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CHAPTER]

SOME BASIC PRINCIPLES OF HIGH PERFORMANCE LIQUID

CHROMATOGRAPHY AND CAPILLARY ELECTRO­

CHROMATOGRAPHY METHODOLOGIES.

RATIONALE AND SCOPE OF

THESTIJDY

Introduction

Phenolic compounds are widely distributed in nature. Among them, two opposite

categories exist, one is nutritional and the other belongs to pollutants. Our research

efforts in this dissertation were focused on the introduction of analytical separation

methods for these two phenolic categories. The methods are based on high-performance

liquid chromatography (HPLC) and capillary elecrochromatography (CEC). For clarity

of the overall dissertation, specific background on the nature of the phenolic compounds

under investigation can be found in Chapters 2 and 3. To be more specific, Chapter 2

deals with the HPLC of phenolic choline esters which are an integral part of the human

diet while Chapter 3 is concerned with the CEC of substituted phenols that are considered

as the metabolites of various pesticides.

The rationale of using two different separation techniques, i.e., HPLC ·and CEC,

resides in the wide differences among the phenolic structures. That is, the polarity of
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the solutes of interest was quite broad, thus necessitating different separation methods.

Therefore, it is the aim of this chapter to provide an overview of some basic principles of

HPLC and CEC methodologies.

An Overview ofThe HPLC Methods Used in This Study

Thus far, HPLC is the most widely used of all of the analytical separation

techniques, with annual sales of HPLC equipment approaching the billion-dollar mark

(I). The reason for the popularity of the method is its sensitivity in determining small

amounts of substance, its applicability to a wide variety of species, the precision of the

instrumentation and the flexibility in choosing different mobile phases, stationary phases

and elution methods for separation. However, new separation technologies, e.g.,

capi llary electrophoresis (CE) and CEC have emerged as complementary techniques to

HPLC to solve some separation problems that are not easy to address by HPLC.

The flow of mobile 'phase in an HPLC column is driven by a high-pressure pump.

The maximum pressure is usually limited to 6000 psi (40 MPa) which limits the design of

column and ultimately separation (2). With pumped flow (also called laminar flow), the

flow velocity profile is parabolic which reduces the efficiency of the column, since the

velocity in the center of any channel can be twice as fast as that along the walls of the

column.

Different elution methods can be developed according to the different retention

factor (k') values of solutes. In isocratic elution, the composition of the mobile phase

remains the same during the chromatographic runs. For compounds with a wide range of
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k', the elution time could be very long and band broadening will occur. In gradient

elution, mobile phase composition is varied during analysis from low to high eluting

strength. Thus, compounds with a wide range of k' can be separated in a reasonable

time. This flexibility makes gradient elution used most widely in practice.

According to the polarity of the stationary phase, HPLC can be divided into

reversed- phase chromatography (RPC) and normal phase chromatography (NPC). 80%

- 90% of separations are carned out by RPC in which the mobile phase is more polar

than the stationary phase. The most widely used stationary phases are nonpolar

microparticles based on silica support bonded with non-polar functions such as alkyl (­

CH3, -C4Hg, -CSH 17 and -C1sH37) or phenyl (C6HS) groups, see Fig. 1. For steric reasons,

it is not possible for all the silanol groups on the silica surface to react with the function

groups, and usually only about 45% of the silanols will be bonded (3). Unreacted acidic

silanol groups may cause tailing of basic solutes. A small silating agent, such as

trimethylchlorosilane [(CH3hSiCI] is often added to react with the unreacted silanol, a

process known as end-capping (4), see Fig. 2.

In addition, polymer-based stationary phases (e.g., rigid macroporous polystyrene

divinylbenzene) are also used in RPC (5,6). They have some remarkable advantages over

silica-based stationary phases. With non-polar functional groups covalently bonded to

the polymer backbone, undesirable residual surface functional groups such as silanol sites

or some metal impurities are diminished, and this leads to true reversed-phase separation.

The peak tailing normally associated with the separation of basic compounds by silica­

based stationary phase are prevented significantly (7). However, it should be noted that

silica-based PRC columns are still used far more extensively than polymer-based RPC

columns because of their much higher separation efficiency.

3



\
-Si-OH +

/

CH3 CH3

I \ I
R-Si-CI----·-Si-O-Si-R + HCl

I / I
CH3 CH3

Silica Alkyl or phenyl
dimethylchlorosilane

Bonded Silica

R: alkyl or phenyl groups

Figure 1. Reaction of silica gel with a monochlorosilane to produce a reversed - phase
stationary phase.

H3C\ H3C\

/CHz /CHz

HZC\ HZC\

/CHz /CHz

HZC\ HZC\

/CHz /CHz

HZC\ HZC\

/CHz /CHz

H3C- Si - CH3 H3C- Si - CH3

I I
o OH 0
I I I + (CH3hSiCl

---Si -O-Si -O-Si-

I I

Figure 2. End capping process: Unreacted silanols are removed by reacting with
trimethylchlorosilane.

Depending on the polarity of solutes, three categories of mobile phases are used in

RPC: (i) Plain aqueous eluents such as pure water or buffered aqueous mobile phases are

the weakest eluents used for polar solutes, (ii) mixed organic-aqueous eluents such as
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methanol-water or acetonitrile-water are medium eluent strength used for slightly polar

solutes and (iii) non-aqueous mobile phases like pure methanol or acetonitrile are the

strongest eluents used for non-polar substances. Retention in RPC increases with

increasing non-polar character of the solutes and decreasing concentration of organic

solvent in the mobile phase.

Ion-pair chromatography (IPC) expands the utility of RPC to ionic solutes. The

stationary phase in IPC is the same as that in RPC, and the mobile phase is a buffered

hydro-organic eluent containing an ion-pairing agent. For instance, the ion-pairing agent

will be a cation (t) for the retention and separation of an anionic solute (S} The

mechanisms of solute retention in IPC are still controversial. Generally, there are two

possible processes (8, 9): (i) adsorption of ion pairs to the hydrophobic sorbent, or (ii)

formation of an in-situ ion-exchanger column (dynamic ion-exchange). In the first

process, an ion-pair is formed in the mobile phase between the ion-pairing agent and the

solute and is then retained in the stationary phase according to the following equilibria:

and

where the subscripts "m" and "s" denote mobile phase and stationary phase respectively.

In the second process, an ion-pair is formed between the ion-pairing agent and mobile

phase counter-ions (M-) and is retained in the stationary phase followed by an ion­

exchange between the solute and the mobile phase counter-ions according to the

following equlibria:

and
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Although the two processes are different, they lead to similar predictions for

solute retention: Increasing the concentration of the ion-pairing agent in the mobile phase

will increase the retention of the ionic solutes of opposite charge.

In nonnal phase chromatography, the mobile phase is less polar than the

stationary phase which is nOlmally based on bare silica or alumina or silica bonded with

polar functions such as amino [-(CH2)nNHz, where n is 3 or 4J, cyano [-(CH2hC=N], and

diol groups [-(CHzhOCHzCH(OH)CH20HJ, see Fig.3 (4). Silica has the highest polarity.

For basic compounds such as amines, which are strongly retained on the silica, it is better

to use alumina. Also, the chemically bonded stationary phases are significantly less polar

than silica and alumina and therefore will result in less retention than that can be seen on

silica or alumina columns. Besides, retention in NPC increases with increasing polar

character of the solutes and increasing concentration of organic solvent in the mobile

phase. Water is the strongest eluent while pure organic solvent is the weakest one.

