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CHAPTER I

LITERATURE REVIEW



Literature Re ~ w I .

Creeping bentgrass (Agrosti palu tris Huds.) i th m t romonl l-

season grass for golf course gr ens because it tolerates low mowing h ight pro id s

high functional quality, and maintains ad sirabl app aran (urg on. 1 91). Cre ping

bentgrass has moderate shade tolerance (Dudeck and Peacock 1992); how v r reduced

photosynthetic radiation combined with close mowing h ight, int ns irrigatiotl, traffic,

and wear increases the severity of certain diseases caused by pathog n such as

Rhizoctonia solani Kuhn (brown patch), Sclerotinia homoeocarpa FT. B nnett (dollar

spot), Pythium spp. (PYlhium blight), and Fusarium spp. (Fu arium blight) (Beard 1965'

Vargas and Beard, 1981; Winstead and Ward 1974).

Up to 25 percent of turf in the U.S. is grown in shade. Shaded sites involve a

complex of environmental factors (Beard, 1973). Shad combin d with airflow

restriction caused by trees, shrubs, and other barriers ere te d trimental

microenvironments for turf health and growth. These microenvironments are more

detrimental for turf growth when barriers occur on the east and s uth, which alter the

spectral composition o(light which causes undesirable plant characteristi.cs prolongs leaf

wetness, and increases relative humidity which may increase disease severity or turf

injury combined with other environmental stress.

Solar radiance available for plant growth occurs in a spectral band from 400 to

700 nm wavelengths and is called photosynthetically active radiation (PAR).

Wavelengths from 400 to 500 nm, called blue light, and wavelengths from 600 to 700 run

called red light, are required for photosynthesis photomorphogenesis, and chlorophyll
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photomoph

00 nm h limit d lu for

800nm) i

(McMah n t aI.

synthesis (Blackwell 1966). Green light, P from 500 t

plant growth and development. Far-r d ligh (\ a

inactive for photosynthesis, but strongly influ DC

1991; Casal and Sanchez 1994).

Chlorophyll a and b are the main {Dhoto ynth tio pigments in plants. Th

chlorophylls are supported by accessory pigments calL d carot noids that include

hydrocarbon carotenes and xanthophylls. Chlorophyll a absorb light maximally at

wavelengths near 41 Onrn, 430nrn, and 660nrn while chlorophyll b ha peak absorbance at

430nrn, 455nrn, and 640nm (French, 1961). Carotenoid absorb light most actively at or

near 450nm (Harding, and Shropshire, 1980). Phytochrome, meaning 'plant color', is a

photomorphogenic pigment that exists in two forms called red light absorbing

phytochrome (Pr) and far-red light absorbing phytochrome (Pfr). The absorption

maximum of Pr is near 660nrn while that of Pfr i n ar 730 nrn (Grant, 1997; Hart 1988).

A third type of photo-acceptor called cryptochrom ,meaning 'hidden color' r sp nds to

blue light. The chemical nature of this blue-light photoreceptor is not well under tood,

however, it is believed that there are blue light and ultra violet absorbing pigment that

effect plant growth and development (Bell et al., 2000; Hart, 1988).

In cool-season grasses, photosynthetic productivity increases with increasing PAR

from 116 to 233 W m- 2 (Dudeck and Peacock, 1992). Gaussoin (1988) r ported that the

light saturation point for creeping bentgrass (-1000 ).lmol m- 2s - I) was not reached in

shade and light saturation for Kentucky bluegrass (-500-600 ).lIDol m- 2 s- J) was reached

for only a short period of time near solar noon in deciduous shade. Bell and Danneberger

(1999) reported that perpetual artificial shade averaging 42 percent of the photosynthetic
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photon flux available in full un cali ed ignifi antI 10 r turf d n 't and r tIn

than turf grown in full sun. Cr eping b ntgra maintain d c

mass when shaded at 31 percent of fun sun for 40 perc Dt f condud d

that the duration of shade is most destructive to turfgras gro h and d lopm nt rath r

than the density of shade or the temporal period of shade.

Reduced light intensity alters several physiological and morphological

characteristics of plants. Even though heat stress i reduced during th summ r months

turf grown under low levels of solar radiant en rgy was mor ucculent and disea

more severe due to prolonged dews and increa ed relative humidity (Beard, 1965). Turf

grown in shade was more susceptible to injury caused by traffic and/or nvironm ntal

stress (Cockerham et ai., 1994; Dudeck and Peacock, 1992). Because'of a decrease in

photosynthesis caused by limited PAR in shade, available carbohydrates as well as total

nonstructural carbohydrates (TNC) decreas d in 'Coastal' bermudagrass ( ynodon

dactylon (L.) Pers.) (Burton et a1.. 1959). Low radiant flux incr a d stem elongation,

lengthen leaf sheaths, and reduce tillering for 'Diamond' zoysiagra s (Zoysia matrella

(L.) Merr.) (Qian and Engelke, 1999). Wikin on and Beard (1974) demonstrated that leaf

length increased when PAR decreased below 83 W m- 2. Leaflength was reduc d at

PAR levels below 83 W m- 2 in 'Merion' Kentucky bluegrass (Poa pratensis L.) and

'Pennlawn' red fescue (Festuca rubra L.) (Wilkinson, 1975). Plant growth was more

vertical in shade caused by an inactivation of phytochrome influenced by far-red

irradiance which results in an increase in gibberellic acid (Rood et aI., 1986). A turfgras

grown in shade is lighter green in color and less dense (Bell and Danneberger, 1999;

luska, 1960; Wilkinson and Beard, 1975). However, turf in shade can be darker green
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than that in full sun (Dudeck and P aco k 1992' Winst d and ard 1 74). Th

conflicting reports may be caused by differenc in had d durati n or by

differences in light quality (Bell and DaM b rg r, 1999' B II t aI. 2000).

