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CHAPTER I.

INTRODUCTION

This thesis is composed of one manuscript written in the format suitable

for submission to the North American Journal of Fisheries Management. Chapter

I is an introduction to the rest of the thesis. The manuscript is as follows;

Chapter II, "Effects of streamflow variation on smallmouth bass habitat in an

alluvial stream."

1



CHAPTER II.

EFFECTS OF STREAMFLOW VARIATION ON

SMALLMOUTH BASS HABITAT IN

AN ALLUVIAL STREAM

w. Jason Remshardt

Oklahoma Cooperative Fish and Wildlife Research Unit

Department of Zoology, Oklahoma State University

Stillwater, OK 74078
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Abstract

We used Physical HABitat SIMulation system (PHABSIM) to evaluate

effects of stream discharge variation on smallmouth bass Micropterus dolomieu

habitat in an alluvial stream, Baron Fork of the Illinois River, Oklahoma during

1999 and 2000. We assessed how streamflow-related changes in channel

shape and structure in an alluvial stream affected quality, quantity, availability.

and spatial distribution of juvenile and adult smallmouth bass habitat.

Specifically, we (1) tested reliability of juvenile and adult smallmouth bass Habitat

Suitability Criteria (HSC), (2) evaluated changes in available smallmouth bass

habitat between years, and (3) compared predicted smallmouth bass Weighted

Usable Area (WUA) with observed WUA measured the following year. From

PHABSIM analysis, we found that both juvenile and adult smallmouth bass

habitat were differentially affected by intra- and interannual discharge

fluctuations. Maximum WUA for juveniles and adults occurred at discharges of

1.8 m3/s and 2.3 m3/s, respectively, and WUA dropped off sharply for both

groups at lesser discharges. Weighted usable area for juvenile and adult

smallmouth bass declined during the summer low-flow period (August-October).

Habitat suitability criteria for juvenile smallmouth bass were inconsistent between

years, but HSC for adult smallmouth bass were consistent with observed habitat

relationships (f < 0.01). For most microhabitat variables habitat availability was

similar between years (68.2%). These findings indicate that changes in habitat

availability should be taken into account when evaluating effects of stream

discharge variation in alluvial streams. Our findings also suggest that annual



variation in habitat availability affect predictive ability of habitat models for

juvenile smallmouth bass more than those for adult smallmouth bass.

4
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Introduction

Distribution and abundance of stream fishes are strongly influenced by

habitat structure. Physical habitat features such as cover type, substrate size,

and velocity are associated with abundances of stream fishes (Hubert and Rahel

1989). Ultimately, stream-fish habitat is affected by fluvial and geomorphic

processes controlled by climate, geology, land use, and basin physiography

(Knighton 1998). Rabeni and Jacobson (1993a) documented the influence of

stream geomorphology and fluvial processes on centrarchid distribution and

abundance in Ozark streams of Missouri. Centrarchid populations were greatest

in upstream reaches where gradients were higher and stream valleys were

narrower and incised into steep bedrock bluffs. As a result, upstream reaches

had more cobble and boulder substrate and less gravel and sand than

downstream reaches, making upstream habitats more favorable for centrarchids.

Smallmouth bass Micropterus dolomieu were associated with different types of

pool habitats (i.e., bluff, lateral, obstruction, mid-channel, and backwater)

depending on time of day, year, and fish size (Rabeni and Jacobson 1993b).

Magnitude of stream discharge and flow regime influence channel form

(Knighton 1998) and fluvial processes (i.e., erosion and deposition) in alluvial

streams. Unregulated alluvial river systems in temperate regions are subject to

changes in channel-bed mobility, deposition, and riparian stability during extreme

stream discharge events (McBain and Trush 1997). Extreme storm and flood

events in alluvial systems, which typically occur at intervals of 50 to 200 years,

scour and widen the stream channel (Webster and D'Angelo 1997). Poff and



6

Allan (1995) found that fish assemblages having higher proportions of resource

generalists tended to be associated with hydrologically variable streams,

whereas assemblages associated with stable habitats were characterized by

higher proportions of specialist species.

One of the most widely used methods of assessing aquatic habitat in

relation to change in stream discharge is the Instream Flow Incremental

Methodology (IFIM; Reiser, et al. 1989; Armour and Taylor 1991). Instream Flow

Incremental Methodology has been used to evaluate a variety of instream flow

problems, from simple diversions of stream channel to complex storage and

release schemes involving hydropeaking schedules, pump-storage, and a

network of interconnected reservoirs (Stalnaker et al. 1995). Incremental

instream flow techniques quantify aquatic habitats beneficial to fish and other

aquatic organisms as a function of stream discharge (Stalnaker et al. 1995).

Knowledge about conditions providing favorable or unfavorable habitat for a

species is necessary for successful implementation of the methodology. Overall,

IFIM has been used as a basis for protecting desired instream values and

promoting compromises among conflicting water interests (Cavendish and

Duncan 1986).

Whereas IFIM is a general instream flow problem-solving approach,

Physical HABitat SIMulation system (PHABSIM) is a specific model within IFIM

that was designed to calculate amount of available habitat for a species at

different stream discharges (Stalnaker et al. 1995). The purpose of PHABSIM is

to develop functional relationships (i.e., weighted usable area) between stream
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discharge and physical microhabitat using (1) channel structure, (2) hydrauliic

simulation, and (3) Habitat Suitability Criteria (HSC; Bovee 1986). At any

particular discharge, each stream cell has a unique combination of depth,

velocity, substrate, and cover. When discharges are simulated in the hydraulics

program of PHABSIM, depths and velocities in cells often change with discharge.

To translate the changes into an estimate of available habitat, one must

determine what depths and velocities, types of cover, and substrata are

important to the target species. Preferences of organisms for hydraulic and

structural characteristics of their microhabitats are collectively referred to as

habitat suitability criteria. Physical attributes of each stream cell can be

compared with HSC to determine weighted value of the cell as microhabitat for a

particular organism. This value can then be multiplied by surface area of the cell

to obtain Weighted Usable Area (WUA; Bovee 1986). Relationships between

stream discharge, variation in fish habitat, and fish population dynamics have

been investigated with PHABS M for several species, including rainbow

Oncorhynchus mykiss and brown Salmo trutta trout in Colorado streams

(Nehring and Anderson 1993), Chinook salmon Oncorhynchus tshawvtscha in

Trinity River, California (Bartholow et al. 1993), and smallmouth bass and rock

bass Ambloplites rupestrus in Huron River, Michigan (Bovee et al. 1994).

