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NOMENCLATURE

A Cross-sectional area of web

Bf Bearing friction

b Damping coefficient

b Ratio of damping coefficient vs roller mass (bjM)

E Young's Modulus of elasticity

Fa Dancer input force

h Web thickness
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L Length of web span

M Mass of a roller

R Radius of a roller

t Web tension
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CHAPTER 1

INTRODUCTION

1.1 Background

A web is any material in continuous flexible strip form which is very long compared to

its width and very wide compared to its thickness. Examples of web include all forms of

paper, fabric, plastic wrap, adhesive tape, photographic film, and strip metals. Handling of

a web during processing directly affects the quality of the finished web. Lateral control,

also called web guiding, involves controlling the web fluctuations in the directions perpen

dicular to the travel of the web. Control of web guides to maintain the lateral position of the

web on the roller prior to coating, printing, winding and other processes is essential in the

web processing industry. Longitudinal control involves controlling the tension or velocity

parallel to the direction of web travel.

With the need for increased performance and productivity in the web processing indus

try, accurate modeling and effective controller design for web handling systems is essential

for increasing the web processing speed and the quality of the processed web. Accurate

tension control has always been a key element of web handling systems. An important ob

jective of the tension control system is to maintain tension within the desired limits under a

wide range of dynamic conditions such as speed changes, variations in roll sizes, and web

property. Tension variations affect printing quality and tend to cause web breakage and

wrinkles.

A dancer mechanism is used as a feedback element in a number of tension control

systems. The tension control system is driven by the variations in the position of the dancer

mechanism as opposed to the variations in actual tension from the desired tension. The
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requirement to maintain the desired tension within a narrow range from the unwind zone to

the first printing unit places a demand on better design of the dancer mechanism. Periodic

tension disturbances arising from uneven wound rolls and misalignment of the idle rolls

have to be attenuated by the dancer mechanism in order to minimize their propagation into

the process section.

Currently, passive dancers are widely used as dancer mechanisms. Passive dancers

have known to act as good tension feedback elements for low speed web lines; they have

limitations in dealing with a wide range of dynamic conditions experienced in high speed

web lines. It is expected that by introducing an active element into a dancer mechanism

gives a control engineer more flexibility in attenuating periodic tension disturbances and

also to maintain lower tension fluctuations. The focus of this project is on modeling, control

design and experimental investigation of active dancer mechanisms for tension disturbance

attenuation.

1.2 Previous Studies

Early development of mathematical models for longitudinal dynamics of a web can be

found in [1, 2, 3, 4,5]. In [1], extensive theoretical and experimental analysis on belt drive

fundamentals was reported; it studied effects such as centrifugal force, angle of contact,

fixed versus floating shaft on tension in the belt. Although the mass of the belt is con

siderable when compared to the web during transport, similarities exist between belt drive

systems and web handling systems. Early work describing the longitudinal dynamics of a

web can be found in the book by Campbell [2]. Campbell developed a mathematical model

for longitudinal dynamics of a web span between two pairs of pinch rolls, which are driven

by two motors; the model is based on Hooke's law, i.e., the variation in web tension in the

span is proportional to the positional change of the pinch rolls. Campbell's model does

not predict tension transfer and does not consider tension in the entering span. A modified

model that considers tension in the entering span was developed in [4].
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In [5J, the moving web was considered as a moving continuum and the general methods

of continuum mechanics such as the conservation of mass, conservation of momentum,

and conservation of energy were used in the development of a mathematical model. This

comprehensive study by Brandenburg [5J included the steady state and transient behavior

of tensile force, stress, strain and register error as functions of variables such as wrap angle,

position and speed of the driven rollers, density, cross-sectional area, modulus of elasticity

and temperature. Tension variations in pliable material due to friction between the web and

guide rollers has been considered in [6].

In [19], equations .describing tension dynamics are derived based on the fundamentals

of the web behavior and the dynamics of drives used for web transport. A simple example

system was considered to compare torque control versus velocity control of a roll for the

regulation of tension in a web. Tension control using optimal output feedback technique

in a multi-span web transport system was reported in [llJ. A decentralized observer was

developed to estimate the forces due to web tension on the driven rollers. The decentralized

observer leads to improved speed response of the driven rollers in multi-span web transport

systems.

Study on steady state and transient behavior of a moving web was reported in [17].

Non-ideal effects such as temperature and moisture change on web tension were studied.

Based on the models developed, methods for distributed control of tension in multi-span

web transport systems were studied. Analysis of a multi-span web system with a passive

dancer for minimizing disturbances due to eccentric unwind roll was also reported.

A study on dynamic behavior of dancers in web transport systems was reported in [20].

Computer simulation studies were conducted on an example system to investigate distur

bance rejection for three cases: (l) without a dancer; (2) with a classical dancer with passive

elements; and (3) with an inertia compensated dancer. Simulation results show attenuation

of tension disturbances in the case of both a classical dancer and an inertia compensated

dancer. Control of tension during start-up/shut-down in a multi-span web transport system

3



was considered in [16]. Since start-up or shut-down conditions involve large variations

in roller velocities, nonlinear models were considered in the simulation study. Simula

tion results of a PID tension controller were reported. It is shown in the simulation study

that a controller designed for one start-up condition when used at a substantially different

operating condition could result in web breakage.

An overview of lateral and longitudinal dynamic behavior and control of moving webs

was presented in [21]. A review of the problems in tension control of webs was reported

in [12]. A comprehensive study on tension regulation of a web is reported in [24]. Dis

cussions on tension control versus strain control and torque control versus velocity control

were given. An extensive analysis and discussion is reported on modeling and design of a

tension control station with both inertia compensated dancers and classical passive dancers.

Practical recommendations for modular design of tension control stations were given.

An active dancer system for reducing the variation of tension in wire and sheet materials

was proposed in [10]. This is one of the early comprehensive work on active dancers that

was reported in literature. Construction of an active dancer system with a D.C. motor

was discussed. A mathematical model for an active dancer system within a web transport

system is derived. An output feedback controller was designed for the active dancer system

for tension regulation. Experimental results were reported based on an apparatus with an

active dancer system. The main drawback of the apparatus is that the results can be obtained

for a stationary web. The construction and testing of an active dancer system that is capable

of rejecting periodic cyclic process induced tension disturbances was reported in [13]. This

report considers early web tension dynamic models for active dancer control design. It is

assumed that the web velocity upstream of the dancer is constant in the model, which may

not be true in general. The control system is designed using nonlinear functional block

diagrams.
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1.3 Thesis Contributions

The main goal of this project is to investigate the effectiveness of active dancer mechanisms

in tension control of webs. Modeling, analysis, control design and experimentation were

considered to achieve the main goaL A generic active dancer system, which can be in

cluded in a web process line, has been considered for the development of the mathematical

model. An input/output model and a state space model have been developed based on the

dynamics of the basic web handling elements. The input is the active dancer translational

velocity and the output is the tension in the downstream span of the dancer roller. The

model is investigated and conditions under which effective tension disturbance attenuation

is possible using the active dancer are developed.

An active dancer system is developed for conducting experiments. Experiments were

conducted with a PID controller, Internal model based controller (!MC), and a linear quadratic

optimal controller. Experimental results are discussed and compared. Experimental results

validate the claim that an active dancer system is more effective than a traditional passive

dancer system, which has been known to reject low frequency disturbances.

1.4 Thesis Outline

The rest of the report is organized as follows. Chapter 2 develops an input/output and a

state space model of an active dancer system. Investigation of the models is conducted

and suggestions on the choice of dancer system physical parameters is reported in chap

ter 2. Details of the experimental web platform that is developed for conducting active

dancer experiments are given in chapter 3. Chapter 4 contains control designs for the ac

tive dancer system and experimental results. Discussion of the experimental results and

comparison of different controllers is also given. Chapter 5 contains some conclusions and

future research.
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CHAPTER 2

MODELING AND ANALYSIS OF AN ACTIVE DANCER SYSTEM

In this chapter modeling and analysis of an active dancer system is presented. The ap

proach taken in the design of the active dancer system is generic in the sense that it can

be included as a subsystem anywhere in the web process line where precise tension regu

lation is required. Two types of models for the active dancer system are developed in this

chapter: input/output model and state space model. An input/output model is derived in

the Laplace domain with the output as the span tension that needs to be regulated and input

as the dancer translational velocity. Analysis of the input/output model to variations in the

physical parameters such as length of spans and modulus of elasticity, etc., is conducted

using the root-locus approach. A compact state space model is also derived based on a

unique transformation of the physical variables.

