistant acid phosphatase) in aged rats.

Hypothesis #2 was partially rejected because lll..U increased (p<O.OOOl) the serum

TRAP concentration. However, no significant diet or lll..U effect was observed in serum

ALP, bone-specific ALP, or serum osteocalcin.

3. There will be no statistically significant difference in the total bone content or

concentration of bone calcium, magnesium, copper, iron, and zinc due to hindlimb

unloading, vitamin E status, or their interaction in hindlimb unloaded rats.

Hypothesis #3 was rejected because HLU reduced (p<0.0086) iron concentration in

femur. Hindlimb unloading also significantly decreased the total content of calcium,

magnesium, iron, and zinc in the femur. In L3, lll..U significantly reduced the total

content of calcium, magnesium, copper, iron, and zinc. Diet had no effect on mineral in

the femur or L3, except that, the L3 of animals on the 75 ill vitamin E/kg diet had higher

(p<0.0172) total bone iron when compared to animals on the 15 and 500 IU/kg diets.

4. Hindlimb unloading, vitamin E status, or their interaction will not significantly alter

the initial viability, alkaline phosphatase secretion, osteocalcin secretion, or tartrate

resistant acid phosphatase activity in marrow-derived bone cells from aged rats.

Hypothesis #4 was partially rejected because lll..U significantly reduced the initial

viability of marrow-derived bone cells. The 75 IU/kg vitamin E diet increased
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(p<O.0471) initial cell viability when compared to the 500 rulkg diet. However, no other

reliable cell culture data are available for hypothesis testing.

Conclusions and Recommendations

Although vitamin E supplementation improved the antioxidant potential of the

aged rats in this study, it did not provide protection against osteopenia. Twenty-eight

days of hindlimb unloading induced significant osteopenia in the unloaded bones of aged

rats. Along with bone loss, there were also alterations in the mineral components of

bone. The bone loss observed in this study was apparently a result of increased

resorption and 'not diminished formation as reported in other studies. Further research

into the etiology of age-associated bone loss occuring during unloading is needed to

better clarify the results from this study.

With the exception of initial cell viability, no reliable data were acquired for

exploring the impact of hindlimb suspension and vitamin E status on marrow-derived

bone cells, However, what little data were available provided valuable information that

vitamin E in a "moderate" dose was most effective at protecting cellular integrity in

marrow cells, and that at "high" doses vitamin E may be detrimental, rather than

beneficial.

A similar vitamin E effect was observed on other parameters of bone

composition. It appeared that vitamin E was most protective in a "moderate" dose.

Although assumptions can be made from these results, more in-depth research studies

must be performed before valid conclusions can be made regarding vitamin E and its

effect on bone.
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APPENDIXB

1. Bone marrow cells a few days into culture.
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2. Bone marrow cells reaching pre
confluency near 2 weeks of culture.
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