"" I-/Si-O- Sl i -CH2CH2CH2NH2

o

""-Si
/

Fig.3 Structure of aminopropyl silica

Three different HPLC methods, RPC, NPC and IPC were used in our

investigation. They proved useful for the separation of the phenolic choline esters and

their fragments, i.e. phenolic acid, choline and betaine.
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Other commonly used HPLC methods include ion-exchange chromatography

(lEC) and size-exclusion chromatography (SEC) (10). lEC is best to separate and

analyze ionic compounds with the help of ion-exchangers as the stationary phases whose

materials carry positive or negative electric charges. The charges are balanced by an

elution stream containing counter-ions of opposite sign which is similar to the sample

sign. Thus, the sample can be exchanged with the counter-ion. In SEC, the stationary

phase is a porous material. Molecules are separated on the basis of their sizes. Large

molecules are excluded from all the pores and they elute first. Small molecules can

penetrate most of the pores and they elute last. Molecules of medium size can explore

part of the pores and are eluted between very large and very small molecules.

A dimensionless measure of retention in interactive chromatography (e.g. RPC,

NPC, IPC and IEC) is the retention factor k' which is given by:

Number of moles of solute in stationary phase
k'= -----------------

Number of moles of that solute in mobile phase

VsCs
---= cPK

VmCm
(1)

where Vs, Vm, Cs and Cm are volume of stationary phase, volume of mobile phase,

concentration of stationary phase and concentration of mobile phase, respectively, and cJ>

is the phase ratio and K is the thennodynamic equilibrium constant for the distribution of

solute between mobile and stationary phase (1 I). K is related to the free energy change

tt.GO for the solute transfer between the two phases by the equation

tt.GO = -RTlnK = -2.303RTlogK

where Rand T have their ususal meanings. So, k' is related to tt.Go by the equation
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~GO
logk' = Log¢ - (2)

2.303RT

A practical expression for measuring k' from the chromatogram is

k'= tR - to
to

(3)

where tR and to are the retention time of the solute and that of an unretained solute

(neutral marker). The estimation of separation efficiency (i.e., plate number N) can also

be calculated from the chromatogram by

N = 5.54 ( :h )2

where Wh is the peak width at half height (12).

(4)

The most popular detection system for HPLC is UV-Visible absorbance detector

because many compounds in solution absorb visible or UV light. Other detection

methods include fluorescence, refractive index, electrochemical, mass spectroscopy and

radioactivity OJ ).

CEC Instrumentation and Separation Principles

Capillary electrochromatography is a relatively new micro-column technology for

separation (13). It combines the unique selectivity of the stationary phase of HPLC to the
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high separation efficiency and differential electomigration of CEo CEC employs open or

packed fused-silica capi lIaries (10 - 100 ).!m l.D.) with retaining frits. It uses high voltage

(10 - 30 KV) and the capj]lary efficiently dissipates the heat. CEC is also characterized

by small sample requirement that makes it affordable for the use of expensive solvents,

reagents and samples of specific properties that need to be handled in tiny quantity.

The instrumentation ofCE/CEC is rela6vely simple compared to that ofHPLC. It

1S composed of a high voltage power supply, two buffer reservoirs with a platinum

electrode in each reservoir, fused silica capillary, a detector similar to that used in HPLC

with some slight modifications in that it is on column detection and a data acquisition

system. Figure 4 shows a typical CE/CEC instrumentation.

The driving force for the mobile phase and solute transport 10 CEC is the

electroosmotic flow (EOF), which is the flow of the bulk electrolyte solution under the

influence of an electric field. In CEC, the inner surface of the capillary wall and the

stationary phase particle surface are positively or negatively charged under a certain

electrolyte condition. Electrolyte counter-ions will accumulate near the charged surface

by electrostatic forces and a compact region will form. Some of the ions in the compact

region will migrate further into the solution due to thermal motion and a diffusion region

will occur. Under the influence of an electric field, ions in the diffusion region will

migrate toward the oppositely charged electrode. The electrolyte solution is dragged

along by these solvated counter-ions, thus causing the EOF. Figure 5 shows that the

overall EOF in CEC results from the pumping action of hoth the capillary wall and each

particle.

Figure 6a shows a flow velocity profik in a packed bed with EOF. In

9



Platinum
electrode

High voltage
supply

IDetector i I Recorder I
I

(' Fused-silica capillary )- Platinum
electrode

- -

Inlet reservoir

Figure 4. Atypical CE/CEC instrumentation.

Outlet reservoir

channels between O.l/lm and 150 /lm, EOF velocity is independent of the channel width

which means packing imperfection or unevenness of the stationary phase particle size do

not change the flow profile. The square profile maintains the samples in a narrow band.

Figure 6b shows a flow velocity profile in a packed bed with pumped flow. The flow in

the center is larger than that along the wall and this will cause band broadening. Thus,

the flat flow profile of EOF allows CEC to generate higher separation efficiency than

HPLC. Typical efficiency with 5 /lID particles is 100,000 - 150,000 plates/m in CEC as

opposed to 60,000 - 80,000 plates/m in HPLC.
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I
EOF induced by the
electric double layer
of the capillary wall

EOF induced by the
electric double layer
of the particle surface

+ +
+

+

+

+ +

Figure 5. Electroosmotic flow in CEC.

(a) (b)

••••••••••• •
Figure 6. (a) A now velocity profile in a packed bed with EOF ; (b) a flow velocity
profile in a packed bed with pumped flow.

In CEC, neutral solutes are separated on the basis of difference~ in partitioning

between the mobile and stationary phases as in chromatography while charged solutes are

separated by both electrophoretic migration and chromatographic partitioning. For

neutral solutes, retention factor k' is defined in the same way as in chromatography and

can be calculated from the electrochromatogram by the equation given above (see eqn 3).

On the other hand, retention factor of charged solutes is given by a different equation

11



(5)

where Uep is the electrophoretic velocity of the solute, Ueo is the electoosmotic velocity

and Us is the solute migration velocity.

The equation describing separation efficiency N for CEC is the same as that in

chromatography, see eqn 4.

Up to now, packed columns with silica-based stationary phases are the most

widely used in CEC. The preparation on these capillary columns involves 2 key steps: (i)

the fabrication of retaining frits and (ii) the packing of the stationary phases into the

capillary columns. Both steps require considerable experimental skills (14). The frits are

usuaI1y made by siphoning a tiny amount of silica .into the column followed by sintering

the silica in a Bunsen burner or a CE window maker. The heating needs to be controlled.

Not enough heating may cause the frit to be too fragile to hold the packed particles inside

the column, while overheating may cause the silica to consolidate too tight, and that will

hinder liquid flow. Also, heating changes the characteristics of the packing material at

the frit position, creating non-homogeneity at the frit. This can contribute to the

nonuniformity in EOF, which can lead to bubble formation. The delivering of packing

material into the capillary column is made by different methods: slurry pressure packing,

packing with supercritical CO2, electrokinetic packing, using centripetal forces, and

packing by gravity (15). The efficiency of column packed by these different methods

varies considerably. Slurry pressure packing is the most widely used, but some reported

that other methods could offer high efficiency (15).
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Another thing worthy to mention is that the octadecyl-silica (ODS) used in CEC

is different from the ODS used in HPLC. OH groups in the latter are converted to the

greatest extent with alkyl groups. While in CEC, parts of the OH groups are reacted and

the rest are left unreacted intentionally in order to produce the EOF necessary to transport

the flow of the mobile phase and solute through the column. So, in practice, many

laboratories make the ODS for CEC by themselves to meet their specific needs.

