
EMBEDDING CLOCK BUFFER IP CORE

IN FPGA EMULATION

By

JUNLI

Bacbelor of Science
Nanjing University

Nanjing, China
1991

Master of Science
Shanghai Institute of Biochemistry

Chinese Academy of Sciences
Shanghai, China

1994

Doctor of Philosophy
Oklahoma State University

Stillwater, Oklahoma
1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State Universlly
In partial fulfiUment of

the requirement for
the Degree of

MASTER OF SCIENCE
December 2001

EMBEDDING CLOCK BUFFER IP CORE

IN FPGA EMULATION

Thesis Approved:

-----~------'---~lr-lI-eg-C------

11

ACKNOWLEDGMENTS

I'd like to express my sincere thanks to my major advisor, Dr. NohpilL Park. His

careful reviewing and constructive advice are very important for the completion of the

thesis. Dr. Park not only directed my research but also taught me to write engineering

papers. I thank my committee members, Dr. John P. Chandler and Dr. Mansur H.

Samadzadeh for their valuable instruction and helpful encouragement.

1 shall appreciate Aptix Corporation and my colleagues for the good working

atmosphere and helpful suggestions. Thanks go to my friends such as Min Cai and

Xinyue Zhu, for their friendship help. In addition, they escorted me to hospital

emergency room when I was preparing the proposal defense for this thesis.

Finally, I also want to thank my wife Xiahong Wang and my parents. Their

encouragement keeps me away from laziness and depression. Their love makes me finish

this thesis.

111

TABLE OF CONTENTS

Chapter Page

I. Introduction " I

II. Literature Review , 4

III. Preliminaries JO

IV. Netlist Object Model (NOM) 15

V. NOM Controlled Embedding of Clock Buffer IP Core in FPGA Emulation 21

I. Design Analysis 21

2. Implementation 23

3. Verification and Emulation 29

4. Discussion 33

VI. Summary and Conclusions " 35

References , 37

Glossary 41

IV

LIST OF TABLES

Table Page

1 Emulation Efficiency --- 7

2 Output report of clock ports and their associated clock COWlts of design

COUNTERBUFFERS --- 30

3 Resource utilization of design Fl in one FPGA -- 31

4 Resource utilization of design F2 in one FPGA -- 31

v

LIST OF FIGURES

Figure Page

1 Typical ASIC Design Flow ----------~--------------------------------------5

2 Simplified FPGA Structure w w ~ 8

3 Electronic Design Automation Object Model -------------------------,------------- 1\

4 MP-4 System Emulator ------------.~--- 12

5 Reduced RC Model w_w ------------------- 14

6 NOM Architecture --------. -w -----------~------------ ----- ---- --- - --------------- -~--- 16

7 A Simple Design Used To Illustrate The NOM Structure ----~-------------------------18

8 The NOM Structure Of Example Design Fig. 5 -------------------------------~-------- 19

9 NOM Structure Of NO BOUNCE Cell ---------~-----------------~----------------------20

10 Clock Types -----~-------- ---- ---- -- --------------------- --- -~----------~---- -- ~- --. ------- 22

11 Build Design Instance Tree -------------------------~---------------------------------~-----23

12 Build Clock Table --------------------------.-------.------------.--------.-----.--.------- 24

13 Integrated Clock Buffer BUFGP -~---26

14 Verification of insertion of clock buffer in test design by gatevision ----------------- 32

VI

Cbapter I. Introduction

Application-specific integrated circuits (ASIC) are becoming more complicated.,

especialJy because of the advanced integrated circuit technologies that allow electronic

system designers to put a whole system on a single ASIC chip, which previously required

multiple integrated circuits such as digital logic, memory and mixed-signal digitaVanalog

logics [6J, so-called System-on·Chip (SoC). Since the size and volume of SoC are

greatly reduced, SoC bas the advantages of high perfonnance and low power

conswnption. However, the high speed and high density of SoC challenge the ASIC

verification methodology.

Traditionally, there are three types for ASIC verification, namely silicon

prototyping, software simulation and breadboarding [15]. The drawback of silicon

prototyping is that it is difficult to probe internal signal on chip for debugging. The long

turn-around time makes silicon prototyping infeasible today. The system level simulation

cannot allow enough time to ensure correct functionality because it takes even months to

simulate a few seconds of real-time operation of SoC [29]. The ASIC breadboarding by

using some low capacity programmable logic chips requires too long time to setup the

board for large design. Hence the emerging of FPGA emulation technique is a key to

resolve the SoC verification problem. This thesis will address a clock buffer insertion

techniques in FPGA emulation.

Emulation speeds up verification dramatically by involving hardware system and

field-prograrnmabJe-gate-array (FPGA) to layout design blocks. "For the emulation to

be effective, the emulated logic must be functionally equivalent to the logic running in

simulation and to the final chip" [23]. Each FPGA device running on an emulation board

requires a wrapper file. The wrapper file contains two types of infonnation. One type of

information contains the necessary hardware-description~language (HDL) modules

instantiated from the database. The second type of information contains any required

interface logic, such as bi-directional drivers. If any devices other than FPGA are on the

emulation board, HDL modules to define configuration of these devices must also be

created. The cormections between the FPGAs are defined in an emulation top-level

file-a pure netlist with no additional logic [23). The connections between FPGA and

other device are defined in a pin map file [2]. Then, both the design files and the FPGA

wrapper files are run through a standard synthesis process by the emulation software.

This process targets on appropriate FPGA technology. The synthesis tools are provided

by vendors. The typical synthesis time by using Synopsys' FPGA Compiler or FPGA

Express is one to two hours per FPGA [24]. After synthesis, the emulation flow moves

through several steps. The software works with the design's FPGA-speci fic netlist files, a

top-level netlist defining the connections between the FPGA netlists, and a pinmap file

describing the physical characteristics of the FPGAs and other devices in the setup.

Beginning with a mapping process, the emulation software is used to check the input files

for consistency, detennine the clocking scheme, and fix the FPGA pin locations. Then

constraint files for placing and routing the FPGAs are created. At this point, vendor

specific tools for the target FPGAs are utilized. If the vendor tools place all devices

successfully, the final step is to produce a routing for the circuit board. These steps

generate binary files for the FPGAs and the FPCB (Field Programmable Circuit Board).

