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1.0 INTRODUCTION

For many years businesses have knowingly and unknowingly polluted the environment In the

19808, environmental engineers were asked to find economically and environmentally sound

solutions for some of these environmental mistakes. Many of those mistakes were in 'the

handling and disposal of toxic organic chemicals, with the result that the public felt very

threatened, and would probably even characterize the 19805 as the -Decade of Toxic Pollutants"

(Grady, 1990). Politicians responded to public concerns by stating that the problems will be

corrected and funds will be made available to do it. However, realistic responses from

government can cause society to question whether the engineer can deliver what is expected,

thereby damaging credibility and hindering cleanup efforts. It is the responsibility of

environmental engineering professionals to take it upon themselves to scrutinize the approaches

proposed for dealing with toxic organic chemicals to ensure that innovation is encouraged while

protecting the public and their tax dollars (Grady, 1990). Part of this responsibility includes

evaluation and testing of treatment technologies.

Biodegradation is the least expensive and most widely used method for removing organic

compounds from wastewater and is the primary mechanism responsible for their destruction in

nature (Naziruddin et al., 1995). literature reviews reveal that conventional biological treatment

systems, such as those used in pUblicly owned wastewater treatment works (POTWs), are

remarkably robust and effective in removing such chemicals (Grady, 1986; Lewandowski, 1988).

For example, anaerobic degradation of benzenes was long considered impossible but is now

known to be common in methanogenic communities, and the pathway is well understood (Berry

et aI., 1987; Evans and Fuchs, 1988). Furthermore. the results from a study conducted in

England on the anaerobic biodegradability of 77 organic compounds were in general agreement

with studies done in the United States (Battersby and Wilson, 1989). This suggests that
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biodegradability assessments mac:le with one source ot microorganisms can be extrapolated to

another with a reasonable degree of confidence (Grady, 1990).

Intonnation on biodegradation kinetics is essential during design of biological treatment systems

and during the process of establishing limits on the discharge of toxic compounds to the

environment. Consequently, there is a need for a database on kinetic parameters of

biodegradation (Naziruddin et aI., 1995). To date, most published biodegradation infonnation is

qualitative, or, if quantitative, the parameter values are not intrinsic, thereby limiting their

application (Howard at aI., 1991; Pitter and Chudoba, 1990). While biodegradability infonnation

is sufficient for making ear1y feasibility decisions, information about rates of biodegradation is

necessary for engineers to compare processes (Grady, 1990). Rate information from studies

must be available as intrinsic coefficients to allow its use in treatment system models. A key

factor in determining the economic attractiveness of biological processes for chlorinated solvent

degradation is the rate of degradation (Speitel and Leonard, 1992).

Volatile organic chemicals (VOCs) are common ground water contaminants, and their presence

in aquifers is being reported with increasing frequency. Chlorinated aliphatic compounds widely

used as industrial degreasers, dry cleaning solvents, propellants, and insecticides are common

groundwater contaminants (Barbash and Roberts, 1986). Chlorinated aliphatic compounds,

including dichloromethane (DCM), trichloromethane or chloroform (CF), and 1,1,1­

trichloroethane (TCA), are among the most commonly detected contaminants of groundwater in

the United States (Gossett, 1985). They have become widely distributed in the environment as a

result of discharges of industrial and municipal wastewaters, urban and agricultural runoff,

leachates from landfills, and leaking underground tanks and pipes. Because they are denser

than water, plumes of non-aqueous aliphatics may sink below the water table where the

compounds may persist for decades (Hughes and Parkin, 1992). Despite the fact that a large

portion of a plume of oCM, CF, or TeA may remain as a non-aqueous phase liquid, significant

quantities of these compounds can become dissolved in the groundwater and transported by
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advective and dispersive mechanisms (Hughes and Par1<in, 1992). Many of these compounds

are toxic at high concentrations and are suspected human carcinogens and/or mutagens

(Federal Register, 1984; Federal Register, 1985). The discharge and subsequent fate of VOCs

and semivolatile organic compounds (SVOCs) in ~ewater streams is a topic of growing

interest in wastewater treatment. POTWs are coming under increasing scrutiny as sources of air

toxic emissions, and aggressive air toxic control programs are being enacted by state and local

agencies all over the country (Narayanan et aI., 1995). Furthermore, many VOCs and SVOCs,

especially chlorinated compounds, are not degraded under aerobic conditions and thus cannot

be removed by aerobic processes (Dobbs, 1990; Melcer et aI., 1989).

This paper represents. the results of studies that were conducted to address the feasibility of

employing anaerobic treatment of a chloroform~ntaminated aqUifer sample under varying

conditions. In these studies, five aspects of treating contaminated soil samples with mixed

cultures of anaerobic microorganisms are investigated. The first objective is to evaluate the

effect of chloroform alone with methanogenic, denitrifying, and sulfate-reducing microorganisms.

Secondly, other parameters affecting chloroform degradation will be investigated, including the

effects of metals, non-chlorinated aliphatics, and changing concentrations of chlorinated

aliphatics with the three types of microorganisms mentioned above. These research objectives

address a significant area of concem that must be investigated before any large-seal

implementation of biological processes for the remediation of severely contaminated

groundwaters. The potential for toxicity to the microorganisms exists when treating high

concentrations of chloroform, and relatively little is known of the degradative rates of

microorganisms when treating chloroform, especially under "real world" (i.e. complex solutions)

conditions.
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2.0 LITERATURE REVIEW

Laboratory studies have demonstrated that dichloromethane (DCM), chloroform (CF), and

trichloroethane (TCA) are all transformed by anaerobic microorganisms (Vogel et al., 1987). The

implementation of an anaerobic treatment process (above ground or in-situ) may provide

significant advantages over more traditional treatment options such as activated carbon

adsorption or air stripping (Mccarty, 1988).

Chloroform is a suspected human carcinogen and a common groundwater contaminant

(Davidson, 1982; Herzog et aI., 1988). Chloroform appears as a priority pollutant on the

Resource Conservation and Recovery Act (RCRA) report of priority pollutants. The National

Priority Pollutants list database indicates that chloroform appears at 24% of all Superfund sites.

The physical and chemical characteristics of chloroform are summarized in Table 1.1.

Chloroform migrates relatively rapidly and may move from highly contaminated groundwaters

beneath leaking hazardous waste landfills and other improper storage facilities to contaminate

potable waters (Roberts et aI., 1982). Chloroform-contaminated groundwaters should be

remediated as near to the contamination source as possible (Bagley and Gossett, 1995). Since

many chlorinated compounds, including chloroform, break through very quickly in activated

carbon columns, a cost-effective technology such as bioremediation to treat this compound is

required (Gupta et aI., 1996b).
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Table 2.1

Chemical and Physical Properties of Chlorofonn

Chemical Name Chloroform
Synonyms Trichloromethane, Methane Trichloride

CAS Number 67-66-3
Molecular Fonnula CHCh

Chemical Structure H~~I
Molecular Weight 119.3779

Physical State Clear colorless liquid with a pleasant, sweet
odor detectable at 133 to 276 ppm. Light

. sensitive.
Boiling Point 61.7°C
Melting Point -63. 7°C

Refractive Index 1.4459
EvapOration Rate 0.09

Relative Density (water-:1) 1.49845
VapOr Pressure at 20°C 159

Relative Vapor Density (air-:1) 4.1
Solubility in Water at 20°C 0.795 g/100 mL

Source: Chemfinder, www.chemfinder.com. 2000

Biodegradation of hazardous chemicals, particularly heavily chlorinated compounds, can be

considered complete only when the carbon skeleton is converted to harmless metabolites, and

the halogen, such as chlorine, is returned to the mineral state (Fathepure and Vogel, 1991). A

crucial point in the complete destruction of chlorinated hydrocarbons is the removal of the

chlorine substituent from the molecule (Fathepure and Vogel, 1991). The most widely reported

transformation of halogenated compounds under anaerobic conditions is reductive dechlorination

(Bhatnagar and Fathepure, 1991). Reductive dechlorination is relatively rapid for chemicals with

a higher number of chlorine substituents, including chloroform, when compared with

dechlorination of less-chlorinated compounds (Bhatnagar and Fathepure, 1991). The reductive

dechlorination of chloroform in the anaerobic environment is consistent with recently observed

dechlorinations under both methanogenic and sulfate-reducing environments (Bagley and

Gossett, 1990). Bouwer (1981) and others suggest that chloroform cannot be degraded under

aerobic conditions except under methanotrophic conditions. Chloroform has been shown to be
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biodegradable under methanogenic conditions, but higher concentl:8tions of chloroform have

been shown to be inhibitory to methanogenesis (Gupta et aI., 1996b).

Chloroform can be aerobically degraded by methanotroPhic organisms (A1varez-Cohen et aI.,

1992), ammonia-oxidizing organisms (Vannelli et aI., 1990), and a recombinant pseudomonad

expressing soluble methane monooxygenase (Jahng and Wood, 1994). However, in

methanotrophic cultures, chloroform and methane compete for the reaction site decreasing the

reaction rate of each (Speitel and Leonard, 1992). Furthermore, the requirement for dissolved

oxygen and methane may impose practical and economical limitations on aerobic degradation

(Bagley and Gossett, 1995).