Air movement influences turf growth and de elopment by cling incr a iog

transpiration, enhancing carbon dioxide flux, removing wat r apor and r distributing

heat (Beard, 1973). Poor air circulation around golf green caus d by d n e tr and

shrubs or other factors increases soil moisture content and cause a r duction in plant

transpiration. Turbulent transfer generated by air movement tends to incr ase the carb n

dioxide concentration adjacent to plant leaves to the normal atmosph ric lev 1of 300

ppm (Champman et ai, 1954; Monteith et ai, 1964; Wiant, 1964). The effects of air

movement on transpiration are complex because increasing wind speed decreases

boundary layer resistance, but also cools leaves, decreasing the vapor pressure gradient

from leaf to air (Kramer and Boyer, 1995). Air movem nt of 1.79 m s- 1 d crea ed turf

canopy temperature a maximum of 7.2 0 C compared to no air movement, but the relativ

humidity at 7.6 cm above the turf surface was not affected by air movement (Duff and

Beard, 1966). Grace and Russell (1977) reported that tall fescue (Fesluca arundinacea

Schreb.) exposed to an average wind speed of 0.5 - 1.0 m s- I re ulted in more adaxial

macro and prickle hairs, shorter, more narrow leaves, stiffer leaf segments, more stomata

per unit area, a decrease in specific leaf area, and thicker leaves than tall fescue grown

under nearly still air in a glasshouse. Russell and Grace (1978) also found that there were

no significant increases in cuticular and stomatal conductance between wind speed 0.3 m

s- I, and wind with an average speed of 1.7 m s- I in perennial ryegrass (Latium perenne

L.). Kitano and Eguchi (1992) reported that a sudden increase in wind speed caused an
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increased in absorption, transpiration and tomatal condu tall! of u umb r plant in

bright light, with decreased responses in low light and no r p ns in darkn s. Vnd r

restricted air movement, turf canopy temperature a great r than air t mp rature fr m

11 A.M. to 5 P.M. while canopy temperature remained c ler than air t mp ratur durin

the daytime when airflow was 1.79 m s- I (Duff and Beard 1966). Th e re earch r al

found that soil temperature below 5 em from the turf urfac was high r wh nair

movement was restricted than in air movement at 1.79 m - 1. This high oil temp rature

caused more detrimental effects than high air temperature on creeping b ntgra s quality,

photosynthetic rate, and root growth (Xu and Huang, 2000). Brown and Wilson (1905)

found that the rate of cooling on leaves was directly proportional to the speed of airflow

up to 2.24 m s- I. The incident of brown patch (Rhizoctonia solani Kuhn), Pythium blight

(Pythium spp.), and leaf spot (Drechslera dietyoides (Drechs.) Shoemaker.) is usually

higher when air movement is restricted (Turgeon, 199\).
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SHADE AND AIRFLOW

KJ. Koh G.B. Bell D.L. Martin, and .R. Walker

ABSTRACT

The amount of turfgrass grown under shaded conditions in the United Stated

is as high as 25% (Beard, 1973). Creeping bentgrass (Agrostis palustris Huds.) golf

greens are often shaded by trees and shrubs that restrict airflow during the growing

season. Light reduction in shade usually combined with airflow restriction is

detrimental for turf growth and development. It is, however, possible to consider

hade and airflow restriction independently to diagno e p cific effects from ea,eh

factor. The objective of this study wa to evaluate and compare turfgra re pon e

to light reduction and airflow restriction on two different creeping bentgras

cultivars. Artificial structures were designed to provide treatment effect . The

structures (122 by 122 em) were assembled from polyvinyl chloride pipe (3.8 cm in

diameter), and covered with black, woven polyester shade cloth (80% light

reduction). Sbade cloth was applied to the structures to reduce irradiance and allow

airflow or reduce airflow and allow irradiance. Plots were rated monthly for visual

color, density, disease assessment, soil moisture, canopy, oil, and air temperature,

root mass, and total nonstructural carbohydrate (T C). Two years results

indicated tbat no significant difference occurred in soil moisture content between
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treatments. Canopy and oil temperature er ighifi.cantl Lo":r in bad d plot

than in airflow restricted and control plot . The e eli'i of brown pa1ch

(Rlrizoctonia solani Kuhn) and dollar spot (Salerotinia Iromoeocarpa F.T. Bennett) in

shade was less than in airflow restricted, and control plots.

Introduction

Creeping bentgrass (Agrostis palustris Buds.) i the most widely u d cool eason

grass for golf greens even though it declines severely due to intense managem nt and

environmental stresses during the summer mouth . A reduction in solar radiance caused

by shade is usually combined with other environmental stresses such as airflow

restriction and tree root competition that r duce cr eping bentgrass qu lity in shad .

Light reduction alters several physiological and morphological characteristic of plants.

