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PREFACE

The selection problem is that of finding the Klh smallest element of an array of distinct

elements. A number of algorithms have been created to address the selection problem,

each with its own strengths and weaknesses.

One obvious method for addressing the selection problem would be to sort the whole

input array in 8(N loge )) time using merge sort or heapsort [18] and then simply request

the Klh element from the input array. While acceptable for small values of ,sorting

quickly becomes inefficient for larger values ofN.

A special case of the selection problem arises when the median element is sought. This

occurs when K = rN/2l This is important because the median is a robust estimator of

position whereas the mean, or average, is not; the mean is greatly affected by outliers,

while the median is not. An outlier is an element in a set that is unnaturally far away

from the population. For example, the outlier of the set {14, 10,21, II, 19,45, 17} is 45.

The average 0 f this set is 19.5 while the median is 17. If 45 were changed to 76, the

average would become 24 while the median would remain the same. This is what is

meant by a robust estimator: an estimator that is influenced only weakly if at all by the

value of an outlier.
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NOMENCLATURE

The array of elements.

In the context of PICK, the size of each group.

In the context of SELECT, it denotes the expected value of its
argument.

In the context of FIND, the pseudorandom number used as the index
into A. The resulting element at that location is partitioned around.
In the context of PICK, it denotes the pivot element's new position.

Order statistic of the sought element.

Natural logarithm.

Base-2- logarithm.

The middle value in a distrihution, above and below which lie an
equal number of values.

The number of elements in A.

Little-oh. T(N) =o(p(N)) says that the growth rate ofTeN) is less
than the growth of peN).

Theta. Asymptotically tight lower and upper bounds. T(N) =
8(h(N)) says that the growth rate ofT(N) is equal to the growth rate
ofh(N).

Big-oh. T(N) =O(f(N)) says that the growth rate ofT(N) is less than
or equal to the growth of feN).

In the context of SELECT, it denotes the probability of an event.

The ith smallest element of A, for a~ i < IAI.

The rank ofx in A, so that x p A 8 A = x.

In the source code for the algorithms, there are a few 64-bit
variables of this type. It is Microsoft specific and has no ANSI
equivalent.
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Chapter 1. Introduction

The selection problem is that of finding the Klh small st element of an array ofN distinct

elements. It is one of the most fundamental problems of computer science and it has

been studied extensively. Selection is used as a building block in the solution of other

fundamental problems such as sorting. A number of algorithms have been created to

address the selection problem, each with its own strengths and weaknesses. Those of

particular interest are Hoare's FIND algorithm [14], having an average-case running time

of8(N) and a worst-case running time of8(N2); Floyd and Rivest's SELECT algorithm

[9], having an average-case running time of 8(N) and a worst-case running time of

8(N2); Blum, Floyd, Pratt, Rivest and Tarjan's PICK algorithm [1], having both an

average-case and worst-case running time of8(N). For comparative purposes, Floyd's

Treesort 3 algorithm [8], having both an average-case and worst-case running time of

8( 10g(N)), will also be looked at.

Given an input array A ofN distinct elements (we will deal later with duplicate elements)

and a positive integer K, 0 <= K < N, we want to determine the Kth smallest element of A

and rearrange the input array such that this element is placed in A[K] and all elements

with subscripts less than K have smaller values and all elements with subscripts greater

than K have larger values. On completion, the following relationship is true:

A[O], ... , A[K - 1] < A[K] < A[K + 1], ... , A[N - 1]

.



By definition, the Kth smallest element of elements is an el ment which is les than

K elements but greater than K - I other elements. In corollary, an element can't be the

K1h smallest if it is greater than K elements or less than - K + 1 elements.

One obvious method for addressing the selection problem would be to sort the whole

input array in 0( log(N» time using merge sort or heapsort [18] and then simply

request the Kth element from the input array. While acceptable for small values ofN,

sorting quickly becomes inefficient for larger values ofN.

A special case of the selection problem arises when the median element is sought. This

occurs when K = rN/21. This is important because the median is a robust estimator 0 f

position whereas the mean, or average, is not; this means that the mean is greatly affected

by outliers, while the median is not.
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Chapter 2. The Algorithms

Heapsort

In 1962, Floyd created the initial version of "heapsort" under the nam Treesort [7]. [n

1964, Williams created an enhanced version under the now commonly used name

heapsort [18J. Floyd created the final version in late 1964 under the name Treesort 3 [8].

All versions have an average-case and a worst-case running time of e(N 10g(N)).

Although Mergesort was created almost two decades earlier in 1945 by John von

Neumann and also has a running time of e(N 10g(N)), we'll be using the Treesort 3

algorithm mainly because it is an optimized version of heapsort, has less memory

requirements than Mergesort, which can require up to N additional units of storage

depending on how it is implemented.

For comparison purposes, using Knuth's MIX machine, quicksort's running time is

8.08 log2(N) and heapsort's running time is 13N log2(N) in the average case for large

values ofN [16]. This means that heapsort takes 60.8% more time than quicksort and

quicksort takes 37.8% less time than heapsort, in the average case for large values ofN.

The heapsort algorithm is an in-place algorithm where only a constant number of

elements are stored outside the input array at any given time.

A heap is a balanced binary tree with the property that the value of the root node is less

than the value of its children. By reversing the sense of comparisons, an arbitrary input
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array can be converted into a heap, with the value at the root of any subtree greater than

its children. The array can then be sorted by successiv ly del ting the first el ment in th

heap (which will be the largest element in the array) and placing it in its correct po ition.

The last element A[O] need not be deleted. Since all the elements except for one are in

their correct positions, the last element must also be in its correct position. The heap can

be placed in the same input array, because as the heap shrinks, the sorted part 0 f the input

array will grow.

A complete binary tree with N nodes (where N is I less than a power of 2) has

log2(N + 1) levels. Thus if each element of the input array were a leaf, requiring it to be

filtered through the entire tree both while creating and adjusting the heap, the sort would

still be 8(N 10g(N». Heapsort is far superior to quicksort in the worst case. In fact, it

remains 8(N 10g(N».

Two phases are required to sort an input array using the heapsort algorithm. The building

of the heap phase in G(N) time and the adjusting phase (i.e., moving the largest element

to the end) in 8(log(N» time if duplicate elements are not allowed. This results in a total

time ofG(N 10g(N).

Per Weiss [17], in order to remove elements from the heap, you would normally compare

node X's children to X and swap the larger of the two children with X. This requires two

comparisons of elements per level. An alternate way, suggested by Floyd [8], is to copy

X to a temporary location and copy the larger child of X to the position of X, .effectively
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percolating a "hole" down to the bottom level. This requires only one comparison of

elements per level. This would place the new element in a leaf and perhaps violate the

heap property temporarily. Therefore, percolate the new element up in the normal

fashion. Since the new element was previously a leaf, it probably will not percolate up

even one level, and rarely more than one. Per Knuth [16], the probability that the new

element will nat move up at all, move up one level or move up two levels is 0.848, 0.135

and 0.016 respectively. Pseudo-code for the SiftUp routine, which is used in both phases,

looks like the following:

SiftUp (A, i, N)
BEGIN

TEMP +- A [i]
LOOP:

j +- 2 * i + 1
II IF THERE IS A LEFT CHILD

IF j $ N THEN
BEGIN

II IF THERE IS A RIGHT CHILD
IF j < N THEN
BEGIN

II NOTE THE GREATER OF THE TWO CHILDREN
IF A[j + 1] > A[j] THEN
BEGIN

j +- j + 1
END

END
II IF THE LARGER CHILD IS GREATER THAN NODE 'X'
IF A[j] > TEMP THEN
BEGIN

II PROMOTE THE LARGER CHILD

A[i] +- A[j]
II START AGAIN WITH THE LARGER CHILD AS NODE 'X'

i +- j
GOTO LOOP

END
END
A [i] +- TEMP

END

5



Example

Given the following input array of lO elements, the following shov s the progre of

converting the array into a heap and then sorting th array. Recall that the first phase is

to build the heap. This requires L /2J - 1 calls to the SiftUpO routin (see Appendix A).

The initial input array looks like:

16 7 10 3 8 2 14

After calling SiftUp(A, 4, 10), the 4th and 9th elements are in their correct spots. Had

there been 11 elements in the input array, the 4lh element would have also been the parent

of the 10lh element.

4 9 16 L 7 14 [ 10 3 8 2 1

After calling SiftUp(A, 3, 10), the 3rd
, i h and 81h elements are in their correct spots.

4 9 16 8 14 10 3 7 2

After calling SiftUp(A, 2, 10), no changes were made becau'se the 2nd
, 5th and 6th

elements were already in their correct spots.

4 9 16 8 14 10 3 7 2 1

After calling SiftUp(A, 1, 10), the 15
\ 3rd and 4th elements are in their correct spots.

4
o

14 16
2

8
3

9
4

10
5

3
6

7
7

2
8 9

With the exception of the root node, the input array is now heap-ified. The reason for the

root node being in violation of the heap property is explained below. As mentioned
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before, this phase has a running time of G( ). The heap can now b viewed as a binary

tree:

4

65

o

/

6
3

7 8 9

Figure 1 - Binary tree representation of a heap-ified array

With the exception of the root node, every other node is greater in value than each

"chi ld."