Chloroform can be degraded anaerobically to C02' and dichloromethane by methanogenic

enrichment cultures and pure methanogenic cultures and also by nonmethanogenic anaerobic,

cultures (Mikesell and Boyd, 1990; Fathepure and Tiedje, 1994). However, although chloroform

degradation in methanogenic cultures could be stimulated by methanol addition, chloroform

remains extremely inhibitory to methanogenesis (Yang and Speece, 1986; Fathepure and Tiedje,

1994). Cultures that received methanol deg,raded chloroform more rapidly than did those without

methanol (Bagley and Gossett, 1995). The presence of methanol, not its concentration or

consumption rate, is the most significant variable affecting the chloroform degradation rate

(Bagley and Gossett, 1995). This is in contrast to aerobic chloroform degradation, in which the

growth substrate competes with chloroform for the reaction site (Oldenhuis et aI., 1991). These

observations suggest that in an anaerobic treatment system designed to remove chloroform,

very little methanol consumption would be required to stimulate chloroform degradation (Bagley

and Gossett, 1995).

Recent data collected from a leachate-treatability study conducted at the U.S. Environmental

Protection Agency (USEPA) Test and Evaluation Facility emphasized the importance of the type

of anaerobic environment with respect to inhibition at higher concentrations of chloroform.
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Parallel· anaerobic reactors operating under sulfate-feducing and methanogenic conditions

revealed that methanogenic activity was completely inhibited at a feed chloroform concentration

ranging between 16.7 J.l.M and 27.2 ~ while the sulfate-reducing reactor showed no inhibition

and promoted efficient chloroform degradation (Suidan et at, 1993). No other reports were

identified regarding the degradation of chloroform by SUlfate-reducing organisms (Suidan et aI.,

1993).

The biotransformation of chloroform under methanogenic conditions was discussed in detail by

Gupta et a!. (1996a). In this study, the rate of biotransformation of chloroform and the primary

substrate (acetic acid) utilization rate were investigated as a function of the initial chloroform

concentration using serum bottle reactor (SBR) tests. They varied the initial chloroform

concentration to investigate its effect on the transformation of chloroform and the utilization of

the primary substrate (acetic ·acid). The tests showed a single large step increase in the

concentration of an inhibitory compound can lead to failure of a biological system while gradual

increases can help a biological system function very efficiently.

The tests conducted by Gupta et a!. (1996a) revealed a biotransformation rate of 0.80 IJM/h at an

initial concentration of 0.4 IlM. The rate increased as the initial chloroform concentration was

increased. The maximum rate was apprOXimately 16.3 J.lM/h, corresponding to an initial

chloroform concentration of 22.6 J.lM. At initial chloroform concentrations exceeding 22.6 J.lM,

the rate decreased, indicating inhibition due to the presence of chloroform. The rate decreased

to 12.2 IJM/h for initial chloroform concentration of 25.1 IJM and further to 8.4 J.lM/h for initial

chloroform concentration of 29.3 J.lM. The experiment goes on to show that chloroform does not

inhibit the utilization of the primary substrate in the sulfate-reducing culture.

Hughes and Parkin (1992) also studied biodegradation of chloroform. They suggest that a major

concern regarding biological treatment of high concentrations of chlorinated aliphatics

(chloroform) is the potential for toxicity to the organisms, resulting in the incomplete removal of
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the contaminants. Chloroform degradation was not sustained in any system unless it was fed

along with dichloromethane. This suggests that, in the bioremediatlon of a severely

contaminated groundwater, the availability and utilization of a prime substrate are primary

concerns. Chloroform is not believed to provide the necessary energy to support bacterial

growth (Hughes and Parkin, 1992). Recent studies have demonstrated that dichloromethane

may serve as a growth substrate for acetogenic bacteria (Freedman and Gossett, 1991).

However, other studies by Hughes and Paoon have indicated that reduced acetate loading rate

(ALR) significantly reduces the removal of dichloromethane, as well as chloroform (Hughes and

Parkin, 1991). Presumably, an electron donor (primary substrate) will be reqUired to support a

microbial population large enough to reach the treatment objectives, particularly when the

concentrations of the chlorinated aliphatics are in excess of 1 mglL.

Studies have suggested that in-situ biorestoration with a selected native bacterial population

stimulated by the addition of a primary substrate and possibly also nutrients is possible (Semprini

et aI., 1987). This process would be particularly useful if developed for aquifers containing

organic contaminants that are difficult to degrade, significantly sorbed to aquifer solids, and/or

present at low concentrations (Lanzarone and McCarty, 1990).

Previous work with mixed cultures of methanotrophs demonstrated relatively low rates of

chloroform degradation (Speitel et aI., 1989). At low concentrations of chlorinated solvents,

degradation follows pseudo-first~rder kinetics, as described by the following rate expression

(Speitel and Leonard, 1992):

r = - k1 X S

Where

r =degradation rate, rng/L·d;

k1 =pseudo-first~rder degradation rate constant, Urng TSS"d;

X = cell concentration, rng TSS/L; and

S =the chlorinated solvent concentration, rng/L
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Methane must be supplied to the organisms on some regular basis, since this is the growth

substrate for the organisms, as well as the inducer for methane monooxygenase synthesis

(Speitel and Leonard, 1992). Metabolism of methane to carbon dioxide requires considerable

oxygen and concentrations of methane greater than a few milligrams per liter will cause

complete depletion of the dissolved oxygen, even in waters saturated with oxygen (Speitel and

Leonard, 1992). A decreased degradation rate even after the presence of formate as a source of

nicotinamide adenine dinucleotide (NADH) probably is attributable to depletion of necessary

metabolic chemicals within the cells that cannot be regenerated by formate addition alone

(Speitel and Leonard, 1992). Speitel and Leonard continue to write that another possibility for

the decrease in the chloroform degradation rate is some toxicity to the cells from a metabolic

intermediate (1992). In work with other methanotrophic organisms, Alvarez-Cohen and McCarty

observed a tOXicity response from a metabolic intermediate (most probably phosgene) in batch

tests using large chloroform concentrations of greater than 15 mglL (1991). They observed that

the cells had a finite capacity to degrade chloroform before inactivation from toxicity occurred.

Speitel and Leonard explain that an exponential decay model described the decrease in the

pseudo-first-order rate constant over time (1992). The decay constants were 0.27 day·l with

formate (R2=0.88) and 0.34 day"l in the absence of formate (R2=0.92). The decay constants

correspond to a hal,f-life of 2-2.5 days for the pseudo-first-order rate constant. Formate,

however, did not affect reactor performance beyond the first several days of operation, which

suggests that depletion of other chemicals within the cells, enzyme inactivation, toxicity from

metabolic intermediates, or some combination of these are more important contributors to the

decreased degradation rate at longer operating times (Speitel and leonard, 1992). The pseUdo­

first-order rate constant in the sequencing reactor decayed exponentially over time with a decay

constant of approximately 0.30 day"l.
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Under anaerobic conditions. the reductive dechlorination of chloroform (CHCb) by

Acetobacterium wcxxJii has been reported to produce mostly carbon dioxide (C02). with

dichloromethane (CH2Ch) and traces of monochloromethane (CH3CI) identified as intermediates

(Egli et aI., 1988). Zitomer and Speece reported with ~20 IJ.glL chloroform, gas production was

110±4% of the theoretical. and the specific first~rder rate constant for chloroform was

4.55 Lg-tday"1. With 800 IJ.glL chloroform, gas production was reduced to 56±12% of theoretical.

and the first-order rate constant was 1.21 Lg-'day"' (1995). When relatively non-toxic CHCI3

initial concentrations were employed. the transformation rate constant was higher than when

relatively toxic doses were administered (Zitomer and Speece. 1995).

Narayanan and others (1995) conducted a study on the potential of the expanded bed granular

activated carbon anaerobic reactor in treating a municipal wastewater containing RCRA volatile

and semivolatile organic compounds. The only compound found to be somewhat resistant to

biodegradation was chloroform, which persisted in the effluent at concentrations of 200 Ilg/L,

even after its removal from the feed because of the presence of carbon tetrachloride in the

influent. Based on the potential for chloroform production from carbon tetrachloride. this effluent

concentration still represents a reasonable removal efficiency of 75% (Narayanan et aI., 1995).

Alvarez-Cohen and McCarty described a mixed culture of bacteria enriched with methane and

oxygen from aquifer material from Moffett Field Naval Air Station. Mountain View, California

(1991). When grolNl1 in a bioreactor under methane and nitrogen limitation, this mixed culture

rapidly oxidized chloroform (0.30 to 0.40 mg . mg of cells·' . day-\ Alvarez-Cohen and others

went on to demonstrate that a mixed culture of bacteria that was grolNl1 with methane as the sole

source of carbon and energy was capable of rapid transformations of chloroform (1992).