The binary files are then downloaded on the FPCB.

2

In each FPGA, there are I/O blocks and logic blocks. Each input and output signal

needs corresponding buffers. For clock port, a clock buffer is required to enhance clock

signal and reduce FPGA routing congestion, since the resource in each FPGA is limited.

In the integrating process, verification engineer do not know the clock port and associated

clock count in a custom design. Therefore, the clock port selection is based on

infonnation provided by design engineers and their experience and intuition instead of on

the actual clock count. If the clock port selection is not consistent and results in different

clock port selections each time, it will generate inconsistent emulation results. After the

clock ports are selected, the clock buffer is integrated manually by the command, "insert

pads" [30]. The manual integration of clock port is not efficient and error-prone.

Therefore, in this thesis, we propose to use Netlist Object Module (NOM)-based control

on the insertion of clock buffers into user design clock ports before a design is

breadboarded onto an emulator.

3

Cbapter II. Literature Review

ASIC application has been applied virtually to every type of chip that performs a

dedicated task. Although its history is very short, AS IC captured 10% of the total

semiconductor market by 1990 [20]. For some specific cases, ASIC is the only solution.

For example, when small volume and power requirements are the major restrictions of

using standard integrated circuits (Ie) or any standard ICs cannot perfonn a unique

function, ASIC becomes the only choice. ASIC can also increase system performance

and throughput dramatically, and reduce system price if the volume of the production

reaches break-even [20]. On the other hand, ASIC also has some disadvantages:

designing and testing an ASIC are time-consuming. The ASIC verification phase of

design consumes more than 60% of entire project [6], and design complexity results in an

exponential rise in the verification time using traditional logic verification technique of

simulation. SoC exacerbates this situation. The task of verifyjng the very complex SoC

with simulation is very difficult if not impossible [6]. Therefore, lhc enhancement of

logic verification of ASrCs is required to facilitate and shorten designing and testing

time. The ASIC design procedure is shown in Fig. 1.

Simulation means thal an input pattern, when applied to an lC, operates upon and

generates a special output pattern, which will be compared with the expected result [20,

18, 19]. Simulation can be performed at behavioral [21], structural, and hardware levels

as well as any of their combinations. Logic simulation includes functional and timing

simulation. Functional verification is the first necessary step after a design is completed..

Functional simulation is used to verify the entire design behavior or functional

4

requirements. It is independent of timing delays. FunctionaJ simulations greatly simplify

timing by asswning that all logic elements have a common delay of one time unit (unit

delay) [28]. Since delays due to fanout loading and wiring capacitance are not

comprehended, the simulations run faster, and the designer is able to obtain quick

feedback of circuit functionality.

Design Concept

1
Design Specification

1
RTL Development

1
Functional Verification

1
Synthesis

1
Timing Verification

1
Floor-Planning Place & Route

1
Post-Route Verification

1
Sign-Off

Fig 1. Typical ASIC Design Flow f16]

5

However, logic simulation has several shortcomings [20]. First, the quality of

design verification is determined by the quality of the simulation vectors. The vectors

must assure that the ASIC will operate properly in the system under all system conditions

and modes of operation. Secondly, as designs have become more complex, the

simulators simply run too slow to meaningfully verify complex designs at the detailed.,

gate-level of design description. Consequently, logic simulators have evolved to work on

more abstract design descriptions. Finally, because breadboarding a complex ASIC

design by simulation is not practical, the development of a comprehensive simulation

places a tremendous burden on the designer. To resolve these problems, ASIC emulation

was developed.

ASrC emulation has been becoming popular since late 19808. Real world

verifications can be done by using hardware to mimic custom logic design [26].

Companies that focus on ASIC emulation typically emulate the custom logic of an ASIC

by mounting large numbers of FPGAs in a fixed array on printed circuit boards (PCB).

However, generating such systems can require lengthy development periods because 0 r

the use of FPGA components. Fortunately, in the mid- t 980s, reconfigurable prototyprng

technique was introduced by Aptix to overcome the difficulty-of-use, high cost and

perfonnance limitations of ASIC emulation, and to meet the increasing needs of system

on-chip design [3}.

The ASrC emulator is a special type of hardware modeler [20]. It provides a

means of automatically breadboarding a design on hardware. When using an ASIC

emulator, the logic is partitioned and downloaded over an array ofre-programmable logic

devices. An automatic router, based on a matrix of switchable interconnects, completes

6

the connections between devices. The downloaded design is plugged into the target

system board's ASIC socket and run. This arrangement offers a degree of a real time

operation that would otherwise takes a lot of time to simulate. Based on the data

provided by H. T. Verheyen., the emulation efficiency was listed in Table 1 [27].

A simplified FPGA structure is shown in Fig. 2. It contains many logic blocks,

which are used to generate many ASICs. FPFA periphery is surrounded by many I/O

blocks, which are used to provide chamiels to communicate to outside.

.'

TABLE 1: Emulation efficiency [27]

Design Application TypiCal Typical Typical Typical
Type Design FPGA #FPGAs Operating '1:1:

Size utilization per design Frequency
(Gates) (Gates) (MHz)

Central ~processor 1 million 2k >400 O. 1-2
Processor J.lcontroller
Complex ATM,LAN 250k 5k 30-40 5-15
Datapath
Structured Multimedia 250k 10k 15-20 10-20
blocklevel
Pipelined Telecom 150k 20k 5-10 >20
SignalFlow

Table 1 shows that many mid-range ASICs with a design size between lOOk to

300k gates can be emulated with less than 40 FPGAs: therefore, emulation allows

significant speedup in development time, emulator configuration time, and incremental

debugging time.

7

Fig. 2 SimpHfled FPGA structure

The FPGA emulator is named for equipment used to perform ASIC emulation.

