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CHAPTER 1

INTRODUCTION

The demand for high throughput with relatively low cost and the ability to handle

very large amounts of data have been forcing computer system designers to consider

nontraditional architectures such as parallel/distributed systems. In an effort to overcome

some of the limitations of a uniprocessor system one of the major development in

computing in recent years has been the introduction of a variety of parallel computers.

Parallel, distributed, concurrent or multiple computes are such that there is more than one

processing unit within the system, thereby allowing the device to execute many tasks

simultaneously [1].

This requirement of parallel/distributed computation has prompted the researchers

to find ways that can accommodate parallelism differing from Von N umarul computers.

Fortunately, it is possible to integrate data communications and sequential Von Neumann

computers to form either a wide area network (WAN) [1] or a local area network (LAN)

[1]. This may be regarded as a network form of a multiple processor system. Such a

system uses message passing as its data mechanism. These systems are usually referred

to as either computer networks or distributed computing systems.

Generally, distri buted computation systems can be classified as di stri buted

computation programming models and distributed computation applications. Most of the

programming models and applications use TCP/IP [2,3,4] and the OSI model [2 3,4] as

their basic protocols in a distributed networked environment. RPC (Remote Procedure

Call) [5], DCE (Distributed Computing Environment) [6], CORBA (Common Object



Request Broker Adapter) [7] and Java RMI (Remote Method Calls) [8] are currently

available programming models for the different network components to work in a

hardware independent environment. Based on these programming models client-server

model [9] and mobile agents [10, 11] have been implemented as distributed computing

applications [12]. Several application systems have exploited the advantages of

distributed computation. Condor [13, 14] and Piranha [15, 16] implement environments

for adaptive execution of parallel computations. To achieve adaptive parallelism over a

set of dynamically changing processors, these systems utilize idle-state workstations.

DDAS [17, 29] environment is somewhat related to Condor and Piranha [17], but

provides better security, because its domains are only those computers, which can be

accessed by a user with full authorization. It also supports adaptive network because

nodes can be added or removed as necessary. However, there are some limitations of the

current design and implementation that makes it unsuitable for furth~r use.

First, all the remote machines have to have exactly the same user 10, password,

and the path. The DOAS components are prematurely bound to these specific values. For

example, when a host of the ODAS system updates and the path has been changed, the

DDAS system will fai I to construct a distributed system. Therefore, the design is not

flexible to accommodate changes in remote system configurations.

Second, DDAS kernel components are mixed together with DOAS manager,

which makes its functions unclear and dependent.

Third, when the DDAS system is constructing a network, if a host of the DDAS

system node is down, the DDAS system freezes. That is, the system is not designed to be

fault-tolerant.



Fourth, the DDAS routing has to be done manually, which forces the programmer

to build several default routing files before constructing the system.

Last, the DDAS input command set can not guarantee the remote processes be

killed, which may cause deadlock.

The first two cases are caused by flaws in the design of the DDAS kernel

components and the last three are caused by the design of its manager. Therefore, a

modified DDAS system is needed to be developed.

In this thesis, we modify DDAS to remove the above mentioned problems. We

also design an environment for functional style distributed computing based on the

distributed computing model and FP style functional programming [18,30].

The remainder of this thesis is divided into the following chapters:

Chapter 2: A detailed review of literature related to current distributed computation

systems.

Chapter 3: Describes the FDCS model, including the FDCS model configuration,

combining forms and illustrative examples.

Chapter 4: Discusses the design of the distributed system for composition and pipeline

functional forms.

Chapter 5: Illustrates the implementation of the distributed system for composition and

pipeline functional forms.

Chapter 6: Presents conclusion of the thesis and the future work.

Appendix A: Describes abbreviations and acronyms used in the thesis

Appendix B: Includes parts of system source code.
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CHAPTER 2

LITERATURE REVIEW

Principally, there are two types of distributed systems: LANs and WANs. The

main difference between the two is in the way they are distributed geographically. LANs

are composed of processors that are distributed over small geographical areas, such as a

single building or a few adjacent buildings. WANs are composed of autonomous

processors that are distributed over a large geographical area (such as the United States).

Furthermore, the WAN is used to make a network of LANs, called an internet. The OSI

and TCPIIP models are used as the basic protocols in a distributed networked

environment.

2.1 Higher-layer Network Protocols

Distributed programs rely on the operating system to provide facilities for

synchronizing and communicating information among the constituent parts of the

computation. Contemporary operating systems employ the OSI or TCP/IP reference

architecture to implement communication at the upper layers of the network protocol

stack.

2.1.1 OSI Model

The OSI (Open Systems Interconnection) model is based on a proposal developed

4
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by the International Standardization Organization (ISO) as a first step toward

international standardization of the protocols. Even though the OSI model is used by

very few organizations for network communication, it provides a stable hardware

independent design. The OSI model has seven layers as shown in the right side of Figure

1.

2.1.2 TCP/IP Model

The TCP/IP (Transmission Control Protocol I Internet Protocol) model was

originally developed by the U.S. DOD (U.S. Department of Defense). The TCP/IP

protocols were designed to be independent of host hardware or operating system. The

TCP/IP reference model has five layers as shown in the left side of Figure I.

The Internet model can be thought of as a simplified OSI model. Figure I also

depicts the relationship between the Internet model and the OSI reference model.

<TCP/IP Layer> <OSI model Layer>

Figure 1. TCP/IP Layer and OSI Model Layer (Adopted from [2, 3, 4])

'i
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2.2 Distributed Computation Systems

Distributed computation refers to the case where a computation is implemented in

such a manner that parts of the computation are executed on different machines (usually

as processes); the parts of which use the network for communication and

synchronization. In general, a distributed operating system is required to support

distributed computations. Since the operating system must provide tools to accommodate

various computing paradigms and to simplify the task of implementing a distributed

computation, it generally uses the technology in its own implementation.

Generally, distributed computation systems can be classified as distributed

computation programming models and distributed computation applications.

2.2.1 Distributed Computation Programming Models

Tasks running on different computers have to be coordinated and streamlined by

sending and receiving messages between them. Message passing between computers can

be done via networking facilities equipped with the computers. In order to support

different network components from different manufacturers, many programming models,

such as RPC, DCE, CORBA and Java RMI, have been developed to provide a hardware

independent environment.

2.2.1.1 Remote Procedure Call

RPC was first investigated thoroughly by Nelson [19] in 1976 and has been in use
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in academic and commercial areas for many years [20]. By far, RPC is the most

prevalent paradigm for structured client/server program development. Basically, it

allows a program on one machine to call a subroutine on another machine without

knowing that it is remote.

RPC is a specialized fonn of interprocess communication in which the initiating

program perfonns a send operation immediately followed by a blocking read operation.

The receiving program performs a blocking read until it receives the message sent by the

"caller" process; it then provides the service and returns a result by sending it to the

original process. From the original process's point of view, the IPC behaves as if it were

a procedure call.

RPC implementations take the general form shown in Figure 2. The client

machine consists of the client application code, a client stub, and the transport

mechanism, while the server machine implements a transport mechanism, server stub,

and the server code.

7
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Client

Client Stub

Transport

Transport

Server Stub

Server

Figure 2. Remote Procedure Call

In the most simple form, the RPC is an obvious generalization of the traditional

procedure call present in most programming language. The fundamental difference is

that the calling procedure executes in one thread, process, or machine, and the called

procedure executes in another. Because RPC is so analogous to the familiar mechanism,

conceptually it is easy to construct applications using RPC. Most middle-ware such as

DCE (Distributed Computing Environment), message queuing and network SQL

(Structured Query Language) are built on RPC.
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2.2.1.2 DCE

The aSF (Open Software Foundation) which was founded in 1988[21] describes

DCE (Distributed Computing Environment). The DCE represents an attempt to gather

base technologies from many vendors and make them part of an open environment. It is

called middle-ware [22] or enabling technology. The DCE is a set of services and tools

that support the creation, use, and maintenance of distributed applications in a

heterogeneous computing environment. The remote procedure call (RPC) is an

application programming paradigm and is part of asp's DCE. It extends the local

subroutine call semantics to a networked or distributed environment. Interfaces are

defined in an Interface Definition Language, which is similar to C, and compiled and

linked to the client and server parts of the application. The call by the client is packed

then sent via the RPC protocol to the server, where it is unpacked and executed. Results

are returned in a similar fashion. The RPC protocol includes calls for the client to locate

and bind to the server, transmit data, and handle error conditions. RPC is designed to be

independent of the transport protocol. Figure 3 describes the DCE architecture.

9
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DeE middle-ware

Figure 3. OSF DCE Architecture (Adopted from [23])

2.2.1.3 CORBA

COREA (Common Object Request Broker Adapter) is another middle-ware

platform in distributed computing environment. As a middle-ware, it is different from

DCE in that CORBA uses an object-oriented distributed model whereas DCE utilizes a

procedure-oriented distributed model [24].

The central component of CORBA is the Interface Definition Language OMG

IDL. Programmers use OMG IDL to describe the interface to their objects. OMG IDL is

the fundamental basis for the definition of the contract exposed by the object to the rest of

the world.

