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CHAPTER 1 INTRODUCTION

One of the most fundamental problems in applied mathematics is that of optimization to

maximize or minimize a simple function. Consider as an example the function f(x) = 10

- (X_2)3. By differentiating f with respect to x, setting the derivative equal to zero, and

solving for x, one can generate a list of possible local extreme value for the function.

While all optimization problems can be viewed as an extension of this example, most,

unfortunately, cannot he solved so easily. In more typical applications, the objective

function has more than one variable.

Another complication is in the fact that many functions are not so easily defined or

differentiated. Not all functions can be written in terms of a mathematical expression,

and many complex functions are difficult or impossible to differentiate. In an attempt to

find other ways of solving these more realistic, less well-behaved optimization problems,

other computational techniques have been investigated, some popular methods that show

some promise are the genetic algorithm [I, 2], the chemotaxis algorithm [3], the simplex

algorithm [4], the simulated annealing algorithm [5], etc. We are focusing on discussing

the principles of genetic algorithms and chemotaxis algorithms, since these two

algorithms are implemented in this thesis.

1.1 Principles of Genetic Algorithms

The genetic algorithm (GA) is a combinatorial optimizer that is domain-independent: it is

applicable to all functions that can be evaluated. The genetic algorithm requires only two



things: (1) a means of representing possible solutions and (2) an objective function

evaluator which is a function that maps a value from the domain of possible solutions to a

scalar value. The genetic algorithm starts with a computer-created population of

individuals, each representing a point in the search space of a given function. Using an

individual's objective function as a measure of how "fit" that individual is within its

environment, the genetic algorithm simulates nature's survival of the fittest, essentially

forcing the evolution of a nearly optimal creature. This early optimal creature is then the

approximate solution to the corresponding optimization problem.

The genetic algorithm has been implemented in various forms since its introduction in the

late of 1960s. As its name suggests, the first research done on genetics-based algorithms

was not motivated by unsolved optimization problems. Instead, these algorithms were

designed as simulations of natural adaptive processes. Most researchers in the young

field of adaptation-simulation used models with properties closely resembling natural

phenomena. For example, the biological notions of diploid chromosomes and dominance

were both frequently mimicked by early algorithms. John Holland [6], a professor at the

University of Michigan, was one of the first researchers to carry out a substantial amount

of work in the field. He recognized the broad applicability of genetics-based algorithms

for optimization purposes, and this insight formed the basis for the modern notion of a

genetic algorithm.

Despite its power, the genetic algorithm is both elegant and simple. That such a simple,

straightforward routine can accomplish so much is quite unexpected. The genetic

algorithm contains only one main data structure: a population of individuals. Each

individual, affectionately known as a clitter, represents an element within the domain of



the solution space of the optimization problem; i.e., each critter represents a possible

solution to the problem. The issue of how to best represent a critter is very complex and

has tremendous problem-solving implications. In the simplest genetic algorithm, critters

are simple strings of bits (binary digits: ones and zeros). Each string of ones and zeros is

called a chromosome; the chromosome of a given critter is the only source for all the

information about the corresponding solution. In biological terms, the chromosomal

string is the genotype and the solution it represents the phenotype of a particular critter.

Associated with each individual is a fitness value. The value is a numerical

quantification of how good a solution to the optimization problem the individual is.

Individuals with chromosomal strings representing better solutions have higher fitness

value, while lower fitness values are attributed to those whose bit strings represent

inferior solutions [7].

It is important to realize that only two elements of the genetic algorithm need to be

changed in order to apply the algorithm to a new problem: the representation of the

individuals and the objective functions. Consider, for example, one of the most basic test

problems the GA is applied to: One Max. The goal in One Max is to maximize the

number of occurrences of digit 1 in an arbitrarily long string of bits. As an example, let

us assume that strings are eight bits long. The representation of an individual is thus a

string of eight ones and zeros: 10U0001, for example. Standard GA terminology refers

to each bit position as a locus and to the values at the loci as aIJeles. The set of all

symbols which an allele can assume is called the alphabet of the representation. In our

examples, the alphabet consists of a and 1 [8].
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Since the goal in One Max is to maximize the number of I bits, we need an objective

function evaluator which gives better ratings to individuals with more 1 bits. The

obvious choice is the function which assigns as an individual's fitness value the number

of ones in its representation; e.g., 10110001 has fitness four, while oo0000סס has fitness

zero. The goal, then, of our algorithm is to find the individual with fitness value eight:

11111111.

Now that we have a suitable representation and an appropriate function, the construction

of the genetic algorithm is almost complete. One of the important parameters of any GA

is population size. which is how many critters are maintained at any given time. In our

One Max example, we will assume a population size of four; populations are typically

much larger, often 20 to 200. Since we intend to have four critters "alive" in the current

population at any given time, the GA must create four individuals to form the initial

population. In the GA, these initial individuals are merely random bit strings. Thus our

initial population might consist of the four individuals in Figure 1-1, where each Xi is a

critter in the population.

Critter's String Fitness Selection Probability

XI = 00101111 5 5/17

X 2 = 00111010 4 4117

X, = 10111011 6 6/17

~ = 10000100 2 2/J7

Figure 1-1. Initial population.
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Common sense tells us that some of the initial individuals probably are going to be better

than others. That is, some bit strings will score higher fitness values, meaning they are

better solutions to the One Max problem. Analogously, some of the critters in the initial

population will be better adapted to their environment. In nature, those individuals that

are better adapted are more likely to survive. Survival of the fittest is mirrored in the

genetic algorithm through reproduction. one of the three main genetic operators.

The GA thus creates a second generation of individuals. Since the population size must

remain constant, however, each new individual must replace an old one. The GA creates

a population of new indi viduals to replace the previous generation; in our example, the

GA would create four new individuals. Each new individual will be identical to a certain

previous generation. Specifically, the probability of an individual Xk in the first

generation reproducing is f(X0/Lf(XD.

We can thus list for each of the individuals in our initial population that individual's

fitness value and the probability of it reproducing, shown in Figure 1-1. To continue

with our One Max example, we will assume that X3 reproduces twice, that Xl and X2

each reproduce once, and that ~, the least fit individual, fails to reproduce, thus yielding

the new population depicted in Figure 1-2.

The next step of the GA distinguishes it from other domain-independent optimization

techniques. In this step, the crossover operator, which is the second main genetic

operator, is repeatedly applied to pairs of individuals. Suppose for example that critters

one and three are chosen to mate or to be crossed. This would leave critters two and four

to be crossed. The process of crossing two individuals involves randomly selecting a

locus and then swapping between the two individuals their genetic materials following
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that locus. If in our example the crossover point selected for critters one and three were

the fourth locus, the resulting strings would be 10111111 and 00101011 shown in Figure

1-3. Likewise, if the sixth locus were selected as the crossover point for X2 and X4, the

individuals 10111010 and 00111011 would be formed.

Critter's String Fitness Selection Probability

XI = 10111011 6 6121

X2 = 10 111011 6 6/21

X3 = 00101 II 1 5 5/21

~=OOl1lO1O 4 4121

Figure 1-2. Population after reproduction.

Parents

101111011

001011111

Figure 1-3. Crossover.

Offspring

1O111111

00101011

One crossover thus creates two new individuals, called offspring; one containing the

beginning portion of the first individual followed by the ending portion of the second

individual, and another containing the beginning portion of the second individual
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followed by the ending portion of the first individual demonstrated in Figure 1-4. After

some portion of the population is crossed-over, we have a new population of individuals,

Critter's String Fitness Selection Probability

XI =10111111 7 7/21

X2 =10111010 5 5121

X3 = 00101011 4 4121

Xt =OOll1O11 5 5/21

Figure 1-4. Population after crossover (XI, X2, and X3, Xt)

each of which is either identical to an individual in the prior population or is the product

of genetic recombination through crossover. The significance of the crossover is

explained by Holland "the purpose of crossing strings in the genetic algorithm is to test

new parts of target regions rather than testing the same string over and over again in

successive generations." [1].

Before evaluating the new population, one final genetic operator is applied: mutation.

Mutation involves the flipping (switching 0 to 1 and vice versa) of alleles. A probability

Pm (which is usually rather low) is defined as the chance of any given allele being flipped.

In our One Max example, let us set pm = 0.05. Since there are four individuals, each with

eight loci, we would expect (4)(8)(Pm) =1.6 mutations to occur. We will say that two

mutations occur, in locus two of Xl and in locus seven of~. We thus have the resulting

critters 11111111 and 00111001.
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After mutation, out new population is in its final state illustrated in Figure 1-5. The

fitness values of the new individuals are evaluated by the objective function, and the new

population is designated the current population, from which future generations will

derive. As long as the completion criterion is not met, the three-step process of

reproduction, crossover, and mutation is repeated. The completion criterion is generally

either a perfect solution or a predetermined number of generations. 10 our rather

simplistic One Max example, a fortunate sequence of events yielded a perfect solution

after only one generation. In a more realistic application, it would not be unusual for the

algorithm to continue for two hundred generations or more. When the algorithm does

conclude, it gives as its solution to the optimization problem the individual in the final

population with the highest fitness rating.

Critter's String Fitness

Xl=lllllill 8

X2 = 10111010 :"

X3 = 0010101] 4

~ = 00111001 4

Figure 1-5. Final population after mutation.

The repeated application of these three operators, each inspired by some aspect of natural

selection, can thus solve some optimization problems. The reasons for the effectiveness

of these operators are fairly clear. Building blocks (contiguous sequences of alleles)

8
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which are beneficial to an individual are recombined through crossover with other

individuals' building blocks from different loci within the chromosomal string. Since

more fit strings are selected more frequently for reproduction and crossover, the more fit

building blocks will join to fonn better and better solutions. Mutation serves to

reintroduce diversity into the population, thus insuring that no alleles are lost. In our One

Max example, for instance, none of the original individuals contained a 1 at the second

locus. Mutation of the second allele in some individual was therefore necessary before

the perfect 11111111 chromosome could be produced [9-11].

While the GA has achieved some definite success, it has its limitations. Things are not so

simple that in order to solve any optimization problem, all we need to do is represent and

evaluate individual solutions. The first difficulty is that the computation of objective

fitness is non-trivial. It needs to be something a computer can do relatively quickly, since

thousands, even millions, of individuals will need to be evaluated in the process of

evolving better and better critters.

There are also many complications invol ved in the representation of indi viduals. If a

representation is not chosen carefully, there could easily fail to be a one-to-one

correspondence between genotypes and phenotypes; i.e., between representation of

solutions to the problem and actual solutions. Careless representation schemes can also

nullify the effectiveness of the crossover operator; it is possible that crossover would no

longer serve to recombine useful parts of pairs of individuals, and even that crossover

could create a chromosome which does not represent a legitimate solution [12]. In the

processing of generating new generation from old generation using the three operators of

GA, we have a big chance of losing the best point (or chromosome). In order to

9
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circumvent this problem, a method called elitism is adapted. Elitism first copies the best

point to new population. The rest is done in classical way. Elitism can very rapidly

increase performance of GA, because it prevents losing the best found solution.

1.2 Principle of Chemotaxis

In the fall of 1971 Max DelbIiick [13] gave a lecture at Berkeley that described the

peculiar behavior of chemotactic bacteria. They dash ahead in a more or less straight

line, then tumble all over themselves, then dash off in a seemingly random direction,

tumble again, etc. The dashes on which the concentration increases tend to be longer

than dashes in the "wrong" direction. Intuitively it is clear that the net effect is that each

bacterium migrates towards greater concentrations of the attractant. Professor Hans

Bremermann at Berkeley realized at once that the behavior reported by DelbIiick is

equivalent to the steps of an optimization algorithm that he had reported earlier [3]. In

both cases a maximum is sought, i.e. the maximum of a chemical concentration and the

maximum of a function, respectively. The details of the optimization algorithm,

however, vary greatly and there is very extensive literature. Many algorithms compute

the gradient of a function and then proceed in the direction of the gradient (steepest

descent). Some algorithms take successive directions to be orthogonal (conjugate

gradient methods) to avoid certain difficulties than arise in some cases when the

algorithms always follow the gradient. All these methods converge to local maxima or

minima [14].