Metals have been shOlNl1 to inhibit growth of bacteria to degrade contaminates. In an experiment

to determine the ability for degradation of nickeJ-citrate. Francis et al. found that the bacterium

used to degrade nickel-citrate failed due to the toxicity of the nickel released in the culture
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medium (1996). They found as nickel-oitrate was being broke down, the nickel released from the

process was toxic to the bacterium. Also, in a study to determine if metal toxicity could be

reduced by a metal-complexing biosurfactant, mamnolipid, Sandrin et al. (2000) found that, as

cadmium concentration increased, cadmium tOXicity increased, resulting in a delay or complete

inhibition of growth. Malakul and others also had similar results (1998). They found as they

increased the concentration of cadmium, it inhibited the growth of their bacteria until complete

inhibition of the bacteria resulted.

Many of the aforementioned studies have investigated CHCb without the presence of other

compounds and other "real v.orld- effects. This stUdy investigates the degradation of CHCb in

complex mixtures. These results can help determine the best conditions for CHCh degradation

in municipal landfills.
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3.0 ETHODS AND MATERIALS

3.1 EXPERIMENTAL APPROACH

This study focused on evaluating the anaerobic reactions of chloroform under various conditions

including various redox conditions, effects of metals, effects of additional organics, and effects of

changing concentrations. A series of batch reactor experiments were employed in this

investigation. The chemicals used, analytical methods, experimental procedures, and the

methods of data analysis of rate constants are described below.

3.2 SOIL SAMPLES

The soil samples used in these experiments were co!lected from a municipal landfill located in

Norman, Oklahoma. The following description of the landfill was obtained from the United

States Geological Survey's website:

The Norman Landfill is a closed municipal landfill located on alluvium associated with

the Canadian River in central Oklahoma (see Figure 3.1). The U.S. Geological Survey

began a multi-<:lisciplinary investigation in 1994 at the Norman Landfill, as part of the

Toxic Substances Hydrology Program, in collaboration with scientists at the University

of Oklahoma, Oklahoma State University, and the Environmental Protection Agency.

The contamination of the shallow alluvial aquifer at the Norman Landfill provides an

excellent opportunity to study the spatial variability of biogeochemical processes and

the resulting effects on the fate of degradable contaminants in the leachate plume.

The emphasis of this multi-<:lisciplinary research project is on developing a unified

understanding of the processes controlling contaminant distribution and migration.
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Figure 3.1. Norman Landfill Location Map
(Source: United States Geological Survey's website)
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Considering the need for constructing new landfills and the increasing volumes of

existing landfills, the results from this study can be utilized worldwide.

The landfill accepted solid waste from 1922 to 1985 and was covered with a clay cap

and vegetated when it was closed. The landfill was estimated to have received about

1,128 tons of municipal waste per week in 1982. The landfill is excavated in alluvium

adjacent to the Canadian River. The alluvium thickness ranges from 10 to 15 meters

and consists of mostly clay, silt, sand, and gravel. The ground water is measured to

about 4 meters with shale and sandstone beneath the alluvium (see Figure 3.2).

Depth to ground water was measured in the Canadian River alluvium in the winter of

1995-96 to construct a potentiometric-surface map (see Figure 3.3). The winter was

chosen to minimize the effects of transpiration of water by plants at the site, many of

which have root systems that extend to the water table. Numerous monitor wells were

constructed to measure the gifOund water. The potentiometric surface in the Canadian

River alluvium near the Norman Landfill was a relatively simple surface during the

winter of 1995-96. The surface slopes toward the Canadian River, indicating that

ground water is moving through the alluvium toward the River.

Geophysical electromagnetic induction surveys were performed to determine the

vertical and horizontal extent of the leachate plume. Electromagnetic Induction

Surveys measure the electrical conductivity of the aquifer materials, both soils and

fluids. The surveys show higher conductivity south of the landfill, which is consistent

with hydraulic and geochemical evidence indicating a leachate plume has developed

and is flowing toward the Canadian River. ConductiVity measurements and dissolved

organic carbon analyses confirm that the plume has migrated beneath the slough and

extends through the entire thickness of the alluvium.
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Potentiometric Surface, Winter 1995-1996
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Figure 3.3 Norman Landfill Potentiometric-Surface Map
(Source: United States Geological Survey's website)
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The aquifer materials used for the samples were collected from a methanogenic site

located within the aquifer adjacent to the landfill. Landfill leachate was also collected at this

site. The aquifer site is described above. The aquifer materials were very sandy and had

been polluted by municipal landfill leachate, with volatile solids cootent of about 3 glk.g dry

wt. (i.e. 0.3%). Samples of aquifer solids and leachate were collected in August 1994, by

digging to the top of the ground water table (4 m depth) and collecting the solids and the

leachate separately into glass or plastic vessels. Samples were then stored at 4°C until

use.

3.3 REAGENT-GRADE MATERIALS AND LABORATORY PROTOCOLS

The water (:s18 M(2'cm purity) used in all the experiments was produced by a MiII-Q purification

system (Millipore Corp., CAl using deionization and reverse osmosis technology. Reagent-grade

para-dichlorobenzene (p-DCB) and chloroform were obtained from Fisher Scientific, Inc. Other

chemicals ......ere of analytical grade and. unless stated otherwise, were obtained from Fisher

Scientific, ChemService (West Chester, PA), Sigma Chemical Company (St. Louis. MO), or

Supelco (Bellefonte, PAl.

All glassware was washed with detergent, followed by triple-rinsing with tap water, Milli-Q water,

and drying for 4 hours at room temperature (24°C) before use.

3.4 BIOLOGICAL REACTORS

Three primary series of experiments ......ere performed, each including three sets of reactors under

different electron accepting conditions (denitrifying, methanogenic, and sulfate reducing). All the

reactors were run in triplicate. Prior to running the experimental reactors, reactors were prepared

and autoclaved for abiotic controls. The initial series of experiments 'HaS conducted using

reactors containing only chlorofonn as a base line degradation study. The purpose of these

experiments was to determine the rate at which each electron accepting condition degraded the
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chemical, if at all. The second series of reactors contained chloroform combined with common

metals found in landfill leachate. The third series of chloroform reactors was injected with

ethylbenzene, decahydronapthalene, 2,2,4-trimethylpentane, and a mixture of all three. These

organi.cs were chosen because they are typically found in muniCipal landfills. Appendix A

contains concentrations of chemicals found in the Norman Landfill leachate. As mentioned

previously, all of the experiments were performed under different electron accepting conditions

to determine the effect of the redox condition. The last series of reactors contained varying

concentrations of chloroform and dichlorobenzene. This shows how small or large amounts of

another common organic can affect the degradation of chloroform under different electron-

accepting conditions. The following table shows all of the parameters tested.

Table 3.1

Summary of Experimental Parameters

Cone. of CHCI3
Cone. of Added

Experiments Contaminant
(Jlg/L), ~M

(uU/L), uM
Baseline Chloroform Degradation 100,0.84
Effects of Metals

Zinc 100,0.84 150,2.29
Nickel 100,0.84 130 2.22
Cadmium 100,0.84 30, 0.27
Chromium 100,0.84 460 8.85
Combined Metals 100,0.84 190, 0.66

Effects of Additional On~anics
Ethylbenzene 100,0.84 50,0.47
Decahydronapthalene 100,0.84 50,0.36
2,2,4-Trimethvlpentane 100,0.84 50,0.44
Combined Non-Chlorinated 100,0.84 50,0.14
OrQanics
100 CHCb and 500 p-DCB 100,0.84 500,3.40
100 CHCI 3 and 60 p-DCB 100,0.84 60, 0.41

Serum bottles of 160 mL were used as reactors for these experiments. Three types of electron

accepting conditions (denitrifying, sulfate reducing, and methanogenic) were employed for these

reactors, including abiotic controls. Reactors Yt"ere prepared in triplicate for each series of

experiments. The volume of liquid culture in each reactor was 150 mL. The formulas of the
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media used for the reactors are presented in Table 3.2. The nutrient concentrations, which 'Nere

the same for the three types of electron accepting conditions, are shown in Table 3.3. The trace

metals solution used in the nutrient solution is shown in Table 3.4. These fonnulas 'Nere adopted

by modifying the medium recipes reported by other researphers (Boopathy et aI., 1993; Han,

1993; Shah, 1995).

Table 3.2

Enrichment Medium Fonnulas

Denitrifying Reactors Methanogenic Reactors Sulfate-Reducing Reactors

Na Acetate 290 mglL Na Acetate 290 mgJL Na Acetate 390 mglL

KN03 200 mglL Na2S 10 mglL Na2S0. 250 mglL

Na2SO" 40 mglL

pH 7.3 pH 7.0 pH 6.9

NaAc: sodium acetate

19
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Table 3.3

Nutrient Concentrations (mglL)

CaCb 20

KH2PO.. 340

MgCb 5

NaCI 25

NaHC03 100

Na2HPO.. 355

NH..CI 150
--

1 mU100 mL trace metal solution

Table 3.4

Trace Metals Solution (mg/L)

FeSO..-7H20 200

ZnSO..-7H2O 10

MnCI2-4H2O 3

CoCI2-6H2O I 20
I

CuCI2-2H2O 1

NiCb-6H2O 2 ,

Na2MoO..-2H2O 3
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The serum bottles were filled 1/3 full of the landfill soil sample (approximately 50 mL). Stock

solutions of the electron acceptor and other additives and nutrients listed in Tables 3.2, 3.3, and

3.4 were added. Water was added to bring the reactor content to the 150 mL marX, and the pH

was adjusted to 7.1 using either 0.1 % Hel (hydrochloric acid) or 0.1 M NaOH (sodium hydroxide)

solution. The bottles were then purged Ylith nitrogen gas for 20 minutes to induce anaerobic

conditions, then quickly capped Ylith Teflone septa and sealed Ylith aluminum crimp seals. The

capping was finished as quickly as possible to prevent large amounts of gas escaping. A known

concentration of chloroform (and metals or organics, as appropriate) was injected into each

bottle before initial extractions were performed. The reactors were shaken then incubated at

room temperature (approximately 25°C) in the dark.