Complete derivations of the dynamics of the basic elements of web handling systems,

input/output model of the active dancer system are presented in appendices A and B. The

models in the appendices A and B are derived based on the previous work on modeling

presented in [2,5,6,19,17,16].

The outline of this chapter is as follows. Section 2.1 deals with the modeling of the

active dancer system and subsections 2.1.1 and 2.1.2 present input/output and state-space

models. Section 2.2 focuses on root-locus analysis of the active dancer system. Simulation

results of the state space model are discussed in Section 2.3. Summary of this chapter with

discussions is given in Section 2.4.
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2.1 Modeling

A typical active dancer system shown in Fig. 2.1, is considered for deriving the input/output

and state space models. This system contains web spans adjacent to the dancer roller in

upstream and downstream directions and three rollers including the dancer roller. It is

assumed that To and T3 are tension disturbance from upstream and downstream directions

of the active dancer roller that are to be rejected/attenuated. The linearized dynamics of the

T
3

---~-------------------..-----_.

:v
I 1

T
1

L
1

DownsLream web s an - - _~fgy~_c!a_n_c~!. - - - - - - --
--.-£.-=-~-__--:",~_-;.'__"":::>",,,- :

Tz Lz r--....tV'VV\.r1:
I
I

I,
I

--------,--------------'
I
I
I,

X....-_.....'

Upstream web span

Figure 2.1: Active dancer system

active dancer system shown in Fig. 2.1 is given by the following equations.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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(2.6)

2.1.1 Input/Output Model

In this section, input/output model for the active dancer system is presented. Velocity of

the dancer roller (Xd is considered as the control input and measured tension (T2 ) at the

roller immediately downstream of the dancer roller is considered as measured output. The

tension disturbance is variation in tension of the web span upstream of the active dancer.

The complete derivation of the input/output model is given in appendix B.

The input/output model is obtained by taking Laplace transform of the linearized dy

namics and simplifying the resulting equations. Equations (2.2) and (2.4) in Laplace do-

main are

where the input U(s) is the dancer velocity, i.e., U (5) = 5XI(s ). The dynamics of each

roller is given by

1
Vo(s) = f3 [T1(s) - To(s)]

5+1

1
Vi (5) = f3 [T2 ( s) - T1( S)]5+,

(2.9)

(2.10)

(2.11)

Notice that the variable definition is same in both time domain and frequency domain;

explicit dependence of the variables on the Laplace variable "s" will be shown in the fre-

quency domain throughout the report. Combining equations (2.7) through (2.11) and sim

plifying (see appendix B) gives the following input-output dynamic model for the active
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dancer:

Cad(S) = ((1]S(T15 + 1) + 2)(1]S(/2S + 1) + 2) - (1]S + 1))

( ( 1) , 1 1)'
Dad(s) = j3 (1]5 + 1) ,f) -i- T} + (7]5(T1 5 + 1) + 2) (5 + 72 - 7} )

where 7] = Jvr / EAR2
.

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The above input/output model has been obtained by assuming that the roller bearing friction

is negligible. A full expression with non-zero bearing friction can be found in appendix B.

Also, notice that the model is obtained under the assumption that the moment of inertia

and radius of all the rollers in the dancer system are same, i.e., Ji = J and ~ = R for

i = 1,2,3.

Expansion of the numerator, Dad(s), and the denominator, Cad(s), of the plant transfer

function gives

(2.17)

(2.18)

Notice that if 72 > 2T}, i.e., £2 > 2£1, then the constant term of the numerator polynomial,

Dad(s), is negative" which results in a right-half-plane zero.

2.1.2 State Space Model

In this section, state space model for the active dancer system is presented. The dynamic

model of the active dancer system shown in Fig. 2.1 is given by equations (2.1) through

9



(2.6). Notice that both the translational displacement and velocity of the active dancer ap

pear in the upstream and downstream tension dynamics. Since the translational velocity of

the dancer (U) is the input, appearance of dancer displacement would require definition of

another state variable resulting in the state equation Xl = U. To circumvent this problem,

consider the following change of coordinates of the system,

Assuming that the bearing friction in the idle rollers is negligible, the state space fonn of

the dynamics in the transformed variables is given by

ill 0 1 0 0 0 ql _.l. 1 0{j T"1
-(j

q2 -~ 1 0- 0 0 q2 ~ 1 0
T"1 T"1 T"1 T"j T"1 [ro(t)j

q3 0 1 _J: 1 0 q3 + 0 U(t) + 0 0-{j {3 (j
T3(t)

q4 0 1
-~

)
~ q4 0 0 0

T"2 T"2 T"2 T"2 T"2

qs 0 0 0 ) 0 qs .1-_1- 0 1
-{j

T"2 T"1 (j

q)

q2

y(t) = [0 o 0 1 0] q3 + [0] U(t) + [0 1] [ro(!)j (2.19)
T3(t)

q4

qs
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Notice that the above model contains both To (t) and Ts(t). both of which can be considered

as disturbances. The above model can be represented compactly in matrix form as

Q(t) = AQ(t) + BuU(t) + BwW(t)

y(t) = CQ(t) + DuU(t) + DwW(t)

2.2 Analysis of the Input/Output Model

(2.20)

Analysis of the input/output active dancer model given by (2.12) is conducted by varying

the parameters: L1, £2, E, A, J, R and Vr • Since most feedback control algorithms for the

dancer input involve some type of proportional action, the analysis of the basic analysis of

the active dancer system is conducted with proportional control. The closed-loop charac-

teristic equation with proportional feedback control, i.e., U(s) = - K pT2 (s), is

(2.21)

where K p is the proportional gain. To investigate the effect of the four constants, 7], (3, 71

and 72. on the choice of the proportional gain, the root-locus method is employed.

Effect of span lengths: L 1, L 2

First, locus of the closed-loop poles for varying K p is plotted for various values of L] and

L 2 • Other physical parameters of the web and the rollers are kept constant and the values

used are given in the following table.

7.'r E A J R

330 FPM 6 x 10° PSI 1.27 x 10-4 in2 96.21 lb in2 2.5 in

Table 2.1: Web and roller parameters for root-locus
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Recall from classical control theory (root-locus method) that the closed-loop poles ap

proach the open-loop zeros as K p is increased. Root locus for the following cases are

considered in the investigation.

• L 1 > L 2

Fig. 2.2 shows the root-locus plot for the case when L 1 = 36 in and L 2 = 9 in. The

open-loop poles and zeros of the plant transfer function are given in table 2.2.

Zeros Poles

-1.70 + 251.08i -2.74 + 424.93i

-1.70 - 251.08i -2.74 - 424.93i

-2.98 -0.45 + 171.18i

-0.45 - 171.18i

Table 2.2: Open-loop zeros and poles for L 1 = 36 in and L2 = 9 in

Fig. 2.2 shows that the proportional gain Kp can be chosen as large as possible. Thus,

the disturbance effect on the span downstream to an active dancer can be suppressed

to as small a value as possible. Notice that after a certain value any increase in K p

results in moving the closed-loop poles towards the imaginary axis. So. a very small

gain and a very large gain give similar set of closed-loop poles. Hence, appropriate

choice of the gain K p must be made such that the closed-loop poles are far away

from the imaginary axis.

• L 1 = L 2

Fig. 2.3 shows the root-locus plot when L1 = £2 = 9 in. The open-loop poles and

zeros of the plant transfer function are given in table 2.2.

mthis case, there is a complex-conjugate pair of open-loop poles very close to a pair

of complex-conjugate zeros. Thus, any choice of gain cannot move this pair of open

loop poles further to the left-half-plane away from the imaginary axis. The control

flexibility and effectiveness is much reduced when the span lengths are equal.

12



Zeros Poles

-4.25 + 501.75i -3.83 + 501.75i

-4.25 - 501.75i -3.83 - 501.75i

-1.70 -1.28 + 289.68i

-1.28 - 289.68i

Table 2.3: Open-loop poles and zeros for L 1 = 9 in and L 2 = 9 in

• L1 < Ld'J

The root-locus plot for this case is shown in Fig. 2.4 where L 1 =9 in and L 2 =36 in.

The open-loop poles and zeros of the plant transfer function are given in table 2.2.