The chemotaxis algorithm performs a random-based search to find a set of parameter

values which gives an objective function its lowest error. Two sets of parameters are

10



used, one set containing the values which have given the lowest error so far and a second

set containing updated parameter values. The updated value set is produced by

multiplying a random vector by a number, called the step size, and adding it to the lowest

error set. The errors produced by the two parameter sets are compared after each update.

If the updated set produces the lowest error, then it replaces the previous lowest error set.

The same random vector is then used for successive updates, until it produces an updated

set with a larger error. When an updated set produces a larger error, it is discarded and a

new random vector is generated. Chemotaxis can alter the rate of convergence to the

lowest error by altering the step size. If a particular random vector has produced a set of

parameters with a lower error a number of times, then the step size is increased, since the

direction on the error surface produced by the random vector is towards an area of low

error. Hence convergence speed is increased. If a number of different random vectors

have failed to produce a parameter set with a lower error, then the step size is reduced. It

is assumed that the lowest error lies within the region described by a circle about the

current lowest error, with radius given by the step size. Hence, by reducing the step size,

chemotaxis can converge approximately to the lowest error without overshooting it [15,

16]. The application of using chemotaxis could be further found in references J7 - 19.

The chemotaxis algorithm can be described as working in the following steps when it is

used to train a neural network:

Step 1. Initialize weights and biases of the network with small random values.

Step 2. Present the inputs to the network, and propagate data forward to obtain the

predicted output.

Step 3. Determine the objective function over the whole data set.
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Step 4. Generate a random vector for changes of weights and biases.

Step 5. Increment the weights and biases with changes.

Step 6. Calculate the new objective function.

Step 7. If the latter objective function is an improvement on the former then retain the

modified weights and biases, and go to Step 5. If there has been no improvement then go

to Step 4.

1.3 Principle of Simulated Annealing

Even though the simulating annealing technique is not used in this paper, there exist

some similarities between Chemotaxis and simulated annealing. Publications based on

the simulated annealing or its hybridized with genetic algorithms could be found in

references [20 - 23J. Now I briefly introduce simulated annealing algorithm here, for

further reference, see references [24 - 26].

Annealing is a term from metallurgy. When the atoms in a piece of metal are aligned

randomly, the metal is brittle and fractures easily. In the process of annealing, the metal

is heated to a high temperature, causing the atoms to shake violently. If it were cooled

suddenly, the microstructure would be locked into a random unstable state. Instead, it is

cooled very slowly. As the temperature drops, the atoms tend to fall into patterns that are

relatively stable for that temperature. Providing that the temperature drop is slow

enough, the metal will eventually stabilize into an orderly structure.

Simulated annealing can be performed in optimization by randomly perturbing the

independent variables (weights in the case of neural network) and keeping track of the

best (lowest error) function value for each randomized set of variables. A relatively high

12



standard deviation for the random number generator is used at first. After many tries, the

set that produced the best function value is designed to be the center about which

perturbation will take place for the next temperature. The temperature (standard

deviation of the random number generator) is then reduced, and new tries done. The

algorithm is summarized as following [271:

1) Randomly generate an initial point S with a set of parameters.

2) Set the initial S to be the best-so-far point S*, thus S* =S.

3) Compute the cost of S, say C(S).

4) Compute the initial temperature To.

5) Set the temperature T = To.

6) While stop criterion is not satisfied do:

(a) Repeat M times:

(i) Select a random neighbor S' to the current S.

(ii) Set IJ.C =C(S') - C(S).

(iii) If(IJ.C) ~ 0 (downhill move):

• Set S = S'.

• If(C(S) < C(S*) then set S* =S.

(iv) If (IJ.C > 0) (uphill move):

• Choose a random number r uniformly from [0,1].

• Ifr < e'tJ.Cff, then set S =S'.

(b) Reduce temperature T.

How do we progress from the starting temperature to the stopping temperature? One

method is by multiplying by a constant factor each time. This factor is computed as

l3



Fausett[28] gives these

...

c = e In(stop/start)/(n-l)

where start and stop are starting and stopping temperatures, and n is the number of

temperatures.

1.4 Artificial Neural Networks

Since the artificial neural network is used to test the proposed algorithm, it necessitates

the brief introduction of neural networks before we discuss any detail of the proposed

algorithm.

An artificial neural network (ANN) is an information-processing system that is based on

generalization of human cognition or neural biology.

assumptions in common between the two:

• Information processing occurs at many simple elements called neurons.

• Signals are passed between neurons over connection links.

• Each connection link has an associated weight, which, in a typical neural net,

multiplies the signal transmitted.

• Each neuron applies an activation function to its net input to detennine its output

signal.

A neural network is characterized by its particular:

• Architecture; its pattern of connections between the neurons.

• Learning Algorithm; its method of determining the weights on the connection.

• Activation function; which determines its output.

The processing elements considered in the definition of ANN are usually organized in a

sequence of layers, with full connections between layers. Typically, there are three or

14



more layers: an input layer where data are presented to the network through an input

buffer, an output layer with a buffer that holds the output response to a given input, and

one or more intermediate or hidden layers as shown in Figure 6 [29].

Input
vector

Input
layer

Hidden
layer

Neurons

Output
vector

Output
layer

Figure 1- 6. Artificial Neural Network.

The operation of an ANN involves two processes: learning and generalization. Learning

is the process of adapting the connection weights in response to external stimuli at the

15



(1.1)

-

input buffer. The network "learns" in accordance with a learning rule governing the

adjustment of connection weights in response to learning examples applied at the input

and output buffers. Generalization is the process of accepting an input and producing a

response determined by the geometry and synaptic weights of the network.

Each hidden neuron provides an additive contribution to the input of the neuron with

which it is connected. The total input to a neuron is simply the weighted sum of the

separate outputs from each of the connected neurons plus a bias or offset tenn Sj :

ij(t) =LWij{t)ait) + Si(t)
j

where aj is current state of neuron j and each Wij is the weight of the connection between

neurons i and j. A positive weight is considered as an excitation and a negative weight an

inhibition.

It is necessary to have a rule which gives the effect of the total input on the activation of

the neuron. This rule j~ a function F j which takes the total input ij(t) and current

acti vation ai(t) and produces a new value of the acti vation of the neuron i:

(1.2)

Often, the activation function is a nondecreasing function of the total input of the neuron:

although activation functions are not restricted to nondecreasing function. Generally,

some sort of threshold function is used: a hard limiting threshold function, or a linear or

semi-linear function, or a smoothly limiting threshold. A sigmoid (S-shaped) function for

this smoothly limiting function is often used, for example:

(1.4)

In all networks the output of a neuron is considered to be identical to its activation level.
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Network topologies are divided into the following groups [30]:

• Feed-forward networks, where the data flow from input to output neurons is strictly

feed-forward. The data processing can extend over multiple (layers of) neurons, hut

no feedback connections are present, that is, connections extending from outputs of

neurons to inputs of neurons in the same layer or previous layers.

• Recurrent networks, which do not contain feed back connections. Contrary to feed­

forward networks, the dynamical properties of the network are important. In some

cases, the activation values of the neurons undergo a relaxation process such that the

network will evolve to a stable state in which these activations do not change

anymore. In other applications, the change of the activation values of the output

neurons are significant, with the dynamic behavior constituting the output of the

network.

The learning algorithm plays an important role in any NN. This is the process of

modifying the weights and biases to the neurons. Typically, we do not know what the

output space will look like in advance. The NN must be trained to classify certain data

patterns to certain outputs. In the process of training, the weights on the neural

connections change, and thus the output decision boundaries change during training. The

learning situations of NNs can be categorized in these two paradigms:

• Fixed weights, so that no learning occurs.

• Supervised learning or associative learning, where each input vector is associated

with a target output vector.

• Unsupervised learning or self-organization, where no target outputs are specified.

17



Typically, training is continued until a preset condition is met. This may be, for

example, minimization of a defined error function. One full pass through the training set

is termed an epoch. Sometimes training is performed until a set number of epochs have

been completed.

Training is performed on an NN so that it will correctly identify input patterns. By

training an NN we separate the output space into regions. Of course, the output space

will not only separate (classify) the input data patterns, but it will also separate data

patterns which it has not seen before. The ability of an NN to classify input data patterns

correctly that it has not seen before (has not been trained with) is termed generalization.

A net that has been overtrained will usually have poor generalization, since the output

space will follow the training data too closely.

The input patterns must be chosen so that they display the particular features one would

like the net to learn. They are prepared in an N-dimensional array which is fed into the

N input neurons of the input layer. It is important to limit the number of variable, used

in the input patterns, since the actual training of a neural network is very time

consuming. Finally one should make sure that the input variahles are normalized, to

avoid saturating the activation functions [31, 32].
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CHAPTER II METHODOLOGY

During the past decades, the role of optimization has steadily increased in such diverse

areas as, for example, electrical engineering, operation research, computer science, and

communications [33]. Optimization problems are very important to production and our

daily life. In practice optimization problems become more and more complex. For

example, many large scale combinatorial optimization problems can only be solved

approximately on prescnt-day computers, which is closely related to the fact that many of

these problems have been proven to be NP-hard [34]. Deterministic polynomial time

algorithms for their solution are unlikely to exist. The quality of the final solution is not

improved computation time. In some continuous optimization problems, the search for

an optimum of a function of continuous variables is difficult if there are peaks and

valleys, ruts and ridges. In these cases, traditional optimization methods are not

effective. They either become trapped in local minima or need much more search time.

In recent years, many researchers have tried to find some new ways to solve these

difficult problems. Stochastic approaches have attracted much attention [35].

Genetic algorithms (GA) and the chemostaxis algorithm (CA) are all stochastic

algorithms. Stochastic algorithms have some good characteristics. Many results have

been presented [36]. Although stochastic algorithms have been successfully used in

some difficult cases, there are still some problems. Based on the analysis and

applications of GA and CA, we propose a new stochastic algorithm called GADCA (GA:
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genetic algorithm with eli versity guidance, CA: chemotaxis algorithm) which integrates

the advantages of GA and CA. It has high search speed and precision.

2.1 Comparison of GA and CA

A. The main features of a GA are summarized as:

1) GAs work from a population instead of a single state. The population evolves by

the use of operators such as crossover, mutation and so on.

2) Good individuals with a higher fitness value always have a better chance of

producing offspring. In contrast, bad individuals with low fitness value still have

a chance to reproduce.

3) The mutation operator can introduce some new infonnation into a generation.

The probability of escaping from local minima of a GA is higher than that of a

CA.

A GA is effective for many optimization problems, but it still has difficulties such as

premature convergence and evolving too slowly. Many advanced genetic algorithms

have been presented in the literature, but their complexity is also increased over

traditional genetic algorithms.

B. The key features of the CA are shown as follows:

1) The CA is very simple and easy to use.

2) The CA only accepts good states which have lower search cost. It can converge

rapidly, but it has more difficulty escaping from local minima than do GAs.

3) The CA uses Gaussianly (normally) distributed variables to generate new states,

so it is not suitable for optimizing discrete problems.

20



After analyzing the search process of stochastic algorithms we find that there are two

kinds of search in a stochastic optimization method. They are "directed search" and

"blind search". For example, in the search process some algorithms mainly accept new

states corresponding to a decrease in cost function. This kind of search is directed.

Sometimes the search process accepts bad states randomly; this kind of search process is

blind. "Blind search" enables the search process to escape from local minima.