The emuJator combines three basic techniques [2]: synthesis, high density FPGAs, and

programmable interconnects. These teclmologies together enable the realization of rapid

prototyping. Synthesis and compilation are used to quickly convert HDL to gate-level

netlists, and C-codes to assembly codes for processors. FPOAs are then used to convert

the gate~level netlists to a physical model of the netlist itself. The field programmable

interconnects (FPICs) are used to realize a physical system that enables a combination of

8

FPGAs, micro-processors or micro-controllers, and discrete components such as random

access memory (RAM), read-only memory (ROM), interface logic and even analog

circuits, to be connected at a very high speed [2].

Although emulation is very efficient, it is only used for functional verification.

To enhance external clock signals, reduce FPGA congestion and minimize clock skew, it

is necessary to insert clock buffers after clock ports. Currently, there are two types of

FPGA compiler. One always inserts BUFG buffer for all clock ports [25]. This is not

efficient because each FPGA has limited clock buffer resource: for example, some Xilinx

FPGA XC4000s only allows up to four clocks. The other type of FPGA compiler does

nothing about clock ports and leaves it to users. If the user does not insert a clock buffer

to a clock p<>rt, the emulation will malfunction. Therefore, verification engineers have to

select the clock port manually and blindly, and insert clock buffers one by one. This

process is time consuming and not accurate, and the emulation result may not be

consistent because different clock ports are selected and different numbers of clock

buffers are inserted. To overcome the shortcoming of current FPGA compilers, we'll use

NOM to control the integration of clock buffers to proper positions on FPGA. With our

program, we can automatically select clock ports, clock buffer type, the number of clock

buffers and their integration.

9

Cbapter ill. Preliminaries

Electronic design automation CE-PA) (Fig. 3) is a necessary tool for loday's

hardware design. Designs were generally written in hardware description language

(HDL) that is more understandable. Then HDL codes are translated into netlists by

software tools such as FC2 tools [25] and iletlist.objec1 model (NOM). The user-defined

modules or predefined cells in HDL code are synthesized into gate-level [26] by vendors.

The synthesized binary code can be downloaded or'!. an emulator for logical verification.

In this work, we will use MP·4, an Aptix emulator. The structure of MP-4 is

shown in Fig. 4. It is a fully functional hardware and software realization. The system

emulator is realized as a very flexible architecture in which the user detennines what

FPGAs and what other components (RAM, ROM, and processor) to use. The emulator

has built-in BUS, CLOCK and I/O resources to be utilized in the final design. MP-4

supports more than 3000 pins to be used for the design mapping, and supports more than

500 pins to be used for va. Realized frequencies vary from 15 MHz to 35 MHz. Gate

counts vary from 50k to 250k gates [2]. Aptix software tools provide automatic

conversion of the computer-aided engineering (CAE)-domain description, which is

generally in a hardware description language (Verilog, VHDL or EDTF) fonnat, iota

physical domain.

10

Fig. 3 Electronic Design Automation Object Model [10]

ASIC emulation sacrifices design timing accuracy because the reprogrammable

logic devices have their own timing characteristic [20]. Its usefulness may therefore be

limited to low-speed (less than 5MHz) or functional emulation and debugging only.

Because of the timing inaccuracy and perfonnance limitations, simulation and timing

analysis are still required. In spite of its limitation, the use of emulation can be extremely

valuable in resolving design errors, ambiguities, and specification miscommunications

without having to wait for silicon fabrication and incurring the risk of iteration. The

system also allows software incorporation to test their code as soon as the ASIC design

can be downloaded. Therefore, it enables software-hardware co-design.

11

I

FPGA FPGA FPGA FPGA
Ihv.n
Lood,.. - ~

~r-
I

'"-l FPIC

-~•,
I CLOCK

RAM ~

I I BU; I

Fig. 4 MP-4 system emulator [2]

Netlist Object Module (NOM) is used in this work to integrate timing buffer into

a design. NOM is a data structure and a language independent object model for multi-

format netlist with application program interface (API) for representing connectivity

information between design modules (cores). The connectivity information is stored in a

hierarchical, language independent manner. The interface hides language specific details

from application programs and provides a unified view of any ne1list description through

a conunon API. The API provides intuitive functions to access and modify the in-

memory data structures. The NOM can be easily extended, allowing users to build new

capabilities on top of the existing ones to meet their specific requirements from a netliSl

representation. NOM is used in a wide range of applications, including language

translators, schematic generators, FPGA partitioning, and front-end to auto place-and~

route tools.

12

The clock buffer IP core is a pre-defined cell by Xilinx [30]. It has interfaces I

and O. "P' is an input port for inputting data. "0" is an output port. An BOlF file is

required to call Xilinx libraries to generate buffer cells, and NOM will be used to create

clock buffer instances.

Clock buffers are inserted into a clock net of custom design in FPGA emulation.

The global primary clock buffer (BUFGP) can be used to reduce congestion in FPGA

emulation. As clock pins have high fanout, if each clock pin of logic blocks has a

separate net connected to the clock, some ASICs may not be placed and routed properly.

In FPGA XC4000 [30], there are global buffer routing resources. Eight global nets run

horizontally across the middle of the device. These nets can d.istribute signals to the

configurable logic block (CLB), and reduce routing congestion, and thereby enable

routing of some otherwise un-routable design.

Clock buffers can be used to enhance clock signals. An external clock signal may

not reach CLB without a clock buffer, since the electric signal becomes weaker while

being transported through a net.

A clock buffer reduces the clock skew by inserting some delay. "Clock skew is

the difference in the arrival time of the clock pulse between a source and destination

register (or other synchronous elements)" [13]. Global clock buffers are used for external

clock signals. Some positive skew can be beneficial by decreasing the setup time.

However. too much positive skew can create a race condition and negative skew will

require long setup time. Clock buffers minimize clock skews by inserting delays through

clock butTers to synchronize external clock signals.

13

Physically, clock buffers have one input and one output as interfaces. We notice

that the input is clock signals, which are regular in pattern. The output of clock buffers is

also regular with same pattern to that of the input, except that output has some delay.

It can be modeled by using reduced resistor-capacitor (Re) hardware model (Fig.

5) [16). When an electric pulse arrives, the capacitors C are charged, and they will keep

charged until the electric drops to 0 and then the capacitors are discharged, and generate

an enhanced electric pulse output. Based on the value of capacitor C and resistor R., the

value of the delay can be calculated. However, in FPGA device, it is impossible to

detennine the timing delay until the placement and routing of the design is completed [I).