Programmers who wish to develop CORBA objects must first begin by designing

the OMG IDL for the objects they wish to create. Having completed the OMG IDL

10
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specification an implementor is then free to implement that language in any programming

language, such as C, C++, Ada, Smalltalk and Java.

The actual CORBA architecture is depicted below in Figure 4.

Figure 4. CORBA Architecture

In CORBA, objects are created in one location and remain at that location for a given

lifetime. The entities which are passed over the network are "object references." An

object reference is a unique identifier used to locate and describe a given instance of a

given object type.

2.2.1.4 Java RMI

The Java Remote Method Invocation (RMI) package is a Java-centric scheme for

distributed objects that is now a part of the core Java API. RMI offers some of the

critical elements of a distributed object system for Java, plus some other features that are

made possible by the fact that RMI is a Java-only system. RMI has object

communication facilities that are analogous to CORBA's lIOP, and its object

II
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serialization system provides a way to transfer or request an object instance by value

from one remote process to another. As shown in Figure 5, Java RMI consists of several

layers and exists between applications and the JVM (Java Virtual Machine) [25].

Application

RMI System

JVM

Figure 5. Java RMI Layers (Adopted from [26])

2.2.2 Distributed Computation Applications

CORBA and Java RMI serve as object-based distributed computation

programming models for distributed computing applications, while RPC and DCE are

used as the basis of client-server or mobile agents models in many applications.

2.2.2.1 Client-Server Model

The client-server model of computation is a popular distributed programmmg

paradigm in which one process, the server, is a manager of one or more resources, a

12
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client, that is the user of the server's resources. A resource may be identified easily and

physical in nature; e.g., a printer, or it may be hidden and abstract; e.g., an authentication

database.

The client-server model is asymmetric, as suggested by the name. The persistent

server "always exists in the network," passively waiting for requests for activity, while

client processes decide when to utilize the server. A server is a slave process that solicits

work, while a client is a master process that requires services. This can be seen in Fig 6.

Client

Request
Works

Request Network

Server

Response

Figure 6. Client-Server Model (Adopted from [9])

2.2.2.2 Mobile Agents

Mobile agents are a convenient paradigm for distributed computing [27], since

mobile agents are very efficient compared with the traditional approaches to distributed

computation. The agent specifies when and where to migrate, and the system handles the

transmission. This makes mobile agents easier to use than low-level facilities in which

13
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the programmer must handle communication explicitly, but more flexible and powerful

than schemes such as process migration in which the system decides when to move a

program based on a small set of fixed criteria.

"A mobile agent is a program that is able to change its location on its behalf and

keeps its state (identity) across location changes" [28]. A mobile agent carries all of its

internal state with it which eliminates the need for separate communication steps. The

agent migrates to a machine performs a task, migrates to a new machine, performs a task

that might be dependent on the outcome of the previous task and so on. In Figure 7, an

agent carrying a mail message migrates first to a router and then to the recipient's

mailbox. The agent can perform arbitrarily complex processing at each machine in order

to ensure that the message reaches the intended recipient.

Mobile agents allow a distributed application to be written as a single program.

Mobile agents can be viewed as extensions of the client/server model. Clients and

servers can program each other and applications can dynamically distribute its server

components when it starts execution.

14
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Machine A

------

,,,,,,,
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Figure 7. Operations of Mobile Agents System
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CHAPTER 3

FDCS MODEL

This thesis is based on a functional distributed computing system (FDCS) that

includes the advantages of distributed computing, contains reliable and secure transport

system - DDAS [29], and takes advantage of the natural parallelism inherent in the FP

programming model [30].

3.1 The FOeS Model Configuration

The FDeS model consists of three components (M, C, T) where M is a collection

of modules, e is set of combining forms and T is a transport system. The combining

forms are used to bui ld new applications from existing ones. A module in M is a

program f. In other words M consists of a collection of executable programs. f:x

represents the application of f to x. The intuitive meaning is that f:x represents the result

of running program f with input x. It is convenient to view the input and output as files

(which actually contain the input and output respectively). With this assumption, we can

assume that a program execution is the same as the application of a function to its

argument file name and we assume that all functions are single argument functions. The

set of combining forms constitute the heart of the system and provide the rules and

constructs to build new software systems from the existing ones. The transport system

supports distribution and network support. In FOeS, the DDAS is used to realize T.

16



3.2 Combining Forms

Combining forms are the heart of the system. They specify the semantics of the

distributed system. An implementation is consistent with the semantics. One

characteristic of this approach is that new combining forms may be added as required and

thus making the system extensible. Here we describe several combining forms and their

semantics. They are listed below

1) COMPOSITION: fl-f2:x == n:(f2:x)

f1 and f2 are programs that terminate and fl executes when f2 terminates and the

output of f2 is input of fl. This combining form imposes sequential control

structure in the execution of programs. If f2 represents a collection of programs,

this also serves as barrier synchronization.

2) PIPELINE: f1 II f2:x == fl :(f2:x)

fI and f2 are programs that may execute concurrently. The input to fl is

produced by f2. This functional program captures pipeline parallelism.

3) CONSTRUCTION: [fl,f2, ... , fn):x

fl ... fn are independent (possible communicating) programs capable of executing

in parallel. They could be distributed to different nodes of a network. There is

no functional form designed for message passing communication. This form of

communication can be accomplished by COMPOSITOIN or PIPELINE.

Repetition is accomplished using the WHILE functional form. The result is

assumed to be all list <x 1, ... , xn> of outputs from the n programs.

4) APPLY_TO_ALL: f: <xl,oo.,xn>

17



Execute n copies of f; xi is the argument to the ith copy. This functional fonn

captures data parallelism. The program can be distributed to different nodes in a

network.

5) WHILE (c, f) : x

While condition c is true, repeat executing program f with input x. This

functional form allows repetition.

6) IF (c, f, g) : x

If condition c is true, execute program f. Otherwise, execute program g. This

functional form allows conditional execution.

3.3 Illustrative Examples

The concepts are illustrated using simple examples. Assume that there are 3

programs pI, p2 and p3. For this example, let us assume that pI produces N numbers in

a file, p2 adds all the numbers and p3 multiplies all the numbers. Then we can write a

program [p3, p2].pl to produce the set of numbers and to multiply and add them. The

programs p2 and p3 can execute in parallel. The FDCS run-time system facilitates the

parallel execution and provides the necessary synchronizations.

As a second example consider the application of merge sort using a 3-node

network with hosts D, X and Y. Let g, sand m represent the tasks of sorting (a split

segment), splitting and merging respectively. Let one, two and three be functions that

select the first, second and third elements from a list respectively. The application can be

written as a program P where P = m.[one, m.[two, three]] .(APPLY-TO-ALL g)

lb



e[seone. two] es. If P is applied to a list, it is split into two lists. The first list is further

divided into two lists. All three lists are sorted using the program q. (The sorting

function q can be distributed to 3 nodes of a network and executed concurrently.) The

second and third sorted lists are merged, and the result is merged with the first sorted list

producing the original list as a sorted list.

The conceptual operating scheme of FOeS using the DDAS system is

demonstrated in Figure 8. A 3-node network is assumed for this description. The DDAS

systems running on any two machines by the same user can communicate with each

other. Therefore, the set of machines fonns a fully connected network. Figure 9 shows

the mapping of the program P into the network. For the sake of simplicity of description,

let us assume that the application program P initiates execution in host U. The first split

is done in U. Then the construction functional fonn is capable of spawning two

independent subtasks executable concurrently. Let us assume that the first task (seone) is

assigned to host X and the other one is assigned to U. When the task assigned to X

completes there are three lists, one in U and the other two in X. Since the next task is to

apply q to all lists, the two lists in X can be sorted simultaneously. So, one of the lists is

copied to Y. Now, the sorting function can be applied concurrently to the three lists.

They execute in hosts U, X and Y. When the third list is sorted in Y, it is copied to node

X where a merge takes place. When the merge is completed, the resulting list is copied

to node U where the final merge is done. DDAS may be used to for copying data and

code. The DDAS commands can be used to initiate remote task execution and to control

them.

19



Run-time System

HoseD

HoseX

3

5

Host..Y

1. Construct a Dynamic Network: 1,2,3

2. Message Passing: 4,5,6,7

3. Disconnect Network and Delete Nodes: 8,9

Figure 8. DDAS System (Adopted from [17])
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Figure 9. Mapping of an Application to the DDAS Network (Adopted from [30])

4. HoseD: Main Host
5. HoseX, HoseY: Remote Hosts

Hosey

2

3

2 Migrationp

HoseD

3. Return path of results:

1. Dynamic network:

2. Migration path of jobs:

In the next chapter, we present the design of a distributed system that supports

some of the functional fOnTIs.
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CHAPTER 4

A DISTRIBUfED SYSTEM DESIGN FOR COMPOSITION AND PIPELINE

The system is modeled as a three-layered architecture. The top-level layer is the

application program. The lowest layer is the DDAS kernel, which handles all the

communications between nodes of a network. The middle-layer is the run-time system.