The second phase of this algorithm entails continually heap-ifying the root node (the Olh

element) and exchanging its successor (the 151 or 2nd element) with the last element in the

input array. With each successive call to SiftUpO, the input array shrinks from the right-

end by decreasing the value ofN by 1 since elements to the right ofN are in their final

spot. We will make N - 1 calls to the SiftUpO routine.

This phase has a best and worst-case running time ofG(N 10g(N») with Floyd's

improvement [8]. Otherwise, the best-case behavior is G(N) if distinct elements are not

specified.
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The 9 calls to the SiftUp(A, O. ) routine, with ranging in valu from 10 down to 1

have the following result:

1 l4 10 8 9 4 3 7 2 l6
2 9 10 8 1 4 3 7 14 16
7 9 4 8 1 2 3 10 14 16
3 8 4 7 1 2 9 10 14 16
2 7 4 3 1 8 9 10 14 16
1 3 4 2 7 8 9 10 14 16
2 3 1 4 7 8 9 10 14 16
1 2 3 4 7 8 9 10 14 16
1 2 3 4 7 8 9 10 14 16

The input array is now sorted with the binary tree representation looking like:

1 )

7 8 9

o

5

2

9

6

FIND

Figure 2 - Binary tree representation of a sorted array

In 1961, Hoare created the FIND algorithm [14] for finding the K
th

smallest element,

which has an average-case running time of8(N) and a worst-case running time of8(N
2
).

It bears resemblance to his quicksort algorithm [13] in that with each iteration of the
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algorithm, the input array is partitioned around a pivot element but th FI 0 algorithm

need only operate on the left or right sub-array, thus providing an improvement ov r

quicksort's average-case running time or0(N log( ». FIND saves time by not requiring

afitll sort.

Hoare implemented FIND using recursive calls, although this is not necessary, as will be

discussed below.

A pivot element is selected and used to split the input array into two smaller sub-arrays

and, recursively, the algorithm then operates on the sub-array containing the sought

element. With each recursion, another element will be in its correct location with respect

to the elements at its left and right. The algorithm makes no assumptions about the initial

state of the input array. Pseudo-code is given below.

The worst-case running time of this algorithm for finding the median element occurs

when the pivot element is the largest element in the input array (this is explained in more

detail shortly), or the smallest if the comparisons are reversed. There will be no splitting

and the time will become:

N + (N - 1) + (N - 2) + ... + rN /21 = 0(N2)

For odd values orN, the maximum number of comparisons is ..!- N 2 + 2N - 2.5. For
2

even values ofN, the maximum number of comparisons is..!- N 2 + 2N - 3.
2
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The average-case running time depends on two possible cases:

(a) The pivot element is in the middle half of the input array. We would then

recurse on at most 3N/4 elements because one element from either end

will be discarded. This looks like:

(a) 1,-- L--....::.p_iv_o_t_e_le_m_e_n_t-Ll_i_n_thi_'_s_h_al_f - ---..l

(b) The pivot element is not in the middle so we would pessimistically recurse

on at most N - I elements. This looks like:

(b) I pivot element here Ior here

Since each case occurs with 50% probability, the time will become (see Appendix B):

T(N) ~ ~ T(N) + ~ T(3~)+ N

T(N) ~T(3~)+2N

T(N) = 0(N)

A more detailed analysis of the average case is provided by Knuth [16].

Analysis

At the start of the algorithm, we have an input array A[O:N - 1], index i is set to the value

of the leftmost element and indexj is set to the value of the rightmost element. We want

to assign to A[K] the value it would have if A[O:N - 1] were sorted. The input array is

then partitioned by scanning from the left to find an element A[i] > pivot, scanning from

the right to find an element AU] < pivot, exchanging them and continuing the process
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until the indexes i and j either meet or cross. At the point that th ind xes either meet or

cross, one of three conditions must exist.

(a) Index j < index i <= K: elements A[O], ... , Am are less than N - K + L

other elements, so we need to find the (K - i + L)lh smallest element in the

right-hand end Afj], ... , A[ - I] of the input array.

(b) K <= index j < index i: elements A[i], ... , A[N - 1] are greater than K

other elements, so we need to find the K th smallest element in the left-hand

end A[O], ... , Afj] of the input array.

(c) Index j < K < index i: the Klh smallest element is in its final resting place

and the algoritlun is done.

Hoare describes the scanning process as moving

" .. .lower valued elements of the array to the end - the left-hand end - and higher

valued elements of the array to the other end - the right-hand end. This suggests

that the array be scanned, starting at the left-hand end and moving rightward.

Any element encountered that is small will remain where it is, but any element

that is large should be moved up to the right-hand end of the array, in exchange

for a small one. In order to find such a small element, a separate scan is made,

starting at the right-hand end and moving leftward. In this scan, any large

element encountered remains where it is; the first small element encountered is

moved down to the left-hand end in exchange for the large element already

encountered in the rightward scan.
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Then both scans can be resum d until the next exchange is necessary. The

process is repeated until the scans meet somewhere in the middle of the array. It

is then known that all elements to the left of this meeting point will be small and

all elements to the right will be large. When this condition holds, we will say that

they array is split at the given point into two parts."

So that we know what constitutes a lower-valued element or a higher-valued element we

need to select some value to compare with. One method is to select a pseudo-random

number between index i and index j. Any element having a lower value is considered

small; any element having a higher value is considered large.

Dromey [5] makes an observation regarding the way that FIND terminates, resulting in a

marked improvement (i.e., reduced number) of comparisons in the average case and the

worst case. He noted that if index j passes K on its way to meet up with index i, the

current choice of A[K] was too small. Similarly, if index i passes K on its way to meet

up with index j, the current choice of A[K] was too large. Therefore, termination can be

applied when either j or i pass K rather than when i and j meet, thus avoiding unnecessary

steps with a choice of A[K] that is known to be inappropriate. C source code is available

in Appendix A.

Partitioning

The FIND algorithm is actually comprised of FIND itself and of another algorithm,

PARTITION [12], which is where the scanning and exchanging take place. FIND makes
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an initial call to PARTITIO and. upon returning from that, calls itselfr cursi elyon

either the left or right sub-array. Because of this recursion, stack 0 rflow might prevent

the algorithm from finishing if a near-worst-case input were encount red. A non-

recursive solution is shown in chapter 4. The quicksort algorithm [13] also uses

PARTITION. Pseudo-code for it looks like the following (see also Appendix A):

PARTITION (A, L, R)
BEGIN

F ~ a pseudorandom number between Land R
X ~ A[F]
WHILE (L < R)
BEGIN

WHILE (A[L] <= X)

BEGIN
L ~ L + 1

END
WHILE (A(R] >= X)
BEGIN

R ~ R - 1

END
IF (L < R) THEN
BEGIN

SWAP A(L] WITH A(R]
L ~ L + 1

R ~ R - 1

END
END
IF (L < F) THEN
BEGIN

SWAP A(L] WITH A(F]
L+-L+l

END
ELSE IF (F < R) THEN
BEGIN

SWAP A[F) WITH A[R]
R+.-R-l

END
END

Handling Duplicate Elements

Per Weiss [17], what if there is more than one element in the input array that is equal to

the pivot element? Should index i stop when it encounters an element that is equal to the

13



pivot element, or should index j stop when it encounters an element that is qual to the

pivot element, or both? They should do the same thing. Otherwise all of the equal

elements end up in one sub-array rather than split evenly across both sub-arrays.

Consider the worst case where the input array contains all equal elements and index i and

index j stop scanning, there will be a large number of swaps performed as the indexes

make their way towards one another. However, they will eventually cross and the pivot

element will be roughly in the middle. This produces a running time of 0(N 10g(N».

However, ifneither index i or index j stop scanning (i.e., they are allowed to progress to

the opposite end of the array without running offofthe end) then no swaps are

performed. This minimizes swaps but the pivot element will be set to the last element

that index i referenced, creating a very uneven sub-array. This produces a running time

of 0(N2). So, it is cheaper to perform the unnecessary swaps yielding even sub-arrays

rather than risk creating very uneven sub-arrays. As is evident from Table 1 below, it

quickly becomes an issue if equal elements are not handled efficiently.

N N log2(N) NZ Ratio

10 33.21 100 2.01

100 664.38 10000 14.05

1000 9965.78 1000000 99.34

10000 132877.12 100000000 751.58

100000 1660964.00 10000000000 6019.60

Table 1 - Cost of duplicate elements
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We can demonstrate the worst case for F 0 by doing tv 0 things. The first is to pre-sort

the input array in descending order. This has the ef~ ct of starting the larg rei ments to

the left of the soon-to-be median and the smaller elements to the right of the soon-to-b

median. Upon completion. this relation will be reversed. Th second is to change the

PARTITION routine such that the variable F is assigned the value of M rather than a

pseudo-random number between M and N. Each time the PARTITION routine is called,

index M is one greater than the previous call; thus the elements to the left of index Mare

in their correct location.

Example

In the following diagrams, we will track the progress of an input array A of numbers

through the FIND algorithm. Index i will start at 0 and move rightward until it crosses

indexj; similarly, indexj will start at N - land move leftward until it crosses index i.