Therefore, if these two kinds of search cooperate properly, the optimization algorithm

will have good properties of inheriting the advantages of genetic algorithm and

chemotaxis method, respectively. The combination can be made by generating some of

the new points by a genetic algorithm with diversity guidance (to be discussed in chapter

3) and some by the chemotaxis method. A point is a complete neural network structure

consisting of weights. The proportion of points is determined by following two equations

as the global optimum is approached:

Pc = k/km (2.1)

Pg =1-Pc (2.2)

Where Pg is the proportion of the points generated by the genetic algorithm with diversity

guidance and Pc the proportion by the chemotaxis method. k is the generation sequential

number, and km is the maximum number of generations expected. From the beginning of

the search, a very low proportion of points are allowed to be generated by the chemotaxis

method, because their parents are far from the global optimum. As the search progresses,

the points gradually approach the global optimum and then a high proportion of points

generated by the chemotaxis method are needed to speed up convergence. Based on the

above analysis, we present a novel algorithm GADCA.
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2.2 The Proposed Algorithm GADCA

A. The outline of GADCA

Step 1. Randomly initialize n points from the search space with equal probability.

Step 2. Calculate the objective function values of the n points.

Step 3. Sort the n points in the order of increasing objective function values, so that the

first point represents the best and the last point represents the worst.

Step 4. Each of the points is assigned a probability pi, i= 1, 2, 3, ... , n, giving a higher

probability to the points with lower function values and lower probabilities to those with

higher function values.

Step 5. Randomly select two different points from n points according to the probability

Pi·

Step 6. For each of the genes or weights, randomly select one value from the

corresponding two selected points to construct a new point.

Step 7. For each of the genes of the newly created point, generate a random number r, if

pn > r; then replace the value of that gene by another random number.

Step 8. Repeat k times Step 5-7 so that k new points are generated (steps 5 - 7 are

genetic algorithm steps).

Step 9. Randomly generate a point, multiply each gene of the point by a number called

step size (for example 0.01). Add each gene of the point to the corresponding gene of

the best-sa-far point resulting in an updated point.

Step 10. If the updated point is better than the best-sa-far point, keep the point randomly

generated and multiply each gene by the step size until the updated point is worse than

the best-sa-far point. Add the updated point just before it fails into the new population.
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Step 11. Repeat step 9 -10 n-k time's to obtain the size of the new generation is the same

size as that of its parents n (step 9 -10 are chemotaxis algorithm).

Step 12. Calculate the objective function values for the newly created points.

Step 13. Sort the newly created points into ascending order.

Step 14. If the best point of the new generation is not better than the best one of the old

generation, then replace the worst point of the new generation by the best point of the old

generation and resort them. This step is to ensure that the current best-so-far point in the

community is always retained.

Step 15. Start from the next-best point of the new generation and compare it with the

point in the same rank of the old generation. If the new point is better than the old one

and is further away from the best-sa-far point, then keep the new one; then compare the

rest until they are all finished; go to Step 18; otherwise, go to Step 16.

Step 16. If the distance of the old point is further away from the best-sa-far point and has

better fitness, then keep the old one and reject the new one and go to Step 15 to screen

others; otherwise, go to Step 17.

Step 17. If the distance of the new one from the best-sa-far point dn times the objective

function value of the old one fo is greater than the distance of the old one do times the

objective function value of the new one fn (i.e., dn fo > do fn), then select the new one and

go to Step 15. Otherwise, generate a random number; if it is greater than 0.5, then keep

the old one and discard the new one and vice versa (introduction of diversity).

Step 18. Use the new population as a new generation, repeat Step 3 to Step 18 until either

a predetermined iterative number or an acceptable objective function value is reached.

B. The Features of GADCA
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1) GADCA works from a population, which takes the advantage from GA. Search from

many states simultaneously is more efficient than search from a single point. It is

easier to find the global optimum.

2) GADCA should converge fast in terms of the combination of the CA. At very

beginning of the training process, the GA plays dominant role. When the search is

approaching the global minima, the CA starts functioning. In the CA portion, only a

decreased objective function value is accepted, which strengthens the local search

around the best state of the populations. It is helpful to find the global optimum.

3) GADCA is better than pure GA. It only needs a small population size due to the

introduction of the diversity shown from Step 14 to Step 17. This introduction of the

diversity dramatically reduces the memory space requirement for the storage of the

population.

2.3 Case Studies and the Selection of Main Parameters

In the investigation of GADCA, two cases in a variety of areas are used to verify the

reasonability, correctness and effectiveness of GADCA. In addition, the selection of

main parameters such as mutation probability Pm, step size s and population size m will

be studied. Their effect upon the performance of the GADCA will be explored. The

multilayer neural networking architecture is utilized to investigate the GADCA. In all

cases, the objective function (2:(Yi - xi)lI2j (number of data points - number of

parameters) is maintained to evaluate the performance of the network, where y is the

computed output, x the target output, and i = 0, 1, 2, 3 ,... , n. The program is written in

C++.
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CHAPTER ill RESULTS AND DISCUSSIONS

The procedure described in chapter 2 reflects natural genetics in some respects. For any

animal species, the DNA chain of an individual is a mixture of the DNA chain of its

parents. Furthermore, fit parents are likely to produce fit offspring, and better performing

individuals have a better chance of surviving and producing more offspring than worse

ones. In any case, the individual with the best adaptation remains in the population at the

expense of the weaker individual, until an individual with superior adaptation replaces it.

The combination of genetic algorithm and chemotaxis searching takes care of both the

genetic algorithm, which makes the searching globally optimum, and of the chemotaxis

method, which converges quickly as it approaches the optimum. The following case

studies will demonstrate the ideas and features of the proposed algorithm.

3.1 Case 1. The first case is the application of the proposed algorithm to a chemical

engineering problem. The training data is listed in Table 3-1 [36]. The temperatures and

pressures are the input data for the neurons in the input layer. The logarithm of the

viscosity, measured at different temperature and pressure, is the target output for the

comparison of the computed output from the neuron in the output layer. According to the

analysis of the data, the neural network architecture consists of three layers with two

neurons in the input layer, three neurons in the hidden layer and one neuron in the output

layer. There exist nine weights and four biases in this structure. Unfortunately, there is

no report of trying to fit these data using a non-neural model. Otherwise, it would have
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gIven a good reference for my investigation. The purpose of my investigation is to

compare the results of using simplest genetic algorithm, chemotaxis algorithm, and their

scientific combinations, not to find the best search method. There is no doubt that there

exit a lot of algorithms, such as damped Newton method [37] and quasi-Newton method

[38], maybe resulting in better results. The number of neurons selected for in the hidden

layer may be optional. However, the number of total weights in the neural network must

be not larger than the number of data items in the training data set. Otherwise, an overfit

condition will occur. When the neural network is constructed of many hidden layers, it

creates not only a complicated network structure, but also slows the process of training

the neural network without enhancing the perfonnance. The objective function is (1:(Yi­

xi)1/2j (number of data points - number of parameters), where y is the computed output,

x is the experimental output which is the value in the last column in the Table 1-1. The

goal of training the neural network is to minimize the objective function value using the

proposed algorithm through adjusting the weights of the network.

Table 3-1. Training data for the lubricant viscosity at different temperature and pressure

[37].

Sample Temperature Pressure In(viscosity)

number (oe) (atm) (experimental)

1 0.0 1.0 5.106

2 0.0 740.8 6.387

3 0.0 1407.5 7.385
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Table 3-1 continued.

4 0.0 363.2 5.791

5 0.0 1.0 5.107

6 0.0 805.5 6.361

7 0.0 3907.5 11.927

8 0.0 4125.6 12.426

9 0.0 2572.0 9.156

10 25.0 1.0 4.542

11 25.0 805.0 5.825

12 25.0 1505.9 6.705

13 25.0 2340.0 7.716

14 25.0 422.9 5.298

15 25.0 5064.3 11.984

16 25.0 5280.9 12.444

17 25.0 3647.3 9.523

18 25.0 2813.9 8.345

19 37.8 516.8 5.173

20 37.8 1738.0 6.650

21 37.8 1008.7 5.807

22 37.8 2749.2 7.741

23 37.8 1375.8 6.232

24 37.8 191. ) 4.661

25 37.8 1.0 4.298
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Table 3-1 continued.

26 37.8 4849.8 10.811

27 37.8 5605.8 11.822

28 37.8 6273.9 13.068

29 37.8 3636.7 8.804

30 37.8 1949.0 6.855

31 37.8 1298.5 6.119

32 98.9 1.0 3.381

33 98.9 686.0 4.458

34 98.9 1423.6 5.207

35 98.9 2791.4 6.291

36 98.9 4213.4 7.327

37 98.9 2103.7 5.770

38 98.9 402.2 4.088

39 98.9 1.0 3.374

40 98.9 2219.7 5.839

41 98.9 6344.2 8.914

42 98.9 7469.4 9.983

43 98.9 5640.9 8.323

44 98.9 4107.9 7.132
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3.1.1 Comparison of Using Diversity and without Diversity

Genetic diversity is very important for genetic algorithms. The loss of diversity means

premature convergence and failure to achieve the global optimum. Population size and

mutation probability can increase diversity and lead to global optimization at the expense

of slowing the procedure and taking more time. The proposed guidelines in the proposed

algorithm, such as a one-couple, one-child policy, can avoid to some extent the loss of

genetic diversity. A more efficient procedure is introduced by considering the distances

among the points to purge the unwanted candidates and maintain a certain degree of

diversity.

To measure diversity, the Euclidean distance between two points,

d = (L(Xi - Yi)ll2/(number of data points - number of parameters)

is used, where Xi and Yi are the i-th values of the points x and y, respectively. Obviously,

the larger the value of d, the greater the distance between the two points. For example, d

= 0 implies the two points are identical, that is, there is no difference between them.

Thus, to keep one of them in the population is enough. When d is very close to zero, the

two points are almost identical; if they produce a new point, this new point must be very

close to their parents and is unlikely to bring much further improvement, unless they are

close to the global optimum. Therefore, the distance d from the best-sa-far point can be

considered as a factor to save some of the promising candidates and improve the

perfonnance of the algorithm. Reference 27 illustrates the improvement of genetic

algorithm perfonnance in terms of the introduction of diversity based upon consideration

of distance between two points.
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In order to compare the difference between the pure genetic algorithm and the genetic

algorithm with the introduction of diversity, the procedure for training the neural network

is carried out using the two algorithms, respectively. When the mutation probability pm =

0.01, different population sizes are used and the ten-run-average best-so-far objective

function value is calculated for various numbers of objective function evaluations.

Tables 3-2 - 4 depict two attractive advantages of using diversity guidance against

without using diversity guidance for genetic algorithm. First, performance is different

when genetic diversity guidance is introduced. The efficiency of the genetic algorithm is

remarkably improved. Figures 3-1 to 3 show that objective function evaluation with

genetic diversity guidance produces a much better result than objective function

evaluation without genetic diversity guidance. In Figures 3-1 to 3, the vertical axis

represents the objective function values or errors, horizontal axis represents population

size. When the genetic algorithm with the diversity guidance is introduced, the objective

function value or error decreases dramatically with compared to without the introduction

of diversity guidance in all cases of different epochs.

Second, when genetic diversity guidance is used, the genetic algorithm prefers a smaller

population size, rather than larger size. When the population size is large enough, the

Table 3-2. Comparison of the impact of using genetic diversity guidance for the genetic

algorithm. Mutation probability pm = 0.01, population size m, Epoch = 100.

m a* b*

2 10.535 0.417

3 6.948 0.368
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Table 3-2 continued.

4 3.147 0.245

5 2.360 0.239

6 2.344 0.235

10 1.148 0.190

20 0.428 0.098

50 0.340 0.107

80 0.293 0.162

100 0.280 0.197

a* : not using genetic diversity guidance; b* : using genetic diversity guidance.
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Pure Genetic vs. with Diversity Guidance
(100 epochs)

•

--+- pure genetic

- genetic with
diversity guidance
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Figure 3-1. Effect of the variation of population size on the objective function value

(error) for pure genetic algorithm and genetic algorithm with diversity guidance,

respectively, when the epoch = 100.

Table 3-3. Comparison of the impact of using genetic diversity guidance for the genetic

algorithm. Mutation probability pm =0.01, population size m, Epoch = 1000.

m a* b*

2 7.454 0.192

3 4.531 0.136

'.'

4 4.180 0.091

_._..

5 2.571 0.070

-
6 2.126 0.088
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Table 3-3 continued.