Because of the difficulty associated with the preparation of a packed coLumn,

continuous beds or monolithic columns for CEC are receiving more and more attention

(14). They are characterized with not only the simplicity of their in-situ preparation but

also by the large amount of choices for the monolithic media. Monoliths prepared from

aqueous monomer solution and dispersions have had some success (16, 17, 18), but the

greatest limitation is the poor solubility of some polymerizable monomers in water.

Organic solvents possess a wide range of polarity and can dissolve most monomers.

Thus, porous polymer monoliths prepared using organic solvents and mixtures have

presently become the focus of intensive research. Acrylarnide-based, methacrylate ester­

based and polystyrene-based monoliths are being studied extensively now. The

preparation of a monolithic capillary for CEC is relatively simple (2): The capillary is

first filled with a prepolymer cocktail, including a porogen (a solvent used to control the

porosity of the final polymer), monomers to produce hydrophobic retention, cross-linking

agents and charge carriers. Polymerization is then initiated in a thermostatic bath for

some time and foHowed by washing using a syringe pump.

On column UV-Yis absorbance detector is the most commonly used detection

method in CE/CEC because of its simplicity and low price (20). However, due to the

small optical pathway of the detection cell of the capillary itself, UV detection lacks
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sensitivity. Electrochemical detection is the most sensitive. Detection at nanomolar level

of electroactive substance has been reported (21). Due to the complexity of CE/CEC

instrumentation, electrochemical detection has not yet been commercialized.

Fluorescence detection, especiaHy laser induced fluorescence (LIF) detection has been

considered to be the best way to overcome the low detection sensitivity associated with

UV-Vis detection in CE/CEC. It uses laser as the excitation source. A laser emits a

highly coherent and powerful light which can be focused on the capillary precisely and

almost 100% of the energy can be utilized.

Rationale and Scope of the Study

Phenolic compounds are important synthetic and natural products implicated in

various biological, industrial and environmental processes. These diverse functions of

phenolic compounds are paralleled by their varyjng physico-chemical properties such as

polarity, volatility, detectability, etc. On this basis, it becomes obvious that there is no

one single separation method or technique that can accommodate the separations and

detection of all phenolic species. This is further complicated by the lack of authentic

standards for some phenolics, a condition that make their accurate determination rather

difficult in most standard laboratories where sophisticated spectroscopic techniques (e.g.,

mass spectrometry and NMR) may not be available. Thus, the need for ways to modify

the phenolic species to fragments reflective of the individual or total phenolics in the

sample and base their determination on these fragments.

As stated at the beginning of this chapter, our studies dealt with two different

groups of phenolics: Chapter 2 involved the HPLC of phenolic choline esters which are
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the bound fonns of phenolic acids found in some plants, and Chapter 3 focused on the

CEC of substituted phenols which are the transfonnation products of important

pesticides. While HPLC proved very adequate for the detennination of phenolic choline

esters, which are found in some plants in rather large quantities, the substituted phenols

which are usually found in environmental matrices (e.g., soil, water) at low concentration

levels necessitated the use of CEC which usually incorporates laser induced fluorescence

(LIF) detection which is the most sensitive optical detection method now available.

Due to the lack of authentic standards for phenolic choline esters, we have

developed chemical and enzymatic degradation processes to produce fragments that are

reflective of the parent phenolic choline esters and for which authentic standards are

available from commercial sources. In fact, phenolic choline esters can be degraded in

alkaline solutions to phenolic acids (available as standards), which can be used in the

qualitative and quantitative analysis of the parent phenolic choline esters. Also, the base

hydrolysis of phenolic choline esters produces choline, which can be further modified to

betaine by the action of the enzyme choline oxidase, thus pennitting the quantitative

detennination of total phenolic choline esters via betaine, which is available as a pure

standard.

For the substituted phenols, which are the subject of Chaptl:r 3, we have

implemented a novel precolumn derivatization scheme to convert the analytes into

fluorescent derivatives and facilitate their subsequent sensitive detection by LIF. The

precolumn derivatization not only enhanced the detectability of the various substituted

phenols but facilitated their separation. This is particularly true for the isomers of

monochlorophenol.

15



The significance of the studies resides in advancing the methodologies of both

HPLC and CEC, which are considered complementary to each other. The study provided

separation and detection systems that will find general use in the analysis of phenols and

related compounds as well as in other areas of the life science.
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CHAPTER II

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY OF PHENOLIC

CHOLINE ESTERS FRAGMENTS DERIVED BY CHEMICAL

AND ENZYMATIC FRAGMENTATION PROCESS.

ANALYSIS OF SINAPINE IN

RAPESEED

Introduction

Phenolic acids, e.g., benzoic (C6-Cl), and hydroxycinnamic acid (C6-C3)

derivatives, are aromatic secondary plant metabolites belonging to the class of plant

phenolics. Phenolic acids are found in almost every plant (1, 2), and therefore, are an

integral part of the human diet. In fact, phenolic acids are important components in a

wide variety of fruits (e.g., white grapes, tomatoes, apples, pears, cherries, plums,

peaches, apricots, blueberries, etc.), in vegetables (spinach, cabbage, asparagus, potatoes,

etc.), coffee, olive oil, wheat, com, wines and rice to name a few crops (3, 4).

Interest in phenolic acids is related to their diversity, biological significance as

secondary plant metabolites and ecological role, use as chemotaxonomic markers, impact

on fruit and vegetable quality, physiological effects and various applications. Recent

interest in food phenolic acids has increased greatly because of the antioxidant and free

radical scavenging abilities associated with phenolic acids and their potential effects on

human health (5). It is well known that diets rich in fruits and vegetables are
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protective against cardiovascular diseases and certain forms of cancer (6-8), and perhaps

against other diseases also.

Besides existing as free species, the majority of phenolic acids occur naturally in a

wide group of combined forms. They occur in association with cyclohexane carboxylic

acid (e.g., quinic acid), other organic acids (e.g., tartaric acid, malic acid), sugars (e.g.,

glucose), amines (e.g., choline as in sinapine and its derivatives), and also linked to other

polyphenols (e.g., flavonoids) (9). Among all these bound forms of phenolic acids, we

are concerned here with phenolic choline esters, known as sinapines (5, 10). Phenolic

choline esters are especially abundant in seeds of some glucosinolate-containing plants or

crucifer seeds (11) such as rapeseed/canola (10). Typical phenolic choline esters are

shown in Fig. 1.

Phenolic choline esters are important natural products, and therefore methods for

their accurate determination in plants are needed. Since standard phenolic choline esters

are not available in commercial markets, the quantitative determination of phenolic

choline esters in plants remains a problem. As shown in Fig. 1, phenolic choline esters

can be hydrolyzed in basic solution to choline and phenolic acids, the representative of

which are 4-hydroxybenzoic acid (4-HBA), 3,4-dimethoxybenzoic acid (3,4-DBA), p­

coumaric acid, ferulic acid and sinapic acid (12). Also, choline can be enzymatically

converted to betaine (13), see Fi g. 1. Since the standards for the phenolic acids and

betaine are readily available, the amount of choline esters can be measured by

determining the amount of phenolic acids or choline after hydrolysis of the rapeseed

extract. This chapter is concerned with developing HPLC methods for the determination

of phenolic choline esters based on their chemical and enzymatic fragments, which are

reflective of the individual and total phenolic choline esters.
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Figure 1. Structures of some sinapines found in crucifer seeds. Also shown in this figure
are the corresponding phenolic acids, choline and betaine fragments obtained by base
hydrolysis and enzymatic processes. While the phenolic acids are reflective of the
individual sinapines and can be used for the quantitative determination of each phenolic
choline esters, choline and its enzymatic derivative betaine can be used for the
quantitative determination of total phenolic choline esters in plant extracts.

