## THE ECOLOGY OF THE ALLIGATOR SNAPPING

TURTLE, Macrochelys temminckii,

## IN OKLAHOMA

By

### JIMMY DAREN RIEDLE

Bachelor of Science

Emporia State University

Emporia, Kansas

1995

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December 2001

# THE ECOLOGY OF THE ALLIGATOR SNAPPING

# TURTLE, Macrochelys temminckii,

# IN OKLAHOMA

Thesis Approved: R Thesis Adviser

Dean of the Graduate College

#### ACKNOWLEDGMENTS

There are many individuals and organizations that I would like to thank for their support, encouragement, and motivation towards completing this project. I wish to express my deepest gratitude towards my major advisor, Dr. Stanley F. Fox for his guidance, advice and just giving me a chance. I also would like to thank my other committee members, Dr. David M. Leslie, Jr. and Dr. Chuck C. Peterson for their guidance. I extend my deepest gratitude to my old friend Paul Shipman for many fine field trips in many fine locales and for forcibly coercing me into taking over this project in the first place. I also want to thank Steve Beredzen at Sequoyah National Wildlife Refuge, Oklahoma Department of Wildlife Conservation, and the Oklahoma Cooperative Fish and Wildlife Research Unit for financial, and logistical support. I extend extra appreciation to Shane Kasson, Gary Williams, and the rest of the crew at Sequoyah National Wildlife Refuge for putting up with me on a daily basis and providing me with the occasional evening entertainment and free beer.

I wish to express a special thanks to all the people, both paid employees and volunteers who helped me in the field during the course of this project. These many individuals include; Jamie Andrews, Larry Andrews, Tyler Ashby, Van Barker, Audrey Buck, Kenneth Cole, Greg Cummings, Aaron Goodwin, Joe Hackler, Jason Knight, Melayna Martens, Merrilee O'Melia, Casey Osterhaut, Fabiola Rezende, Richard Stark, Jill Whittham, Tiffany Talbot, Melissa Willis, and Joy Yoshioka. I want to thank Dr. Richard Kazmaier for his helpful insight and statistical suggestions. I also extend my

iii

appreciation to Dr. Lynnette Sievert at Emporia State University and Rusty Grimpe at the Tulsa Zoo for tracking down those hard to find Oklahoma Herpetological Society publications.

I want to thank all the graduate students that frequent 310 LSW for helping me maintain my sanity, and my Gung Fu instructor Ladell Elliot for helping me find my spiritual path. Lastly, I want to thank my parents, Jim and Peggy Riedle, for without their love and support I would not have made it this far.

# TABLE OF CONTENTS

| Chapter                                              | Page |
|------------------------------------------------------|------|
| I. INTRODUCTION AND LITERATURE REVIEW                | 1    |
| Taxonomy                                             | 1    |
| Species Description                                  | 2    |
| Distribution                                         | 3    |
| Habitat                                              | 3    |
| Home Ranges and Movements                            | 4    |
| Growth and Longevity                                 | 4    |
| Reproduction                                         | 5    |
| Diet                                                 | 7    |
| Population Biology                                   | 7    |
| II. HISTORIC AND CURRENT DISTRIBUTION OF THE         |      |
| ALLIGATOR SNAPPING TURTLE, Macrochelys temminckii,   |      |
| IN OKLAHOMA                                          | 11   |
| Introduction                                         | 11   |
| Materials and Methods                                | 11   |
| Results                                              | 14   |
| Discussion                                           | 15   |
| III. POPULATION DEMOGRAPHICS OF THE ALLIGATOR        |      |
| SNAPPING TURTLE, Macrochelys temminckii, in SEQUOYAH |      |
| COUNTY, OKLAHOMA                                     | 34   |
| Introduction                                         | 34   |
| Materials and Methods                                | 35   |
| Results                                              | 37   |
| Population Size and Density                          | 37   |
| Size Distribution                                    | 37   |
| Sex Ratio and Sexual Size Dimorphism                 | 38   |
| Discussion                                           | 38   |
| IV. MICROHABITAT USE, HOMERANGE, AND MOVEMENTS       |      |
| OF THE ALLIGATOR SNAPPING TURTLE, Macrochelys        |      |
| temminckii, IN SEQUOYAH COUNTY, OKLAHOMA             | 50   |

| Chapter                                                                                                                                                                                      | Page           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Materials and Methods<br>Results<br>Discussion                                                                                                                                               | 51<br>52<br>54 |
| V. CONCLUSION                                                                                                                                                                                | 67             |
| LITERATURE CITED                                                                                                                                                                             | 70             |
| APPENDICES                                                                                                                                                                                   | 75             |
| Appendix A-SAMPLE DATES, LOCATION BY COUNTY, NET<br>NIGHTS, AND NUMBER OF TURTLES CAPTURED BY<br>SPECIES                                                                                     | 75             |
| Appendix B-CAPTURE DATES, ID NUMBERS, TAG NUMBERS,<br>SEXES, MASS, AND BODY MEASURMENTS FOR INDIVIDUALS<br>OF <i>Macrochelys temminckii</i> CAPTURED AT SEQUOYAH<br>NATIONAL WILDLIFE REFUGE | 80             |
| Appendix C-SEX AND MASS OF <i>Macrochelys temminckii</i><br>OUTFITTED WITH ULTRASONIC TELEMETRY TAGS AND<br>THEIR RESPECTIVE HOME RANGE SIZES                                                | 87             |
| Appendix D-DISTRIBUTION OF LOCATION POINTS FOR<br>Macrochelys temminckii OUTFITTED WITH ULTRASONIC<br>TELEMETRY TAGS                                                                         | 89             |

# LIST OF TABLES

| Table                                                                                                                                                                                           | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| I. Alligator snapping turtle capture rates by sample site                                                                                                                                       | 21   |
| II. Number of turtles by species, purchased by commercial turtle buyers<br>between 1994 and 1999, based on reports made to the Oklahoma<br>Department of Conservation                           | 22   |
| III. Number of turtles by species exported from Oklahoma, based on<br>reports from the Oklahoma Department of Wildlife Conservation                                                             | 23   |
| IV. Size comparison between male and female Macrochelys temminckii<br>at Sequoyah National Wildlife Refuge                                                                                      | 45   |
| V. Seasonal comparisons of depth use by <i>Macrochelys temminckii</i> at Sequoyah National Wildlife Refuge                                                                                      | 59   |
| VI. Mean home range size (± 1 SD), mean distance moved between<br>core sites (± 1 SD), and total number of summer movements made by<br>male, female, and juvenile <i>Macrochelys temminckii</i> | 60   |

# LIST OF FIGURES

| Fig | gure                                                                                                                                                                                | Page |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.  | The distribution of the alligator snapping turtle, <i>Macrochelys temminckii</i> in the United States, based on Conant and Collins (1998)                                           | 9    |
| 2.  | Historic distribution of the alligator snapping turtle, <i>Macrochelys</i> temminckii, in Oklahoma                                                                                  | 24   |
| 3.  | Sites sampled for <i>M. temminckii</i> in Oklahoma between 1997 and 1999                                                                                                            | 26   |
| 4.  | Current known distribution of <i>M. temminckii</i> in Oklahoma based on the 1997-1999 survey                                                                                        | 28   |
| 5.  | Species-habitat associations as determined by canonical correspondences analysis                                                                                                    | 30   |
| 6.  | Capture rates for all turtle species in Oklahoma streams during the 1997-1999 survey                                                                                                | 32   |
| 7.  | Map of Sequoyah National Wildlife Refuge, Sequoyah County,<br>Oklahoma                                                                                                              | 46   |
| 8.  | Histogram of size classes, based on carapace length in millimeters,<br>of <i>Macrochelys temminckii</i> captured at Sequoyah National Wildlife<br>Refuge, Sequoyah County, Oklahoma | 48   |
| 9.  | Mean depths by month taken at <i>Macrochelys temminckii</i> locations and random points at Sequoyah National Wildlife Refuge                                                        | 61   |
| 10  | . Mean temperatures by month taken at <i>Macrochelys temminckii</i> locations and random points at Sequoyah National Wildlife Refuge                                                | 63   |
| 11  | Mean random water temperatures taken by month at varying depths at Sequovah National Wildlife Refuge                                                                                | 65   |

#### CHAPTER I

#### INTRODUCTION AND LITERATURE REVIEW

Very little information exists on the biology of the alligator snapping turtle, *Macrochelys temminckii*. Pritchard (1989) and Ernst et al. (1994) suggested that *M. temminckii* populations have declined drastically throughout its range. Overharvesting and habitat alteration were listed as the primary causes (Pritchard, 1989). In 1984, *M. temminckii* was proposed for listing as a threatened species by the United States Fish and Wildlife Service. The request for listing was precluded due to a lack of ecological information about the species. The status of the species was reviewed again in 1991, but no further actions were taken (United States Fish and Wildlife Service, 1991). At the state level, *M. temminckii* is afforded some protection in all states in which it occurs, except Louisiana (Roman and Bowen, 2000). *M. temminckii* currently is listed as a species of special concern in Oklahoma (Ramus, 1998).

The first chapter of this thesis is designed to provide an overview of what is known about *M. temminckii*. Later chapters will attempt to build on the information provided in these previous studies. Hopefully, studies conducted in Oklahoma will serve as an important stepping-stone in understanding the biology of this very secretive creature.

#### Taxonomy

The family Chelydridae is a new world family containing two monotypic genera, *M. temminckii* and its closest living relative, the common snapping turtle, *Chelydra serpentina* (Ernst et al., 1994). *Macrochelys* fossils have been dated back to the Miocene

1

(23.7 mya). During the course of its geologic history, the genus *Macrochelys* may have included three species (Pritchard, 1989).

The nomenclatural history of *M. temminckii* is very complex and is outlined in Pritchard (1989). Recently, there has been some confusion concerning the valid generic name for this species. *Macroclemys* has long been considered the generic name for the North American alligator snapping turtle (Ernst and Barbour, 1989; Ernst et al., 1994). However, Webb (1995) suggested that *Macroclemys* is a junior synonym for *Macrochelys* according to the publication dates of the generic description. Based on this information, I chose to use *Macrochelys* throughout this manuscript.

#### Species Description

The alligator snapping turtle, *M. temminckii*, is the largest freshwater turtle in the New World, attaining a carapace length of 80 cm and a live mass of 113 kg. Adults exhibit sexual dimorphism; females reach a maximum size of only 35 kg (Pritchard, 1989). Precloacal tail length also is longer in males than females (Ernst et al., 1994).

A general description of the species is as listed in Powell et al. (1998) and Ernst et al. (1994). The rear edge of the carapace is strongly serrated, and a row of four supramarginal scales is present along the posterior rim. The plastron is reduced and cruciform in shape. The plastron is connected to the carapace by a narrow bridge that is longer than broad. The shell is grayish brown; the skin is dark gray to brown above and lighter below. The tail is about as long as the carapace and has three rows of tubercles above and many small scales below. It has a large, powerful, hooked jaw, lateral eyes and many dermal projections along the head, chin, and neck. A worm-like process is located anterior to the glottis and used to lure prey within biting range.

#### Distribution

*Macrochelys temminckii* is confined to river systems that drain into the Gulf of Mexico (Figure 1). It reaches as far north as Kansas and Illinois (Galbreath, 1961; Clarke, 1981), and ranges from the Florida Panhandle to eastern Texas and Oklahoma (Conant and Collins, 1991). In Oklahoma, *M. temminckii* is restricted primarily to the eastern one-third of the state (Webb, 1970).

#### Habitat

*Macrochelys temminckii* is found typically in deep water of major rivers and their main tributaries but also occurs in canals, lakes, oxbows, swamps, and bayous (Ernst et al., 1994). Juveniles are found occasionally in smaller feeder streams (Allen and Neil, 1950). The species also is known to enter brackish water (Dundee and Rossman, 1989). Jackson and Ross (1971) speculated that *M. temminckii* was capable of spending considerable time in brackish habitats based on presence of barnacles on shells of coastal specimens.

Little is known about microhabitat use by *M. temminckii*. Sloan and Taylor (1987) reported that turtles in Louisiana spent the majority of their time in open-water bayous and channels with a water depth of 1.8--2.9 m. Telemetry studies have found that *M. temminckii* chooses specific microhabitat sites as resting or core sites. Core sites had more structural cover and denser overhead canopy than generally available (Sloan and Taylor, 1987; Shipman, 1993; Harrel et al., 1996; Shipman and Neeley, 1998). The turtles occur in mud and gravel bottom streams (Ernst et al., 1994).

Thermoregulation in *M. temminckii* is poorly studied. It is not known to bask, and only the females leave the water (to lay eggs). Ewert (1976) reported one instance of

basking in Texas by a 20-cm juvenile. Allen and Neil (1950) noted that captive individuals refused food at temperatures  $< 18^{\circ}$  C. Captive individuals at the Tulsa Zoo and Living Museum became inactive in winter when water temperature reached  $10^{\circ}$  C (Grimpe, 1987), but individuals did surface to breathe during these periods. The critical thermal maximum for two Louisiana individuals was 38.5 and 40.7° C (Hutchison et al., 1966).

#### Home Ranges and Movements

Movement patterns of *M. temminckii* are relatively well-studied, although there is still a paucity of data even on that subject. Wickham (1922) tagged and released an individual in July 1918 in the Blue River, Bryan County, Oklahoma, originally captured in 1915 in the Washita River, Bryan County, Oklahoma. The individual was captured again in September 1918 and had moved 274 m. The last observation was made in July 1921, and the turtle had moved an additional 27-30 km upstream. No information is present on the sex or size of the turtle. A 24.7-kg female in Kansas moved upstream 7 km between 11 April 1986 and 31 May 1991 (Shipman et al., 1991). Prime activity times were between 0200 and 0700 and lasted for one to three hours. The turtle would remain inactive for up to eight days between movements.

Sloan and Taylor (1987) observed 11 individuals in a lake and adjacent bayou in Louisiana. Daily movements varied from 27.8 to 115.5 m/day. Home ranges were 18--27 ha. Shipman and Neeley (1998) studied movements of 10 turtles in the St. Francis River, Dunklin County, Missouri. The mean daily movement for all turtles was 57.9 m, and mean linear home range was 1,793.6 m.

#### Growth and Longevity

Hatchling data were collected for 18 individuals of *M. temminckii* at the Tulsa Zoo and Living Museum (Grimpe, 1987). Mean carapace length was 35.5 mm, and mean mass was 14.2 g. Allen and Neill (1950) observed three individuals from hatching to five years of age. At hatching, the three individuals had carapace lengths of 44 mm and an average mass of 23.2 g. At five years, carapace length ranged from 84 to 90 mm, and one individual had a mass of 141.3 g.

Dobie (1971) determined size of sexual maturity based on the dissection of 231 individuals at a commercial fish house in Louisiana. Males are thought to have a more rapid rate of growth. The smallest mature male was 37 cm in length and the smallest mature female 33 cm, sizes that correspond to an age of 11--13 years based on counts of scute annuli. Powders (1978) observed a nesting female with a carapace length of 38.5 cm. Apparent age based on scute annuli was 28--31 years. Growth curves for Louisiana turtles constructed by Tucker and Sloan (1997) agree with predictions of age to sexual maturity given by Dobie (1971).

*Macrochelys temminckii* is thought to be a long-lived species. Conant and Hudson (1949) reported on two individuals in captivity at the Philadelphia Zoo. One individual lived for 47 years and 7 months, while the second was still alive and could be traced back 58 years and 8 months. Snider and Bowler (1992) reported that a male lived for 70 years, 4 months, and 26 days at the Philadelphia Zoo.

#### Reproduction

Mating has been observed in captive specimens in Florida during February, March, and April (Allen and Neill, 1950; Harrel et al., 1996), and in October in captivity

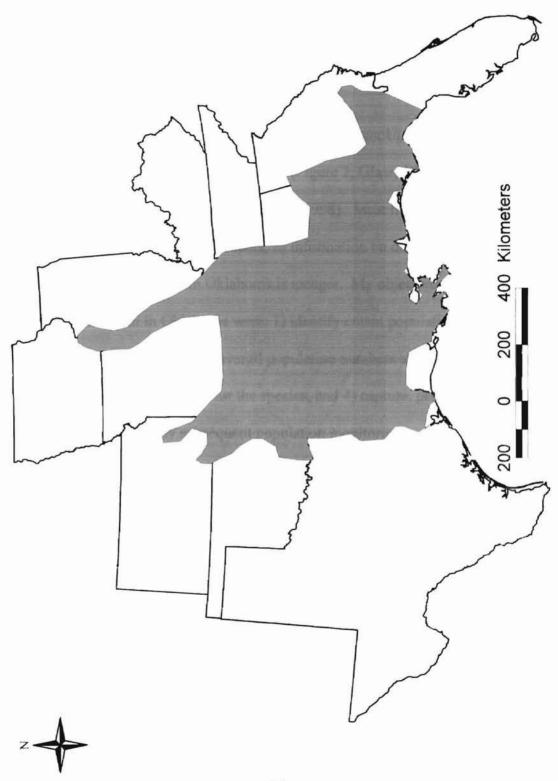
in Oklahoma (Grimpe, 1987). Mating is thought to be facilitated by posturing and olfactory cues between males and females. Aggressive interactions between males also occur during those displays (Harrel et al., 1996). Nesting was observed in Florida specimens between 1 and 11 May (Ewert, 1976). Captive specimens oviposited between 26 June and 11 July (Allen and Neill, 1950; Grimpe, 1987). Clutch sizes range from 9 (Powders, 1978) to 44 (Allen and Neill, 1950). Based on counts of corpora lutea, Dobie (1971) suggested possible clutch sizes of 52 eggs. During summer 2000, I visited two *M. temminckii* breeders. John Richards is a commercial breeder and owner of Loggerhead Acres Turtle Farm outside Strafford, Missouri. He currently maintains an outdoor colony of 200 breeders (sex ratio unknown). His turtles nest between the first week of June and the third week of July. Mean clutch size for his colony has been 26. Larry Andrews, a private breeder in Red Rock, Oklahoma, maintains a small colony of two males and four females. Nesting in his colony takes place in mid to late June and the mean clutch size for the four females has been 28 eggs.

Females generally nest in sandy substrates associated with some vegetation (Ewert, 1976). Captive females in the care of John Richards and Larry Andrews built nests either in artificial sandbars surrounded by dense vegetation or under clumps of vegetation. All nests observed by Ewert (1976) and myself had at least one side open to the sun.

Incubation period ranges from 79 to 107 days (Allen and Neill, 1950; Grimpe, 1987). Grimpe (1987) reported that juveniles are able to overwinter in the nest. I observed this phenomenon in the collection maintained by John Richards. We unearthed an individual who did not escape the nest the previous year. The hatchling was still alive

and eating four months later when I contacted Mr. Richards. Gibbons and Nelson (1978) suggested that several species of turtles that may nest late in the season can exhibit delayed emergence.

#### Diet


The primary foraging mode of *M. temminckii* is that of a sit-and-wait predator, only rarely foraging actively (Pritchard, 1989). Its diet is extremely catholic. Reports on stomach contents and fecal samples by Shipman et al. (1991), Ernst et al. (1994), and Sloan et al. (1996) include plant material (tubers, persimmons, acorns), invertebrates (crustaceans, gastropods, unionid mussels), fish (*Esox, Lepisosteus, Cyprinus, Amia*), frogs, salamanders (*Amphiuma, Siren*), alligator (*Alligator*), snakes, turtles (*Apalone, Graptemys, Trachemys, Pseudemys, Sternotherus, Macrochelys*), birds (passerines, wood duck), and mammals (*Procyon, Ondantra, Castor, Sylvilagus*).

#### Population Biology

Population size and demography may be the most poorly understood aspect of *M. temminckii* ecology. Few population studies have been conducted. Cagle and Chaney (1950) surveyed 14 sites in Louisiana in 1947. *M. temminckii* captures composed 4.2--12.5% of the samples. Shipman and Riedle (1994) and Shipman and Neeley (1998) captured 48 *M. temminckii* at two localities in southeastern Missouri. During the course of those studies, 20 individuals were captured at Wolf Bayou in Pemmiscot County, Missouri, in 1994. Turtles ranged between 6.2 and 24 kg and were represented by 10 males and 10 females. Seventeen individuals were captured in 1994 on the old channel of the St. Francis River in Dunklin County, Missouri. An additional 11 individuals were captured in 1997. Mass ranged between 2 and 17.3 kg for 27 individuals. Sex ratio was

- 11 males, 13 females, and 3 juveniles. Trauth et al. (1998) reported an adult sex ratio of
- 1:1 based on 86 individuals at two sites in Independence and Jackson County, Arkansas.

Figure 1. The distribution of the alligator snapping turtle, *Macrochelys temminckii* in the United States, based on Conant and Collins (1998).



10

i.