10 0.959 0.095

20 0.570 0.112

50 0.280 0.131

80 0.278 0.141

100 0.263 0.150
II

a* : not using genetic diversity guidance; b* : using genetic diversity guidance.

Pure Genetic vs. Genetic with Diversity Guidance
(1000 epochs)
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Figure 3-2. Effect of the variation of population size on the objective function value

(error) for pure genetic algorithm and genetic algorithm with diversity guidance,

respectively, when the epoch =1000.
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Table 3-4. Comparison of the impact of using genetic diversity guidance for the genetic

algorithm. Mutation probability Pm =0.01, population size m, Epoch = 2000.

m a* b*

._.

2 19.042 0.316

._--------
3 5.481 0.086

4 4.927 0.085
,

5 2.270 0.054

6 1.970 0.068

_ ..-
10 0.878 0.082

20 0.452 0.095

50 0.290 0.128

80 0.274 0.140

100 0.268 0.143

a* : not using genetic diversity guidance; b* : using genetic diversity guidance.
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Pure Genetic vs. Genetic with Diversity

(2000 epochs)
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Figure 3-3. Effect of the variation of population size on the objective function value

(error) for pure genetic algorithm and genetic algorithm with diversity guidance,

respectively, when the epoch =2000.

efficacy of the genetic diversity guidance is damped because a large population size can

contain almost every possible character. When epoch is given, the error increases beyond

a certain population size for genetic algorithm with diversity guidance. As we notice,

each point consists of the random generated parameters. The larger the population size,

the more the parameter variation is. The possibility of introducing larger parameters in

generating a new point also increases, as a result, the error enhances. That may be the

reason why traditional genetic algorithms need a very large population size. However, as

the search progresses, all points converge gradually to the global minimum. Not

considering diversity guidance can result in many identical or semi-identical points in the
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population and slow down the approach to the global minimum. Therefore, no matter

how large the population size is, the introduction of diversity guidance can improve the

efficiency of the genetic algorithm.

3.1.2 Comparison of Genetic Algorithm with Diversity (GAD) and Genetic Algorithm

with Diversity Combined with Chemotaxis (GADCA)

For the same problem, set Pm = 0.01, and use equations 2.1 and 2.2 to control the

proportion of new points generated by the genetic algorithm and the chemotaxis method.

Table 3-5 shows clearly that a combination with the chemotaxis method can further

improve the efficiency of the pure genetic algorithm, especially when a more accurate

result is required. When the generation increases, the objecti ve function value decreases

in both cases of GAD and GADCA. However, the objective function value decreases

much faster for GADCA than that for GAD. This is because the genetic algorithm only

drives the points in the vicinity of the global minimum. The rest of the work may be left

for the chemotaxis method to finish.

Table 3-5. Comparison of the genetic algorithm with diversity guidance (GAD) and the

genetic algorithm with diversity guidance combined with chemotaxis (GADC), case 1, Pm

= 0.01, p= 5, s = 0.0001.

Ten-ron-average, best-so-far objective value

Generations

50

100

GAD

0.392

0.305

36

GADCA

0.096

0.056



Table 3-5 continued.

200

400

600

1000

0.221

0.157

0.093

0.086

0.048

0.031

0.029

0.027

3.1.3 Comparison of Genetic Algorithm with Diversity Guidance (GAD), Chemotaxis

Algorithm (CA) and Genetic Algorithm with Diversity Guidance Combined with

Chemotaxis (GADCA)

For comparison, the GAD, CA and GADCA performances are conducted under different

generations when Pm = 0.01. Table 3-6 shows that GADCA can gradually reach the

global minimum. As the generation grows, the probability of reaching the global

minimum is increased. Even though GAD converges gradually, it shrinks slower than

GADCA, which includes the chemotaxis algorithm. In contrast, chemotaxis working on

a single point converges as the generation increases; the speed of convergence is much

slower than GAD and GADCA. It could be rationalized that it lacks a global minimum

since it only works on a single point, the global minimum is not guaranteed. The

possibility of becoming trapped in a local minimum cannot always be avoided.

Meanwhile, for each generation only one step closer to the minimum could be obtained

resulting in a slower convergence since chemotaxis only works on single point for each

generation. On the other hand, both GAD and GADCA inherit the advantage of the

natural adaptation character of which the smaller the objective function value for a point
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is, the higher the probability for the point to survive. For each generation, a better-fit

group of offspring is obtained for the whole population resulting in a faster step to the

minimum. The introduction of diversity in both algorithms produces the global

minimum.

Table 3-6. Comparison of the genetic algorithm with diversity guidance (GAD),

chemotaxis algorithm (CA) and the genetic algorithm with diversity guidance combined

with chemotaxis (GADCA), case I, Pm = 0.01, P = 5, s = 0.0001.

Ten-ron-average, best-so-far objective value

Generations

50

100

200

400

600

1000

GAD

0.392

0.365

0.221

0.157

0.093

0.086

CA

0.270

0.249

0.246

0.228

0.197

0.156

GADCA

0.096

0.056

0.048

0.031

0.029

0.027

3.1.4 Sensitivity of the Parameters of GADCA

GADCA is quite a simple algorithm, and easy to perfonn; however, there are a few

parameters required. GADCA has three parameters of its own, the population size m,

mutation probability pm and the step size s. From the results obtained by varying the
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population size on the peIfonnance of the pure genetic algorithm and the genetic

algorithm with diversity guidance, we can detennine that the population size should be

smaller when the OADCA is conducted. The mutation probability, which controls the

change of the genes after the new point is selected, should be appropriately selected,

otherwise, the performance of the proposed algorithm will be deteriorated. The step size

of chemotaxis used to modify the best-so-far point is conducted to obtain one-step close

to a better point than the best-so-far point. However, there is no step size introduced in a

genetic algorithm. The step size of chemotaxis algorithm will give rise to a very long

training time if it is very small. If the step size is very large it will cause convergence

failure. It is possible that the selection of parameters for a given algorithm may be

problem related. However, there should be some general guidelines.

To investigate the sensitivity of the parameters for the proposed algorithm, the three

parameters are used and the ten-ron-average, best-so-far objective function values are

calculated. The results for 100 and 1000 epochs evaluations in Table 3-7 illustrates

following points.

1. The proposed algorithm generally is not very sensitive to the parameters. Therefore it

is robust, and may be applied successfully in many conditions.

2. When the mutation rate is 0.05 and other parameters keep constant, the proposed

algorithm yields the objective function value. It is evident that the proposed

algorithm peIforms better with a smaller mutation probability value. However, when

the probability is less than 0.01, the generations end prematurely due to lack of great

diversity of points.
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3. It is observed that the proposed algorithm gives the best objective function value even

though the objective function values are not very significant when the population size

is varied.

4. The algorithm is relatively more sensitive to step size than the other two parameters

m and Pm. If s is extremely small, updating the best-so-far point will take many steps

to finish until it fails. It is detrimental to the efficiency of the algorithm. On the other

hand, if s is large, finding a better point to update the best-so-far point will be

impossible. Thus, the algorithm will be in efficient in terms of finding a better point

to replace the best-so-far point. In this case, when s = 0.0001, the algorithm presents

the best performance.

Table 3-7. Influence of varying the parameters on the performance of GADCA, case 1,

ten-run-average, best-so-far objective function values.

Effect of varying mutation probability Pm for m =5, s =0.0001 on performance

Pm 0.01 0.05 0.10 0.20 0.30 0.50

100 epochs 0.056 0.049 0.064 0.073 0.074 0.076

1000 epochs 0.027 0.013 0.028 0.035 0.038 0.038

Effect of varying step size s for m =5, pm =0.05 on the performance

S 1.0 0.1 0.01 0.001 0.0005 0.0001

100 epochs 0.243 0.201 0.119 0.068 0.049 0.026

1000 epochs 0.096 0.060 0.039 0.027 0.022 0.021
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Table 3-7 continued.

Effect of varying population size m for pm = 0.05, s = 0.0001 on the perfonnance

m 3 4 5 10 20 100

100 epochs 0.078 0.050 0.041 0.041 0.060 0.062

I

1000 epochs 0.045 0.023 0.011 0.017 0.018 0.020

3.1.5 The effective of vary'ng the Number of Neurons In Hidden-layer on the

Perfonnance of GADCA

Further experiment is carried out when the number of neurons in the hidden-layer is

varied. The neural network structures are 3:2:1, 2:2:1 and 2:1:1 (number of neurons in

the input layer: that in the hidden-layer: that in output-layer). The experimental result is

shown in Table 3-8. It is evident that the perfonnance of neural network is better when

the structures are 2:3: 1 and 2:2: 1 than that of 2: 1: 1. However, the standard deviation

increases somewhat when neural network structure is 2: 1: 1.
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Table 3-8. The influence of varying the number of neurons in the hidden-layer to the

perfonnance of GADCA. Number of points =5, step size =0.0001, mutation probability

=0.05. A: neural network structure 2:3:1, B: neural network structure: 2:2:1 and C:

neural network structure 2: 1: 1 (number of neurons in the input layer: that in the hidden­

layer: that in output-layer).

Standard Deviation

Generation A B C

50 0.096 0.112 0.16

100 0.056 0.054 0.084

200 0.048 0.039 0.053

400 0.031 0.029 0.058

600 0.029 0.026 0.061
:

1000 0.027 0.023 0.06
II

I

3.1.6 Training Result of Data in Table 3-1 Using GADCA

Based upon the above discussion of the effect of varying the parameters on the

perfonnance of the proposed algorithm GADCA, the following parameters may be

suggested:

1. Population size m =5,

2. Mutation probability Pm =0.05,

3. Step size s =0.0001.
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The neural network architecture is still a three-layered structure, two neurons in the input

layer, three neurons in the hidden layer and one neuron in the output layer. There exist

six weights and four biases in the structure. The objective function is (L(Yi ­

Xj)2)lf2/(number of data points - number of parameters), where y is the computed output,

x is the experimental output. When the above suggested parameters are accepted, the

proposed algorithm yields objective function value (error) of 0.0065 after 6000

generations. The computed results are listed in Table 3-9. If more accuracy is required,

it is capable of utilizing more generations.

Table 3-9. Training result for the lubricant viscosity at different temperature and pressure

in Table 3-1.

Sample Temperature Pressure In(viscosity) In(viscosity)

Number (oC) (atm) (experimental) (computed)

1 0.0 1.0 5.106 5.113

2 0.0 740.8 6.387 6.365

3 0.0 1407.5 7.385 7.425

4 0.0 363.2 5.791 5.741

5 0.0 1.0 5.107 5.113

6 0.0 805.5 6.361 6.469

7 0.0 3907.5 11.927 11.892

8 0.0 4125.6 12.426 12.375

9 0.0 2572.0 9.156 9.323

10 25.0 1.0 4.542 4.603
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Table 3-9 continued.

11 25.0 805.0 5.825 5.780

12 25.0 1505.9 6.705 6.715

13 25.0 2340.0 7.716 7.757

14 25.0 422.9 5.298 5.255

15 25.0 5064.3 11.984 11.945

16 25.0 5280.9 12.444 12.389

17 25.0 3647.3 9.523 9.514

18 25.0 2813.9 8.345 8.362

19 37.8 516.8 5.173 5.097

20 37.8 1738.0 6.650 6.610

21 37.8 1008.7 5.807 5.745

22 37.8 2749.2 7.741 7.737

23 37.8 1375.8 6.232 6.191

24 37.8 191.1 4.661 4.625

25 37.8 1.0 4.298 4.330

26 37.8 4849.8 10.811 10.481

27 37.8 5605.8 11.822 11.802

28 37.8 6273.9 13.068 13.183

29 37.8 3636.7 8.804 8.779

30 37.8 1949.0 6.855 6.847

31 37.8 1298.5 6.119 6.100

32 98.9 1.0 3.381 3.417
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Table 3-9 continued.

