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PREFACE

This study was conducted to evaluate the condition of the Oklahoma State

University Colvin Center Annex glued-laminated arches. Throughout the 27-year

lifespan of the building, many adverse weather conditions have caused decay throughout

the exposed ends of the arches. The objective of this study was to determine the amount

of decay in individual laminations ofeach arch by employing through-transmission stress

wave technology. From this data collection. recommendations were made to Oklahoma

State University officials regarding possibilities for restoration of the existing structure

considering economical issues as well as safety. This information will help the university

make a final decision on the issue.

I would sincerely like to thank Dr. Robert Emerson for his unconditional help

through all of my thesis work. He has been an excellent mentor, as well as a friend. Not

only have I learned a great deal of knowledge from him, but [ have also learned patience

and perseverance. Also, thanks to my committee, Dr. Robert Hughes and Dr. Steve

Gipson, for responding quickly when I needed them. Finally, I want to thank the

Oklahoma State University Physical Plant, especially John Houck, for their trust in my

abilities of completing this undertaking, and for their financial backing throughout the

project.
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1. INTRODUCTIO

In this thesis project, glued-laminated arche on the Oklahoma State Univer ity Ann

were analyzed to detennine the amount of decay present in each. A previou vi ual

inspection of the beams by an outside source found eriou amounts of decay throughout

each glulam. The idea of this research is to prove or di prove the amount of d ay

present in these members by perfonning a nondestructive analysis of the internal

conditions of the beams. From this information, Oklahoma State Univer ity Officials can

make a fmal decision to keep or discard the structure.

1.1 Environmental Exposure

The Colvin Center Annex, located on the Oklahoma State University Campus, has been

subjected to many adverse and differing Oklahoma weather conditions. When the

structure was constructed, the 13 wood glued-laminated (glulam) arches were built with

the bottom 7-feet of each end exposed to the environment. Water run off the roof

directly onto this exposed area and collects in the steel casing at the ba e of each glulam.

Due to the ever-changing weather and above-mentioned lack of protection from

precipitation, these members of the building have become decayed. Almost all of the

glulams have some amount of decay, and that level is the desired information found using

the following procedure.
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1.2 Uses of Colvin Center Annex

The Annex has been used for many activitie within the univer ity, therefore hi torical

and sentimental significance have been placed on the tructure. Intramural port v ity

athletic training, and summer camp are ju t a few of the numerou activitie that take

place in the building every year. With the growing demand for athletic faciliti , the

Annex has much physical importance as well. For the e reason ,a tructure of this

nature is needed for the Oklahoma State University community, and, if the existing

building can be salvaged, money could be saved for OSU.

1.3 Objectives

The goal of this study is to nondestructively identify the amount of decay present in each

exposed glulam arch and to pinpoint specific areas of major concern. A previous visual

analysis by a contracted company showed that decay existed throughout the length of the

exposed glulams. The results of this research on the Annex will prove or disprove this

spectral evaluation and will allow Oklahoma State University officials to effectiv Iy

retrofit the structure by concentrating on tbe problematic areas. This protection hould

elongate the existence of tbe tructure allowing the building to remain in ervice, and the

university can postpone the cost of a new structure.
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2. TESTING PROCEDURE

Twenty-six expo ed glued-laminated timber segment were nond tructively in p ted to

locate and quantify decay. In pection points were marked along each lamination being

inspected. Through-transmi sion stress waves were ent through the wood at each of

these locations. The apparent velocity of each wave was captured u ing a hand held

digital oscilloscope (Fluke 192 Scopemeter,) and the e values were then graphed on color

and black-and-white contour diagrams, where decayed regions could be ea ily identified.

2.1 Layout of Test Spots

To begin evaluating the decay in the arches, a grid of proposed test spots was delineated.

Each glued-laminated timber arch is composed of 2xlO pieces of dimension lumber in 21

laminations. Four-inch increments along each lamination were used for the SO-inches of

exposed wood on each lamination to give an accurate but efficient ampling of the

material throughout each exposed arch ection. Therefore, 20 different pots were

analyzed on each of the 21 laminations, totaling 420 test location per m mber. When

constructing the graphs used for analysis. this amount of test location depicted the

decayed regions precisely. As mentioned above, a total of 26 different segments of

glulam were evaluated using the layout depicted in Pigure 2.1.
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Figure 2.1: Layout of Test Spots for Each Glulam (not to scale)