Smallmouth bass have habitat requirements that are either directly or

indirectly associated with feeding, spawning, life stage, predator avoidance, and

extent and availability of these habitats varies in relation to changing stream

discharges. It is commonly assumed that low-flow events are the principal cause
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of habitat bottlenecks in streams (Bovee et al. 1994), and extreme low-flow

events can reduce fish populations to well below carrying capacity of the

environment (Stalnaker et al. 1995). Adult populations are frequently determined

by recruitment success, which is highly correlated with amount of habitat

available for early life stages (Stalnaker et al. 1995). By analyzing habitat

availability, Bovee et al. (1994) found that abundance of yearling smallmouth

bass was associated with summertime amount of nighttime microhabitat

available for young-of-year. Bovee et al. (1994) also found that habitat types not

directly utilized by a fish species (such as macroinvertebrate habitat as it affects

food supply for fish) may be as important as directly used habitats. Critical

habitat associations, therefore, may affect fish populations during periods of low

habitat availability.

The IFIM was originally developed for use in coldwater streams in western

United States, but it has also been used in a variety of warmwater streams.

Warmwater streams exhibit a wide range of hydraulic and geomorphic properties

and, therefore, require different instream flow assessment methods. Orth and

Maughan (1982) evaluated IFIM in a bedrock-dominated stream in the Ouchita

Mountains of southeastern Oklahoma where streams are typically runoff

dependent and exhibit substantial loss of habitat in summer. When discharges

were near zero, there was a direct relationship between standing stock and

weighted usable area (WUA; Orth and Maughan 1982). Leonard and Orth (1988)

examined a variety of warmwater stream types in Virginia and identified fish

assemblage-habitat associations by using PHABSIM. They identified four
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habitat-use guilds and recommended discharges based on these guilds. The

resulting instream flow recommendations were similar to those based on the

Montana and wetted-perimeter method for low-flow season only (Leonard and

Orth 1988). Osborne et al. (1988) found that water-surface profile model used in

PHABSIM was inadequate at simulating low-flow habitat conditions in low

gradient, fine substrate warmwater streams in Illinois. Similar instream flow

methods have, however, been used effectively in Ozark streams in Arkansas

(Filipek et al. 1987; Mays et al. 1990). These stream systems closely resemble

Ozark streams of Oklahoma, including Baron Fork of the Illinois River.

Instream Flow Incremental Methodology and its models have been

criticized by some and defended by others. Mathur et al. (1985) and Mathur

(1986) stated that failure of IFIM to produce a positive linear relationship between

WUA and biomass of fish violates a basic assumption of the methodology. In

response, Orth and Maughan (1986) pointed out that evidence to support

positive WUA-biomass relationships exists for periods when habitat is extremely

limited, such as summer low-flow periods. They argued that even though

positive WUA-biomass relationships may not always occur, use of WUA as an

index of potential fish biomass is acceptable because abundance may be

complicated by other factors including time lags in habitat availability and

interspecific competition. Modeling with PHABSIM allows habitat availability to

be predicted on the basis of historical stream discharges. To make accurate

predictions and forecasts with PHABSIM, Gore and Nestler (1988) stated that

modeled habitat needs to remain stable during the study period as well as into
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the future. Also, WUA-discharge curves are more accurate if the time frame that

PHABSIM data are collected in can be minimized {Moyle and Baltz 1985).

Smallmouth bass have been a target species for severallFIM studies. In

Oklahoma, the species is an important sport fish, and several studies have

examined life history characteristics of stream populations, including the one in

Baron Fork of the Illinois River. Stark and Zale (1991) concluded that large,

inconsistent year classes and high densities of smallmouth bass characterized

Baron Fork smallmouth bass. Fish grew rapidly until age two, after which growth

declined. They speculated that older, larger individuals might have emigrated

downstream (e.g., Illinois River, Lake Tenkiller) where habitat requirements were

better met by the larger bodies of water. However, Balkenbush and Fisher

(1999) found that growth rates for older smallmouth bass in Baron Fork were

higher than reported in the study by Stark and Zale (1991).

We assessed how streamflow-related changes in channel shape and

structure in an alluvial stream affected habitat availability and spatial distribution

of smallmouth bass habitat. We modeled juvenile and adult smallmouth bass

habitat in Baron Fork in summer and fall 1999 with PHABSIM and verified model

results and tested assumptions of PHABSIM with data collected in summer and

fall 2000. Specifically, we (1) tested reliability of Habitat Suitability Criteria (HSC)

for juvenile and adult smallmouth bass, (2) evaluated changes in available

smallmouth bass habitat between years, and (3) compared predicted WUA for

smallmouth bass with the estimated value in the following year.



Methods

Study Area -- Baron Fork is a tributary of the Iilinois River that originates in

northwest Arkansas and discharges through Adair and Cherokee counties in

Oklahoma where it joins Illinois River above Lake Tenkiller. Like many Ozark

streams, the Baron Fork drainage is underlain by an extensive karst system that

supports large springs (Rabeni and Jacobson 1993a). Baron Fork is one of

Oklahoma's few remaining free-flowing streams and has been designated as a

scenic river (OKWRB 1990). Channel substrate in the stream is mostly chert

gravel derived from limestone and dolomite bedrock. Historically, Ozark streams

deposited mostly sand and clay particles on the flood plain, but anthropogenic

activities such as logging, overgrazing, and burning accelerated rates of erosion

and gravel deposition in Ozark streams (Rabeni and Jacobson 1993a).

We defined our study segment boundaries by first constructing a

longitudinal profile of stream gradient from measurements on USGS 7.5 minute

topographic maps. We selected a 21.5-km segment with relatively homogenous

gradient that included Adair County Rural Water District #5 municipal water

supply intake (Figure 1). The upper boundary of the segment was located at

Christie Bridge on County Road N4669 in Adair County, Oklahoma. The lower

boundary was just above Eldon Bridge on Highway 51 in Cherokee County,

Oklahoma.

Hydrologic Analysis -- Historical daily mean discharge values from the USGS

stream gage station located at Eldon Bridge (station number 07197000) were

downloaded from the USGS Internet site (http://csdokokl.ok.cr.usgs.gov). These
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data were used to verify our estimates of discharge during field sampling. They

were also analyzed with Indicators of Hydrologic Alteration software (IHA, The

Nature Conservancy) to identify 25th, 50th
, and 75th percentile monthly stream

discharges. For this study, we operationally defined monthly median (50th

percentile) of the distribution of discharge for the period of record discharge as a

normal year, lower 25th percentile as a dry year, and upper 75th percentile as a

wet year (Fisher and Remshardt 2000).

Physical Habitat Measurements -- To map and measure habitat characteristics

within the study segment, we first acquired digital orthophotoquad (000)

topographic maps of Baron Fork basin from the Spatial and Environmental

Information Clearinghouse Internet site (www.seic.okstate.edu; SEIC 1999).