When the algorithm is complete, A[K] will contain the element it would have if A[O:N 

I] were sorted. The initial input array looks like:

The location F chosen for the pivot element is 1. During this first set of scans, we want

to move index i rightward until we find an element that is greater than the pivot element

X. After that, we want to move index j leftward until we find an element that is less than

X. Once the qualifying elements are located, if the indexes i and j have not met, their

respective elements are swapped and the indexes are moved one more time accordingly.

15



The value at index i was 40 and the value at index j was 15. Since ind x i was less than

index j, this yields:

After the next two sets of scans, indexes i and j are brought closer together where they

eventually meet. In the process, the out-of-order elements are swapped and the indexes

moved accordingly. At this point, elements 32 and 3 are swapped and, after adjusting,

indexes i and j have met.

After the next set of scans, index i and index j have crossed. We then swap elements at

index F and index j and then decrement index j. This swap is done so that the pivot

element (29) satisfies the condition of having only smaller elements to its left and larger

elements to its right.

Since index i was less than K (a), FIND starts the scanning process again on the right

hand end of the input array of size N - i + 1. At this point we have eliminated 9 elements

from any further scanning. Our input array now looks like:

16



The value chosen for F is 18. During this first set of scans, index i and ind x j have met.

We then swap elements at index F and index j and then decrement index j. This swap is

done so that the pivot element (90) satisfies the condition of having only smaller elements

to its left and larger elements to its right.

Since index j was greater than K (b), FIND starts the scanning process again on the left

hand end of the input array of size j - K + 1. At this point we have eliminated 1 element

from any further scanning. Our input array now looks like:

The value chosen for F is 13. During the first set of scans, FrND swaps the pair of

elements that are out of order and moves the indexes accordingly. This yields:

After the next set of scans, index i and index j have crossed. We then swap elements at

index F and index j and then decrement index j. This swap is done so that the pivot

17



element (40) satisfies the condition of having only smaller el ments to its left and larger

elements to its right.

Since index j was greater than K (b), FIND starts the process again on the left-hand end

of the input array of size j - K + 1. At this point we have eliminated 5 elements from any

further scanning. Our input array now looks like:

The value chosen for F is 9. During the first set of scans, FIND swaps the pair of

elements that are out of order and moves the indexes accordingly. This yields:

After the next set of scans, index i and index j have crossed. We then swap elements at

index F and index j and then decrement index j. This swap is done so that the pivot

element (32) satisfies the condition of having only smaller elements to its left and larger

elements to its right.

18



Since neither K is less than or equal to index j nor is index i less than or equal to K (c),

FIND is complete and A[K] now contains the element it would hav if the input array

were sorted. The final input array now looks like:

In order to determine how many comparisons were required to get A[K] in its rightful

place, we will consider a comparison to he when any element A[i] or A[j] is compared to

the pivot element. This input array generated 53 comparisons. C source code for this

algorithm is located in Appendix A.

SELECT

In 1975, Floyd and Rivest created the SELECT algorithm [9], which, although the

average-case running time is also O(N) and the worst-case running time is still O(N2), is

" ... very efficient on the average, both theoretically and practically." It is functionally

equivalent to Hoare's FIND algorithm [15] but significantly faster on the average due to

the effective use of sampling to detennine the element K about which to partition A. The

partitioning loop is also slightly faster (on most machines) since subscript range checking

is eliminated.

Sampling
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The biggest difference between this algorithm and th FIND algorithm [14] is til use of

selective sampling. Sampling is a process of selectively partitioning on a subs t of the

input array and then partitioning on the input array itself (i.e., getting a ch ap estimate of

the final value which subsequently makes the main algorithm faster).

Their experimentation found that sampling should only be done when N > 600 due to the

expense of computing square roots, logarithms, etc., which cost more than they are worth

for small N. Pseudo-code for the sampling portion of SELECT looks like the following

(see also Appendix A):

SELECT (A, L, R, K)
BEGIN

IF (I A I > 600) THEN
BEGIN

N f- IAI
If-K-L+l
Z f- In (N)

S f- 0.5 * exp(2 * Z I 3)

so f- 0.5 * sqrt(Z * S * (N-S) I N) * sign(I - N/2)

LL f- max(L, K - I * SiN + SD)
RR f- min(R, K + (N-I) * SiN + SD)
SELECT (A, LL, RR, K)

END

END

where N is the number of elements in the array A; I is the number of elements between

the leftmost element L and the sought element K; S is the size of the sample; LL is the

leftmost boundary of the sample S; RR is the rightmost boundary of the sample S.

Analysis
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It is desired that three conditions be met when choosing the left and right boundaries of

the sample A. Two elements, II and v (u < v), are selected from A using the algorithm

recursively, such that the set {x E A Iu <= x <= v} is expected to be size o(n) and yet

expected to contain i 8 A, that is, the ilh smallest element in A. Selecting II and v

partitions A into those elements less than u (set AI), those elements between u and v (set

8 1) and those elements greater than v (set C,).

The three conditions are:

(a) expected value E(u p A) <= i <= E(v p A), that is, u's rank in A is less

than or equal to i is less than or equal to v's rank in A.

(b) E(IB!) =E(v p A) - E(u P A) is o(n)

(c) probability P(i < u p A or i > v p A) = o(n- I
) (i.e., extremely unlikely as N

approaches 00). Using (In(N))!..tz, or .jlneN) , will ensure this.

The algorithm is laid out as follows:

1. Draw a random sample S I of size Sl from A, and select Ut and VI using thi

algorithm recursively.

2. Determine the sets Az, Bz, and Cz, a partition of Sz, by comparing each

element in Sz - SI to UI and VJ.

3. Next, determine uz and vz by applying this algorithm recursively to Bz (in

the most likely case; else Az or Cz).

4. Extend the partition of Sz determined by Uz and vz into a partition A), B3,

C) of S) by comparing each element of S) - Sz to liZ and Vz·
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5. Continue in this fashion until partition Ak , Sk, Ck of the set Sk = A has

been created.

6. Then use the algorithm recursively once more to extract i 8 A from Bk (or

Ak or Ck, if necessary).

Floyd and Rivest [9] state that

"Any reduction in the complexity of partitioning will show up as a significant

increase in the efficiency of the whole algorithm. The basic algorithm, however,

requires partitioning X about both u and v simultaneously into three sets A, B, and

C, an inherently inefficient operation. On the other hand, partitioning X

completely about one of u or v before beginning the partition about the other can

be done very fast. We therefore use an improved version of Hoare's PARTITION

algorithm [12] to do the basic partitioning. A further (minor) difference is that

after partitioning has been completed about one element another sample is drawn

to detennine the next element about which to partition. This pennits a very

compact control structure at little extra cost." (Floyd and Rivest use X to denote

the array that we call A).

The algorithm uses two loops: an outer loop that controls the left L and right R

boundaries and an inner loop that controls the elements A[i] and AU] which surround the

elements that have yet to be partitioned around the pivot element. Prior to the inner,

partitioning loop, the pivot element is swapped with element A[L]. At that point, one of

the following relations will hold true:
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(a) A[K] is greater than or equal to A[R]

(b) A[K] is less than A[R]

[f (a), then the pivot element will remain at A[L]. If (b), the pivot el ment will be moved

to A[R]. At this point the relation A[L] > A[R] is true. This has to be the case because

inside the partitioning loop, these two elements are swapped such that the smaller

element is in A[L].

After the partitioning loop, the pivot element will either be in A[L] or A[R]. If the

former, the pivot element is swapped with element Ali], which is less than or equal to the

pivot element. Otherwise, the pivot element is swapped with element A(j + 1], which is

greater than or equal to the pivot element. At that point, one or both of the following

relations will hold true:

(a) Index j is less than or equal to K

(b) K is less than or equal to index j

If (a), then the sought item lies in the right side so the left boundary L is adjusted. If(b),

then the sought item lies in the left side so the right boundary R is adjusted.

Example

Let's track the progress of the same set of20 numbers through SELECT. When the

algorithm is complete, A[K] will contain the element it would have if

A[O:N - 1] were sorted. The input array initially looks like:
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Prior to the partitioning loop, it was found that the pivot element (39) was less than A[L]

and A[R], so it is moved to A[R].

The first pass through the partitioning loop will move the pivot element to A[L] and

partition the remaining elements around that value. At this point, elements A[L], ... , A[j]

are less than the pivot element (39) and elements A[i], ... , A[R] are greater than the pivot

element.

Since the pivot element remained at A[L] during the partitioning loop, it must be moved

to its correct location such that the relation

A[L], ... , AU -1] < AU] < AU + 1], ... , A[R] is true. This yields:
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After the partitioning loop, K was found to be less than or equal to index j so th sought

element is in the left side, thus index R needs adjusting. At this point we have eliminat d

7 elements from any further processing.

The new pivot element (31) is greater than elements A[L] and A[R], so it is moved to

A[L] prior to the partitioning loop.

The first pass through the partitioning loop will move the pivot element to A[R] and

partition the remaining elements around that value. At this point, elements A[L], 00.' A[j]

are less than the pivot element (31) and elements A[i], ... , A[R] are greater than the pivot

element.

Since the pivot element remained at A[R] during the partitioning loop, it must be moved

to its correct location such that the relation

A[L], . 00' A[j - 1] < A[j] < A[j + 1], o. 0' A[R] is true. This yields:

25



Arter the partitioning loop, index j was found to be less than K so the sought element is in

the right side, thus index L needs adjusting. We have eliminated 10 elements from any

further processing.