#### CHAPTER II

## HISTORIC AND CURRENT DISTRIBUTION OF THE ALLIGATOR SNAPPING TURTLE, Macrochelys temminckii, IN OKLAHOMA

#### Introduction

The Alligator Snapping Turtle, *Macrochelys temminckii*, once occurred throughout the eastern one-third of Oklahoma (Figure 2; Glass, 1949; Webb, 1970; Black, 1982; Carpenter and Krupa, 1989; Heck, 1998). Most historical accounts of *M. temminckii* are based on single individuals, so information on distribution and demography of *M. temminckii* in Oklahoma is meager. My objectives to determine the status of *M. temminckii* in Oklahoma were: 1) identify extant populations of *M. temminckii* in Oklahoma, 2) assess overall population numbers and viability, 3) identify and characterize important habitat for the species, and 4) capture, permanently mark, and release all specimens for any subsequent population monitoring.

#### Materials and Methods

I sampled sites throughout the eastern one-third of Oklahoma from May through August 1997-1999, with supplemental sampling of two sites in July 2000. Many of these sites were at or near historic sites of occurrence for the species in Oklahoma (Glass, 1949; Webb, 1970; Black, 1982; Carpenter and Krupa, 1989; Heck, 1998). I surveyed a variety of habitats to adequately sample all possible habitats in which *M. temminckii* might occur. The only area not sampled was the Arkansas River proper due to current channelization and impounding of the river, as well as lack of records for *M. temminckii* there; however, I did survey many tributaries of the Arkansas River.

Sites were sampled using commercial hoop nets that were 2.1 m in length and constructed of four 1.05-m diameter hoops covered with 2.5-cm square mesh. Nets were set upstream from submerged structures such as trees and log jams and were baited with fresh fish suspended by a piece of twine on the hoop furthest from the opening of the trap. Bait fish were procured with gill nets, or incidental capture in the turtle nets. Turtle nets were set in the late afternoon or evening and checked the following morning.

All individuals of all species of aquatic turtles were recorded. Basic habitat parameters also were collected at each site. Those data included aquatic regime (percent riffle, percent run, and percent pool); relative water current (0 = none, 1 = little, 2 =some, or 3 =much); stream morphology (0 =straight or channelized, 1 =slight bends in the stream, 2 = several bends within the stream, 3 = winding or braided stream); percent tree canopy covering the trap site; percentages of substrate types (clay, mud, sand, gravel, rock, and bedrock); amount of detritus (0 = none, 1 = little, 2 = some, or 3 = much); amount of beaver activity (0 = none, 1 = little, 2 = some, or 3 = much); mean site width; mean site depth; (1 = 0 - 1 m, 2 = 1.1 - 2 m, 3 = 2.1 - 3 m, or 4 = > 3 m); relative turbidity (0 = very clear, 1 = clear, 2 = slightly turbid, or 3 = very turbid); bank rise (0 = no rise, 1)= slight to  $45^{\circ}$  rise,  $2 = 90^{\circ}$  rise, or 3 = steep rise, bank overhanging the water); percentages of cover types (logs, log jams, trees, brush, and bank); relative amount of cover (0 =none, 1 =little, 2 =some, or 3 =much); number of feeder creeks present; amount of aquatic vegetation (0 = none, 1 = little, 2 = some, or 3 = much); and percent vegetative cover on the bank.

Canonical Correspondence Analysis (CCA) was used to determine site-by-species by-habitat associations (Palmer, 1993). CCA is a form of ordination analysis, in which

12

Ĥ.

raw data are a set of plots with measured abundance of species on each plot. Plots are ordered along a hypothetical or known environmental gradient according to similarity of species composition, or communities. Plots with similar communities are grouped together at one end of a continuum of some environmental gradient (e.g., moisture, elevation, etc.), and plots with dissimilar communities from those are grouped together at the other end of the gradient, with plots of intermediate communities located in between. CCA is a variant of Correspondence Analysis (CA), which is an iterative process that uses reciprocal averaging. In CA, (initially arbitrary) sample scores are used to compute species scores, which are weighted averages (sum of sample scores of each plot weighted by the frequency of each species present on each plot). Then, new sample scores are computed as the average of the species scores, again weighted by the abundance of each species in each sample. Scores are standardized at each step to prevent their approach to zero, and the process is repeated until scores stabilize. The result is the first CA axis solution. Subsequent ordination along further axes is performed in the same way after the effects of the first axis are factored out. Thus, axes are orthogonal.

In CCA, measured environmental variables that describe ecological gradients are included in the algorithm. Consequently, CCA is a form of "direct gradient" analysis. At each iteration, environmental variables are used as the independent variables in a multivariate linear least-squares regression to predict the new sample scores. Iteration is continued as before until scores stabilize. In CCA, species scores, sample scores, and independent variables can be plotted on the same triplot scatter diagram to see how plots with similar communities are related to measured environmental variables. Species that show similar habitat associations fall out together on such plots, and habitat associations

13

are seen as the relative proximity of the species scores (represented by points) to the terminus of the habitat vectors. The relative importance and relationships of the habitat variables are based on the relative length and direction of vectors (Palmer, 1993). Very short vectors offer little explanatory power and are ignored. Axes of CCA are interpreted from multiple, long vectors that align closely with an axis and thus define an environmental gradient.

I collected basic morphometric data on each individual of *M. temminckii* captured. These data included mass, sex, and the following measurements: carapace length, carapace width, plastron length, plastron width, head length, head width, post-anal tail length, and total tail length. All individuals of *M. temminckii* captured were uniquely marked and fitted with a numbered tag. The identification marking was done using a hole drilled into specific marginal scutes along the carapace. The marks corresponded to a numbering system as detailed by Santhuff (1993). I placed short plastic cable ties in all numbered holes to ensure that the hole did not prematurely close. Numbered tags were plastic cattle ear tags attached to one of the numbered holes by a plastic cable tie.

#### Results

I surveyed 67 sites in 15 counties throughout eastern Oklahoma (Figure 3). Some sites were surveyed more than once due to the presence of *M. temminckii* or if seemingly good habitat was present. My total trapping effort was 1,085 net nights (one net per night = one net night), and I made 3,647 turtle captures of 13 species (Appendix A). From 1997-1999, I made 69 captures of 63 individuals of *M. temminckii* (plus 8 more captures added in July 2000 from Sequoyah National Wildlife Refuge) at 11 sites (Table I; Figure 4): one site each in the Little River, Horton Slough, Dirty Creek, Little Vian Creek,

Hezekiah Creek, Mill Creek (McIntosh County), Mill Creek (Pushmataha County), Kiamichi River, and Dutchess Creek, and two sites on Big Vian Creek.

Canonical correspondence analysis indicated two principal environmental gradients along axes 1 and 2, respectively (Figure 5). Sites falling out to the left of axis 1 were turbid streams/rivers with riffles, mud, and detritus substrates, and substantial amounts of brush and trees in the water. Sites falling out to the right of axis 1 were faster-flowing streams/rivers with more pools and runs, logs and log jams, and sandier substrates. Macrochelys temminckii fell out in the middle of this first gradient, indicating its ecological generality with respect to these variables compared with the rest of the turtle species. The second environmental gradient (axis 2) was an upstream-downstream gradient, with upstream sites falling out low on this axis, and downstream sites falling out high on this axis (Figure 5). Downstream sites were deeper, more sinuous streams/rivers with mostly clay substrates and steeper banks; upstream sites were shallower streams/rivers with substrates of gravel and rock, more aquatic and bank vegetation with denser canopy, and more submerged cover. M. temminckii was also relatively generalized along this second axis, but was somewhat associated with upstream sites and their habitat characteristics (Figure 5). Considering the entire community of 13 aquatic turtle species I collected, red ear sliders (Trachemys scripta), common snapping turtles (Chelydra serpentina), common musk turtles (Sternotherus odoratus), and Mississippi mud turtles (Kinosternon subrubrum) were associated with approximately the same habitat as M. temminckii (Figure 5).

Net success (number of all turtles captured per net night) was plotted for each major river system sampled (Figure 6). Six of the 12 systems sampled exhibited low

capture rates (<3 turtles/net night). The sites with the lowest estimated capture rates for *M. temminckii* (< 0.10 turtles/ per net night; Table I) were at rivers exhibiting low overall capture rates.

#### Discussion

*Macrochelys temminckii* was once distributed throughout all the major river systems in eastern Oklahoma (Figure 3). It probably inhabited a variety of habitats in these rivers. Canonical correspondence analysis indicated that *M. temminckii*, compared to the rest of the turtle species captured in my study, is still a habitat generalist, although it was associated with more upstream than downstream sites. In CCA, *M. temminckii* fell out with *Chelydra serpentina*, *Sternotherus odoratus*, and *Trachemys scripta*, which are likewise considered habitat generalists (Ernst et al., 1994).

Despite this generality of habitat preferences, *M. temminckii* was captured at only 11 of the 67 sites sampled within the historic range of this species in Oklahoma. These results indicate a dramatic decline in numbers of *M. temminckii* in the state. Current known populations seem to be restricted to a few locations in the southeastern corner of Oklahoma. Of those populations, only the Eufala and Kerr reservoirs yielded capture rates high enough to suggest possible healthy populations. *Macrochelys temminckii* appears to have been extirpated from the northeastern corner of the state. The possible reasons for this decline are habitat alteration and historical, incidental, and illegal harvest.

There are several forms of habitat alteration that may have a negative effect on *M. temminckii* in Oklahoma. The Verdigris River has been channelized for navigation throughout much of Oklahoma. This manipulation of the river channel turns a lowenergy, meandering, aquatic system with high habitat diversity into a higher energy

system with low habitat diversity that is vastly different from the habitat preferred by *M. temminckii* (Shipman, 1993, Moll and Moll, 2000).

Moll and Moll (2000) identified eight major negative effects of impoundments on riverine turtle populations: 1) changes in available food, 2) prevention of migration, 3) flooding of nesting beaches upstream, 4) destruction of downstream nesting beaches due to erosion, 5) alteration of flood cycles, 6) fragmentation of populations, 7) prevention of substrate transport within the channel to replace that lost by erosion, and 8) changes in water quality due to decomposition of drowned forests and pollution produced by construction of the impoundment. All of these factors may affect *M. temminckii* populations in Oklahoma.

*Macrochelys temminckii* is exclusively aquatic, except for females during egg laying (Pritchard, 1989). An impoundment such as a dam or a lock would block movement of individuals up or downstream of the structure. The Arkansas, Caney, Verdigris, and Neosho rivers seem to be the major dispersal pathways for *M. temminckii* throughout the central and northern parts of its range in Oklahoma. The series of locks and dams along the Arkansas, Caney, and Verdigris rivers may be the main impediment to the dispersal of individuals into the northern reaches of Oklahoma rivers and streams.

*Macrochelys temminckii* is thought to occur only sporadically in Kansas (Collins, 1993). Shipman et al. (1995) identified 12 historical sites for *M. temminckii* in Kansas. The majority of those records were from the late 1800's to the mid-1900s. They speculated that individuals wandered upstream from viable populations in Oklahoma. Due to the damming of all the major rivers entering Kansas, the apparent lack of source populations in northeastern Oklahoma (this study), and the documentation of only one

individual during recent surveys, the occurrence of *M. temminckii* in Kansas may be sporadic at best.

Thermal alteration of aquatic environments such as hypolimnetic release of cold water also may be responsible for the decrease in *M. temminckii* abundance. The Mountain Fork River in McCurtain County, Oklahoma, is managed as a coldwater stream for trout fishing. Summer water temperatures taken during the study varied between  $17^{0}$  and  $21^{0}$  C. Little work has been done with the thermal requirements of *M. temminckii*, but Allen and Neill (1950) noted that individuals refused food at temperatures  $<18^{0}$  C. Based on our observations, the thermal environment in rivers such as the Mountain Fork is not ideal for *M. temminckii* or other aquatic turtle species. A 36.4-kg *M. temminckii* was captured on the Mountain Fork River in 1993 by anglers (Shipman, pers. comm.). No individuals were captured on the Mountain Fork during our survey. Heck (1998) reported a decline in the number of *M. temminckii* observed on the Mountain Fork River since the construction of the Broken Bow Dam in 1969; his last *M. temminckii* reported from the Mountain Fork River was from 1995.

Water pollution also may affect aquatic turtle communities. Heck (1998) listed several sources of pollution on the Little River that may have contributed to the decline of *M. temminckii* over the last 30 years. Sources include sewage discharge, runoff from chicken farms, waste-water discharge from chicken processing plants, chemical runoff, and soil erosion from commercial timber production.

The primary forms of harvest of *M. temminckii* include historical, incidental, and illegal capture. Most incidental captures are those on trot lines and limb lines set by fishermen for catfish. Shipman et al. (1991) reported a specimen caught on a limb line 32

km north of the Oklahoma border on a tributary of the Verdigris River. Heck (1998) listed several accounts of *M. temminckii* captures on limb lines and trot lines in McCurtain County, Oklahoma. Shipman and Riedle (1994) identified limb lines and trot lines as a primary threat to turtles on the Saint Francis River in southeastern Missouri. Several hundred lines were observed in a 4.8-km stretch, and one spiny softshell turtle, *Apolone spinifera*, was observed snagged on a limb line.

Due to its large adult size and ease of capture, *M. temminckii* has been harvested historically throughout its range as a source of meat for personal and commercial use (Pritchard, 1989). Sloan and Lovich (1995) reported 17,117 kg live-weight of *M. temminckii* purchased by a single buyer in Louisiana between 1984 and 1986. Turtles historically entered this market from Florida, Georgia, Mississippi, Arkansas, Texas, and possibly Oklahoma (Pritchard, 1989). Historical records for Oklahoma (Glass, 1949; Webb, 1970; Black, 1982; Carpenter and Krupa, 1989; Heck, 1998) are all based on individuals taken by fishermen, and all were kept by the fishermen themselves or donated to private or public collections. Commercial harvest in Louisiana is still ongoing (John Richards, pers. com.) even though *M. temminckii* is protected in surrounding states. Based on conversations with turtle trappers and dealers, many of the turtles at the Louisiana markets are still coming from out of state. Due to the protected status of *M. temminckii*, gaining reliable locality information on captures is difficult.

In addition to harvest for local consumption, there also is a large international demand for all turtles for the pet, food, and traditional medicine markets in Asia (Compton, 2000). Several North American turtle genera including *Trachemys*, *Chelydra* (Compton, 2000), *Graptemys* (Lau et al., 2000), *Macrochelys*, *Apalone*, *Malaclemmys*,

Sternotherus, Terrapene (Chen et al., 2000), and Pseudemys (Ades et al., 2000) have been recorded in varying numbers in Asian markets.

In response to the international demands, commercial harvest and farming of turtles to supply the trade has become very common in the United States (Thorbjarnarson et al. 2000). The Oklahoma Department of Wildlife Conservation (ODWC) opened commercial turtle harvesting in Oklahoma in 1994. According to reports from ODWC, 370,466 turtles of 11 species were harvested and sold to Oklahoma licensed turtle buyers between 1994 and 1999 (Table II). During that 6-year period of time, turtle buyers in Oklahoma (Table III) exported 311,061 turtles. Those numbers likely represent minimal estimates of actual harvest.

Low rates of turtle captures during my survey may be due to harvesting pressure, although there is no documentation of localities from which turtles have been harvested. According to anecdotal information supplied by ODWC game wardens and local fishermen, the Arkansas, Deep Fork, and Little rivers are harvested fairly frequently. The Deep Fork River and Little River exhibited low rates of turtle capture during the survey. Although *M. temminckii* can be captured unintentionally while harvesting other species, it is exempt from harvest and legally should be released. No information is available on how many *M. temminckii* are accidentally harvested, where they are harvested, or their fate after harvest. Areas exhibiting low capture rates for *M. temminckii* coincide with those areas exhibiting low overall turtle capture rates. Areas where *M. temminckii* still occurs in appreciable numbers are areas where they are afforded some protection from harvest (e.g., Sequoyah National Wildlife Refuge).

# TABLE I

# ALLIGATOR SNAPPING TURTLE CAPTURE RATES BY SAMPLE SITE, 1997 - 1999

| Site              | County     | Number of Net Nights<br>Captures |     | Capture Rate<br>(# turtles/net night) |  |  |
|-------------------|------------|----------------------------------|-----|---------------------------------------|--|--|
| Little River      | McCurtain  | 3                                | 167 | 0.018                                 |  |  |
| Kiamichi River*   | Pushmataha | 2                                | 34  | 0.059                                 |  |  |
| Dirty Creek**     | Muskogee   | 7                                | 37  | 0.120                                 |  |  |
| Hezekiah Creek**  | Sequoyah   | 3                                | 17  | 0.180                                 |  |  |
| Big Vian Creek*** | Sequoyah   | 24                               | 126 | 0.200                                 |  |  |
| Little Vian Creek | Sequoyah   | 26                               | 64  | 0.410                                 |  |  |
| Dutchess Creek    | McIntosh   | 4                                | 9   | 0.444                                 |  |  |
| Mill Creek        | McIntosh   | 8                                | 13  | 0.620                                 |  |  |

\*Represents one site on the Kiamichi River and one site on its tributary, Mill Creek.

\*\*Resampled July 2000 bringing total number of M. temminckii captures to 77.

\*\*\*Represents two sites on Big Vian Creek and one site on Horton Slough.

ALC: N

## TABLE II

## NUMBER OF OKLAHOMA TURTLES BY SPECIES PURCHASED BY COMMERCIAL TURTLE BUYERS BETWEEN 1994 AND 1999, BASED ON REPORTS MADE TO THE OKLAHOMA DEPARTMENT OF WILDLIFE CONSERVATION.

| Species                 | 1994    | 1995   | 1996   | 1997    | 1998   | 1999   | Total   |
|-------------------------|---------|--------|--------|---------|--------|--------|---------|
| Trachemys scripta       | 6,165   | 8,623  | 37,253 | 84,206  | 41,996 | 49,035 | 227,278 |
| Pseudemys concinna      | 3       | 0      | 49     | 207     | 50     | 163    | 472     |
| Graptemys ouachitensis  | 10      | 1,013  | 196    | 586     | 624    | 593    | 3,022   |
| Graptemys pseudogeograp | ohica 0 | 3      | 25     | 718     | 26     | 324    | 1,096   |
| Chrysemys picta         | 0       | 15     | 0      | 8       | 0      | 50     | 73      |
| Apalone spinifera       | 4,043   | 4,111  | 9,453  | 21,029  | 13,784 | 16,214 | 68,634  |
| Apalone mutica          | 2,772   | 2,993  | 4,570  | 13,683  | 12,487 | 5,509  | 42,014  |
| Chelydra serpentina     | 481     | 1,135  | 4,451  | 9,179   | 3,753  | 5,077  | 24,076  |
| Sternotherus odoratus   | 1       | 67     | 251    | 209     | 464    | 950    | 1,942   |
| Sternotherus carinatus  | 0       | 46     | 66     | 25      | 0      | 0      | 137     |
| Kinosternon flavescens  | 46      | 83     | 76     | 245     | 196    | 212    | 858     |
| Kinosternon subrubrum   | 2       | 857    | 0      | 5       | 0      | 0      | 864     |
| Total                   | 13,523  | 18,946 | 56,390 | 130,100 | 73,380 | 78,127 | 370,466 |

| TABLE III                                                              |
|------------------------------------------------------------------------|
| NUMBER OF TURTLES BY SPECIES, EXPORTED FROM OKLAHOMA,                  |
| BASED ON REPORTS FROM THE OKLAHOMA DEPARTMENT OF WILDLIFE CONSERVATION |

| Species                | 1994    | 1995   | 1996   | 1997    | 1998   | 1999   | Total   |
|------------------------|---------|--------|--------|---------|--------|--------|---------|
| Trachemys scripta      | 2,003   | 7,834  | 36,866 | 57,042  | 46,727 | 29,624 | 180,096 |
| Pseudemys concinna     | 3       | 0      | 8      | 2       | 22     | 0      | 35      |
| Graptemys pseudogeogra | phica 0 | 3      | 13     | 175     | 0      | 0      | 191     |
| Graptemys ouachitensis | 9       | 1,013  | 196    | 474     | 480    | 0      | 2,172   |
| Chrysemys picta        | 0       | 15     | 0      | 0       | 0      | 0      | 15      |
| Apalone spinifera      | 3,892   | 4,090  | 9,233  | 21,405  | 11,396 | 13,662 | 63,678  |
| Apalone mutica         | 2.895   | 2,893  | 4,282  | 17,051  | 11,691 | 5,764  | 44,576  |
| Ĉhelydra serpentina    | 509     | 1,127  | 1,576  | 6,126   | 4,300  | 5,005  | 18,643  |
| Sternotherus odoratus  | 1       | 67     | 304    | 35      | 165    | 36     | 608     |
| Sternotherus carinatus | 0       | 46     | 60     | 25      | 0      | 0      | 131     |
| Kinosternon flavescens | 46      | 81     | 66     | 94      | 40     | 0      | 327     |
| Kinosternon subrubrum  | 4       | 857    | 0      | 0       | 0      | 0      | 861     |
| Total                  | 9,362   | 18,026 | 52,604 | 102,249 | 74,821 | 54,091 | 311,333 |

State of

Figure 2. Historic distribution of the alligator snapping turtle *Macrochelys temminckii*, in Oklahoma.