Low light results in increased stem elongation, longer leaf sheaths, higher chlorophyll

content, and higher leaf succulence (Dudeck and Peacock, 1992). Plant growth is mor

vertical in shade caused by an inactivation of phytochrome influenced by far-red

irradiance resulting in an increase in gibberellic acid (Rood et aI., 1986). L w radiant

flux can increase stem elongation, lengthen leaf sheaths, and reduce tillering in

'Diamond' zoysiagrass (Zoysia matrella (L.) Merr.) (Qian and Engelke, 1999) even

though under certain conditions moderate shade may increase tillering (Inosaka et aI.,

1977) and shoot growth (Eriksen and Whitney, 1981). Because of decreases in

photosynthesis rate caused by limited PAR in shade, available carbohydrates as well as

12



total nonstructural carbohydrates (TNe) d cr a din' astal b rmuda a ( nodon

dactylon (L.) Pers.) (Burton et al., 1959). Turfunder had i m r u

caused by pathogens such as as Rhizoctonia olani Kuhn (brov n patch, I rotini .

homoeocarpa F.T. Bennett (dollar pot), Pythium 'Pp. (Pythium blight) and Fu ariwn

spp. (Fusarium blight) due to high soil moisture cont nts and mer uc ul nt Laf tiu

(Beard, 1973; Vargas and Beard, L981).

Recently, Bell and Danneberger (1999) concluded that ther w no ignificant

effect on creeping bentgrass quality between morning shad opposed to aft moon had

The researchers determined that the duration of shade was more detrimental to turfgra s

health than either density of shade or the temporal period of hade. In that tudy

researchers reported that perpetual artificial shade averaging 42 percent of the

photosynthetic photon flux available in full sun caused significantly lower turf density

and root rna s compared with turf grown in full un. Creeping b ntgrass maintain d

color, density, and tissue mas even when shaded at 31 percent of full sun for 40 p rc nt

of each day.

Airflow restriction decreases cooling effect by reducing transpiration rate,

increasing soil moisture content, and decreasing carbon dioxide flux. Airflow promotes

heat transfer by forced convection across the leaf boundary layer, and wind speed affects

boundary layer resistance between the leaf surface and the ambient air (Nobel, 1991).

Airflow increases transpiration, and contributes to decreases in stomatal and cuticular

resistances that promote cool ing by redistributing heat (Beard, 1973). However,

excessive wind speed reduced grass growth even in the absence of water stress (Russell

and Grace, 1978, 1979). Kitano and Eguchi (1992) reported that a sudden increase in
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wind speed caused an increase in aier ab irption tran piration and tomatal

conductance of cucumber plants in bright light with d creas d r pon in 10 light and

no response in darkness. Air movement of 1.79 m s- I d creas d turf canop t mp ratur

a maximum of7.2 DC compared with no air movement on ere ping b ntgra , but th

relative humidity at 7.6 em above the turf surface was not affect d by air movem nt at

that rate (Duff and Beard, 1966). Tall Fescue (Festuca arundinacea chreb.) expo d to

an average turbulent airflow speed of 0.5 - 1.0 m s - I had a much higher conductance and

lost water at more than twice the rate of controlled tall fescue with optimal condition for

growth (Grace and Russell, 1977).

Bell and Danneberger (1999) concluded that it is possible to eparate shade and

airflow restriction independently to diagnose specific effects from each factor. Treating

the detrimental effects of light and airflow restriction independently may improve the

management techniques available to turfgra s managers. The objective of this study was

to compare and evaluate turfgrass response to light reduction and airflow re tricti n on

two different creeping bentgrass cultivars.

14



Materials and Method

Experimental Design

This study was conducted at the Oklahoma State University Turfgra R arch

Center, Stillwater, OK. An 'L-93' creeping bentgras area ( oil pH = 7.3), 11 m by 49 m

and a 'SRI020' creeping bentgrass area (Soil pH = 7.4) 18 m by 31 m w I' u d for th

study. Each research site was managed a a golf course green on sandy oil. Both it s

were basically mowed six times a week at 4 mm in height with a walk behind mower.

Isobutylidenediurea (21-3-16) was applied at the rate of24 kg N ha- I during th spring

and fall months ( March, April, May, September, and October) and 12 kg N ha- I during

the summer months (June, July, and August). These ranges were aerated and topdress d

with pure sand each spring and fall in 2000 and 2001. Chlorothalonil

(tretachloroisophthalonitrile) was applied preventatively to the research site every three

weeks to help control brown patch (Rhizoclonia so/ani Kuhn) and dollar spot (Sclerolinia

homoeocarpa FT. Bennett) di ease and chlorpyrifos [O,O-di thilO-(3,5,6-trichloro-2

pyridyl) phosphorothioate] was applied curatively to control black cutworm (Agroti

ipsilon Hufnagel) and sod webworm (multiple genera) populations. A wheel chair 02

powered sprayer was used for fungicide and insecticide applications. Plot were

carefully spaced on each area to eliminate light and airflow interference with each other.

Each treatment was replicated three times at each site.

Artificial structures were designed and constructed to provide either airflow

restriction or light reduction treatment effects. The structures were assembled from

polyvinyl chloride pipe (PVC) with 3.8 em inside diameter, and covered with black,

woven, polyester shade cloth (Chicopee, Gainesville, GA) rated for 80% light reduction.
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Structures were con trueted to all rainfall and irriti n t r b th pIt enJ and

were tested against coutrol plot for that purp ht

and 122 em in width and length. The shade cloth cov red onl th top f th light

reduction structures and th sid sere 1 ft open to allow air mov m nt aero th turf.