33 98.9 686.0 4.458 4.395

34 98.9 1423.6 5.207 5.218

35 98.9 2791.4 6.291 6.344

36 98.9 4213.4 7.327 7.268

37 98.9 2103.7 5.770 5.827

38 98.9 402.2 4.088 4.019

39 98.9 1.0 3.374 3.417

40 98.9 2219.7 5.839 5.920

41 98.9 6344.2 8.914 8.845

42 98.9 7469.4 9.983 10.060

43 98.9 5640.9 8.323 8.250

44 98.9 4107.9 7.132 7.201

3.1.7 Testing the Neural Network Using GADCA

Normally, after a neural network has been trained, it is tested using another data set to

examine whether the neural network has been trained reasonably. The neural network

was tested using the test data set in Table 3-10. The test results are shown in Table 3-10.

The objective function value (error) is 0.013.
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Table 3-10. Test data for the lubricant viscosity at different temperature and pressure

[37].

Sample Temperature Pressure In(viscosity)

Number (oC) (atm) (experimental)

1 0.0 1407.5 7.385

2 0.0 3907.5 11.927

3 25.0 1505.9 6.705

4 25.0 5280.9 12.44

5 37.8 1375.8 6.232

6 37.8 3636.7 8.804

7 98.9 2791.4 6.291

8 98.9 7469.4 9.983

Table 3-11. Testing result for the test data set in Table 3-10.

Sample Temperature Pressure In(viscosity) In(viscosity)

number (oC) (atm) (experimental) (computed)

1 0.0 1407.5 7.385 7.424

2 0.0 3907.5 11.927 11.892

3 25.0 1505.9 6.705 6.714

4 25.0 5280.9 12.44 12.388

5 37.8 1375.8 6.232 6.190

6 37.8 3636.7 8.804 8.778
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Table 3-11 continued.

7

8

98.9

98.9

2791.4

7469.4

6.291

9.983

6.343

10.059

3.1.8 Generalization of the Neural Network Using GADCA

Keeping the same neural network architecture as that in training and testing procedure

and the suggested parameters, the neural network is extended to arbitrary data set in

Table 3-12. The generalization results are shown in Table 3-13.

Table 3-12. Generalization data set [37].

Sample Temperature Pressure In(viscosity)

number COC) (atm) (experimental)

1 0.0 1868.1 7.973

2 0.0 3285.0 10.473

3 25.0 1168.4 6.226

4 25.0 2237.3 7.574

5 25.0 4216.9 10.354

6 37.8 2922.9 7.957

7 37.8 4044.6 10.511

8 98.9 3534.8 6.726

9 98.9 4937.7 7.768
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Table 3-13. Generalization results for the data in Table 3-12.

Sample Temperature Pressure In(viscosity) In(viscosity)

number (oC) (atm) (experimental) (computed)

1 0.0 1868.1 7.973 8.156

2 0.0 3285.0 10.473 10.619

3 25.0 1168.4 6.226 6.282

4 25.0 2237.3 7.574 7.627

5 25.0 4216.9 10.354 10.402

6 37.8 2922.9 7.957 7.932

7 37.8 4044.6 10.511 9.304

8 98.9 3534.8 6.726 6.837

9 98.9 4937.7 7.768 7.741

3.1.9 Conclusions for OADCA

From the above case study, some general conclusions can be drawn:

1. The genetic algorithm with diversity guidance is efficient, because it only needs a

relatively small size population. This guidance dramatically reduces the memory size

for storing the large population compared to when the pure genetic algorithm is

applied.

2. The combination of genetic algorithm with chemotaxis is reasonable and effective.

The effectiveness of the combination of genetic algorithm with chemotaxis can he

found by comparing its objective function value with those of genetic algorithm and
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chemotaxis, respectively (Table 3-6). For instance, when the generation =100, the

objective function value for combination of genetic algorithm with chemotaxis is

0.328. However, the objective function values for genetic algorithm and chemotaxis

are 1.781 and 1.450, respectively. The rationale of the combination of genetic

algorithm with chemotaxis can be suggested by the applicability of this algorithm in

case 1. The similarity between the experimental viscosity and computed viscosity

from the neural network trained by the combination genetic algorithm with

chemotaxis method shown in Table 3-12 demonstrates that the proposed algorithm is

reasonable. For instance, when the experimental data for viscosity are 7.973, 10.473,

6.226, 7.574, 10.354 and 7.957, the computed data corresponding to the experimental

data are 8.156, 10.619,6.282,7.627,10.402 and 7.932.

3. The GADCA is tunable. By controlling the composition of the points 10 the

population, the ratio of the points generated by the genetic algorithm with diversity

guidance to those generated by chemotaxis is tunable. It can easily avoid a local

minimum, reach the global minimum efficiently, and converge quickly.

4. Carefully selecting the parameters for GADCA, especially the step size, can make the

algorithm more efficient.

3.2 Case 2. Application of GADCA for Water Pressure at Different Temperatures

The genetic algorithm with diversity guidance combined with chemotaxis (GADCA) is

extended to the determination of water pressure at different temperatures. For the

training data set in Table 3-13[39], the neural network architecture is a three-layer

structure, one neuron in the input layer, two neurons in the hidden layer and one neuron
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in the output layer. There are four weights and three biases in this structure. The

temperatures in Table 3-14 serve as the input data. The pressures in Table 3-14 serve as

the target data which are used to compare the difference between the computed data and

the experimental data. The objective function is (L(y! - x[)2)1/2/(number of data points ­

number of parameters), where y is the computed output, x is the experimental output.

Table 3-14. Vapor pressure of water [39].

Sample Number Temperature (ue) Pressure (mmHg)

1 10 9.2

2 J1 9.8

3 12 10.5

4 13 11.2

5 14 12.0

6 16 13.6

7 17 14.5

8 18 15.5

9 19 16.5

10 20 17.5

11 21 18.7

12 22 19.8

13 23 21.1

14 24 22.4

15 26 25.2
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Table 3-14 continued.

16 27 26.7

17 28 28.3

18 29 30.0

19 30 31.8

20 31 33.7

21 32 35.7

22 33 37.7

23 34 39.9

24 35 42.2

Table 3-15 shows the training results for the data in Table 3-14. After 3000 epochs, the

objective function value (error) is 0.007. For the same manner as it was performed in

easel study, the neural network is also tested using the test data set in Table 3-16. Due to

the limited available data, there arc only two rows of the test data, but we still can see the

applicability of the proposed algorithm. Table 3-17 presents the testing results for the test

data in Table 3-16.
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Table 3-15. Training results for the data in Table 3-14.

Sample Number Temperature te) Pressure (mrnHg) Pressure (mmHg)

(experimental) (computed)

1 10 9.2 9.2

2 II 9.8 9.8

3 12 10.5 10.5

4 13 11.2 11.2

5 14 12.0 12.0

6 16 13.6 13.6

7 17 14.5 J4.5

8 18 15.5 15.5

9 19 16.5 16.5

10 20 17.5 17.5

II 21 18.7 18.7

12 22 19.8 19.8

13 23 21.1 21.1

14 24 22.4 22.4

15 26 25.2 25.2

16 27 26.7 26.7

17 28 28.3 28.3

18 29 30.0 30.0

19 30 3 L.8

20 31 33.7 33.7
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Table 3-15 continued.

21

22

23

24

32

33

34

35

35.7

37.7

39.9

42.2

35.7

37.7

39.8

42.2

1-----------------------------------

Table 3-16. Test data for Water Vapor at Different Temperatures [39].

Sample Number Temperature (uC) Pressure (mmHg)

1 15 11.8

25

Table 3-17. Testing Results for the Data in Table 3-16.

Sample Number Temperature (uC) Pressure (mmHg)

(experimental)

23.8

Pressure (mmHg)

(computed)

1

2

15

25

12.8

23.8

12.8

23.8
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CHAPTER IV CONCLUSIONS

The genetic algorithm is a robust method for global optimization. However, the

traditional genetic algorithm requires a very large population size and is slow. The

Chemotaxis method works on only one point, so its drawback is the possibility of being a

trapped in a local minimum. The introduction of diversity in the genetic algorithm

dramatically reduces the population size without loss of global optimization. Based on

the ideas of the genetic algorithm with diversity guidance and the chemotaxis method, a

novel algorithm, a simple genetic algorithm with diversity guidance combined with

chemotaxis (OADCA) is proposed. From the case studies considered, GADCA

demonstrates the following unique advantages as compared to the traditional genetic

algorithm and the chemotaxis method.

1. Using the real variables in a certain range as weights simplifies the representation of

the traditional bit-string coding system. This simplification makes the genetic

algorithm easier to understand.

2. Introduction of Euclidean distance as the standard to keep a new point in a population

is crucial for the diversity of the population. By this method, the promising

candidates are always kept in the population for the next generation.

3. The Chemotaxis search method is adapted and combined with the genetic algorithm

naturally.

4. GADCA should be fast for searching for a global minimum since it inherits both the

advantages of the genetic algorithm and the chemotaxis method.
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5. The drawback of the OADCA is the large amount of computing time for many

iterations. Thus, there still exists room for further improvement of the proposed

algorithm.
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APPENDIX A

PROGRAM LISTING

////////////////////11////////////////////////////111///////////////////11///////////11//1/////////11//1/////////////////
// Thesis Program //
// Title: Simple Genetic Algorithm with Chemotaxis //
// Tunable Local Searching Optimization //
// Name: Li, Wei //
// Institute: Department of Computer Science //
// Oklahoma Sate University //
// Date: January 8, 2000 //
////////////1//////////////////11////////11///////111////////111///////////111//////////////////////////////111//////////

//////////11///11//111/////////////1//////////////1//////////////////////////////////////////////////////////////////////1
I/This is a driving main. In this main, you have a variety /1
/Iof choices such as training, testing, generalizing your neural //
/Inetwork. Meanwhile, the two methods used to generate random //
lin umber with original distribution between 0 and 1 are defined //
llin this class. //
/1/1/1//1//1111/1////////////11/1/////1////////111/////1111//1/////1//////1/1//1///11///1//111///1111/111/1/1/1//1///1/1//
#include<iostream.h>
#include<stdlib.h>
#include<string.h>
#include<fstream.h>
#include<ctype.h>
#include<time.h>
#include<math.h>
#inc1ude "network.h"
void trainO;
void testO;
void generalizationO;
void mainO{
/1=============================================================//
IlThis is program drive method. In this method, a couple of //
/Ioptions are displayed on the screen for you to choose. They //
/Iare training, testing and generalizing your network. 1/
u=============================================================u

srand((unsigned)time(NULL»;
char tcts_gen;
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cout«"This algorithm. demonstrates perfomance of ";
cout«"a new method combining the genetic"«endl;
cout«"a1gorithm. with chemotaxis, which yeilds If;
cout«"better solution than either that of genetic"«endl;
cout«" algorithm or that of chemotaxis algorithm."«endl;
cout«" In this program, you have three choices, "«endl;
cout«"they are pure genetic algorithm, ";
cout«"genetic algorithm with diversity,";
cout<<"chemotaxis algori thm"<<endl;
cout«" and genetic algorithm with chemotaxis.";
cout«endl;
cout«"Enter T' to train the network:"«endl;
cout«"Enter 'S' to test the network:"«end1:
cout«"Enter 'G' to generalize the network:"«endl;
cout«endl;
cin»tr_ts_gen;
tcts_gen =toupper(tcts~en);

switch(tcts~en){

case T':
cout«"Now you are training the network."«endl;
trainO;
break;

case'S':
cout«"Now you are testing the network."«endl;
testO;
break;
case 'G':
cout«"Now you are generalizing ";
cout«"the network."«endl;
generalizationO;
break;
default:
cout«"Please enter T, S or G.";