The new pivot element (35) is greater than elements A[L) and A[R) so it is moved to

A[L] prior to the partitioning loop.

The first pass through the partitioning loop will move the pivot element to A[R] and

partition the remaining elements around that value. At this point, elements A[L], ... , A[j)

< the pivot element (35) and elements A[i], ... , A[R] > the pivot element.

Since the pivot element remained at A[R] during the partitioning loop, it must be moved

to its correct location such that the relation A[L], ... , A[j - 1] < A[j] < A[j + l], ... , A[R]

is true. This yields:

Since index L is no longer less than index R, SELECT is complete and A[K] now

contains the element it would have if the input array were fully sorted.

26
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This example generated 17 comparisons. C source code for this algorithm is located in

Appendix A.

PICK

In 1973, Blum et a1. created the PICK algorithm [1], in which the average-case running

time and the worst-case running time are both 8(N). This is made possible by

eliminating roughly O.3N elements for the final recursive call to the algorithm. It

operates by recursively discarding elements of A which are known to be too small or too

large to be the median, until only the median remains. PICK is often called a "median of

medians" algorithm.

Analysis

We want to select the K1h element of A where N = IA[ and 0 <= K < N. Here is the

algorithm as outlined by its authors [I]:

I. (Select an element mEA):

a. Arrange A into N groups of length c, and sort each group.
e

b. Select m = beT, where T = def the set of N elements which are
e

the kth smallest element from each group. Use PICK recursively if

N
- :> 1.
c
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2. (Compute m p A): Compare m to eery other element x in A for which it

is not yet known whether m < x or m > x.

3. (Discard or halt): Ifm p A = i, halt (since m = i e A), otherwise ifm p A >

i, discard D = {x Ix >= m} and set N f- N - IDI, otherwise discard D = {x I

x <= m} and set N f- N - IDI, i f- i -IDI.

Return to step # I .

In addition, h re is a further explanation of each ofth above steps with c = 5:

1. IfN ~ 5, sort the elements and return the middle, or median, element.

In addition to the l~Jgroups, there may be at most one group of the

remaining N mod 5 elements.

2. Select the median element from each group into a temporary array T. This

will require I~1extra units of memory. Select the median-of-medians

element m by calling PICK recursively using T.

3. Partition the input array around the median element found in step #2 such

that the following relation is true:

A[O], ... , A[K-1] <A[K] <A[K+ 1], ... ,A[N -1]

4. If the sought element is in the left side of the input array, return to step # 1

using the left side. If the sought element is in the right side of the input

array, return to step #1 using the right side. Otherwise halt, since the

sought element is now in A[K].
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Selecting the Median of 5 elements

In the preceding steps, it says to sort each 0 f the I~1groups, with a group containing no

more than 5 elements, and then select the middle element of those 5 as the m dian. lfN

is an even number, the larger of the two medians is selected. To fully sort the group is

not necessary, since it would require at most 7 comparisons, when all we want is to find

the median of the group. This can be done with at most 6 comparisons. For example,

given a group containing 5 elements with the elements labeled A, B, C, D and E, median

selection is as follows:

1. Compare A with B, swap if necessary.

2. Compare C with D, swap if necessary.

3. Compare A with C, swap A with C and B with D if necessary.

4. At this point, A > B and A > C > D. Because A is greater than at least J

elements, it cannot be the median.

5. Compare B with E, swap if necessary.

6. Compare B with C, swap B with C and D with E ifnecessary.

7. At this point, B > E and B > C > D. Because B is greater than at least 3

elements, it cannot be the median. Similarly, because D is less than at

least 3 elements, it cannot be the median.

8. Now just compare C with E and select the lesser of the two as the median

of the group.
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Discarding Elements

How many elements are discarded each time? After the input array has been partitioned

around the median m, it has several detem1inistic properties. For example, ifN = 35, the

input array could be represented as [17]:

T T T T

T T T T

S S S /1l L L L ~ medians

H }J H H

H H H H

The medians that are smaller than m are denoted by S and the medians that are larger

than m are denoted by L. Since each group has 5 elements, there are two elements that

are smaller than a small median S and two elements that are larger than a large median 1..

These elements are denoted by T(iny) and H(uge) respectively. There are also 2 elements

larger than m and 2 elements smaller than m.

Let K denote the medians of type Sand L. For each K of type S, there are 2K elements

of type T and for each K of type L, there are 2K elements of type H.

The group that m itself is in also has 2 elements of type T and 2 elements of type H.

So, there are 2K + 2 elements of type T and 2K + 2 elements of type H. Thus, there are

3K + 2 elements that are guaranteed to be smaller than m and 3K + 2 elements that are

guaranteed to be larger than m. In our example, K = 3, so there are 8 elements of type T
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and 8 elements of type H, for a total of II elements guaranteed to be smaller than m and

II elements guaranteed to be larger than m.

That accounts for 22 of the 35 elements, so what is known of the remaining 13? One of

those is m itself, so the remaining 4K elements are unknown as to their relationship to m;

they could be smaller or larger and thus will be included in the final recursive call to the

algorithm.

Therefore N is in the form 10K + 5 since

2(3 K + 2) + 2(2K) + 1 =

(6K + 4) + 4K + 1 =

lOK+ 5

One of the 3K + 2 groups will be discarded since it is known to be either too small or too

large, so the tinal recursive call to the algoritlun will be on at most 7K + 2 < O.7N

elements. Note that it is not 7K + 3 because the median m is not included in subsequent

processll1g.

If N is not evenly divisible by 5 (i.e., having one incomplete group), we can calculate the

minimum number of elements that are discarded using the fonnula from [3]. Of the I~1
groups, at least half of those have medians that are greater than m. Discounting the group

containing m and the one group that has less than 5 elements ifN is not evenly divisible

by 5, the remaining groups contribute 3 elements that are greater than or equal to m.
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Therefore, the total number of elements greater than m is at least 3N - 6. Also, the total
10

f . I 3N .number a elements less than m IS at east - - 6. So, In the worst case, the algorithm is
10

called recursively on at most ~~ + 6 elements since (l~~J- 6) +(l ~~J+ 6J+ I =N .

For example, ifN = 35, we can visualize the discarded elements using:

T T T T
T T T T
S S S m L L L

H H H H
H H H H

. 3N 6 h d d'wIth the - - elements s a e In gray.
10

To show how the at-most and at-least formulas compare to each other, the following

table is helpful:
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{rH~ll- 2J 3N -6 K =~151
N 10

3K + 2

(at least) (at least)
(at most)

36 6 4.8 14

37 6 5.1 14

38 6 5.4 14

39 6 5.7 14

40 6 6 14

41 7.5 6.3 14

42 7.5 6.6 14

43 7.5 6.9 14

44 7.5 7.2 14

45 7.5 7.5 14

46 9 7.8 17

Table 2 - Comparison of at-least and at-most formulas

Of the two recursive calls made to the algorithm, the first is made after the medians of the

I~l groups arc selected. This recursive call selects the median of those medians. The

size of this call is 0.2N or (~)N = ~ .

Why Groups of 5?

The analysis thus far has used a group size of c=5, but that's not to imply that other

values of c cannot be used. In fact, this value was chosen because it is the smallest value

that can be used that produces 0(N) worst-case behavior. Why can't 3 be used? Looking

at the formula in Appendix B, if c = 3 and d = 2, we would have
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P(II) ~ (2 x (h(c) + C)) x Il which would yield a divide-by-zero error. We can also view
d-2

this from a slightly different angle. During the simplifying of

311 ~n) (311) 6 6 6 ..P(Il)~-+ - +II+P - , we eventually get to -P(n)--P(n)~-n whlchlsan
3 3 6 6 6 3

invalid equation since 0 would end up by itself on the left side. Therefore, 3 cannot be

used as the group size.

Is there an optimal group size? Using the formula from Appendix B with different values

for c, Figure 3 shows the cost relationship with the optimal value for c being 11, which

differs from the authors' choice of c = 21. The odd numbers 5 through 23 were chosen

for comparison purposes.
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Figure J - Cost of PICK for different values of c

Example

Following the same set of 20 numbers through PICK yields the following. The initial

input array looks like:
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Since = 20, the input array is broken up into r~l groups or 5 elements each. The

medians of each of those groups are selected and th median-or-medians is selected via a

recursive call to PICK. The input array now looks like the following, with the medians

shaded and the median-or-medians denoted by m:

m

Using 38 as the pivot element, we will now partition around that element, similar ill

fashion to both FIND and SELECT. The indexes i and j start at positions one past the

left-most element and one past the right-most element respectively.

During the first set of scans, the out-of-order elements are swapped, yielding:

J

After the next set of scans, the out-of-order elements are swapped. Because one of the

elements to be swapped is also the pivot element, we note its new position using F.
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After the next set of scans, index i and index j have crossed. Because th pivot I ment

was moved from its original location, we must ensure that the condition of only having

smaller elements to its left and larger elements to its right exists. It do ,bur index j must

be moved to the right to reflect how many elements are less than the pivot element.