It provides the mechanisms for coordination and dispatch of independent program units.

The three layers are described in the next three sections.

4.1 Top-level Layer - Application

It is a collection of executable programs and compiled to run in specific types of

computers in the distributed system. The syntax and semantics of each application is

adopted from the FDCS model to composition and pipeline framework.

In this research, all applications are assumed to be built using only one combining

form. (Even though this is a limitation, user will still be able to build applications using

multiple combining forms manually.)

4.2 Lowest-level Layer-DDAS

DDAS is adopted as the transport system. However, DDAS outlined in [17,29] is

substantially modified in this research. A new Telnet class based on IOtest class [3 J]

22



is employed. The modifications are highhghted below:

1. By using a new Telnet class and a new FrP configuration, the values, such as

user ID, password and the path, which are used to construct the distributed

computing system, can be read at run-time. This change makes the coupling

loose. The user ID, password, or path may be changed without affecting the

system. Thus, the new design enhances scalability and extensibility.

2. The DDAS kernel is designed as a separate package. The DDAS kernel is

reconstructed to provide three services used by the run-time system as shown

in Figure 10. They are remote execute and delete service (REDS), migration

service (MS), and message passing service (MPS). Telnet [31], FrP and

synchronization [32] are underlying components in constructing a dynamic

network.

DDAS

Figure 10. DDAS Configuration

3. The DDAS nodes can be established individually which makes its construction

avoid the down nodes when they are detected. Moreover, the remote node can be

added only when it is needed. That is, it increases the adaptive capability of the

system.

23



4. A router is designed to provide the run-time routing, which makes the DDAS

system more powerful and also saves manual routing.

5. The DDAS input command set is rebuilt. I describe it in detail in the next

chapter. For example, when disconnecting a node, the command will guarantee

that the remote process is killed before cleaning the node.

4.3 Middle-lever Layer -- Run-time System (RTS)

The run-time system provides the mechanisms for coordination and dispatch of

independent program units based on composition and pipeline programming. It serves as

a scheduler for all programs, allowing each program unit to execute and communicate

with each other based on composition or pipeline organization.

Figure 11 gives an overview of the run-time system. It consists of a job

submission component, which we call the executing platform (EPF); a syntax checking

component, which we call the parser; and a job scheduling component, which we call

"scheduler". The scheduler has two parts, decomposition module (DM) and virtual

network manager (VNM). The OM decomposes the application into a collection of

executable program units based on the syntax and semantics of the application. It also

provides services to spawn each program unit. The VNM based on the DDAS kernel

builds the corresponding network and serves as a coordinator and dispatcher of the

executable program units. Table 1 illustrates the responsibilities of each component of

the run-time system.
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Figure 11. Run-time System Overview

Table 1. Responsibilities of Each Component of RTS

Responsibilities

EPF 1. Provides a platfoTITI to submit applications and commands

2. Communicates with the parser and forwards the application to DM

3. Invokes VNM.

Parser Checks the syntax of the submitted application

DM 1. Decomposes the application to a collection of executable program units

2. Provides services to spawn each executable program unit

VNM 1. Constructs a distributed system for functional computing
I

2. Serves as a coordinator and dispatcher of executable program units

Section 4.3.1 describes the basic operations of the RTS. Sections 4.3.2,4.3.3,

4.3.4 and 4.3.5 describe each component of RTS, that is, EPF, Parser, DM and VNM,

respectively.
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4.3.1 Basic Operations of the Run-time System

First, the run-time system reads the virtual network setup data file (vns.data) and

stores the information in virtual network setup data (Vnsd) class for future use. (vns.data

contains the list of available computers.) Then it invokes the EPF to activate the run-time

system. That is, the EPF provides a system prompt and waits for the user to input the

EPF command. The following is an outline of the basic operations of the RTS as

illustrated in Figure 12.

1. The EPF provides a platfonn to submit applications and commands.

2. If the submission is an application, EPF invokes the Parser.

3. The Parser checks the application.

4. After the Parser finishes its checking, the result is communicated to EPF. If the

syntax is correct, the EPF then checks whether the application is executable or not. If

the application is executable, it invokes the DM.

5. The DM decomposes the application to a collection of executable program units and

provides services to spawn each executable program unit.

6. If the user confinns its execution, VNM is invoked.

7. The VNM constructs a distributed system for executing the application.

8. During the construction, the VNM communicates with DM to get the spawning

process. Meanwhile, the VNM coordinates the executable codes and dispatches

them.

9. The VNM manages DDAS while it is active.

10. Once the distributed computing finishes, the RTS returns to the EPF execution state.
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11. If there are more applications to be computed, the user may continue to submit them

until all are done. The exit command tenninates the RTS.

invoke
Execute

I

i

.!

Send

Execute

Connect

VNM

Spawn process

I Parser I
!.:

return

i

:0lII
Application

[check== TrueJ

I EPF I
------I.~i check

!

Disconnect

Exit
Figure 12. Run-time System Basic Operations

4.3.2 Executing Platform (EPF)

The EPF allows the users to input their application or commands. It

communicates with the Parser and forwards the application to the OM. It also invokes

the VNM when the user confirms to execute the application.

The EPF commands consist of Application command, Execute command and Exit

command. The Application command is used to input the application. The fonnat is:

Application <cftype> <application>

As we mentioned in section 4.1, in this research, all applications are assumed to

be built using only one combining form. By this assumption, the <cftype> and
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<application> options take arguments, listed in Table 2 and Table 3.

Table 2. <cftype> Options

Option Meaning

--.
-0 Stands for composition

-1 Stands for pipeline

Table 3. <application> Options

Option Meaning

<name> [. <name> ... ] : <indata> composition

<name> [II <name> ... ] : <indata> Pipeline

Naming methods of an application are presented in the next chapter. The reader

is referred to it to see the detailed naming policy used in this research.

The Execute command and Exit command do not have any argument. Their

formats are "Execute" and "Exit", respectively. The Execute command is used to invoke

the VNM, which builds a distributed system for executing the functional form. The Exit

command is used to quit the run-time system.

4.3.3 Parser

The Parser is used to determine whether the application is syntactically well

formed or not. In this research, non-recursive predictive parsing is employed. The model

is shown in Figure 13.
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Lexical
Application Analyzer

Token Get next Token

Stack

x
y

Z

$

Predictive Parsing
Program

Output

Figure 13. Model of a Non-Recursive Predictive Parser

This non-recursive predictive parser has a lexical analyzer, a stack, a parsing

table, and a predictive parsing program. The lexical analyzer is to extract the next token

from application and give it to the parsing program. The stack contains a sequence of

grammar symbols with $ on the bottom, indicating the bottom of the stack. Initiall y, the

stack contains the start symbol of the grammar on top of $. The parsing table is a two

dimensional array M[A,a], where A is a nontenninal, and a is a terminal or the symbol $.

The Parser is controlled by the predictive parsing program. The behavior of the parser

can be described in terms of its configurations, which give the stack contents and the

remaining input.

4.3.4 Decomposition Module (DM)

Before execution, the application should he decomposed to a collection of

executable program units. It is accomplished by the decomposition module. The DM
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also provides operations to spawn processes. Figure 14 shows the decomposition model.

Figure 14. Decomposition Module

The core component of the DM is a decomposer. The decomposer stores the

information about each executable program unit. The information should have the

following components and the first four components should be an array of size N. N is

the number of programs in this application. We call the stored infonnation a meta

functional unit (MFU).

Spawn services

Component programsApplication

Code Name Code Type(Java, C or C++) Number of Programs in this application

Figure 15. Basic Components of a MFU

In this design, code name, code type and the first input file can be read from the

name of an application itself. The details of naming an application are provided in the

next chapter. The output file name will be created by the system automatically. The

number of programs contained in this combining form will be detected by the system

also.

For each decomposer, it also must provide an operation to spawn the process.

That is, it must provide process creation and execution services.

4.3.5 Virtual Network Manager (VNM)

Different combining forms have their own specific execution and communication

order rules. The VNM helps to construct a different distributed system for different
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combining forms. During the construction, the VNM communicates with the DM to get

the spawning process and the related information stored in the MFU. It serves as a

coordinator and dispatcher for executable program units. It also maintains the DDAS

while it is active.

This section describes the basic execution and communication rules of

composition and pipeline, respectively, and the role of VNM in each case, illustrates the

virtual network, which includes the command set of VNM for constructing and

maintaining the DDAS, and presents the VNM environment for pipeline programming.