Zeros Poles

-3.61 + 501.75i -2.74 + 424.93i

-3.61 - 501.75i -2.74 - 424.93i

0.85 -0.45 + 171.18i

-0.45 - 171.18i

Table 2.4: Open-loop poles and zeros for £1 = 9 in and £2 = 36 in

In this case, the root locus crosses the imaginary axis and enters the right-half plane

when K p exceeds a certain value. This implies that the disturbance can only be

suppressed to a certain extent because large control input can make the closed-loop

system unstable. When £1 becomes smaller compared to L2 , then the allowable

controller gain K p decreases. More specifically, as shown in Fig. 2.4, a branch of the

root locus moves to the right-half plane for very small value of K p • Thus the closed

loop system becomes unstable under feedback control for a very small control gain.
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Effect of web material and roller properties: E, A J, R

Each of the constants E, A, J, R affect the constant parameter TJ = (Jvr )/(EAR2) in the

input/output model. So, varying the value of TJ in the model reflects variations of E, A, J R.

We have conducted a number of numerical simulations by varying these constants and

noticed that the root-locus plot essentially has the same form. Thus the closed-loop poles

of the dancer system are not generally affected as much by the constants E, A, J, R as it is

affected by variation in upstream and downstream span lengths.

2.2.1 Time domain simulations

Simulation results in the time-domain using the state space model given by (2.19) with a

proportional controller are discussed in this section. Tension measured on the roller down

stream of the dancer roller is the measured output and the dancer velocity is the control

input. It is assumed that a periodic tension disturbance is generated only in the upstream

of the dancer, i.e., Ta(t) = 10 sin(20t) (ibf) and T3(t) = O. Simulations are conducted

for different cases of span lengths while keeping the web and roller properties constant as

given in table 2.1.

• L 1 > L2

Fig. 2.5 shows simulation results when L 1 = 36 in and L 2 = 9 in. Results show good

tension disturbance attenuation with active dancer control.

• L1 = L2

Fig. 2.6 shows simulation results when L 1 = L2 = 9 in. Results are similar to the

simulations obtained from the previous case.

• L 1 < L2 /2

Fig. 2.7 shows simulation results when L 1 =9 in and L2 = 36 in. Results show

that the dancer system is unstable, which was concluded also from the root-locus

14



analysis.

2.2.2 Interpretation of the effect of span lengths on tension control

Assuming that the web is mostly elastic, it is common practice in the web handling com

munity to model a web span as an elastic spring with spring constant K n = EnAn/ Ln.

The spring constants of the upstream and the downstream web spans to the dancer roller

are K 1 = EA/L 1 and K 2 = EA/L2, respectively.

When L 1 2: L2 • K 1 :s: K 2 , that is the upstream spring constant is smaller than the

downstream spring constant. So, any motion of the dancer roller gives larger tension vari

ation in tension T2 than in Tl • Thus, rejection of periodic disturbances from the sp~s

upstream of the dancer into the spans downstream of the dancer is possible in this case.

When L 1 < Ld2, K 1 < Kd2, that is the upstream spring constant is larger than the

downstream spring constant. Periodic dancer motion induces larger tension disturbances

into the upstream span than it rejects in the downstream span due to feedback of tension

T2•
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CHAPTER 3

EXPERIMENTAL WEB PLATFORM

This chapter describes the open-architecture experimental web platform developed for con

ducting experiments in tension control. The platform mainly consists of an endless web line

with tensions control and lateral control systems as shown in Fig. 3.1. The term endless

web line refers to a web line without unwind and rewind rolls. This type of platform mimics

most of the features of a process section of a web processing line.

The experimental platform can be divided into two sections: Hardware and Software.

The hardware section consists of the endless web line, active dancer system, web guide

system, passive dancer system, sensors, data acquisition board, and a computer for im

plementing control algorithms in real-time. Software part consists of an open architecture

real-time program written in C++ programming language.

A brief description of the hardware and software elements of the experimental platform

is given in the following sections. The chapter outline is as follows: Section 3.1 deals with

the hardware part of the experimental platform. Subsection 3.1.1 presents the experimental

setup for active dancer subsystems. Similarly web guide system present in subsection 3.1.2.

Sensors and sensor calibration infonnation present in subsection 3.2.3. In subsection 3.1.4,

computer system with digital data acquisition system are considered. Finally, section 3.2

presents the software structure designed for the real-time tension control experiments.

3.1 Hardware

The experimental web platform is shown in Fig. 3.1. Mechanical components used in this

platform include sixteen rollers, one large master speed roller with a nip roller, an electric
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Figure 3.2: Functional block of the experimental web platfonn

motor, and a passive dancer system. The main control elements are a Fife remotely pivoted

guide and an active dancer mechanism as shown in Fig. 3.1. Since the width of each roller

is 8 inches, the maximum web width that can be used in the web line is limited to about 6

inches. The diameter of each roller is 5 inches, except for the master speed roller, which

bas a diameter of 10 inches. A nip roller for the master speed roller is used to reduce slip

during start-up. An analog controller for the master speed roller is available to obtain the

desired transport velocity of the web. Similarly an analog controller for air pressure in

passive dancer system is available to obtain desired reference tension in endless web line.

The passive dancer mechanism is shown in Fig. 3.1. The primary function of the passive

dancer mechanism is to generate adequate tension in the web during the start-up. The

passive dancer connected to the analog main machine controller as shown in the Fig. 3.13.

Main machine controller helps to adjust the air pressure in the passive dancer that helps to

change the reference tensions in endless web line. The passive dancer mechanism can also

be used to generate periodic tension disturbances when its roller has a non-uniform roll

surface. The period of the tension disturbance generated this way depends on the velocity

of the web, which is shown in the tension control experimental data. The endless web line
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bas two main control elements:

1. Active dancer system

2. Web guide system

3.1.1 Active Dancer System

Active dancer system consists of an actuator, eSP-01 signal processor and load cells im

mediately downstream of the dancer roller. A functional sketch of the experimental web

platform for the active dancer is shown in Fig. 3.2.

A block diagram of the tension control system using an active dancer is shown in

Fig. 3.3. The main objective of the active dancer system is to reject the tensions distur

bances generated in the processing line. The web dynamics has the features of a low-pass

filter. Hence, the common disturbances are low frequency periodic plant disturbance and

high frequency sensor noise. A low-pass filter can be used to kill the high frequency sensor

noise and the active dancer can be employed to kill the low frequency plant disturbances.

In our experimental setup the low frequency plant disturbance is generated by a roller with

uneven surface as shown in Fig. 3.1. A description of the components in the active dancer

system is given below:

Figure 3.3: Schematic of active dancer tension control system
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• Fife Actuator

The dancer roller is mounted on the Fife actuator. The Fife CSP-Ol signal processor

is just used as an amplifier to the DC motor. DC motor drives the dancer roller to

attenuate the tension disturbances in web process line. The motor velocity is based

on the control signal from the computer. The feedback web tension disturbances

measured from the downstream load cell. The DC motor velocity proportional to the

input voltage and Fig. 3.12 shows calibration data for motor tachometer.

• Load Cells

The web line has load cells downstream and upstream of the actuator to measure

tension disturbances. Cleveland-Kidder Tensi-Master stationary shaft transducers

are mounted in downstream to the dancer roller. The wrap angle in the roller that

load cells mounted is 1800 to measure the highest tension and reduce the slippage

in-between roller and web span. In this experiment two load cells are used to get

accurate linear tension data. The two transducers make the complete Winston-bridge

that measures the force independent of the position of its application.

• Amplifier

The active dancer contains Cleveland-Kidder Tensi-Master Din-Rail Amplifier as a

part of load cells. The initial output signals of the load cells in the dancer structure
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are very small. This amplifier helps us to get the higher voltage signal fonn the

downstream load cells.

• CSP-Ol

CSP-Ol signal processor used for longitudinal tension control in Fife Corporation.

In this project only the amplifier in CSP-Ol is used to send signal to the DC motor

of the active dancer. As can be seen from Fig. 3.4, the eSP-Dt processor has it own

inner loop with the controller. CSP-O! is designed with internal PID controller. In

our experiments internal control is by-passed and proposed controller algorithms are

implemented. A block diagram of the tension control system using CSP-O! is shown

in Fig. 3.2

The front panel of the CSP-O! consist of jog left/right, sensitivity adjustment, guide

point adjust, null led, mode selector switch ( for dancer controller in auto, manual,

servo center), sensor select switch, dead band adjustment and lock led.

3.1.2 Web Guide System

Guide system is accomplished by a remotely pivoted Fife steering guide as shown in

Fig. 3.1. The guide mechanism consists of a guide roller on a base which is actuated

by a DC motor(not shown in the figure). An edge sensor downstream of the guide roller

gives the web lateral position. From a control point of view, the Fife analog control system

is given by the sketch shown in Fig. 3.5.