The sides of the airflow re triction tructures wer co ered with had cloth to limit air

movement but open to sunlight exoept for very hort period (- 1 h) at th b ginning and

end of each day. The structures were mounted in PVC pipe sleev buried into th oil to

allow easy removal for mowing, fertilization, and other cultural practice . The struChtr s

were placed on the research sites on March 20, 2000 through October 19, 2000, and again

on April 20, 2001 through October 19 2001. Solar irradiance, air spe d, canopy oil

and air temperatures, visible color density and disease as essment, root mass, and root

carbohydrates were measured monthly to determine treatment effects.

Air Speed and Solar Irradiance.

Air speed (m s- I) was measured on the sam dates a irradianc using a portabl

multi-directional impeller anemometer (Skywatch, Yverdon, witz rland). Air peed

was measured three times in each plot at 10 cm above the turf surface monthly. The

subsamples from each plot were averaged prioI to statistical analysis.

Light energy was measured using a spectroradiometer (Analytical pectral

Devices Inc., Boulder, CO). Irradiance levels for each plot were determined on the 201ll

or soon after the 20th day of each month under clear skies. Solar irradiance was recorded

in irradiant energy (W m- 2nrn- I) and converted to photon flux (Ilmol m- 2s- I) for blue

(400 - 500 run), green (500 - 600 nm), red (600 - 700 run), and far-red (700 - 800 run)
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wavelengths. Photo ynthetic photon flux (400 - 700 run) a u d t 1 ulat and

compare photos nth tic proportion in ch tr atm nt. Tb

solar energy to photon flux i :

E of a photon = h x c /. ave]ength

E = en rgy in Joules ( ,

h = Planck s constant = 6.6255 x 10-34 Joule nd

c = 3.0 x 108 m s - I

wavelength = wavelength in meters

Therefore:

Energy of a photon = (6.6255 x 10-34 J . s) (3.0 x 108 m s - I) / wave'length

= 1.9877 x 10-25 J / wavelength in meters

The energy in a mole of photons is:

= (1.9877 x 10-25 J / wavelength in meters) (6.02 x 1023
)

= 0.1197 J / wavelength mole - I = 119.7 J / wavelength J.lmol - I

To convert energy to photon flux of 450 nrn:

119.7 J / 450nrn = 0.266 J / mole

Watt = J / second, then W/ m2 = J / s / m2

If solar energy was 0.317 W / m2 at 450 om:

(0.317 W m -2) / (0.266 J/ p.mole photons 10m) = 1.192 ~moles/ s/ m2

Therefore: There were 1.192 J.lmoles of photons triking a quare meter of earth's

surface every second at wavelength 450 nm.
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Turf canopy temperatures, soil temperatur and air t mp fatur

2:00 P.M around the 20th day of each month depending upon w ath r conditi n . An

infrared temperature thermometer (Standard Oil Engineered Mat rials Co. . olon OH)

was used to assess turf canopy temperature on calm days under clear ski s. A bimetal

analogue thermometer (Rio Temp. San Diego, CA) was used to measure soil temperature

at the same time turf canopy temperatures were recorded. Measurements were observed

at a soil depth of 15 em. Plot temperature measurements were sampled thr . times and

the mean recorded. Air temperature was recorded as an average between the air

temperature at the beginning and at the end of the period required to measure turf canopy

temperatures at each site.

Soil Moisture.

Soil moisture was determined monthly at 4:00 P.M. by time domain r fl ctometry

(TDR; Mesa Systems Co., Framingham, MA). The use ofTDR provides a non

destructive and accurate measurement for soil moisture content. Two TDR probes were

inserted into the soil and moisture content was measured at a depth of 16 em.

Measurements were made three times for each plot in each month and an average

recorded for analysis.
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Color, Density, and Disease Assessm nL

Each plot was visually rated for turf color, density and di a a s ssment

montWy. Color was rated on a scale from 1 through 9 (1 =brown 5 =yello -green and

9 = blue-green). Density was visually rated as a percentage of pot ntial density. The

disease incidence was rated on a scale of I through 5 (0 = no disease, 5 =plots

completely infected).

Root Mass and Carbohydrates Analysis.

Three soil plugs were collected from each plot using a 2.54 cm diameter soil

probe monthly to determine root mass. Root mass was evaluated at a depth of 0 to 15

em. Soil was washed from the roots with mild water through a 24 Mesh screen and the

samples were oven-dried at 55°C for 48 hours. Dry root mass was measured using a

halance (Ohaus Corp., Florham Park, NJ), recorded in mg, then stored in a freezer for

future total nonstructural carbohydrate (TNC) analysis. Carbohydrate concentrations

were extracted using a modified Weinmann (1947) manner consistent with Smith (1981)

except that a mixture of a-amylase (Sigma No.2643, Sigma Chemical Co., S1. Louis,

MO) and amyloglucosidase (Sigma No.7420, Sigma Chemical Co., 81. Louis, MO) was

used in place ofMylase 100 enzyme (Bell and Danneberger, 1999). Root samples were

ground in a Wiley Mill (Arthur H. Thomas Co. Philadelphia, PA), weighed to 30 mg,

boiled for 5 min in double-distilled, demineralized water, and incubated in a mixture of

a-amylase and amyloglucosidase solution for 24 hat 45°C to degrade starch to glucose.

Solutions were filtered through Whatman No.1 paper before fructosans were hydrolyzed

in 0.5 M sulfuric acid. High performance liquid chromatography (HPLC) was used to
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measure the glucose and fructose extracted from th root ti SUi. ampl traJ t

amomatically injected using an automated sampler into a DX500 HP (Dione o.