4.3.5.1 Composition

In composition, the component executable program units of an application are

executed in sequential order, which means that the next one can run only after the

previous one has terminated. Therefore, a looping structure is used to control the

execution order of the codes. In composition, all tasks can be done (I) in one processor

one after the other, or (2) can be done in different processors one by one. In this

research, we use the first approach since that is the most efficient way for an inherently

sequential composition. It reduces the overhead of message passing. We use the second

approach as a special case of pipeline, which will be described in the next section. By

this assumption, the components in composition do not need to be distributed to differenl

machines. So VNM does not need to build a network for it.
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4.3.5.2 Pipeline

In pipeline, the component executable program units of an application are

executed in pipeline order, which means that the programs are performed in succession

Figure 16. Pipelined Processes (Adopted from [33])

nodes are idle, it can distribute tasks to idle nodes. Also, it can serve as barrier

p3p2pIpO

as we mentioned above. Meanwhile, it is also a special case of pipeline. This special

A key requirement for pipeline is that the communication happens only between

synchronization if composition involves functions such as the ones built from

and may run in parallel at the same time. In pipeline, each task will be executed by a

case is suitable for workload balancing. When the first node is too busy, while the other

succession but not in parallel at the same time, it is the second approach of composition

and Figure 18. In this research, a ring structure is employed.

ring structure such as line of processors connected to a host system as shown in Figure 17

separate process or processor, as shown in Figure 16. If each program is performed in

construction functional form.

adjacent processes. This suggests direct communication links between the processors

onto which adjacent processes are mapped. An ideal interconnection structure is a line or
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Figure 18. Pipeline with a Master Process and Ring Configuration (Adopted from [33])

Slaves

" ~
:~:I: '.-4III~t-l .-_...-_••.._.--_..-_•..._.-._-~~

-------.-.
Master process

4.3.5.3 Virtual Network

The virtual network is a collection of identical processing elements, also called

nodes or processors. Though concurrent processors can be composed of a variety of

different nodes, in this research, an ensemble of identical nodes is being used. Each of

the nodes executes its own instruction stream and operates on a separate set of data. That

is, the nodes comprise a MIMD machine structure with no shared memory facilities. All

communication between nodes is accomplished by passing messages. In this research, a

modified DDAS is employed to provide all communication between nodes.

Having introduced the virtual network that we shall use to explore concun'ent

programming techniques, we now define the command set which will be used to

construct and maintain the virtual network. Table 4 shows the command set provided by

the VNM to construct and maintain the virtual network.
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Table 4. Command Set of the VNM

Command Option Meaning

1. Send FOCS executable codes to the remote nodets

Connect Machine 2. Remote execute FOCS components

1. Send message to kill the remote process

Disconnect Machine 2. Remote delete FOCS components

machine fl Send the file fl to the remote machine

Send machine fl f2 Send the file f1 to the remote machine named as f2

Execute Invoke program execution

4.3.5.4 VNM Environment for Pipeline Programming

The VNM environment for pipeline programming IS based on the following

algorithm for a pipeline application (adopted from [35]):

1. Create a set of processors.

2. Assign a task to each processor.

3. The first task performs calculations on a portion of the data, writes the results

to a shared file and notifies the next task that the results are available for

processIng.

4. Add additional tasks, gIvmg the first task new data sets and having each

subsequent task use the results of the previous task until all the work is done.

5. When work runs out, each task terminates or, if there are other tasks to be
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done, relinquishes its processor or spins until it is assigned a new task.

6. Proceed with serial execution.

Figure 19 illustrates the pipeline programming model.

PROCESSOROPROCESSORIPROCESSOR2PROCESSOR3

Figure 19. Pipeline Programming Model (Adopted from [35])

Figure 20 illustrates the VNM environment for pipeline programming as

implemented in this research.
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FDes running (FOeS executable components
eonnectO; ---__ .=========::: :~ received,

-~l:S-~nntng1------------_______ -- ~(FDeS executable components
for (data set j=l ;j<m; j++){ ~while(received()==moreData){ received,
p I execute on data set j; , /' Send(prev, "OK"); FOCS running)

"
produce outlj /''',

,
~output of p(i-I) received;

,,
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if (recei vedO==OK) A""'-' .._,,-,, produce out nj;
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}
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----------------------------------- (Kill the running process
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Figure 20. VNM Environment for Pipeline Programming



CHAPTER 5

SYSTEM IMPLEMENTATION

In this chapter, the implementation of the three layers defined in the previous

chapter is described. We begin this chapter with a Context Free Grammar specification

of the top-level layer. Following the top-level layer, we show in detail the

implementation of the lowest-level layer -- DDAS kernel. All the basic routines in

DDAS kernel will not refer to any particular variable or to any interconnection topology.

It has been implemented to be a totally independent package, which can be easily

installed on other machines. Finally, the middle-level layer - RTS is discussed. Even

though each component of RTS is discussed, emphasis is placed on the VNM. In

addition to the discussion in this chapter, Appendix B provides some source code.

5.1 Top-level Layer - Application

Each application is a collection of executable program units written in Java, C or

C++. In this research, as we mentioned in the previous chapter, all applications are

assumed to be built using only one combining form. The specification of each application

is given below as a Context Free Grammar (CFG). The start symbol of the CFG

definition of application is the variable <application>. Non-terminals are specified

between < and> symbols.

<application> ~ <program-unit><space>: <space><input-data>
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<program-unit>~ <program> <repeat>

<repeat>~ . <space><program><repeat>

<repeat> ~ II <space><program><repeat>

<repeat>~ f

<program>~ <ill>_<exec-type>

<input> ~ <ID>.<data-suffix>

<ill> ~id

(only for composition)

(only for pipeline)

<exec-type>~ j

<exec-type> ~ c

<space>~ any sequence of one or more blanks

<data-suffix> ~ dat

In this research, each <program> contains <ID>, _, and <exec-type>. By using

this specification fonn for program names, the languages of implementation can be

inferred by the RTS.

5.2 Lowest-level Layer - DDAS Kernel

A modified DDAS (as we mentioned in the previous chapter) is implemented in

this research. DDAS manager is included in the next section as part of the RTS. In this

section, we describe the implementation of the DDAS kernel only. We first describe the

implementation of the underlying components. We then describe the new virtual network

data set up file (vns.data), which is used to support this modified DDAS kernel. Finally,

we describe the role of this DDAS kernel. That is, the service routines provided by the

3R



--

-

DDAS kernel.

DDAS kernel is a small set of data structures and routines that are at the core of

this distributed system. Telnet, FIP and synchronization are underlying components. A

new Telnet class based on IOtest class [31] is shown in Figure 21 and a new FrP file

configuration is shown in Figure 22 respectively. The synchronization component is

adopted from [32]. Port 23 is used in Telnet, port 21 is used in FIP, and port 7003 is

used in synchronization. By these modifications, all the parameters used to construct the

distributed computing system can be read at run-time.
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package DDAS.TELNET;
importjava.io. *;
public class Telnet {

TelnetiO tio = new TelnetIOO;
public Telnet (int function-type, String host. String userld, String passWd. String msg,
String command, String msgMore, String runMsg, String changeDir, String makeEx) {

try {
tio.connect(host, port); 1/ connect other host
wait("login:"); II wait for receiving "login"
send(userId); II send userld
wait("password:"); II wait for receiving "password"
send(password); II send password
wait(msg); II wait for receiving prompt
send(changeDir); II send changing directory
wait(msgMore); II wait for receiving more prompt
if (function-type=-EXECUTE)

send(makeEx); II make executable file
send(command); II send function command
if (function-type==EXECUTE)

wait(runMsg);
if (function-type==DELETE)

wait(msgMore);
tio.disconnectO; II disconnect form the host

} calch nOException e)
e.printStackTraceO;

}
II skip any received data until the checkData appears
private synchronized void wait(String checkData){

String receivedData = null;
do {

try{
receivedData = new String(tio.receive());

}catch (IOException e) {
e.prinIStackTrace() ;

I
}while (receivedData.indexOf(checkData) == -1);

}
Iisend a string to the remote host, since TelnelIO needs a byte buffer
II we have 10 convert 10 string first
private synchronized void send (String sendDataH

byte[] buf = new byte[sendData.lengthO];
buf = sendData.getBytesO;
try{ tio.send(buf);
} catch (IOException e){

e.printStackTraceO; }

Figure 21. Telnet Class Used in the Modified DDAS
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Figure 22. FIP File Configuration Used in the Modified DDAS

In order to support this modified DDAS kernel functions, the virtual network

setup data file (vns.data) need to be modified. It should contain the following fields to

enable the modified DDAS system to set-up run-time parameters.

1. Host name of each machine which the user has full access authorization

2. User ID

3. Password for this account

4. The initial prompt after the system login

5. Executable program directory

6. Initial running status

The role of this kernel is to provide remote execute and delete services (Figure

23), migration services (Figure 24), and message passing services (Figure 25).

/I Remote Execute & Delete Services
II Based on Telnet
public static void remoteExecute(String host, String userld, String passWd, String msg, String command.