Digital orthophotoquad maps were formatted for use in ArcView GIS software.

These maps, along with field observations enabled us to evaluate stream

channel and floodplain conditions. We used the classification system devised by

Hawkins et al. (1993) to visually identify and classify geomorphic channel units

(GCUs) while canoeing in the stream in May 1999 (Appendix A). For the

purpose of this study, we refer to GCUs as mesohabitats. We then digitized

mesohabitats onto a base map of the stream using Arcview GIS software.

Arcview GIS was used to map and quantify area and length of each mesohabitat

type. Mesohabitats were used to stratify sites for fish sampling and to quantify

microhabitat characteristics for PHABSIM modeling (Bovee 1994) in three

sampling sites (Figure 1).

..



13

Stream discharge and microhabitat channel features were measured at all

three sites in the study segment. Estab'lishing study sites consisted of: (1)

defining lower and upper site boundaries, (2) subdividing the site into stream

cells with transects, (3) establishing horizontal control, and (4) establishing

vertical control. Mesohabitat types were sampled proportionately based on the

May 1999 survey of the entire stream segment.

Discharge and microhabitat data were collected from June through August

of 1999 following procedures described by Bovee (1994). We established site

boundaries and elevations of all three study sites by surveying each study site

with a Topcon AT-G7 autolevel and stadia rod. The minimum horizontal data that

is required in PHABSIM is distance between transects, and relative length of

stream cells defining a site. We obtained these data by measuring distances

between lett-bank and right-bank of one transect with another or to an

established benchmark. Compass bearings to at least two different established

points were determined in order to recreate transects for subsequent mapping

and later sampling. Distances less than or equal to 120 m were measured with a

steel tape. For distances over 120 m, we used the level and stadia rod.

Distances between the level and stadia rod were estimated by subtracting the

lower stadia reading from the upper stadia reading and multiplying that number

by 100. This gave us an estimate in feet that was converted to meters. A

compass located on the level allowed us to determine bearing to transect points

or benchmarks.
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Vertical measurements of a site were used to calculate hydraulic slopes,

establish benchmarks, and create site maps to use in modeling calculations of

PHABSIM. All elevations in a site were referenced to a common datum. By

installing permanent benchmarks at each site and relating their elevations by

differential leveling. Benchmarks al!low a backsight to a known elevation from

anywhere in each site. The downstream-most benchmark at each site was

arbitrarily set at 100.00 meters. After the last benchmark in each site was

surveyed, the survey was conducted in reverse to check for errors in elevations,

a process termed closing the loop. By defining permanent benchmarks and

marking their location with a global positioning system (GPS) receiver (Trimble

GeoExpJorer II), we were able to return to our sites and re-measure transects at

different discharges.

Channel cross-sections were described by a series of horizontal and

vertical coordinates. Channel profile data associated with measurements along

each transect included a horizontal and vertical distance from a known datum to

the nearest 0.1 m, water surface elevation to the nearest 0.01 m, and

descriptions of cover and substrate. Cover and substrate data were recorded in

abbreviated form and transformed into channel index codes during data entry

(Appendix B). Substrata were classified with a USGS gravelometer. Depth and

velocity measurements were taken from 62 transects (31, 26, and 5 at sites 1,2,

and 3, respectively) with a 1.5-meter wading rod attached to a flowmeter (Marsh

McBirney Model 2000) in 1999. For depths less than 0.75 m, a single velocity

measurement was taken (40-second interval) at 60% of depth. For depths over
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0.75 m. two measurements were taken, one each at 20% and 80% of total depth.

These two velocity readings were then averaged to obtain a single measurement.

Readings at the downstream-most transect at each site were taken on different

days and discharges to obtain a stage-discharge relationship for each site.

Substrate and cover variables were dassified based on classes modified from

Bovee (1986).

Smallmouth Bass Sampling and HSC Development -- Prepositioned areal

electrofishers (PAEs, Fisher and Brown 1993) were used to collect smallmouth

bass at randomly selected sites throughout the study segment in 1999. A boat

mounted electrofisher was used to sample fish in depths over 1.5 m. We used

the double diamond sampling pattern described by Bovee et al. (1994) to

minimize disturbance between PAE electrodes. Transects were placed at least

30-50 m apart with 2-5 PAE electrodes per transect. The purpose of pre

positioning the electrode is to minimize disturbance associated with a constantly

moving electrical field (e.g., mobile backpack electrofisher). Each PAE electrode

was positioned, left undisturbed for at least 10 minutes, and then energized. As

soon as the electrode was energized, a team of two dipnetters immediately

approached the electrode and netted immobilized fish. After sampling, captured

fish were held in an instream pen for further processing. All smallmouth were

counted, measured, and weighed in the field and returned to the stream. Next,

microhabitat variables (depth, velocity, substrate, and cover) were measured and

recorded for each PAE location.
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In September and October of 2000, we observed smallmouth bass by

snorkeling in the study sites. Following procedures described by Li (1:988),

observed fish locations were marked with a lead weight attached to a float and

microhabitat variables (depth, velocity, substrate, cover) were measured at their

locations. Fish were classified as either being juvenile or adult by comparing

lengths with a hand-held ruler marked at 115 mm. (~ 115 mm for juveniles, > 115

mm for adults). These age criteria were based on an analysis of length

frequency distributions of smallmouth bass collected during September and

October of 1999 (Figure 2). For both years, locations of each sampling point

were determined by distance and compass bearing measurements from GPS

benchmarks.

Habitat suitability criteria were constructed for both juvenile and adult

smallmouth bass for depth, velocity, substrate, and cover based on 1999 field

samples from Baron Fork. For depth and velocity curves, data were combined

into 5-cm (cm/sec) intervals to simplify the analysis. Although fish can detect

changes in velocity as small as one cm/s, histograms created at this level of

accuracy frequently result in irregular distributions which are usually a result of

inadequate sample size or microhabitat measurement errors (depth and velocity

measurements are precise to only about 3 cm and 3 cm/s, respectively) and are

not reflective of discriminatory behavior by fish (Bovee 1986). Substrate and

cover variables were combined into one variable, termed channel index (CI) for

entry into PHABSIM. These types of structural features do not change directly

and immediately as a function of discharge, and are restricted to a single entry in
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PHABSIM. All electrofishing samples were used to estimate habitat availability,

which was compared with smallmouth bass collections to create HSC.