The Fife guide mechanism consists of an actuator and an edge sensor immediately

downstream of the guide roller. Lateral control of the web in the line is accomplished using

the Fife guide. A functional sketch of the experimental web platfonn is shown in Fig. 3.2.

The physical elements of the Fife guide and their interaction is shown in Fig. 3.6. The

analog lateral control system includes:

• Fife analog signal processor(A9)
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Figure 3.6: Schematic of analog lateral control system

The signal processor(A9) serves as an amplifier and an on-board analog controller.

It implements a velocity inner-loop and a position outer-loop as shown in Fig. 3.5.

The velocity inner-loop is used to regulate motor velocity by applying proportional

control. The position outer-loop is formed by feedback of the web lateral position

from the edge sensor. The outer position loop regulates the web lateral position by

applying proportional control.

• Sensors (edge sensor, tachometer)

The edge sensor is a Fife optical position sensor which measures the lateral displace-

ment of the web. It gives a DC voltage signal proportional to the lateral displacement

of the web. The tachometer used in the velocity inner-loop gives a DC voltage pro

portional to the RPM of the motor.

• The DC motor
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This motor moves the guide roller to adjust the lateral position of the web based on

the control signal from the signal processor(A9).

To obtain an open-architecture computer control system, the analog controller of the

A9 processor is bypassed and instead the control algorithm implemented in the computer

is used. So, when the computer control system is used, Fife A9 processor simply serves as

an amplifier. This arrangement allows implementation of any desired control algorithm. A

schematic of physical elements and their interaction in computer control system is shown

in Fig. 3.7. The main component of a Fife guide system is the DC motor. A velocity

Ce;,mputer Control System

Data Acquisition Board

Amplifier ( A9 )

Lateral Dynamics of Web System

Figure 3.7: Schematic of lateral computer control system with velocity inner-loop

inner-loop is typically used to stabilize the DC motor. This requires measurement of motor

velocity using a tachometer. It is typical that the tachometer may cost up to 25 percent of

the cost of the DC motor setup. Considerable reduction in cost can be achieved if other

means can be employed for generating a stable inner-loop without using tachometer to

measure velocity. An observer is used to estimate the motor velocity [25].

3.1.3 Sensor Calibration

The sensors used in the control system typically give a voltage output. Before we use

the output of the sensor in any feedback loop it is necessary to calibrate these sensors with

known inputs. The open-architecture experimental platfonn includes the following sensors:
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Figure 3.8: Lateral computer control system with tachometer velocity feedback

• Edge sensor: measures the lateral displacement

• Lateral motor tachometer: measures the velocity of the lateral motor

• Web velocity sensor: measures the velocity of the web

• Upstream load cell: measures the web tension upstream of the active dancer

• Downstream load cell: measures the web tension downstream of the active dancer

• Active dancer motor tachometer: measures the velocity of the active dancer motor

The web velocity sensor outputs square wave signal with its frequency proportional to the

web velocity. A frequency to voltage converter chip is used to get the DC voltage output in

this platform. Fig. 3.9 shows the schematic circuit.

The calibration results for the web velocity sensor, load cell, and active dancer motor

tachometer are shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12.

3.1.4 Computer System

The computer system is a 450 MHz Pentium computer with a digital data acquisition board.

The data acquisition board is a Keithley DAS 1601, which consists of eight AJD and two

OfA channels. The two DfA channels are used to send control input to the amplifiers of the

guide actuator and the active dancer motor. The eight AID channels are used to acquire the

sensor signals. The distribution of the AID and DfA channels are given in the following.
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AID Channel Configuration

The AID channel configuration is shown in Fig. 3.13

• Channel 0 : Web Velocity Sensor

• Channell: Lateral Control Motor Tachometer

• Channel 2 : None

• Channel 3 : Upstream Load-cell

• Channel 4 : Dancer Motor Tachometer

• Channel 5 : Downstream Load-cell

• Channel 6 : Upstream Load-cell

• Channel 7 : Edge Sensor
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Active dancer velocity sensor calibration
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Figure 3.12: Calibration of active dancer velocity input

DIA Channel Configuration

The DIA channel configuration is also shown in Fig. 3.13

• Channel 0 : Dancer Motor

• Channell: Lateral Control Motor

3.2 Software Structure

The software for real-time control and data analysis is written in C++ programming lan-

guage, and can be divided into off-line software and real-time software as shown in Fig. 3.14.

MATLAB software and C++ programming language are used for data analysis and off-line

simulation. The real-time software, which is written in C++ based on Windows platfonn,

implements the following functions in a modular way:

1. data acquisition and processing
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2. real-time data display and plotting

3. control algorithm

4. state observer algorithm

5. control signal output

6. timer interrupt

7. human-machine interface

8. database maintenance

Off-line software Real-time software

.... -...... -_ .......... _-
• State

.... ,; Observer
: Algorithm._._ ... _-~------

,
,.
,

Figure 3.14: Software structure

3.2.1 Real-time Software

The individual blocks of the real-time software shown in Fig. 3.14 are explained in the

following sections:

1. Data acquisition and processing

At each sampling time, current information on web lateral position (for lateral con

trol) and web tension (for tension control) are read from NO channels on the digital
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data acquisition board. More specifically, the information collected includes: the

lateral positional signal from edge sensor, the tachometer signal from the DC motor

of Kamberoller guide, tension information from upstream load cell and downstream

load cell, tachometer signal from the DC motor of the active dancer mechanism,

and web velocity fonn the velocity sensor. The supporting software for this func

tion module is DAS-1600/1400 series standard software package, which is shipped

with the data acquisition board. This software package includes support functions

for Microsoft Windows and function libraries for writing application programs under

Windows™ in Visual C++.

2. Real-time display and plot

Based on the data acquired through data acquisition board, real-time information on

web tension and lateral position is plotted so that the users can have a direct sense

on the performance of the control designs. Other parameters such as controller gains

are displayed on computer screen, and can be modified in real time.

3. Control algorithm

This block implements the control algorithm via a control function. The function can

be modified based on the design of the controller.

4. State Observer Algorithm

This block contains function for implementation of a minimum-order observer to

estimate the motor velocity. The inputs to this function at each sampling period are

the web lateral position and the control input to the DC motor. The motor velocity is

estimated in real-time in this functional block.

5. Control signal Output

During each sampling period, after the control algorithm is evaluated, the control

signals are output through D/A channels on the digital data acquisition board, and
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then sent out to DC motors after amplification to drive the active dancer (for tension

control) and Kamberoller guide (for lateral control).

6. Timer interrupt

Timer interrupt serves as the "clock" of the real-time control system. As shown in

Fig. 3.14, timer intenupt determines both the sampling period and the control period

of the computer-control system. For all the control experiments, the sampling period

and the control period are the same, and is taken to be 5 milliseconds. It is well known

that when a continuous-time system is discretized, if the sampling frequency is not

fast enough, then discretized control system can become unstable. From the well

known Shannon sampling condition, we know that the sampling frequency should be

at least twice the highest frequency content of the measured signal. Considering the

dynamic characteristics of the web system, the chosen sampling frequency of200 Hz

is fast enough. Moreover, since computer control is used, the sampling period can be

set at any value by just a change of the variable in the real-time control program.

7. Database Maintenance

Data from the sensor signals acquired from NO channels is written into a database

for later off-line analysis, which is mainly perfonned using MATLAB.
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CHAPTER 4

CONTROL DESIGN AND EXPERIMENTAL RESULTS

lbis chapter discusses the control designs for the active dancer system and experimental

results. Three different controllers are considered for the active dancer experiment. These

are: (1) Proportional-Integral-Derivative (PID) Controller, (2) Internal Model Controller

(IMC), and (3) Linear Quadratic Optimal Controller (LQR). PID control is very well known

in industry and is extensively used. The Internal Model Controller is a modified version

of PID controller, wherein an internal model of the disturbance is embedded into the con

troller. The Linear Quadratic Optimal Controller is a state feedback controller that is based

on minimizing a quadratic performance index. The performance index places constraints

on both the state variables of interest and the input variable. LQR type of controllers are

becoming popular as they provide some inherent robustness to the closed-loop system, such

as providing some guaranteed phase and gain margins.