String msgMore, String runMsg, String changeDir, String makeEx){
Telnet re = new Telnet ( EXECUTE, host, userld, passWd, msg, command.

msgMore, runMsg, changeDir, makeEx);

public static void remoteDelete(String host, String userld, String passWd, String msg. String command,
String msgMore, String changeDir)(

Telnet rd = new Telnet ( DELETE, host, userld, passWd, msg, command,
msgMore. "", changeDir, '''');

Figure 23. Remote Execute & Delete Services
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II Migration services
II By using Java Runtime.getRuntimeO.execO to create migration process
II Parameter comm is based on FTP command.
public static void sendFiles(String comm, String host, String userld, String passWdH

commands =comm + .... + host + .... + userld + .. " +passWd;
Process sf =Runtime.getRuntimeO.exec(commands);
sf. waitForO;

public static void sendData(String comm, String host, String userld, String passWd, String path,
String sourceFile, String destinationFile) (

commands =comm + .. " + host + .... + userld + .. "+passWd +"" + path
+ " " + sourceFile + .. " + destinationFile;

Process sf = Runtime.getRuntimeO.exec(commands);
sf.waitForO;

Figure 24. Migration Services

II Message Passing Services
II Based on Synchronization package
II Message Send Routine
public static void send(String host, String msg) {

setmsgSend(msg);
setServer(host);
msgSendO;

I
II Message Received Routine
II Set up sever socket to listen to the client.
II Once accept the client's request, return Extendrendezvous object to communicate with the client.
public static void receivedO (

openSocket() ;
while(lock == 0) pause(PAUSE);

)
II Message sendReceived Routine
public static void msgSendReceived(String host, String msg) {

send(host, msg}; II Client makes a quest to host.
received(); II Server receives the quest and makes a reply

)
II Message sendReceived Routine
public static void msgSendReceived(String hostl, String msg, String host2) I

send(host I, msg)jl Client makes a quest to host 1
setServer(host2) ;
receivedO; 1/ Server receives the quest and makes a reply

}
II Message Send Routine, when the host and the msg has been set
II Open client socket and make a request to server
II Once the request has been accepted, return Extendrendezvous object to communicate with the server
public static void msgSendO (

connectSocketO;
while(lock == I) pause(PAUSE);

Figure 25. Message Passing Services
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The Detailed implementation is given in Appendix B.

5.3 Middle-level Layer -- Run-time system (RTS)

This section describes an implementation of each component of the run-time

system. Section 5.3.1 and 5.3.2 give the algorithms for the EPF and the Parser,

respectively. Section 5.3.3 describes the implementation of the DM. At last, section

5.3.4 discuss the VNM. Since the VNM is the core of the RTS, our focus is on this sub-

section.

5.3.1 Executing Platform (EPF)

We have described the responsibilities of the EPF in Chapler 4. The algorithm for

EPF is given below:

Algorithm 1. EPF

repeat

provide "EPF»" prompt

Let stdin be the standard input and args be the number of the input tokens

command =the first token of the input;

if (command.equals( APPLICATION) && (args >1»

cIType =the second token of the input;

if (cIType.equals(COMPOSTION) II cIType.equals(PIPELINE»

According to the Parser class' construct, standard the input
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Parser test = new ParserO~

if (test.checkO = true)

According to the OM's construct, standard input;

if the application is executable

invoke DM;

else helpO;

else if (command.equals(EXECUTE) && (args ==1»

invoke VNM;

unti I comrnand.equals(EXIT)

5.3.2 Parser

This Parser is based on detenninistic predictive parsing. An LL(l) parse table

[36] is constructed and used. The specific algorithm is given below:

Algorithm 2 -- Parser

Input: A string wand a parsing table M for grammar G.

Output: if w is in LeG), a leftmost derivation of w; otherwise, an error indication.

Method:

set ip to point to the fjrst symbol of w$;

repeat

let X be the top stack symbol and a the symbol pointed by ip;

if X is a tenninal or $ then

iJ X=a then
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pop X from the stack and advance ip

else errorO

else II X is a nonterrninal

ifM[X,a] = X -> Yl Y2...YK then begin

pop X from the stack;

push YkYk-l...Yl onto the stack with Y1 on top;

output the production X->Yl Y2...Yn

end

else errorO

until X=$ II stack is empty

The push down automata (PDA) M is as follows:

M=({q}, { :,., II, id, dat}, {<application>, <program-unit>, <repeat>, <program>,

<input>, <ID>, <data-suffix>, :, ., II, id, dat, $}, S, q, $, {})

The transition table is as follows:

(l) 8 (q, f , <application» ={ (q, <program-unit>:<input-data»;

(2) 8 (q, c, <program-unit» ={(q, <program><repeat»;

(3) 8 (q, c, <repeat» ={ (q, .<program><repeat»; (only for composition)

(4) S (q, E, <repeat» ={ (q, II<program><repeat»; (only for pipeline)

(5) 8 (g, E, <repeat» ={(q, E);

(6) 8 (q, £, <program» ={(q, id); I/This is a little bit different form the way we

specified in section 5.1. We consider <ID>_<exec-type> as a whole program ID,

which does not need to be broken in this PDA.

(7) 8 (q, E, <input» ={ (g, <ID>.<data-suffix»;
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(8) 0 (q, E, <ill» ={ (q, id);

(9) 0 (q, E, <data-suffix» ={ (q, dat);

(10) 0 (q, :, :) =({q, e)} ~

(ll) 0 (q,.,.) ={ {q, E)};

(12) O(q, II, II) ={ {q, E)};

(13) 0 (q, id, id) ={ {q, E)};

(14) 0 (q, dat, dat) ={ {q, E)};

(15) 0 (q, $, $) ={ {q, E)}~

This corresponding PDA will accept application strings by empty stack. Refer to

the Appendix B for the detailed implementation.

5.3.3 Decomposition Module (DM)

In the previous chapter, we described the design of the decomposition module,

and indicated that a decomposer is the core component in this OM. The decomposer i

designed to store the infonnation about each executable program unit meta functional

unit (MFU), rather than the program itself. Figure 26 shows the data components of the

MFU. Figure 27 shows the routines used to retrieve information from a MFU. These

routines are used by the VNM to retrieve the useful information. Figure 28 shows how to

decompose an application into a collection MFUs. At last, Figure 29 shows how the

decomposer creates and executes a process. It shows the process to spawn a process.
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package DM;
import java.io.*;
import java.uti1.*;
public class Decomposer implements ExecType{

private String[l prog; II a collection of executable program units used in this application
private String[] type; II language types set of each executable program units
private String[][] input; Ilinput data sets
private String[][} output; II output data sets
private int count=O; Iinumber of programs used in this application
private int dataCount=O; II number of data sets used in the first program
private String[] data; II data sets consumed by the first program

Figure 26. The Infonnation Stored in a MFU

public String getProg(int index){
return prog[index};

}
public String getType(int index) {

return type[indexJ;

I
public String getInput(int index, int d){

return input[index)[d};
}
public String getOutput(int index,int d){

retum output[indexJ[d};
}
public int getProgCountO{

return count;

I
public int getDataCountO{

return dataCount;

Figure 27. The Routines to Retrieve Infonnation from a MFU
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public Decomposer(int i, String[) program, String indata)throws Exception{
prog=new String[i];
type=new String[i];
getData(indata);
input=new String[illdataCount};
output=new String[i}[dataCount};
StringTokenizer str;
count =i;
for (jnt j=O; j<count; j++) [

str = new StringTokenizer(programU], "_");
prog[j ]=str. nextTokenO;
type[j]="_"+str. nextTokenO;
if(j=O)

for (int n=O; n<dataCount; n++)
input[j][n]=data[o] ;

else
for (iot 0=0; o<dataCount; n++)

input[j)[n]="out"+(j-l )+n;
for (int n=O; n<dataCount; n++)

output[j] [n]="out"+j+n;

}
private void getData(String indata) throws Exception{

BufferedReader stdin=
new BufferedReader(new FileReader(new File(indata)));

StringTokenizer str=new StringTokenizcr(stdin.readLine());
dataCount=str.countTokensO;
data=new String[dataCount);
for (int m=O; m<dataCount; m++)

data[m]=str.nextTokenO;

Figure 28. Construction of MFUs from an Application

II By using Java Runtime.getRuntimeO.execO function
public void spawn(int index, int d) throws Exception[

spawn(type[indexJ.prog[index],input[index][d],output[index][d]);
}
private void spawn(String type,String prog, String input, String output) throws Exception I

String command=null;
if (type.equals(JAVACODE»)

command="Execj"+" "+prog+" "+input+" "+output;
else if (type.equals(OTHER»

command="Execc"+" "+prog+" "+input+" "+output;
Process ps= Runtime.getRuntimeO·exec(command);
ps. waitForO;

Figure 29. DM's Spawn Operation
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5.3.4 Virtual Network Manager (VNM)

In Chapter 4 we have described the VNM, the core component of the RTS, which

builds the corresponding network as necessary and serves as a coordinator and dispatcher

of the executable program units. In this section we first describe the implementation of

composition functional form which does not need the VNM to build a network for it by

using the first approach. We then describe the command set of VNM, to which the

pipeline programming environment will be applied. However, before we proceed to

discuss the command set of the VNM, we must first describe the virtual network on

which the command set is working. Finally, We present in detail a specific

implementation of a virtual network environment for pipeline programming.

5.3.4.1 Composition Functional Form Implementation

As we mentioned before, the component programs in composition are executed

one after the other. Therefore, a looping structure is used to control the execution order.