}
///1/111111111111111111111111111///////11111111///111///111111111111111111///1/111111111//////111111111111111111111111111111I
Iffhis train matad gives you the ways of training a neural II
Iinetwork. For the simplicity, there is only one method II
l/implemented in this class. II
1111/111///111111111111///11/1/111111111111///1111111111111111111///11///11111111111////11/1///11111111111111111111111111111I
void train(){
11============================================================11
IIIn this method, you are provided four options to train a II
Iineural network. They are pure genetic algorithm, simple II
Ilgenetic algorithm with diversity, chemotaxis and simple II
Ilgenetic algorithm with chmotaxis. II
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11=================================================11
int choose;
int i, check, pg, pc, num_oCpoints, iterations;
network: :geclayecinfoO;
network::gectrain_inputO;
network::geCtrain_outputO;
cout«"Enter the number of points: "«end!;
cin»num_oCpoints;
GACA gaca(num_oCpoints);
cout«n 1. pure genetic algorithm." «endI;
cout«n2. genetic algorithm with di versity. "«end!;
cout«"3. chemotaxis algorithm."«endl;
cout«"4. genetic algorithm with chemotaxis."«endl;
cin>>choose;
switch(choose){

case 1:
cout«"You have chosen pure genetic method."«endl;
cout«"How many iterations do you want?"«endl;
cin»iterations;
for(i=O; i<iterations; i++){
check =gaca.checkPointsO;

if(check=l){
cout«"When all the points are the same,";
cout«"the iteration number is: "«(i+l)«endl;;
break;

}
gaca.geneticAlgorithm(num_oCpoints);
gaca.nextGenerationO;

}
gaca.getPointsO.print_trainO;
break;

case 2:
cout«"You have chosen simple genetic method."«endl;
cout«"How many iterations do you want?"«end!;
cin»iterations;
for(i=O; i<iterations; i++){

check = gaca.checkPointsO;
if(check==l){

cout«"When all the points are the same, ";
cout«"the iteration number is: "«(i+l)«endl;
break;

}
gaca.geneticAlgorithrn(num_oCpoints);
gaca.competitionO;
gaca.nextGenerationO;

}
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gaca.getPointsO·prinCtrain();
break;

case 3:
cout«"You have chosen chemotaxis method.";
cout«"Now, you are working on single point."«endl;
gaca.set_stepsizeO;
cout«"How many iterations do you want?"«endl;
cin»iterations;
for(i=O; i<iterations; i++){

gaca.chemotaxis(O);
gaca.competitionO;
gaca.nextGenerationO;

}
gaca.getPointsO.print_trainO;
break;

case 4:
cout«"You have chosen genetic algrithm";
cout«" with chemotaxis method."«endl;
gaca.secstepsizeO;
cout«"How many iterations do you want?"«endl;
cin»iterations;
for(i=O; i<iterations; i++){

check = gaca.checkPointsO;
if(check==1H

cout«"When all the points are the same ";
cout«"the iteration number is: "«(i+1)«endl;
break;

}
pc = num_oCpoints * i/iterations:
pg = num_oCpoints - pc;
gaca.geneticAlgorithm(pg);
if(pc>=1){

gaca.combineChemo(pc);
}
gaca.competi tionO;
gaca.nextGellerationO;

}
gaca.getPointsO·prinCtrainO;
break;
default:
cout«"You enetered an invalid number.";
cout«"Enter 1, 2 or 3."«endl;
exit(l);

}
}//end of train
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//1/11/1//////1/11/11//111//111////////111//111/11///11///111//11111/11/11/1///////11111///1111/111111////1111/1////111///
/ffhe test method is implemented to get the test result with //
I/a related error. 1/
//////1111/11///1111111//111////////1/111///////1//1//1//////11//1///1//1//11/11//1//1////11//11//1/1//11///1////1/////1//
void testO{
1/===========================================================11
//In this method, the test input files are put in and the //
//output files are also inputed. Meanwhile the minimum data //
//and the maximum data in the input training files are asked. //
lito normalize the input test files. The same way also is //
//for the output test files. //
//==========================================================11

network: :geclayecinfoO;
network: :geCtest_inputO;
network: :get_tescoutputO;
GACA gaca(l);
network net;
net = gaca.getPoints();
net. setup_weightsO;
net.calc_outputO;
net.calc_errorO;
net.prinCtestO;

}//end of test
111/1////////1/11///11///1///1111111111///11111111111///11/1/1/1///11//1/1111111//111//111/1111/1//1/1/1/11////1/1/1111111/1
/ffhe class generalization is implemented to get a series of 1/
Iloutput results. The generalization input files are inputed. /1
lIAs illustrated in test class, the minimum and maximum data 1/
I/in the train files are asked to input to normalized the II
llinput files. However, in this class, there is no output /1
Ilfile. /1
111/111/11111//1///1/111111111///1/111/1/111//111111111/11111/11111/111111/11111111111/11/1111111////11111/1/111//111/11///1
void generalizationO{
11============================================================/1
/11n this method, the weights obtained from the training the II
/Ineural network are inputed to set the neural network //
Ilparameters. The output results will be printed in a file. 1/
I1============================================================1/

network::geclayecinfoO;
network::gecgeneralization_inputO;
GACA gaca(l);
network net;
net =gaca.getPoints();
net. setup_weightsO;
net.calc_outputO;
net.prinCgeneralizationO;

64



}llend of generalization
11111111111111111///111/11/1/11/11/////11////11///111///1111/11///111//1//1////11//////1////1//1/11//1111/111/1//1//1////1111/
//Header file network.h 1/
///1111//111//1//1//11//1111111/////111111//1/1/1111/111111I111I11/11/111/111///1////1/1/11/1//11111111/111///11////1/11//11I
#include<iostream.h>
#include<stdlib.h>
#include<math.h>
#include<ctype.h>
#include<string.h>
#include<time.h>
//=============================================================~

/rrhis method is implemented to generate a series of random 1/
Ilweights for the neural network. These random weights are in a //
Ilcertain range of -20 and 10. The loop is used to avoid creating //
/Ithe same points with identical weights. //
//==========================================================//
double random_weightsO{

double rdNurn;
for(int i=O; i<1O; i++)

rdNum = double(randO/32767.0);
I/convert the random number to a value between -20 and 10
rdNum = -20.0 + rdNum * (10.0 - (-20.0));
return rdNum;

}llend of random_weights
~============================================================/1

Irrhis method is used to just generate a random number between 0 1/
I/and 1. For the same purpose as above method, the loop is used //
I/to avid creating two identical random numbers. II
~============================================================1/

double random_generatorO{
double rdNum;

for(int i=O; i<lO; i++)
rdNum = double(randO/32767.0);

return rdNum;
}llend of random~enerator

11111111/1111/11I111/11//111/1//111111/111//111111111/111111111111111/11111//II/II~/IIIII/IIII/IIIIIIIII//II/11111111111111111/

IIClass network represents a complete neural network II
Iistructure. In this class, primarily, a set of randomly II
/Igenerated numbers are used to set up the weights for the II
Iineural network. A series of method implementaions are II
Iidefined in this class. Their functionalities will be II
Ildiscussed when they are implemented. II
111111111111111111111111/11///111//1/11/1111/1111111111111111/111/1///1111111111/1111/111111111111//111111111/111//11/1/1//1111/
class network {
private:
Ilarray for a number fo layers
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static int numLayer[5];
I/number of layers of the neural network
static int numOfLayers;
/Inumber of the weights in the neural network
static int numOfWeights;
//array of weights stores the individual weight for
I/the neural network
double weights[50];
/Inumber of the input data inputed
static int numOflnputData;
//array to store the input data
static double inputData[5][90];
I/array to store normalized input data
static double normlnputData[5][90];
//number of output data
static int numOfOutputData;
/Iarray to store output data
static double outputData[5][90];
/Iarray to store normalized output data
static double nonnOutputData[5][90];
//array to store final output computed by the neural
//network
double finaIOutput[5][90];
friend class GACA;

public:
networkO;
static void geclayecinfoO;
void initiaJize_weightsO;
void setup_weightsO;
static void gectrain_inputO;
static void get_tesCinputO;
static void get_generalization_inputO;
static void get_train_outputO;
static void gct_tescoutputO;
void calc_outputO;
void get_firsClayer_input(double tmpl[], int nm);
int calc_temp_out(double tmpl [], double trnp2[],

int nd, int nr2, int count, int last);
double segmoid(double val);
void calc_errorO;
void princtrainO;
void princtestO;
void princgeneraii zation();
int gecnurn_weightsO:

};
int network::numLayer[5];
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int network::numOfLayers =0;
double network::inputData[5H90];
double network: :nonnInputData[5H90J;
int network: :numOfOutputData = 0;
double network:: outputData[5] [90];
double network::nonnOutputData[5][90J;
int network::numOfWeights =0;
int network::numOfinputData =0;
11==========================================================V
I/Default constructor for the class network. II
11=====================================================11
network::networkO{ }
11=====================================================II
Iffhe method is used to get input files and nonnalized the II
lIthe input data in the range of 0 and 1 to avoid II
Iisaturation of the data. II
11=========================================================11
void network::geclayecinfoO{

int i=O;
cout«"Enter the number of";
cout«"layers for the neural network: "«end!;;
cin»numOfLayers;
Ilput the number of neurons in the different layers
Ihnto array of numLayer
while(i<numOfLayers){
cout«"Enter the number of neurons in ";
cout«"layer" «(i+l)«":"«endl;
cin»numLayer[i];
i++;

}
i = 0;
while(i<numOfLaycrs-l){

numOfWeights = numOfWeights+numLayer[i]*numLayer[i+1]
+numLayer[i+l];

i++;
}
Iltwo additional numbers of weight are for error
Iland probability
numOfWeights = numOfWeights + 2;