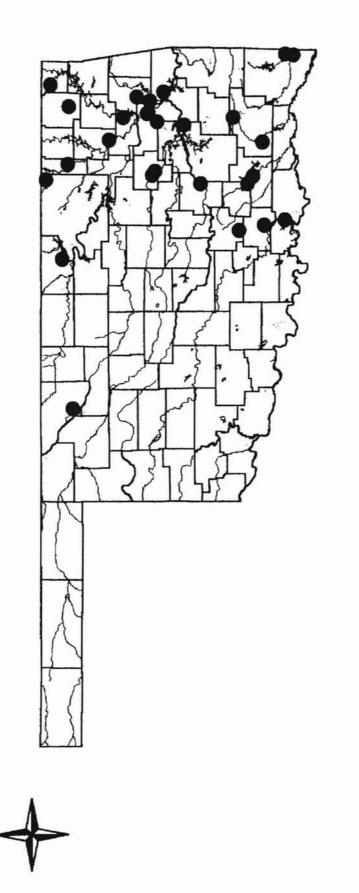





Figure 3. Sites sampled for *M. temminckii* in Oklahoma between 1997 and 1999. Points may represent more than one site, due to the close proximity of some sample sites.

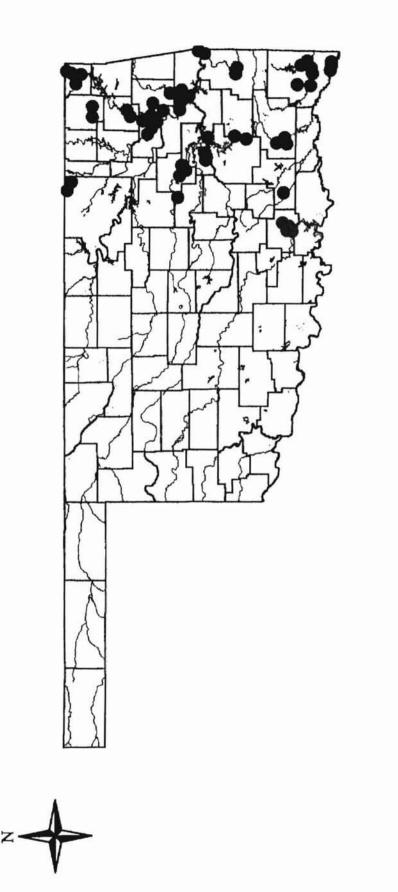
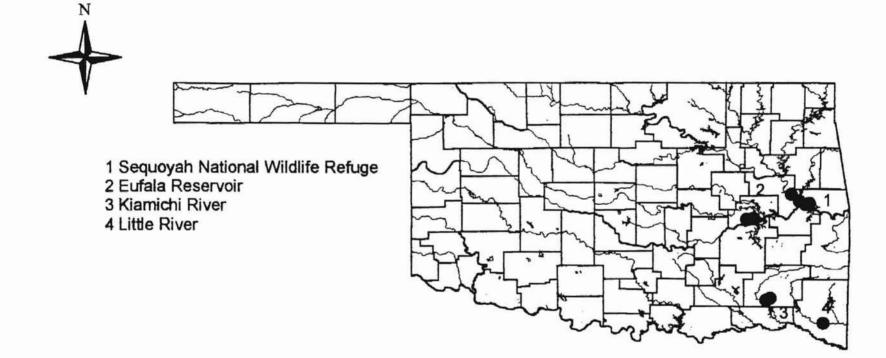
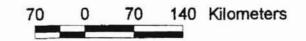
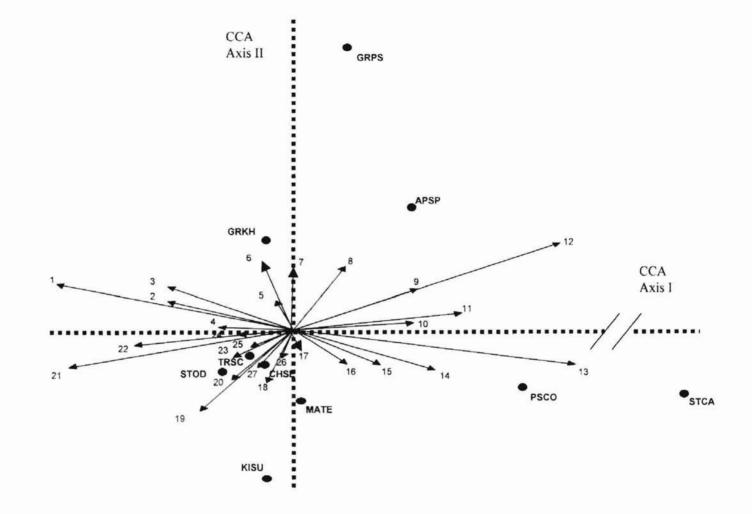






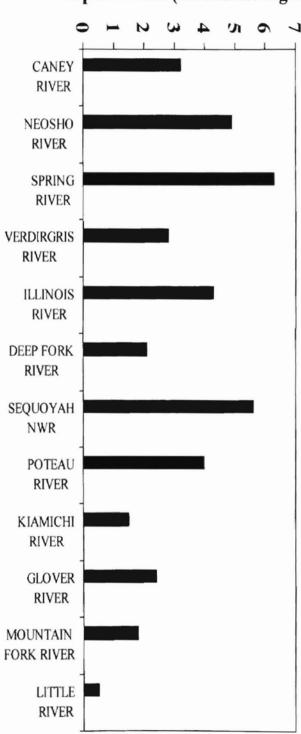

Figure 4. Current known distribution of *M. temminckii* in Oklahoma based on the 1997-1999 survey. Points may represent more than one site, due to the close proximity of some sample sites.






I

OKLAHOMA STATE INUVERSITY


Figure 5. Species-habitat associations as determined by canonical correspondence analysis. Species scores (shown as points): MATE=Macrochelys temminckii, CHSE=Chelydra serpentina, KISU=Kinosternon subrubrum, STCA=Sternotherus carinatus, STOD=Sternotherus odoratus, APSP=Apalone spinifera, GRKH=Graptemys kohnii, GRPS=Graptemys psuedogeographica, PSCO=Pseudemys concinna, and TRSC=Trachemys scripta (extremely rare species are excluded from analysis). Habitat vectors: 1=percent riffle, 2=relative amount of detritus, 3=water turbidity, 4=relative percent trees, 5=stream morphology, 6=mean stream depth, 7=bankrise, 8=percent clay substrate, 9=percent log cover, 10=percent log jam cover, 11=current speed, 12=percent sand substrate, 13= percent pool, 14=percent run, 15=percent gravel substrate, 16=percent rock substrate, 17=percent bedrock substrate, 18=number of feeder creeks, 19=relative amount of aquatic vegetation, 20=percent overhead canopy, 21=percent mud substrate, 22= percent brush, 23=percent bank cover, 24=relative amount of beaver activity, 25=mean stream width, 26=relative amount of total cover, 27=percent bank vegetation (refer to methods section for explanation of parameters).



31

# OKLAHOMA STATE INIVERSITY

Figure 6. Capture rates for all turtle species in Oklahoma streams during the 1997-1999 survey. Streams are ordered from north to south. Sequoyah National Wildlife Refuge is a complex of streams that empty into Kerr Reservoir in Sequoyah County.



# Capture Rate (turtles/net night)

#### CHAPTER III

# POPULATION DEMOGRAPHY OF THE ALLIGATOR SNAPPING TURTLE, Macrochelys temminckii, in SEQUOYAH COUNTY, OKLAHOMA

#### Introduction

Little is known about the population demography of *Macrochelys temminckii*. Shipman and Riedle (1994) and Shipman and Neeley (1998) sampled two populations in southeastern Missouri. In each, turtles ranged between 2 and 24 kg. Sex ratio for the two populations was 1 male:1.09 females. Trauth et al. (1998) sampled two sites in Arkansas and reported a sex ratio of 1:1. They also reported that males were significantly larger than females. Tucker and Sloan (1997) also found that males were significantly larger than females from examination of specimens at a commercial processing facility in Louisiana. Based on growth curves constructed by Dobie (1971) and Sloan and Tucker (1997), male *M. temminckii* reached sexual maturity at 37 cm, and females at 33 cm, straight carapace length.

Citing lack of information, *M. temminckii* was precluded for listing by the United States Fish and Wildlife Service in 1984 and 1991, but long-term population studies of this species should be undertaken. Due to the apparent decline of the species throughout its range (Pritchard, 1989; Ernst et al., 1994), large unimpacted populations may be hard to find. Information on ecology and demography of unimpacted populations obviously is necessary for the recommendation of practices to manage or restore impacted populations.

My overall goal was to elucidate the structure of a population of *M. temminckii*. My four primary objectives were: 1) determine population size and density at Sequoyah

OKLAHOMA STATE I MINERSITY

National Wildlife Refuge (SNWR), 2) identify size classes, 3) determine sex ratios, and4) test for sexual dimorphism.

### Materials and Methods

During summer 1997, several *M. temminckii* was captured on the SNWR in eastcentral Oklahoma. The refuge was located in Sequoyah County, 4.8 km south of Vian, Oklahoma. It is 51,376 ha and encompasses the Canadian and Arkansas rivers and their confluence. Primary habitat is bottomland flood plain with many small tributaries that drain into both rivers. Following the discovery of this sizeable population at SNWR, I initiated a more intensive study of *M. temminckii* there.

I sampled SNWR sporadically in 1997 and 1998 and more intensively in 1999 and 2000. Several small streams were sampled including Dirty Creek, Hezekiah Creek, Big Vian Creek, Little Vian Creek, and Negro Creek. Sally Jones Lake, a shallow lake connected to Big Vian Creek, also was sampled (Figure 7). Big Vian Creek and Little Vian Creek were sampled more intensively due to their easy access and were used for estimates of population size and density. Both streams are tributaries of the Arkansas River and the mouths of both streams are about 0.8 km apart. The entire navigable stretches of both streams were sampled. The navigable stretch of Little Vian Creek was 2 km in length, reaching from its mouth until the stream became shallow and predominated by riffles. Big Vian Creek was 4.5 km in length from the mouth to where the stream became very shallow and clogged with fallen logs.

All streams were sampled using commercial hoop nets that were 2.1 m in length and constructed of four 1.05-m hoops covered with 2.5-cm square mesh. Nets were set upstream from submerged structures such as fallen trees. Nets were baited with fresh fish

suspended by a piece of twine on the hoop furthest from the opening of the net. Bait fish were procured with gill nets or incidental capture in the turtle nets. Turtle nets were set late in the afternoon or evening and checked the following morning.

I recorded basic morphometric data on each individual of *M. temminckii* captured. Those data included mass, sex, and the following measurements: carapace length, carapace width, plastron length, plastron width, head length, head width, preanal tail length, post-anal tail length, and total tail length. All individuals of *M. temminckii* captured were uniquely marked and fitted with numbered tags. The identification marking was done using a hole drilled into specific marginal scutes along the carapace. Marks corresponded to a numbering system as detailed by Santhuff (1993). I placed short plastic cable ties in all numbered holes to ensure that the hole did not prematurely close. Numbered plastic cattle ear tags were also attached to one of the numbered holes by a plastic cable tie.

All individuals of *M. temminckii* were assigned to three primary classes based on sex and size. Sex was determined from two characters: relative tail length and presence/absence of a penis. Males typically have longer preanal tail lengths than females (Ernst et al. 1994) and the penis, if present, can be felt by inserting a finger into the turtle's cloaca. Turtles that were too small to display differences in preanal tail length or to examine for a penis were classified as juveniles. Morphological measurements between males and females were compared using two-group *t*-tests.

#### Results

#### Population size and density

I sampled a total of 565 net nights (1 net night = 1 net/night) between 1997 and 2000 on Dirty Creek, Hezekiah Creek, Big Vian Creek, Little Vian Creek, Sally Jones Lake, and Negro Creek. 1 captured 2,759 turtles of nine species, which included 197 captures of *M. temminckii*. *Macrochelys temminckii* was not captured in Sally Jones Lake or Negro Creek. Of all the turtles, red ear sliders, *Trachemys scripta*, were the most abundant, representing 83% of all captures. *Macrochelys temminckii* was the second most abundant, representing 7% of all captures. One hundred fifty-seven individuals of *M. temminckii* were marked and released (Appendix B). The recapture rate for *M. temminckii* was 21%.

Eighty-four individuals of *M. temminckii* were captured on Big Vian Creek and 64 were captured on Little Vian Creek. Because I could not test for emigration or immigration, I used a Lincoln-Peterson estimator of population size based on capture-mark-recapture data. Lincoln-Peterson estimates assume no emigration or immigration. The estimated population size for Big Vian Creek was 127.5 (SE = 24.5) individuals with a density of 28.3 turtles/km and, for Little Vian Creek, was 68.4 (SE = 18.2) individuals with a density of 34.2 turtles/km.

#### Size Distribution

Mean sizes for SNWR turtles were 8.71 kg (range = 0.22--46.4 kg), 330 mm carapace length (110--614 mm), and 240 mm plastron length (72--470 mm). I captured few small juveniles and large adults (Figure 8). There also was a cohort of turtles between 340 and 400 mm carapace length that was noticeably underrepresented.

OKI AHOANA STATE I WHITEDOIT

## Sex Ratio and Sexual Size Dimorphism

I captured 34 males, 42 females, and 81 juveniles, and the male-to-female ratio (1:1.23) did not differ from 1:1 ( $X^2 = 1.263$ , 1 df, p = 0.25). I was able to determine sex of males  $\geq$ 240-mm carapace length and females with  $\geq$ 260 mm carapace length, but not in all cases. I was able to determine sex of all individuals (except one) at carapace lengths >340 mm (Figure 8).

A lack of significant sexual size dimorphism was noted in the SNWR population (Table 4). Males were slightly larger than females, but there was no significant difference in any measurement between males and females, although all but one individual >500 mm carapace length were males. A Chi-square analysis of sexes by size class was used to compare number of males to females in two different size classes: medium (361-480 mm) and large (481-620 mm). The number of males and females differed in these two size classes ( $X^2 = 4.76$ , 1 df, p = 0.029); males represented the large adult cohort (Figure 8).

#### Discussion

*Macrochelys temminckii* was the second most abundant species captured at Sequoyah National Wildlife Refuge, occurring in high densities. There may have been some sampling bias toward that species with respect to type of bait and net size, but *M. temminckii* was still a commonly encountered species at SNWR. Because the Lincoln-Peterson estimate assumes no emigration or immigration, it may have overestimated population size on SNWR. Still, *M. temminckii* was captured fairly frequently and exhibited a low recapture rate. Unfortunately, there are currently no other published data on population densities of *M. temminckii* to compare with SNWR densities. I feel that the estimates made on SNWR are fairly accurate and may imply stable populations, especially because estimates for both Big Vian Creek and Little Vian Creek were fairly similar and most size classes were represented (see below). Based on survey data (Chapter 2), this may be one of the last large populations left in Oklahoma. The refuge came under federal stewardship in 1970, and many of the smaller feeder creeks are now accessible only by boat. Even so, boat travel is very difficult due to numerous fallen trees and stumps. One can suppose that harvest of *M. temminckii* is low to nonexistent at SNWR.

A wide range of size classes was captured, providing evidence for a stable population with good recruitment (Figure 8). The primary cohorts missing from the sample were hatchling-size turtles and large adults. The size of the mesh and throats of the nets used for sampling were large enough to capture adults but too large to contain small turtles. OKI ALIONIN OFNER I WILLICOOR

The population was slightly female-biased with an adult sex ratio of 1:1.23. This ratio is similar to values from populations in Missouri and Arkansas (Shipman and Riedle, 1994; Shipman and Neeley, 1998; Trauth et al., 1998). Although I was able to sex some individuals at relatively small sizes, my ability to sex small turtles was inconsistent. The primary factor was the inability to insert my finger far enough into the cloaca to feel for the presence or absence of a penis. I also was not able to determine minimal size of sexual maturity, because I did no internal analysis of follicular or testicular maturation. I was able to accurately sex all individuals (except one) with  $\geq$ 340 mm carapace length. That was within the size range for sexually mature turtles in Louisiana (Tucker and Sloan, 1997). Populations of *M. temminckii* in Louisiana reached

sexual maturity at 13-21 yrs for females and 11-21 yrs for males. These estimates of age to maturity may not be entirely accurate for Oklahoma populations, but because the sexed turtles that I captured were comparable in size, they provide the best estimate until more precise data can be gathered.

Although the population of *M. temminckii* at SNWR appeared healthy, there was evidence for possible perturbations in the past. The lack of significant sexual size dimorphism could be attributed to a couple of factors. Because the population at SNWR is a more northerly population of *M. temminckii*, it may be that a shorter growing season is the reason for lack of size dimorphism. In contrast, Trauth et al. (1998) found significant differences in size between males and females in a population in northeastern Arkansas. Many large individuals (25 to 55 kg) have been captured throughout eastern Oklahoma in the past (Webb, 1970; Black, 1982; Carpenter and Krupa, 1989). I captured six large males (25, 34.5, 36.3, 41.8, 42.3, 46.4 kg) and one large female (26.8 kg) while sampling at SNWR. A second possibility concerns the harvest of large turtles. Shipman and Riedle (1994) and Trauth et al. (1998) reported differences in body size between harvested and unharvested populations, with the absence of larger turtles from exploited populations. There is some evidence for historical take of *M. temminckii* in Oklahoma (Black, 1982; Carpenter and Krupa, 1989; Pritchard, 1989). It may be that before SNWR was established in 1970 there was significant take of M. temminckii, especially large ones from that area, and not enough time has elapsed to allow for the current adult cohort to reach its full growth potential. The few large individuals captured may represent the remaining cohort left before the refuge came under federal jurisdiction.

Individuals within the 340--400-mm range of carapace length are clearly underrepresented in my sample. This phenomenon may be attributed to subadult dispersal, previous habitat alteration on the refuge, or previous heavy harvest of adults. Juvenile common snapping turtles, *Chelydra serpentina*, occupy small streams after hatching and disperse from those streams as they reach sexual maturity (Graves and Anderson, 1987). This phenomenon also may be occurring within the populations of *M. temminckii* at SNWR. Perhaps these subadults leave the larger streams, which I trapped, and are found only in the smaller (unsampled) streams.

The missing cohort apparently is representative of the whole refuge. Although sample sizes on Hezekiah Creek and Dirty Creek were small, those size classes were still underrepresented in the captures. But if those 340--400-mm subadults used some different habitat, one has to wonder why even smaller individuals did not. I captured many juveniles < 340-mm carapace length in the same habitat as the larger turtles. Intuitively, those smaller turtles should be the ones using smaller streams because their smaller body size would make them more susceptible to predation by fish and larger turtles. So if the 340--400-mm turtles are using some different habitat that I did not sample, it is unknown what that habitat is and why only that size class used it.

OW ADDED AT AT A THE MANAGE

An alternative hypothesis may be that the refuge population experienced some past disturbance that may have had a negative impact on nest success and that underrepresented size-age class is the lingering "footprint" of such nest failure. I propose that such a past disturbance was the flooding of upstream areas after construction of the dam to make Robert S. Kerr Reservoir (RSKR). SNWR lies on the immediate upstream side of RSKR. Construction of the dam began in April 1964 and closure occurred in

October 1970. Subsequently, stream levels rose significantly based on information from SNWR personnel and remnant hardwood structure present in the current streambed. This dramatic rise in water level may have temporarily destroyed nest sites along the streams. The closure of the dam corresponds roughly with the potential age of the cohort affected. One negative impact of dams listed by Moll and Moll (2000) is flooding of nest sites upstream from the impoundment.

During June 2000, I found three possible nest sites of *M. temminckii* on SNWR. These were identified by large claw marks, large drag marks, and digging activity. Evidence of predation on several nests was observed, but no active nest could be found. Identification of eggshell remnants was based on comparison with eggs from captive *Macrochelys, Chelydra*, and *Trachemys*. Nests were found in either sandy soil or depositional mounds of mud, leaves and sticks. All nests were < 1 m from the water's edge, so similar nest locations could have been flooded when water levels rose dramatically in the early 1970s.

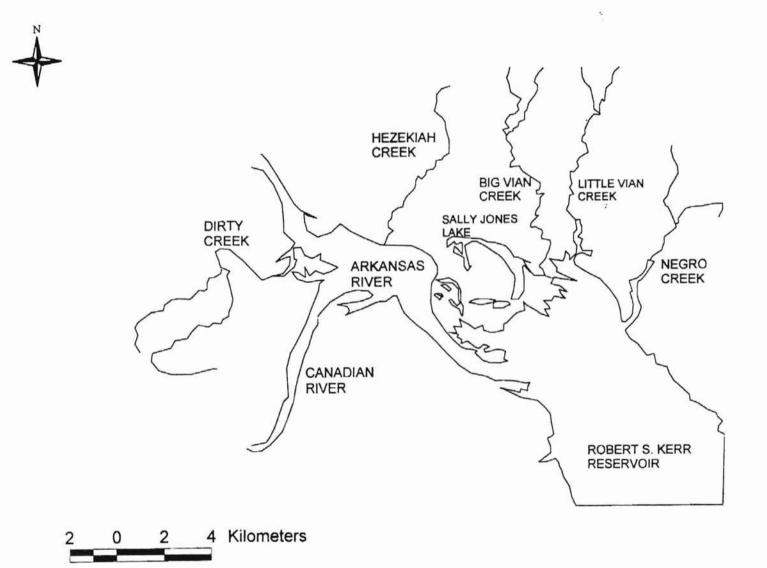
One problem with this theory is that the underrepresented cohort appears to be younger than the flooding event. Rise in water level also should have affected nesting success of the turtles for only one nesting season. After one season, the water level should have more-or-less stabilized, and the subsequent risk of flooding of nesting sites would no longer exist. Perhaps, though, after a permanent rise in water levels, more than one year would show reduced nesting success. It must take some period of time for the deposition of new nesting beaches.