For each microhabitat variable (depth, velocity, CI), HSC were constructed

for juvenile and adult smallmouth bass using non-parametric tolerance limits

(Somerville 1958; Bovee 1986). Non-parametric tolerance limits are listed in

tables that generally contain pairs of numbers representing the smallest and

largest ordered value in a sample. These values define the limits that a specified

proportion of the population will be between at a given confidence level

(Remington and Schork 1970). These non-parametric tolerance limits were

applied to preference criteria developed from microhabitat availability and use

data collected from electrofishing samples. For small sample sizes less than

100, non-parametric tolerance limits provide better estimates of actual habitat

preferences than nonlinear regression techniques for developing HSC (Bovee

1986). Next, habitat preferences were classified into three ranges of quality

(Bovee 1994): optimal, usable, and suitable. The optimal range contained the

central 50% of observations and was given a normalized suitability index (NSI) of

1.0 following the formula (NSI = 2(1-P)) where P is the proportion of the

population under the curve (i.e., 50%, 75%. and 95% ranges). The usable range

encompassed the central 75% (NSI = 0.5) of observations and the broadest

variable. The suitable range contained locations within the 95% (NSI = 0.1)

range (Bovee 1994). These suitability curves were then entered into PHABSIM

(version beta-2) to determine habitat quality and quantity for each microhabitat

simulation run.
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PHABSIM Modeling -- We used PHABSIM programs to model smallmouth bass

habitat at different stream discharges as described by Milhous et al. (1989).

Habitat was modeled with measured discharges to predict hydraulic conditions at

unmeasured discharges with PHABSIM. There are several different techniques

to model stream discharge within PHABSIM. Water surface elevations were

estimated for simulated discharges using a combination of the stage-discharge

relationship (STGQ) and either Manning's equation (MANSQ) or Water Surface

Profile (WSP). The STGQ was used to model water surface elevation at the

downstream most transect. After an appropriate STGQ was calibrated, MANSQ

was used for transects that were not in pool habitats (e.g., riffles and runs). Use

of MANSQ in pools can be problematic because pools are generally affected by

a backwater effect created by a riffle or other downstream control. Manning's

equation requires adjusting a conveyance factor variable (beta) to minimize error

between observed and simulated discharges. Each transect is considered

independent of other transects and is modeled as such. An overall average beta

value is calculated first, and then simulated water surface elevations at each

transect are compared individually to corresponding observed water-surface

elevations. Beta values are again adjusted to minimize differences between

water surface elevations. In pool transects, WSP was used because it more

closely simulates discharges in pool habitats. The WSP is similar to MANSQ, but

WSP assumes that each transect is affected by a riffle or other downstream

hydraulic control that effectively creates a backwater effect. All transects in a site

must be tied together to a common benchmark to effectively use this method.
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The process of using WSP model involves selecting coefficient values that best

fit water-surface elevations at each transect for the highest calibration discharge

and then applying this coefficient to other discharges.

Weighted usable area estimates for each site were calculated for

simulated discharges between 0.28 m3/s (10 fe/s) and 8.5 m3/s (300 fe/s).

Weighted usable area values for each site were then weighted by the

proportional length of the site to obtain a single WUA estimate for each discharge

and life stage of smallmouth bass. The point at which maximum WUA occurred

was considered the optimum discharge for subsequent microhabitat simulations.

Overall WUA values for juvenile and adult smallmouth bass were then compared

with historic discharge values to estimate historic habitat availability.

Verification Tests - We used GIS to compare predicted cell habitat quality

(optimal, usable, suitable) with actual fish locations. A similar approach was

used by Thomas and Bovee (1993) to test transferability of HSC between

streams. Composite suitabilities were calculated for each cell, using HSC

developed from 1999 sampling. Each cell was classified based on the variable

with the lowest suitability class. For example, composite suitability for a cell was

classified as optimum if individual suitabilities for depth, velocity, substrate, and

cover were all optimal. A cell was classified as usable if any variable was

e:Iassified as usable and all other variables were classified as usable or higher

(suitable or optimal). A cell was classified as suitable if any variable was

classified as suitable and all other variables were classified as suitable or

optimal. If suitability for any variable was unsuitable, composite suitability for the
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cell was classified as unsuitable. If HSC developed in one year are transferable

to the same stream the next year, even after significant alterations in channel

structure due to an extreme flood, then HSC should be considered usable from

year to year in that stream. Furthermore, if fish select optimal, usable, or suitable

cells more frequently than unsuitable cells, then HSC accurately identify habitat

quality. Chi-square tests were used to identify differences in habitat use with

significance at alpha = 0.05. Bonferroni corrections were applied to tests within

each microhabitat variable in each study site (for example site 1 depth, alpha 14

= 0.0125 for each individual test).

In 2000, 36 transects (12 in each site) were placed as close to original

transects as possible to evaluate changes in microhabitat availability within

mesohabitat types and channel structure. Distributions of each microhabitat

variable (depth, velocity, substrate, and cover) within each mesohabitat were

compared between years with a Kolmogorov-Smirnov two-sample test (SAS

PROC NPAR1WAY-EDS; SAS 1988). This test was used to determine if two

samples come from identical distributions. The test criterion compared

distribution functions from of each continuous (depth and velocity) and discrete

(substrate and cover) microhabitat variable for both years to determine maximum

numerical difference between them (Steel et al. 1997).

We analyzed change in channel position and structure between 1999 and

2000 with GIS and stream-channel transect data. We overlaid channel

boundaries from 1999 and 2000 transect data with GIS to detect changes in

channel movement. Stream-channel transect data were analyzed to detect



21

change in channel morphology over time. Two indices, net percent change in

area and absolute percent change in area were calculated following methods

described by Olson-Rutz and Marlow (1992). Net percent change in area under

the transect quantifies net degradation or aggradation of the channel. The

absolute percent change in area quantifies cumulative streambed or streambank

material movement.

To further analyze habitat stability, we compared WUA values for adult

and juvenile smallmouth bass calculated from the 1999 PHABSIM model to

observed WUA values calculated from 2000 habitat sampling. Discharge values

used to model WUA were taken from the gauging station on Eldon Bridge at the

time of sampling in 2000 (1.13, 0.57, and 1.42 cubic m/s for sites 1,2,and 3,

respectively). These WUA values were within the range of measured values

from 1999 sampling (0.28 - 4.46 cubic m/s). Each WUA observed in 2000 was

compared with PHABSIM predicted (1999) values at that discharge with aT-test

(alpha =0.05).

Results

Hydrologic Trends -- Our analysis of historic stream discharge based on a 51

year period of record (1948-1999), revealed a low-flow period from July to

November with extreme low-flows occurring in the months of August, September,

and October (Figure 3, Table 1). Field data collection occurred during this low

flow period. Discharges recorded during sampling in 1999 and 2000 (0.37-6.70

m3/s) were near historic median discharges for August, September, and October

(Table 1). On 21 June 2000, a record flood event was recorded at the Eldon
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Bridge gauging station on Baron Fork. An instantaneous discharge of 1,549.8

m3/s (54,731 fe/s) with a stage height of 8.16-m (26.77-ft) was measured. The

previous record, 1432.8 m3/s (50,600 fe/s) with a stage height of 7.90-m (25.93

tt), occurred in 1990.