3.5 CONTAMINANT EXTRACTION PROCEDURE

A 6 mL sample was extracted from the reactor bottle and injected into a 10 mL test tube. A

1.5 mL volume of pentane was also injected into the test tube to extract the chloroform from the

sample. The test tube was capped and set on a test tube shaker for 5 minutes. This procedure

was performed for all of the batch reactors. The extracts were stored in the darX at 4°C until

analysis by gas chromatograph (Ge).

3.6 CONTAMINANT ANALYSIS

Extracted contaminants were analyzed on a HP 5890 Gas Chromatograph (GC) (Hewlett­

Packard Company). Using a micro-syringe, 2 ~L of pentane extracts were injected onto a 08-5

fused silica capillary column, Ylith film thickness 0.25 !lm, inner diameter 0.25 mm, length 30 m

(J & W Scientific, Folsom, CAl. Quantification was achieved by comparing relative areas under

separated peaks for chloroform standards as well as samples from reactors as recorded by a

model 3396 Hewlett-Packard Series II integrator. Injections were made in the split mode (ratio

8.9: 1) at an injector temperature of 225°C and a column temperature of 40°C. Helium gas was

employed as the carrier gas, Ylith a flow rate of 2.8 mUmin and a column head pressure of 12
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psi. The column temperature was held at 40°C for 4 minutes and then ramped at a rate of

15°C/min to a final temperature of 130°C. The gas chromatograph was calibrated with a

minimum of three calibration standards for each experiment, and triplicate measurements were

made for each sample or standard. The average of the three measures was used.
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4.0 RESULTS AND DISCUSSION

4.1 TEST OF AQUIFER SOLIDS FOR BIOLOGICAL ACTIVITY

Preliminary, qualitative experiments were conducted to determine if the aquifer soils would need

to be amended with an additional microbial culture. Several reactors were prepared with the

landfill aquifer soil, nutrient solution, and trace metal solution. The reactors were Visually studied

and the tests yielded no significant change from one reactor to another. All reactors were

determined to produce gas by inserting a syringe into the reactor and watching the head space of

the reactor equalize with the syringe. It was determined to use only the landfill aquifer soil and

appropriate nutrients to establish the degrading condition.

4.2 ABIOTIC CONTROLS

Prior to performing the baseline experiments. abiotic controls were tested. Two reactors were

prepared, autoclaved, and measured every five days for twenty days. The test was to ensure

that the only biological activity occurring in the reactors was due to the landfill leachate

microbes. Figure 4.1 shows the concentration of chloroform versus time for the control data.

Linear plots were fit to the data to establish a reaction rate. The figure shows that there was no

activity occurring after the samples had been autoclaved.
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Figure 4.1. Abiotic Control Data for the Chloroform Reactors

4.3 MISCELLANEOUS PLOTS NOT USED FOR COMPARISON

The data generated from this study was plotted many different ways. Percent of chloroform

removed versus time and zero-order degradation was examined. For simplicity of comparison,

first-<:lrder degradation plots \Nere used. Some of the data actually fit a zero-<:lrder curve better

than a first-<:lrder curve, but for consistency first-<:lrder was used. First-<:lrder was expected from

the data and the information in the literature review is given in first-<:lrder units.

4.4 BASELINE CHLOROFORM DEGRADATION

The degradation of chloroform was studied under three different conditions: baseline

degradation, effects of metals, and effects of additional organics. The different chemicals used

for each condition are discussed in the sections below, along with the decay rates calculated.

Triplicate sets of soil-water reactors \Nere set up and operated under three electron-accepting

conditions: denitrifying, methanogenic, and sulfate reducing. Each reactor was dosed with
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100 ~gJL (0.84 J.1M) of chloroform. Initial activity in all such reactors was indicated by the

production of gas. All reactors are assumed to have the same amount of bacteria in the sample.

While all reactors do not fit "first-order decay' curves perfectly, most of the data were fit to a

first-order decay model as well as possible for the sake of comparison.

Baseline degradation is an essential step for the comparison of decay rates. For baseline

degradation studies, chloroform alone was subjected to the three conditions. The chloroform

was calculated and measured for the desired concentration in each reactor. The reactors were

maintained at ambient temperature (approximately 22°C) in the dark and checked periodically

for visual signs of bacteria production. Original data and calculated data are presented in

Appendix B. Representative data plots are presented below along with discussion. Only three

points were presented on each plot for all expe.riments. A summary table of reaction rates is

included at the end of this chapter.

Figure 4.2 shows the baseline degradation of chloroform for three reactors under methanogenic

conditions. The data plotted were fit to represent first-order reactions. All three reaction rates

were within 10% of each other so the three were averaged to give one representative rate. The

averaged rate is 0.76 dai'.

25



-
8r----------------------------...,

7

y = -0.7925x + 7.5839
R2 =0.9101

y =-o.7559x + 7.3408
R2 = 0.9265

2

1

6

7

g 5
;I

~
i 4
u
co
o
.E 3

• Series1

• Series2

• Senes3
--Linear (Series1)

- - - Linear (Series3)

- - Linear (Series2)
O~;;:::::;:;;:::::;:;:;;;:;;;~;;:::::;:~---_r__-----___:'-------J

o 1 234 5 6
Time (days)

Figure 4.2. Baseline First-order Methanogenic Degradation of Chloroform

Figure 4.3 represents the baseline degradation of chloroform under denitrifying conditions. The

data was plotted to represent a first-order reaction. Series one data was excluded from the

results because the (eaction rate that it produced was more than 10% lower than the other two.

The two reaction rates shown were averaged so a representative reaction rate could be used for

the baseline conditions under denitrifying conditions, The averaged reaction rate is 0.65 da{1.
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Figure 4.3. Baseline First"()rder Denitrifying Degradation of Chlorofonn

6 7

Figure 4.4 represents the baseline degradation of chloroform under sulfate-reducing conditions.

The data plotted are fit to represent a first-order reaction. Again, not all three 'Here within 10%

of each other, so series three data was excluded from the results. The averaged reaction rate

was 1.04 dai1
. This corresponds to Gupta et al. (1996a) where he states that chloroform does

not inhibit the utilization of the primary substrate in the sulfate-reducing culture. But in this case,

the sulfate-reducing culture actually degraded the chloroform faster than t'he methanogenic and

denitrifying cultures. This was not expected due to past expenments demonstrating that

methanogenic cultures degrade faster than sulfate-reducing cultures.
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4.4 EFFECTS OF METALS

Once the baseline studies were completed, experiments were performed with metals introduced

with the chloroform. These experiments try to emulate the environment in which chloroform is

encountered. Experiments that were performed to study the effects of metals on the chloroform

degradation included mixing the chloroform reactors as previously stated and adding known

concentrations of nickel, zinc, cadmium, and chromium, first separately and then with the four (4)

metals combined in triplicate reactors. These particular metals were selected because they were

present in analytical results compiled from the Norman Landfill (see AppendiX A). Their

concentrations are representative concentratilons found in the analytical results of the monitor

well samples. Results of experiments conducted to evaluate the effects of metals are presented

in Appendix B. A summary table of reaction rates is presented at the end of the chapter
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4.4.1 EFFECT OF ZINC

Figure 4.5 shows 100 IlglL (0.84 IlM) of chloroform under methanogenic degrading microbes

with 150 IlglL (2.29 IlM) of zinc added to solution. Series one data was not used for the results

since the ~-value was less than 0.90. Since only two data sets remained for the plot, they were

plotted and a first-order reaction curve was fit. Their reaction rates were averaged. The

averaged reaction rate is 0.15 day"' .
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Figure 4.5. Zinc Added First-Order Methanogenic Degradation of Chloroform
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Figure 4.6 illustrates the degradation of 100 Ilg/L (0.84 IlM) of chloroform when 150 Ilg/L

(2.29 IlM) of zinc is present under denitrifying conditions. The data that are plotted are fit to a

first-order reaction curve Series three data was removed from the results due to the result of

the ~-value being less than 0.90. The reaction rates for the curves plotted were averaged and

the averaged reaction is 0.11 day"'.
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Figure 4.6. Zinc Added First-Qrder Denitrifying Degradation of Chlorofonn

Figure 4.7 demonstrates 100 IlglL (0.84 11M) of chloroform degradation under sulfate-reducing

conditions with the addition of 150 Ilg/L (2.29 11M) of zinc. The data plotted on the chart were fit

to a first-order reaction. Series two data was removed from the results because it clearly differed

from the other data plots. Series one data was used for the results even though the ,;-value

resulted in a value less than 0.90 because series one data and series data three data were very

similar in plotted results. A possibility for this could have been a lack of sufficient amount of

bacteria in the reactor. The two remaining reaction rates were averaged for a representative

value. The averaged rate is 0.15 day"l
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Figure 4.7. Zinc Added First-Qrder Sulfate-Reducing Degradation of Chlorofonn

The degradation rates for zinc added to the reactors were considerably lower than the baseline

degradation rates. The rates did follow the order that was expected from highest to lowest

degradation rates. Methanogenic was the fastest, SUlfate-reducing second, and denitrifying third.