}llend of geclayecinfo
11===========================================================V
IIIn this method, the total number of weights in the neural II
Iinetwork is calculated and randomly generated weight is put II
lithe array of weights. Also the array of finalOutput is II
Ilcreated for storing the output computed by the neural II
~~~. V
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11===========================================================11
void network::initialize_weightsO{

int i=O;
Ilput the random number in the array of weights
for(i=O; i<numOfWeights-2; i++)

weights[i] = random_weightsO;
}llend of initialize_weights

11=============================================================~
Iffhis method is used for testing or generalizing the neural II
Ilnetwork. The weights obtained from training the neural II
Ilnetwork are kept in a input file. Then the weights in the II
l/input file are stored in the array of weights. II

11============================================================11
voi d network:: setup_weightsO {

char filename[80];
ifstream infile;
double data;
int i=O;
numOfWeights = 0;
Ilcalculate the total number of weights
while(i<numOfLayers-l )(

numOfWeights = numOfWeights+
numLayer[i]*numLayer[i+1]+numLayer[i+1];

i++;
}
numOfWeights =numOfWeights + 2;
cout«"Enter the weight file name:"«enJI;
cin»filename;
infi Ie.open(filename, ios::inlios: :nocreate);
i =0;
while(!infile.eofOH

infile»data;
weights[iJ=data;
i++;

}
infile.closeO;

}llend of setup_weights
~===========================================================11

Iffhe input data is stored in an array of inputData, then the II
Ildata in the array is normalized and put in the array of II
IlnormlnputData II
~===========================================================~

void network: :geCtrain_inputO{
ifstream infile;
double data, min, max;
char filename[80];
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int i=O, j;
while(i<numLayer[O]) (

cout«"Enter the train input ":
cout«"file "«(i+1)«" name: "«endl;;
cin»filename;
Ilopen the input data files
infile.open(filenarne, ios: :inlios: :nocreate);
numOfInputData=O;
while(!infile.eofOH

infile»data;
Iistore the data in an array
inputData[i] [numOfInputData]=data;
numOfinputData++;

}
infile.closeO;
llfind the minimum and maximum for normalizing
lithe input data
min = max = inputData[i][O];
for(j=1; j<numOfInputData; j++){

if(inputData[i] [j]<min)
min=inputData[i][j] ;

if(inputData[i] [j]>rnax)
max=inputData[i][jJ;

}
IInormalize the input data and put it in an array
Ilof normlnputData
for(j=O; j<numOfInputData; j++)

norrnInputData[i][j] = 1.0/(max-min)*
(inputData[i] [j]-min);

normInputData[i][j] = min;
nonnlnputData[i][j+1] = max;
i++;

}
}llend of geCtrain_input

//============================================================//
Iffhe input test file is opened and stored in an array of II
IlinputData. Then the data in the array is normalized and II
Ilput in an array of normlnputData. II
11============================================================11
void network::geCtescinputO{

ifstream infile;
double data, min, max;
char filename[80];
int i=O, j;
while(i<numLayer[O]){
cout«"Enter the test input file name: "«(i+1)«endl;;
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cin»filename;
Ilopen the input test file
infile.open(filename, ios: :inlios: :nocreate);
numOfInputData=O;
while(! infile.eofO){

infile»data;
IIput the data in the test file in
Ilan array of inputData
inputData[i] [numOfInputData]=data;
numOfInputData++;

}
infile.closeO;
Ilget the minimun and maximum data in the
Ilcorresponding training input file
cout«"Enter the min data n;
cout«"in the train data set:"«endl;
cin»min;
cout«"Enter the max data ";
cout«"in the train data setn«endl;
cin»max;
Iinormalize the test data
for(j=O; j<numOfInputData; j++)

norrnlnputData[i][j]=1.0/(max-min)*(inputData[i] [j]-min);
normInputData[i] [j]=min;
normlnputData[i](j+1]=max;
i++;

}
}llend of geCtesCinput
11===========================================================11
Irrhe generalization input test file is opened and stored in II
Ilan array of inputData. Then the data in the array is II
Iinormalized and put in an array of normlnputData. II
11============================================================11
voi.d network: :gecgeneralization_inputO{
ifstream infile;
double data, min, max;
char filename[80];
int i=O, j;
while(i<numLayer[O]){

cout«nEnter the generalization input file name: "«(i+l)«endl;
cin»filename;
infile.open(filename, ios::inlios::nocreate);
numOfInputData=O;
while(!infile.eofOH

infile»data;
inputDatali][numOfInputData]=data;
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numOflnputData++;
}
infile.closeO;
cout«"Enter the min in the train data set"«endl;
cin»rnin;
cout«"Enter the max in the train data set:"«endl;
cin»max;
for(j=O; j<numOflnputData; j++)

normInputData[i) [j )=l.O/(max-min)*(inputData[i) [i)-min);
normlnputData[i) [j]=rnin;
nonnlnputData[i][j+ l)=max;
i++;
}

}llend of gecgeneralization_input
11===========================================================~
IfThe input data is stored in an array of outputData, then II
lithe data in the array is nonnalized and put in the array II
Ilof normOutputData II
~===========================================================~

void network: :geCtrain_outputO{
iJstream infile;
double data, min, max;
char filename[80];
int i=O, j;
while(i<numLayer[numOtLayers-1 ]){
cout«uEnterthe output file name: u«(i+l)«endl;
cin»fi lename;
Ilopen file
infile.open(filename, ios: :inlios: :nocreate);
while(!infile.eofO){

infile»data;
Ilput the data into an array
outputData[i) [numOfOutputData)=data;
numOfOutputData++;

}
infile.closeO;
Ilfind the minimum and maximum in the output
Ilfile
min = max = outputData[i][O);
for(j=I; j<numOfOutputData; j++){

if(outputData[i) [j)<min)
min=outputData[i)[j];

if(outputData[i)[j]>max)
max=outputData[i)[j];

}
Ilnormalize the data
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forU=O; j<numOfOutputData; j++)
nonnOutputData[i][j]=l.O/(max-min)*

(outputData[i) [j]-min);
nonnOutputData[i) [j J=min;
nonnOutputData[i)[j+ 1)=max.;
i++;

}
}/Iend of geCtrain_output

11============================================================11
Iffhe output test file is opened and stored in an array of II
lIoutputData. Then the data in the array is nonnalized and II
Ilput in an array of nonnOutputData. II
11==--=========================================================11
void network: :geCtescoutputO{

ifstream infile;
double data, min, max;
char filename[80);
int i=O, j;
while(i<numLayer[numOfLayers-l]){
cout«"Enter the output file name: "«(i+l)«endl;
cin»filename;
Ilopen file
infile.open(filename, ios::inlios::nocreate);
numOfOutputData=O;
while(!infile.eof()) {

infile>>data;
Ilput data into an array
outputData[i)[numOfOutputData]=data;
numOfOutputData++;

}
infile.closeO;
Ilget the minimum and maximum data in the
IIcorresponding training fi Ie
cout«"Enter the min in the train ";
cout«"output data set"«endl;
cin»min;
cout«"Enter the max in the train";
cout«" output data set"«endl;
cin»max;
Ilnonnalize the data
for(j=O; j<numOfOutputData; j++)

nonnOutputData[i) [j]=1.O/(max-min)*
(outputData[i )[j]-min);

nonnOutputData[i] [j]=min;
normOutputData[i][j+ 1)=max;
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i++;
}

}llend of get_test_output

V===============--=========================================II
Irrhis method is used to calculate the output of the neural V
Vnetwork. Two other method are called for the V
Vcalculations. Their functionalities will be discussed II
//later. /I

V=========================================================//
void network::calc_outputO{

int h, i, j, k, m, n, weight_count, lasclayer;
n=O;
i=O;
h=O;
k=O;
/larray temps are used to store temperaly data
/lcalculated by the neural network
double tempi [20], temp2[20];
while(k<numOfinputData) {

weighccount=O;
/lput the data in the first layer into the array
/1of tempi
gecfirsClayer_input(temp1, k);

for(j=I; j<numOfLayers; j++){
lasc1ayer=j;
/lcalculated the output in the consecutive layer
/land put them into array of temp2
weighCcount=calc_temp_out(temp1, temp2, numLayer[j -I],

numLayer[j], weighccount, lasclayer);
/lcopy the data in temp2 into tempI
/lfor next layer calculation
for(m=O; m<numLayer[j]; m++)

tempI [m]=temp2[m];

i++;
//put final result computed by the neural network
l/into array of finalOutput
for(n=O; n<numLayerlnumOfLayers-I]; n++){

finaIOutput[n][k]=temp 1[n];
}
k++;

}
}/lend of calc_output

11=========================================================//
Irrhis helper method is used to get the data in the /I
//normInputData in a temperary array of tmpl. II
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V=========================================================II
void network::get_first_layer_input(double tmpl[], int nm){

int i;
for(i=O; i<numLayer[O]; i++)

tmpl[i] = nonnInputData[i][nm];
}I/end of get_firsClayer_input

V=========================================================11
Irrhis helper method is used to calculate the consecutive II
Illayer output and put it into a temporary array of tmp2. II
11=========================================================1/
int network::calc_temp_out(double tmpl[], double tmp2[],

int nr1, int nr2, int count, int last) {
int i, j;
double value;
for(i=O; i<nr2; i++){

value=O.O;
//calculate the output in a consecuti ve layer
for(j=O; j<nr1; j ++)(

value+=tmpl [j]*weights[count];
count++;

}
value = value+wcights[count];
count++;
Ilthis output should be between 0 and 1
if(last!=numOtLayers-l)

tmp2[i]=segmoid(value);
//last layer should be linear without using
Ilsegmoid function
else

tmp2[i]=value;

return count;
}llend of calc_temp_out

11==========================================================11
Irrhis helper method is to get the output in a consecutive II
//layer in the neural network. II
11==========================================================11
double network::segmoid(double val){

double output;
output = l/(l+exp(-val);
return output;

}Vend of segrnoid

11==========================================================11
Irrhis method calculates the error between the computed II
Ilresults by the neural network and the result from the /I
lithe input file. II
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11==========================================================11
void network: :calc_errorO{

int i, j;
double sum=O.O;
double stdDev;
Ilcalculate the error
for(i=O; i<numLayer[numOfLayers-l]: i++)

forO=O; j<numOfOutputData: j++)
sum += (norrnOutputData[ilU]-finaIOutput[i)[j])*

(norrnOutputData[i] (j]-finaIOutput[i] [j]);
stdDev = sqrt(sum);
weights[numOfWeights-2]=stdDev;

}llend of calc_error
~=========================================================11

Irrhis method is implemented to denorrnalize the final data II
Ilcomputed by the neural network. The denorrnalized adta II
Ilis printed out. II
~=========================================================~

void network: :prinCtrainO{
ofstream outfile;
int i, j;
double data;
Ilopen an output file
outfile.open("train .dat", ios: :out);
for(i=O; i<numLayer[numOfLayers-l]; i++){

for(j=O; j<numOfOutputData; j++){
Iidenorrnalize the data
data = (normOutputData[i][numOfOutputData+L]­

normOutputData[i] [numOfOutputData])*
finalOutput[i] [j]+normOutputData[i]
[numOfOutputData];

outfile«data«" ";
}llend_for

}llend_for
outfile«endl;
Ilprint out weights
outfile«"The weights are: "«endl;
[or(i=O; i<numOfWeights-2; i++){

data=weights[i];
outfile«data«" ";

}
Ilprint out error
outfile«endl;
outfile«"The standard deviation is:"«endl;
data = weights [numOfWci ghts-2];
outfile«data;
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outfile.closeO;
}llend of prinCtrain
~=========================================================II

l!This method is implemented to denonnalize the final data ~

I/computed by the neural network for the test. The ~

Ildenormalized adta is printed out. ~

11=========================================================~

void network: :prinCtestO{
ofstream outfile;
int i, j;
double data;
~open output file
outfile.open("test.dat", ios::out);
outfile«HThe final outputs are: "«endl;
for(i=O; i<numLayer[numOfLayers-l]; i++){

forU=O; j<numOfOutputData; j++){
data = (nonnOutputData[i] [numOfOutputData+ 11­

normOutputData[i] [n umOfOutputData])*
finalOutput[i] [j]+nonnOutputData[i]
[numOfOutputData];

outfile«data«" H;

}
~print the error
outfile«endl;
outfile«"The standard deviation is: "«endl;
data = weights[numOfWeights-2];
outfile«data«endl;
outfile.close():
}~end of princtcst
~=========================================================~

l!This method is implemented to denormalize the final data ~

~computed by the neural network for the generalization. ~

l!The the denormalized data is printed out. ~

11=========================================================1/
void network: :princgeneratization0{
ofstream outfile;
int i, j;
double data, max, min;
Dutfile.open("gen.dat", iDS: :out);
~get the minimum and maximum data in the
/Icorresponding train file
cout«"Enter the min in the ";
cDut«"train output data set"«endl;
cin»min;
cDut«"Enter the max. in the ";
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cout«"train output data set"«endl;
cin»max;