As an I/O block in FPGA, clock buffer BUFGP cannot be separated from the FPGA.

Since there is a great deal of flexibility and the routing resources are quite complex,

Xilinx does not provide any simple timing models for FPGA family XC4000 [30). The

actual clock buffer model and its related parameters are unavailable. In this context,

NOM is used to instantiate primary clock buffers and insert them to desired clock ports.

Rinput

~I

C T
I

T

output

c

Fig. 5. Reduced RC model [16]

14

Cbapter IV. Netlist Object Model (NOM)

NOM is composed of several hierarchical objects: root., library, cell, module. port,

net, instance, tenninals and assign (Fig 6).

Root is the base address of the whole data structure. The root may contain library

lists, two kinds of module lists: top module list and module list. In each library, there are

many cells. Each module is inherited from different celJs. A library can be referenced

from the NOM root. In a module, there is a net list, a port list. an instance list and an

assign list. Net is communication pathway and it can be wired, wireless or other.

Connected by a net, port is a transportation gale to control signal to or from a module.

Ports control the data direction of input, output either uni- or bi-directional. The instance

list lists up various instantiated modules. On each instance surface, there are terminals

connected to outside net. An jmportant concept is that the instances can be abstracted as

modules, and then the terminals are converted to ports. This concept allows NOM netlist

to be extendible.

NOM has the following advantages [9]:

1) It preserves electronic design hierarchy. Electronic components are designed

hierarchically and the lower level in the hierarchy is generally designed first for

modular design growth. The lower level modules with less complexity have a

fewer number of gates and can be taken care by engineers. The upper level is

built on top of the lower level designs.

2) NOM can read and write designs in different languages such as Veri log, VHDL

and EDIF.

15

-

o Root
I
+----->@ Library

I
+-----> Library Name
+-----> Parent Root
+------>@ Cell

I
+------> Cell Name
+-----> Parent Library
+~----->@Module

I
+-------> Module Name
+-_.----> Parent Cell
+~------>@ Port
I I
I +----> Port Narne
I +----> Parent Module
I +----> Cormected Net
I +----> Direction
I +----> Index
I
+----_.•>@ Net

I I
I +----> Net Name
I +----> Parent Module
I +----> Direction
I +----> Net Type
I +---->@ Connection
I
+------->@ Instance
I I
I +----> mstance Name
I +----> Master Module
I +.---> Parent Module
I +---->@ Tenninals
I I
I +--->Parent Instance
I +--->Master Port
I +--->Connected Net
I
+------->@ Assign

I
+--- -->Ieftstatement

+----->rightstatement
+----->delaystatement

+----->@ Top Module
+----->@ Module

Fig. 6 NOM architecture [9] ('@' symbol represents a NOM list ofthe named enti1y)

16

3) Designs in different languages can be put together into NOM to build a language

independent data structure, and this structure can be encoded in its own fonnat.

4) With a language-independent data structure, users can extend object model by

adding, deleting or modifying the structure.

A simple design shown in Fig. 7 will be used to examine its NOM structure. In

Fig. 7, the root is named nomRoot, the top module is FPGA_I whose parent cell name is

FPGA. Module FPGA_I contains four instances: GND_I, LUT2_1, FD_I and NBl, and

their internal cells are GND, LUT2, FD and NO_BOUNCE, respectively. Suppose these

modules are instantiated from library Lm, and the whole design will be populated on a

dummy library 'WORK'. Fig. 7 can be represented by the following data structure in

NOM (Fig. 8). The design ofF} contains the following lists:

Library List: WORK and LIB.

Cell List: GND, LUT2, FD, and NO BOUNCE.

Module List: GND_1, LUT2_1, FD_1, and NB l.

Port List: 10, JL, 12, 13, 01, and 02.

Net list: NI, N2, N3, N4, N5, N6, N7 and N8.

Inslance List: GND_I, LUT2_1, FD_I, and NBI.

Notice that NB I contains one instance of FDE 1 inside. NO BOUNCE can be

defined in the same library as shown in Fig. 8 or in another library. The NOM structure

ofNBl is shown in Fig. 9.

The cells GNU, LUT2, FD and FDE are defined in library LIB and they are

standard pre-defined libraries provided by ASIC vendors.

17

lel

11

12

13

NI
GND G 10 N ..,

lU T2 0
GND - \ Ii

l U T 2 - I

~

N 1 ~D FO Q
l'< ~ C

FI) - 1

CI NIO
C

N 11 03
N5 eEl Nil N 8

CE FDE. 0

}J~
Dl N 12

0

F DE - I

NO_ BOUNCE

N B I

F P G A

Ot

02

FPGA_I

Fig. 7 A simple design used to illustrate the NOM structure

By definition, a clock net is a net that connects to C or G pins on the lowest

module. C and G are just two special characters used in NOM. A port connected to a

clock net is called a clock port. For example, in Fig. 7, net N10 is a clock net, because

N10 is connected to C tenninals of lowest module FDE. N4 is also a clock net that

connects to C terminal ofFD and to CI of NO_BOUNCE, thus Port II is a clock port as

well.

L8

o nomReat
1

+---7 Library---------------------.---------~LIB-------- ------ ------ -- ------ -~NULL
I I
I +------> Name=WORK

+------> Parent=nomReot
+--- -- ->Cell---------· ----------------------------------- --~ Ce11-----~NULL

I I
+-----> Name=FPGA + ------(Continue in Fig 7)
+-----> Parent=WORK
+------> Module

I
+-----~ Name=FPGA I
+-----~ Parent =FPGA
+--~ Port---~ Port------~ Port----~Port------~Port------~Port~NULL
I I I I I I !
I +-> IO +->11 +->12 +->13 +->01 +->02
I +-> Fl + ->Fl +->Fl +->Fl +->Fl +->FI
I +-> N3 +->N4 +->N5 +·>N6 +->N7 +->N8
I +-> IN +->IN +->IN +->fN +->OU +->OUT
I +-> 0 +->1 +->2 +->3 +·>4 +->5
I
+~Net--(N2 to N7 are omitted)~. Net------------~NULL