Zinc was expected to slightly inhibit the degradation of the chloroform, but this is a significant

reduction in degradation.

I
I
t '

I
I
t

4.4.2 EFFECT OF NICKEL

Nickel is another metal found in typical landfills. Past research has found nickel to be toxic to

degrading bacteria. Figures 4.8. 4.8, and 4.10 represent 130 ~g/L (2.22 ~M) of nickel added to

reactors that 100 ~g/L (0.84 J.lM) of chloroform is being degraded by methanogenic, denitrifying.

and sulfate-reducing cultures, respectively. All data were plotted to fit first-order reactions for

comparison. Figure 4.8 uses only one data set for the results because series one and two data
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plotted increasing amounts of chloroform. This result is not expected to occur so the data is not

used in the results. Figure 4.9 illustrates only one data set because series two and three data

have ~-values well below 0.90. The other data was used because it was considered more

reproducible and reliable. Figure 4.10 utilizes two data sets for the results because series two

data's ~-value was below 0.90. The representative reaction rates are 0.05 dai', 0.15 dai', and

0.12 day"' for methanogenic, denitrifying, and sulfate-reducing bacteria, respectively.

The reaction rates again were considerably lower than the baseline rates. Slight inhibition of

degradation was expected with the presence of nickel. Francis et al. (1996) found that nickel

released in the culture medium was toxic to the bacterium and did not allow the bacterium to

completely degrade nickel-citrate. Their experiments showed that when nickel was not present,

70% of nickel-citrate was degraded. When 0.10 and 0.20 mM of nickel was present, only 46%

and 29% of the citric acid was degraded. Anything over 0.20 mM of nickel was observed to have

not degradation. With the reaction rates for this experiment, the nickel could be affecting what

bacteria was in the reactors and causing the rate to decrease.
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Figure 4.9. Nickel Added First-order Denitrifying Degradation of Chlorofonn
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4.4.3 EFFECT OF CADMIUM

(0.27 j..lM) of cadmium in reactors where 100 j..lg/L (084 j..lM) of chloroform is being degraded by

Cadmium was used in this set of experiments to show how a typical metal from a landfill can
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Figure 4.10. Nickel Added First-Qrder Sulfate-Reducing Degradation of Chloroform

fit a first-order reaction. Only one data set was used in Figure 4.11 because series two plotted a

methanogenic, denitrifying, and sulfate-reducing bacteria, respectively. The data 'Here plotted to

affect the degradation of chloroform. Figures 4.11,4.12, and 4.13 show the addition of 30 j..lg/L

flat line that represents no biological activity and regardless of the fact that the other data sets

~-values are less than 0.90, series one data has an (-value closer to 0.90. Figure 4.13 also has

only one data set used in the results because series two data plots a flat line and series one data

plots an increasing amount of chloroform over time. Figure 4.12 two data plots were used

because the other data set more than 10% lower than the other two. The representative reaction
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reactions rates for the methanogenic, denitrifying, and sulfate-reducing bacteria were 0.14 day",

0.15 da{l, and 0.13 da{', respectively.

Slight inhibition to the degradation was expected with the addition of cadmium. Sandrin et al.

(2000) and Malakul et al. (1998) found as the cadmium concentration increased, it inhibited the

growth of the bacterium until complete inhibition resulted. In the Sandrin et al. (2000)

experiments, with the presence of 8.90 /lM cadmium, delay of exponential growth was beginning

to occur. At 45, 89, and 450 11M concentrations, the bacterium was completely inhibited.

Malakul et al. (199B) found that cadmium has no affect on the growth of bacteria at

concentrations less than 10 ppm. Inhibition of growth on the bacteria was first noticed at 10 ppm

and complete inhibition was observed at a cadmium concentration of 170 ppm.
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4.4.4 EFFECT OF CHROMIUM

Chromium is abundant in the Norman landfill. It is important to test the effects of chromium on

the degradation of chloroform. 460 IlgiL (8.85 /lM) of chromium was added to the 100 Ilg/L

(0.84 IlM) of chloroform reactors with methanogenic, denitrifying, and SUlfate-reducing bacteria.

The data are plotted in figures 4.14,4.15, and 4.16, respectively. The data was plotted to fit

first-order reactions for comparison purposes. Only one data set was plotted for figure 4.14

because series two and three plotted a curve showing the chloroform increasing in the reactor.

Figure 4.15 used two data sets because series two plotted an increase reaction rate. Figure 4.16

used only the series three data because the ~-value was the closest to 0.90. This data was used
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because it was deemed more reproducible and reliable. The representative reaction rates for the

methanogenic, denitrifying, and sulfate-reducing cultures are 0.14 day"l, 0.13 day"l, and 0.17

day"l, respectively.
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4.4.5 EFFECT OF COMBINED METALS

The effect of all of the previously studied metals on the degradation of chloroform is important to

demonstrate since the "real lMlrld" application of this stUdy will incorporate many metals affecting

the degradation of chloroform. This set of reactors mixed 190 ~g1L (0.66 ~M) of combined zinc,

nickel, cadmium, and chromium with 100 ~glL (0.84 ~M) of chloroform degrading under

methanogenic, denitrifying, and sulfate-reducing bacteria. The data plotted from each set was fit

to a first-order reaction curve. Figures 4.17, 4.18, and 4.19 represent the effect of the combined

metals on the degradation of chloroform under methanogenic, denitrifying, and sulfate-reducing

bacteria, respectively. Series one data was omitted from the results obtained from figure 4.17

because the data plotted the chloroform increasing over time. Only series t'Ml data was utilized

for figure 4.18 results, the other two were removed because their (2-values fell below 0.90.

Figure 4.19 omitted series t'Ml data because it resulted in an increasing reaction rate. Figures

4.17 and 4.19 averaged the t'Ml reaction rates from the plots to obtain a representative reaction

rate. The reaction rates are 0.12 da{', 0.14 da{l, 0.11 day"' for methanogenic, denitrifying, and

sulfate-reducing cultures, respectively.

The toxicity of the combination of metals was expected to exceed those of the single metals.

The toxicity for the sulfate-reducing bacteria seemed to be cumulative, which is what was

expected. The reaction rate for the methanogenic case was lower than all of the reaction rates

separately except for nickel. The reaction rate for the denitrifying case was lower than all of the

reaction rates separately except for zinc and chromium. It was assumed that the amount of

bacteria in all of the reactors did not vary If the bacteria amount differed, this could be a reason

why the reaction rates for a some of the reactors were less than the combined metals reaction

rates.
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4.5 EFFECTS OF ADDITIONAL ORGANICS

To understand how other organics affect the degradation of chloroform, this study incorporated
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Figure 4.19. Combined Metals Added First-Order
Sulfate-Reducing Degradation of Chlorofonn

organics taken from typical landfills. These experiments mixed ethylbenzene, '.

decahydronapthalene, 2,2,4-trimethylpentane separately and then with all three (3) chemicals

combined in triplicate reactors. Also, to see how another chlorinated organic would affect the

degradation of chloroform, para-dichlorobenzene and chloroform were analyzed together. The

concentration of para-dichlorobenzene was varied from 60 Ilg/L (041 f-lM) to 500 Ilg/L (3.40 f-lM),

in two different experiments. while maintaining chloroform at 100 f-lglL (0.84 I-lM). These

particular organics were selected because they were present on the analytical results compiled

from the Norman Landfill (see Appendix A). Their concentrations are representative

concentrations found in the analytical results of the monitor well samples. Raw data for
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experiments conducted to evaluate effects of additional organics are presented in Appendix B.

A summary table of reaction rates is presented at the end of this chapter.

4.5.1 EFFECT OF ETHYLBENZENE

Ethylbenzene was chosen for this study because it is a common organic found in typical landfills.

Figure 4.20 illustrates 100 IlgiL (0.84 IlM) of chloroform under methanogenic degrading
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conditions with 50 Ilg/L (0.47 IlM) of ethylbenzene added to the reactor. Only series two data

was utilized for the results because the other two data sets' ,;-values were below 0.90.

representative reaction rate is 0.15 day"1.