Physical Habitat Characteristics - We identified 249 individual mesohabitat units

in the 21.5-km study segment (total area surveyed 444,193 m2
) distributed as

follows: 4% backwater, 23% mid-channel pools, 17% lateral pools, 37% runs,

and 20% riffles (Table 2).

Microhabitat characteristics were based on 705 measurements of depth,

velocity, substrate and cover at the three sites. In 1999, gravel substrata (small

2-8mm, medium 8-16, and large 16-64) composed 84.8% of all measurements,

whereas cobble, boulder, and bedrock substrates accounted for only 8.7% of

measurements. Remaining substrata were detritus (0.3%), vegetation (0.3%),

clay (0.1 %), silt (2.3%), and sand (3.6%). Available cover is generally sparse but

can be locally abundant in Baron Fork. Most (90.9%) point measurements did

not have cover objects. Of points that did contain some type of cover, most were

either rootwad or log formations (7.0%). Other cover types found in lesser

amounts were fractured bedrock (0.9%), boulder (0.6%), aquatic vegetation

(0.4%), and undercut banks (0.3%). Stream depths ranged from 0.03 m - 2.90 m

with an average of 0.71 m. Velocity measurements ranged from 0.00 m/s - 0.96

m/s with an average of 0.12 m/s.

Smallmouth Bass HSC - A total of 275 smallmouth bass were either collected

(1999) or observed (2000) during the study. In 1999,266 electrofishing samples
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produced 100 smallmouth bass (36 juveniles, 64 adults). A total of 175

smallmouth bass (79 juveniles, 96 adults) were observed snorkeling in 2000.

Habitat Suitability Criteria for juvenile and adult smallmouth bass in Baron

Fork reflected differences in habitat use between size classes (Table 3).

Juveniles preferred depths between 35 and 115 em, velocities between 25-80

cm/s, medium gravel (8-16 mm) substrate, and undercut banks for cover. Adult

smallmouth bass preferred depths between 55 and 155 em, velocities between

10-30 cm/s, large gravel (16-32 mm) substrate, and rootwads for cover. Neither

age group used clay, vegetation, or detritus. All cover types (except fractured

bedrock) were used by both age groups, except for aquatic vegetation, which

was only associated with juveniles.

PHABSIM Modeling - Weighted usable area was greatest at a discharge of 2.32

m3/s for juveniles and 1.78 m3/s for adults (Figure 4). Stream discharges

simulated between 0.28 m3/s and 8.50 m3/s indicated that juveniles had between

three and four times more WUA than adults at all simulated discharges. For

example, at 2.83 m3/s, WUA for juveniles and adults was 4076 m2/1000 m and

1049 m2/1000 m WUA, respectively. The corresponding values were 3789

m2/1000 and 1263 m2/1000 at a discharge of 1.42 m3/s (Figure 4).

Available habitat declined during the low-flow period (August to October)

for most years from 1948 to 1999. During these periods, stream discharge was

less than 2.1 m3/s (Table 1) and WUA equaled or fell below the optimum for both

juvenile (WUA =4076 m2/1000 m) and adult smallmouth bass (WUA =1049

m2/1000 m) during wet (75th percentile), normal (median), and dry (25th
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percentile) years (Figure 5). Weighted usable area for the driest month

(September) of dry years (25th percentile), declined from that for normal

conditions by 36.3% for juveniles and by 34.6% for adults.

Model Verification -- A total of 22,079 m2 (374 cells) of stream habitat were

analyzed to test for smallmouth bass HSC transferability between years.

Juvenile smallmouth bass HSC developed from 1999 measurements did not

correspond well with fish locations observed in 2000 at all three sites. All cells

containing juveniles in 2000 were either suitable (N =26) or unsuitable (N = 13)

(Figures 6-8). Furthermore, chi-square analysis indicated that juveniles did not

significantly select suitable cells over unsuitable cells (x2 =0.71, P =0.40) (Table

4).

Adults located during snorkeling surveys were distributed as follows with

respect to habitat cell classification: optimal = 0, usable = 5, suitable = 20,

unsuitable = 9 (Figures 9-11). These results indicate significant selection for

usable or suitable habitat over unsuitable (x2 = 24.5, E < 0.0001) (Table 4).

Habitat in Baron Fork was similar between 1999 and 2000. Each variable

(depth, velocity, substrate, and cover) within each mesohabitat type (mid-channel

I

pool, lateral pool, run, and riffle) was analyzed separately for each study site

(Table 5). Eleven of forty-eight (22.9%) distributions were significantly different

(P < 0.0125) between years. By study sites, site 1 had the greatest amount of

change in microhabitat distributions (31.3%), with five of sixteen distribution tests

indicating significant change (E < 0.0125). Mid-channel pools had the highest

degree of change (41.7%), with five of twelve distribution tests showing
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significant change (P < 0.0125). When microhabitat variables were analyzed,

depth and velocity accounted for 10 of the 11 significant differences (90.9%),

while substrate accounted for the other significantly different microhabitat

variable. Cover remained constant throughout the study and showed no

significant change (P > 0.0125) for all mesohabitat types and study sites (Table

5).

All mesohabitat types exhibited high amounts of change in amount of

cross-sectional area between 1999 and 2000. For example, the site 1 run

transect at Eldon Bridge (Figure 12) had a 93.5% loss in cross-sectional area

and a 93.5% absolute change in cross-sectional area. All depth measurements

at transect points for 2000 were less than those in 1999 for this transect. The

site 2 riffle transect at Baron Fork Ranch (Figure 13) had an 11.8% loss in cross

sectional area and a 62.5% absolute change in cross-sectional area. This

channel had shifted approximately 20 m longitudinally. The site 3 mid-channel

pool transect at Christie Bridge (Figure 14) had only a 6.3% loss in cross

sectional area but a 37.2% absolute change in cross-sectional area. The right

bank of this transect was located on a rock bluff that prevented significant

channel change. The site 2 lateral pool transect at Baron Fork Ranch (Figure 15)

had an 84.8% loss in cross-sectional area and an 85% absolute change in cross

sectional area. This pool was also located adjacent to a rock bluff, but significant

aggradation of channel-bed material occurred on the left bank of the transect

which decreased width of the stream channel.