I I I
I +----> Nt +--~N8

I +----> FI +--~Fl
I +----> IN +--~OUT

I +----> WIRE +--~WIRE
f +->Connect->Connect->Nil +--~Connection-~ Connection->Ni I
I I I I I
I + terminal 10 + Terminal G + port 02 + terminal 03
I of LUT2_1 ofGND_l ofFl ofNBl
II
+-------> Instance-------~Instance7 (LUT2 I and FD I omitted)7NULL
I I I - -
I +-> GND I +->NB I
I +-> GND-of LIB +->NO BOUNCE of LIB
I +----> Fl +->Fl -
I +··-->tenninal->NULL +->tenninal--7 .. ,-~ terminal7 NULL
I I I I
I +--->GND 1 +7NB I +->NB I
I +--->G - +~Cl +-> eEl
I +--->Nl +~N4 +-> N5
I
+------->NU LL

+---->Top Module->NULL

I I
I + FI
+-----> WORK. FPGA. FI

Fig. 8 The NOM structure of example design Fig. 5

19

(Continue from cell NO_BOUNCE in Fig 8)
I I. ..{ - ~

+------~ Name = NO BOUNCE
+-----~~ Parent =WORK
+------~ Module

I
+-------~ Name = NB I
+--------7 Parent = NO_BOUNCE
+------~ Port-- ---~-~Port_.---~~-~~Port------~Port ---.- --7NULL

I I I I I
I +~ Ct +~ CE t +~ DI +-7 0
I +-7 NEt +7 NBl +~ NBI +7 NBt
I +~NIO +7Nll +-7N12 +?N13
I +-7 IN +7 IN +7 IN +-7 OUT
\ +-7 0 +? t +7 2 +-7 3
,
+------~ Net-------~Net------------~Net--------~Net -----~NULL

I I I I I
I +~ NIO (omitted) +~ NI2 (omitted)
I +7 NBt +7 NEI
I +-7 IN +..., IN
I +-7 wired +-7 wired
I +-7 connect-7Connect->NiI +? connect-7connect-7NULL

I I I I I
I +-7 CI +~C +~Dl +-7 D
I ofNB! ofFDE_l ofNBl ofFDE
+------7 Instance ---------------------~ NULL

I I
I +-? FDE_l
I +--) FDE of LIB
I +-7 NO BOUNCE
I +·-7 terminal---7tenninal---7tenninal---7 tenn inal-7NU LL

I I I I I
I +7FDE_l +7FDE_l +-7FDE_l +7FDE_l
I +?C +?CE +~D +?O
I +7NIO +~Nlt +'7N12 +7N13
+------?NULL

Fig. 9 NOM structure of NO_BOUNCE cell

20

Cbapter V. NOM Controlled Embedding of Clock Buffer IP Core in FPGA
Emulation

1. Design Analysis

There are many EDA tools based on nellist object models. [n this thesis, a

commercial NOM tool developed by Interra Inc. (9] is used.

In a design, the number of clocks may vary. However, FPGA on emulator has

only a limited number of clock buffers provided. If a design has more clocks than

allowed, which port should be selected to insert a clock buffer is based on their

connections. The complexity of connections is measured by clock count.

In order to get the right clock ports, the clock net must be obtained first. By

definition, clock net is a net connected to C or G pins in the primitive module. The clock

net connected port is called clock port. When the clock nets are found, they are traced up

to the top-level port. If it reaches the top-level port (e.g. in Fig 7, they are 10, I I, 12, 13,

01, 02), the clock count associated with that port is increased by 1. Otherwise, a

warning or error message is issued to indicate that the clock is a gated clock (or internal

clock). For example, the clock count of clock port illS 2 in Fig. 7.

There are four possible types of clocks as shown in Fig. 10. Some are pennitted,

and some are forbidden. One common rule is that to distribute clock signals, only one

path is allowed from the reference clock to storage elements. The storage elements can

be buffers, inverters, etc.

21

Case A: Distributed Clock S.tructure [5]

L....-----.I G/e
I

Case B: Gated Clock [5]

o

CIG
Q

Gated
Clock

Gated
Clock

o
IO

IO
o f---

II

11D

CIG

D QPrimary
Clock

Case C: Internal clock

Combinational
logic

-Ill
I------+~ Ivce p I~·I C/G

Internal
clock net

Case D: Multiple driver clock

Fig. 10 Clock types

22

]n addition, gated clocks are permitted only if they do not hann other element

signals [16]. That is to say, the internal clock net is allowed conditionally, but warning

messages must be issued. For example, a divided clock is a kind of allowed internal

clock [16]. Multiple drive clock nets are not aJlowed. In Fig 7, empty arro\VS represent

input clock ports. Empty squares represent instances. Letters 1,0, C, G, D, Q represent

tenninals.

2. Implemeogtion

Based on the analysis, a flowchart to get a correct clock port is shown in Fig 11

and Fig. 12.

Yes

Insert to
---. Leaf List

Insert to
----.. Instance Tree

1
Instance

Instance List

>tilModule

Start

~
Design

~
Populated on NOM

1
Root

1
Module List

1 No

Fig. 11. Build a design instance tree

23

Yes
..Increase Clock

Count of the Port by 1

Leaf List • Terminal List

~
Master Port III Tenninal

~

.§

1 Yes

Clock Net III Corresponding
Terminal

§NO
STOP

1No
1 Yes

Connected Port •

! No

Add to
Clock Table

Fig. 12 Build clock table

24

Once the addresses of clock ports and clock counts are obtained, the clock port

with the highest clock count will be selected. An EDIF file containing declaration of a

clock buffer cell is input to the NOM, and the corresponding instance is created and

inserted into the net after the clock port (Fig. 13). Note that the controlled insertion of

clock buffers will avoid random insertion and the number of clock butTers to be inserted

depends on the FPGA type.

In this work, the clock buffer IP core provided by Xilinx (31] is instantiated and

inserted to the clock net. It is called BUFGP. BUFGP is a primary global clock buffer

IP.