Sunnyvale, CA) unit equipped with the GP40 gradient pump and ED40 lectroruc

dectector. Total nonstructural carbohydrate (TNC) was calculated using area unit

developed by the PeakNet Chromatography Workstation (Dionex Co., Sunnyvale, CA).

The formula for conversion of area units to mg (rnC) / g (root tissu ) was:

• 30 mg of sample was extracted and the extraction was brought to 30 ml.solusion.

• Standards (2, 4, and 10 nmol of glucose, fructose, and sucrose) were prepared in

50 JlI of water.

• Molecular formula of both glucose and fructose is C6HI206

1. runol ofTNC in root

= (Area unit of sample / Area unit of standard) x 30 ml (extract) x 1000 Cui 1m\)
nrnol of standard! injection (50 JlI)

2. !lmol of TNC I g of root

= ronal ofTNC in root tussue I 1000 (nmolel umo))
30mg (root tissue) x 1000 (mg / g)

3. mg ofTNC / g of root tissue

= umo) ofTNC g of root x 180 (mol / g; in glucose or fructose) x 1000 (mg / g)
1000000 (!lmol / mol)

4. mg ofTNC in enzyme blank is subtracted from TNC amount in sample for actual
amount of TNC in sample.

Statistical Analysis.

A treatment data for both 2000 and 200 I were analyzed by analysis of variance

(ANOVA) for a completely randomized design using the Statistical Analysis System

(SAS Institute, Cary, NC) and mean separations were determined by Fisher's protected
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least significant difference (LSD) at P ~ 0.05. 0 rall b anal d

using ANOYA when treatment by rating date int racti nan t significant

Results and Discus ion

Simulated artificial shade structures co ered ith 80% light reducti n cloth

received an average of 40.3% photosynthetically active radiation (PAR) availabl in full

sun measured monthly for two growing seasons whil overall PAR in airflow r triction

plots was not significantly different from that in full un. The overall air peed in airflow

restriction structures covered on four sides with cloth material to limit air movem nt wa

0.3 m s . I while shade structures did not affect airflow across the plots compared with

control and averaged 4.5 m s - I.

Turf canopy temperature in full sun and in airflow restriction plots were

consistently higher than in shade for both growing sea n in both cultivars (T ble 1a and

1b). Turf canopy temperature in full sun and airflow re triction plots measured as high a

37°C during the summer 2000 (Table la and Ib). Soil t mperatures in had were also

consistently lower than in full sun and air restriction plots. Therefor, it can be

concluded that turf in shade had less heat stress than turf in full sun and airflow

restriction plots even though less PAR was availabl to ynthe ize carbohydrates through

photosynthesis. High air and soil temperatures may severely decrease turt quality, root

growth, and photosynthetic activity in creeping bentgrass (Xu and Huang, 2000a). High

soil temperature is detrimental to root growth and development which may affect shoot

growth. Xu and Huang (2000a) concluded that soil temperature was more detrimental
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than air temp rature to plant gro' h and I er 11 t mp ratur pr m d h and r

growth even when air temperature was upraoptimaI. Th r arch r a1 0 f) und th it

total nonstructural carbohydrate in both roots and shoots d cr d 'th incr m il

and air temperatures (Xu and Huang 200Gb).

For the first two months of 2000, turf in hade plot maintain d a dark r gr n

color than turf in full sun and airflow restricted plots for 'SRI020' ere ping b ntgra

(Table 2a). In full sun, the 'SRI020' turf was darker than in airflow r triction in July

and October 2000, and from July to October 2001 (Table 2a). ompar d to shaded turf

turf color was negatively affected by airtlow restriction due to di ea e and alga growth

for 'SRI 020' creeping bentgrass (Table 2a) during both years. Turf in airflow r striction

maintained darker color than in shade in September and October 200 I . hade and

airflow restriction caused lighter color than full sun in September and October 2000, and

June, September, and October 2001 (Table 2b). The microenvironment in airflow

restriction plots may be more favorable for the occurr nc of dis as growth du t lower

transpiration rates, greater heat stress, and greater length of canopy w tness. Terr trial

algae were often observed where disea e such as dollar spot and brown patch caus d turf

damage. In airflow restriction plots, this was especially tru for SRI020 creeping

bentgrass in summer of2000 and 2001 (Table 3a). Turf in shade started to declin in July

2000, and remained less dense than turf in control plots for 'SRI020' cr eping bentgrass.

However, turf in shade had greater density in April and May 2000, and in August,

September, and October 2001 than in airflow restriction for the' L93' cultivar (Table 3a).

Monthly visual ratings for density in control turf plots were significantly higher than in

shade and air restriction during most of the second year in 'SR1020' creeping bentgrass
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(Table 3a). Turf in full sun had high r density than in h d in Jun r

2000, and from July to October 2001 for L93 cr ping b nt (T bi 3b. omp r d

to airflow restriction plots, shaded plot maintain d 10 r hrrf d n ity in Octob r 2000,

and 2001 for 'L93' creeping bentgrass (Table 3b). High rturfd n ity implie that m r

turf canopy was available for the interception of PAR to produc carbohydrat . During

the second year brown patch was present in air re triction plot in Augu t fi r b th

cultivars (Table 4a and 4b). Control plots showed no difference compared to airflo

restriction plots except July 2001 for'SR1020 creeping bentgra . L s di ea e

occurred in shaded plots than in airflow restricted and control plot in' RI020;

however, no or low disease damage was ob erved in 'L93' during two growing ason

(Table 4b).