Time (days)

Figure 4.20. Ethylbenzene Added First-Order Methanogenic Degradation of
Chloroform
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Figure 4.21 demonstrates the effect of ethylbenzene on the degradation of chloroform under

denitrifying conditions. The data curves were fit to a first-order reaction. Series one data was

omitted from the results because the other two two data sets were deemed more reliable and

reproducible. The two reaction rates were averaged for a representative reaction rate. The

average reaction rate is 0.12 dai1
.
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Figure 4.21. Ethylbenzene Added First-order Denitrifying Degradation of Chloroform
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Figure 4.22 is a plot of the degradation of chloroform by sulfate-reducing bacteria with

ethylbenzene added to the reactor. The data were fit to first-order reaction rates. The three

'...

reaction rates were averaged to obtain a representative value. The representative value is 0.13

d -I
ay .
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4.5.2 EFFECT OF DECAHYDRONAPTHALENE

25

Decahydronapthalene is another organic contained in the list of contaminants found in typical

landfills (Appendix A). Figures 4.23, 4.24, and 4.25 contain data that show the degradation of

100 ~g/L (0.84 IlM) of chloroform with the addition of 50 Ilg/L (0.36 ~M) of decahydronapthalene

in the reactors under methanogenic, denitrifying, and sulfate-reducing cultures, respectively.

The data plotted were fit to a first-order reaction so comparisons between experiments could be

performed. Both figures 4.23 and 4.24 omitted series one data because the other two data sets

were deemed more reproducible and reliable. Figure 4.25 used only series two data because the

other ~-values from the other data sets fell below 0.90. Figures 4.23 and 4.24 averaged the

reaction rates to establish a representative reaction rate for the plots The representative

reaction rates are 0.10 dai1
, 0.09 dai1

, and 0.16 day" 1 for methanogenic, denitrifying, and

sulfate-reducing cultures, respectively.
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The methanogenic and denitrifying culture reaction rates were the lowest rates out of all of the

organics tested, 'Nhile the sulfate-reducing bacteria was the fastest of the non-chlorinated

organics. The reaction rates for the methanogenic and denitrifying cultures are an order of

magnitude lower than the other reaction rates. A likely explanation for this is that the reactors

may have been contaminated dUring the testing process.
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Figure 4.23. Decahydronapthalene Added First-order
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4.5.3 EFFECT OF 2,2,4-TRIMETHYLPENTANE

Degradation of 100 ~glL (0.84 ~M) of chloroform under methanogenic, denitrifying, and sulfate-

reducing conditions with the addition of 50 ~glL (0.44 ~M) of 2,2,4-trimethylpentane is presented

in figures 4.26, 4.27, and 4.28, respectively. The data were fit to a first-order reaction fOf

comparison purposes. Figures 4.26 omitted series one data because it's ~-value fell below 0.90.

Figure 4.27 omitted series one and two data because their ~-values were below 0.90. Figure

4.28 omitted series two data because the other two data sets were deemed more reliable and

reproducible. The reaction rates were averaged on figure 4.26 and 4.28 to obtain one

representative reaction rate. The reaction rates are 0.19 day"' , 0.19 day"', and 0.12 day"' for

methanogenic, denitrifying, and sulfate-reducing cultures, respectively.

The reaction rates for the methanogenic and denitrifying were nearly identical, while the sulfate-

reducing reaction rate was somewhat lower. The reaction rates for the methanogenic and

denitrifying bacteria were the highest of the organics that were tested.
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Figure 4.28. 2,2,4-Trimethylpentane Added First-Order
Sulfate-Reducing Degrada.tion of Chlorafonn

45.4 EFFECT OF COMBINED NON-CHLORINATED ORGANICS

Again, the real world application of this study in important. The organics studied previously were

combined at a concentration of 50 J.19/L (0.14 IlM) with 100 Ilg/L (0.84 liM) of chloroform to

·-:)·...· ...· .I)..
,':)
1-: :,·...

determine how the mixture affects the degradation of chloroform. Figures 4.29, 4.30, and 4.31

combined ethylbenzene, decahydronapthalene, and 2,2,4-trimethylpentane with chloroform. The

compounds were treated with methanogenic, denltrifying, and sulfate-reducing bacteria,

respectively. The data plotted from each set were fit to a first-order reaction curve. All of the

reaction rates were averaged from each figure to give a representative reaction rate for each

electron-accepting condition. The reaction rates are 0 12 da{1. 0 13 day 1, and 0.12 day·1 for the

methanogenic, denitrifying, and sulfate-reducing cultures, respectively.
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The reaction rates for the methanogenic and sulfate-reducing bacteria decreased as expected

compared to the individual organic reaction rates. with the exception of decahydronapthalene in

the methanogenic culture. It was lower, but it was within 10% of the reaction rate for the

combined organics. This could likely be the same number and decahydronapthalene might have

possibly not had an effect on the combined organics reaction rate. The reaction rate for the

combined organics is higher than the decahydronapthalene and ethylbenzene for the same

bacteria culture. This was not expected as a cumulative inhibition should likely have occurred.
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4.5.5 COMBINATION OF 100 ~gJL CHCI3 with 500 ~gJL p-DCB

ParCHiichlorobenzene was analyzed with chlorofonn to see if greater or lesser concentrations of

a similar chlorinated organic would affect the degradation of chlorofonn, under different electron-

accepting conditions. Figures 4.32,4.33, and 4.34 combined 100 ~g/L (0.84 ~M) of chlorofonn

INith 500 ~g/L (3.40 11M) of para-dichlorobenzene using methanogenic, denitrifying. and sulfate-

reducing cultures, respectively. The data plotted were fit to a first-order reaction curve. The

reaction rates for each electron-accepting condition were averaged for a representative value.

The reaction rates are 0.16 day"', 0.18 day", and 0.18 da{1 for methanogenic, denitrifying, and

sulfate-reducing. respectively.
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be slightly higher than the other reaction rates for the organics tested.
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The reaction rate for the methanogenic bacteria seemed to fall in between the rates for the other

organics tested. The denitrifying and sulfate-reducing bacteria reaction rates were observed to
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Figure 4.32. 100 ~g/L of Chloroform and 500 I-lgfL of para-Dichlorobenzene Solution
First-Qrder Methanogenic Degradation of Chloroform
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Figure 4.33. 100 ~glL of Chlorofonn and 500 ~gJL of para-Dichlorobenzene Solution
First-Qrder Denitrifying Degradation of Chloroform
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Figure 4.34. 100 ~g/L of Chlorofonn and 500 ~glL of para-Dichlorobenzene Solution
First-Qrder Sulfate-Reducing Degradation of Chloroform
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4.5.6 COMBINATION OF 100 J.1gJL CHCb with 60 J.1gJL p-DCB

Figures 4.35,4.36, and 4.37 represent the data plotted for the degradation of 100 J.1g1L (0.84 J.1M)

of chloroform with 60 J.1gJL (0.41 f.1M) of para-dichlorobenzene under methanogenic, denitrifying,

and sUlfate-reducing conditions, respectively. The data plotted were fit to a first-order reaction.

Series one data was removed from the results of figure 4.37 because data was deemed

unreliable and irreproducible. The reaction rates for all cases were averaged to present a

representative reaction rate. The reaction rates are 0.15 day"' , 0.14 day"1, and 0.17 day·1 for

methanogenic, denitrifying, and SUlfate-reducing conditions, respectively.

The reaction rates observed from the addition of the 60 J.19/L of p-DCB were smaller than those

observed with the addition of 500 J.1g1L of p-DCB. The exact opposite resulted than what was

anticipated. This would conclude that the lesser concentration of additional contaminate inhibits

the degradation of chloroform.
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Figure 4.35. 100 J.1g1L of Chloroform and 60 ~/L of para-Dichlorobenzene Solution
First-Order Methanogenic Degradation of Chloroform
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Figure 4.36. 100 J.1gJL of Chlorofonn and 60 J,1g/L of para-Dichlorobenzene Solution
First-Order Denitrifying Degradation of Chlorofonn
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First-Order Sulfate-Reducing Degradation of Chtorofonn
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Table 4.1 summarizes the results of the first-order reaction rates for all ca.ses evaluated during

these experiments. All values are given in un't of day·'. The most noticeable difference is the

rates in the baseline study with all of the other rates. The different electron-accepting conditions

did not seem to have noticeable differences on the degradation rates.

The lower degradation rates with the added metals could be the result of the metal toxicity to the

bacteria for each case. The metals did not completely inhibit the degradation but decreased the

rate significantly. That \YOuld be consistent with the conclusions of Malakul et al. (1996) that as

they increased the concentrations of cadmium, the growth of the bacteria was inhibited until

complete inhibition resulted. This might be possible with all of the metals in this study that the

concentration of metal affected the amount of bacteria in the reactor that caused inhibition on

degradation.