26

Flood events that occurred between sampling periods had altered the

position of the channel and its overall shape. Visual examination of the channel

revealed substantial lateral channel movement in sites 1(Figure 16) and 3 (Figure

17) but minimal change in site 2 (Figures 18).

There was high variability in observed and predicted WUA for both adults

and juveniles, but observed WUA was generally lower. Different discharges

observed between study sites in 2000 precluded statistical testing for

significance. Observed WUA per 1000 m of stream compared with predicted

WUA for adults were: 197 m2 versus 695 m2 for site 1, 242 m2 versus 587 m2 for

site 2, 438 m2 versus 1328 m2 for site 3. Observed WUA per 1000 m of stream

compared with predicted WUA for juveniles were: 153 m2 versus 3255 m2 for site

1, 110m2 versus 1635 m2 for site 2,276 m2 versus 4164 m2 for site 3 (Table 6).

Discussion

Our goal was to use PHABSIM to evaluate hydraulic and habitat model

predictions of available smallmouth bass habitat in an alluvial stream. Although

alluvial streams by definition have unstable substrates, they are assumed to be in

a state of dynamic equilibrium, where pools, runs, and riffles, and the channel

may migrate from year to year but the mesohabitats remain in the same

proportions (Richards 1982). An advantage of modeling habitat in alluvial

streams is that these streams generally have gentle and very predictable slopes

that result in effective hydraulic models over a wide range of discharges.

Although these streams are assumed to be in a state of dynamic equilibrium,

there is a lack of verification for the assumption of habita:t stability in PHABSIM

....
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modeling, especially in warmwater streams where physical and hydrologic

conditions are less predictable than in coldwater streams of western United

States where PHABSIM originated (Mathur et al. 1985). Bedrock or boulder

dominated streams, in contrast, pose a different problem for instream modeling.

Habitat and hydraulic features can be measured over several seasons or years in

these types of streams because they tend to be significantly more stable over

time (Orth and Maughan 1982). However, it is much more difficult to model

microhabitat in these stream because of their hydraulic complexity (Kondolf et al.

2000).

The goal of any habitat model is to simplify or reduce the number of

variables to include only those of significance to the species of concern (Bovee

1986). By comparing predicted values of depth, velocity, and WUA with

observed values it is possible to validate the model and identify possible errors in

model predictions (Kondolf, et al. 2000). Validation involves measuring depth,

velocity, substrate, and cover at random points in the study reach and comparing

these with predicted values (Kondolf, et al. 2000). Our assessment of among

year transferability of HSC for adult and juvenile smallmouth bass identified

limitations in juvenile HSC. We found a lack of significant use of suitable habitat

cells by juvenile smallmouth bass over those classified as unsuitable.

Additionally, our comparisons of predicted and observed WUA for juvenile

smallmouth bass between 1999 and 2000 were highly variable. Juveniles often

were found in shallower water than adults were and near the stream margin

(Figures 6-11). Hydraulic models are imprecise near the stream margin (Kondolf
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et al. 2000). which may explain why model predictions differed from

observations. In contrast, adult HSC were more consistent between years,

possibly because adult fish occurred often in deeper pools. Another factor that

may have affected the relative effectiveness in development of our models for

juveniles and adults was the lower sample size for the former (N = 36 versus 64).

Habitat suitability criteria have been developed for smallmouth bass in

other streams in Oklahoma (Edwards et al. 1983) as well as other states

including Virginia (Leonard et al. 1986. Groshens and Orth 1994), Massachusetts

(Bain et al. 1982), Michigan (Monahan 1991). Arizona (Barrett and Maughan

1994), and West Virginia (Newcomb et al. 1995). Differences between results

from these studies and those we obtained for Baron Fork tended to be greater for

juveniles than for adults. Our optimal and suitable ranges were generally higher

than those reported in other studies. Optimal velocity HSC for adults in Baron

Fork were within the range found in other studies as were suitable ranges

compared to other studies (Appendix C). Similar results were found when

comparing depth HSC for smallmouth bass with other studies. Optimal juvenile

smallmouth bass HSC for depth were generally higher than those found in similar

studies, whereas suitable ranges were more similar to other studiies. Adult

smallmouth bass depth HSC for the optimal category in Baron Fork were similar

to those in similar studies. Suitable ranges for adult depth HSC were similar as

well (Appendix D).

Maximum WUA occurred at similar stream discharges for juvenile (2.13

m3/s) and adult (1.78 m3/s) smallmouth bass, but the maximum for juveniles was
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more than three times greater than for adults. In an IFIM study of smallmouth

bass in Glover River, Oklahoma, Orth and Maughan (1982) recommended

discharges of 0.60 m3/s for juveniles and 0.80 m3/s for adults based on maximum

WUA. These results differ from our estimates, possibly because of differences in

hydrologic regime, geomorphology, and demographic differences between the

two populations (Balkenbush and Fisher 1999). Baron Fork is an alluvial gravel

dominated spring-fed stream whereas Glover River is a bedrock-dominated

runoff stream (Balkenbush and Fisher 1999).

Overall, similarities and dissimilarities between HSC and WUA found in

this study emphasize the need for precisely measured fish-habitat data. Close

correspondence between adult smallmouth bass locations in 2000 and HSC

developed in 1999 suggest that adult HSC were reliable. Furthermore, WUA

observations in 2000 for adult smallmouth bass were similar (although somewhat

higher) to those predicted with PHABSIM based on 1999 data. These analyses

indicate PHABSIM modeling and HSC development are reliable for adult

smallmouth bass in Baron Fork. The apparent inaccuracy of our PHABSIM

modeling for juvenile smallmouth bass may reflect shortcomings in either the

ability of PHABSIM to model stream-margin habitat or in our ability to accurately

describe juvenile fish-habitat associations, or both.

There is a lack of linkage between PHABSIM and GIS, which limits display

of spatial habitat use by warmwater stream fishes to changes in discharge.

Correia et al. (1998) integrated GIS with HEC-2 hydraulic model, a component of

PHABSIM, for comprehensive floodplain management. The problem with
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describing WUA on a GIS map is that the surface is two-dimensional. This

makes it difficult to express habitat availability at different discharges without

creating different themes for each discharge. We were able to apply PHABSIM

cell values to GIS maps manually and use GIS to test transferability of HSC data

for smallmouth bass. Along with these analyses, we were able to map our study

sites accurately and visualize a change in channel location from 1999 to 2000.

Seamless linkage of PHABSIM output with GIS would require little or no manual

entry of data. GIS is capable of quantifying habitats based on size, shape, and

connectivity of mesohabitats while modeling habitat suitability based on depth,

velocity, substrate, cover, and any other factors found to affect fish distributions.