There was no significant difference in soil moisture content among treatments

except in June 2001 in 'SRI020' creeping bentgrass. However, the overall soil moisture

in airflow restriction plots was higher than in hade and contr I in' RI020' (Tabl 5). It

was hypothesized that turf in full sun, which had more rootmas and a deep r ro t syst m

than in hade and airflow restriction, could use more soil moistur to survive umm r

heat stress through transpiration than turf in light reduction or airflow re tricted plot .

However, it is possible that wind aero s the shaded plots increased transpirati n by

reducing boundary layer resistance. Sunlight in the airflow restriction plots may have

promoted evaporation, but the energy produced by sunlight could not overcome the

higher boundary layer resistance compared with shaded and controlled turf. High water

infiltration rate, thinner thatch layer, and lower organic contents in the 'L93'sand may

have eliminated the difference among the treatments.
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Root mass was constantly less in shade than in full sun from July t

and from May to October 2001 for 'SR1020' creeping bentgrass and was significantly

lower in shade than the control except for April 2000 and every month for 2001 in'L93

creeping bentgrass (Table 6). In contrast to shade, turf in airflow restriction plots had

greater rootmass in May and June 2000, and May and June 2001 for 'L93' creeping

bentgrass. In the first year, the fructose levels of all turf declined severely in summer due

to environmental stresses and treatment effects (Table 7a). In September and October

2000, turf in the control plots contained more root carbohydrates than in shade for both

cultivars (Table 7a). Bell and Danneberger (1999) found no significant difference in

whole plant TNC content when comparing turf in full sun to perpetual shade, and

temporal shade even though perpetual shade had the highest mc content and full sun the

lowest.

The results obtained for two growing seasons indicated that shade caused lower

canopy and soil temperature, lighter color, lower density, significantly less disea e, I ss

root mass, and lower carbohydrates after the 151 summer when compared to full un.

Airflow restriction resulted constantly higher canopy and soil temperature, ligh~er color,

lower density, higher overall disease occurrence, less root mass, and lower carbohydrates

after the 151 summer than full SUfi. Compared to turf in shade, turf under airflow

restriction was exposed to higher canopy and soil temperature, was more susceptible to

disease, had greater root mass, and consistently more carbohydrates in 'L93' creeping

bentgrass during and after summer 2000. Airflow restriction was more detrimental to turf

growth and development in terms of greater disease incidence, lower turf density, and
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poorer color than shade. Shade, how er c

than air restriction.
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Table 1a. Turf canopy, soil, and air temperatures 'j' for creeping bentgrass (Agrostis palustris Huds.) cultivar. 'SRI 020'. Means are
based on three subsamples from three replications of each treatment.

2000 2001 Overall

Treatments 4/20 5/20 6/19 7/21 8/23 9/21 10/23 5/21 6/22 7/23 8/22 9/21 10/18

Turf Canopy Temperature*

Air Block 31.3 34.3 35.7 35.3 36.3 37.7 25.0 30.3 32.3 34.7 32.7 27.3 21.7 31.9

Shade 22.0 7- ~ 31.0 31.0 30.0 30.3 21.0 22.7 27.7 28.7 27.7 23.7 16.3 25.9- .J

Control 30.0 33.7 34.3 34.0 35.0 37.3 25.7 29.3 31.3 32.7 31.0 26.3 20.3 30.8

N LSD:f: 0.9 1.2 0.9 0.8 0.8 0.8 0.8 0.8 1.5 1.6 2.0 1.2 1.5 1.0
00

Soil Temperature**

Air Block 22.0 23.3 25.0 21.0 19.3 21.7 12.0 20.7 22.7 23.0 20.7 17.3 12.3 19.9

Shade 16.7 19.0 20.7 18.3 17.3 18.3 9.3 16.7 18.7 18.3 16.7 14.3 8.7 16.4

Control 19.7 22.7 25.0 21.0 19.7 21.0 11.7 20.3 22.3 22.3 2U.3 16.7 11.7 19.5

LSD! 1.5 1.3 0.8 1.2 1.5 0.9. 0.9 1.5 1.2 1.2 1.2 0.9 1.2 0.3

Air Temperature***

23.3 29.4 34.2 31.3 32.1 32.1 22.6 25.3 28.7 34.2 29.4 24.1 20.3 25.8
-;- emperature were recorded as a degree of Celsius (0C).

t ignificant at Fi her' protected least significant differ nt ( P ~ 0.05).
• Measured with infrared thermometer on calm da s under clear skies.
.. Measured" itll bim tal thermom ter at 15 cm belo the surface.
... Mea ured with weather tation at 0 turf center.



Table 1b. Turf canopy, soil, and air temperatures t for creeping bentgrass (Agroslis palustris Huds.) cultivar, L93'. Means are
based on three subsamples from three replications of each treatment.