The degradation of chloroform was also lower with the additional organics compared to the

baseline degradation. One explanation could be that the chloroform degradation is secondary to

the degradation of the organic added. Another explanation is that the bacteria are degrading

both contaminants equally and slowing the overall degradation.
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Table 4.1

Summary of First-Order Reaction Rates (day·l)

Experiment Methanogenlc Denltrtfying Sulfate-Reducing

Baseline Degradation 0.76 0.65 1.04

Effects of Metals

Zinc 0.15 0.11 0.15

Nickel 0.05 0.15 0.12

Cadmium 0.14 , 0.15 0.13

Chromium 0.14 0.13 0.17

Combined Metals 0.12 0.14 0.11

Effects of Additional Organics

Ethylbenzene 0.15 0.12 0.13

Decahydronapthalene 0.10 0.09 0.16

2,2,4-Trimethylpentane 0.19 0.19 0.12

Combined Non-Chlorinated 0.12 0.13 0.12
OrQanics

100 CHCIa with 500 p-DCB 0.16 0.18 0.18

100 CHCIa with 60 p-DCB 0.15 0.14 0.17
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5.0 SUMMARY. CONCLUSIONS. AND RECOMMENDATIONS

The major aim of this study was to investigate the anaerobic treatability of chloroform

contaminated soils from the aquifer below the Norman Landfill in Norman, Oklahoma. Three

sets of soil-slurry reactors were operated under one of three conditions (sulfate-reducing.

methanogenic, or denitrifying) with three varying parameters (baseline, effects of metals, and

effects of additional organics).

The main objectives of this stUdy were the following:

1. To study the ability of native soil bacteria to degrade chloroform under methanogenic,
denitrifying, and sulfate-reducing conditions.

Based on the results of this study, the following conclusions can be drawn:

• The effects of the metals on the degradation of chloroform were most likely due to the
toxicity of the metal with the bacteria which was inhibiting growth of the bacteria.

• When chloroform consumption was studied without any additional substrates, the sulfate­
reducing bacteria were observed to consume the chloroform at a faster degradation rate than
methanogenic or denitrifying bacteria.
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To stUdy the affects of additional metals and organics on the base case chloroform
degradation.

To study the ability of bacteria to degrade chloroform under different electron accepting
conditions with varying substrates added.

3.

2.

• Although chloroform was successfully consumed in all soil-water reactors where metals or
additional organics were introduced, the overall rate of degradation compared to the base
rate degradation fell dramatically.

• The effects of the additional organics on the degradation of chloroform were likely due to the
bacteria consuming the added contaminant before chloroform. This could be due to the
added contaminate being a better candidate for consumption.

• From the results, nickel is the most toxic to the methanogenic cultures compare to other
metals.

• With the increased concentration of p-DCB, the degradation rate of chloroform increases.
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Results from this study indicate that anyone of the conditions used for the soil-slurry reactor is a

viable treatment alternative for treating chloroform contaminated soil at the Norman Landfill.

However, further studies are recommended. Recommendations include:

• Monitor both solid-phase and aqueous-phase chloroform in bench-scale slurry reactors
operated under denitrifying, methanogenic. and sulfate-reducing conditions. These data
would be useful in predicting required treatment times in a pilot scale system as well
expound the relationship between desorption and biodegradation.

• Conduct further experiments of more metals and organics that are found to be in typical
landfills to isolate substrates that limit degradation under separate conditions.

• Conduct further experiments to decide how temperature affects the rate of degradation
under the various conditions with various substrates.

• Conduct further experiments varying the pH that is more applicable to landfill conditions with
varying compounds.

• All of the experiments were conducted under anaerobic conditions, typical landfills might
contain both conditions during different environmental conditions. Conduct further research
to investigate the degradability of chloroform under aerobic conditions.

• Isolate and identify bacteria involved in the biotransformation of chloroform under various
conditions.

• The compounds that these experiments produced after degradation are unclear. Therefore,
it is recommended that the reactions that these compounds produce be further investigated
to find whether their transformation products are of similar or even greater environmental
concern than their parent compounds. If so, more research is necessary to focus on their
transformations, both abiotic and biological, to Ultimately find the pathways which render
these chemicals harmless.
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March 9, 1996
OFFlCEOF

RESEAACHAND OEVElOPMENT

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
NATIONAl. RISK MANAGEMENT RESEARCH LABORATORY
SUBSURFACE PROTECTION AND REMEDiATION DMS10N

P.O. BOX 1198. ADA; OK 74820:

Dr. Robert Knox
202 W. Boyd Room 334
University of Oklahoma
Nonnan, OK 73019

Dear Dr. Knox,

Enclosed are the analytical results of samples obtained from the Nonnan landfIll by the U.S.

Geological Survey. Please feel free to call me at (405) 436-8556 if you have any questions

regarding this data.

c;~iJ!LP
Cynthia J. Paul
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Prepared by Cindy Paul 315/96

Filtered mg/L
Well Na·1 K Ca Mg Fe Mn Co Mo AI As
Slough 322 12.5 103 97.9 <0.018 0.019 <0.0061 0.008 <0.11 <0.030
PS10 27.• <2.3 124 36.1 2.29 1.03 <0.0061 0.0147 <0.11 <0.030---
PS12 10.8 3 149 29.4 3.17 2.12 <0.0061 0.0173 <0.11 <0.030
PS16D 75.8 2.9 98.2 32.2 3.45 1.38 <0.0060 0.006 <0.11 <0.030
PS17 17.6 3.7 135 35.6 2.46 1.5 <0.0061 0.0053 <0.11 <0.030
PS1S 70.8 3.7 93.5 30.7 3.26 1.3 <0.0061 0.0053 <0.11 <0.030
PS22 4.1 <2.3 66.5 14.9 2.09 1.14 <0.0061 0.0061 0.16 <0.030
PS35 506 199 140 82.8 6.79 0.274 0.0091 0.0067 <0.11 0.032
PS36 561 214 113 80.2 8.86 0.462 0.0154 0.0068 <0.11 <0.030
PS37 312 43 292 37.9 2.42 0.788 0.0094 0.01« <0.11 <0.030
13538 191 61.7 235 71.4 8.17 1.17 <0.0061 0.0124 <0.11 <0.030
PS39 172 44.8 234 34.7 2.59 0.835 0.0085 0.0122 0.11 <0.030
AB01 <1.0 <2.8 <0.23 <0.14 <0.011 <0.0036 <0.0033 <0.021 <0.046 0.0138
CR01 105 <2.8 178 56.6 <0.011 0.0204 <0.0033 <0.021 <0.048 0.01
FBot <1.0 <2.8 <0.23 <0.14 <0.011 <0.0036 <0.0033 <0.021 0.08 0.0101
PS38B 516

-_0-
1.27 0.0181 <0.046<2.8 467 177 12.8 <0.021 <0.014

PS38BD 515 <2.8 464 176 12.6 1.25 0.0175 <0.021 0.048 <0.013
PS38C 573 14.3 444 176 23.8 0.811 0.0208 <0.021 <0.046 <0.012
PS38D 622 <2.8 489 162 16.5 1.09 0.0211 <0.021 0.057 <0.015
Ps.40 852 394 168 116 21.9 0.396 0.0228 <0.021 <0.048 <0.012
PS43B 531 175 298 90.2 11.3 0.607 0.017 <0.021 <0.048 <0.012
PSS4 224 9.5 108 53 1.4 0.597 <0.0033 <0.021 <0.046 <0.0099
PSS4B 405 <2.8 398 141 13.9 0.978 0.0149 <0.021 0.059 <0.011-
PS54C 439 <2.8 474 165 20.1 0.988 0.0163 <0.021 <0.048 <0.013
PS54D 541 <2.8 484 183 15.2 1.12 0.0198 <0.021 <0.046 <0.018
WSI 184 1.31 88.8 33.2 1.56 0.314 0.0004 <0.015 0.104

<~:~~PS04 11.8 1.54 117 22.8 1.11 0.346 0.004 <0.015 0.071
PS08 260 0.35 117 24.1 <0.0026 0.019 0.0023 <0.015 <0.069 0.018
PS07 92 -46.9 163 --35.8 2.11 0.554 <0.0033 0.013 <0.069 <0.0095
PS08 49.2 24.2 118 30.4 3.13 0.35 0.003 <0.015 <0.069 <0.011

t. 't • • .W' • • f W'
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Prepared by Cindy Paul 3/5/96

Filtered mg/L
Well 58 Cd Be Cu Sb Cr Nl Zn Aa TI

Slough <0.038 <0.0021 <0.0013 <0.076 <0.079 0.002 0.0103 . <0.012 <0.017 <0.018
PS10 <0.038 <0.0021 <0.0014 <0.076 <0.079 0.0041 0.06« <0.012 <0.017 <0.018
PS12 <0.038 0.0027 <0.0018 <0.076 <0.079 <0.0019 0.0218 <0.012 <0.017 <0.018