The outline of this chapter is follows. Section 4.1 presents the controller design. Sub

section 4.1.1 deals with the state space model considered for the controller design. PID

controller is discussed in subsection 4.1.2 and IMe and LQR controllers are presented

in subsection 4.1.2 and 4.1.3, respectively. Section 4.2 presents the experimental results.

Subsection 4.2.1 deals with the effects of dancer movement. Results of the controller im

plemented on the web line are presented on section 4.2.2. Finally, section 4.2.3 presents a

comparison of the three controllers.
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4.1 Controller Design

4.1.1 State-space Model for Active Dancer System

From the previous chapter the state space model of the dancer system is

Q(t) = AQ(t) + BuU(t) + BwW(t)

y(t) = CQ(t) + DuU(t) + DwW(t)

where

1
l

1
CJ 0 0 0 _..L 0

~ 'rl 0

_.E!.. _-1. ~ 0 0 ~ ..L 0
Tl Tl Tl 'rl 'rl

A= 0 1 _:l 1 0 Bu = 0 Bw = 0 0
-~ f3 0

0 ..L _..!!. _-1. ~ .E!.. 0 0
T2 T2 'r2 T2 'r2

0 0 0 1 0 ..L_..L 0 I
-0 ,..~ 'rl 0

C = [ 0 0 0 1 o ] Du = [ 0 ] Dw = [ 0 1 ]
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Notice that the state-space model for the active dancer system is obtained by assuming

that load cells measure the sum of the tensions T2( t) and T3 (t).

4.1.2 PID Controller

PID controller is one of the most widely used controllers in industry whose form in continuous-

time domain is given by

i t dE(t)
U(t) = KpE(t) + K i a E(t)dt +Kd~ (4.5)

where U(t) is the control input to the plant and E(t) is the feedback error signal. The

constants K p , K i and K d are chosen appropriately to provide the desired behavior. The

discrete-time version of the PID controller is

k

U(k) = KpE(k) + K;T.~ E(j) + K d ( E(k) - ~(k - I})
where Ts is the sampling period. The controller can be expressed in z-domain as

U(z) = (K + Ki Tsz + Kd (z - 1)) E(z)
p z-l T zs

The control algorithm for real-time implementation can be written as

(4.6)

(4.7)

..
~..

( Kd) (Kd) Kd
U(k) = U(k - 1) + K p + KiTs + T

s
E(k) - Kp + 2 T

s
E(k - 1) + T

s
E(k - 2)

(4.8)

4.1.3 IMC Controller

In this type of controller, a PI or PID type controller is augmented with an internal model

of the disturbance. IMC controller is useful when the disturbance is partially or completely

known. For example, this type of controller can be used to reject/attenuate periodic tension

disturbances whose amplitude is unknown but whose frequency is known. The motiva-

tion for adding an internal model of the disturbance is given in the following. Consider a

periodic tension disturbance of the form,

d(t) = Ad sin('I9t + ¢)
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where Ad and rf> are unknown. Figure 4.2 represents a closed-loop system with Gp(s) as

the plant and Gc ( s) as the controller. The control objective is to choose Gc ( s) such that

periodic disturbances of the form d(t) do not appear in the output. The closed-loop transfer

d

r + e u ~( + Gp

y
Gc

-

Figure 4.2: Active dancer tension control system

function from D (s) to E (s) is given by

E(s)
D(s)

Substituting s = jw, we obtain

(4.10)

I~
"
I"
I~
"

i~
"
"

it
It
,~

t..

(4.11)

To reject a disturbance at particular frequency r;:; = {}, we should have E(j{}) = O. There

fore, the choice of the controller i~ such that Gc(j{}) = 00, i.e., Gc(s) has a pair of poles at

s = ±j{}. A discrete-time equivalent to the above continuous-time disturbance is

,..,..
'\...
l
""•
'''"

•

'"
(4.12)

where Ts is the sampling period. The disturbance D(k) in the z-domain is

(4.13)

To reject this periodic disturbance, Gc (z) should include the model of the disturbance. Let

Gp(z) be the discrete equivalent of Gp(s), then

Y(z) = Gp(z)(D(z) + Gc(z)E(z))
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Assuming the reference to be zero gives E(z) = -Y(z). The transfer function from the

disturbance input to the error is given by the following:

Consider the following controller

Gc(z) = Kp + z-] K imc sin(wTs)
1 - 2z-] cos(wTs) + Z-2

(4.15)

(4.16)

where K p is the proportional gain and K irnc is the tunable gain to compensate for the ampli-

tude of the sinusoidal disturbance. With the choice of Gc(z) as given in (4.16), Gc(z) = 00

when z = cos('19Ts ) + j sin(19Ts )' Since U(z) = Gc(z)E(z). The control algorithm for

real-time implementation is

U(k) = [2cos(wTs)]U(k - 1) - U(k - 2) + Kimc[sin(wTs)]E(k - 1) + KpE(k)

(4.17)

4.1.4 LQR Controller

Recall the continuous-time state space model given by (2.20)

Q = AQ + BuU + Bw W

A discrete-time system equivalent to the above continuous-time system is

~(k + 1) = G~(k) + HuU(k) + HwW(k)

where

1
~ 1~G = eAT., H.. = 0 eAwBud"""', and U eAtoB d..,..,~ "'" ....Lw= 0 w""

where Ts is the sampling period.

(4.18)

(4.19)

The traditional stationary linear quadratic (LQ) problem is to find the control input that

minimizes the performance index,

00

J = lL [C(k)Qlqr~(k) + U*(k)RlqrU(k)]
k=O
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where Qlqr and R1qr • which are chosen to place constraints on a choice of state variables

and input variable, respectively. The control input that results from minimizing the above

perfonnance index is a state feedback controller of the form.

U(k) = -~(k)

where K is the optimal gain vector given by

and P 00 is the solution of the following Algebraic Ricatti equation,

(4.21)

Notice that the LQR controller requires measurement of all the state variables to implement

the control input given by (4.21). If all the state variables are not measured, which is

typically the case, an observer can be designed to estimate the state variables. In the case

of the active dancer system, measurement of the dancer rotational velocity (\12) and the

downstream web tension ('[2) would render the system observable. An observer can be

designed to estimate the state variables based on the measured variables. Consider the

measurements given by the following equation,

II.

~..'.',."..
~..
'..
~.:
"

y(k) = Ce(k) (4.22)

Based on the measurements, a Luenberger observer is proposed to estimate the state vari-

abIes:

~(k + 1) = G~(k) + HuU(k) + L(y(k) - y(k))

where ~(k) is the estimated state and

y(k) = C~(k)
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Estimated states can be used instead of the actual states in the controller given by (4.21),

i.e., the control input is modified to

U(k) = -K~(k) (4.25)

To answer the question of whether estimated states can be used instead of the actual

states, we proceed to find the closed-loop error dynamics consisting of the plant, controller,

and the observer. Substituting (4.22) and (4.24) into (4.23), we obtain

where L is the observer gain. Define the estimation error as E(k) = ~(k) - ~(k). Then,

€(k) = G€(k) + IL.U(k) + LC(~(k) - ~(k)

the estimation error dynamics is given by

~(k + 1) = (G - LC)E(k) + HwW(k)

(4.26)

(4.27)

..
•::
:-

·"".,
where the eigenvalues of the matrix G - LC are the observer poles and can be placed :·
anywhere within the unit circle in the complex z-plane by choosing the observer gain L.

The control input in terms of the estimation error is given by

_ _ [ ] [ ~(k) ]U(k) = -K~(k) = -Kc;(k) + KE(k) = -K K E(k)

The closed-loop error dynamics can be written in matrix form as

lr :(k+ 1) ] = [ G - H u K HuK ] [ ~(k) ] + [ Hw
] W(k)

E(k + 1) 0 G - LC E(k) Hw

(4.28)

(4.29)

·l·C'

I
.~·
C'
"

."..
'r
~
."
f

Notice that the observer poles can be chosen independent of the controller poles in the

above closed-loop error dynamics. The MATLAB program for LQR controller and Luen-

berger observer is given in appendix D.

4.2 Experimental Results

In the previous chapter, open architecture experimental web platform was described, This

section presents the experimental results collected on the platform. Three types controllers
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described in the previous section were implemented. The controllers were implemented

with a control sampling period of 5 milli-seconds. Periodic tension disturbance upstream

of the dancer is created by introducing an uneven roU surface into an idle roller in the web

line. The roller with out-of-round roll surface is shown in Fig. 4.3. A load cell on the roll

immediately downstream of the out-of-round idle roller measures the amount of tension

disturbance that is being generated. The fundamental frequency of the periodic tension

disturbance for a given out-of-round roll surface increases with increase in web speed. In

some cases periodic tension disturbance is also generated using an out-of-round roll surface

on the passive dancer roller shown in Fig. 4.3. A representative sample of the experimental

results from both the cases of tension disturbance generation are shown and discussed in

the following.