And hy using this approach, all tasks can be done in one processor, which means that the

VNM does not need to build a network for it.

public void composition() throws Exception{
Decomposer to = new Decomposer(num. program. indata);

for (int m=O; m<tO.getProgCountO; m++)
to.spawn(m,O);

Figure 30. Implementation of Composition
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The routine composition, shown in Figure 30, communicates with the decomposer

to get the information and the spawn operation. The method call to.getProgCountO

returns the number of the component programs in a composition application. A for-loop

is used here to do the sequential algorithm.

5.3.4.2 Virtual Network Command Set

Before we can discuss the implementation of the command set, we must first

examine some of the details of the virtual network that is used in this research. As

mentioned previously, the virtual network is an ensemble of independent processing

elements communicating with each other by exchanging messages. In this research, we

use the modified DDAS to provide message passing exclusively and make no use of any

shared memory facilities. Using those modified DDAS kernel services - REDS, MS, and

MPS - each node has the ability to allow it to communicate with other nodes in the

ensemble. These kernel services are the underlying routines for the VNM to manage the

virtual network. The VNM command set is constructed based on them.

In this research, the ensemble is implemented by using an array of the Vnsd. The

Vnsd is a class describing the fields in a virtual network setup node or processor. It

contains all the fields required by the virtual network run-time setting up. Actually, this

class is used to store all the information read from the vns.data fi Ie during its run time set

up. Another useful field in this class is a unique identifying number, which will be

referred to as procId. Since a copy of the same program is typically loaded into each of

the nodes of the virtual network, the processor number is very important for referring to a

so
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specific node within the ensemble. In this research, we simply number the nodes with

consecutive integers starting at O. That is, we assign its order in this ensemble to each

node as its processor Id. By this assumption, each node's procId is identical to its index

in the Vnsd array. In addition, the Vnsd class provides the operations to store or retrieve

the information on each field. The size of the array is the total number of nodes in this

ensemble, which will be referred to as nproc.

We should now be able to discuss the implementation of the commands used to

manage DDAS during its run time. This command set is built on the top of the DDAS

kernel.

We begin by introducing connect command which provides the capability to

establish the virtual network. The implementation is described below:

Stepl: Retrieve the information from the Vnsd class

Step2: FTP FDCS executable components to the remote node

Step3: TELNET

Step3 .• : Login

Step3.2: Execute FDCS executable components in the remote node

Step3.3: Logout

Step 4: Mark this node is in use.

This command may have one parameter, or no parameter. If it has a parameter, the

parameter is the index of the Vnsd array, which is used to retrieve information from the

Vnsd class. If there is no parameter, the information for all the nodes will be assumed to

be default values. In this implementation, step I is used to prepare arguments for DDAS

kernel service routines. Step2 is accomplished by using the DDAS kernel MS routine.
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Step 3 is done by using the DDAS kernel REDS routine. Step 4 is just to infonn the

virtual network that this node is not free.

We now discuss its complementary command, disconnect, which kills the remote

process and then cleans the remote host. The implementation is as follows:

Stepl: Retrieve the information from the Vnsd class

Step2: Send "Kill" message to the remote host to kill the process

Step3: TELNET

Step3.l: Login

Step3.2: Delete FOeS executable components in the remote host

Step3.3: Logout

Step4: Mark this node is free.

Its implementation is similar to that of the connect command. They both have

one or no parameter, and need to retrieve information from the Vnsd class to prepare the

arguments for DDAS kernel service routines first. The differences are in steps 2, 3 and 4.

In disconnect command, step 2 guarantees to kill the process by using DDAS kernel MPS

service first, and then step3 is used to clean the FDCS executable components in the

remote host by using DDAS kernel. REDS service. If no guarantee to kill the remote

process, deadlock may occur. At I.ast, step 4 marks the node is free.

The third command we discuss is the send command. It is based on the DDAS

kernel MS sendData routine. As its name indicates, the command is used to send the data

to the remote host. One of the features we add here is the ability to send data to the

remote node only by indicating the destination machine name, instead of all the fields

needed by the system run time setting up. It is more flexible to be used in practice. The
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process of sending data to a node consists of two basic steps:

Step!: Retrieve the infonnation from the Vnsd class

Step2: FrP data file to the remote machine

Same as the above two commands, step 1 is used to prepare arguments for the

DDAS kernel service routine. Step 2 is done by using DDAS kernel MS service routine.

The protocols in Figure 31 illustrate the use of the send command.

liSend sourceFile to remote host and name as destinationFile
private static void sendData(String host. String sourceFile, String destinationFile);

//Send sourceFile to remote host
private static void sendData(String host, String sourceFile)

Figure 31. Send Command

Having defined a specific implementation of the above three commands, we are

ready to proceed with the implementation of the execute command. In this research, the

execute command invokes pipeline application execution. I describe it in detail in the

next section.

5.3.4.3 Pipeline Functional Form Implementation

The implementation that we consider here will reflect many of the features of the

virtual network presented in the previous sections. However, several new features will be

added, such as the interconnection topology and routing.

Before we can proceed to the implementation of the pipeline functional form, we

must select an interconnection topology for the ensemble. In chapter 4, we saw that a

line or ring structure is an ideal interconnection structure for pipeline. In this research,

we use a ring topology.

53



As mentioned previously, a key requirement for pipelining is the ability to send

messages between adjacent processes in the pipeline. This suggests direct

communication links between the processors onto which adjacent processes are mapped.

A convenient way of mapping is for the process ill identical to the processor ill - procId.

While such a mapping scheme is based on the assumption that one process maps to one

node. Even though the virtual network allows us to discuss environments in which there

are many processes per node. However, for concreteness we will assume a one-to-one

mapping between processes and nodes. Having a multitasking environment in each node

is necessary for some advanced applications, but for the applications we shall be

considering, such an environment would only add unneeded complexity.

Due to the synchronization imposed to the pipeline programming, they are most

useful in applications whose communications can be expected by the participating nodes.

In addition, any message-forwarding must be done explicitly, requiring that intermediate

nodes also "know" in advance about the intended communication. Therefore, routing is a

prerequisite.

In this research, the most important thing in run time routing is to let the current

remote node know its own machine name. After that, according to the information stored

in the Vnsd (virtual network setup data) class, get the previous machine and the next

machine. (This is based on the above mapping scheme - the process ill identical to the

processor ID.) Figure 32 shows the methods.

We are now ready to describe the pipeline implementation in this virtual network

environment. We will examine a sample problem that can be pipelined.
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static void findCurrMachineOI
Socket theSocket;
main=vnsd[O] .getmachineNameO;
theSocket = new Socket(main,PORT);
curr=theSocket.getLocalAddressO.getHostName();
if (theSocket!=null)

theSocket.closeO;

static void routingO {
int index=-l;
index=getlndex(curr) ;
if (index==O )

prev=main;
else if (index>O)

prev=vnsd[index-l].getmachineNameO;

if (nproc == (index+ 1)
next="final";

else if (nproc>(index+ l)){
next=vnsd[index+ 1].getmachineNameO;

Figure 32. Run time Routing Method

For our example (adopted from [33]), consider the problem of adding a list of

numbers. A pipeline solution could have each process in the pipeline add one number to

an accumulation sum, as shown in Figure 33, when one number is held in each process.

The partial sum is passed from one process to the next, each process adding its number to

the accumulating sum.

Figure 33. Pipelined Addition (A Ring Architecture)

The basic code for process Pi is simply shown in Figure 34 except for the first

process. PO, which is shown in Figure 35; and the last process, Pn-l, which is shown in

Figure 36.



receivedO;
to.spawn(getlndex(curr),O);
sendData(nex.t, to.getOutput(getlndex(curr),O»;

I send(next, "execute");

Figure 34. The Basic Code for the Middle Process Pi

to.spawn(getIndex(curr),O);
sendData(next, to.getOutput(getIndex(curr),O»;
send(next, "execute");

Figure 35. The Basic Code for the First Process PI

receivedO;
to.spawn(getlndex(curr),O);
sendData(main, to.getOutput(getIndex(cur),O»;

Figure 36. The Basic Code for the Last Process Pn

5.4 Test Environment and Application Examples

In this research, the applications are stored in the main host machine. The set of

computers used on an application first must be defined prior to running the programs.

This set forms the virtual distributed system. The way of doing this is by creating a list

of the names of the computers available in a virtual network set up data (vns.data) file.

For these computers, the user must have full privilege. The file is then read by FOCS

run-time system. The system used in this research is shown in Table 5.

Table 5. The Domains Used in this Research

Domain IP Address

a.cs.okstate.cdu 139.78.113.1

eslabsvr. wslab.okstate.edu 139.78.113.102

chester.cs.okstate.edu 139.78.96.1
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All the applications written in composition and pipeline programming framework

can execute in this system.