Experimental

Reagents and Materials

Standards of choline, betaine, 4-hydroxybenzoic acid (4-HBA) and 3,4­

dimethoxybenzoic acid (3,4-DBA) as well as choline oxidase (EC 1.1.3.17) were

obtained from Sigma Chemical Co. (St. Louis, MO, USA). Standards ofp-coumaric acid,

ferulic acid and sinapic acid were from Aldrich Chemical Co. (Milwaukee, WI, USA).

For the structures of phenolic acids, choline and betaine, see Fig. 1. Methanol of HPLC

grade was purchased from EM Science (Gibbstown, NJ, USA). Acetonitrile of HPLC

grade was ohtained from Fisher Scientific (Fair Lawn, NJ, USA). Rape seed (Dwarf

Essex) was from Dr. Melouk, Department of Plant of Pathology, Oklahoma State

University, Stillwater, OK. C18 Bakerbond Solid Phase Extraction (SPE) cartridges were

from J.T.Baker.

Instruments and Columns

The liquid chromatograph was assembled from: (i) a Model CM 4000 multiple

solvent delivery system (Milton Roy, LDC division, Riviera Beach, Florida, USA), (ii) a

Model 7010 sample injector (20 ~L) from Rheodyne (Cotati, CA, USA), (iii) a diode

array detector (DAD) Model HP 1040A from Hewlett-Packard (Waldbronn, Germany)

whose spectral range is from 190 nm to 400 nm and (iv) a personal computer equipped

with the software HP Chemstation for LC systems (Rev.AJJ4.0l, Copyright Hewlett
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Packard 1990-1996). The wavelength was set at 210 nm or 192 run for sensing the

column effluent with RPC or NPC, respectively.

The columns for RPC were made of stainless steel tubing of dimensions 25 em x

4.6 rnm J.D. or 15 cm x 4.6 mrn J.D. packed with narrow pore C18 of 5 11m mean particle

diameter from J.T. Baker Inc. (Phillipsburg, NJ, USA). The column for NPC was also

made of stainless steel tubing of dimensions 15 cm x 4.6 mrn 1.0. and packed in-house

with narrow pore bare Zorbax silica of 5 /lm mean particle diameter. In all experiments,

we used an analytical guard column made from stainless steel tubing of dimensions 2 em

x 2 nun J.D. (Upchurch Scientific, Murrieta, CA, U.S.A.) and dry packed in house with

Zorbax C 18 of 18 !lm mean particle diameter.

Chromatographic Conditions

In all cases, the flow-rate was set at 1.0 mLimin. Before running the experiments,

the mobile phases were first filtered through SIPTM filter paper (grade 360 qualitative

from Baxter, McGaw Park, IL, USA) and then degassed in an ultrasonic bath. For

gradient runs with the C18 column, mobile phase Al consisted of 10 mM NH4!fZP04, pH

6.0, while mobile phase Bi consisted of 80% MeOH and 20% mobile phase AI. Linear

gradients for 20 min were run from 100% Al to 100% BI. For gradient runs with the

silica column, mobile phase Az consisted of 98% ACN and 2% of 10 roM NH4CI, pH 3.6

(v/v), while mobile phase B2 consisted of 50% ACN and 50% of 10 mM NH4CI, pH 3.6

(v/v). Again, linear gradients for 20 min were run from 100% A2 to 100% B2.

Procedures

In the following sections we describe the various step involved in the sample

preparation and the quantitative determination of the various components of interest by
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HPLC. Figure 2 summarizes the VarIOUS steps involved m sample preparation and

analysis.

Rapeseed extraction

An amount of 21.0 g of seed of rapeseed was ground thoroughly until slurry in a

mortar. The slurry was then extracted with carbon tetrachloride in a Soxhlet apparatus

for 4 hours and then dried overnight at room temperature (14). Next, the defatted

material thus obtained was extracted twice with 50 mL of HPLC methanol each. Finally,

methanol was evaporated in a Savant vapor trap (Savant, Holbrook, NY, USA) and 0.50

g of orange-colored solid was obtained.

Solid phase extraction (SPE)

The solid phase extraction (SPE) was carried out as follows: Activate the CI8

SPE cartridge with 80% methanol: 20% H20 (v/v), and then condition the cartridge with

deionized water @ 0.1 % (v/v) trifluoroacetic acid (TFA). Thereafter, apply the sample

(0.0402 g extract in 0.80 mL of 0.050 M Na3P04, pH 8.0) and elute the cartridge with

50% methanol: 50% deionized water (v/v) @ 0.1 % TFA (v/v). Collect the eluent from

both the sample application step and the elution step into a vial. The collected fraction

was then dried from methanol and TFA in a Savant vacuum system. The solid obtained

was yellow-brown.

Base hydrolysis of rapeseed extract

A small amount (see below for exact amount) of the solid extract from rapeseed

was dissolved in 1.0 mL of mobile phase A1 which consisted 10 roM sodium phosphate,

pH 6.0. To this solution, 100 JlI of2.0 M NaOH were added, and the base hydrolysis was

carried out for 2 hours. The hydrolyzate was then neutralized by adding 100 JlL of 2.0 M

Hel.
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Standard calibration curve

To quantitatively detennine the amount of sinapic acid in the rapeseed after

hydrolysis, we used ferulic acid as an internal standard and made a standard calibration

curve by plotting the ratio of peak height of sinapic acid and ferulic acid versus the

concentration of standard sinapic acid. The standard solution of sinapic acid was made

by dissolving 0.0052 g of sinapic acid into 1.0 mL of methanol which was added to a 10

mL volumetric flask and the final volume adjusted with mobile phase A1 until 10 mL.

The final concentration of sinapic acid was 2.32 x 10,3 M. The standard solution of

ferolic acid was made by dissolving 0.0098 g of ferolic acid into 1.0 mL of methanol

which was added to a 50 mL volumetric flask and the final volume was adjusted with

mobile phase Al until 50 mL. The final concentration of ferulic acid was 1.00 x 10.3 M.

The rapeseed sample was prepared as follows: 0.0037 g of rapeseed extract was

added into a 25 mL volumetric flask followed by adding 2.0 mL of mobile phase AI and

100 ilL of 2.0 M NaOH. After 2 hours, 100 ilL of 2.0 M HCl was added to neutralize the

solution followed by adding 300 ilL of standard ferolic acid and mobile phase Al to

reach the 25 mL mark. The solutions for the calibration curve were prepared as follows:

Pipet 300 ilL of standard ferulic acid into six 25 mL volumetric flasks and then add 300,

400, 500, 600, 700 and 800 ilL of standard sinapic acid, respectively. Thereafter,

complete the volume to 25 mL by adding mobile phase AI. After sufficient stirring,

inject the sample and standard solutions into the HPLC system.

To quantitatively detennine the amount of betaine converted from choline by

choline oxidase, alanine was used as an internal standard. The standard calibration curve

was made by plotting the ratio of peak height of betaine and alanine versus concentration

of standard betaine. The standard solution of betaine was made by weighing 0.0355 g of

betaine into a 25 mL volumetric flask followed by adding 0.05 M Na3P04 solution, pH

8.0, to reach the mark. The standard solution of alanine was made by weighing a small
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amount of alanine into a 10 mL volumetric flask followed by adding 0.05 M Na3P04

solution, pH 8.0, to reach the mark.