For the case of tension disturbance generation by the out-of-round passive dancer roller,

a summary of the amount of tension disturbance magnitude reduction for PID and IMC

controllers for three different web speeds (300 FPM, 350 FPM, and 400 FPM) is shown in

Fig. 4.4. Results of each individual experiment are shown in Fig. 4.5 through Fig. 4.10. In

all the plots, the top two graphs pertain to measured tension and its fast fourier transform

(FFT) downstream of the active dancer roller when the active dancer is not actuated; and

the bottom two plots correspond to the measured tension and its FFf with the particular

controller shown for the active dancer roller. From the summary shown in Fig. 4.4 it can be

observed that substantial attenuation of the tension disturbance is achieved using the active

dancer for both PID and IMC controllers. The IMe controller perfonns better; this is due

to the inclusion of the knowledge of the disturbance frequency into the IMe controller.

For the case of tension generation by the out-of-round idle roller in the web line, a

summary of the amount of tension disturbance magnitude reduction for PID, IMe and

LQR controllers for four different web speeds (200 FPM, 250 FPM, 300 FPM, and 350

FPM) is shown in Fig. 4.11. Results of each individual experiment are shown in Fig. 4.12

through Fig. 4.15. Summary shown in Fig. 4.11 indicates that all three controllers gave
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substantial attenuation of the tension disturbance using the active dancer. Notice that at the

low speed of 200 FPM, the attenuation level of all three controllers is similar but as the

speed is increased the attenuation level is more for the IMe and the LQR controllers.

Since the experimental web platform contains an endless web line, it is uncertain as to

how much of the tension reflected by the load cell downstream of the active dancer due to

back propagation of the tension. In the case of tension disturbance generation by the out-

of-round passive dancer roller, there are fewer spans between the active dancer load cell

roller and the disturbance generating roller. In the case of tension disturbance generation

by the out-of-round jdle roller, there are more spans between the active dancer load cell

roller and the idle roller going downstream from the load cell roller; so back propagation

of tension disturbance may not be an issue; further the driven roller prevents such type of

back propagation.

Also, notice that the experimental results indicate that the active dancer does not reject

any periodic disturbances above the 10Hz level; this is due to the bandwidth limitation of

the actuator. Further, the actuator saturates above a certain value of the controller gains in

each case, which negates any further tension attenuation.

In summary, experimental results show that the active dancer system is highly effective

in tension disturbance attenuation. The disturbance rejection capability of the active dancer

system is limited only by the bandwidth limitation of the actuator as opposed to the passive

dancer or an inertia compensated dancer which have considerable resonance problems.
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CHAPTERS

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

The main goal of this project was to determine the effectiveness of the active dancers in

tension disturbance attenuation. Towards achieving this goal the following items were

reported in this report.

• Investigation and improvements to the existing models.

• Development of a general mathematical model for the active dancer system.

• Investigation of the active dancer model for effective tension disturbance attenuation.

• Design and development of an experimental web platfonn for conducting tension

control experiments with an active dancer system.

• Design and development of an open-architecture real-time software system for im-

plementation of tension control strategies on the experimental platform.

• Experimental evaluations of the three types of controllers, i.e., PID, IMC, and LQR,

for the active dancer system.

A compact model of the active dancer system was developed; the model depends on

four parameters, 17 = Jvr / EAR2
, f3 = J/ R2

, Tl = L1/vr , and T2 = L2 /vr .

An investigation of the active dancer model shows that the ratio of the upstream span

length (L1) to the downstream span length (L 2) with respect to the active dancer roller plays

a critical role in the effectiveness of tension disturbance attenuation using an active dancer.

59



-

It is shown that when L2 / L1 > 2 feedback control of the active dancer roller velocity with

downstream tension as the measured feedback renders the system unstable, i.e., the motion

of the active dancer induces tension variations into the web instead of rejecting the tension

disturbance. Further, for better performance of the active dancer, the ratio L2 / L1 must be

smaller than one.

Experimental results show that very good attenuation of the tension disturbance is pos-

sible using an active dancer. Three controllers, i.e., PID, Internal model based (IMC), and

linear quadratic optimal (LQR), were used in the investigation. All the three controllers

that were used in the experimental evaluation show good attenuation levels but the IMC

and LQR controllers give better attenuation at higher web speeds than the PID controller.

The disturbance rejection capability of the active dancer system is limited only by the band-

width limitation of the actuator as opposed to the passive dancer or an inertia compensated

dancer which have been reported in literature to have considerable resonance problems

even at low frequencies.

5.2 Future Research

In this report, experimental investigations were on an endless web line. Propagation of ten-

sion disturbances into upstream and downstream directions can lead to problems in tenus

of what is truly being reflected by the load cell measurements. Investigation of the active

dancer system in an unwind/rewind web line should be done.

It is assumed in this research that the load cell is very rigid. Although the resonant

frequency of the load cell is high, it is a factor when high frequency disturbances are to be

rejected using an active dancer.

Future research should also focus on developing self-tuning control designs for the

active dancer system. The expectation is that a self-tuning mechanism built in the controller

will identify the amplitude and frequency of periodic disturbances and tune the controller

gains to give the required performance.
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Currently, the active dancer mechanism contains an electro-mechanical actuator. The

bandwidth of this actuator is limited. Further, it cannot attenuate large tension disturbances

because of actuator saturation. In collaboration with Fife, plans are underway to secure a

servo-hydraulic actuator with a fast servo-valve for the active dancer mechanism. Tension

control experiments to attenuate large tension disturbances in the web line will be explored

after retrofitting the active dancer mechanism with a new actuator.
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APPENDIX A

DYNAMICS OF BASIC ELEMENTS OF WEB HANDLING SYSTEMS

This chapter presents the dynamics of basic elements of web handling systems. The dy

namic equations are presented in the following order: (1) Unwind roller (2) Rewind roller

(3) Free roller (Rotational dynamics) (4) Driven roller (Rotational dynamics) (5) Dancer

roller (Translational dynamics) (6) General free web span (7) Web span upstream to the

dancer roller (8) Web span downstream to the dancer roller (9) Web span next to unwind

roller.

In this report, the term free web span is taken to mean that the span is not immedi-

ately downstream or upstream to the dancer roller. The nonlinear tension dynamics are

reproduced from [17] here to make the report complete.

A.I Assumptions for Mathematical Models

Considering the web handling elements shown in Figs. A.I - A.4, certain assumptions are

made in deriving the mathematical models. The assumptions are:

(1) The strain distribution on each web is uniform along the web span.

(2) The cross-sectional area of the web span is invariant.

(3) The longitudinal web strain is very small compared to length of the web span.

(4) The web is perfectly elastic.

(5) There is no slippage between the roller and the web span.

(6) The web thickness is very small compared to the radius of the rollers
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(7) The dynamics of the lead-in and lead-out of the web with the roller speed are negligible.

(8) The contact region between the web and the roller is negligible compared to the length

of the web span.

(9) The density and the modulus of elasticity of the web are constant over the web span.

(10) Physical properties of web do not change with ambient conditions.

A.2 Unwind RoUer

Fig. A.I shows an unwind roller and web span immediately next to it. Rotational dynamics

Figure A.I: Unwind roller

of n-th unwind roller can be written as

(A.I)

The radius of the unwind roller decrease as the web is released into the process. The radius

at time T can be obtained from the following equation

(A.2)

A.3 Rewind Roller

Fig. A.2 shows a rewind roller and a web span immediately before it. Rotational dynamics
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Figure A.2: Rewind Roller

for rewind roller can be written as

(A.3)

The radius of the rewind roller increases as the web is wound onto the roller. The radius of

rewind roller at time T can be obtained from the following equation

R2 VnhTt
nO+-

1T
(A.4)

A.4 Free Roller (Rotational dynamics)

Fig. A.3 shows a free web span, a driven roller and a free roller. Rotational dynamics of

t n-I

,---,Vn_l, .---v,

Figure A.3: General free span with driven roller

the (n-l)-th free roller can be written as
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Noting that Vn-l = Rn-lWn-l, the above equation can be written as

A.5 Driven Roller (Rotational Dynamics)

Rotational dynamics of the driven roller shown in Fig. A.3 can be written as

where Un is the torque input to the driven roller

(A.6)

(A.7)

,....-__• v
n

_,

Figure A.4: Active dancer system
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Figure A.5: Control volume of a web span

A.6 Dancer RoUer (Translation Dynamics)

Active dancer system shown in Fig. AA. Applying Newton's second law to the dancer

roller in its translational direction ~.