Three types of structures are defined in this work. Stmet instTree 15 used to recode

instance structures of hardware design. Struct leafList is used to recode all the primitive

cell addresses in a design. Struct clockTable is used to recode all clock port address and

their clock counts. Their defmitions are:

typedef struct instTree {

nomNode node;

stmet instTree *parent;

Slrliet instTree *next;

struct instTree *child;

} InstTree;

typedef strue1 1eatLinkedList {

InstTree "node;

struct leatLinkedList *next;

} LeafList;

25

Clock Table

Sort Clock Table
Based on Their
Clock Count

Get Clock Port
From Table

No

Trace Down to
Instance List

Instance

Increase Clock
Buffer COWlt (CB~

1Yes

Create New
Net And Connect
Clock Buffer
Instance to the Port

i
Disconnect the
Port From
Connected Net

i
Create Clock
Buffer Instance

Yes
Import

-----------.. Clock Buffer

Fig. 13 Instantiate a clock buffer and integrate the clock buffer beyond FPGA boundary

26

typedef struct clockTable {

nomNode node;

int cOWlt;

struct clockTable *next;

} ClockTable;

Using these data structures, an object ClockPad is implemented. It has nine data and

eight public operations. The detailed declaration of object ClockPad is listed as follows.

class ClockPad : public DealWithlONClock

{

private:

InstTree *TREE;

LeatList *leafList;

ClockTable ·CLKT;

nornNode root;

nomNode module; //top module

int aliowClockNum;

char "'outputFileName;

FILE ·fout;

char *top;

static int allowClockCoWlt;

27

private:

int buildInstTree 0;

void buildRootO;

void buildLeafListRoot 0;

void buildRootOfCLKT 0;

int buildTop (nomNode inst);

int insertLeafList (InstTree ·Dode);

int buildTree (nomNode inst, InstTree *pNode);

void getLowestMod();

void traceUp (nomNode inst, nornNode clockNet, InstTree* temp, nomNode

·(OpPort);

int testForMultiDriveClockNet (nomIter list);

nomNode findCorrespondingPort (nomIter list);

void updateClockTabJe (nomNode topPort);

void printRoutine (nomNode port, nomNode inst, nomNode clockNet, InstTree

·tree);

void pnntMiddlePartOtHierInstTree (lnstTree *tree);

void sortingTable(};

int iosertBUFGPO;

int insertingBUFGP(ClockTable *CLKT, nomNode module);

void releaseSpace(ClockTable "tbl);

int setUpNewClockTable (nomNode port, ClockTable *Tbt);

28

protected:

void freeCLKTSpace();

void freeInstTreeO;

void freeLeafList();

public:

ClockPad(nomNode rool, int totalClockNum, char *outputFileNarne, char

*topModName);

-ClockPadO;

int run ClockPadO;

void printInstTree 0;

void printLeafList 0;

void printTable 0;

LeafList • getLeafListO;

} ;

3. VerificatioD and Emulation

After the programs are implemented, a test design is input into this program. The

test design is designed to count numbers from 1 increasing by 1. Thirty-two bits are used

to store the number. If the number reaches top and another one is added, overflow will

occur. The test design is partitioned into two FPGAs, and its top module was called

COUNTERBUFFERS. The output of this program is the design with clock buffers

29

inserted, which was ready for emulation test written in EDlF. The output by the .program

is shown on Table 2.

Table 2: The output report of the clock ports and their associated clock counts of the

design COUNTERBUFFERS

Clock Port Name

SysClk

Tclk

Clock Count

3350

1108

Two commercial tools are used to check the output EDIF tile. One is called

gatevision (7]. It displays the logic design graphics by parsing the EDIF file. The second

tool is calJed xflow [31]. It checks syntax errors in EDIF files. Therefore, xflow is used

to test whether some syntax error was introduced when a clock buffer was inserted. In

addition, xtlow packed the design into FPGA.

The schematic shown in Fig. 14 is obtained from galevision. The figure on the top

in Fig. 14 is the whole design view. The figure on bottom shows the detail of clock ports

and indicates that clock ports have been selected correctly. Two clock ports sysClk and

telk are selected which is consistent to data in Table 3. From the figure, it is shown thal

under top module COUNTERBUFFERS, there are two FPGA modules, Fl and F2.

Within each FPGA boundary, two clock buffers are instantiated (the instance names are

BUFGP sysClk and BUFGP telk). This indicates that clock ports are selected correctly- -

and clock buffers are inserted as expected.

Results from the gatevision indicates that BUFGPs have been embedded into the

design. However, it does not necessarily mean that the corresponding nets and instances

30

have been connected and function properly. So. the output EDIF files are passed through

Xilinx [31] placement & routing (p&R) tool named xflow. This toot translates EDIF file

contents into FPGA components, and ~.aFs different instances onto corresponding

intellectual properties, (lPs) located in FPGA. The design without BUFGP gives the

following error messages:

"ERROR 9~: ?ack: 198- NeD was not produced. All logic was removed from

design. This is usually due to baving no input PAD connections in the design ".

This error message means that xflow fails toP & R the design if the program fails to

insert BUFGP into the clock port and leave I/O,pa.d empty.

On the other hand, the output EDIF from the test design is passed through xflow

successfully. The log files from xflow are shown in Table 3 and Table 4.

Table 3 Resource utilization of design Fl in one FPGA :

INumber of External GCLKlOBs 2 out of4 50%

Number of Extemal rOBs 121 out of 404 29%

Number of SLICEs 582 out of 12288 4%

Number of GCLKs 2 out of 4 50%

Number of TBUFs 64 out of 12544 1%

Table 4 Resource utilization of design F2 in one FPGA

Number of External GCLKlOBs 2 out of 4 50%

Number of Extemal rOBs 105 out of 404 29%

Number of SLICEs 1395 out of 12288 4%

Number of GCLKs 2 out of 4 50%

Number of TBUFs 64 out of 12544 1%

31

Fig. 14 The verification of insertion of clock buffers in the test design by gatevision

32

The logic design is placed and routed into the FPGA successfully. The time of

placer completion of FPGA Fl was 16 minutes 14 seconds. The time of placer

completion of FPGA F2 was 18 minutes 53 seconds. According the resource utiHzation

tables (Table 4 and Table 5), number of GCLKs is 2 out of 4. This means that in each

FPGA XC4000, there are four global clock buffers~ and two global clock buffers are used

respectively. These results were consistent with the report in Table 2 that shows two

clock ports (SysClk and Tclk) are selected and one clock buffers is embedded after each

in one FPGA, that is to say, two clock buffers in each FPGA.