These functions enabled us to predict similar values of WUA for sampled sites

based on measurements taken at the time of the study with GIS. PHysical

HABitat SIMulation is needed to predict unmeasured discharges. Hydraulic

programs such as WSP, MANSO, and STGO allow PHABSIM to accurately

model unmeasured depths and velocities of habitat cells. If these programs

could be integrated into GIS, then habitat could be modeled effectively in a multi

dimensional analysis. Neverthel'ess, GIS was a valuable tool for identifying

critical habitats and their change over time in our study.
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Table 1. The 25th percentile, 50 th percentile (median), and 75th percentile
monthly discharge values (m3/s) for the Baron Fork of the Illinois River station at
Eldon Bridge (number 07197000) from 1948 -1999 during low-flow months of
August - October.

Month 25th percentile

August 0.68
September 0.54
October 0.65

Median

1.25
1.01
1.41

75th Percentile

2.12
2.01
2.80



40

Table 2. Number, area, and distance of mesohabitat types identified in a 21.5
km segment of Baron Fork.

Mesohabitat Percent Total Percent Distance
type Number number Area (m2

) area (m)

Backwater pool 27 10.8% 16,405 3.7% 1,161
Mid-channel pool 37 14.9% 102,405 23.0% 4,940
Lateral pool 40 16.1% 73,628 16.6% 3.632
Run 82 32.9% 163,221 36.8% 8,553
Riffle 63 25.3% 88,534 19.9% 5,059

Total 249 100.0% 444,193 100.0% 23,345



Table 3. Habitat suitability criteria for juvenile and adult smallmouth bass in
Baron Fork, Oklahoma. See Appendix A for an explanation of substrate and
cover codes.
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Habitat quality

Optimal
Usable
Suitable

Optimal
Usable
Suitable

Optimal
Usable
Suitable

Optimal
Usable
Suitable

Juvenile

35-115
15-135
5-150

25-80
10-95
0-105

7
7,8
4,6-9

1
1,4,5
0,1,3-6

Habitat variable
Adult

Depth (em)
55-155
25-180
5-200

Velocity (cm/s)
10-30
5-35
0-40

Substrate (code)
8
6,8,11
4,6-12

Cover (code)
4
1,4,6
0,1,3,4,6
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Table 4. Juvenile and adult smallmouth bass occupied versliJS unoccupied cells
based on snorkeling observations (2000) and HSC developed from electrofishing
data (1999) with chi-square values and associated P-values. For juveniles;
optimal, usable, and suitable categories were combined. For adults; optimal and
usable categories were combined. Significant at P < 0.05 (*).

Juveniles
l =0.71
P = 0.40

Adults
x2 = 24.50
P < 0.0001*

Suitability Presence N

Optimal Unoccupied 0
Usable Unoccupied 3
Suitable Unoccupied 197
Unsuitable Unoccupied 135
Optimal Occupied 0
Usable Occupied 0
Suitable Occupied 26
Unsuitable Occupied 13

Optimal Unoccupied 1
Usable Unoccupied 3
Suitable Unoccupied 211
Unsuitable Unoccupied 125
Optimal Occupied 0
Usable Occupied 5
Suitable Occupied 20
Unsuitable Occupied 9
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Table 5. Maximum values of deviation (L1) for determination of Kolmogorov-
Smirnov statistic. Significant amount of change ~<0.05) in habitat availability at
sites 1,2,3 for mid-channel pools, lateral pools, runs, and riffles denoted by
asterisk (*). Bonferroni correction was used within each variable and site,
example for depth in site 1, aJ4 = 0.0125.

Mesohabitat L1 Depth L1 Velocity t1 Substrate t1 Cover
Type (m) (m/s) (code) (code)

Site 1
N=51

Mid-Channel 1.27* 0.04* 7* 1
Pool
Lateral Pool 0.65* 0.21* 9 4

Run 0.42 0.36 7 0

Riffle 0..26 0.11 7 0

Site 2
N=74

Mid-Channel 1.07 0.09* 7 0
Pool
Lateral Pool 0.52 0.06 7 0

Run 0.31* 0.33 7 0

Riffle 0.16 0.53 7 4

Site 3
N=79

Mid-Channel 0.33* 0.08 8 0
Pool
Lateral Pool

Run 0.48 0.06* 4 0

Riffle 0.23* 0.72* 7 0
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Table 6. Predicted (1999) and observed (2000) WUA (m2
) for juvenile and adult

smallmouth bass. Each value is also displayed with total area (m2
) available and

percent of total area accounted for by WUA. Discharges were as follows: site 1
=1.13 m3/s, site 2 =0.57 m3/s, site 3 =1.42 m3/s.

Juvenile
WUA (m2

) Total Area (m2
) Percent (%)

Site 1
Observed 153 25,285 0.6
Predicted 3255 23,825 13.7
Site 2
Observed 110 23,756 0.5
Predicted 1635 15,118 10.8
Site 3
Observed 276 20,752 1.3
Predicted 4164 20,844 20.0

Adult
Site 1
Observed 197 25,285 0.8
Predicted 695 23,825 2.9
Site 2
Observed 242 23,756 1.0
Predicted 587 15,118 3.9
Site 3
Observed 438 20,752 2.1
Predicted 1301 20,844 6.2
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Figure Captions

1. Site map of study segment in Baron Fork of the Illinois River.

2. Length frequency distributions of smallmouth bass captured for

development of habitat suitability criteria during 1999.

3. Monthly median discharge values (1948-1999) for the Baron Fork at Eldon

gauge (station number 07197000).

4. Weighted Usable Area calculations for adult and juvenile smallmouth bass

in Baron Fork of the Illinois River.

5. Adult and juvenile smallmouth bass time series analysis curves showing

25%, 50%, and 75% discharges with Weighted Usable Area for July

through November.

6. Habitat sui,tability classes and locations of juvenile smallmouth bass for

site 1 (Eldon Bridge).

7. Habitat suitability classes and locations of juvenile smallmouth bass for

site 2 (Baron Fork. Ranch).

8. Habitat suitability classes and locations of juvenile smallmouth bass for

site 3 (Christie Bridge).

9. Habitat suitability classes and locations of adult smallmouth bass for site 1

(Eldon Bridge).

10. Habitat suitability classes and locations of adult smallmouth bass for site 2

(Baron Fork Ranch).
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Figure Captions (cant.)

11. Habitat suitability classes and locations of adult smallmouth bass for site 3

(Christie Bridge).

12. Cross-section profiles of a transect through a run mesohabitat in 1999 and

2000.

13. Cross-section profiles of a transect through a riffle mesohabitat in 1999

and 2000.

14. Cross-section profiles of a transect through a mid-channel pool

mesohabitat in 1999 and 2000.

15. Cross-section profiles of a transect through a lateral pool mesohabitat in

1999 and 2000.