Given these considerations, I conclude that past harvest probably had a greater effect on populations of *M. temminckii* at SNWR than did previous changes in stream

morphology due to construction of the RSKR dam. The current paucity of large adults and lack of significant sexual size dimorphism supports this conclusion. If breeding adults were seriously depleted before the refuge was established, there would have been very little recruitment of turtles (now represented by the missing size-age class). However, small prereproductive turtles would have been commercially unimportant and left unharvested. These turtles have now grown into the small adult age class at SNWR (Figure 8). Their offspring are the current prereproductives. A few turtles big enough to be commercially important before the refuge was established somehow escaped harvest and currently represent the largest size-age class at SNWR (Figure 8).

Gibbs and Amato (2000) characterize turtle demography as low egg and hatchling survival, high rates of juvenile and adult survival, long lifespan, delayed reproductive maturation, and pronounced iteroparity after maturity has been reached. Population stability is strongly influenced by changes in adult and juvenile survival and less influenced by fecundity and hatchling survival (Congdon et al., 1993; Congdon et al., 1994). Although the type and severity of historical impacts on populations of *M. temminckii* at SNWR are not entirely known, there is some evidence that total protection of the adult cohorts will allow populations *M. temminckii* to recover over time. Figure 8 shows a large number of adults reaching sexual maturity and even more prereproductive age turtles. This age structure implies the ability of the species to recover after historic disturbances. MU AI MALL AT THE ......

Future work on SNWR needs to center on some of the ideas set forth in this paper. Mark-recapture studies should be continued to test for possible dispersal between creeks, especially by subadults. Long-term, mark-recapture studies also could be used to

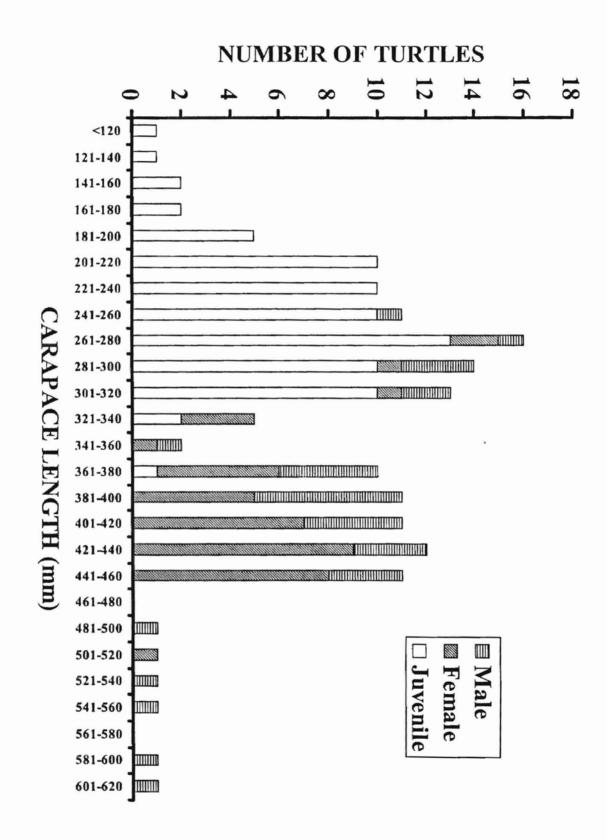

determine if the underrepresented, mid-sized cohort is due to past disturbance or to juvenile dispersal to distinct habitat. If the size of the underrepresented cohort were to increase over time, then the lack of individuals would be due to past disturbance. More effort should be afforded to developing aging techniques and determining age at sexual maturity in populations of *Macrochelys temminckii* at SNWR. Long-term studies also should focus on nest success and developing possible methodologies of capturing and monitoring hatchling *M. temminckii*.

|                            | Male               |    | Female             |    |       |       |
|----------------------------|--------------------|----|--------------------|----|-------|-------|
| Measurement                | Mean $\pm$ 1SD     | n  | Mean <u>+</u> 1SD  | n  | 1     | р     |
| Carapace Length (mm)       | 409.65 ± 91.41     | 34 | 403.79 ± 56.15     | 43 | 0.328 | 0.744 |
| Carapace Width (mm)        | $321.32 \pm 78.22$ | 34 | $317.72 \pm 51.48$ | 43 | 0.232 | 0.818 |
| Plastron Length (mm)       | $299.18 \pm 67.36$ | 34 | $295.14 \pm 55.17$ | 43 | 0.282 | 0.778 |
| Plastron Width (mm)        | $277.91 \pm 53.42$ | 34 | $272.14 \pm 48.65$ | 43 | 0.490 | 0.626 |
| Head Length (mm)           | $143.84 \pm 35.39$ | 32 | 142.24 + 21.33     | 37 | 0.223 | 0.824 |
| Head Width (mm)            | $126.88 \pm 30.98$ | 32 | $122.14 \pm 15.16$ | 37 | 0.788 | 0.435 |
| Post-Anal Tail Length (mm) | $304.47 \pm 45.44$ | 32 | $301.30 \pm 63.67$ | 37 | 0.240 | 0.811 |
| Pre-Anal Tail Length (mm)  | 81.38 ± 39.81      | 32 | $76.72 \pm 30.99$  | 36 | 0.533 | 0.596 |
| Total Tail Length (mm)     | $385.84 \pm 67.54$ | 32 | $376.08 \pm 70.79$ | 37 | 0.586 | 0.560 |
| Mass (kg)                  | $15.89 \pm 11.67$  | 34 | 13.45 + 4.96       | 42 | 1.138 | 0.262 |

TABLE IV SIZE COMPARISON BETWEEN MALE AND FEMALE *Macrochelys temminckii* AT SEQUOYAH NATIONAL WILDLIFE REFUGE

ĩ

Figure 7. Map of Sequoyah National Wildlife Refuge.




# 

N No. 1 Star Constraint and the start and the start of th

H G ξ.

Figure 8. Histogram of size classes, based on carapace length in millimeters, of *Macrochelys temminckii* captured at Sequoyah National Wildlife Refuge.



The sure

#### CHAPTER IV

## MICROHABITAT USE, HOME RANGE, AND MOVEMENTS OF Macrochelys temminckii IN SEQUOYAH COUNTY OKLAHOMA

One of the earliest records of movement of *Macrochelys temminckii* was a 23-kg individual captured in the Washita River in Bryan County, Oklahoma, in 1915 (Wickham, 1922). The turtle was re-released in the Blue River, Bryan County, Oklahoma, in 1918, then recaptured in 1921 some 27-30 km upstream from the release site. More thorough studies (Sloan and Taylor, 1987; Shipman et al., 1991; Harrel et al., 1996; Shipman and Neeley, 1998) have been conducted in Kansas, Louisiana, and Missouri. Results from those studies showed that *M. temminckii* moved extensively throughout its aquatic environment, although individuals chose specific microhabitat sites as resting or core sites. The core sites had more structural cover and denser overhead canopy than other available habitats. *M. temminckii* is typically thought to be fairly sedentary (Ernst et al., 1994). Shipman et al. (1991) observed that individuals would remain inactive for up to eight days at a time.

COMP TAL

I conducted a mark-recapture study of *M. temminckii* at Sequoyah National Wildlife Refuge (SNWR), Sequoyah County, Oklahoma, outfitting individuals with telemetry tags. The primary goal was to quantify microhabitat use and possible core site selection. Movement data also were collected to determine movement patterns and home range use by *M. temminckii*. Previous studies had been conducted in more open, lentic environments (Sloan and Taylor, 1987) and a larger river (Shipman and Neeley, 1998). The site at SNWR consisted of two small creeks that emptied into the Arkansas River.

The only other study conducted in this type of smaller, lotic habitat was completed by Shipman (1993) in Kansas. The sample size for the Kansas study was only one individual, a 24.7-kg female. The study on SNWR provides more complete data on the species and also provides a comparison to populations in a variety of habitats.

#### Materials and Methods

Between June 1999 and August 2000, 18 individuals (Appendix C) of *M. temminckii* were outfitted with ultrasonic tags. Tags were temperature-sensitive ultrasonic tags that were 65 mm in length and had a mass of 8 g. Tags were attached to the rear margin of the carapace by drilling 0.63-cm holes in the carapace and looping heavy gauge monofilament fishing line and plastic cable ties through the holes and transmitters. Turtles were tracked using a Sonotronics USR-5W digital receiver and a directional hydrophone (Sonotronics, Tucson, AZ). Turtle locations were pinpointed using triangulation.

COM LAN

The study area was divided into sub-areas, Big Vian Creek and Little Vian Creek. Big Vian Creek was navigable from the mouth to 4 km upstream, while Little Vian Creek was navigable from the mouth to 2 km upstream. The mouths of the two streams were separated by 0.5-km straight distance.

At each turtle location, a set of microhabitat variables was taken. Data included depth of the stream, canopy cover, temperature at the bottom of the stream, substrate, and cover type. Canopy cover was estimated with a concave forestry densiometer (Lemmon, 1957). Temperature data taken at turtle locations were recorded from the telemetry tag.

Microhabitat used by the turtles was compared against microhabitat taken at random points. To this end, a grid was first laid over the study area. The grid was

composed of a numbered flag placed every 50 m from the mouth of each stream to the point at which the stream became unnavigable. Random points could then be chosen along the stream by using x-y coordinates along the grid. The x-coordinate corresponded to points at or between numbered flags, while the y-coordinate represented distance from the bank. Random coordinates were chosen by selecting a set of numbers from a random number table. The same set of microhabitat data was recorded at a random point paired with each turtle point the same day.

1

Turtles were checked two to three times weekly from June through the first part of August. They also were checked sporadically throughout fall (September-October) and winter (November-February). A linear home range was determined by measuring the distance between the two farthest points along the stream at which a turtle was located. Movement patterns were analyzed only for the period of time between June and August when regular location checks were made. The only movements included in the analysis were those between core sites, or from a core site to a baited net. A core site was any location occupied by a turtle for more than one day.

#### Results

I was able to obtain at least two months of data on 16 individuals (7 males, 3 females, 6 juveniles). One hundred and forty-seven locations were recorded, and 109 locations were used for microhabitat analysis. Paired *t*-tests were used to compare microhabitat data collected at each turtle location to those collected at random locations. Seasonal differences in microhabitat use also were analyzed.

There was no difference in temperature between turtle locations and random locations. Turtles did select for sites that exhibited higher percentage of canopy

cover (p < 0.001). Turtles were always associated with some sort of structure, including overhanging trees and shrubs, dead submerged trees, and beaver dens. The only exceptions were when individuals were in water too deep to discern any submerged cover. There was no difference between depths used by turtles and random depths although seasonal differences in depth use were observed (Figure 9). Turtles used deeper water during extreme times of the year. The depths were significantly deeper in the hottest months (July, August; t = -4.27, df = 75, p = <0.001) and the coldest months (January, February; t = -4.94, df = 33, p = <0.001) than during early summer months (May, June). Seasonal differences in temperatures of turtles were also observed but followed natural fluctuations in water temperature (Figure 10).

The mean linear home range for all turtles was 777.8 m. Females had significantly larger linear home ranges than males, and, although not significant, juveniles had larger linear home ranges than adults (Table V). The average distance moved between core sites was 431.2 m for juveniles and 219.3 m for adults. Again, females tended to make longer movements than males, and juveniles made longer movements than adults, but the distances were not significantly different (Table V). Turtles made nearly twice as many movements in June than in July. During the summer field season when regular location points were taken (June--August), all turtles remained at core sites for an average of 12.3 days before moving to new core sites. The range of time a turtle remained at a core site during summer varied from 1 to 38 days. All turtles remained each at a single core site throughout winter (November--February).

There were three instances of movement between creeks based on mark-recapture data. Two turtles, a 5.4-kg juvenile and 9.5-kg male, moved from Big Vian Creek to

Little Vian Creek. The original captures and recaptures occurred one year apart. The third instance was a 11.8-kg female recaptured in Hezekiah Creek two months after its first capture in Big Vian Creek. Hezekiah Creek also is a tributary of the Arkansas River and is located 16 km upstream from Big Vian Creek.

*Macrochelys temminckii* was observed active on only one occasion. An individual estimated at 5 kg was observed surfacing to breathe in about 3 m of water. The incident occurred at 1945 hours on 12 July 2000. The water was fairly clear and visibility was roughly 2 m in depth.

#### Discussion

Throughout the course of the study, individuals of *M. temminckii* moved throughout the whole study area, but chose specific microhabitat sites as resting or core sites. Females moved somewhat longer distances and occupied significantly larger home ranges than males. There were slight differences in movement patterns between adults and juveniles; juveniles had larger home ranges and made longer movements.

Shipman and Neeley (1998) found that *M. temminckii* in the St. Francis River of Missouri had a mean linear home range of 1,793.6 m. This was considerably larger than what I found in my study. There were major differences between the study sites; the Missouri study took place in a large river and the Oklahoma sites in my study were smaller streams. The major constraint on home-range size in *M. temminckii* may be availability of suitable habitat, such as appropriate water depths and submerged shelter.

Movement was primarily restricted to distances between core sites. Turtles occupied core sites for several days to several months. The types and duration of movements from a core site are poorly known. Shipman et al. (1991) observed a 24.7-kg

female in Kansas and recorded movements between 0200 and 0700 hours lasting for 1-3 hours. On three occasions at SNWR, nocturnal checks were made on several turtles at 2 hr intervals. An 11.8-kg male was observed making an inter-core site movement between 2000 and 2200 hours. The individual was moving when he was located and proceeded to move another 200 m upstream within a two-hour period before settling underneath a fallen tree. No other movements were recorded during those nocturnal observations.

Movements out of a local study area also may occur. Several tagged individuals disappeared from the study area, suggesting possible dispersal. A mark-recapture study taking place concurrently on the refuge provided evidence for three cases of inter-creek dispersal. One instance involved an individual moving 16 km in a two-month time period. *Macrochelys temminckii* is known to make long movements. The 24.7-kg female studied by Shipman et al. (1991) moved 7 km in five years. An Oklahoma specimen moved between 27-30 km in three years (Wickham, 1922). Dispersal along rivers may be a common phenomenon for *M. temminckii*. Specimens reach the northern extent of the species range upstream along the Mississippi River in Illinois and Iowa (Pritchard, 1989) and into Kansas upstream along the Arkansas, Verdigris, and Neosho rivers (Shipman et al., 1995).

Two kilometers up Little Vian Creek, stream morphology changed from deeper water runs with a mud-sand-detritus substrate to a gravel-bottom, riffle-pool habitat. Riffles were generally < 25 cm in depth, with some pools reaching 2-3 m in depth. This riffle-pool habitat is not generally thought to be ideal *M. temminckii* habitat. During summer 1999, a 16.8-kg female outfitted with an ultrasonic tag occupied core sites near the transition between deeper runs and shallower riffles. After a high water event in late

summer 1999, the female disappeared. She was not located again until June 2000, again near this stream morphology transition zone. One hypothesis is that during the high water event, the turtle was able to move upstream into some of the deeper pools, and then moved back downstream when water levels subsided.

Core sites used by *M. temminckii* were all similar in that they consisted of some type of submerged structure with dense overhead canopy cover. Cover types were generally submerged logs, but turtles also used overhanging shrubs and beaver dens. *Macrochelys temminckii* may use beaver dens as diurnal refugia due to the cover they offer and air pockets that they contain. Beaver dens at SNWR are composed of a tunnel leading under the bank into a partially submerged chamber. A 34.5-kg male was observed on several occasions occupying such a den. Based on the sporadic signal given off by the ultrasonic telemetry tag, the turtle was resting at or near the surface of the water. Ultrasonic signals can be received only through a liquid medium, and the signal cut out in such a pattern as to suggest that the carapace was bobbing in and out of the water.

1

A very intriguing set of data is the variation in seasonal depth use by *M*. *temminckii* at SNWR. Very little is known about thermoregulation in *M. temminckii*. It does not bask, and only females leave the water (to lay eggs). Captive individuals refuse food at  $18^{\circ}$  C, become inactive at  $10^{\circ}$  C, and have a critical thermal maxima between 38.5 and  $40.7^{\circ}$  C (Allen and Neil, 1950; Hutchison et al., 1966; Grimpe, 1987).

Based on seasonal depth use (Figure 9), I suggest that *M. temminckii* may thermoregulate by altering their depth in the water column. Temperature data (Figure 10) do not seem to support this theory because there was no difference in temperature

between random points and turtle locations. There are, however, several factors that may have influenced this discrepancy in the data sets. One factor may be that the ultrasonic tags were placed externally on the turtles, and because the tags were relatively small, fluctuations in temperature would be greater for the telemetry tag than for the turtle. However, one must also consider that *M. temminckii* is extremely sedentary, remaining in the same place for several days to weeks. This should have been ample time to allow for the tag and turtle to adjust to the current water temperature.

Another factor may be the thermal characteristics of the water body itself. Slowmoving streams will generally stratify at different times of the year, with deeper depths being cooler in summer and warmer in winter (Allen, 1995). The study site at SNWR remained stratified through June but became isothermal in August (Figure 11). Differences in temperatures at varying depths in the early part of the summer support the theory of seasonal depth use for thermoregulation, because turtles are using the shallower, warmer water, but why did they go deeper in August if there was no difference in water temperature between depths?

ŀ

One flaw in the methodology was that surface temperatures were not taken at either turtle locations or random points. Because *M. temminckii* is a bottom-dwelling turtle, temperature was taken at the bottom, or as close to the bottom of the stream as possible. Because water is a thermally stable medium, fluctuations in temperature would be greater near the surface as opposed to deeper in the water column. Impromptu checks of surface temperature at about 10-20 cm in depth showed readings as high as 34-35<sup>o</sup> C in late July and August and 3<sup>o</sup> C in February. When the February reading was taken, there was a 2-3-cm layer of ice cover the surface. The water at SNWR also was very turbid,

which did not allow solar radiation to penetrate very deeply. Even if the water were isothermal in August, turtles could potentially avoid exposure to solar radiation and extreme fluctuations in surface temperature by remaining in deep water.