Ilopen output file
outfile«"The final outputs are: "«endl;
Ildenonnalize the data
for(i=O; i<numLayer[numOfLayers-l]; i++){

forG=O; j<numOfInputData; j++){
data = (max-ntin)*finalOutput[i][j]+ min;
outfile«data«" ";

}
}
outfile.closeO;

}llend of princgeneralization
v======================================================11
IfThe method is implemented to get the number of total II
Ilweights in a neural network. II
11=====================================================11
int network::gecnum_weightsO{

return numOtweights;
}/Iend of gecnum_weights
/111/1/111//111///1///111//111/111/1/11/111///111/1///1111////11111111/////111111111/1/11111/111/1/1111/11111111111111
IIClass GACA is to generate a couple of networks called II
Ilpoints. In this class, the all algorithms will be II
IIperformed. For individual algorithm, it will be II
Ildiscussed when it is implemented. II
1111111/111/111///11/1/1/1111///111//111//1111/111/1/11111/1/1//11111/11111/1/111111/1/1/11111111//11///111111111111111
class GACA(
private:
Iia couple of points
network ntwk[lOO];
Ila couple new points
network newNtwk[lOO);
Ilnumber of points
int numOfPoints;
Iltwo points
network twoPoints(2);
Iione point
network cross;
Ilanother one point
network chemo;
/lfor chemotaxis
double stepSize;

public:
GACA(int points);
void heapsort(network net[], int size);
void heapify(network netD, int pos, int size);
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void assign_probabilityO;
void selecCtwo_pointsO;
int geCindex(double rd);
void crossoverO;
void mutationO;
void geneticAlgorithm(int pg);
void combineChemo(int pc);
void competitionO;
double distance(network net[], int indexOfPoints);
void secstepsizeO;
void chemotaxis(int pc);
void nextGenerationO;
int checkPointsO;
network getPointsO;

};

11========================================================H
IfThis constructor is for test and generalization, since II
llin this situation, only one point is needed. II

H========================================================11
GACA::GACA(int points){

int i;
numOtpoints = points;
Ilget the weights, calculated output
IIand eeror for each point
/IRandom number = new RandomO;
for(i=O; i<numOfPoints; i++){
ntwk[i). initialize_weightsO;
ntwk[i].calc_outputO;
ntwk[i].calc_errorO;

}
Hsort the points
heapsort(ntwk, numOtpoints);
Ilassign probability for each point
assign_probabilityO;

}llend of constructor

I1======================================================1I
IfThis helper method is to sort a couple of points II
Ilaccording to their error in ascending order. II

H======================================================H
void GACA::heapsort(network net[], int size){

network temp;
i.nt i, j;
for(i=(size-l)/2; i>=O; i--)

heapify(net, i, size);
for(i=size-l; i>O; i--) (

forU=O; j<temp.gecnum_weightsO-l; j++){
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temp.weights[j] = net[O].weights[j];
net[O].weights[j] = net[i].weights[j];
net[i].weights[j] = temp.weights[j];

}
heapify(net, 0, i);

}
}llend of heapsort
~=======================================================~

IfThis helper method is to help to sort the couple of II
~points. II
11=======================================================1/
void GACA::heapify(network net[], int pos. int sizc){

int j, I, r, k, largest;
network temp;
J = pos;
while(j<size-l) (
1= 2*j;
r=2*j+l;
ifO <=size-l )(

if(net[l].weights[temp.gecnum_weightsO-2]>
net[j].weights[temp.get_num_weightsO-2])
largest = 1;

else
largest = j;

}
if(r<=size-l ){

if(net[r]. weights[temp.gecnum_weightsO-2l>
net[largest].wei ghts[temp.geCnum_weightsO-2])
largest = r;

}
if(largest!=j){
for(k=O; k<temp.gecnum_weightsO-l; k++){

temp.weights[k] = net[j].weights[k];
net[j].weights[k] = net[largest].weights[kJ;
net[largest].weights[k] = temp.weights[kJ;

}
j = largest;

}
else

break;
}

}/lend of heapify
11=========================================================~

IfThis method is implemented to assign probability to each ~

Ilpoint according to its error. II
~=========================================================/1
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void GACA::assign_probabilityO{
network temp;
int i;
double c, pm, pb, p;
C =0.5;
pm = c/(double)numOfPoints;
pb = (2.0-c)/(double)numOfPoints;
Ilassign the probability
for(i=numOfPoints; i>O; i--){

P = pm+«double)(i-l)/(double)(numOfPoints-l»*
(pb-pm);

ntwk[numOfPoints-i].weights[temp.gecnum_weightsO-l]
=p;

}
}llend of assign_probability
~===========================================================~

Irrhis method is to find two different points among the II
Iloriginal population. II
~===========================================================~

void GACA: :selecctwo_pointsO{
network temp;
int i, j, index, flag;
double rdNum;
flag = 1;
Iiselect two different points
while(flag==l){

for(i=O; i<2; i++) {
rdNum = random_generatorO;
index = get_index(rdNum);
forU=O; j<temp.geCnum_weightsO-2; j++)

twoPoints[i].weights[j] = ntwk[index]. weightsUL
}

Ilcheck whether the two points are the same
for(i=O; i<temp.gecnum_weightsO-2; i++)

if(twoPoints[O] .weights[i] !=twoPoints[1J.weights[i D{
flag = 0;
break;

}
}

}llend of selecCtwo_points
11=====================================================~

Irrhis helper method is to return the index of point in II
lithe population according to the random generated II
linumber. II
11=====================================================11
int GACA::get_index(double rd){
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network temp;
double start, end;
int i, target_index=O;
start = end = 0.0;
if(rd<ntwk[O].weights[temp.gecnum_weightsO-l])

targecindex = 0;
Ilcalculate the probabilty range
for(i=I; i<numOfPoints; i++){

start += ntwk[i-I].weights[temp.gecnum_weightsO-l);
end = start + ntwk[i].weights[temp.gecnum_weightsO-l);
if(start<rd&&rd<=end)

targeCindex = i;
}

return targeCindex;
}llend of get_index
11======================================================~
Irrhis helpre method is to get one point from the II
Iiselected two points. II
~======================================================II

void GACA::crossoverO{
int i;
network temp;
double rdNum;
Ilget one point from the selected two points
for(i=O; i<temp. get_num_wei ghtsO-2; i++) {

rdNum = random_generatorO;
if(rdNum >= 0.5)

cross.weights[i] = twoPoints[O).weights[i];
else

cross.weights[i] = twoPoints[l].weights[i];
}

}llend of crossover
~=======================================================11

Irrhis helper method is to change the obtained one point II
Ilaccording to the randomly generated number. II
~=======================================================~

void GACA::mutation(){
network temp;
double rdNum;
int i;
for(i=O; i<temp.gecnum_weightsO-2; i++){

rdNum = randoffi_generatorO;
Ilchange the weight according to the condition

if(rdNum < 0.05)
cross.weights[i] = random_weightsO;

}
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}llend of mutation

11=========================================================11
IIIn this method, the new population is generated according II
lito the operators of the genetic algorithm. II
11==========--============================================11
void GACA::geneticAlgorithm(int pgH

network temp;
int i, j;
for(i=O; i<pg; i++H

selecCtwo_pointsO;
crossoverO;
mutationO;
Ilcopy the point after mutation
for(j=O; j<temp.get_num_weightsO-2; j++)

newNtwk[i].weights[j] = cross.weightsU];
}

}llend of geneticAlgorithm

V======================================================11
Irrhis method is to manipulate the chemotaxis under genetic algorithm. II
V====================================================II
void GACA::combineChemo(int pc){

int i;
for(i=(numOfPoints-pc); i<numOfPoints; i++)

chemotaxis(i) ;
}llend of combineChemo

~===================================================II
Irrhe two populations are competed in this method. II
Irrhe result of the competition is that the best-so- II
Ilfar point is kept. II
II===================================================V
void GACA::competitionO{

network temp;
int i, j;
double rdNum;
for(i=O; i<numOfPoints; i++){

newNtwk[i].calc_outputO;
newNtwk[i].calc_errorO;

}
heapsort(newNtwk, numOfPoints);
Ilcheck the best in the new points and old points
if(newNtwk[O].weights[ temp.geCnum_weightsO-2]>

ntwk[O].weights[temp.gecnum_weightsO-2]){
Ilreplace the worst point in the new points
Ilby the best point in the old points
for(i=O; i<temp.gecnum_weightsO-l; i++)

newNtwk[numOfPoints-l].weights[i]=ntwk[O].weights[i];
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heapsort(newNtwk, numOfPoints);
}
Ilcheck other points
for(i=1; i<numOfPoints; i++){

if«newNtwk[i].weights[temp.gecnum_weightsO-2]<
ntwk[i].weights[temp.gecnum_weightsO-2])&&
(distance(newNtwk, i»distance(ntwk, i)){
l/keep the point

else if«distance(ntwk, i»distance(newNtwk, i)&&
(ntwk[i].weights[temp.gecnum_weightsO-2]<
newNtwk[i].weights[temp.geCnum_weightsO-2]){

Ilreplace the new point by the cprresponding point
[or(j=O; j<temp.gecnum_weightsO-1; j++)

newNtwk[i].weights[j] = ntwk[i].weights[j];
heapsort(newNtwk, numOfPoints);
}
else if(distance(newNtwk, i)*

ntwk[i] .weights[temp.gecnum_weightsO-2]>
distance(ntwk, i)*
newNtwk[i].weights[temp.gecnum_weightsO-2]){

}
else{

1* for(j=O; j<temp.gecnum_weightsO-2; j++)
newNtwk[i].weights[j] = op.random_weights(number);

newNtwk[i].calc_outputO;
newNtwk[i).calc_error();
heapsort(newNtwk, numOfPoints);*1

rdNum = random_generatorO;
if(rdNum>O. 5){

for(j=O; j <temp.get_num_weightsO-l ; j++)
newNtwk[i].weights[j] = ntwk[i).weights[j];

heapsort(newNtwk, numOfPoints);
}
else

}
}llend of competition

fi=======================================================II
IfThis distance between the point and the best-so-far II
Ilpoint is calculated in this method. II
fi=======================================================fi
double GACA::distance(network net[], int indexOfPoints){
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network temp;
double d;
int i;
d=O.O;
for(i=O; i<temp.get_num_weightsO-2; i++)

d += (net[indexOfPoints].weights[i]­
newNtwk[O].weights[i])*(net[indcxOfPoints].weights[i]
-newNtwk[O].weights[i]);

return sqrt(d);
}llend of distance
/1========================================================/1
I/When the algorithm is chemotaxis, a step size is required. II
Iffhe step size is asked to input in this method. II
11==========================================================11
void GACA::secstepsizeO{

cout«"Enter the step size ";
cout«"for the chemotaxis method: "«endl;
cin»stepSize;

}llend of set_stepsize
11=======================================================11
Iffhe chemotaxis algorithm is carried out in this method. II
1/=======================================================11
void GACA::chemotaxis(int pc){

int i, flag, less;
network temp;
flag = 1;

II Random number = new RandomO;
while(f1ag< WOH

less = 1;
chemo.initialize_weightsO;
while(less== 1){

IItime the step size and added to the best point
for(i=O; i<temp.gecnum_weightsO-2; i++H

temp.weights[i] = chemo.weights[i]*stepSize;
temp.weights[i] = ntwk[O].weights[i] +

temp.weights[i];
}
Ilcalculate the error
temp.calc_outputO;
temp.calc_errorO;
if(temp.weights[temp.gecnum_weightsO-2]<

ntwk[O].weights[temp.get_num_weightsO-2J){
less =1;

J
else

less = 0;
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if(less==1){
for(i=O; i<temp.geCnum_weightsO-I; i++)

newNtwk[pc].weights[i] = temp.weights[i];
IlcompetitionO;
nextGenerationO;
I/flag =0;

}
}llend whiJe(less==l)
flag++;

}Ilend while(flag== 1)
Ilreplace the worst point point by the bestPoint

1* for(i=O; i<temp.gecnum_weightsO-l; i++)
newNtwk[pc].weights[i] = chemo.weights[il;*1

}llend of chemotaxis
V===============================================V
/fIn this method teh new population is copied II
lito the old population and the error is II
Ilcalculated. the obtained old population is II
Ilready for next generation. II
V===============================================II
void GACA: :nextGenerationO{

network temp;
int i, j;
for(i=O; i<numOtpoints; i++){

newNtwk[i].calc_outputO;
newNtwk[i].calc3rrorO;

}
heapsort(newNtwk, numOtpoints);
Ilcopy the newNtwk into ntwk for next generation

for(i=O; i<numOtpoints; i++)
for(j=O; j<temp.get_num_weightsO-I; j++)

ntwk[i].wcights[j] = newNtwk[i].weightsljL
for(i=O; i<numOtpoints; i++){

ntwk[i].calc_outputO;
ntwk[i] .calc_errorO;

}
heapsort(ntwk, numOtpoints);
assign_probabilityO;

}llend of nextGeneration
11=========================================================V
IfThis method is to check the points whether they are equal or not. II
11=========================================================11
int GACA::checkPointsO{

int i, j, repeat=O;
int totaIWeights=O;
network temp;
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totalWeights = (numOtPoints-1 )*(temp.get_num_weightsO-2);
for(i=1; i<numOfPoints; i++)

forU=O; j<temp.gecnum_weightsO-2; j++)
if(ntwk[O].weights[j ]==ntwk[i].weights[j])

repeat++;
if(repeat==totaIWeights)

return 1;
else

return 0;
}lIend of checkPoints

11==========================================================11
Irrhis method is to get the wanted point. //
11==========================================================//
network GACA::getPointsO{

return ntwk[Ol;
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