16. Map for site 1 (Eldon Bridge) showing 1999 channel and 2000 channel

with mesohabitat types.

17. Map for site 3 (Christie Bridge) showing 1999 channel and 2000 channel

with mesohabitat types.

18. Map for site 2 (Baron Fork Ranch) showing 1999 channel and 2000

channel with mesohabitat types.
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Site 3
Christie Bridge
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Appendix A. Channel index codes used in classifying substrate and cover
variables

Substrate

1 Organic Detritus
2 Vegetation (Aquatic)
3 Clay
4 Silt
5 Sand
6 Small Gravel (2-8mm)
7 Medium Gravel (8-16mm)
8 Large Gravel (16-64mm)
9 Small Cobble (64-128mm)
10 Large Cobble (128-256mm)
11 Boulder (>256mm)
12 Bedrock
13 Fractured Bedrock

Cover

o No Cover
1 Undercut Bank
2 Bedrock (Fractured)
3 Log
4 Rootwad
5 Vegetation

65
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Appendix B. Stream mesohabitat classification types and definitions adapted
from Hawkins et al. (1993).

Riffle - Shallow reaches «0.2 meters) with swiftly flowing, turbulent water with
some partially exposed substrate. Medium to high gradient, substrate is usually
dominated with medium gravel to small cobble.

Run - Swiftly flowing reaches with little surface agitation and may contain flow
obstructions such as rootwads or boulders. Generally moderate depth 0.2-0.50
meters and may appear as a flooded riffle. Typical substrates are gravel, cobble,
and boulders.

Lateral Pool - Formed by flow impinging against one streambank or against a
partial channel obstruction. The associated scour is generally confined to <60%
of wetted channel width. Channel obstructions include rootwads, woody debris,
boulders and bedrock.

Mid-Channel Pool - Large pools formed by mid-channel scour. The scour hole
encompasses more than 60% of the wetted channel. Water velocity is slow, and
the substrate is highly variable.

Backwater - Found outside the average channel margins and caused by
obstructions such as woody debris or cut-off channels. These areas are variable
in depth and are dominated by fine-grain substrates and low current velocities.
May be associated with gravel bars.
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Appendix C. Velocity habitat suitability criteria (HSC) for smallmouth bass from
current study (indicated in bold) and comparable studies for young of year (YOY),
juvenile, and adults including Glover Creek, OK (Orth et al. 1981); the West
Deerfield River, MA (Bain 1982); Upper James River, VA (Leonard et al. 1986);
the Huron River, MI (Monahan 1991); the North Anna River and Craig Creek, VA
(Groshens and Orth 1994); Wet Beaver Creek, AZ (Barrett and Maughan 1995):
and Cacapon River, Greenbrier River, and Knapp Creek, V'N (Newcomb et al.
1995).

Fish length (cm)/ Optimal range Suitable range
Site location size class SI=1.0 (cm/s) SI=>0.10(cm/s)

Upper James River, VA YOY 6-18 0-30
West Deerfield River, MA <8 3-7 0-10
Cacapon River, V'N <8 1-7 0-28
Greenbrier River, WV <8 0-5 0-20
Knapp Creek, WV <8 0-11 0-26
Huron River, MI <11 10-46 0-76
Baron Fork Creek, OK <11.5 25-80 0-105
Glover Creek, OK <15 10-20 0-59
Wet Beaver Creek, AZ <20 0 0-58

Upper James River, VA Juvenile 9-18 0-55
West Deerfield River, MA 8-22.5 3-7 0-31
Huron River, MI 11-20 23-54 0-89
North Anna River, VA 10-20 4-45(1.0=24)8 0-82
Craig Creek, VA 10-20 7-50(1.0=17)8 0-80
Cacapon River, WV >8 4-18 0-37
Greenbrier River, WV >8 5-16 0-32
Knapp Creek, V'N >8 0-7 0-19

Upper James River, VA Adult 10-19 0-36
Baron Fork Creek, OK >11.5 10-30 0-40
Glover Creek, OK >15 0-5 0-35
North Anna River, VA >19.9 2-19 (1.0=3.5)8 0-70
Craig Creek, VA >19.9 11-19 (1.0= 13.5)8 0-32
Wet Beaver Creek, AZ >20 0 0-40
Huron River, MI >20 12-43 0-88
West Deerfield River, MA >22.5 3-7 0-10

a Optimal criteria presented in the study as the range of suitability index (SI)
between 0.7 and 1.0



68

Appendix D. Depth habitat suitabi.lity criteria (HSC) for smallmouth bass from
comparable studies cited in Appendix C.

Site location Length(cm)/ Optimal Suitable
size class SI=1.0 (m) SI=>0.10(m)

Upper James River, VA YOY 0.40-0.90 0.12-1.90
West Deerfield River, MA <8 0.21-0.31 0.17-0.84
Cacapon River, WV <8 0.40-0.80 0.20-1.10
Greenbrier River, WV <8 0.30-0.60 0.10-0.90
Knapp Creek, WV <8 0.20-0.40 0.10-0.60
Huron River, MI <11 0.46-0.85 0.18-1.83
Baron Fork Creek, OK <11.5 0.35-1.15 0.05-1.50
Glover Creek, OK <15 0.10-0.20 0.10-0.98
Wet Beaver Creek, AZ <20 0.60 0.20-1.80

Upper James River, VA Juvenile >0.65 >0.24
Huron River, MI 11-20 0.70-1.10 0.40-1.92
North Anna River, VA 10-20 0.40-0.76(1.0=0.55)8 0.18-1.70
Craig Creek, VA 10-20 1.08-1.20(1.0=1.14)8 0.20-1.50
West Deerfield River, MA 8-22.5 1.50-1.73 0.46-1.79
Cacapon River, WV >8 0.53-1.00 0.25-1.70
Greenbrier River, WV >8 0.40-0.70 0.18-0.88
Knapp Creek, WV >8 0.65-0.70 0.50-1.20

Upper James River, VA Adult >0.85 0.40
Baron Fork Creek, OK >11.5 0.50-1.55 0.05-2.00
Glover Creek, OK >115 0.40-1.08 0.11-1.40
North Anna River, VA >19.9 1.06-1.29(1.0=1.15)8 0.40-1.70
Craig Creek, VA >19.9 1.13-1.37(1.0=1.28)8 0.50-1.62
Wet Beaver Creek, AZ >20 1.30 0.30-2.70
Huron River, MI >20 0.85-1.50 0.43-3.67
West Deerfield River, MA >22.5 1.60-1.78 0.87-1.91

a Optimal criteria presented in the study as the range of suitability index (SI)
between 0.7 and 1.0.
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