2000 2001 Overall

Treatments 4/20 5/20 6/19 7/21 8/23 9/21 10/23 5/21 6/22 7/23 8/22 9/21 10/18

Turf Canopy Temperature'"

Air Block 31.3 34.0 36.0 35.3 36.0 35.7 26.0 30.7 32.0 34.3 33.3 27.7 22.0 31.9

Shade 22.7 25.3 31.0 31.3 30.0 28.3 21.0 22.3 28.3 29.3 27.7 24.0 16.7 26.0

Control 30.3 33.0 34.7 35.0 34.3 35.7 25.7 29.7 31.7 33.0 31.7 27.3 20.7 30.0

tv LSDt 1.2 1.5 0.8 1.2 0.8 1.2 0.8 0.8 0.9 0.8 1.5 0.9 1.2 0.5
\0

Soil Temperature**

Air Block 22.0 ?'"' ..., 25.0 21.3 20.0 21.3 11.3 21.0 22.3 23.3 20.7 17.7 12.0 20.1--'.-'

Shade 19.0 19.7 21.7 18.3 18.0 18.0 9.0 17.0 18.7 18.3 \7.7 15.3 9.3 \6.9

Control 22.7 23.0 25.0 21.0 20.3 20.7 11.3 20.7 21.7 21.7 20.3 17.0 11.3 20.1

LSD::: 1.5 0.9 0.8 1.2 1.5 0.9 1.2 0.8 1.2 1.2 1.2 0.9 0.8 0.3

Air Temperature***

23.3 29.4 -,4.2 31.3 32.\ 32.1 22.6 25.3 28.7 34.2 29.4 24.1 20.3 25.8

-r Temperature were recorded as a degree ofCel iu (DC).
~ Significant at Fisher' protected least significant different (P ~ 0.05).
* Measured with infrared thermometer on calm da s under clear skies.
.. Measured with bimetal thermometer at \5 cm belo\! the surface.
.. * Measured with weather tation at a U turf center.

---..._.........---- .



Table 2a. Turf color ratings i" for creeping bentgrass (Agrostis palu.stris Huds.), SRI 020'. Means are based on three subsamples
from three replications of each treatment.

2000 2001

Treatments 4/20 5120 6/19 7/21 8/23 9/21 10/23 5/21 6/22 7/23 8/22 9/21 10/18

Air Block 7.0 7.0 6.3 6.0 6.3 5.3 6.7 6.7 7.0 6.0 4.3 4.3 5.3

Shade 9.0 9.0 7.0 6.3 6.0 5.7 7.0 7.0 7.6 6.7 6.0 5.7 7.0

Control 7.7 7.0 8.0 7.0 6.7 6.7 8.7 7.0 7.3 7.0 6.7 6.3 6.7

LSDt 0.6 0 0.7 0.6 NS 1.2 0.9 NS NS 0.8 1.3 1.5 0.9

i" Color was visually rated on a scale of 1 through 9 (1 = brown,S = yellow-green, 9 = dark green).

w
% Significant at Fisher's protected least significant different (P ~ 0.05).

0

1



Table 2b. Turf color ratings .'. for creeping bentgrass (Agroslis paluslris Huds.) cultivar 'L93 . Means are based on three subsamples
from three replications of each treatment.

2000 2001

Treatments 4/20 5/20 6/19 7/21 8/23 9/2\ 10/23 5/21 6/22 7/23 8/22 9/21 10/18

Air Block 9.0 8.3 8.3 8.0 7.7 7.0 8.0 8.0 8.0 7.3 6.3 6.7 8.0

Shade 9.0 9.0 8.3 8.0 7.3 7.0 7.7 8.0 8.0 7.3 6.3 5.3 6.3

Control 9.0 9.0 9.0 8.7 8.7 8.7 9.0 8.0 9.0 8.3 7.3 8.7 9.0

LSD! NS 0.6 NS NS 1.2 1.3 0.7 NS 0 NS NS 1.5 0.7
t Color was isually rated on a scale of 1 through 9 (1 = brown, 5 = yellow-green, 9 = dark green).

w ~t Significant at Fisher's protected least significant different (P ~ 0.05).

------ ~



Table 3a. Turf density ratings -r for creeping bentgrass (Agrostis palustris Huds.) cultivar, 'SRI020'. Means are based on three
subsamples from three replications of each treatment.

2000 200\

Treatments 4/20 5/20 6/19 7/2 J 8/23 9/2\ 10/23 5/21 6/22 7/23 8/22 9/21 10/\8

Air Block 94.0 87.3 813 76.3 71.7 68.7 81.7 85.7 84.3 79.3 53.3 60.0 62.0

Shade 97.7 95.0 86.3 70.7 69.0 69.0 78.3 84.3 85.7 78.3 71.7 74.3 84.3

Control 93.0 89.7 84.0 93.0 92.0 95.0 970 88.0 94.0 90.7 913 89.7 86.7

L Dt 3.\ 4.1 2.7 6.4 3.9 3.9 4.7 3.5 3.7 7.2 15.\ 10.8 7.0

oj- Visual ratings for percentage of potential density ( % ).

w ~ Significant at Fisher protected least significant different (P ~ 0.05).
tv

Overall

75.8

80.4

91.1

4.1



Table 3b. Turf density rating -,- for creeping bentgrass (AgroSlis palustris Huds.) cultivar 'L93 '. Means are based on three
subsamples from three replications of each treatment.

2000 2001

Treatments 4/20 5/20 6/19 7121 8/23 9/21 10/23 5/21 6/22 7/23 8/22 9/21 10/18

Air Block 99.0 99.0 91.6 88.3 83.3 76.7 78.3 93.3 93.7 86.7 72.7 77.3 89.0

Shade 99.0 99.0 90.0 85.0 78.8 73.3 71.7 93.3 93.7 83.3 75.3 72.3 68.0

Control 99.0 99.0 95.0 95.0 83.3 88.3 93.3 95.0 93.7 94.3 89.0 91.7 95.7

LSDt NS NS
., , NS NS 8.2 5.8 NS NS 8.9 9.3 7.6 4.2.:J . .:J

'j- Visual rating for percentage of potential density ( % ).

w t Significant at Fisher' protected least significant different (P ~ 0.05).
w





Table 4b. Dollar spot (Sclerotinia homoeocarpa F.T. Bennett) and brown patch (Rhizoctonia so/ani Kuhn.) assessments t for
creeping bentgrass (Agrostis palustris Huds.) cultivar, 'L93'. Means were calculated from three replications of each treatment
each month.