A.7 General Free Span

(A.8)
".~.

'.
Tension dynamics of a general free span (i.e., one which is not immediately next to a

dancer) is considered in this section. Applying the law of conservation of mass for control

volume of the web span shown in Fig. A.5, we obtain

Now, consider the strain effect on the web in three directions as given by,

(A.9)

(A.IO)
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where subscript u indicates the unstretched state of the element, w and h denote the width

and thickness of the web, respectively. Assuming that the elemental mass dm in the un

stretched and stretched state is the same, we obtain

(A.ll)

From (AW) and (A.II), we get

(A.I2)

Ignoring the effect of the strain in width and thickness directions and substituting into

(A12) into (A9), we obtain

(AI3)

Assuming the density (Pu), cross sectional area (Au) and the modulus of elasticity (En) of

the web in the unstretched state are constant along the length of the web, equation (A.l3) ~
"

can be written as

d [ (Ln I ]
dt 10 1+ Cx(X, t) dx

Vn-l Vn

1 + Cn-l 1 + Cn
(A.I4)

'.'.

Assumingthatthestrainisverysmall,cx «< I,wecansay l/(I+cx) ~ (I-cx). Then,

(A. 14) can be written as

'.

"

(A.IS)

Under the assumption that strain along the web is uniform, we obtain

(A.I6)

From equations (A. IS) and (AI6), we obtain

(A.I7)
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as

Substituting this result into (AI7) and rearranging, the dynamics of free span can be written

(A.18)

(A.19)

Assuming the web is perfectly elastic, and applying Hooke's law to the web

A.8 Downstream Span of the Dancer

TIlls section considers the mathematical model of a web span downstream to the dancer.

There are two factors that affect the tension in the web span next to the dancer. The first is

the velocity of the web and the second is the translational velocity of the dancer roller. The "

net tension is due to the combined effect of both these factors, that is,

(A.20)

Differentiating equation (A.20) and multiplying by Ln , we obtain
'.'.

(A.21)

Each of the terms on the right hand side of equation (A21) is evaluated to get the dynamics '.••
of the downstream web span next to a dancer.

Consider the web span equation given by (A. 19)

(A.22)

To evaluate the effect of the dancer velocity on tension, invoke Hooke's law for the web

span

(A23)
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Strain due to dancer movement is

Substituting equation (A.24) into equation (A.23), we get

Ln[tnJd = EnAnxn sin (0; )
Differentiating (A.25),

(A.24)

(A.25)

(A.26)

The above equation gives the effect of dancer displacement on the tension in the web span

and corresponds to the first tenn in equation (A.21). The other tenn in equation (A.21) is

the effect of web velocity on the tension.

From the equations (A.25) and (A.20), we obtain

"

"

Equation (A.27) for (n-l)-th span will be,

[ J
En An . (())tn- 1 v = tn- 1 - -L--Xn sm ~

n-l

Substituting equations (A.26) and (A.22) into equation (A.21), result in

(A.27) ;)..

'."
(A.28)

':

"

(A.29) ;~

(A.30)

Now use the values of [tnJv and [tn-1]v as given by (A.27) and (A.28) in the above equation

and simplify to get,

Lntn = EnAnvn (1 - Et~ + ~n sin (!f)) -
n n n

E A" ( tn-l X n . (()) ")' EA' . (() )
n nVn-l 1 - EnA

n
+ L

n
-

1
sm ~ + n nXn sm ~

Assuming the wrap angle On = 1800
, the above equation simplifies to,

Lntn = EnAn(vn - Vn-l) + Vn-1tn- 1 - vntn + EnAnxn (~: - ~:=~) + EnAnxn

(A.31)
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A.9 Upstream Span of the Dancer

We begin by noting that the net tension is the combined effect of dancer movement and

velocity of the web, that is,

(A.32)

The tenus on the right hand side of the above equation are evaluated to find the tension in

the upstream web span. Strain due to the dancer movement is

[ 1 Xn-l. (Bn)
Cn-l d = L

n
-

1
sm "'2

Differentiating the above equation,

(A.33)

(A.34)
'..
'..

Substituting equation (A.34) in equation (A.32) and rearranging,

[ ] , EnAn . (0)
t n - 1 v = tn - 1 - -L--Xn-I SID ~

n-l

Differentiating (A.32) and multiplying by L n

Substituting the equations (A.35) and (A.36) into above equation, we get

;~..
(A.35)

'.....
..

(A.36)
•'.

'..
,...

(A.37)

(A.39)

(A.38)

Substituting equation (A.36) into above equation and noting that [tn - 21v = tn - 2 , we get

Ln-1tn- 1 = Vn -2t n-2 - Vn-l (tn-1 - ~:~;Xn-l Sin(~))

+EnAn(vn-l - Vn-2) + EnAnxn-l sin (~)

73



--
Simplifying

Ln-1tn-l = EnAnvn-l (1- ~:~n + ~:=: sin (~)) - EnAnvn-2 ( 1- ~:-;n)
+EnAnxn-l sin(~)

(A.40)

Assuming the wrap angle en = 1800
, equation (A.40) can be written as,

Ln-dn-l = EnAn(vn-l - Vn-2) + Vn-2 l n-2 - vn-1tn- 1

En An .+ -L--Vn-lXn-l + EnAnxn-l
n-l

A.tO Web Span next to the Unwind Roller

(A.4I)

Considering equation A.I for the unwind roller

Assuming steady-state conditions where vn = 0, B jn = 0 and tn +1

the equation A.I, we obtain

Using (A.43), t n can be written as

,.
.,

.,

(A.42)

= In. Applying into ,)

,
...

(A.43)

....
...
,

(A.44)
..

Consider the equation for the free web span derived in the previous section

(A.45)

The web span next to the unwind roller does not have any upstream spans. So tension de-

rived in (A.44) can be considered as the downstream tension to the web span. So assuming

tn-1= Un-( , the dynamics of the web span next to unwind roller can be written as
lin-I T)
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A.ll Linearized Dynamics

TIlis section focuses on linearization of those equations around given reference values of

velocity Vr> tension t r and dancer position X r . The deviations of web velocity, tension and

dancer displacement given by

(A47)

where Vn,Tn and X n are deviations of velocity, tension and dancer displacement from the

reference point given by Vn t r and X r respectively. Substituting equation (A47) into equa-

tions (A19), (A.31) and (A.41) following linearized dynamic equations can be obtained.

• General free span

)..

(A48)

..

...

• Web span upstream to the dancer roller

(A49)

• Web span downstream tO'the dancer roller

(A50)

A.12 Transfer Functions

The linearized dancer system equations in Laplace domain are presented in this section.
L nThe following constants are defined to simplify the system equations: Tn = -, Q
V r
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EA-~ ~ ~
, f3n = R2 and In = R2' Also in the following it is assumed that to « EA

V r n n

hi h
. a: EA

w c resultsm - ~-.
Tn L n

• General free span

• Web span upstream to the dancer roller

• Web span downstream to the dancer roDer •·

• Free roller

• Dancer roller
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APPENDIXB

INPUT/OUTPUT MODEL FOR ACTIVE AND PASSIVE DANCER SYSTEMS

B.l Active Dancer System

This chapter presents the analysis of active dancer system. The lineari,zed equations are

written for the each web handling element in the system shown in the Fig. B.lo The equa-

tions are given below

Downstream web s an

Upstream web span
:v
I 1

Figure B.1: Active dancer system

B.1.1 System Equations

• Roller va

1
Vo(s) = /3 (T1(s) - To(s))

as + 'Yo
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• Web span T1

• Roller Vi

• Dancer Roller Xl

(B.3)

• Web Span 12

• Roller V2

B.1.2 Simplified Dancer Subsystem Model and Analysis

(B.6)

Following assumptions are used to simplify the equations derived in the previous section.