Examples:

Application written in composition framework as:

Application written in pipeline framework as:

SumlntJJ II Sumlnt2_c II Sumlntlj II Sumlntj : dl.dat
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis we implement a distributed system environment to execute

applications built by composition and pipeline functional fOnTIs. We put forth an

architectural support for promoting software reusability. Moreover, it provides an

environment, which introduces some simultaneity after a complex, time-consuming task

has been broken into a series of subtasks. We approach this problem by proposing a

three-layered architecture. The lowest layer is the Dynamic Distributed Adaptive System

(DDAS), which handles all the communications between nodes of a network. The top-

level layer is the application layer, which is a collection of executable programs. The

middle-layer is based on the combining fOnTIS of composition and pipeline, which

provides the run-time mechanisms for coordination and dispatch of independent program

units.

We also developed a modified DDAS system to support this system. This

modified system has the following new features:

1. Enhance scalability and extensibility of the system

2. Service functions more clear and independent

3. Increase the adaptive capability of the system

4. Provide a run-time routing for pipeline programming

5. Dead lock free
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However, due to the time limitation, the following aspect has not been done yet,

which will be left as future work:

A distributed system environment based on all functional forms adopted in the

FOes model
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APPDENDIXA

ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
,

CF Combining Forms I

CFO Context Free Grammar

CORBA Common Object Request Broker Adapter

DCE Distributed Computing Environment

DDAS Dynamic Di stri buted Adaptive System

DM Decomposition Module

DOD Department of Defense

EPF Executing Platform

FDCS Functional Distributed Computing System

FTP File Transfer Protocol

IDL Interlace Description Language

IP Internet Protocol

lIOP Internet Inter-ORB Protocol

ISO International Standardization Organization

LAN Local Area Network

MFU Meta Functional Unit
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MIMD Multiple Instruction Multiple Data

OMG Object Management Group

OSF Open Software Foundation

OSI Open Systems Interconnection

RMI Remote Method Invocation

RPC Remote Procedure Call

RTS Run Time System

SQL Structured Query Language

TCP Transmission Control Protocol

VN Virtual Network

VNM Virtual Network Manager

WAN Wide Area Network
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APPDENDIXB

PARTIAL SYSTEM SOURCE CODE
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package PARSER;
import java.io.*;
import java.util.*;

1*******************************************************************
* This Parser is based on detenninistic predictive parsing. An LL(I) parse table
* is constructed and used. The specific algorithm is given below:
* input: A string wand a parsing table M for grammar G.
* output: if w is in L(G), a leftmost derivation of w;
* otherwise, an error indication.
* method:
* set ip to point to the first symbol of w$;
* repeat
* let X be the top stack symhol and a the symbol pointed by ip;
* if X is a terminal or $ then
* if X=a then
* pop X from the stack and advance ip
* else errorO
* else II X is a nonterrninal
* ifM[X,a] = X -> YIY2...YK then begin
* pop X from the stack;
* push YkYk-l...YI onto the stack with YI on top;
* output the production X->Y1Y2...Yn
* end
>.: else errorO
* until X=$ II stack is empty
*******************************************************************1

public class Parser implements CfType {
private boolean correct=false;
private PDA pda;
private int X;
private int ip;
private int rule;

public Parser(String comm, String type){
pda=new PDA(comm, type);

while (!«(String)pda.getStackO· topO).equals("$"») {

ip=pda.getIndexOffoken0;
X=pda.getStackToplndexO;
if (X==-l) {II terminal symbols

if (pda.setStack(pda.getFirstTokenO» Ilpop tenninal from stack
pda.removeFirstTokenO; Ilrnove the pointer which point to the comm

else
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error();
}
else { II nontenninal sysbols

String test2=(String) pda.getStackO.topO;
rule= parsin~table.M[X][ip];
if (rule!=-l){ Ilthere is a production

pda.setStack(rule); II push the production into the stack
}
else errorO;

correct=true;

private void errorO{
System.out.println("Invalid command.");
System.exit(O);

public boolean checkO{
return correct;

1***************************************************************
The PDA is constructed based on the CFG.
The CFG is as follows:
G=({S, E, K, X, P}, {., 11.:, program, input}, Productions, S),
where "program" means the input executable file name and "input"
means the input data file name. The productions are defined
as follows:
1) S->E:X
2) E->PK
31) K->.PK (only for composition)
32)K->IIPK (only for pipeline)
4) K->£
5) X->input
6) P->program

The PDA M is as follows:
M=({q}, {:, ., II, program, input}, {S, E, K, X, P, :, ., II ,program, input, $ }, <5, q, $, {})
The transition table is as follows:
(1) <5 (q, E, S)={(q, E:X)};
(2) <5 (g, E, E)={(q, PK)};
(31) <5 (g, £, K)={(q..PK)};
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(31).5 (g, E, K)={(g, IIPK)};
(4).5 (q, E, K)={(g, E)};

(5).5 (g, E, X)={(g, input)};
(6) 8 (q, E, P)={ (g, program)};
(7) 8 (q, :, :)={(g, E)};

(81).5 (q,., .)={(g, E)}; (only for composition)
(82) .5 (g, II, 11)={(q, £)}; (only for pipeline)
(9).5 (q, input, input)={(g, E)};
(10) &(q, program, program)={(g, £)};
(11) & (q, $, $ )={(g, E)};

This corresponding PDA will accept strings by Empty stack.
*******************************************************************1
class PDA implements CIType{

private STACK stack; IIPDA stack
private String pdaexp; lIexpression accepted/rejected by the PDA
private Token[] tk=new Token[MAX_TOKEN_SIZE];
private int count=O;
private int ip=O; II token index pointer;
private int type;

public PDA(String comm, String typ){
stack = new STACKO; II Create a new stack, initially it is empty
stack.push("$"); II Push start symbol "S" in stack
stack.push("S"); II Push "$" symbol in stack
pdaexp=comm+" $"; II Add "$" symbol at the end of the command
type=Integer.valueOf(typ.substring( 1)).1ntValueO;
setTokenArrayO;

private void setTokenArrayO throws StringlndexOutOfBoundsException{
StringTokcnizer str=new StringTokenizer(pdaexp);
count=str.countTokensO; II rea] number of tokens
for (int i=O; i< count; 1++){

String temp=str.nextTokenO;
tk[i]=new Token(temp,type);

public String getCommandO {
return pdaexp;

public STACK getStackO {
return stack;
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pubhc String getFirstTokenO throws StringlndexOutOfBoundsException{
return tk[ip].getTokenO; flip always points to the first token of the expression

}
pubhc int getlndexOITokenO throws StringlndexOutOfBoundsException{

String first=getFirstTokenO;
return tk[ip].getIndexO;

pubhc void removeFirstTokenO throws StringlndexOutOfBoundsException {
ip ++;

}

public int getStackToplndexO{
if (stack.topO=="S")

return 0;
else if (stack.topO=="E")

return 1;
else if (stack.top()=="K")

return 2;
else if (stack.topO=="X")

return 3;
else if (stack.topO=="P")

return 4;
return -1; Iiterminal symbols

public void setStack(int production){
swi tch(production) (
case 1: stack.popO; stack.push("X"); stack.push(":"); stack.push("E"); break;
case 2: stack.popO; stack.push("K"); stack.push("P lI

); break;
case 3: stack.popO; stack.push("K"); stack.push("P lI

);

if (type==COMP){
stack.push(". ");

}
else if (type==PIPE){

stack.push(" 11");
}
break;

case 4: stack.popO; break;
case 5: stack.popO; stack.push("input"); break;
case 6: stack.popO; stack.push("program"); break;
case -1:/1 System.out.println("case -1: Grammar error"); break;
default: break;
}
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private void printStack(int production){
System.out.println("type="+type);
switch(production) (
case 1: System.out.println("pop: S push: E:X"); break;
case 2: System.out.println("pop: E push: PK"); break;
case 3: if (type==COMP)

System.out.println("pop: K push: .PK");
System.out.println("pop: K push: .PK");

else if (type==PIPE)
System.out.println("pop: K push: HPK");

break;
case 4: System.out.printin("pop: K "); break;
case 5: System.out.println("pop: X push: input"); break;
case 6: System.out.printin("pop: P push: program"); break;
case -1: System.out.println("case -1: no production"); break;
default: break;
}

public boolean setStack(String strH
if «stack.topO==I:") && (str.equals(":"»){

stack.pop();
return true;

}
else if «(stack.topO==".") && (str.equals(". "»&&(type==COMP»

11((stack.top()=="li")&&(str.equals("II"»&&(type==PIPE»)(
stack.pop();
return true;

}
else if (stack.topO=="$") && (str.equals("$"»){

stack.popO;
return true;

}
else if (stack.topO=="program"){

Token check=new Token(str,type);
if (check.getIndexO==2){

stack.popO;
return true;

}
else return false;

)
else if (stack.topO=="input"){

Token check=new Token(str,type);
if (check.getIndexO==3)(

stack.popO;
return true;
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}
else return false;

}
return false:

}

class STACK extends Stack{
private static int count;

public STACKO{
super();
count=O;

public Object topO throws EmptyStackException {
return peekO;

public void incrementCountO{
count++;

public void decrementCountO {
count--;

public int getCountO I
return count;