*Macrochelys temminckii* seems to be a generalist as far as habitat is concerned (Chapter 2). Limiting factors to its distribution may be availability of cover and adequate water depth. *Macrochelys temminckii* is a very secretive species, and it is still not understood why it moves from one core site to another and what determines duration of the stays at each core site. *Macrochelys temminckii* did occur in fairly high densities on SNWR (33 individuals/km stretch of stream) and competition for food and space may be one factor that stimulates movement from one core site to another. Regardless, *M. temminckii* does disperse over considerable distances, and this may be a mechanism for colonization of new sites. From a conservation standpoint, river impoundments may be the major factor affecting dispersal between healthy and depleted populations in Oklahoma and elsewhere.

| EARLY SUMMER<br>MEAN <u>+</u> 1 SD | LATE SUMMER<br>MEAN <u>+</u> 1 SD | WINTER<br>MEAN <u>+</u> 1 SD | 1      | р       |  |
|------------------------------------|-----------------------------------|------------------------------|--------|---------|--|
| 1.21 m ± 0.70                      | 1.85 m ± 0.76                     |                              | -4.274 | <0.001  |  |
| 1.21 m ± 0.70                      |                                   | $2.14 \text{ m} \pm 0.78$    | -4.941 | < 0.001 |  |
|                                    | $1.85 \text{ m} \pm 0.76$         | $2.14 \text{ m} \pm 0.78$    | -0.313 | 0.755   |  |

| IABLE V                              |                         |                      |                 |  |  |  |  |  |
|--------------------------------------|-------------------------|----------------------|-----------------|--|--|--|--|--|
| SEASONAL COMPARISONS OF DEPTH USE BY | Macrochelvs temminckii. | AT SEOUOYAH NATIONAL | WILDLIFE REFUGE |  |  |  |  |  |

# TABLE VI

# MEAN HOME RANGE SIZE (±1 SD), MEAN DISTANCE MOVED BETWEEN CORE SITES (±1 SD), AND TOTAL NUMBER OF SUMMER MOVEMENTS MADE BY MALE, FEMALE, AND JUVENILE Macrochelys temminckii

| SEX n    | MEAN<br>HOME RANGE<br>SIZE (m) | MEAN DISTANCE MOVED<br>BETWEEN CORE SITES (m) | NUMBER OF MOVEMENTS                 |      |    |  |
|----------|--------------------------------|-----------------------------------------------|-------------------------------------|------|----|--|
|          |                                |                                               | JUNE                                | JULY |    |  |
| MALE     | 7                              | $481.4 \pm 227.7^{1.2}$                       | $168.2 \pm 137.1^{3,4}$             | 16   | 13 |  |
| FEMALE   | 3                              | 878.3 ± 298.4 <sup>1,2</sup>                  | 249.2 <u>+</u> 218.6 <sup>3,4</sup> | 13   | 6  |  |
| JUVENILE | 6                              | $1073.3 \pm 1015.4^2$                         | $431.2 \pm 542.2^4$                 | 17   | 10 |  |

<sup>1</sup>Males vs. Females: *t*-test, t = -2.32, p = 0.048<sup>2</sup>Adults vs. Juveniles: *t*-test, t = -1.40, p = 0.18<sup>3</sup>Males vs. Females: *t*-test, t = -1.29, p = 0.21<sup>4</sup>Adults vs. Juveniles: *t*-test, t = -1.73, p = 0.097

60

1

Figure 9. Mean depths by month taken at *Macrochelys temminckii* locations and random points at Sequoyah National Wildlife Refuge. Numbers above bars represent sample size.

s;

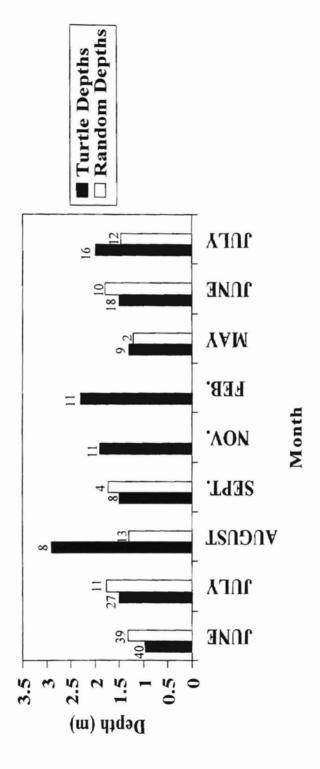
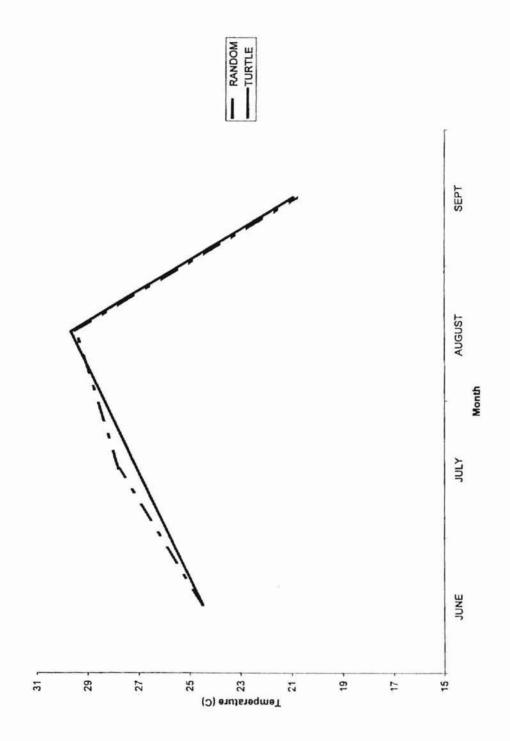
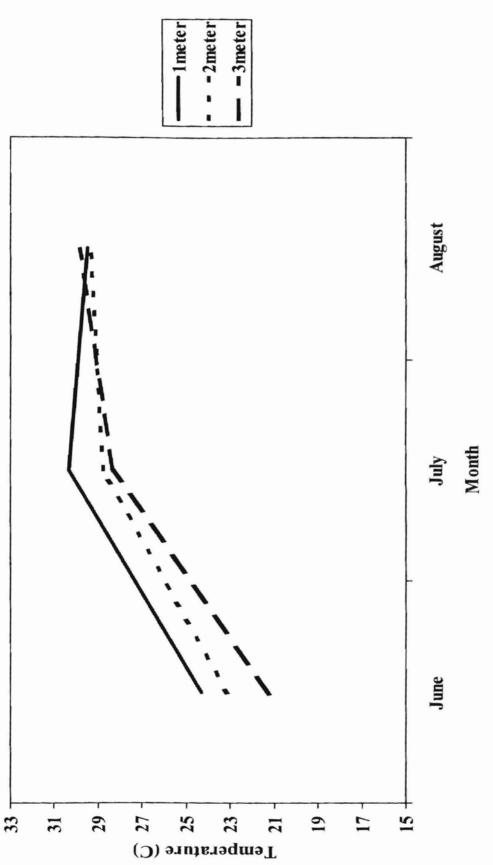




Figure 10. Mean temperatures by month taken at *Macrochelys temminckii* locations and random points at Sequoyah National Wildlife Refuge.


3

T



S.

Figure 11. Mean random water temperatures taken by month at varying depths at Sequoyah National Wildlife Refuge.



### CHAPTER V

#### CONCLUSIONS

The alligator snapping turtle, *Macrochelys temminckii*, is a large freshwater turtle that was probably once common throughout most of eastern Oklahoma. Current trends show a very dramatic decline in *M. temminckii* numbers throughout the state. Reasons for these declines are most likely habitat alteration and overharvest. Harvest of *M. temminckii* is the primary suspect in the species decline. Habitat alteration in the form of impoundment of waterways may have had a secondary effect by barring dispersal of individuals from unimpacted to impacted populations.

The demand for *M. temminckii* meat seems to have reached its peak in popularity in the 1960s and 1970s when the turtle was harvested heavily throughout most of its range (Pritchard, 1989; Sloan and Lovich, 1995). Currently, Louisiana is the only state that still allows harvest of *M. temminckii*; it is currently protected throughout the rest of its range. A recent study of meat markets in Florida and Louisiana showed that *M. temminckii* is only rarely offered and seems to have been replaced by the more common, widespread, and unregulated common snapping turtle, *Chelydra serpentina* (Roman and Bowen, 2000). It has been suggested that wild populations of *M. temminckii* have been depleted to the point where the capture of marketable-sized specimens is cost ineffective.

The same trend that has been observed in *M. temminckii* has now being seen in other species of aquatic turtles in Oklahoma. Since legalization of commercial turtle

harvesting in Oklahoma in 1994, large numbers of several species of aquatic turtles in Oklahoma have been harvested and exported. These turtles are used in meat and pet markets in the United States and in ever-growing foreign markets (Compton, 2000). Some aquatic turtle communities in Oklahoma seem to have been seriously depleted. Measures need to be taken to prevent further harm to Oklahoma turtle species.

Recovery of *M. temminckii* and other aquatic turtle species may be as simple as cessation of harvest, at least in most lotic habitats and their associated impoundments. Commercialization should at least be more strictly regulated. Currently, there is no accurate count of the number of species harvested or the location of the harvests. The only numbers recorded by the Oklahoma Department of Conservation are numbers of turtles bought and exported by turtle buyers licensed in Oklahoma.

Studies conducted on *M. temminckii* in Oklahoma and elsewhere show it to be fairly abundant along rivers. That is, it is abundant if left alone. Population data from the Sequoyah National Wildlife Refuge show that if populations are afforded complete protection, they stand a good chance of recovery. This protection is what is needed in Oklahoma and throughout the range of *M. temminckii*.

Macrochelys temminckii is totally aquatic and never leaves the water except to lay eggs (Ernst et al., 1994). Thus, impoundments of rivers impede gene flow. Consequently, some human intervention may be needed in aiding dispersal of both adults and hatchlings. Care should be taken in this endeavor, however, given the population ecology of *M. temminckii*.

Roman et al. (1999) examined mitochondrial DNA of individuals from 12 different river drainages and discovered eight river specific genetic haplotypes. No

genetic work has been conducted in Oklahoma but should be considered before specimens are released haphazardly throughout the state. There could possibly be two genetically-distinct populations: those of the Arkansas River and Red River drainages.

There is obviously still a chance to restore *M. temminckii* populations in Oklahoma. It will require the proper resources and strict protection over a long period of time. Alfred Sherwood Romer (1933:p176) in his book *Vertebrate Paleontology* stated that "Because they are still living, turtles are commonplace objects to us; were they entirely extinct, their shells -- the most remarkable defensive armor ever assumed by a tetrapod -- would be cause for wonder." Hopefully we can manage and protect what we have before it is gone.

#### Literature Cited

- Ades, G., C. B. Banks, K. A. Buhlmann, B. Chan, H. C. Chang, T. H. Chen, P. Crow, H. Haupt, R. Kan, J. Y. Lai, M. Lau, H. C. Lin, and S. Haitao. 2000. Turtle trade in northeast Asia: regional summary (China, Hong Kong, and Taiwan). Pp. 52-54 In: P. P. van Dijk, B. L. Stuart, and A. G. J. Rhodin editors. Asian Turtle Trade. Chelonian Research Foundation Chelonian Research Monograph number 2:164 pp.
- Allen, E. R. and W. T. Neill. 1950. The Alligator Snapping Turtle, *Macroclemys* temminckii, in Florida. Special Publication No. 4, Ross Allen's Reptile Institute.
- Allen, J. D. 1995. Stream Ecology: Structure and Function of Running Waters. Kluwer Academic Publishers, Boston. 388 pp.
- Black, J. H. 1982. An annotated bibliography to articles, notes and photographs on reptiles and amphibians appearing in Oklahoma Game And Fish News, Oklahoma Wildlife, and Outdoor Oklahoma. Oklahoma Herpetological Society Special Publication Number 2.
- Cagle, F. R., and A. H. Chaney. 1950. Turtle populations in Louisiana. American Midland Naturalist 43:383-388.
- Carpenter, C. C., and J. J. Krupa. 1989. Oklahoma Herpetology: An Annotated Bibliography. University of Oklahoma Press, Norman. 258 pp.
- Chen, T. H., H. C. Lin., and H. C. Chang. 2000. Current status of and utilization of chelonians in Taiwan. Pp. 45-51 In: P. P. van Dijk, B. L. Stuart, and A. G. J. Rhodin editors. Asian Turtle Trade. Chelonian Research Foundation Chelonian Research Monograph number 2:164 pp.
- Clarke, R. F. 1981. A record of the alligator snapping turtle, *Macroclemys temminckii*, (Testudines: Chelydridae), in Kansas. Transactions of the Kansas Academy of Science 84:59-60.
- Collins, J. T. 1993. Amphibians and Reptiles in Kansas. 3rd edition. University Press of Kansas, Lawrence. 397 pp.
- Compton, J. 2000. An overview of Asian turtle trade. Pp 24-29 In: P. P. van Dijk, B. L. Stuart, and A. G. J. Rhodin editors. Asian Turtle Trade. Chelonian Research Foundation Chelonian Research Monograph number 2:164 pp.

- Conant, R., and J. T. Collins. 1998. A Field Guide to Reptiles and Amphibians: Eastern And Central North America. 3<sup>rd</sup> edition. Houghton Mifflin Company, Boston. 616 pp.
- Conant, R. and R. G. Hudson. 1949. Longevity records for reptiles and amphibians in the Philadelphia Zoological Garden. Herpetologica 5:1-8.
- Congdon, J. D., A. E. Dunham, and R. C. van Loben Sels. 1993. Delayed sexual maturity and demographics of Blanding's turtles (*Emydoidea blandingii*): Implications for conservation and management of long-lived organisms. Conservation Biology 7:826-833.
- Congdon, J. D., A. E. Dunham, and R. C. van Loben Sels. 1994. Demographics of common snapping turtles (*Chelydra serpentina*): Implications for conservation and management of long-lived organisms. American Zoologist 34:397-408.
- Dobie, J. L. 1971. Reproduction and growth in the alligator snapping turtle, Macroclemys temminckii (Troost). Copeia 1971:645-658.
- Dundee, H. A., and D. A. Rossman. 1989. The Amphibians and Reptiles of Louisiana. Louisiana State University Press, Baton Rouge. 300 pp.
- Ernst, C. H., and R. W. Barbour. 1989. Turtles of the World. Smithsonian Institution Press, Washington D. C. 313 pp.
- Ernst, C. H., J. E. Lovich, and R. W. Barbour. 1994. Turtles of the United States and Canada. Smithsonian Institute Press, Washington, D. C. 313 pp.
- Ewert, M. A. 1976. Nests, nesting and aerial basking of *Macroclemys* under natural conditions, and comparisons with *Chelydra* (Testudines: Chelydridae). Herpetologica 32:150-156.
- Galbreath, E. C. 1961. Two alligator snappers, *Macroclemys temminckii*, from southern Illinois. Transactions of the Illinois State Academy of Science 54:134-135.
- Gibbs, J. P., and G. D. Amato. 2000. Genetics and demography in turtle conservation. Pp. 207-217 In: M. W. Klemens editor. Turtle Conservation. Smithsonian Institution Press, Washington D. C. 334 pp.
- Gibbons, J. W., and D. H. Nelson. 1978. The evolutionary significance of delayed emergence from the nest by hatchling turtles. Evolution 32:297-303.
- Glass, P. B. 1949. Macroclemys temminckii in Oklahoma. Copeia 1949(2):138-141.

- Graves, B. M., and S. H. Anderson. 1987. Habitat suitability index models: snapping turtle. United States Fish and Wildlife Service Biological Report 82(10.141). 18 pp.
- Grimpe, R. 1987. Maintainence, behavior, and reproduction of the alligator snapping turtle, *Macroclemys temminckii*, at the Tulsa Zoological Park. Bulletin of the Oklahoma Herpetological Society 12:1-6.
- Harrel, J. B., C. M. Allen, and S. J. Herbert. 1996. Movements and habitat use of subadult alligator snapping turtles, *Macroclemys temminckii*, in Louisiana. American Midland Naturalist 135:60-67.
- Heck, B. A. 1998. The alligator snapping turtle (*Macroclemys temminckii*) in southeast Oklahoma. Proceedings of the Oklahoma Academy of Science 78:53-58.
- Hutchison, V. H., A. Vinegar, and R. J. Kosh. 1966. Critical thermal maxima in turtles. Herpetologica 22:32-41.
- Jackson, C. G., Jr., and A. Ross. 1971. The occurrence of barnacles on the alligator snapping turtle, *Macroclemys temminckii* (Troost). Journal of Herpetology 5:188-189.
- Lau, M., B. Chan, P. Crow, and G. Ades. 2000. Trade and conservation of turtles and tortoises in the Hong Kong Special Administrative Region, People's Republic of China. Pp. 39-44 In: P. P. van Dijk, B. L. Stuart, and A. G. J. Rhodin editors. Asian Turtle Trade. Chelonian Research Foundation Chelonian Research Monograph number 2:164 pp.
- Lemmon, P. E. 1957. A new instrument for measuring forest overstory density. Journal of Forestry 55:667-668.
- Moll, E. O. and D. Moll. 2000. Conservation of river turtles. Pp 126-155 In: M. W. Klemens editor. Turtle Conservation. Smithsonian Institution Press, Washington D. C. 334 pp.
- Palmer, M. W. 1993. Putting things in even better order: the advantages of canonical correspondance analysis. Ecology 74:2215-30.
- Powders, V. N. 1978. Observations of oviposition and natural incubation of eggs of the alligator snapping turtle, *Macroclemys temminckii*, in Georgia. Copeia 1978:154-156.
- Powell, R., J. T. Collins, and E. D. Hooper, Jr. 1998. A Key to Amphibians and Reptiles of the Continental United States and Canada. University Press of Kansas, Lawrence. 131 pp.

- Pritchard, P. C. H. 1989. The Alligator Snapping Turtle: Biology and Conservation. Milwaukee Public Museum, Wisconsin. 104 pp.
- Ramus, E. 1998. The Herpetology Source Book. Ramus Publishing, Inc. Pottsville, Pennsylvania. 254 pp.
- Roman, J., S. D. Santhuff, P. E. Moler, and B. W. Bowen. 1999. Population structure and cryptic evolutionary units in the alligator snapping turtle. Conservation Biology 13:135-142.
- Roman, J., and B. W. Bowen. 2000. The mock turtle syndrome: genetic identification of turtle meat purchased in the south-eastern United States of America. Animal Conservation 3:61-65.
- Romer, A. S. 1933. Vertebrate Paleontology. The University of Chicago Press. 687 pp.
- Santhuff, S. D. 1993. Alligator snapping turtle, *Macroclemys temminckii*, trap, mark, and release project 1993. Final Report to the Missouri Department of Conservation, Jefferson City, Missouri. 17 pp.
- Shipman, P. A. 1993. Alligator Snapping Turtle, habitat selection, movements, and natural history in southeast Kansas. Unpubl. M.S. Thesis. Emporia State University, Emporia, Kansas. 90 pp.
- Shipman, P. A., D. R. Edds, and D. Blex. 1991. Report on the recapture of an alligator snapping turtle (*Macroclemys temminckii*) in Kansas. Kansas Herpetological Society Newsletter 85:8-9.
- Shipman, P. A., and D. Riedle. 1994. Alligator snapping turtle, *Macrelemys temminckii*, trap, mark and release project 1994. Final Report to the Missouri Department of Conservation, Jefferson City, Misouri. 29 pp.
- Shipman, P. A., D. R. Edds, and L. E. Shipman. 1995. Distribution of the alligator snapping turtle (*Macroclemys temminckii*) in Kansas. Transactions of the Kansas Academy of Science 98(3-4):83-91.
- Shipman, P. A., and A. Neeley. 1998. Alligator snapping turtle trap, mark, and telemetry project. Final Report to the Missouri Department of Conservation, Jefferson City, Missouri. 35 pp.
- Sloan, K. N., and D. Taylor. 1987. Habitats and movements of adult alligator snapping turtles in northeast Louisiana. Proceedings of the annual conference of Southeastern Association of Fish and Wildlife Agencies 41:343-348.

Sloan, K. N., K. A. Buhlmann, and J. E. Lovich. Stomach contents of commercially

harvested adult alligator snapping turtles, *Macroclemys temminckii*. Chelonian Conservation and Biology 2:96-99.

- Snider, A. T., and J. K. Bowler. 1992. Longevity of reptiles and amphibians in North American collections, second edition. Society for the Study of Amphibians and Reptiles Herpetological Circular (21):1-40.
- Thorbjarnarson, J., C. J. Lageux, D. Bolze, M. W. Klemens, and A. B. Meylan. 2000. Human use of turtles:a worldwide perspective. Pp 33-84 In: M. W. Klemens editor. Turtle Conservation. Smithsonian Institution Press, Washington D. C. 334 pp.
- Trauth, S. E., J. D. Wilhide, and A. Holt. Population structure and movement patterns of alligator snapping turtles (*Macroclemys temminckii*) in northeastern Arkansas. Chelonian Conservation and Biology 3:64-70.
- Tucker, A. D., and K. N. Sloan. Growth and reproductive estimates from alligator snapping turtles, *Macroclemys temminckii*, taken by commercial harvest in Louisiana. Chelonian Conservation and Biology 2:587-592.
- United States Fish and Wildlife Service. 1991. 1991 status review of the alligator snapping turtle (*Macroclemmys temminckii*). Endangered Species Office, Jackson, Mississippi. 26 pp.
- Webb, R. G. 1970. Reptiles of Oklahoma. University of Oklahoma Press, Norman. 370pp.
- Webb, R. G. 1995. The date of publication of Gray's catalogue of shield reptiles. Chelonian Conservation and Biology 1:322-323.
- Wickham, M. M. 1922. Notes on the migration of *Macrochelys lacertina*. Proceedings of the Oklahoma Academy of Science 2:20-22.