The buffer-cmDlter design with clock buffer inserted was compiled and

downloaded onto Aptix MP-4 emulator as in Fig 4 and tested. The output is connected to

a hardware equipment named logic analyzer. The logic analyzer shows that the number

increased continuously by one from 1 to 232 -1 and then overflow to _232
• Then the

display was a loop from _2 32 to 2.32_ 1. The result was the same as expected.

Therefore, the program has selected the clock port correctly and the clock buffer

IP cores were embedded into design correctly.

4. Discussion

Clock buffer is an important global resource IP core in FPGA emulation. It is

used to reduce FPGA congestion, enhance clock signal, and minimize clock skew. Each

clock buffer COlUlected net in FPGA must be connected to a global net on the ernulator~

and a common top clock net connected to different FPGAs must share the same global

buses on the emulator. Since a large design is generally partitioned into multiple FPGAs,

33

independent clock buffer selections among the multiple FPGAs will cause problems in

breadboarding a design on an emulator, such that total required global net buses may

exceed the number of global nets on the emulator, and that the global nets selected on one

FPGA with a clock buffer are not selected on other FPGA involved in the same design

may cause bus errors, and clock skews. The proposed method resolves this problem by

controlling the selection of clock ports and the insertion of clock buffers globally across

the multiple FPGAs under an emulation. Then the total number of required global net

buses will never exceed the number of global nets on the emulator, and keep the clock

ports on different FPGAs connected to the same top clock nets to have the same

canfiguration.

This method selects the clock ports based on their fanouts, and checks the clock

connections, which will enhance the efficiency and accuracy of the emulation process by

providing automated selection of clock ports and insertion of clock buffers. In the

process of the selection and insertion, the design logic is kept intact.

34

Cbapter VI. Summary and ConciusioDs

Simulation and emulation have been two common methods of verifying

microelectronics design. As today's designs are becoming more and more complex with

higher density, traditional simulation techniques cannot verify the whole design to meet

the time-ta-market. Hence, emulation technique is emerging in today's design

verification. Field-programmable-gate-array (FPGA) technology is one of the keys to

realize the emulation. Since today's design is becoming larger and larger while the

capacity of FPGA is limited, it is necessary to partition a design across a number of

FPGAs. However, the capacity of emulation is limited because the number of FPGA on

an emulator is limited. Therefore, the design should manage to make full use of the

FPGA resources. Clock buffer is one of the important IP cores in FPGA emulation and

each FPGA has a certain number of global clock buffers. If they are not used properly.

external clock signals may not be able to reach their destinations properly and the high

clock fanout may cause problems during placement & routing, which will reduce the

FPGA capacity due to congestion. Also. since a whole design is partitioned and

breadboarded into several FPGAs, the embedding process of the global clock buffers

must be consistent across the whole design on an emulator, otherwise it may cause clock

skews and emulation malfunctioning.

Finding right dock ports and inserting clock butTers to them are critical issues in

FPFA emulation. This wark establishes an electronic-design-automation (EDA) solution.

Netlist Object Model (NOM) can be used to control the insertion of clock buffer cores.

NOM is a language-independent data structure. After parsing a design into NOM, an

35

instance tree is built to trace instances, their parents, children, siblings and their

connection nets. Those nets connected to clock nets are traced back hierarchaJly along the

instance tree all the way up to the top level. If they reach a top port, the port is identified

as a clock port, otherwise as gated-clock. By using this method, the connection complex

of clock ports is obtained (quantified by clock cOWlt). Then, based on different FPGA

types, a certain number of clock ports with the highest top clock counts are selected and

global clock buffers are instantiated and inserted to them. A design, which is composed

of 32-bit counters and buffers, has been used to evaluate this work in tenns of speed and

accuracy. After clock buffers are embedded in the test design, the gate-level netList has

been parsed by gatevision, the results show that clock ports have been selected correctly,

and clock buffers have been inserted properly (Table 2, Fig. 14). Then the gate-level

design is parsed by xflow [31]. The result shows that the design has been placed and

routed successfully on the FPGAs (Table 3 and Table 4). Finally, the design is

downloaded onto an emulator, and the logic analyzer has verified the correct design and

implementation by using the proposed method.

The problem of selecting clock port and inserting global clock buffer has been

resolved successfully in this thesis. According to different clock types in Fig. 10, gate

clock transformation is an issue for future work on the base of this work.

36

References

1. "FPGA Data book and Design Guide".. AcJel Corp. Cahfomia 2000.

2. "MP4 System Explorer User's Manual". Aptix Corp. California. 1998.

3. "Reconfigurabte Prototyping offers Increased Speed, Flexibility and Debugging".

Aptix Corp. Wi/less System DesignlSystemchips Supplement. Aptix Corp. August

1998.

4. Benini L. . De Micheli G. , Macii A. , Macii E. , Poncino M. and Scarsi R., "Glitch

Power Minimization by Gate Freezing". Proceedings ofthe Design, Autom.ation and

Test in Europe Conference and Exhibition. ppI63-167. IEEE Computer Society.

1999.

5. Bobba S. and Hajj 1. N., "Maximum Current Estimation in Programmable Logic

Arrays". Proceedings of the Great Lakes Symposium on VLSI '98. pp301~306.

IEEE Computer Society. 1998.

6. Chang C. M., "SOC becomes Household Name". Electronic News. 46(43): 64.

2000.

7. Concept Engineering Corp. Connecticut. 2001.

8. Gonzalez-Torres J. , Mateos P. A. ,Hemamdez, J. M., "Full custom chip set for high

speed serial communications up to 2.48 Obit/s". Proceedings of the 1997 European

Design and Test Conference (ED&TC '97). pp614. 1997. IEEE Computer Society.

9. "NOM API Programmers' Reference, Version 2. 6 ". lnlerra Inc. San Jose,

California. 1995.