J,I m

The input array has now been partitioned around the pivot element 38. Since K was less

than index j, we will recursively call PICK on the left-hand end of the input array. At this

point we have eliminated N - j, or 7, elements from any further processing. The input

array now looks like:

Since N = 13, the input array is broken up into I~l groups of5 elements each. The

medians of those groups are selected and the median-of-medians is selected via a

recursive call to PICK. The input array now looks like the following, with the medians

shaded and the median-of-medians denoted by m:
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Using 15 as the pIvot element, we will now partition around that I m nt. The indexes i

and j start at positions one past the left-mo t element and one past the right-most elem nt

respecti vely.

During the first set of scans, the out-of-order elements are swapped. Because one of the

elements to be swapped is also the pivot element, we note its new position using F. This

yields:

After the next four sets of scans, the out-of-order elements are swapped. The input array

now looks like:

After the next set of scans, index i and index j have crossed. Because the pivot element

was moved from its original location, we must ensure that the condition of only having

smaller elements to its left and larger elements to its right exists. The elements at

positions A[F) and A[j) are swapped. Elements up to A[j] are less than the pivot element.
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The input array has now been partitioned around the pivot element 15. Sine K was

greater than index j, we will recursively call PICK on the right-hand end ofth input

array. At this point we have eliminated j + I, or 5, elements from any further processing.

The input array now looks like:

Since N =8, the input array is broken up into I~1groups of 5 elements each. The

medians of each of those groups are selected and the median-of-medians is selected via a

recursive call to PICK. The input array now looks like the following, with the medians

shaded and the median-of-medians denoted by m:

Using 31 as the pivot element, we will now partition around that element. The indexes i

and j start at positions one past the left-most element and one past the right-most element

respectively.

39
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During the first set of scans, the out-of-order elements are swapped. B c us on of the

elements to be swapped is also the pivot element, we note its new position u ing F. This

yields:

After the next set of scans, the out-of-order elements are swapped.

After the next set of scans, index i and index j have crossed. Because the pivot element

was moved from its original location, we must ensure that the condition of only having

smaller elements to its left and larger elements to its right exists. The elements at

positions A[i] and A[F] are swapped and index j moved to the right to reflect how many

eLements are less than the pivot element.

rn J,1

The input array has now been partitioned around the pivot element 31. Since K was

greater than index j, we will recursiveLy call PICK on the right-hand end of the input

array. At this point we have eliminated j + 1, or 5, elements from any further processing.

The input array now looks like:

40



Since N = 3, we simply need to sort those elements, thus placing th m dian of the input

array at position A[K], which is where it would be if the input array were fully sort d.

The algorithm is done, with the final input array looking like:

Improvements

While we don't go into the details here, it is worth mentioning that Dor and Zwick [4]

improved these results and presented a selection algorithm that uses at most 2.95N

comparisons. Their work slightly narrows the gap between the best known lower and

upper bounds on the comparison complexity of finding the median.

In order to obtain their results for finding the median, many new ideas were required,

with the central idea being green factories and an amortized analysis of their production

costs. Factories are used for the mass production of certain partial orders at a much

reduced cost.

According to the authors,

"The performance of a green factory is mainly characterized by two parameters

~ and Al (the upper and lower element costs). Using a green factory with

parameters Ao and AI we obtain an algorithm for the selection of the an-th
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element using at most (Aoa + AI(1 - a» * n + o(n) comparisons. To select the

median, we use a factory with Au, AI ::::: 2.95. Actually, there is a tradeoff between

the lower and upper costs of a factory. For every 0 a :S Y2 we may choose a

factory that minimizes Aoa + A I (1 - a). We can select the n/4-th element, for

example, using at most 2.69n comparisons, by using a factory with Ao ::::: 4 and AI

::::: 2.25. In this paper, we concentrate on factories for median selection."

They go on to say that it is easy to verify that their algorithm as described above, as the

median finding algorithm of Blum et al. [1], can be implemented in linear time in the

RAM model.
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Chapter 3. Methods of Testing and Comparisons

In order to minimize the possibility of the input array having one or more elem nls that

match the pivot element, the following C code will be employed to generate pseudo-

random elements.

#define A 48271L
#define M 2147483647
#define Q (M I A)
#define R (M % A)

II multiplier
II modulus

static int nSeed

in= Random ( void

int nTempSeed;

1·,

nTempSeed = A * (nSeed % Q) - R * (nSeed I Q);
if (nTempSeed >= 0)

nSeed nTempSeed;
else

nSeed nTempSeed + M;

nTempSeed ((double) nSeed I M) * 1000000000;
return (nTempSeed);

In order to achieve the average case for heapsort, FIND, SELECT or PICK, each

algorithm is applied to an input array of N "fresh" elements. This is done nSets times

(nSets=lOO was used) for each value ofN. Then the average of those were taken. In

addition, when a worst-case array is found, it is saved for later use. Pseudo-code for this

looks like the following (see also Appendix A):

N START f- 10

N END f- 4 0 96 0

NSETS f- 100

FOR N = N_START TO N_END STEP x2

FOR C = 1 TO NSETS STEP 1
GENERATE INPUT ARRAY Al AND SAVE IT FOR LATER USE
CALL PICK
ACCUMULATE COMPARISON COUNTS
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IF COMP COUNT > MAX COMP COUNT THEN
MAX COMP COUNT ~ COMP COUNT
A2 ~ Al (WORST-CASE INPUT ARRAY SO FAR)

END
NEXT C
REPORT AVERAGE COMPARISON COUNTS FOR CURRENT N

NEXT N
FIND WORST-CASE USING A2 AS STARTING POINT

In order to achieve the worst-known-case scenarios for the algorithms, three different

methods were employed. This was done for SELECT and PICK only, because their

worst cases are complicated. The worst case for FrND is known and simple.

The first method uses the worst of the average-case input arrays as a starting point. This

guarantees that the worst-known-case input array will perfonn at least as many

comparisons as the worst average-case input array. Using the worst of the average-case

input arrays, we pseudo-randomly swapped elements nSwaps times (typically

nSwaps=lOO,OOO), trying to find a new worst-known-case input array that generated

more comparisons. If a new worst-known-case input array is found, a copy is made for

later use. Each iteration through the loop wil1 be using the last-known worst-known-case

array as a starting point before swapping two elements and calling the algorithm. That

way we never lose the worst case found so far. This is referred to as the Monte Carlo

method. Pseudo-code for this looks like the following:

N SWAPS ~ 100000
MAXIMUM ~ 0
FOR X = 1 TO N SWAPS

# OF COMPARISONS ~ a
A2 ~ "BEFORE" COPY OF THE INPUT ARRAY FROM A
CALL PICK
IF # OF COMPARISONS IS GREATER THAN MAXIMUM

MAXIMUM ~ # OF COMPARISONS
A) ~ COPY OF NEW WORST-CASE INPUT ARRAY FROM Ai
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END

A ~ COPY OF WORST-CASE INPUT ARRAY FROM A)
Rl ~ RANDOM NUMBER MOD N

R2 ~ RANDOM NUMBER MOD N
SWAP ELEMENTS AT POSITION Rl AND R2

NEXT X

Some sorting and selection algorithms perfonn well with random data but poorly with

pre-ordered data. So, the second and third methods simply involve generating an input

array with N pseudo-random elements and sorting it once in ascending order and taking

the results, then sorting it again in descending order and taking the results. In the case of

FIND, a change is made to PARTITION such that F f- M instead ofF of- random

number between M and N. Whichever of these three methods caused the most

comparisons was the one used for the worst known case.

In order to achieve the worst case behavior for FIND, the pivot element will always be

the left-most (i.e., smallest) element in the input array instead of a pseudo-random

number between the left and right ends. So, each time PARTITION is called from FIND,

the pivot element would be the value of A[O]. This achieves the desired result becaus

N - I elements are being partitioned around the smallest or largest element at that point.
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Chapter 4. Results

In Table 3 below, the comparisons for the average-case behavior are listed for each

algorithm. For all values of , SELECT is the best performing algorithm while, as

expected, heapsort is the worst of the four algorithms, since it is 0(N log(N» in the

average case.

AveraRe Case: Number of Comparisons
N Heapsort FIND SELECT PICK (c=5)
10 21 30 23 39
20 81 93 70 128
40 237 220 180 344
80 626 472 388 827._ .._ ..

160 1561 I 999 833 1857.-
320 3743 2034 1715 4040..

640 8742 4178 3796 8634
1280 20016 8659 7040 18230
2560 45126 17435 13351 37974
5120 100459 34168 25514 77750
10240 221355 68427 49368 158792
20480 483605 139356 97051 324161
40960 1049045 275876 183502 655212

Table 3 - umber of comparisons for average case

In Table 4 below, the comparisons for the worst known case are listed for each algorithm.

PICK performs better than FIND for all values of N, better than heapsort when N ~ 160

and better than SELECT when N ~ 5120.

46



Worst Known Case: Number of Comparisons
N Heapsort FIND SELECT PICK (c=5)
10 23 67 20 60
20 86 237 60 140
40 250 877 140 317
80 661 3357 300 683
160 1645 13117 620 1483
320 3941 51837 1260 2978
640 9205 206077 2793 5893
1280 21025 821757 7664 11469
2560 47278 3281917 18690 22404
5120 104920 13117437 44399 44238
10240 230535 52449277 101401 88454
20480 502218 209756157 250942 175461
40960 1086528 838942717 552109 348281

Table 4 - Number of comparisons for worst known case

A special note about FIND's worst-case running time: it is very recursion-intensive.