Appendix A. Sample dates, location by county (CK=Cherokee, CG=Craig, JO=Johnston, LT=Latimer, LF=LeFlore, MA=Mayes, MC=McCurtain, MT=McIntosh, OK=Okmulgee, OG=Osage, OT=Ottawa, PT=Pittsburgh, PM=Pushmataha, SQ=Sequoyah, WG=Wagoner), net nights and number of turtles captured by species (MATE=Macrochelys temminckii, CHSE=Chelydra serpentina, KISU=Kinosternon subrubrum, STCA=Sternotherus carinatus, STOD=Sternotherus odoratus, APSP=Apalone spinifera, APMU=Apalone mutica, CHPI=Chrysemys picta, GRGE=Graptemys geographica, GRKH=Graptemys kohnii, GRPS=Graptemys preudogeographica, PSCO=Psuedemys concinna, TRSC=Trachemys scripta).

| LOCATION               | DATE    | NIGHTS | COUNTY | 6    |      |      |      |      |      | S    | PECIES | 5    |      |      |      |      |
|------------------------|---------|--------|--------|------|------|------|------|------|------|------|--------|------|------|------|------|------|
|                        |         |        |        | MATE | CHSE | KISU | STCA | STOD | APSP | APMU | CHPI   | GRGE | GRKH | GRPS | PSCO | TRSC |
| BIG CABIN CREEK        | 5/29/97 | 5      | CG     | 0    | 1    |      | 0 0  | 0    |      | 1 0  | ) (    | 0 0  | 0    | 0 0  | ) 1  | 12   |
| <b>BIG CABIN CREEK</b> | 5/29/97 | 10     | CG     | 0    | 3    |      | 0 0  | 0    | 2    | 2 0  | ) (    | 0 0  | 2    | 2 0  | ) 1  | 15   |
| MOUNTAIN FORK<br>RIVER | 6/9/97  | 14     | MC     | 0    | C    | 1    | 0 5  | 0    | 4    | 4 C  | ) (    | 0 0  | 1    | 0    | 4    | 13   |
| LITTLE RIVER           | 6/10/97 | 2      | MC     | 0    | C    | 1    | 0 0  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 0    |      |
| LITTLE RIVER           | 6/10/97 | 13     | MC     | 0    | C    | 1    | 0 13 | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 1    | 12   |
| MOUNTAIN FORK          | 6/11/97 | 5      | MC     | 0    | C    | 1    | 0 5  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 0    | 1    |
| LITTLE RIVER           | 6/11/97 | 5      | MC     | 0    | C    | ( )  | 0 1  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 1    | 0    |
| LITTLE RIVER           | 6/11/97 | 14     | MC     | 0    | C    | 1    | 0 12 | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 0    | 14   |
| CANEY RIVER            | 6/18/97 | 10     | OG     | 0    | C    | 1    | 0 0  | 1    | Ę    | 5 C  | ) (    | ) 0  | 2    | 15   | 2    | 16   |
| CANEY RIVER            | 6/18/97 | 10     | OG     | 0    | 1    | 1    | 0 0  | 0    | 6    | 6 C  | ) (    | ) 0  | 3    | 12   | 0    | 18   |
| CANEY RIVER            | 6/19/97 | 10     | OG     | 0    | C    | 1    | 0 0  | 0    | 6    | 5 C  | ) (    | ) 0  | 2    | 2    | 0    | 12   |
| CANEY RIVER            | 6/19/97 | 10     | OG     | 0    | C    | 1    | 0 0  | 0    | 4    | 4 C  | ) (    | ) 0  | 4    | 17   | 1    | 29   |
| EUFALA LAKE            | 6/29/97 | 4      | MT     | 0    | C    |      | 0 0  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 6    | 0    | 2    |
| GROVE CREEK            | 6/30/97 | 9      | OK     | 0    | C    | ( )  | 0 0  | 2    | 2    | 2 0  | ) (    | ) 0  | 2    | 0    | 0    | 2    |
| GROVE CREEK            | 6/30/97 | 9      | OK     | 0    | C    | 1    | 0 0  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0    | 0    | 1    |
| GROVE CREEK            | 6/30/97 | 2      | OK     | 0    | 1    |      | 0 0  | 2    | (    | ) (  | ) (    | ) 0  | 3    | 1    | 0    | 10   |
| DEEP FORK RIVER        | 7/1/97  | 10     | OK     | 0    | C    | 1 1  | 0 0  | 0    | 5    | 5 C  | ) (    | ) 0  | 0    | 7    | 0    | 3    |
| DEEP FORK RIVER        | 7/1/97  | 10     | OK     | 0    | C    | 1 1  | 0 0  | 0    | 3    | 3 C  | ) (    | ) 0  | 1    | 32   | 0    | 3    |
| DEEP FORK RIVER        | 7/2/97  | 10     | OK     | 0    | C    | 1    | 0 0  | 0    | 3    | 3 1  | C      | ) 0  | 0    | 6    | 0    | 6    |
| DEEP FORK RIVER        | 7/2/97  | 10     | OK     | 0    | C    | 1 3  | 0 0  | 0    | 2    | 2 0  | ) (    | ) () | 1    | 26   | 0    | 2    |
| LITTLE RIVER           | 7/10/97 | 20     | MC     | 1    | C    | 1    | 0 7  | 0    | ) 1  | 0    | ) (    | ) 0  | 0    | 0    | 0    | 1    |
| HORTON SLOUGH          | 7/10/97 | 8      | SQ     | 1    | C    | 1    | 0 0  | 0    | (    | ) (  | ) (    | ) 0  | 0    | 11   | 1    | 33   |
| LITTLE RIVER           | 7/11/97 | 19     | MC     | 0    | C    | 1 1  | 0 3  | 0    | 3    | 3 C  | ) (    | ) 0  | 0    | ) 1  | 1    | 1    |
| HORTON SLOUGH          | 7/11/97 | 4      | SQ     | 2    | C    | 1    | 0 0  | 1    | (    | ) C  | ) (    | ) 0  | 0    | 1    | 0    | 27   |
| HORTON SLOUGH          | 7/11/97 | 8      | SQ     | 2    | C    | )    | 0 0  | 0    | 2    | 2 0  | ) (    | ) 0  | 0    | 0    | 1    | 32   |
| LITTLE RIVER           | 7/12/97 | 19     | MC     | 0    | C    |      | 0 16 | 0    | (    | ) (  | ) (    | ) 0  | 0    | 0 0  | 0    | 1    |
| <b>BIG VIAN CREEK</b>  | 7/12/97 | 4      | SQ     | 5    | 4    | ( )  | 0 0  | 0    | (    | ) C  | ) (    | ) 0  | 0    | 0    | 0    | 23   |
| HORTON SLOUGH          | 7/12/97 | 4      | SQ     | 1    | C    |      | 0 0  | 1    | C    | ) (  | ) (    | ) 0  | 1    | 1    | 0    | 46   |

NET DATE NIGHTS COUN

76

| Appendix A cont.        |         |                 |        |        |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------------|---------|-----------------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
| LOCATION                | DATE    | NETS            | COUNTY | MATE C | CHSE | KISU | STCA | STOD | APSP | APMU | CHPI | GRGE | GRKH | GRPS | PSCO | TRSC |
| HORTON SLOUGH           | 7/12/97 | 7               | SQ     | 0      | 1    | C    | ) 0  | 0    | 4    | 4 C  | 0    | 0    | 0    | 0    | 0    | 53   |
| LITTLE RIVER            | 7/13/97 | 7 19            | MC     | 1      | 0    | 0 0  | ) 3  | C    | ) 3  | 3 C  | 0    | 0    | 0    | 0    | 2    | 1    |
| LITTLE RIVER            | 7/14/97 | ' 19            | MC     | 1      | 0    | ) (  | ) 3  | 0    | 0 0  | ) (  | 0    | 0    | 0    | 0    | 0    | 4    |
| LITTLE RIVER            | 7/15/97 | 7 19            | MC     | 0      | 0    | 0    | ) 2  | 0    | ) 3  | 3 C  | 0    | 0    | 0    | 0    | 0    | 6    |
| GLOVER RIVER            | 7/15/97 | ' 8             | MC     | 0      | 0    | ) (  | ) 13 | 0    | 0    | ) (  | 0    | 0    | 0    | 2    | 4    | 1    |
| KIAMICHI RIVER          | 7/16/97 | 6               | PM     | 1      | 0    | 0    | ) 6  | 0    | 1 1  | 0    | 0    | 0    | 0    | 1    | 0    | 0    |
| MILL CREEK <sup>1</sup> | 7/16/97 | ′ 4             | PM     | 1      | 0    | 0    | ) 2  | 0    | 0    | ) (  | 0    | 0    | 0    | 0    | 1    | 3    |
| KIAMICHI RIVER          | 7/16/97 | ' 15            | PM     | 0      | 0    | ) (  | ) 9  | 0    | ) C  | ) (  | 0    | 0    | 0    | 0    | 0    | 5    |
| <b>BIG VIAN CREEK</b>   | 7/29/97 | <sup>7</sup> 10 | SQ     | 0      | 0    | 0    | ) 0  | 1    | 1    | 0    | 0    | 0    | 0    | 1    | 0    | 5    |
| <b>BIG VIAN CREEK</b>   | 7/30/97 | 7 10            | SQ     | 0      | 0    | 0    | ) 0  | 0    | 0    | ) (  | 0    | 0    | 0    | 0    | 0    | 18   |
| <b>BIG VIAN CREEK</b>   | 7/30/97 | 7 10            | SQ     | 4      | 0    | ) (  | ) 0  | 0    | 1 1  | 0    | 0    | 0    | 0    | 1    | 1    | 30   |
| <b>BIG VIAN CREEK</b>   | 7/31/97 | 7 10            | SQ     | 1      | 0    | 0    | ) 0  | 0    | 0    | ) (  | 0    | 0    | 0    | 0    | 0    | 38   |
| HORTON SLOUGH           | 7/31/97 | 7 10            | SQ     | 1      | 0    | 0    | ) 0  | 0    | 1    | 0    | 0    | 0    | 0    | 2    | 0    | 47   |
| DIRTY CREEK             | 7/31/97 | 6               | SQ     | 1      | 1    | C    | ) 0  | 0    | 0    | ) C  | 0    | 0    | 0    | 3    | 1    | 22   |
| DIRTY CREEK             | 7/31/97 | 7 8             | SQ     | 0      | 2    |      | ) 0  | 0    | 2    | 2 0  | 0    | 0    | 2    | 2    | 1    | 47   |
| DIRTY CREEK             | 8/1/97  | 7 8             | SQ     | 0      | 3    |      | ) 0  | 0    | 4    | L 0  | 0    | 0    | 0    | 0    | 0    | 61   |
| DIRTY CREEK             | 8/1/97  | 6               | SQ     | 0      | 1    | C    | ) 0  | 1    | 1    | 0    | 0    | 0    | 0    | 5    | 0    | 64   |
| VERDIGRIS RIVER         | 8/6/97  | 7 5             | WG     | 0      | 1    | C    | ) 0  | 0    | 1 1  | 0    | 0    | 0    | 0    | 2    | 0    | 17   |
| VERDIGRIS RIVER         | 8/6/97  | 7 8             | WG     | 0      | 1    | C    | ) 0  | 0    | 2    | 2 0  | 0    | 0    | 0    | 4    | 0    | 19   |
| FT. GIBSON LAKE         | 8/7/97  | 7 10            | WG     | 0      | 0    | 0    | ) 0  | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 12   |
| GREEN LEAF LAKE         | 8/8/97  | 7 15            | CK     | 0      | 0    | ) (  | ) 0  | 3    | ; C  | ) (  | 0    | 0    | 1    | 0    | 1    | 12   |
| SPRING RIVER            | 5/20/98 | 3 9             | OT     | 0      | 4    |      | ) 0  | 1    | C    | ) (  | 0    | 0    | 1    | 6    | 0    | 13   |
| SPRING RIVER            | 5/21/98 | 3 10            | OT     | 0      | 6    |      | ) 0  | 0    | i 1  | 0    | 0    | 0    | 0    | 1    | 0    | 35   |
| CANEY RIVER             | 6/6/98  | 3 5             | OG     | 0      | 0    | ) (  | ) 0  | 0    | 0 0  | ) (  | 0    | 0    | 1    | 7    | 0    | 15   |
| CANEY RIVER             | 6/7/98  | 3 10            | OG     | 0      | 0    | ) (  | ) 0  | 0    | 1 1  | I 0  | 0    | 0    | 0    | 6    | 0    | 11   |
| CANEY RIVER             | 6/8/98  | 3 10            | OG     | 0      | 0    | ) (  | ) 0  | 0    | ) 1  | 0    | 0    | 0    | 0    | 3    | 0    | 5    |
| SPRING RIVER            | 6/12/98 | 3 10            | OT     | 0      | 11   | C    | 0 0  | 0    | 1 1  | I C  | 0    | 0    | 0    | 0    | 0    | 147  |
| NEOSHO RIVER            | 6/13/98 | 3 10            | OT     | 0      | 1    | C    | 0 0  | 0    | ) C  | ) (  | 0    | 0    | 1    | 2    | 1    | 31   |
| NEOSHO RIVER            | 6/14/98 | 3 10            | OT     | 0      | 1    | (    | ) 0  | 0    | 0    | ) (  | 0    | 0    | 1    | 4    | 0    | 55   |
| ILLINOIS RIVER          | 6/30/98 | 3 11            | SQ     | 0      | 3    |      | ) 0  | 2    |      | ) (  | 0    | 0    | 0    | 8    | 0    | 38   |
| ILLINOIS RIVER          | 7/2/98  | 3 5             | SQ     | 0      | 0    | ) (  | 0 0  | 3    | ; C  | ) (  | 0    | 0    | 0    | 0    | 1    | 12   |

| Appendix A cont.      |                           |      |          |        |      |       |                                       |      | -    |      |      |      |      |      |      |      |
|-----------------------|---------------------------|------|----------|--------|------|-------|---------------------------------------|------|------|------|------|------|------|------|------|------|
| LOCATION              | DATE                      | NETS | COUNTY   | MATE ( | CHSE | KISU  | STCA                                  | STOD | APSP | APMU | CHPI | GRGE | GRKH | GRPS | PSCO | TRSC |
| SALLYJONESLAKE        | 7/2/98                    | 3    | SQ       | 0      | 0    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 33   |
| <b>BIG VIAN CREEK</b> | 7/2/98                    | 8 7  | SQ       | 0      | 0    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 24   |
| <b>BIG VIAN CREEK</b> | 7/3/98                    | 10   | SQ       | 5      | 2    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 52   |
| HORTON SLOUGH         | 7/3/98                    | 8 8  | SQ       | 0      | 1    | C     | 0                                     | 0    | 2    | 0    | 0    | 0    | 0    | 8    | 4    | 95   |
| <b>BIG VIAN CREEK</b> | 7/9/98                    | 18   | SQ       | 0      | 0    | C     | 0                                     | 4    | 2    | 0    | 0    | 0    | 0    | 15   | 6    | 81   |
| <b>BIG VIAN CREEK</b> | 7/10/98                   | 18   | SQ       | 2      | 0    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 9    | 6    | 47   |
| SPRING CREEK          | 7/13/98                   | 3 12 | MA       | 0      | 0    | C     | 0                                     | 8    | 1    | 0    | 0    | 0    | 0    | 5    | 1    | 33   |
| SPRING CREEK          | 7/14/98                   | 8 8  | MA       | 0      | 0    | C     | 0                                     | 7    | 0    | 0    | 0    | 1    | 0    | 3    | 0    | 40   |
| NEOSHO RIVER          | 7/14/98                   | 10   | MA       | 0      | 1    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 12   | 0    | 31   |
| VERDEGRIS RIVER       | 15-Ju                     | I 15 | WG       | 0      | 1    | 1     | 0                                     | 0    | 1    | 0    | 0    | 0    | 0    | 2    | 0    | 35   |
| VERDEGRIS RIVER       | 7/16/98                   | 10   | WG       | 0      | 0    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 7    | 0    | 14   |
| LITTLE VIAN CREEK     | A State State State State | 8    | SQ       | 1      | 0    | C     | 0                                     | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 18   |
| LITTLE VIAN CREEK     |                           |      | SQ       |        | 0    | C     | 0                                     | 1    | 1    | 0    | 0    | 0    | 0    | 1    | 0    | 41   |
| LITTLE VIAN CREEK     |                           | 8    | SQ       |        | 0    | C     | 0                                     | 3    |      |      | 0    | 0    | 0    | 4    | 0    | 30   |
| LITTLE VIAN CREEK     | 7/24/98                   | 8 8  | SQ       |        | 0    | C     | 0                                     | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 19   |
| LITTLE RIVER          | 7/23/98                   | 6    | MC       |        | 0    | C     | 8                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3    |
| MTN FORK RIVER        | 7/23/98                   |      | MC       |        | 0    | C     | 0                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| LITTLE RIVER          | 7/24/98                   |      | MC       |        | 0    | C     | (L. 1974)                             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 2    |
| LITTLE RIVER          | 7/25/98                   | 9    | MC       |        | 0    | C     | 2                                     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| MTN FORK RIVER        | 7/26/98                   |      | MC       |        | 0    |       |                                       | 0    |      |      | 0    | 0    | 0    | 0    | 0    | 15   |
| KIAMICHI RIVER        | 7/27/98                   |      | PM       |        | 0    | - S   | 1 - 전망                                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| LITTLE VIAN CREEK     |                           |      | SQ       |        | 0    |       | · · · · · · · · · · · · · · · · · · · | 0    | 1    | 0    | 0    |      | 0    | 0    | 0    | 20   |
| LITTLE VIAN CREEK     |                           |      | SQ       |        | 1    | C     |                                       | 0    |      | Ť    | 0    |      | 0    | 0    | 0    | 18   |
| HEZEKIAH CREEK        | 7/30/98                   |      | SQ       |        | 2    |       |                                       | 1    | 0    |      | 0    | (    | 0    | 5    | 0    | 75   |
| LITTLE VIAN CREEK     | A CONTRACTOR OF A         |      | SQ       |        | 0    |       |                                       |      |      | 0    | 0    | 0    | 0    | 0    | 0    | 11   |
| LITTLE VIAN CREEK     |                           |      | SQ       |        | 0    |       | -                                     | -    |      |      | 0    |      | 0    | 0    | 0    | 10   |
| NEGRO CREEK           | 7/28/98                   |      | 1. TA 12 |        | 0    | 9 - S | i (6                                  | J    |      | 0    | 0    |      | 0    | 0    | 0    | 39   |
| POTEAU RIVER          | 8/4/98                    |      |          |        | 0    | ·     | e                                     | 0    | -    |      | 0    |      | 0    | 1    | 0    | 5    |
| POTEAU RIVER          | 8/10/98                   |      |          |        | 0    |       | -                                     | -    |      | -    | 0    |      | 0    | 2    | 0    | 14   |
| POTEAU RIVER          | 8/11/98                   |      |          |        | 0    |       |                                       |      |      | - E  | 0    | 1.11 | 0    | 0    | 2    | 18   |
| POTEAU RIVER          | 8/10/98                   | 8 7  | 7 LF     | 0      | 0    | C     | 0                                     | 8    | 1    | 0    | 0    | 0    | 1    | 2    | 2    | 42   |

| Appendix A cont.<br>LOCATION | DATE    | NETS | COUNTY | MATE C | CHSE | KISU | STCA | STOD | APSP | APMU | CHPI | GRGE | GRKH | GRPS | PSCO | TRSC |
|------------------------------|---------|------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|
| POTEAU RIVER                 | 8/10/98 | 5    | LF     | 0      | 0    | C    | 0 0  | 2    | (    | ) (  | ) (  | 0 0  | 0    | . C  | ) (  | ) 19 |
| POTEAU RIVER                 | 8/11/98 | 6    | LF     | 0      | 0    | C    | 0    | 6    |      | 1 0  | ) (  | 0    | 0    | 6    | 5 1  | 50   |
| POTEAU RIVER                 | 8/11/98 | 5    | LF     | 0      | 0    | C    | 0    | 0    | 0    | ) (  | ) (  | 0    | 1    | 4    | 4 0  | 32   |
| 14 MILE CREEK                | 5/25/99 | 15   | CK     | 0      | 1    | C    | 0    | 0    | (    | ) (  | ) (  | 0    | 0    | C    | ) (  | 0    |
| <b>BIG CABIN CREEK</b>       | 5/27/99 | 10   | CG     | 0      | 4    | C    | 0    | 0    | 7    | 7 C  | 0    | 0    | 0    | 7    | ′ 0  | 23   |
| FORT GIBSON LAKE             | 5/28/99 | 9    | WG     | 0      | 0    | C    | 0    | 0    | (    | 0 0  | 0    | 0    | 0    | 0    | ) 0  | 0    |
| WALNUT CREEK                 | 6/7/99  | 10   | OK     | 0      | 0    | C    | 0    | 0    | (    | ) (  | 0    | 0    | 0    | 0    | ) 0  | 0    |
| PENNINGTON<br>CREEK          | 6/10/99 | 9    | JO     | 0      | 6    | C    | 1    | 1    | (    | ) (  | 0    | 0    | 0    | 0    | ) 1  | 24   |
| SANDY CREEK                  | 6/15/99 | 14   | OK     | 0      | 0    | C    | 0    | 0    | (    | ) (  | 0    | 0    | 0    | 1    | 0    | 43   |
| DICKS POND                   | 6/16/99 | 14   | JO     | 0      | 3    | C    | 0    | 1    | (    | ) (  | 0    | 0    | 0    | 0    | ) 0  | 76   |
| DICKS POND                   | 6/17/99 | 11   | JO     | 0      | 1    | C    | 0    | 0    | (    | ) (  | 0    | 0    | 0    | 0    | ) 0  | 26   |
| GOOSE PEN POND               | 6/18/99 | 14   | JO     | 0      | 1    | C    | 0    | 1    | C    | ) (  | 0    | 0    | 0    | 1    | 1    | 42   |
| RED LAKE                     | 6/30/99 | 10   | MC     | 0      | 0    | C    | 0    | 0    | (    | ) (  | 0    | 0    | 0    | 0    | ) 0  | 78   |
| 41 CUTOFF OXBOW              | 7/1/99  | 13   | MC     | 0      | 1    | C    | 1    | 8    | · 1  | I C  | 1    | 0    | 0    | 0    | ) 0  | 20   |
| 41 CUTOFF OXBOW              | 7/2/99  | 13   | MC     | 0      | 2    | C    | 0    | 16   | (    | ) (  | 0    | 0    | 0    | 0    | ) 0  | 18   |
| LAKE EUFALA TRIB.            | 7/20/99 | 13   | OK     | 0      | 0    | 1    | 0    | 1    | 2    | 2 0  | 0    | 0    | 0    | 2    | 2 1  | 16   |
| MILL CREEK <sup>2</sup>      | 7/22/99 | 13   | MT     | 8      | 2    | 1    | 0    | 0    | 4    | 4 C  | 0    | 0    | 0    | 1    | 0    | 5    |
| DUTCHESS CREEK               | 7/23/99 | 9    | MT     | 4      | 2    | C    | 0    | 0    |      | 1 C  | 0    | 0    | 0    | 0    | ) (  | 115  |
| GAINES CREEK                 | 7/23/99 | 13   | LT     | 0      | 1    | C    | 0    | 0    | 0    | ) (  | 0    | 0    | 0    | 0    | ) (  | 10   |
| TWIN LAKES                   | 7/27/99 | 8    | JO     | 0      | 1    | C    | 0    | 0    | 0    | ) (  | 0    | 0    | 0    | 0    | ) (  |      |
| BELL CREEK                   | 7/28/99 | 9    | JO     | 0      | 1    | C    | 0    | 0    | (    | ) (  | 0    | 0    | 0    | 0    | ) (  | 55   |
| <b>BUFFALO CREEK</b>         | 7/30/99 | 13   | PT     | 0      | 0    | C    | 10   | 0    | (    | ) (  | 0    | 0    | 0    | 0    | ) (  | 0    |