• All roller has the same dimension so 130 = 131 = 132 = /3

• Similarly the friction constant for all roUers ~to = ')'1 = ')'2 = ')'

Using equations (B.1) and (B.3) we can rewrite the systems equations

Using equations (B.3) and (B.6) we can rewrite the systems equations
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Applying into equation (B.2) and (B.4)

T ( ) (,88 + , + a) rr ( ) a rr ( )
1 8 = ..La 5 + ..l2 8 +

((,88 + ,)(718 + 1) + 2a) ((,88 + ,)(718 + 1) + 2a)

a(,88 + ,) (s + ~)
71 X ( )

(C6s + ,)(7I S+ 1) + 2a) 1 8

(B.9)

(B.1O)

y: ( ) (,8s + , + a) T ( ) a T ( )
2 8 = ((,88 + ,)(725+ 1) + 2a) 1 8 + ((,88 + ,)(725 + 1) + 2a) 3 8 +

a(,85 + ,) (5 + ~ - ~)
72 7J X

1
(s)

((,88 + ,)(728 + 1) + 2a)

Applying the equation (B.4) into equations (B.9) and (B. 10)

T
1

(8) = (,85 + , + a)( M 8
2 + b8 + k) To (s)

(((,85 + ,)(718 + 1) + 2a)(Ms2 + b5 + k) + a(,88 + ,) (5 + :1))

a ((M52 + b5 + k) - (,8s + ,) ( 8+ :1) )

So using the equations (B.9) and (B.1O) the system equations can be written as

rr _ (,88 + , + a)2 rr
..L2 - ..lo(s)

(((,85 + ,)(718 + 1) + 2a)((,85 + ,)(725 + 1) + 2ex) - ex(,85 +, + ex))
ex((,85 + ,)(718 + 1) + 2ex) rr )+ ..l3(5

(((,8s + ,)(715 + 1) + 2a)((,8s + ,)(725 + 1) + 2a) - ex(,8s +, + a))

a(,8s +,) ((,85 +, + a) (5 + ~)\ + ((,85 + ,)(71S + 1) + 2a) (s + ~ - ~))
, 71 71 72 X (5)

(((,85 + ,)(71S + 1) + 2ex)((,88 + ,)(728 + 1) + 2a) - a(,8s +, + ex» 1
(B.12)

So final system equations can be written as

(8.13)

Where A1(s),B1(s) and C J (,<;) defined as

A
1
(5) = (,88+,+a)2

(((,85 + ,)(715 + 1) + 2a)((,88 + ,)(725 + 1) + 2a) - a(,88 +, + ex»)
(B.14)
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B a(({38 + ,)(T1S + 1) + 2a)
1(S) = ((({3s + ,)(T18 + 1) + 2a)(({3s + ,)(T28 + 1) + 2a) - a({3s +, + a))

(B.15)

Where the plant transfer function can be written as

a({35 + ,) (({38 +, + a) (5 + ~) + (({38 + ,)(718 + 1) + 2a) (s +~ - ~))
G (s) = T1 71 72

p (((138 + ,)(715 + 1) + 2a)(({3s + ,)(T28 + 1) + 2a) - a(j3s +, + a))
(B.17)

Following assumptions are considered to simplify the plant model

• I ~ 0 , where the bearing friction of the rollers are negligible

{3 JVr
• a = 77 where Tl = -R-2E-A-

Tz = (,8s + a)2 To(s)
(({38(718 + 1) + 2a)(j38(TZS + 1) + 2a) - a({38 + a))

a({3s(T1 8 + 1) + 2a) rr )+ .13(8 +
((,88(718 + 1) + 2a)({38(T28 + 1) + 2a) - a({38 + a)) (8.18)

a{3s (({3S + a) (8 + ~) + ({38(T1S + 1) + 2a) (8 + ~ - ~))
T1 71 T2 X

(({38(718 + 1) + 2a) ({3s (T28 + 1) + 2a) - a({38 + a)) 1(8)

So final dancer system transfer function can be written as

T _ (778 + 1)2 Y; ( )
2 - ((778(71 8 + 1) + 2) (1]8 (T2 S + 1) + 2) _ (T}S + 1)) 0 8

(T}8(T1S + 1) + 2) rr ( )+ .13 8 +
((T}8(718 + 1) + 2)(T}S(T28 + 1) + 2) - (T}S + 1)) (8.19)

{3s ((T}S + 1) (s + ~) + (T}S(718 + 1) + 2) (8 -+ 2- - ~))
T1 T2 7} X

. ((77S(718 + 1) + 2)(T}S(728+ 1) + 2) - (T}8 + 1)) 1(S)

Equation 8.19 represents the dancer system. Modified version of equation 8.19 can be

written as active or passive dancer system. Active and passive dancer models are derived

in following sections.
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B.2 Active Dancer System

Using equation (8.19) and noting that X](5) = sX](s). Active dancer equations can be

written as

Aad(s) = (fJS + 1)2 (B.21)

Bad(s) = (fJS(71S + 1) + 2) (B.22)

Cad(S) = ((fJS(71S + 1) + 2)(fJS(725 + 1) + 2) - (fJS + 1» (B.24)

B-3 Passive Dancer System

Working on the same lines as given in the section C.3, the linearized transfer functions for

the web spans upstream and downstream to dancer roller can be written as

(
1 )/3s S + -

T ( ) (fJs + 1) Tr ( ) 1 Y. ( ) 7] X ( )
I S = (fJS(71S + 1) + 2) 0 S + (fJS(71S + 1) + 2) 2 5 + (7]5(7]S + 1) + 2) 1 S

(B.25)

Considering the dancer equation derived from the previous section

(8.27)
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- b - k
Following constants are defined to simplify the system model: b = M' k = M and

{3 = ~. So equations (B.25) and (B.26) can be written as

- ( 1 )[3s S +-
(ryS(T1 S+ 1) + 2)T] (s) = (rys + l)To(s) + T2 (s) - 2 b T1

k
(T1(s) + T2 (s))

s + s +
(8.28)

Simplified equations can be written as

(B.30)

(B.31)

(B.32)

Where the transfer functions can be defined as

Apd = ((7]S + 1)(s2 + bs + k) - {3s (S + :2 - :1)) (7]S + 1)(s2 + bs + k) (B.33)
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Cpd(S) = ((17S(TlS+l)+2)(S2+ bS+ k)+;3S(S+ T~))

((17S(T2S+1)+2)(S2+bS+k)+i3s(s+ :2 - ~))

- ((S2 + bs + k) - ;3s (S + T~) )
((17S+1)(S2+bS+k)-i3s(s+ :2 - ~))
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APPENDIXC

MATLAB PROGRAM FOR LQR CONTROLLER AND LUENBERGER

OBSERVER

close all;
clear;
delete diary.dat;
vr=1.1684; % m/s
MofE=4.136854*lO~9; % Pa
Ar=3.2258*lO~(-6); % m~2

Jr=O.014078; % kg/m~2

R=O.0635; % m
Ll=O.9144; L2=O.2286; % m
gamma=O.OOl;
taul=Ll/vr; tau2=L2/vr;
tau3=L3/vr;
alpha=MofE*Ar/v~;

beta=Jr/ (R*R);
A=[

o
-alpha/taul
o
o
a

] ;

Bu=[

l/beta
-l/taul
-l/beta
1/tau2
o

o
alpha/taul
-garruna/beta
-alpha/tau2
a

CJ

o
l/beta
-1/tau2
-l/beta

o
o
o
alpha/tau2
o

-l/taul
alpha/taul
a
alpha/tau2
(1/taiJ.2-1/taiJ.:")

] ;

Bw=[
-l/beta
l/taul
o
o
a

o
a
o
o
l/beta
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] ;

C= [ 0, 0, 0, :. , 0; Q, 0, 1, 0, a );
Cc= [ 0, 0, 0, 1, 0);
Du=[O;O);
Dw= [0 0; 0, 0) ;

sysc = ss(A,Bu,C,Du);
sysc1 = ss(A,Bw,C,Dw};

Ts = 0.005;
sysd1 = c2d(sysc~,Ts);

[G,Hw,C,Dw,TsJ=ssdata(sysd1);

sysd = c2d(sysc,Ts);
[G,Hu,C,D~,Ts)=ssdata(sysd);

Q = Cc'*Cc;
R=O.l;
[K,S,EJ=dlqr(G,Hu,Q,R);

P=0.05*E;
L = place(G' ,C' ,P);

GK = G-Hu*K;
GL = G-L' *C;
[MK,NK)=size(GK);
[ML,NL)=size(GL);

Ge [SK, Hu*K; zeros{ML,NK), GL];
He [Hw; Hw);

Ce [O,O,O,l,O,O,O,O,O,OJ;

De [0, °J;

diary('diary.dat')
Ts
G
Hu
Hw
K
L

diary off
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