1***********************************************************************
* LL(l) parse table M[A,a]: A stands for Nontenninal symbols, a stands for the grammar
* symbols. A->a. The value of the table M[] []: -I stands for error and each number
*stands for the number of the production which is going to be used.
**********************************************************************1

class parsin~table{

public static int[J[] M=
II : II program input $
II :. program input $

{{-I,-I,I, -l,-I},IIS
{ 2,2. 2, -l,-I},IIE
{ 4,3. -1, -l,-l},IIK
{-I,-I, -1, 5,-I},IIX
{-I,-1. 6. -I,-I},IIP



};

class Token implements CfType{
private String token;
private int index;

public int getlndexO{
return index:

public String getTokenO{
return token;

}

public Token(String token, int type){
this.token=token;
if (token.equals(":"»

index=O;
else if (token.equals(".")&& (type==COMP»

index=l;
else if (token.equals("$"»

index=4;
else if (islnput(token»

index=3;
else if (isProgram(token»

index=2;
else if (token.equals("II")&&(type==PIPE»

index=l;

public void printTokenO{
System.out.println("token="+tokenl:
System.out. printl n("index="+index);

private boolean isProgram(String token){
boolean result=true;

if (islnput(token)lltoken.equalsC'II"»
result=false;

return result;
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private boolean isInput(String token) throws StringIndexOutOfBoundsException

boolean result=false;
int index=token.indexOf(" .dat");
if (index==-lllindex==O)

return false;
else

if (token.substring(token.indexOf(" .dat")).equals(".dat"))
result=true;

return result;

public interface CfType {
final String COMPOSITION="-0";
final String PIPELINE="-1";
final int COMP = 0;
final int PIPE = 1;
final int MA)CTOKEN_SIZE = 100;

74



package DDAS;
/*****************************************
* Ddas Class
* Function:
* 1. Install Server socket on port 7003
* 2. Connect to the Server socket
* 3. Running Receiving thread
* 4. Running Sending thread
*****************************************/
import java.net.*;
import java.io.*;
import DDAS.Synchronization.*;
import DDAS.TELNET.*;

public class Ddas extends Concurrent {
private static String Server = null;
private static String msgReceived = null;
private static String msgSend = null;
private static int lock = 0;
protected static final int PAUSE = 50;
private static final int PORT = 7003;
public static boolean debug =true;
public static void setServer(String host) {

Server = host;

public static void setmsgSend(String msg){
msgSend= msg;

public static void setmsgReceived(String received){
msgRecei ved= received;

public static void setLock(int myLock){
lock= myLock;

}

public static String getServerO I
return Server;

public static String getmsgSendO I
return msgSend;
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public static String getmsgRecei vedO{
return msgReceived;

public static int getLockO{
return lock;

1****************************
* Message Passing Services *
***************************1
public static void send(String host, String msg) {

setmsgSend(msg);
setServer(host);
msgSendO;

public static void recei vedO {
openSocketO;
while(lock == 0) pause(PAUSE);

}

public static void msgSendReceived(String host, String msg) {
send(host, msg); II Client makes a quest.
receivedO; II Server receives the quest and makes a reply

public static void msgSendRecei ved(String hostl, String msg, String host2) {
send(hostl, msg); II Chent makes a quest.
setServer(host2);
receivedO; II Server receives the quest and makes a reply

public static void msgSendO {
connectSocketO;
while(lock == 1) pause(PAUSE);

II set-up socket as a server
private static void openSocketO {

lock = 0;

EstablishRendezvous er =null;
try {

er =new EstablishRendezvous(PORT); II open server socket
I catch (MessagePassingException e) {



System.err.println(e);
System.exit(l);

II install Server socket
Rendezvous r = null;
try {

r = er.serverToClientO; IIServer is waiting for client's request and also
Ilreturn ExtendedRendezvous object to communicate with the client

} catch (MessagePassingException e) {
System.err.println("Server:" + e);

}
II Running Server
new Receiver(r);
er.closeO;

II connect to the Server socket
private static void connectSocketO {

lock = I;
Rendezvous r = null;

II create a rendezvous to the Server object
EstablishRendezvous er =null;
try {

er = new EstablishRendezvous(Server, PORT);
Ilclient side, save machine name and port

r = er.clientToServerO; Ilopen client socket and also return
II ExtendedRendezvous object to communicate with the server

} catch (MessagePassingException e) {
System.err.println(e);
System.exit(l);

}
II running Client
new Sender(r);

}

1***********************************
* Remote Execute & Delete Services *
***********************************1
Ill. Remote execute service
public static void remoteExecute(String host, String userld, String passWord,

String msg, String command, String msgMore,
String runMsg, String changeDir, String makeEx) (

Telnet re=new Telnet(l, host, userld, passWord, msg, command,
msgMore, runMsg, changeDir, makeEx);
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//2. Remote delete service
public static void remoteDeIete(String host, String userId, String passWord,

String msg, String command, String msgMore,
String changeDir){

Teinet rd=new TeInet(O, host, userId, passWord, msg, command, msgMore,"",
changeDir, '"');

/***********************
* Migration Services: *
**********************/

/11. Send files to remote machine
public static void sendFiIes(String comm, String host, String userId,

String passWord, String changeDir){
String commands = null;
try {

commands = comm + " " + host + " " + userld +" "+ passWord +" "
+ changeDir;

Process pc =
Runtime.getRuntimeO.exec(commands);

pc.waitForO;
} catch (IOException e) {
System.err.printIn(e);
System.err.printin(e);
} catch (lnterruptedExcepti on e) {
System.out.printlnC' If);
}

J

//2. Send data to remote machine
public static void sendData(String comm, String host, String userId, String passWord,

String path, String sourceFile, String destinationFiIe) {
String commands = null;
try {

commands = comm + " " + host + " " + userId+ " " + password + " " +
path + " " + sourceFile + " " + destinationFile;

Process pc =
Runtime.getRuntimeO·exec(commands);

pc.waitForO;
} catch (lOException e) {
System.err.printIn(e);
} catch (InterruptedEx.ception e) {
System.out.printIn(""):
}



/I Server side thread
class Receiver extends Ddas implements Runnable (

private Rendezvous r =null;
public Receiver(Rendezvous r) {

this.r = r;
new Thread(this).startO;

}
II running a thread for receiving integer data

public void runO {
setmsgRecei ved((String)r.serverGetRequestO);
T.serverMakeReply(lreceived");
r.closeO;
setLock(1);

}

II Client side thread
class Sender extends Ddas implements Runnable l

private Rendezvous r =null;

public Sender(Rendezvous r){
this.r = r;

new Thread(this).startO;
}

II running a thread for transferring data
public void runO {

int breakTime = 1000;
pause(breakTime);

try{
(String)r.clien tMakeRequestAwaitRepl y (getmsgSendO);

} catch (MessagePassingException e) {
System.err.println(e);
r.close():
System.exit(1);

}
pause(breakTi me);
r.closeO;
setLock(O);

}

79



package DM;
import java.io.*;
import java.utii.*;

public class Decomposer implements ExecType{
private String[] prog;
private String[] type;
private String[] [] input;
private String[] [] output;
private int count=O;
private int dataCount=O;
private String[] data;

public Decomposer(i nt i, String[] program, String indata)throws Exception {
prog=new String[i];
type=new String[i];
getData(indata);
input=new String[i][dataCount];
output=new String[i] [dataCount];
StringTokenizer str;
count =i;

for (intj=O; j<count; j++){
str = new StringTokenizer(program[j], t1_t1);
prog[j]=str.nextTokenO;
type[j]=t1_"+str.nextTokenO;

if U==O){
for (int n=O; n<dataCount; n++){

input[j][n]=data[n ];
}
else{

for (int n=O; n<dataCount; n++) {
input[j][n]="out"+U-l )+n;

}
for (int n=O; n<dataCount; n++){

output[j] [n]="out"+j+n;

private void getData(String indata) throws Exception {
BufferedReader stdin = new BufferedReader(new FileReader(new File(indata)));
StringTokenizer str=new StringTokenizer(stdin.readLine();
dataCount=str.countTokensO;
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data=new String[dataCount];
for (int m=O; m<dataCount; m++){

data[m]=str.nextTokenO;

public void spawn(int index, int d) throws Exception {
spawn(type[index] ,prog[index] ,input[ index] [d] ,output[index] [d]);

private void spawn(String type, String prog, String input, String output)
throws Exception {
String command=null;
try {

if (type.equals(JAVACODE»
command="Execj"+" "+prog+" "+input+" "+output;

else if (type.equals(OTHER»
command="Execc"+" "+prog+" "+input+" "+output;

Process pc= Runtime.getRuntimeO.exec(command);
pc.waitForO;

} catch (I0Exception e) {
System.err.println(e);

} catch (InterruptedException e) {
System.out.println(" ");

public String getProg(int index){
return prog[index];

public String getType(int index) {
return type[index);

}
public String getlnput(int index, int d){

return input[index][d];

public String getOutput(int index,int d){
return output[indexHd];

public int getProgCountO{
return count;
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public int getDataCountO{
return dataCount:

public interface ExecType {
final String JAVACODE="-J";
final String OTHER="_C";

final int FLAGLENGTH=2;
}
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