Since index i or j is only moving once per call to PARTITION, it can be seen that N - 1

recursive calls are necessary. Some environments can handle this depth of recursion

while others cannot and thus this can cause a stack overflow. To work around the

problem, recursion can be removed by simply adjusting M and N inside of FIND.

Pseudo-code for this looks like the following:

WHILE (M < N)
BEGIN

CALL PARTITION
IF (K <= J) THEN

N ~ J

ELSE IF (I <= K) THEN
M ~ I

ELSE
M ~ N

END
END
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Since we now have the worst-case running times of each of the algorithms, it is easy to

verify those using the following fomlula:

log{ComP2) -log(Compl)

log(N2 ) -log(N)

If an algorithm is truly O(N), it will have a slope on a log-log graph very n ar I. If an

algorithm is O(N2
), such as FIND, it will have a slope very near 2. Using 10 and 40960

for N I and N2, we find the slope of each of the algorithms in Table 5 below.

Heapsort FIND SELECT PICK
A: 0(N log(N) A:O(N) A:O(N) A:O(N)
W: 0(N IOf:?:(N)) W: 8(N2) W:O(N2) W:O(N)

Average Case 1.23 1.10 0.94 1.17
Worst Known 1.29 1.96 1.23 1.17
Case

Table 5 - Slope of algorithms in average and worst known cases

The fact that the slope for SELECT is less than 1 indicates that it is sub-linear, which

would be nice but is obviously impossible, since sub-linear complexity implie that for

sufficiently large values ofN, the median could. be found without examining some

elements at all. These results do, however, indicate the very high efficiency of SELECT.

In Table 6 below, we see that the best worst-known-case behavior for PICK is achieved

with ascending-order input. The best worst-known-case behavior for SELECT is also

achieved with ascending-order input. Heapsort is not affected by the initial state of the

input array as random, ascending-order and descending-order input all produce the same-

order behavior. FIND achieves its worst-case running time of 8(N2) with descending-

order input. Ascending-order input is only slightly better. The maximum number of

48



comparisons for Fl 0 with ascending input for odd alues of is 3..N 2 +1.5N+1.125.
8

1 f I . b f . . 3For even va ues 0 , t le maXImum num er 0 compansons 1S -
8

2 +1.75 +2.

Ascending: Number ofComparisons
N Heapsort FIND SELECT PICK (c=5)
10 23 57 10 46
20 86 187 30 113
40 250 672 70 280
80 661 2542 150 662
160 1645 9882 310 1422
320 3941 38962 630 2903_.

640 9205 154722 1325 6121
1280 21025 616642 2692 12885
2560 47278 2462082 5391 26850
5120 104920 9839362 10733 52562
lO24() 230535 39339522 21325 107903
20480 502218 157322242 42366 221586
40960 1086528 629217282 84276 454509

Table 6 - Number of comparisons using ascending input

In Table 7 below, we see that PICK performs no worse than average when presented with

descending-order input. When N 2: 1280, SELECT's worst-known-case b havior is

achieved with descending-order input. For large values ofN, PICK is worse than

SELECT when using descending-order input.
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Descendin&: Number of Comparisons
N Heapsort FIND SELECT PICK (c=5)
/0 19 67 20 57
20 73 237 60 174
40 216 877 140 248
80 575 3357 300 517
/60 1451 13117 620 1155
320 3505 51837 1260 2392
640 8228 206077 2793 4628
/280 18926 821757 7664 8969
2560 42942 3281917 18690 19906
5120 96033 13117437 44399 39664
10240 212531 52449277 101401 77510
20480 465908 209756157 250942 146991
40960 1014140 838942717 552109 322830._.

Table 7 - ["''-umber of comparisons using descending input

In Table 8 below, empirical testing results show the comparison of the three values of c

mentioned 011 page 33. Clearly, when c = 5, fewer comparisons are made than when c =

II or c = 21. This is an indication as to the complexity of the PICK algorithm and how

difficult a worst-case input is to achieve. It also contradicts [1] where c = 21 was claimed

to be optimal.

N c=5 c= 11 c = 21

10 61 45 45_ ..

20 142 191 190
40 322 473 664

80 702 960 1593

160 1507 2197 3327

320 3109 4485 73779
640 6005 8666 14047

1280 11641 15989 26769
2560 22358 29922 48614

5120 44502 57892 90769
10240 88455 114326 173565

20480 175921 224222 337182

40960 349890 440457 660072

Table 8 - Number of comparisons for PICK with different values of c

50

,.....
I

Ie
I':,...

.~



[n Figure 4 below, we plot average-case perfom1ance on a log-log graph. SELECT is

clearly the best performing algorithm for small and large values ofN, in the average case.

The point at which it starts to perform sampling (N = 600) is evident.

Average Case

1.E+06 -r------------------------.

1.E+05 -+-FIND
__ SELECT

-.- PICK (c=5)

--*- TREESORT 3 ,'"....
CII ,~c::
0 1.E+04 II::
CII I'
''::
ta

I~0-
E :~
0
U ,~

0 1.E+03
!Sz

' ..
,~

- ----- '''l
,:I

:~
",J

1.E+01

10 100 1000 10000 100000

N

Figure 4 - Average-case behavior for y: No, Comparisons

In Figure 5 below, we plot the worst-case performance on a log-log graph. The slope of

FIND is approximately 2, which confinns that its worst-case running time is 8(N2).

PICK is less efficient than SELECT and heapsort for small values ofN, but for values of

N ~ 5120, PICK is the better-performing algorithm, in the worst known case..
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Worst Known Case
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Figure 5 - Worst-known-case behavior for y: No. Comparisons

It is difficult to see the exact dependence of a given curve on the above graphs. We can

better see the dependences by dividing the ordinate values by some hypothetical

dependence such as 0CN), 0(N log(N)) or 0(N2). An algorithm that follows the

hypothetical dependence will produce a curve that approaches a constant for large values

of N. A dependence that is larger (slower) than hypothesized will produce a curve that

rises without bound as the value ofN becomes large; a dependence that is smaller than

hypothesized will produce a curve that approaches zero as the value of N becomes large.
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In Figure 6 below, we divide the average-case behavior by a hypothetical dependence of

N. PlCK approaches a constant for large values of while FIND and SELECT approach

a constant for small values ofN. Heapsort is clearly the dominant algorithm for large

values ofN since its average-case mnning time ofG(N log(N)) is still G(log( )) once

is factored out. The other O(N) algorithms are left with small coefficients once N is

factored out.
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Figure 6 - Average-case behavior for y: No. ComparisonsfN
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[n Figure 7, we divide the worst-known-case behavior by . We don't see much, other

than FIND is much less efficient in the worst known case than the other algorithms. In

Figure 8, F[ND has been removed so that the other algorithms can be seen in a bit more

detail. Heapsort is the dominant algorithm since its worst-case running time is sti II

8(log(N» after N is factored out. PICK surpasses SELECT once N ~ 5120.
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Figure 7 - Worst-known-ca'ie behavior for y: No. ComparisonsfN
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Worst Known CaseIN, w/o FIND
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Figure 8 - Worst-known-case behavior for y: No. Comparisons! (w/o FIND)

In Figure 9, we plot the average-case behavior divided by N 10g(N). We see that heapsort

is slowly approaching a constant of 1.00 while FIND and SELECT fall below that since

they are more efficient than 8(N log(N)) once N ~ 320. Although not visible, PICK, too,

surpasses Treesort3 for large values ofN. SELECT is clearly the best performing

algorithm for all values 0 f N in the average case.
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Average CaseIN log N
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Figure 9 - Average-case behavior for y: No. Comparisons/N log(N)

In Figure 10, we divide the worst-known-case behavior by N log(N). We don't see much

other than FIND is much less efficient than the other algorithms in the worst known case.

In Figure 11, FIND has been removed so that the other algorithms can be seen in a bit

more detail. Heapsort is slowly tapering towards 2.0 while PICK surpasses SELECT

when N ~ 5120.
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Worst Known CaseiN log N
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Figure 10 - Worst-known-case behavior for y: o. ComparisonsfN log(N)
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Worst Known CaseIN log N, w/o FIND

Figure 11 - Worst-known-case behavior for y: No. ComparisonslN log(N) (wlo FIND) '.'.
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In Figure 12 below, we plot the worst-known-case behavior divided by N2
. We see that

FIND, with a worst-case running time of0(N\ dominates and approaches 0.5, which is

1 2'2 N + 2N - 3 1 1 3
the dominant coefficient from -=------ =- + 2 - - - .