The rapeseed sample was prepared as follows: 0.0402 g of rapeseed extract was

added into a small vial followed by adding 1.0 mL of water: methanol (3:2). After

applying solid phase extraction, the yellow-brown solid was dissolved in 0.8 mL of 0.05

M Na3P04 solution, pH 8, into a small vial followed by adding 100 ilL of2.0 M NaOH.

After 2 hours, 100 flL of2.0 M HCI was added to neutralize the solution. Thereafter, 200

fll of standard alanine solution and a known number of units of choline oxidase were

added into the vial which was then put into a Thennolyne, Type 17600 DriBath

(Dubuque, IA, USA) that remained at a constant temperature of 37°C for 18 hours.

The solutions for the calibration curve for betaine were prepared as follows: Pipet

200 flL of standard alanine solution into six small vials and then add 200, 300, 400, 500,

600 and 700 flL of standard betaine solutions, respectively. Thereafter, add 800, 700,

600, 500, 400 and 300 ilL of 0.05 M Na3P04, pH 8.0, respectively. Under these

conditions, the total volume of each of the six solutions is 1.200 mL.

Results and Discussion

Due to the large differences in the polarity of solutes involved in this study, two

different HPLC modes were utilized, i.e., RPC with CI8-silica column and NPC with

silica column.

Chromatographic Behavior of the Standard Phenolic Acids and Betaine

In a senes of experiments mmmg at detennining the optimum pH for the

separation of the phenolic acid constituents of phenolic choline esters, 20 min linear
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gradient runs from 100% mobile phase A] to 100% mobile phase B]. Mobile phase A]

consisted of 10 mM NH4H2P04 at pH 2.5, 4.0, 4.5, 5.0 or 6.0 while mobile phase BI

consisted of80% MeOH and 20% solvent AI. At pH 2.5,p-coumaric, ferulic and sinapic

acids coeluted while at pH 4.0, 4.5 and 5.0 ferulic and sinapic acids coeluted despite the

structural difference among the three acids. At pH 6.0, all the 5 acids were completely

separated, see Fig. 3. In addition to structural differences, at pH 6.0, the acids are ionized

to varying degree, a fact that further differentiates their partitioning between the mobile

and stationary phases and brings about their separation. The optimum pH for the phenolic

acids was thus set at pH 6.0. On the other hand, choline and its enzymatic derivative

betaine were not retained in the pH range tested, i.e., pH 2.5-6.0

On the basis of the above experiments, incorporation of a negatively charged ion­

pairing agent (e.g., sodium octyl sulfate SOS) was considered to bring about the retention

of betaine and choline. Isocratic elution was conducted with a mobile phase of 10 roM

ammonium phosphate, pH 6.0 at various SOS concentrations. In the absence ofSOS,

betaine and choline were not retained and only 4-HBA could be eluted while the other

acids were very retarded. The dependence of solute retention factor k' on the

concentration of SOS is shown in Fig. 4. As can be seen in this figure, the retention

factor of betaine increased'substantially first from 0 to 0.55 upon adding 2.5 rnM SOS

and then leveled off as the SOS concentration was increased. Surprisingly, choline

stayed unretained in the concentration range studied (0 to 10 mM SOS). The retention

factor of the five phenolic acids decreased with increasing SOS concentration. The

decrease in solute retention of phenolic acids is due to the fact that the ion-pairing agent

carries the same charge as the solute thus leading to solute repulsion from the stationary

phase with adsorbed SOS. It is noteworthy that when surfactant concentration was at 0

mM, the retention of 4-HBA was longer than that of betaine. At 2.5 roM SOS, betaine

and 4-HBA coeluted. After 5 mM, the retention of betaine became longer than that of
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HBA. This could be seen clearly at 10 mM, see Fig. 4. Although the ion-pairing system

allowed the simultaneous analysis of the phenolic acids and betaine constituents of

phenolic choline esters, the retention of betaine was not sufficient and that of4-HBA

decreased significantly making both solutes to elute near the dead time of the column

where interferences of real samples may also elute.

Therefore, another chromatographic system more adequate for the analysis of

choline and betaine was considered. On the other hand, the RPC chromatographic

system based on gradient elution shown in Fig. 3 is very adequate [or the analysis of the

phenolic acid constituents. Also, the RPC system can be performed isocratically since

the retention and selectivity of the system can be manipulated readily by the methanol

content of the mobile phase, see Fig. 5. As can be seen in this figure, for each phenolic

acid log k' is linearly related to % methanol and as expected, the absolute value of the

slopes increased with the size of the molecule.

As stated above, for the separation of betaine and choline we had to use NPC with

bare silica column. Figure 6 shows the chromatograms of standard choline and betaine

obtained on a silica column of dimensions 15 cm x 4.6 mm I.D. run at a flow rate of 1.0

mUmin with a 20 min linear gradient from 100% solvent A2 to 100% solvent B2. Solvent

A2 consisted of 98% ACN and 2% of 10 mM NH4CI, pH 3.6 (v/v), while solvent B2

consisted of 50% ACN and 50% of 10 mM NH4CI, pH 3.6 (v/v). As can be seen in Fig. 6

choline and betaine elute at ca. 9.8 and 17.7 min, respectively, and they are far removed

from the column dead time where many unretained species in real samples would elute.

Determination of Sinapine in the Extract of Rapeseed via its Degradation Products:

Sinapic Acid or Choline

Analysis via the base hydrolysis of the rapeseed extract
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Figure 7 shows the chromatograms corresponding to the analysis of rapeseed

extract before and after 2 hours of base hydrolysis, respectively. As can be seen in this

figure, the peak eluting at 2.1 min disappeared while a large new peak eluting at 9.6

min appeared. When spiking the extract with standard sinapic acid, the sinapic acid peak

coeluted with that eluting at 9.6 min which increased proportionally in size indicating that

the peak generated by base hydrolysis is perhaps sinapic acid. Furthermore, the UV

spectra from 190 ron to 400 run generated by the diode array detector of the peak eluting

at 9.6 min obtained upon base hydrolysis and the peak of standard sinapic acid are

exactly the same, see Fig. 8. From this experiment it can be assumed that the large peak is

sinapic acid and the peak eluting at 2.1 min is sinapine whose spectrum obtained by DAD

is shown in Fig. 8. On the other hand, 4-HBA, 3,4-DBA,p-coumaric acid, ferulic acid do

not seem to exist in considerable amount compared with sinapic acid. Thus, sinapic acid

is the dominant phenolic acid existing in rapeseed extract after base hydrolysis.

The base hydrolysis of sinapine is completed in almost 30 min. The time course

for the hydrolysis is shown in Fig. 9. The peak area of sinapic acid increased

dramatically during the first 30 min and after that it increased slowly. This means

hydrolysis of sinapine occurred mostly in the first 30 min. However, 2-hours of

hydrolysis time was chosen to make sure all the sinapine was converted to sinapic acid.

As explained in Experimental section, the determination of sinapic acid in the

base hydrolyzate of the rapeseed extract was based on the standard calibration curve

using ferulic acid as the internal standard. The plot of peak height ratio of sinapic acid to

ferulic acid (I.S.) versus the concentration of sinapic acid was a straight line (y = 0.08lx ­

0.052, R2 = 0.9977). From this standard calibration curve, the amount of sinapic acid in

the extract was determined to be 7.3 }lmol per gram of rapeseed.