37

10...brtp:llwww.interraeda.com... Intura, Inc. Access date: 02-27-01. Create Date:

2000.

11. Kaplan G., "Programmable logic devices developments in industrial electronics

during 1992". SPEC 93. pp58~60. 1993.

12. Khare J. , Heineken H. T. and d'Abreu M., "Cost Trade.-Offs in System On Chip

Designs". Proceedings ofthe 13th International Conference on VLS] Design. pp 178

184. IEEE Computer Society. 2000.

13. Knipping V., "3. 1i Constraints: Understanding Timing and Placement Constrains",

Personal Communication. 1999.

14. Leeser M. , Meleis W. M., Vai M. M., Chiricescu S.• Xu W. and ZavTacky P.,

"Rothko: A Three Dimensional FPGA". IEEE Design & Test oj Computers, 15(1),

pp 16-23. 1998.

15. La W, Choy C, and Chan c., "Hardware Emulation Board Based on FPGAs And

Programmable Interconnections". Proceedings of /5'11 International Workshop 01/

Rapid System Prototyping. pp 126-130. IEEE Computer Society. 1994.

16. Nekoogar F., "Timing Verification of Application-Specific Integrated Circuits".

Upper Saddle River, NJ: Prentice Hall PTR. 1999.

17. Pomeranz 1. and Reddy S. M" "On Finding Functionally Identical and Functionally

Opposite Lines in Combinational Logic Circuits". Proceedings of the Nimh

International Conference on VLSI Design: VLSI in Mobile Communication (VLSI

'96). pp254-259. IEEE Computer Society. 1996.

18. Savino~Vazquez N. and Puigjaner R., "A UML-Based Method to Specify the

Structural Component of Simulation-Based Queuing Network performance Models".

38

Proceedings of the 771irty-Second Armual Simulation Symposium. pp7I-~78. fEEE

Computer Society. 1999.

19. Scholl C. , Drechsler R. , and Becker B., "Functional Simulation using Binary

Decision Diagrams". Proceedings of the 1997 International Conference on

Computer-Aided Design (ICCAD '97). pp8-12. [EEE Computer Society. 1997.

20. Schroeter J. and Cliffs. E., "Surviving the ASIC experience". New Jersey: Prentice

Hall. 1992

21. Shoji M. , Hirose F. , Shimogori S. , Kowatari S. , and Nagai H.,. uAcceleration of

Behavioral Simulation on Simulation Specific Machines". Proceedings Of The 1997

European Design And Test Conference (ED&TC '97). pp373-377. rEEE Computer

Society. 1997.

22. Shriver E. Hall, D. Nassif, N. , Rahman, N. , Retlunan, N. , Watt, G. and FarreH, J.,

''Timing verification of the 21264: A 600MHz Full-custom microprocessor".

Proceedings Of The International Conference On Computer Design. pp96-103.

IEEE Computer Society. 1998.

23. Singletary A., "Emulation technology for ASIC core verification: emulation

strategies vary across three ASIC core". Integrated System Design (www. isdmag.

com), July, 2000. WWW.\.IS • design- reuse. cOITI/NEWS/~.£~_EE--.:html. Access date: 2

28-01. Create date: 07-01-00.

24.. "FPGA Compiler II User Manual ". Synopsys Inc., San Jose, California. 2000.

25. "Synthesizing your design". XilinxiSynopsys interface guide. Synopsys Inc.,

California. 2000.

39

26. Tessier R., "Incremental compilation for logic emulation". Proceedings Of The

Tenth IEEE International Workshop On Rapid System Prototyping. pp236-241. IEEE

Computer Society. 1999.

27. Verheyen H. T., "Accelerating Hardware/software co-design through system

emulation ". Proceedings of1996 High-performance System Design Conference: pp1

18. IEEE Computer Society. 1996.

28. Vuletic M. , Davidovic G. and Muilurinovic V., "Suboptimal Detection ofTelemetry

Signals: Functional Simulation and VLSI Implementation". Proceedings of the Sixth

International Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems. pp289-294. IEEE Computer Society. 1998.

29. Walters S., "Reprograrnmable Hardware Emulation Automates System-Level ASIC

Validation". WESCONI90 Conference Record. ppl-5. Nov. 1990.

30. "Libraries Guider", Xilinx Corp. California. 2001

31. Xilinx Corp. California. 200 1

40

Glossary

ASIC: Application Specific Integrated. Circuits.

CLB: Configurable Logic Block.

EDA: Electronic Design Automation.

EDIF: electronic data interchange fonnat.

FPGA: Field Programmable Gate Array.

FPIC: Field Programmable Interconnect.

FPCB: Field Prograrrnnable Circuit Board.

FPL: Field Programmable Logic.

HDL: Hardware Descriptional Language.

Ie: Integrated Circuits.

IP: lntellectual Property.

NOM: Netlist Object Module.

PCB: Printed Circuit Board.

PLA: Programmable Logic Array.

PLD: Prograrmnable Logic Device.

RAM: Random Access Memory.

ROM: Read Only Memory.

RTL: Register Transfer Level.

SoC: System on Chip.

41

VITA

Jun Li

Candidate for the Degree of

Master of Science

Thesis: EMBEDDING CLOCK BUFFER lP CORE IN FPGA EMULATION

Major Field: Computer Science

Biographical:

Personal Data: Born 1n Binhai, Jiangsu Province, China, on August 4, 1968.

Education: Received Bachelor of Science in Biochemistry from Nanjing
University, China in 1991. Graduate and received Master of Science in
Molecular Biology from Shanghai Institute of Biochemistry, Academia
Sinica, Shanghai, China in 1994. Received Doctor of Philosophy in
Veterinary Biomedical Science from Oklahoma State University,
Oklahoma, USA in 1999. Completed the requirements for the Master of
Science with a major in Computer Science at Oklahoma State University in
October, 2001.

Experience: Worked as a researcher in National Center for Gene Research, and
Shangehai Instirute of Plant Physiology, Academia Sinica ITom July, 1994
to July, 1996. Then worked as research associate in Oklahoma State
Univeristy until May, 2000. From then on, employed by Aptix Corp.