N 2 2 N N 2

The other algorithms fall far below that since they have worst-case running times of B(N

log(N» or B(N\ leaving a smaller coefficient after N2 has been factored out of each.
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This implies that SELECT is faster than 0 2) but the worst case could not be obtained

empirically.
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Figure 12 - Worst-known-case behavior for y: No. Comparisons/N2

In Figure 13 below, we plot the behavior of PICK with random, ascending-order, and

descending-order input. There is no significant difference between descending and

ascending-order input. PICK performs its best with ascending input.
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Figure 13 - Three different cases for PICK

In Figure 14 below, we plot the behavior of SELECT with random, ascending-order and

descending-order input. Its worst-known-case performance is achieved with descending-

order input when N 2': 1280. PICK perfol1TIs its best with ascending input.
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Figure 14 - Three different cases for SELECT

In Figure 15 below, we plot the behavior of heapsort with random, ascending-order and

descending-order input. Because its average-case and worst-case running time is 8(N

10g(N)), it is not affected by the initial state of the input, thus the data series for each

appears as one.
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Figure 15 - Three different cases for heapsort

In Figure 16 below, we plot the behavior of FIND with random, ascending-order and

descending-order input. Its worst-case performance is achieved with descending-order

input with ascending-order input not much better. FIND clearly performs its best with

random input.
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Figure 16 - Three different cases for FIND

As was previously mentioned regarding Dromey's improvement to Hoare's FIND

algorithm, the number of comparisons is reduced quite a bit in both the average and worst

case. The equation for the algorithm's worst-case behavior appears to be complicated, as

empirical testing shows it is not a simple increasing or decreasing sequence. Unlike

FIND, however, its running time is 8(N) when presented with pre-sorted input. For

ascending input, the maximum number of comparisons is N - 1. For descending input,
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Lhe maximum number of comparisons is 1.5N. As was done with PICK and SELECT,

the Monte Carlo method was employed for creating nearly worst-case behavior.

In Table 9 below, the average-case and worst-case comparisons for Dromey's

improvement to FfND is listed. For large values of , the worst known case appears to

be better than FIND's average case.

Number Of Comparisons

N Average Worst known

10 16 31
~-

_._..

20 36 94
f----.

40 83 290

80 174 721

160 364 2182

320 780 3945

640 1719 6125

1280 3475 10825

2560 6726 18286

5]20 14224 42304

10240 27531 87377

20480 55720 ]74997

40960 112553 251027

Table 9 - Dromey's improvement to Fl D

In Figure 17 below, we plot the average-case behavior for FIND and for Dromey's

improvement. While an improvement, SELECT is still the best-performing algorithm in

the average case. The line in FIND's data series is there to simply guide the eye and is

susceptible to statistical noise.
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Figure 17 - Average case for FIND and Dromey's improvement/N

In Figure 18 below, we plot the worst-case behavior for FIND and the worst-known-case

using Dromey's improvement. The improvement over FIND is quite evident. Although

worst-case input for Dromey's improvement could not be achieved through empirical

testing, it appears to perform no worse than PICK in the worst case.
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100000100001000

N

----- ._-- -- ----

100

---"'-:----------_._-----_._----

f------i --+- FI NO
---....- Oromey

0.8

0.7 -

0.6

N
<z 0.5Iii
c:
0
III
'': 0.4III
0.
E
0
()

0.3
0
z

0.2

0.1

0.0
10

Figure 18 - Worst case for FIND and worst known case using Dromey's
improvement/N2
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Chapter 5. Summary, Conclusions and Future Work

In summary, PICK is the only known linear algorithm in the worst case for larg values

of N. [n addition, it is not negatively impacted by pre-sorted input.

SELECT is the best perfom1ing algorithm in the average case for all values ofN.

However, it's sampling scheme is negatively impacted by descending-order input. This

can be avoided by first shuffling the input in O(N) time.

Because its average and worst-case running times are both e(N log(N)), heapsort

performs consistently with random and pre-sorted input, but it is not competitive with

SELECT, FrND or PICK in the average case, or with PICK in the worst case.

END performs poorly with pre-sorted input, with its worst-case behavior 0 f O(N2)

obtained with descending-order input. This case can be avoided by first shuffling the

input in O(N) time. Because of its recursive nature as implemented by Hoare, input that

approaches worst-case behavior can produce stack overflow. An easy workaround was

provided for this.

Future work should include finding the worst-case input for PICK and for Dromey's

improvement to FIND.
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Appendix A

C source code for Treesort 3
II A[i) is moved upward in the subtree of A[O:N-1) of which it is
II the root
void SiftUp( int A[) lint i, int N )
!

int

nCopy

do
{

nCopy,
j ;

A [i) ;

j = 2 * i + 1;
if (j < N)
{

if (j < N - 1)
{

if (A [j + 1) > A [j] )
j = j + 1 ;

if (A [j} > nCopy)
{

A [i) A [j J ;
i = j;

}
while (j < N && A[jJ > nCopy) ;

A[iJ = nCopy;

11===============================================================

II TreeSort 3 is a major revision of TreeSort [R. W. Floyd, Alg.
II 113, Comm. ACM 5 (Aug 1962), 434) suggested by HeapSort [J. W.
II J. Williams, Alg. 232, Comm. ACM 7 (June 1964), 347) from
II which it differs in being an in-place sort. It is shorter and
II probably faster, requiring fewer comparisons and only one
II division. It sorts the array A[O:N-1J, requiring no more than
II 2 * (2 P -

2) * (p - 1), or approximately 2 * N * 10g2 (N) - 1)
II comparisons and half as many exchanges in the worst case to
II sort N = 2P - 1 items. The algorithm is most easily followed
II if A is thought of as a tree, with A[j + 2J the father of A[jJ
II for 0 < j < N
void TreeSort3( int A[) lint N )
{

int i;

for (i = N I 2 - 1; i > 0; i--)
SiftUp (A, i, N);
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for (i = N - 1; i > 0; i - - )

SiftUp (A, 0, i + 1);
Swap(&A[O), &A[i));

C source code for FIND
II will assign to A[K) the value which it would have if the array
II A(M : N) had been sorted. the array A will be partly sorted
II and subsequent entries will be faster than the first
void FIND( int A[), int M, int N, int K )
(

int I,
J;

if (i-1 < N)

(
PARTITION (A, M, N, &1, &J) i

if (K <= J)

PINO(A, M, J, K);
else if (I <= K)

FIND(A, I, N, K);

II use this code if the above causes a stack overflow due to
II recursion
1*
while (M < N)
{

PARTITION (A, M, N, &1, &J);

if (K <= J)
N = J;

else if ( I <= K)
M I',

else
M N·I

*1

11===============================================================

II we want a number between M and N
#define Random1(M,N) ((Random() % (N - M + 1)) + M)

II I and J are output variables and A is the array (with
II subscript bounds M:N) which is operated upon by this
II procedure. partition() takes the value X of a random element
II of the array A and rearranges the values of the elements of
II the array in such a way that there exist integers I and J with
II the following properties:
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II M <= J < I <= N provided M < N
II A(R) <= X for M <= R <= J
II A[R] = X for J < R < I
II A[R) >= X for I <= R <= N
II the procedure uses an integer procedure random(M,N) which
II chooses equiprobably a random integer F between M and Nand
II also a procedure Swap(), which exchanges the values of its two
II parameters
void PARTITION ( int A[), int M, int N, int *1, int *J )
{

int X,
F;

F = Randoml(M, N) ;

X A[F] ;
*1 M',
*J N;

up:
for (*1 = *1; *1 <= N; *1
{

if (X<A[*l))
goto down;

*1 = N;
down:

for (*J = *J; *J >= M; *J
{

i.f (A[*J] < X)

goto change;

*J = 1'1;

change:
if (*1 < *J)
{

Swap(&A[*l), &A[*J]);

*1 *1 + 1;
*J *J - 1;

goto up;
}
else if (*1 < F)

Swap(&A[*l], &A[F));
*1 = *1 + 1;

J
else if (F < *JJ

Swap(&A[F], &A[*J));
*J = *J - 1;

* 1 + 1)

*J - 1)
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C source Codefor Dromey's Improvement to FIND
void Dromey( int A[), int 1, int r, int k )
{

:'n!: i,
j,
Xi

while (1 < r)
{

i 1·,
j ri
x A[k) i

II if either of the indexes cross 'k', the choice for 'k'
II was wrong
while (i <= k && j >= k)
{

do
{

if (A[i) < x)

i = i + 1;
while (A[i) < xl;

do
{

if (A[j) > x)

j = j - 1;
while (A [j) > x);

Swap(&A[i), &A[j] j;

i i + 1;
j = j - 1;

if ( j < k)
1 i·,

if (i > k)
r j;

C source code for SELECT
#define sign(x) «x >= 0.0) ? 1.0
#define SAMPLING (600)

-1.0)

II rearrange the values of array segment X[L : R) so that X[K)
II (for some given K; L <= K <= R) will contain the
II (K - L + l)-th smallest value,
II L <= 1 <= K will imply XCI) <= X[K) and K <= I <= R will imply
II XCI] >= X[K)
void SELECT ( int A[], int L, int R, int K )
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int

double

N,

I,
J,
S,
SO,
LL,
RR,
T',
z·,

while (R > L)
{

if (R - L + 1 > SAMPLING)
{

II call SELECT(} recursively on a sample of size S to
II get an estimate for the (K - L + l)-th smallest
II element into X[K), biased slightly so that the
II (K - L + 1}-th element is expected to lie in the
II smaller set after partitioning
N R - L + 1;
I K - L + 1;
Z log (double) N);
S (int) (0.5 * exp(2.0 * Z I 3.0)} i

SO (int) (0.5 * sqrt(Z * S * (N - S) I N} *
sign (I - N I 2.0);

LL __max(L, K - I * siN + SO);
RR _mi n (R I K + (N - 1) * siN + 3D) ;

SELECT (A, LL, RR, K);

T = A [K] ;

II the following code partitions X[L : R) about T.
II it is similar to PARTITION but will run faster on most
II machines since subscript range checking I and J has
II been eliminated
I L;
J = R;

II if A[K] >= A{L] and A[R], then the swaps below will
II assign to A(L] the value we are partitioning around.
II otherwise, if A(K] <= A[L] and A{R], then the swaps
II will assign to A(R] the value we are partitioning
II around.