2000 2001 Overall

Treatments 4/20 5/20 6/19 7/21 8/23 9/21 10/23 5121 6/22 7/23 8/22 9/2\ 10/18

Dollar Spot

Air Block (I U 0 0 0 0 0.7 0.7 1.0 1.7 1.0 0 0.4

Shade (1 0 0 () 0 0 0 0.3 1.0 1.0 0 0 0.2

Control 0 0 () 0 0 0 0 0.7 0.7 0.7 0 0 0.2
l..Jv,

LSD! NS NS NS NS NS NS 0.6 NS NS 0.9 0 NS 0.1

Brown Patch

Air Block 0 0 0 0 0 0 0 0 0 2.0 1.7 0 0.3

Shade (I (I 0 0 0 0 0 () 0 n 0 0 0

Control 0 l) 0 0 (i 0 0 0 0 0 0 0 0

LSDt NS NS S S S NS NS NS NS 1.9 NS NS 0.2

t Disease assessments were visually rated from 0 to 5 (0 =no disease, 5 = complete infection).
t Significant at Fisher's protected least significant different ( P 2= 0.05).



Table 5. Relative soil moisture content t for creeping bentgrass (Agrostis palustris Huds.) cultivars, 'SR 1020' and 'L 93'. Means are
based on three subsamples from three replications of each treatment.

2000 2001 Overall

Treatment 4/20 5/20 6/19 7/2\ 8/23 9/21 10/23 5/21 6/22 7/23 8/22 9/21 10/18

SR 1020

Air Block 18.0 15.3 15.7 14.5 15.0 15.2 16.6 16.6 16.0 14.3 14.5 14.8 17.0 15.6

Shade 15.3 12.8 13.6 12.2 13.5 13.5 13.7 14.1 13.8 13.1 14.3 14.0 14.5 13.7

Control 14.9 13.9 15.1 13.5 14.5 13.8 13.9 15.0 14.4 13.3 14.2 13.6 14.6 14.2

~~) LSD; NS NS NS NS NS NS NS NS 1.8 NS NS NS NS 0.54
0\

L 93

Air Block 18.1 16.5 16.4 15.3 15.2 16.9 15.7 18.6 15.4 15.2 15.5 16.9 15.3 16.2

Shade 17.9 16.1 15.5 15.5 I - " 15.9 15.3 16.0 15.4 15.8 15.9 15.6 15.7 15.8.J

Control 16.8 16.5 16.2 15.5 15.5 15.2 16.1 19.4 16.5 15.7 15.5 15.5 15.8 16.2

LSD t NS S NS S S S NS NS NS NS NS NS NS NS

t Soil moisture content t % ) was measured at 15 cm below turf surface with time domain reflectometry ( TDR ).
t Significant at Fisher's protected least significant different ( P ~ 0.05).
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Table 7. Total nonstructural cabohydrate (TNC) content -r for creeping bentgrass (Agrosfispalusfris Huds.) cultivars, 'SRI020' and 'L93 .
Means are based on three subsamples from three replications of each treatment.

2000

Tr~alJlll:nlS 4/20 5/20 6/19 7/21 8/23 9/21 10/23

G" F"" '1 G F TNC G F TNC G F T C G F TNC G F TNC G F TNC

SR I020

Air Block 6.7 30.5 37.2 11.7 61.0 72.4 8.7 46.3 54.9 2.2 1.6 3.8 2.5 2.9 5.4 2.2 3.1 5.3 2.8 6.4 9.2

Shade 8.6 45.8 54.4 I 1.1 60.7 72.1 6.9 30.6 37.5 3.3 3.7 6.9 2.1 2.1 4.2 2.6 3.6 6.3 1.6 2.1 3.7

Control 7.1 29.4 36.5 7.4 40.0 47.4 12.8 51.7 64.5 4.0 8.0 12.0 3.3 6.3 9.6 4.3 8.6 12.9 7.9 23.1 31.0
t..)
00

LSD; NS NS NS 3.0 17.9 20.6 4.8 17.5 22.1 NS 5. I 6.9 NS NS NS S 2.1 5.9 3.8 14.6 18.4

L 93

Air Block 8.4 37.8 46.2 7.4 34.5 41.8 5.8 24.1 29.9 3.8 4.8 8.6 3.3 3.9 7.2 3.4 2.3 5.7 4.4 12.0 16.4

Shade 7.2 26.7 "3.8 11.2 43.2 -4.4 6.8 27.4 34.2 3.5 3.4 7.0 2.4 2.1 4.4 2.0 1.7 3.7 2.8 4.8 7.6

Control 13.4 42.5 55.8 9.7 53.2 62.8 12.8 537 66.4 5.1 9.6 14.6 4.2 5.9 10.1 4.4 7.7 12.0 6.3 15.4 21.7

L Of 4.\ S N S S 2.4 9.9 11.4 S 5.2 6.7 1.3 S 5. I 1.2 1.6 2.7 0.9 4.8 5.5

-r Total nonstructural carbohydrate (mC) content (mg / g of root) were determined by High performance liquid chromatography (HPLC).

t Significant at Fish r's prot cted least significant different (P ~ 0.05).

* G: Glucose contents (mg / g of root).

** F: Fmctose contents (mg / g ofroot).
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