2.2 Testing Technique

The amount of decay in a wood beam can be determined nonde tructively u ing everal

methods. Some of these include vi ual inspection, sounding, drill resistance, tres wave,

ultrasound, radiography, microwave/ground penetrating radar, and vibration. The

technique selected in this research was stres wave technology, using a Fluke 192

Scopemeter digital oscilloscope and metriguard stres wave timing equipment. Th e

instruments were employed with "through-tran mission" technology, where a wave is

generated on one surface of the member, propagates through the member, and is recorded

on the opposite surface. A hammer instrumented with an accelerometer was used to

impose an initial stress wave. The accelerometer in the hammer senses the imposed

tress wave and activates recording in the digital oscillo cope. The stress wave traveled
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Decay in wood decreases both the density and elastic modulu . The elastic modulus is

defined as the force needed to elongate a material, and the density is the amount of

substance contained within a specific area. In a decaying material, elastic modulus

diminishes much more rapidly than the density because the substance, in this case, wood,

can still be present, maintaining the density, but the decay fungi make the wood more

brittle, lessening the elastic modulus. Therefore, the velocity ofa stress wave through

wood decreases as decay increases. Wood containing early decay has diminished density

and elastic modulus while maintaining the physical wood structure. Wood having

advanced decay may have voids due to complete degradation of internal wood structure.

Adjacent regions of early to moderate decay usually accompany these fully decomposed

areas, which can be seen later in the color contour diagrams of each glulam. Severely

decayed wood contains voids, which the wave must travel around, creating a longer

travel time, and consequently, a smaller apparent velocity. In comparison, sound wood

allows the wave to travel in a straight line, resulting in a shorter travel time and higher

velocity. Hues of light blue, green, and yellow frequently surround areas of red and

orange, indicating the above-mentioned levels of decay.

When considering the different levels of decay, early, moderate, advanced, or severe

decay were the tiers chosen for comparison. In each of these tiers, a corresponding

change in modulus of elasticity (MOE) and in compressive strength has been determined

based on previous studies by Emerson (1999), and Ross (1982). These approximate

values in Table 2.2 give an idea of the strength capacity remaining in the wood.
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% Change in Stage of I, % Change in % Change in
Velocity Decay MOE Compo Strength

0 Sound Wood 0 0
-5 to -24 Early < -5 < -15

-25 to -74 Moderate <-60 < -40
-75 to -99 Advanced < -80 < -80

< -100 Severe < -100 < -100

Table 2.2: Strength Capacity Remaining in Wood as
Decay Levels Increase

Various levels of decay were identified during this investigation. In some cases, the

wood was completely decayed resulting in severe decay, and, con equently, 100%

reduction in compressive strength. As seen later, much of the decay is early or moderate,

so a 15% to 40% loss in compressive strength results; but this deficit does not result in

imminent structural failure, especially since the decay is spaced sporadically throughout

each member and surrounded by structurally sound members, in most cases.

2.4 SigmaPlot 2000

After all the wave travel time information was collected for each giulam, the number

were entered into a program, SigmaPlot 2000 (SPSS Inc., 2000). Three columns ofdata

were used: horizontal and vertical locations on the grid, and stress wave travel time. All

420 grid locations were entered on this program for each individual glulam, and color and

black-and-white contour graphs were plotted using the three columns of data. On the

graphs, the appropriate axes are labeled in inches with the vertical and horizontal

locations. The measured travel times ranged from just under 100 seconds up to 5000

seconds, where a value was merely assigned for completely decayed wood. When these

numbers were plotted in SigmaPIot 2000, the graphs did not accurately display the

7



infonnation comparatively to the other arches. In some of the color contour diagrams, a

red area could indicate a very high travel time in oompati on with all of the glulams; on

another diagram, a red area could merely suggest a high travel time on that gIulam when

the area might not actually have that significant of a travel time. This flaw in the

program could have been avoided ifone color could be assigned to a certain travel time

value. However, since this problem could not be resolved, the dilemma was accounted

for when analyzing the diagrams by concentrating primarily on Microsoft Excel

Worksheets, where algorithms were entered to identify levels of decay in specific

regions.

2.5 Microsoft Excel Worksheets

After the travel times were put into SigmaPlot 2000, a comparison of travel times to loss

in material properties was performed. To do this, all times were put into Microsoft Excel

where the velocity was calculated by dividing the width of the arch, 9.S-inches, by the

travel time. A sample of the excel worksheets is outlined in Table 2.5. After calculating

the individual velocities, these velocities were compared to the velocities through sound

wood, which was assumed to be located in the last 4-inches ofeach arch closest to the

building. The location of the sound wood areas is apparent in the last column, column

20, ofTable 2.5. This area was chosen as a sound wood comparison since little to no

precipitation reaches the region that would result in decay.