<sup>1</sup> = Mill Creek, Pushmataha County <sup>2</sup> = Mill Creek, McIntosh County

Appendix B. Capture dates, id number, tag number, sex (M=male, F=female, JV=juvenile), mass (kg), and body measurements (mm) (CL=carapace length, CW=carapace width, PL=plastron length, PW=plastron width, HL=head length, HW=head width, PA=post anal tail length, and TL=total tail length), for individuals of *Macrocheys temminckii* captured at Sequoyah National Wildlife Refuge

| DATE      | ID# | TAG | SEX | MASS  | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 7/10/1997 | 10  | 10  | м   | 3.6   | 267 | 212 | 189 | 187 | NA  | NA  | NA  | NA  |
| 7/11/1997 | 1   | 1   | F   | 4.25  | 283 | 234 | 207 | 197 | NA  | NA  | NA  | NA  |
| 7/11/1997 | 2   | 2   | F   | 10.25 | 370 | 305 | 262 | 262 | NA  | NA  | NA  | NA  |
| 7/11/1997 | 3   | 3   | JV  | 1     | 179 | 145 | 126 | 124 | NA  | NA  | NA  | NA  |
| 7/11/1997 | 4   | 4   | JV  | 1.5   | 202 | 155 | 143 | 130 | NA  | NA  | NA  | NA  |
| 7/12/1997 | 5   | 5   | F   | 3.25  | 269 | 201 | 73  | 75  | NA  | NA  | NA  | NA  |
| 7/12/1997 | 6   | 6   | JV  | 1.8   | 220 | 161 | 160 | 146 | NA  | NA  | NA  | NA  |
| 7/12/1997 | 7   | 7   | F   | 6.25  | 332 | 254 | 225 | 220 | NA  | NA  | NA  | NA  |
| 7/12/1997 | 8   | 8   | JV  | 2.75  | 257 | 184 | 174 | 164 | NA  | NA  | NA  | NA  |
| 7/12/1997 | 9   | 9   | F   | 4.25  | 303 | 210 | 200 | 190 | NA  | NA  | NA  | NA  |
| 7/12/1997 | 11  | 11  | JV  | 1.9   | 220 | 165 | 144 | 137 | NA  | NA  | NA  | NA  |
| 7/30/1997 | 14  | 14  | М   | 2.75  | 259 | 199 | 180 | 180 | NA  | NA  | NA  | NA  |
| 7/30/1997 | 15  | 15  | JV  | 1.5   | 223 | 165 | 149 | 165 | NA  | NA  | NA  | NA  |
| 7/30/1997 | 16  | 16  | JV  | 1.5   | 219 | 150 | 145 | 142 | NA  | NA  | NA  | NA  |
| 7/31/1997 | 17  | 19  | JV  | 2.25  | 222 | 183 | 156 | 160 | NA  | NA  | NA  | NA  |
| 7/31/1997 | 18  | NA  | F   | NA    | 364 | 282 | 274 | 262 | NA  | NA  | NA  | NA  |
| 7/3/1998  | 24  | 24  | м   | 4.5   | 287 | 205 | 209 | 209 | 100 | 82  | 224 | 263 |
| 7/3/1998  | 25  | NA  | JV  | 2     | 209 | 178 | 150 | 150 | 66  | 61  | 141 | 171 |
| 7/3/1998  | 26  | NA  | JV  | 2.7   | 222 | 175 | 157 | 150 | 75  | 61  | 200 | 250 |
| 7/3/1998  | 27  | 17  | F   | 11    | 370 | 281 | 288 | 261 | 128 | 105 | 300 | 365 |
| 7/3/1998  | 28  | NA  | JV  | 2.5   | 230 | 150 | 161 | 147 | 79  | 67  | 185 | 220 |
| 7/9/1998  | 17  | 19  | JV  | 2.25  | 222 | 183 | 156 | 160 | 80  | 68  | 197 | 267 |
| 7/9/1998  | 29  | 29  | JV  | 2.75  | 245 | 180 | 163 | 167 | 80  | 65  | 191 | 231 |

## APPENDIX B

Appendix B cont.

| DATE      | ID# | TAG  | SEX | MASS  | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|------|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 7/21/1998 | 30  | NA   | JV  | 2     | 240 | 170 | 165 | 165 | 75  | 70  | 175 | 202 |
| 7/23/1998 | 31  | NA   | JV  | 1.75  | 210 | 157 | 147 | 150 | 65  | 55  | 169 | 204 |
| 7/23/1998 | 32  | NA   | JV  | 0.5   | 140 | 115 | 100 | 100 | 40  | 40  | 120 | 145 |
| 7/23/1998 | 33  | NA   | JV  | 1     | 195 | 145 | 138 | 138 | 58  | 55  | 161 | 197 |
| 7/23/1998 | 34  | 3    | JV  | 2.5   | 230 | 165 | 165 | 160 | 73  | 70  | 183 | 232 |
| 7/23/1998 | 35  | 23   | М   | 5     | 295 | 235 | 210 | 210 | 100 | 90  | 240 | 295 |
| 7/23/1998 | 36  | ???? | F   | 4     | 280 | 230 | 194 | 180 | 95  | 85  | 245 | 300 |
| 7/28/1998 | 37  | 36   | JV  | 3.5   | 268 | 195 | 190 | 190 | 99  | 85  | 210 | 266 |
| 7/28/1998 | 38  | 38   | F   | 17    | 433 | 360 | 340 | 295 | 135 | 130 | 323 | 420 |
| 7/28/1998 | 39  | NA   | JV  | 2.5   | 225 | 200 | 163 | 165 | 79  | 70  | 191 | 232 |
| 7/28/1998 | 40  | 43   | м   | 14    | 390 | 300 | 285 | 265 | 130 | 100 | 355 | 385 |
| 7/28/1998 | 41  | 44   | М   | 9.5   | 380 | 290 | 277 | 255 | 125 | 105 | 311 | 365 |
| 7/28/1998 | 42  | 47   | F   | 19    | 450 | 360 | 340 | 305 | 142 | 130 | 310 | 370 |
| 7/28/1998 | 43  | 48   | F   | 7     | 330 | 270 | 234 | 230 | 110 | 100 | 264 | 331 |
| 7/28/1998 | 44  | 50   | м   | 41.8  | 595 | 442 | 415 | 360 | 206 | 180 | 303 | 515 |
| 7/28/1998 | 45  | 49   | F   | 10.2  | 380 | 310 | 275 | 255 | 118 | 115 | 302 | 380 |
| 7/29/1998 | 46  | 65   | JV  | 2.25  | 259 | 186 | 178 | 170 | 90  | 203 | 205 | 252 |
| 7/29/1998 | 47  | 61   | F   | 12.25 | 392 | 317 | 294 | 263 | 129 | 113 | 305 | 366 |
| 7/29/1998 | 48  | 71   | F   | 12.25 | 415 | 320 | 305 | 269 | 125 | 120 | 310 | 377 |
| 7/29/1998 | 49  | 74   | М   | 16.25 | 460 | 327 | 347 | 332 | 165 | 135 | 332 | 398 |
| 7/30/1998 | 50  | 55   | М   | 7.5   | 380 | 290 | 285 | 265 | 115 | 115 | 291 | 362 |
| 7/30/1998 | 51  | 70   | M   | 22    | 495 | 392 | 345 | 315 | 156 | 160 | 375 | 445 |
| 7/30/1998 | 52  | 69   | М   | 14    | 398 | 340 | 298 | 285 | 125 | 125 | 309 | 360 |
| 7/30/1998 | 53  | ???  | F   | 15    | 410 | 340 | 326 | 300 | 135 | 115 | 286 | 376 |
| 7/30/1998 | 54  | 56   | М   | 4.25  | 290 | 210 | 200 | 280 | 90  | 205 | 226 | 325 |
| 5/10/1999 | 58  | 76   | F   | 16.8  | 510 | 440 | 350 | 350 | 190 | 160 | 32  | 47  |
| 5/11/1999 | 60  | 78   | F   | 14.5  | 450 | 360 | 310 | 310 | 160 | 140 | 310 | 410 |
| 5/11/1999 | 59  | 79   | F   | 18.6  | 460 | 340 | 360 | 330 | 180 | 160 | 320 | 420 |

Appendix B cont.

| DATE      | ID# | TAG | SEX | MASS | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 5/11/1999 | 61  | 80  | F   | 12.7 | 420 | 300 | 310 | 280 | 140 | 120 | 300 | 400 |
| 5/11/1999 | 62  | 91  | JV  | 4.5  | 310 | 210 | 240 | 210 | 120 | 110 | 230 | 300 |
| 5/11/1999 | 63  | 92  | F   | 9    | 360 | 260 | 270 | 270 | 150 | 130 | 290 | 410 |
| 5/12/1999 | 64  | 93  | JV  | 4.1  | 310 | 290 | 230 | 220 | 120 | 120 | 250 | 350 |
| 5/12/1999 | 65  | 82  | JV  | 4.5  | 310 | 290 | 230 | 220 | 120 | 120 | 270 | 380 |
| 5/13/1999 | 66  | 83  | М   | 10.9 | 400 | 380 | 290 | 290 | 140 | 140 | 350 | 440 |
| 5/19/1999 | 68  | 85  | JV  | 5.4  | 320 | 270 | 250 | 240 | 130 | 100 | 260 | 300 |
| 5/21/1999 | NA  | NA  | JV  | 0.22 | 110 | 100 | 80  | 80  | 40  | 40  | 100 | 120 |
| 5/21/1999 | 70  | 81  | JV  | 3.6  | 280 | 210 | 210 | 200 | 120 | 100 | 250 | 280 |
| 5/21/1999 | 71  | 86  | М   | 18.2 | 450 | 360 | 320 | 300 | 230 | 130 | 330 | 390 |
| 5/21/1999 | 72  | 88  | JV  | 7.3  | 320 | 310 | 260 | 250 | 140 | 120 | 300 | 360 |
| 5/25/1999 | 73  | 89  | F   | 10   | 384 | 318 | 262 | 244 | 200 | 110 | 139 | 289 |
| 5/25/1999 | 74  | 90  | М   | 14.5 | 422 | 322 | 308 | 276 | 132 | 126 | 310 | 384 |
| 5/25/1999 | 75  | 87  | JV  | 4.5  | 288 | 272 | 196 | 180 | 84  | 78  | 232 | 50  |
| 5/25/1999 | 76  | 95  | JV  | 3.6  | 278 | 230 | 194 | 194 | 90  | 80  | 208 | 266 |
| 5/26/1999 | 77  | 94  | JV  | 8.2  | 330 | 246 | 240 | 240 | 110 | 98  | 276 | 336 |
| 5/26/1999 | 78  | 98  | F   | 14.5 | 440 | 338 | 320 | 290 | 136 | 124 | 340 | 400 |
| 5/26/1999 | 79  | NA  | JV  | 2.7  | 222 | 186 | 160 | 160 | 78  | 80  | 190 | 230 |
| 5/26/1999 | 80  | 97  | М   | 10   | 376 | 282 | 256 | 244 | 124 | 114 | 302 | 350 |
| 5/26/1999 | 81  | 98  | М   | 15.4 | 408 | 330 | 296 | 276 | 138 | 112 | 308 | 420 |
| 5/27/1999 | 82  | 99  | JV  | 6.4  | 312 | 266 | 220 | 210 | 100 | 96  | 236 | 276 |
| 5/27/1999 | 83  | NA  | JV  | 4.1  | 272 | 216 | 190 | 190 | 90  | 78  | 210 | 260 |
| 5/27/1999 | 84  | 100 | F   | 11.8 | 430 | 320 | 296 | 270 | 140 | 130 | 334 | 404 |
| 5/28/1999 | NA  | 366 | м   | 42.3 | 614 | 478 | 404 | 376 | 184 | 180 | 312 | 480 |
| 5/28/1999 | 85  | 121 | JV  | 10.9 | 376 | 300 | 262 | 232 | 122 | 118 | 272 | 352 |
| 6/2/1999  | 86  | 125 | F   | 17.3 | 440 | 362 | 314 | 294 | 142 | 130 | 348 | 426 |
| 6/4/1999  | NA  | 357 | F   | 16.8 | 454 | 390 | 330 | 296 | 142 | 120 | 318 | 404 |
| 6/11/1999 | 118 | 249 | F   | 26.8 | 510 | 400 | 360 | 350 | 170 | 150 | 310 | 480 |

| Appendix | B cont. |
|----------|---------|
|          |         |

| DATE      | ID# | TAG | SEX | MASS | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 6/12/1999 | NA  | 285 | JV  | 5.4  | 300 | 260 | 230 | 220 | 100 | 100 | 260 | 320 |
| 6/12/1999 | 87  | NA  | JV  | 2.3  | 250 | 200 | 160 | 180 | 90  | 80  | 200 | 260 |
| 6/12/1999 | 88  | NA  | JV  | 0.45 | 180 | 160 | 130 | 130 | 70  | 60  | 140 | 190 |
| 6/12/1999 | NA  | 267 | М   | 15.9 | 400 | 320 | 300 | 270 | 130 | 120 | 325 | 400 |
| 6/13/1999 | NA  | 258 | F   | 14.1 | 400 | 315 | 310 | 260 | 120 | 120 | 330 | 410 |
| 6/13/1999 | 89  | 116 | F   | 17.3 | 430 | 352 | 320 | 300 | 140 | 122 | 278 | 360 |
| 6/13/1999 | NA  | 284 | М   | 17.3 | 410 | 398 | 340 | 290 | 150 | 138 | 286 | 372 |
| 6/13/1999 | NA  | 348 | М   | 34.5 | 536 | 395 | 380 | 320 | 189 | 154 | 320 | 470 |
| 6/16/1999 | 100 | NA  | JV  | 3.6  | 280 | 225 | 200 | 190 | 98  | 82  | 220 | 280 |
| 6/16/1999 | 101 | 117 | JV  | 7.3  | 280 | 250 | 240 | 240 | 130 | 110 | 258 | 308 |
| 6/16/1999 | 102 | NA  | JV  | 4.5  | 280 | 210 | 212 | 198 | 110 | 98  | 191 | 232 |
| 6/28/1999 | 104 | 124 | М   | 46.4 | 605 | 520 | 470 | 420 | 230 | 198 | 460 | 610 |
| 6/28/1999 | 101 | NA  | JV  | 0.9  | 200 | 180 | 156 | 150 | 75  | 58  | 168 | 210 |
| 6/28/1999 | 103 | NA  | JV  | 6.4  | 270 | 200 | 200 | 180 | 100 | 80  | 230 | 280 |
| 6/28/1999 | 102 | NA  | JV  | 0.9  | 190 | 150 | 243 | 103 | 74  | 54  | 160 | 190 |
| 6/28/1999 | 105 | NA  | JV  | 1.8  | 240 | 175 | 180 | 170 | 90  | 74  | 164 | 200 |
| 6/28/1999 | 106 | 119 | F   | 17.7 | 460 | 360 | 340 | 320 | 176 | 130 | 340 | 410 |
| 7/9/1999  | 108 | 122 | JV  | 5.4  | 290 | 260 | 220 | 200 | 110 | 100 | 242 | 298 |
| 7/9/1999  | 109 | 123 | JV  | 5.4  | 300 | 220 | 224 | 201 | 110 | 88  | 251 | 291 |
| 7/9/1999  | 110 | NA  | JV  | 1.4  | 210 | 160 | 150 | 150 | 78  | 56  | 164 | 204 |
| 7/9/1999  | 111 | NA  | JV  | 1.8  | 260 | 190 | 190 | 180 | 100 | 80  | 220 | 270 |
| 7/9/1999  | 112 | NA  | JV  | 2.7  | 290 | 220 | 309 | 205 | 100 | 84  | 229 | 269 |
| 7/11/1999 | 113 | 102 | F   | 14.1 | 419 | 340 | 318 | 294 | 150 | 130 | 422 | 470 |
| 7/11/1999 | 114 | 101 | F   | 17.3 | 420 | 358 | 318 | 276 | 130 | 116 | 282 | 340 |
| 7/14/1999 | 115 | NA  | JV  | 3.6  | 270 | 260 | 175 | 170 | 115 | 110 | 170 | 200 |
| 7/15/1999 | 116 | NA  | JV  | 0.4  | 190 | 190 | 140 | 130 | 60  | 60  | 80  | 210 |
| 7/20/1999 | NA  | NA  | JV  | 0.34 | 141 | 100 | 94  | 90  | 50  | 34  | 130 | 140 |
| 9/25/1999 | 120 | 108 | JV  | 5.9  | 310 | 210 | 220 | 210 | 92  | 84  | 238 | 268 |

| Appendix B | cont. |
|------------|-------|
|------------|-------|

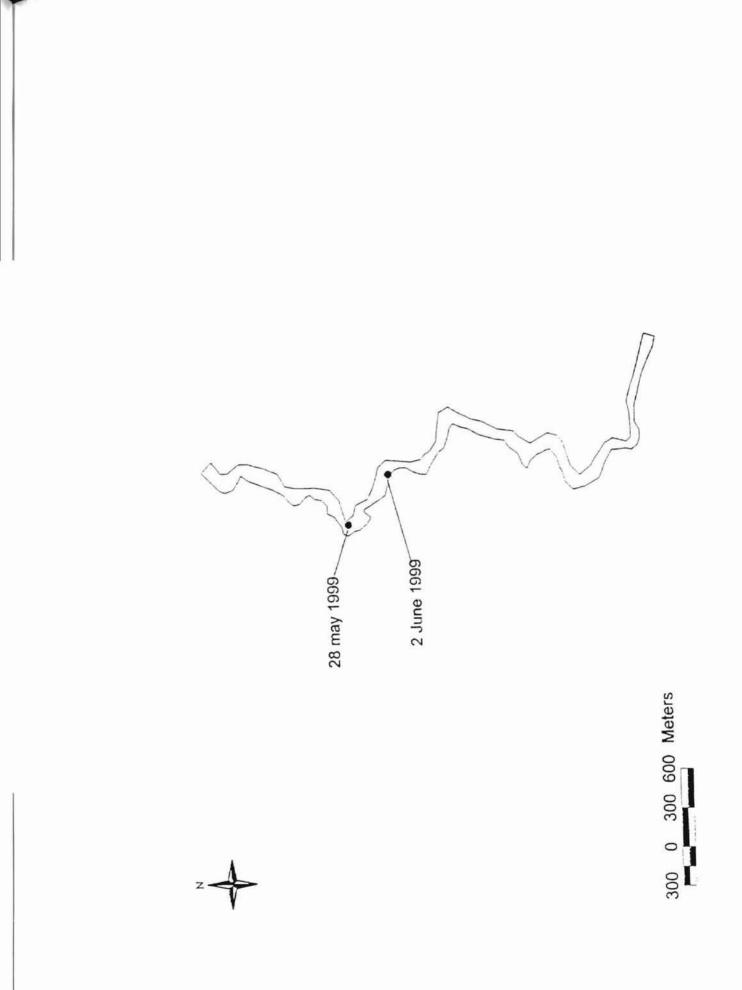
| DATE      | ID# | TAG  | SEX | MASS | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 9/25/1999 | NA  | 276  | М   | 11.8 | 410 | 300 | 290 | 260 | 134 | 98  | 296 | 390 |
| 9/25/1999 | 121 | 109  | М   | 10   | 370 | 280 | 280 | 250 | 120 | 110 | 278 | 348 |
| 9/26/1999 | 122 | NA   | JV  | 1.3  | 248 | 170 | 72  | 70  | 92  | 70  | 174 | 204 |
| 5/10/2000 | D1  | NA   | М   | 15.9 | 400 | 330 | 300 | 280 | 130 | 100 | 320 | 400 |
| 5/10/2000 | D2  | NA   | JV  | 3.4  | 250 | 210 | 180 | 180 | 100 | 80  | 109 | 149 |
| 5/10/2000 | D3  | NA   | JV  | 2.2  | 210 | 170 | 150 | 148 | 84  | 68  | 170 | 200 |
| 5/10/2000 | D4  | NA   | JV  | 6.8  | 300 | 222 | 238 | 218 | 110 | 86  | 254 | 284 |
| 5/10/2000 | D5  | NA   | JV  | 3.6  | 250 | 186 | 190 | 170 | 82  | 58  | 118 | 170 |
| 5/11/2000 | D6  | 103  | F   | 11.8 | 372 | 272 | 270 | 260 | 130 | 104 | 260 | 310 |
| 5/11/2000 | D7  | 107  | М   | 18.1 | 430 | 350 | 330 | 308 | 140 | 115 | 320 | 380 |
| 5/16/2000 | D9  | NA   | М   | 6.8  | 310 | 228 | 230 | 220 | 100 | 98  | 260 | 300 |
| 5/17/2000 | D10 | NA   | JV  | 5.9  | 300 | 230 | 204 | 198 | 80  | 66  | 240 | 280 |
| 5/17/2000 | D11 | NA   | JV  | 2.2  | 280 | 200 | 200 | 180 | 92  | 80  | 250 | 290 |
| 5/17/2000 | D12 | 111  | М   | 36.3 | 542 | 400 | 400 | 360 | 190 | 150 | 320 | 400 |
| 5/17/2000 | D13 | NA   | JV  | 3.6  | 260 | 180 | 200 | 170 | 90  | 70  | 180 | 210 |
| 6/7/2000  | D25 | 64   | м   | 13.6 | 422 | 370 | 280 | 270 | 140 | 120 | 290 | 340 |
| 6/7/2000  | D21 | NA   | JV  | 1.8  | 210 | 180 | 150 | 150 | 80  | 60  | 180 | 210 |
| 6/9/2000  | D15 | NA   | JV  | 4    | 270 | 180 | 170 | 180 | 98  | 70  | 180 | 200 |
| 6/9/2000  | D17 | NA   | JV  | 7.7  | 310 | 230 | 226 | 210 | 100 | 80  | 260 | 300 |
| 6/10/2000 | D18 | 67   | F   | 15.9 | 433 | 300 | 320 | 270 | 150 | 130 | 340 | 400 |
| 6/10/2000 | D19 | NA   | JV  | NA   | 270 | 200 | 190 | 180 | 80  | 78  | 220 | 278 |
|           | D22 | NA   | F   | 16.8 | 440 | 318 | 320 | 300 | 150 | 120 | 360 | 430 |
| 6/23/2000 | D23 | NA   | JV  | 6.8  | 300 | 250 | 220 | 210 | 120 | 94  | 225 | 265 |
| 6/23/2000 | NA  | 3.15 | JV  | 4.5  | 280 | 220 | 204 | 184 | 100 | 80  | 230 | 270 |
| 6/23/2000 | D24 | NA   | F   | 16.3 | 400 | 320 | 320 | 290 | 140 | 120 | 370 | 430 |
| 6/23/2000 | D25 | NA   | F   | NA   | 420 | 336 | 310 | 290 | 150 | 135 | 280 | 320 |
| 6/26/2000 | NA  | 459  | м   | 7.2  | 346 | 240 | 258 | 232 | 130 | 100 | 260 | 320 |
| 6/26/2000 | D26 | NA   | м   | 5.9  | 411 | 310 | 320 | 280 | 140 | 110 | 330 | 390 |
|           |     |      |     |      |     |     |     |     |     |     |     |     |