Since sinapic acid is the base hydrolysis product of smapme, the molar

concentration of sinapic acid equals to that of sinapine. Thus, in each gram of rapeseed,

there is 7.3 }lmol of sinapinc assuming that hydrolysis goes to completion. This seems to
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be the case since the peak corresponding to sinapine disappeared totally after 2 hrs of

subjecting the rapeseed extract to base hydrolysis.

Enzymatic identification of sinapine through choline oxidase

To further confirm the presence of sinapine in rapeseed, the base hydrolyzed

extract was treated with choline oxidase, which converts choline to betaine (see

Introduction). In fact, after adding choline oxidase into the base hydrolyzed extract, a

new peak appeared at 18 min. The chromatograms obtained in the presence or absence of

the choline oxidase are shown in Fig. 10. When spiked with betaine, the extract still

yielded one peak at ca. 18 min. That is, the standard betaine peak coeluted with the peak

eluting at 18 min. This betaine peak must come from the oxidation of choline by choline

oxidase. To further confirm the identity of the peak eluting at 18 min its DAD spectrum

was compared with that of standard betaine. Both spectra were identical.

The enzymatic conversion of choline to betaine was found to be slow, and as

expected its speed depended on the number of enzyme units added to the reaction. In

fact, it took almost a day to completely convert choline to betaine upon adding only 10

units of choline oxidase to a 1.0 mL of the base hydrolyzed rapeseed extract containing

ca. 7.0 Ilmole choline. This time was reduced to almost 2.5 hrs when 50 units of choline

oxidase were used.

Thus, sinapine could also be identi fied through betaine. Alanine was chosen as an

internal standard. From the standard calibration curve (y = 0.1216 x + 0.0884, R2 =

0.9997), the amount of betaine generated by the enzymatic treatment of the base

hydrolyzed rapeseed was determined to be 7.1 Ilmol/g of rapeseed. This amount is that
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of sinapine since 1 mol sinapine produces one mole of choline/betaine. It should be

noted that this amount of sinapine falls in the range reported in the literature (15).

Conclusions

Reversed-phase and nonna) phase chromatography proved useful in the

detennination of phenolic choline esters via their chemical and enzymatic degradation

products (i.e., via phenolic acids and betaine). Sinapine was found to be the major

phenolic choline ester constituent of rapeseed. The qualitative and quantitative

detennination of sinapine in rapeseed can be readily done through the fragments derived

from the base hydrolysis and/or the enzymatic treatment of the rapeseed extract. The

amount ofsinapine was detennined to be 7.1-7.3 /lmol per gram of rapeseed.
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CHAPTER III

CAPILLARY ELECTROCHROMATOGRAPHY WITH OCTADECYL-SILICA

PACKED CAPILLARlES. SEPARATION OF SUBSTITUTED

PHENOLS DERIVATIZED WITH A FLUORESCENT

CARBAZOLE-9-N-ACETIC ACID TAG AND

THEIR DETECTION BY UV AND LASER

INDUCED FLUORESCENCE

Introduction

Capillary electrochromatography (CEC) employing packed capillary columns

with microparticulate stationary phases is increasingly used in various applications (for

very recent reviews, sec Refs (l, 2)). This is not surprising because CEC combines the

features of both liquid chromatography (LC) and capillary electrophoresis (CE), thus

offering a unique selectivity complementary to both LC and CEo The mobile phase is

transported through the packed capillary by means of electroosmosis instead of pressure.

Neutral solutes are separated via differences in partitioning between the mobile and

stationary phases and are transported by the electroosrnotic flow (EOF). Solutes that

partition more in the stationary phase are retarded to a greater extent than those that spent

more time partitioning in the mobile phase. On the other hand, charged solutes are
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separated by combined effects of partitioning and electrophoresis. The use ofEOF as the

driving force for differential migration yields a plug flow profile with reduced radial

dispersion compared to LC in which a laminar (i.e., parabolic) flow profile is obtained.

This leads to a much higher separation efficiency in CEC than in LC, which is about 2 to

3 times greater in the fonner than in the latter for the same stationary phase particle

diameter.

This chapter in concerned with the CEC separation of substituted phenols. To the

best of our knowledge, only one research article has dealt so far with the CEC of alkyl

substituted phenols (3), and the full potentials of CEC have not been exploited yet in the

separation and detection of a wider range of substituted phenols despite the importance of

these species. In fact, substituted phenols are of great environmental concern owing to

their high toxicity. For instance, chlorinated phenols in water can be the transfonnation

products (i.e., metabolites) of phenoxy alkanoic acid pesticides (4, 5). Also, some of

these phenols are released into the environment through many industrial processes. Since

phenols are extremely hazardous, a sensitive method for their separation and detection is

desirable. UV detection' is proved to be not satisfactory. Therefore, precolumn

derivatization of the phenols with a fluorescent tag is necessary to bring about this

sensitive detection using laser induced fluorescence (LIP). In this way, phenols can be

expected to be detected at low concentration levels.

In this study, carbazole-9-N-acetic acid (CRA) was chosen as the fluorescent tag

(6, 7) for the substituted phenols under investigation. The retention behaviors of

underivatized as well as the CRA derivatized phenols were examined with octadecyl­

silica stationary phases and their detection were carried out by both UV and LIF.
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Experimental

Reagents and Materials

The structures of the various substituted phenols used in this study are shown in

Fig. 1. Phenol was obtained from J.T. Baker Inc. (phillipsburg, NJ, USA). 2­

Chlorophenol, 3-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2-isopropoxyphenol

and 2,2-dimethyl-2,3-dihydrobenzo[b]-7-01 as well as ethyl bromoacetate were obtained

from Aldrich Chemical Co. (Milwaukee, WI, USA). I-Naphthol was from Eastman

Kodak Co. (Rochester, NY, USA). Carbazole, 4-dimethylaminopyridine (DMAP) and 1­

ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) were from Sigma Chemical Co.

(St. Louis, MO, USA). Sodium phosphate monobasic monohydrate was from

Mallinckrodt Inc. (Paris, Kentucky, USA). HPLC-grade acetonitrile (ACN) was from

Fisher Scientific (Fair Lawn, NJ, USA). HPLC-grade methanol, N,N-dimethylfonnamide

(DMF), n-hexane and general reagent acetone were from EM Science (Gibbstown, NJ,

USA). General reagent isopropyl alcohol was from Pharmaco (Brookfield, CT, USA).

Nucleosil 120-5 silica was obtained from Macherey-Nagel (Duren, Gennany). 11­

Octadecyldimethylchlorosilane was from Hiils Petrarch Systems (Bristol, PA, USA).

Fused-silica capillaries with an internal diameter of 100 jlm were from Polymicro

Technologies (Phoenix, AZ, USA).

CEC Instrumentation

Two different instruments were used in this study: An in-house assembled

instrument and a Beckman PlACE instrument (Fullerton, CA, USA). The in-house

assembled instrument consisted of a high voltage DC power supply Model

CZEIOOO/PNIR from High Voltage Electronics Corp. (Plainview, NY, USA), a UV-Vis

detector Model 200 from Linear Instruments Corp. (Reno, NY, USA) and a CR501
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Figure 1. Structures of phenol and some represented substituted phenols.
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Chromatopac integrator from Shimadzu Corp. (Kyoto, Japan). The Beckman PlACE

instrument consisted of a Model 5010 equipped with an Omnichrome (Chino, CA, USA)

Model 3056-8M He-Cd laser multimode, 8 mW at 325 nm and a data handling system

comprising an IBM personal computer and PIACE station software. An emission hand-

pass filter of 380 nm ± 2 nm, purchased from Corion (Holliston, MA, USA) was used for

the LIF detection of the CRA-derivatized phenols.