II put the element we are partitioning around at the
II left end
Swap (&A[L] , &A[K]);

II ensure that the element at the left end is larger than
II the element at the right end because of the initial
II exchange in the loop below
if (T < A[R])
{

Swap (&A [R} , &A[L);
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while (I < J)

{
Swap(&A[I], &A[J));
I I + 1;
J = J - 1;

do

if (A[I) < T)

I = I + 1;
while (A[I] < T);

Ilwhile (A[I) < T)

III = I + 1;

do
{

if (A[J] > T)

J = J - 1;
while (A[J] > T);

Ilwhile (A[J] > T)
IIJ = J - 1;

if (A [L] == T)
II prior to the above 'while' loop, the element we
II are partitioning around was initially at A[R].
II it then got exchanged with A[L) and stayed there
Swap(&A[L], &A[J]);

else

II prior to the above 'while' loop, the element we
II are partitioning around was initially at A[L] .
II it then got exchanged with A[R] and stayed there
J = J + 1;
Swap(&A[J], &A[R]);

II now adjust L, R so they surround the subset containing
1/ the (K - L + 1) -th smallest element
if (J <= K)

II the sought item is in the right side so adjust the
II left boundary
L = J + 1;

if (K <= J)

II the sought item is in the left side so adjust the
II right boundary
R = J - 1;
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C source code for PICK
#define GROUPSIZE 5

int PICK( int A[], int N, int k )

int nGroups 0,
Ll,
nIndex 0,
nMedian 0,

nElementsInGroup,
nOffset,
*pMedians;

if (N <= GROUPSIZE)
{

II sort this group and return the k-th element
Sort (A, N);

return (A [k] ) ;

II calculate how many groups we're dealing with
if «N % GROUPSIZE) == 0)

nGroups N I GROUPSIZE;
else

nGroups (N I GROUPSIZE) + 1;

II allocate memory to hold the medians of the groups
pMedians = new int[nGroups];

for (nIndex = 0; nlndex < nGroups; nlndex++l
{

nElementslnGroup = __min (GROUPSIZE, N - (nIndex *
GROUPSIZE)) ;

Sort (&A [nlndex * GROUPSIZE], nElementslnGroup);

II will be 0, 1 or 2 when GROUPSIZE = 5
nOffset = nElementslnGroup I 2;

pMedians[nlndex] = A[(nlndex * GROUPSIZE) + nOffset];

II recursively find the median of the medians to use as the
II pivot later
nMedian = PICK(pMedians, nGroups, nGroups I 2);

II we're done with the memory so free it up
delete [] pMedians;

II partition on the median found earlier
Ll = MedianPartition(A, N, nMedian) i

if (k < Lli
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II recurse on the left side
return PICK(A, Ll, k);

}
else if (k > Ll)
{

II recurse on the right side
return PICK(&A[LI + 1], N - Ll - 1, k - Ll - 1);

}
else

II we found it!
return nMedian;

//===============================================================

int MedlanPartition( int A[], int N, int nPivot )

int i,
j I

F;

i-I;
j N;
F -1;

while (i < j)
{

do
{

}
j j - 1;

while (A[j] > nPivot);

do
{

}
i i + 1;

while (A[i] < nPivot);

if (i < j)
{

II if the pivot element is moving, note where it is
1/ moving to
if (A[i] == nPivot)

F = j;
else if (A[j] == nPivot)

F = i;

Swap(&A[i], &A(j]);

// if the pivot element moved, swap it so that all elements
// to its left are smaller. otherwise, it's just
// intermingled with all of the smaller elements or larger
// elements which is a bad thing
if (-1 != F)
{
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if (F > i)

{
II the pivot element needs to be moved back to the
II left
Swap(&A[i], &A[F]);
j = i;

}
else if (F < j)

II the pivot element needs to be moved back to the
II right
Swap (&A[F] I &A[j]);

el.se
II the pivot element is right where it needs to be
II but Ij I is one-off
j = i;

II elements up to and including A[j] are less than or equal
II to nPivot
return j;

C source code for driver
void main( void)
{

int64
int

i64Total
x,
N·,
*A;

0;

for (N = 10; N <= 40960; N *= 2)
{

A = new int[N];
if (NULL ! = A)

{
for (x = 0; x < N; x++)

A [x] Random () ;

PICK(A, N, N I 2);

delete [] A;

Appendix B
These formulas, or abridged versions of them, are found in the various references but

have been included here showing how one form has been simplified into another.
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Formulafor FIND's average case

1 1 (3N)T(N)5,-T(N)+-T - +N
2 2 4

sllblract~ T(N) from both sides
2

I 1 1 1 (3N)T(N)--T(N)5,-T(N)--T(N)+-T - +N
2 2 2 2 4

1 I (3N)-T(N) 5,-T - +N
2 2 4

divide both sides by ~
2

~ T(N) ~T(3N)+N
2 < 2 4

1 - 1
- -
2 2

T(N) 5, T( 3:) + N

Formula for FIND's worst case

FIND's worst-case behavior takes the form of the linear equation:

aN2 + bN + c = maximum number of comparisons.

The values for a, band c differ slightly for odd values ofN versus even values of N. For

N = 4, 6 and 8, we have the three equations:

E1: 16a + 4b + c = 13

E2: 36a + 6b + c = 27

E3: 64a + 8b + c =45

Subtract E2 from E3:

El: 16a + 4b + c = 13

E2: 36a + 6b + c = 27

E3: 28a + 2h = 18
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Subtract E1 from E2:

EI: 16a+4b+c= 13

E2: 20a + 2b = 14

E3: 28a + 2b = 18

Subtract E2 from E3:

E1: 16a + 4b + c = 13

E2: 20a + 2b = 14

E3: 8a = 4

a = 0.5

Plug this value into E2:

E2: 20(0.5) + 2b = 14

b=2

Plug these values into E 1:

E 1: 16(0.5) + 4(2) + c = 13

c =-3

So, with a = 0.5, b = 2 and c = -3, we have ~ N 2 + 2N - 3.
2

For N = 3, 5 and 7, we have the three equations:

El: 9a + 3b + c = 8

E2:25a+5b+c=20

E3: 49a + 7b + c = 36

Subtract E2 from E3:

El: 9a + 3b + c = 8

E2:25a+5b+c=20
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E3: 24a + 2b = 16

Subtract E I from E2:

£ 1: 9a + 3b + c = 8

£2:16a+2b=12

£3: 24a + 2b = 16

Subtract £2 from E3:

£ 1: 9a + 3b + c = 8

E2: 16a + 2b = 12

E3: 8a=4

a=0.5

Plug this value into E2:

E2: 16(0.5) + 2b = 12

b=2

Plug these values into E1:

El: 9(0.5) + 3(2) + c = 8

c = -2.5

So, with a = O. 5, b = 2 and c = -2.5, we have ..!.- N 2 + 2N - 2.5.
2

Formula/or the minimum elements discarded in PICK

This formula comes from page 191 of[3]. It simply shows how the ceiling 'f l" function

affects the ~ and = operators
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/1/ultiply what's ill parenthesis by 3

3
multiple what's in 11by

2

9N -6=
30

3N -6
10

Form ulas for the cost ofthe PICK algorithm

These formulas come from pages 450-451 of [1]. The tirst one shows how the recursive

terms of the equation can be removed by following a few simple algebra rules.
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nxh(e) (n) ( n )P(n) ~ C + P ~ + n + P 11 - d x 2e

nxh(e) (I) (d)P(n)~ c + -;;- P(II)+n+ 1-
2c

P(II)

IIxh(c) (1 d)
P(n)~ +n+ -+1-- pen)

e c 2e

(I d) nxh(e)P(n)- -+1-- P(n)~ +n
e 2e C

(
1 d) nxh(c)

P(n)+ ---1+- P(n)~ +11
e 2c c

(
I d ) n x h(c)1- - - 1+ - P(n) ~ + n
c 2c c

( 1 dJ nxh(c) e1-1- - + - pen) ~ ----. +-n
c 2c. c c

(-~+~)p(n) ~ n x h(e) +!:.n
\ c 2e c e

(-1+ ~)p(n)~nxh(C)+cn

(
? d)-~+2 P(n)~n(h(c)+c)

(d ~ 2 )p(n) ~ n(h(c) + c)

P( )<n(h(e)+c)
n - d-~

P(n)~ nx2x(h(c)+c)
d -2

pen) ~ (2 x (h(e) + C») x n
d-2

Per the authors, we can substitute c=21, h(21)=66 and d=11 into the above fonnula to

find the minimal cost of PICK. The correct answer of 19.3n is obtained rather than

19.6n, which is found in [I J.
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P(n) $ 66/1 + J.!!.-) + /l + 31,.,)
21 'l21 42

pen) $(~~}+(;I)p(n) +n+ ~(~})

pen) $(~~}+(;Jp(ll) +n +(~~)p(n)
P(Il) $ (~~}+(~~)p(n)

(:~)p(n) -( ~~)p(n) $ (~~}

(:2)P(rl) $ (~~)n

pen) $(~X~~}
P(n) $ 174n

9

pen) $19.3n
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