A percent change in velocity was the desired information in these charts because, from

this data, a comparison could be made between loss in modulus of elasticity, and, finally,

8



loss in compressive strength. In the Excel charts, the percent change in velocity, for

example, at location AI, was calculated by subtracting the velocity ofA20 from the

velocity ofAI, giving the change in decay from sound wood to decayed wood; that value

was then divided by the velocity ofA20. To give a percent change in velocity, this result

was multiplied by 100. A stage of decay was assigned, based on Table 2.2, to the percent

change in velocity depending on how much or how little the change. The differences

between these decayed velocities versus sound wood velocities were correlated with the

loss in material properties outlined in Table 2.2. In this example, three of the four levels

ofdecay are present in the first 4-inches of the glulam. The correlating changes in

compressive strength and modulus of elasticity show up to 80% reduction, which is cause

for alarm. All of the individual glulam analysis is seen in Section 4 where all gJulams are

analyzed in depth.

"/. Change Stage of Change Change In

Location TImelms) Time Is) Distance (In) Velocity (lnls) In Velocity Decay In MOE Compo Strength

1\1 176 0.000176 9.5 53977 -11.36 E 5 15

81 192 0.000192 9.5 49479 -33.33 M 60 40

C1 208 0.000208 9.5 45673 -38.46 M 60 40

01 360 0.00036 9.5 26389 -58.89 M 60 40

E1 364 0.000364 9.5 26099 -56.04 M 60 40

F1 324 .0000324 9.5 29321 -53.09 M 60 40
I

G1 1000 0.001 9.5 9500 -86.00 A 80 80

H1 1000 0.001 9.5 9500 -86.00 A 80 80

11 516 0.000516 9.5 18411 -72.87 M 60 40

J1 508 0.000508 9.5 18701 -72.44 M 60 40

K1 484 0.000484 9.5 19628 -70.16 M 60 40

Table 2.5: Excerpt of Excel Worksheet Calculations for Glulam 21

9



3. ANALYSIS OF NORMALIZED GLULA S

3.1 Summary

An aspect of consideration when analyzing glulams is the wood grain orientation ofeach

individual lamination. Different directions of wood grains can alter stress wave travels,

therefore varying travel times. To combat this discrepancy, all test locations were

normalized to create an accurate comparison between laminations. To normalize a

glulam, each individual travel time was divided by the travel time through sound wood of

that lamination. For example, in lamination A, travel times through locations Al through

A19 are divided by travel time through location A2D. This procedure is repeated for each

individual location on every lamination. This step resulted in a value that compares to

every other test spot on the glulam. Most areas maintain some amount ofdecay, which

results in a normalized value greater than one. AU normalized color and black-and-white

contour diagrams can be seen following the regular diagrams of each glulam. A direct

correlation can be seen between the areas of decay explained in the discussion of each

glulam and the normalized graphs. The reason for this is due to the normalization of

every test location. By normalizing the glulams, an even comparison is created between

each lamination as opposed to the regular diagrams where inherent variation between

laminations result in stress waves traveling at varying speeds from lamination to

lamination. This normalizing ofthe gJulams eliminates this discrepancy.
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voids filled with an epoxy to add structural strength. These first step are the most

important to control the spread of further decay through the memb rs.

Decay growth is affected by three primary factors including oxygen, temp rature, and

water. Most wood decay fungi are obligate aerobes requiring free oxygen for growth, but

this atmospheric condition cannot be limited since oxygen is a naturally occurring

element. Temperature affects crucial fungal metabolic activities that are controlled by

enzymes, but, like oxygen, occurs out of the hands ofmankind. Water is a critical

component for fungal growth and must be present in appropriate quantities for fungi to

digest the wood substrate, and this element can be controlled. The third recommendation

for Annex survival is to add a localized roof covering over each glulam. This awning

will divert direct precipitation from making contact with the wood, although air moisture

content will still have some effect on the structure. Despite this, the adjusted path of the

water should have a positive effect on the wood structure.

Final recommendations include structural additions to each glulam. A carbon retrofit

could be employed, as has been used in other scenarios of this nature. This suppl ment

would give more support to the individual members. Any other structural additions

would be a good idea, yet financially, these supplements could be costly to the university.

Therefore, killing the decay fungi, removing decayed areas, filling these regions with

epoxy. and diverting the water flow from the members are the main recommendations for

cost efficiency and further Annex survivaL.
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5.3 Conclusion

Upon completion of analysis of the Oklahoma State University Colvin Center Annex

glulam arches, failure does not seem to be imminent. Upon completion of the structural

analysis of the members, the previous suggestion that decay existed throughout the

members has been proven incorrect. Although, the structural stability is rapidly

decreasing with the degradation of the wood arches. Decay primarily exists in the bottom

third of the exposed glulams presently but will continue to spread if the fungi are not

killed. By adopting the above-mentioned recommendations, the future of the existing

Annex is optimistic. Not only will the university be saved a costly expenditure, but also

some of OSU's heritage will be preserved.
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