Stationary Phase

Nucleosil 120-5 microspherical silica was used as the stationary phase support

with a mean particle diameter of 5 ~m, a mean pore diameter of 120 A and a specific

surface area of 200 m2/g. The silica was converted in-house to octadecyl-silica (ODS)

according to previous procedures (8-11). Briefly, 2 g of silica and 3 g of

octadecyldimethylchloro-silane were added into 30 mL of toluene heated at 109°C. The

mixture was kept at the same temperature for 24 hrs in a thermostatic oil-bath and then

left to cool at room temperature. The supernatant was drained, and the surface-modified

silica was washed with toluene and acetone :1 times each, respectively. The product

(ODS) was transferred to a petri dish and left to air dry.

Column Fabrication, Packing and Conditioning

Before packing the capillary column, an outlet frit was made by dipping that end

into wet bare Nucleosil 120-5 silica followed by sintering the end in a Bunsen burner for

1-2 min (9, 10). A detection window of 6-8 mm width was made by burning off the

polyimide protection layer in the Bunsen burner for 2·-3 s followed by wiping the burned

polyimide with a soft paper wetted with methanol. The open inlet end was then attached
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to a stainless steel slurry reservoir of 3.0 cm x 4.6 mm ill by an Upchurch (Temecula,

CA, USA) finger tight capillary fitting. A slurry was made by weighting 0.05 g of ODS

into 1 mL of acetone. The capillary and the reservoir were then mounted onto the

column packer. The packing pressure was increased gradually to 3000 psi and

maintained constant at 3000 psi for 1 hr. The pressure on the packed capillary was then

reduced gradually to 0 psi. Thereafter, the column was disconnected and washed with

degassed DI water for 1 hr. After this washing step, an empty space was formed at the

inlet of the capillary. This empty space was cut out and the inlet end was dipped again in

bare Nucleosil 120-5 silica, and a temporary inlet frit was made in the same way as the

outlet frit.

Acetonitrile in a microsyringe was manually pushed into the capillary column

with the assistance of an in-house built device that resembles a Hoffman tubing clamp.

After an overnight washing with ACN, an empty space was formed right after the inlet

frit. This temporary inlet frit was then cut out, and the column was again washed with

degassed DI water followed by cutting the empty space and making a new permanent

inlet frit. ACN was pushed into the column for I hr. After this treatment, the column is

more durable and can last more than 2 weeks without many air bubble problems.

Before analysis, the column was equilibrated with the mobile phase from 1 kV to

15 kY with a 2 kY increment every 15 min. In this study, two columns with different

sizes were made. One was 15 em from the detection window to the outlet frit with a 40

em total length (i.e., 25 em effective length) for the study using the in-house assembled

instrument equipped with a UV detector. The other column was 7 em from the detection

window to the outlet frit with a 27 em total length (i.e., 20 em effective length) for the

study using the Beckman instrument equipped with a LIF detector.

Synthesis ofCRA and Derivatization of Phenols
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Synthesis ofCRA

The CRA was synthesized according to the procedure of Fan et al. (7). Briefly,

4.10 g of carbazole were dissolved in 10.0 rnL of DMF followed by adding 5.0 mL of

ethyl hromoacetate and 4.0 g of potassium hydroxide. The mixture was heated in an oil­

bath for 20 min and extracted with 20.0 mL of 4.0 M potassium hydroxide. 2.0 M

hydrochloric acid was then added to adjust the pH of the extracted solution to 2.0. The

precipitate was filtered off and washed with 9: 1 (v/v) of water/ethanol. The product was

extracted from toluene to yield a yellow solid. The synthesis process is shown in Fig. 2a.

Derivatization of the phenols with CRA

Typically, 200 ~L of 10-2 M solution of each analyte (i.e., phenol and substituted

phenols) were added into a ImL reaction vial. To each vial, 50 ~L ofDMAP(50mg/mL),

100 ~L of EDAC (25mg/mL) and 100 ~L of CRA (25mg/mL) were added successively.

The derivatization reaction is shown in Fig. 2b. The mixture was heated at 60°C for 30

min in a Type 17600 Dri-bath (Dubuque, lA, USA). This was followed by the following

extraction process: 5.0 mL of n-hexane were added into the reaction mixture followed by

washing with 4.0 mL each of 1.0 M hydrochloric acid, deionized water, 1.0 M sodium

hydroxide and deionized water, respectively (6). The organic phase was separated and

evaporated to dryness in a Savant vapor trap (Savant, Holbrook, NY, USA).

Chromatographic Conditions

The mobile phase consisted of various mixtures of ACNlbuffer (85/15, 80/20,

75/25, 70/30 v/v). The buffer consisted of 5 mM ammonium phosphate monobasic, pH

6.0. The running voltage was kept at 15 kY unless otherwise indicated. All the samples

were electrokincticalJy injected into the system at 1 kY for lOs unless otherwise

mentioned.
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Figure 2. Schemes for (a) the synthesis of CRA and (b) derivatization reaction of phenol
and substituted phenols with eRA.

Results and Discussion

Column Evaluation
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A mixture of test solutes consisting of the homologous series benzene, toluene,

ethylbenzene, propylbenzene and butylbenzene was injected into the system to evaluate

the performance of the ODS capillary column. Figure 3 shows a typical

electrochromatogram of the test mixture which yielded an average plate count of 26,300,

which corresponds to 105,200 plates/m. This high plate count is indicative of a

successful silica surface modification as well as a good column fabrication and packing.

Under the mobile phase condition used in Fig. 3 and at 15 kV running voltage, an average

mobile phase linear velocity (i.e. EOF velocity) of 0.73 mm/s was obtained. This

moderate EOF should allow the rapid separation of the phenolic compounds under

investigation. The retention factor k' of the test solutes were 0.40, 0.48, 0.57, 0.69 and

0.85 for benzene, toluene, ethylbenzene, propylbenzene and butylbenzene, respectively.

This magnitude of retention is indicative of a fairly good surface coverage of octadecyl

ligand bonded to the silica surface.

CEC ofUnderivatized Phenols

A series of CEC runs were performed on the underivatized phenol solutes with

mobile phases at varying acetonitrile/buffer (v/v) composition including 85/15, 80/20,

75/25 to 70/30. Figure 4 shows plots of the retention factor, k', of the solutes versus the

%ACN in the mobile phase. The column exhibits a reversed-phase behavior as

manifested from the decrease in the numerical value of k' with increasing %ACN in the

mobile phase. As can be seen in Fig. 4, decreasing the %ACN from 85% to 70% resulted

in the partial separation of 2,4-dichlorophenol and 2-isopropoxyphenol while the three

monochlorophenol isomers were not separated in the entire %ACN range studied. Figure

5 shows the CEC electrochromatograms of the underivatized phenols. The limits of

detection (LOD) were measured from successive dilution of the phenol solutions and

approximated when a signal-to-noise ratio of 3-1 was obtained. The LaD of these
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phenols are quite high (_10-3 M) in the UV at 254 run (see Table 1). Thus, there is a need

for precolumn derivatization to allow their detection at low levels.

CEC of Derivatized Phenols

A series of CEC runs were performed on the CRA derivatized phenols by varying

the ACNlbuffer (v/v) content of the mobile phase at the following proportions: 85/15.