Appendix B cont.

| DATE      | ID# | TAG | SEX | MASS | CL  | CW  | PL  | PW  | HL  | HW  | PA  | TL  |
|-----------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| 6/30/2000 | NA  | NA  | JV  | 1.8  | 200 | 154 | 140 | 140 | 76  | 52  | 160 | 200 |
| 6/30/2000 | D27 | 66  | M   | 6.8  | 320 | 230 | 228 | 208 | 120 | 100 | 260 | 330 |
| 6/30/2000 | D28 | 60  | F   | 7.2  | 334 | 290 | 242 | 218 | 120 | 100 | 270 | 330 |
| 6/30/2000 | D29 | NA  | JV  | 5.4  | 300 | 230 | 220 | 210 | 90  | 76  | 232 | 272 |
| 6/30/2000 | D30 | NA  | JV  | 5.4  | 306 | 230 | 230 | 210 | 110 | 80  | 220 | 270 |
| 6/30/2000 | D31 | NA  | F   | 15   | 415 | 350 | 304 | 296 | 150 | 120 | 310 | 360 |
| 7/9/2000  | D40 | NA  | F   | 18.6 | 450 | 340 | 360 | 300 | 150 | 130 | 340 | 380 |
| 7/10/2000 | NA  | NA  | JV  | 2.7  | 220 | 160 | 150 | 150 | 90  | 60  | 170 | 200 |
| 7/11/2000 | D41 | NA  | М   | 12.2 | 390 | 300 | 290 | 256 | 130 | 110 | 270 | 350 |
| 7/12/2000 | D42 | 75  | F   | 11.3 | 400 | 280 | 300 | 270 | 120 | 110 | 260 | 310 |
| 7/13/2000 | D43 | 72  | F   | 15   | 430 | 310 | 312 | 300 | 150 | 120 | 320 | 400 |
| 7/16/2000 | D44 | NA  | F   | 19   | 430 | 310 | 350 | 290 | 130 | 110 | 320 | 400 |
| 7/18/2000 | D45 | NA  | JV  | 6.8  | 332 | 230 | 230 | 220 | 120 | 90  | 210 | 270 |
| 7/18/2000 | D46 | NA  | JV  | 4    | 260 | 202 | 198 | 180 | 90  | 72  | 230 | 250 |
| 7/18/2000 | D47 | NA  | JV  | 6.3  | 311 | 210 | 230 | 210 | 100 | 82  | 250 | 310 |
| 7/18/2000 | NA  | NA  | JV  | 0.45 | 144 | 120 | 103 | 101 | 50  | 32  | 130 | 160 |
| 7/17/2000 | D48 | NA  | F   | 15.9 | 441 | 320 | 328 | 290 | 150 | 120 | 320 | 370 |
| 7/19/2000 | D49 | 63  | М   | 25   | 460 | 360 | 362 | 320 | 170 | 140 | 270 | 370 |
| 7/19/2000 | D50 | NA  | JV  | 5    | 289 | 197 | 204 | 189 | 98  | 80  | 230 | 290 |
| 8/2/2000  | NA  | NA  | F   | 16.8 | 450 | 425 | 340 | 320 | 140 | 130 | 340 | 430 |
| 8/3/2000  | NA  | NA  | JV  | NA   | NA  | NA  | NA  | NA  | NA  | NA  | NA  | NA  |

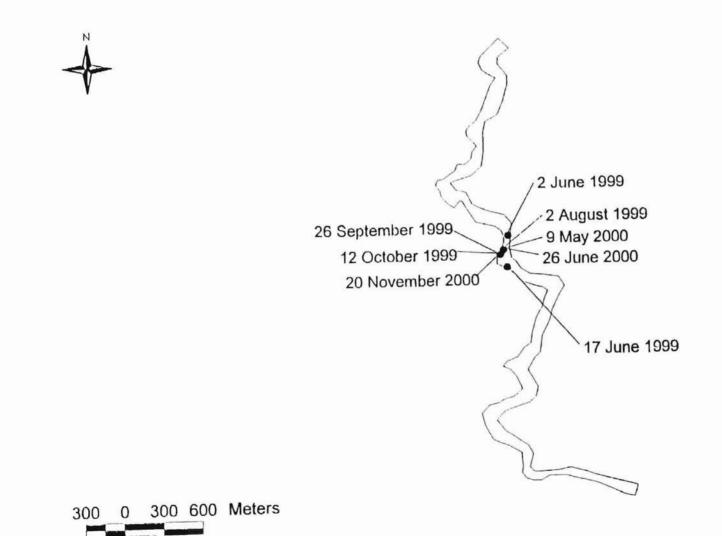
Appendix C. Sex and mass of *Macrochelys temminckii* outfitted with ultrasonic telemetry tags and their respective home range sizes. If no additional data were collected after the initial release of a turtle, a home range size of 0 was recorded.

| TAG# | SEX | MASS (kg) | HOME RANGE (m) |
|------|-----|-----------|----------------|
| 366  | М   | 42.3      | 450            |
| 284  | М   | 17.2      | 250            |
| 348  | Μ   | 34.5      | 300            |
| 267  | М   | 15.9      | 840            |
| 465  | М   | 9.5       | 500            |
| 276  | М   | 11.8      | 730            |
| 375  | М   | 22.0      | 300            |
| 459  | М   | 7.2       | 0              |
| 384  | F   | 18.6      | 1205           |
| 258  | F   | 14.1      | 620            |
| 357  | F   | 16.8      | 810            |
| 249  | F   | 26.8      | 0              |
| 555  | JV  | 2.5       | 2335           |
| 447  | JV  | 2.7       | 700            |
| 285  | JV  | 5.4       | 150            |
| 558  | JV  | 2.7       | 2300           |
| 368  | JV  | 2.2       | 55             |
| 377  | JV  | 4.5       | 900            |
| 315  | JV  | 4.5       | 0              |


# APPENDIX C

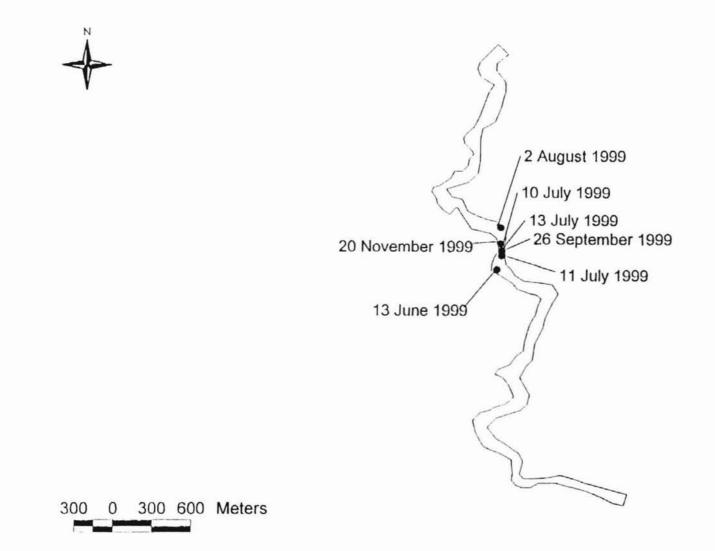
Appendix D. Distribution of location points for *Macrochelys temminckii* outfitted with ultrasonic telemetry tags.

-

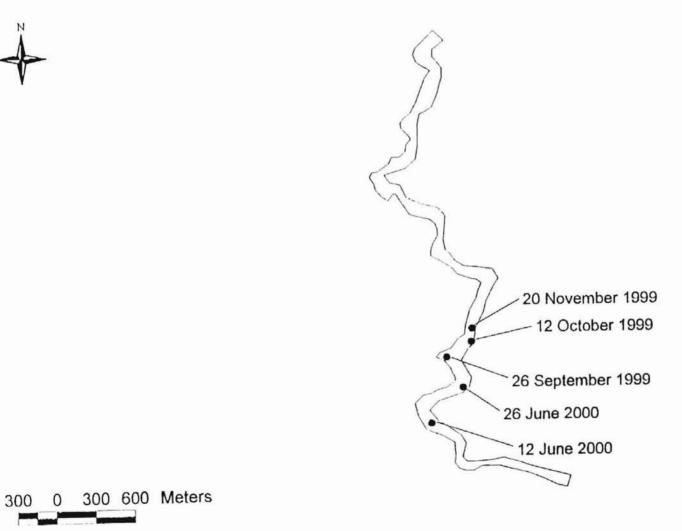

-

Distribution of location points in Big Vian Creek for turtle 366, a 42.3-kg male.




Distribution of location points in Big Vian Creek for turtle 284, a 17.2-kg male.

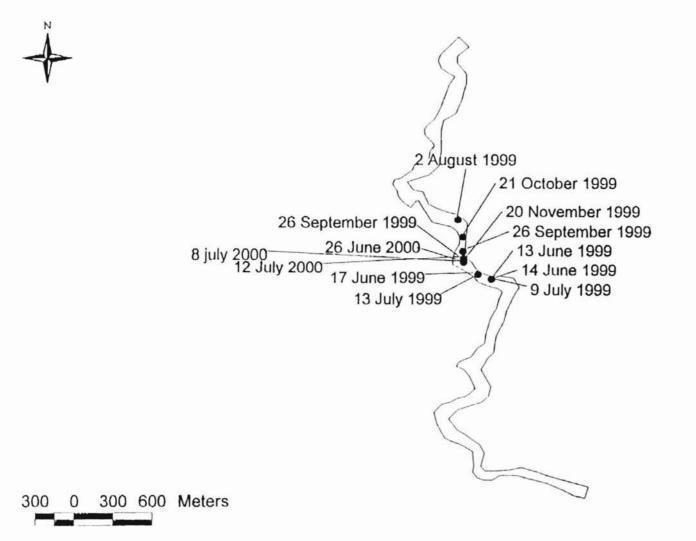
-




Distribution of location points in Big Vian Creek for turtle number 348, a 34.5-kg male.

-



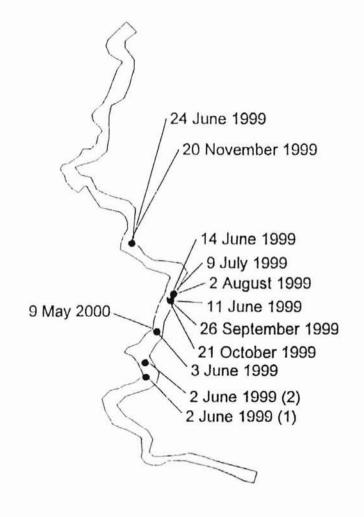

Distribution of location points in Big Vian Creek for turtle 276, an 11.8-kg male.





Distribution of location points in Big Vian Creek for turtle 258, a 14.1-kg female.

-




t

Distribution of location points in Big Vian Creek for turtle 384, an 18.6-kg female.

101

-



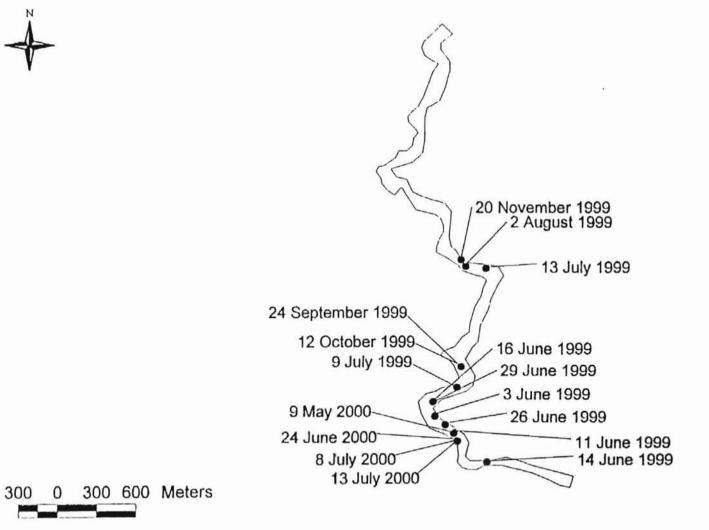
300 0 300 600 Meters

N

Distribution of location points in Big Vian Creek for turtle 447, a 2.7-kg juvenile.

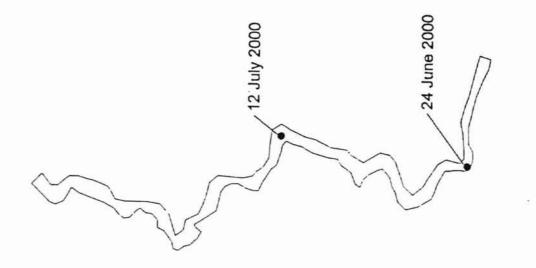
×

.


.

77 June 1999 26 June 1999 9 July 1999 11 June 1999 6




z 🗸

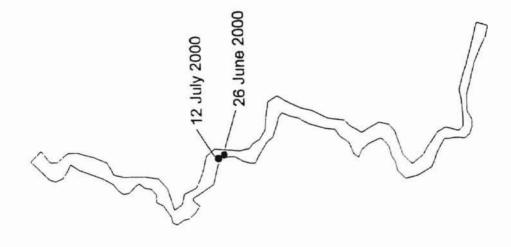
Distribution of location points in Big Vian Creek for turtle 555, a 2.5-kg juvenile.





Distribution of location points in Big Vian Creek for turtle 558, a 2.7-kg juvenile.




300 600 Meters 300

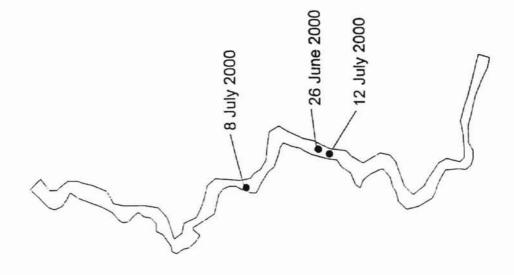
z

÷

Distribution of location points in Big Vian Creek for turtle 368, a 2.2-kg juvenile.

-




(e)

-

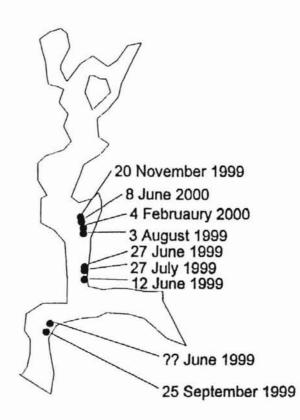


z

Distribution of location points in Big Vian Creek for individual 377, a 4.5-kg juvenile.

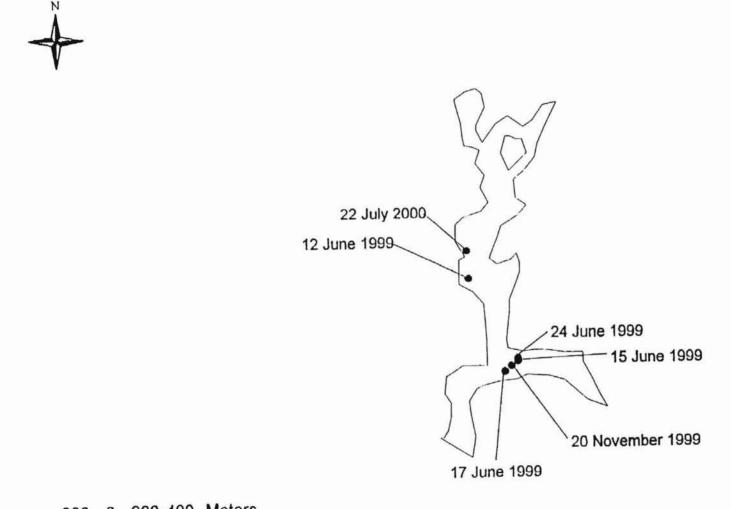


T




z

Distribution of location points in Little Vian Creek for turtle 267, a 15.9-kg male.


.







Distribution of location points in Little Vian Creek for turtle 465, a 9.5-kg male.



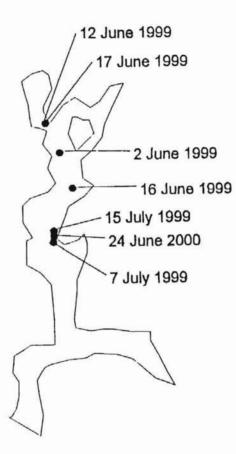


Distribution of location points in Little Vian Creek for turtle 375, a 22-kg male.

 12 June 1999
20 November 1999 -4 February 2000 - 12 June 2000

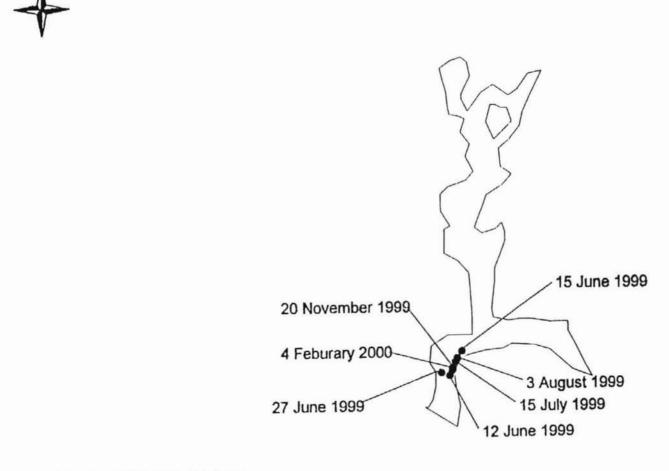
-

.


Z

117

Distribution of location points in Little Vian Creek for turtle 357, a 16.8-kg female.


.







Distribution of location points in Little Vian Creek for turtle 285, a 5.4-kg juvenile.





N

.

## V

# VITA

## Jimmy Daren Riedle

#### Candidate for the Degree of

### Master of Science

# Thesis: THE ECOLOGY OF THE ALLIGATOR SNAPPING TURTLE, Macrochelys temminckii, IN OKLAHOMA

Major Field: Zoology

Biographical:

- Personal Data: Born in Independence, Kansas, on 3 September 1972, the son of Jim and Peggy Riedle.
- Education: Graduated from Independence Senior High School, Independence, Kansas in May 1990; received an Associates of Science degree from Independence Community College, Independence, Kansas in May 1992; received a Bachelor of Science degree from Emporia State University, Emporia, Kansas in May 1995. Completed the requirements for the Master of Science degree with a major in Zoology at Oklahoma State University in December 2001.
- Experience: Employed by Oklahoma State University, Department of Zoology as a graduate teaching assistantship.
- Professional Memberships: Society for the Study of Amphibians and Reptiles, Southwestern Association of Naturalists, Kansas Herpetological Society.