80/20, 75/25 and 70/30. Figure 6 shows the plots of k' of the CRA derivatized phenols

vs. % ACN in the mobile phase. As can be seen in Fig. 6, the three monochlorophenol

isomers derivatized with CRA were separated after the %ACN of the mobile phase was

decreased to 70%. The isomers were separated in the order of ortho, para and meta

forms. It is also found that 2-isopropoxyphenol-CRA and 2,2-dimethyl-2,3­

dihydrobenzo[b]-7-o1-CRA derivatives coeluted at 85% ACN composition and they were

separated at 70% ACN composition, while 2-isopropoxyphenol-CRA and I-naphthol­

CRA derivatives were separated at 85% ACN composition and they coeluted at 70%

ACN composition. Figure 7 shows the CEC electrochromatograms of the phenol and

substituted phenols derivatized with CRA.

The percent conversion of a given phenol solute to its CRA ester derivative was

determined by CEC analysis (as in the preceding section) of two aliquots of the given

phenol at the same solute concentration where one aliquot consisted of the underivatized

solute while the other aliquot was derivatized with CRA. The comparison of the peak

height of the analyte observed on the electrochromatogram of the underivatized aliquot to

the peak height of the analyte obtained on the electrochromatograrn of the derivatized

aliquot permitted the determination of the % of remaining underivatizcd analyte and in

tum the % conversion. Table 1 lists the % conversion of the phenol and substituted
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phenols to their CRA ester derivatives. As can be seen in Table 1, the % conversion was

the lowest for 2,4-dichlorophenol and 2,2-dimethyl-2,3-dihydrobenzo[b] -7-01, standing

at 27 and 29%, respectively. The low % conversion with the dichloro substituted phenol

can be explained by the inductive electron withdrawing effect of chlorine which is caused

by its relatively high electronegativity. This inductive effect renders the electrons on the

oxygen in the phenolic group less available for reaction with the carbonyl group of the

eRA. The bulkiness of the benzofuranol group is thought to cause the low % conversion

for the 2,2-dimethyl-2,3-dihydrobenzo[b]-7-01 to its CRA ester derivative. On the other

hand the relatively high percent conversion for 2-isopropoxyphenol (81 %) is believed to

be the result of the electron donating effect of the isopropoxy group thus making the

electrons on the oxygen of the phenolic group more available for reaction with the

carbonyl group of the CRA.

The measurement of percent conversion was essential for the determination of the

exact limit of detection (LOD) of the CRA-phenol derivatives. As can be seen in Table

1, the CRA derivatization allowed the sensitive UV detection of phenols at 254 nm and

yielded LOD's in the 10-5 to 10-6 M level. The LOD values were measured from

successive dilution of the derivatization reaction for each solute. The LODs reported in

Table I were obtained by multiplying the analyte concentration in the most dilute mixture

by the % conversion. The LODs of the CRA derivatized phenols are about 30 - 350

times lower than those of underivatized phenols in the UV detection. These LODs could

be further decreased by prolonging the time of injection due to the concentrating effect of

CEC (see Fig. 8) for relatively retained solutes such as the CRA-phenols as was

previously reported by Yang and EI Rassi (11, 12) for other neutral compounds. In fact,

prolonging the injection time from 10 s to 60 s increased the signal by a factor of at least
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Figure 3. A typical electrochromatogram of benzene and alkylbenzenes using UV
detection. Capillary column, 25 crn/40 cm x 100 /lm, packed with ODS under 3000 psi
for 1 hr; mobile phase, hydroorganic solution made up of 20% (v/v) of 5 mM NaHZP04,

pH 6.0, and 80% ACN (v/v); running voltage, 15 kV; injection voltage, 1 kV; injection
time, lOs; detection window at 25 cm from column inlet; detection wavelength, 254 run.
Solutes: 1, benzene; 2, toluene; 3, ethylbenzene; 4, propylbenzene; S. butylbenzene.
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Figure 7. Electrochrornatograrns of derivatized phenols using UV detection. Mobile phase, (a) 85% (v/v) of ACN and 15%
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dihydrobenzo[b]-7-01 -CRA; 6 I-naphthol-CRA; 7, 2-isopropoxyphenol-CRA; 8, 2,4-dichlorophenol-CRA.



Table 1. Percent conversion of phenols to their CRA derivatives and LOD of underivatized

phenols in UV @ 254nm and LOD of CRA derivatized phenols in UV @ 254nm and in

LIF using He/Cd laser 325 run as the excitation source.

Solute LOD (M) % Conversion LOD (M) LOD (M)

Underivatized CRA-derivatives eRA-derivatives

UV @254nm UV@254run LIP

phenol 1.2 x 10'3 48% 1.4 x 10-5 l.4 x 10-6

2-chloropheno1 4.4 x 10'4 46% 2.9 x 10-6 5.8 x 10.7

2,2-dimethyl-
2,3-dihydrobenzo 2.2 x 10.4 29% 4.8 x 10'6 6.8 x 10-7

[b]furan-7-ol

1- naphthol 3.8 x 10-4 51% 1.3 x 10-5 1.8 x 10-7

2-isopropoxyphenol 5.3 x 10.3 81% 1.5 x 10-5 3.0 x 10.7

2,4-dichlorophenol 2.0 )( 10.3 27% 1.6 x 10.5 1.2 x 10-5

3. However, there is a limit for prolonging the injection time, since at 60 sec the

resolution between 3-chloro- and 4-chlorophenol CRA esters decreased due to an

increase in band broadening, see Fig. 8.

Figure 9 shows a typical electrochromatogram of the phenols derivatized with

eRA using LIP detection and the same elution conditions as in Fig. 7b, except the
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Figure 9. Electrochromatogram of derivatized phenols using LIF detection. Capillary
column, 20 cm/27 em x 100 /lm, packed with ODS under 3000 psi for 1 hr; Mobile
phase: 70% (v/V) of ACN and 30% (v/v) 5 roM NaHzP04 (pH 6.0); voltage, 10.5 kV;
detection window at 20 em from column inlet; fluorescent detection, excitation at 325
om, emission at 360 nm. Solutes: 1, phenol-CRA; 2, 2-chlorophenol-CRA; 3, 4­
chlorophenol-eRA; 4, 3-chlorophenol-CRA; 5, 2,2-dimethyl-2,3-dihydrobenzo[b]-7-01 ­
CRA.
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capillary column is shorter with an effective length of 20 em and total length of 27 em.

Despite this fact, the column still exhibited sufficient separation efficiency to allow the

resolution of the monochlorophenol isomers.

Table I shows the LODs of phenol and substituted phenols derivatized with eRA

using LIP detection. The LODs are 1.3 - 72 times lower than those obtained using UV

detection for the phenol-CRA esters. Phenol-CRA is 10 times more sensitive using LIP

than using UV detection. 2-Chlorophenol-CRA ester is 5 times more sensitive in LIP than

in UV whereas 2,4-dichlorophenol-CRA ester is only 1.5 times more sensitive in the

former than in the latter. This suggests that fluorescence decreases with increasing

number of chlorine in the phenol molecule, which is a well known fact (13).

Conclusions

This investigation has shown that CEC is a suitable method for the separation and

detection of fluorescenUy labeled substituted phenols. Not only the derivatization

increased the sensitivity of the method by allowing the use of LIF detection but also

improved the separation of substituted phenols isomers, e.g., the monochlorophenols.

The LODs for the phenol-CRA esters were found to be 30-350 times lower compared to

the LODs of underivatized phenols in the UV at 254 nm. In LIF detection, the LODs of

the CRA derivatized phenols were found to be 1.3-72 times lower compared to UV at 254

run. Overall, the LODs were 166-2111 times lower in LIP for the CRA derivatized

phenols with respect to the LODs of underivatized phenols in the UV at 254 run.
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