PS16D <0.037 <0.0021 <0.0013 <0.075 <0.077 <0.0019 <0.0069 <0.012 <0.017 <0.017
PS17 <0.038 0.0024 <0.0015 <0.076 <0.079 0.0022 0.0152 <0.012 <0.017 0.024
PSiS <0.038 <0.0021 <0.0012 <0.076 <0.079 <0.0019 <0.0070 <0.012 <0.017 <0.018
PS22 .<0.038 0.0025 <0.0011 <0.076 <0.079. <0.0019 <0.0070 <0.012 <0.017 '<0.018
PS35 <0.038 0.004 <0.0015 <0.076 <0.079 0.0077 0.03-43 0.015 0.019 <0.018
PS36 <0.038 0.0048 <0.0013 <0.076 <0.079 0.0058 0.027 0.019 <0.017 <0.018
PS37 <0.038 0.0059 <0.0025 <0.076 <0.079 0.00.47 0.0215 <0.012 0.027 0.03
PS38 <0.038 0.0038 <0.0021 <0.076 <0.079 0.0029 0.0255 <0.012 0.018 0.023
PS39 <0.038 0.0058 <0.0021 <0.076 <0.079 0.0031 0.0216 <0.012 0.029 0.025
AB01 <0.019 <0.0020 <0.0061 <0.010 <0.029 <0.008-4 <0.0087 <0.0027 <0.0075 <0.014
CR01 <0.019 0.0048 <0.0063 0.023 <0.029 <0.00&4 0.0148 <0.0028 0.0205 0.028
FB01 0.021 <0.0020 <0.0061 <0.010 0.055 <0.008-4 <0.0087 <0.0027 0.0148 <0.014

PS38B <0.021 0.0117 <0.0072 0.072 <0.029 <0.008-4 0.0437 <0.0030 0.0535 0.044
PS38BD <0.021 0.0108 <0.0071 0.07 <0.029 <0.008-4 0.0423 <0.0030 0.0548 0.046

PS38C <0.028 0.0115 <0.0071 0.063 <0.029 0.009 0.0414 0.003 0.0474 0.033
PS38D 0.025 0.0129 <0.0073 0.062 <0.029 <0.0084 0.0491 <0.0029 0.0558 0.038

PS40 <0.025 0.Q0.48 <0.0063 0.023 ·<0.029 <0.0084 0.0272 <0.0028 0.0258 <0.014
PS43B <0.021 0.0092 <0.0066 0.04 <0.029 <0.0084 0.0297 <0.0028 0.031 0.015

PS54 <0.019 0.0022 <0.0062 <0.010 <0.029 <0.008-4 0.0139 <0.0027 <0.0078 <0.014
PS54B <0.022 0.0101 <0.0089 0.083 0.034 <0.0084 0.0355 <0.0029 0.051 0.031
PS54C 0.037 0.0119 <0.0072 0.088 <0.029 <0.0084 0.0415 0.0036 0.0552 0.039
PS54D <0.022 0.0105 <0.0072 0.067 <0.029 <0.0084 0.0416 0.0057 0.0454 0.032

WSI <0.017 0.0005 <0.0019 <0.043 <0.020 0.0002 0.0093 <0.0009 0.0124 0.0021
PS04 <0.017 0.0038 <0.0020 <0.043 <0.020 0.0016 0.0249 0.0377 0.016 0.0176
PS06 <0.017 0.0034 <0.0020 <0.043 <0.020 <0.0012 0.0161 0.0763 0.0128 0.0178
PS07 <0.017 0.0038 <0.0022 <0.047 <0.031 <0.0017 0.0168 <0.011 0.0128 <0.013
psoa <0.017 0.0039 <0.0020 <0.043 <0.020 0.0014 0.031 0.035 0.0131 0.0107

.. '. • •• . ·w . .....
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Prepared by Cindy Paul 315/96

Filtered mp IT
Well Pb~ IHa u Te Sr Ge V B8 B Tl

Sloug~ <0.033 <0.051 <0.59 <0.073 2.31 0.13 <0.027 0.805 1.23 <0.014
PS10 <0.033 <0.052 0.81 <0.073 0.791 <0.10 <0.027 0.501 0.151 <0.014
PS12 <0.033 <0.054 0.92 <0.074 1.28 <0.10 <0.027 0.438 0.093 <0.014

PS16D <0.032 <0.052 <0.56 <0.072 1.26 <0.10 <0.026 0.628 0.238 <0.014
PS17 <0.033 <0.052 0.96 0.076 1.51 0.11 <0.027 0.317 0.115 <0.014
PS1S <0.033 <0.053 0.66 <0.073 1.18 <0.10 <0.027 0.589 0.212 <0.014
PS22 <0.033 <0.052 <0.59 <0.073 0.657 <0.10 <0.027 0.342 0.074 <0.014
PS35 <0.033 <0.058 0.69 <0.073 2.~ <0.10 <0.027 3.A2 5.07 <0.014
PS36 <0.033 <0.059 0.65 <0.073 2.69 <0.10 <0.027 5.64 7.3 <0.014
PS37 <0.033 <0.052 1.42 0.075 2.1 <0.10 <0.027 0.15 3.05 <0.014
PS38 <0.033 <0.058 1.19 <0.074 2.79 <0.10 <0.027 0.204 1.8 <0.014
PS3g <0.033 <0.052 1.14 0.091 1.88 <0.10 <0.027 0.184 2.8 <0.01.
AB01 <0.010 <0.058 <0.70 <0.028 <0.0025 <0.063 <0.011 <0.002" <0.11 <0.013
eR01 <0.010 <o.ose 0.85 0.088 1.86 <0.063 0.016 0.15 0.28 <0.013
FB01 0.021 <0.OS8 <0.70 0.037 <0.0025 <0.063 0.018 <0.0024 <0.11 <0.013

PS38B
_._-- f-------

-0.1'29
1-··--·__ · _.O~128 <0.011 7.09<0.011 <0.081 <0.70 7.29 8.04 <0.013

PS38BD <0.011 <0.081 <0.70 0.133 7.08 0.126 <0.011 7.83 8.82 <0.013
PS38C <0.011 <0.13 0.78 0.12 7.73 0.133 <0.011 7.78 9.58 <0.013
PS38D <0.011 <0.094 <0.70 0.1•• 6.27 0.119 <0.011 3.17 3.85 <0.013

PS40 <0.010 <0.13 <0.70 0.053 3.24 0.088 0.013 12.8 8.54 <0.013
PS-C3B <0.011 <0.077 <0.70 0.Q6.4 3.71 <0.064 <0.011 5.86 3.86 <0.013

PSS4 <0.010 <0.058 <0.70 <0.028 1.56 0.077 <0.011 0.549 1.07 <0.013
PS54B <0.011 <0.085 <0.70 0.135 5.07 0.148 0.012 1.54 4.78 <0.013
PS54C <0.011 <0.12 <0.70 0.153 6.56 0.171 <0.011 3.18 8.01 <0.013
PS54D <0.011 <0.089 <0.70 0.114 6.23 0.16 <0.011 2.75 5.19 <0.013

WSI <0.012 <0.023 0.203 0.037 1.21 <0.081 <0.010 0.105 0.457 <0.0018
PS04 <0.012 <0.023 0.43 0.053 0.963 <0.081 <0.010 0.427 0.11 <0.0019
PS08 <0.012 <0.022 0.335 0.033 2.37 <0.081 <0.010 0.484 0.246 <0.0019
PS07 <0.015 <0.042 <0.26 <0.051 1.13 0.147 <0.011 0.239 0.714 <0.0081
PS08 <0.012 <0.026 0.47 0.036 0.956 <0.081 <0.010 0.343 0.647 <0.0019

f. " • •• J • I."



Prepared by Cindy Paul 3/5/96

Unfiltered mp,/L
Well Na-1 K Ca M\L Fe Mn Co Mo AI As
Slough 329 18.1 209 108 16.9 0.828 0.0101 0.0097 H.8 <0.031
PS10 25.5 3.5 126 36.2 5.64 1.05 <0.0061 0.0227 •.97 <0.030
PS12 10.7 2.8 152 28.9 3.96 2.13 <0.0061 0.0135 <0.11 <0.030
PS16D 73.8 3.3 00.6 30.9 3.35 1.33 <0.0061 0.005 <0.11 <0.030
PSH 18.3 4.1 133 34.3 2.37 1.46 <0.0061 0.0075 <0.11 <0.030
PS18 79.2 2.4 96.• 31.9 3.42 1.36 <0.0035 0.0101 <0.20 <0.025
PS22 4.32 ... 1.8 65.6 14.8 2.03 1.11 <0.0035 0.0057 <0.20 <0.025.
PS35 539 230 142 84.4 7.17 0.278 0.0114 0.0118 0.68 <0.025
PS36 580 235 117 82.8 7.87 0.475 0.0143 0.007 1.45 <0.025
PS37 326 47.1 297 38.5-~94 0.8« 0.0118 0.0148 0.69 0.03
PS38 192 67.8 236 72.5 6.45 1.16 0.012 0.0142 <0.20 <0.026
PS39 185 51.5 241 35.8 2:74 0.856 0.0119 0.0184 <0.20 <0.026
AB01 <0.082 <0.57 <0.0082 <0.048 <0.0059 <0.083 <0.0067 <0.0Q.44 <0.084 <0.014
eR01 110 2.57 181 57.5 0.99 <0.083 <0.0067 0.01 1.9 <0.014
FB01 0.24 <0.57 0.108 <0.048 <0.0059 <0.083 <0.0067 <OJJ044 <0.084 <0.014--_.1-----. --- --
PS38B 511 5.07 442 173 13.1 1.18 0.0216 0.0277 0.397 0.044
PS38BD 526 3.25 426 188 13.1 1.27 0.0178 0.024 0.259 0.048
PS38C 636 14.8 406 16e 25.1 0.831 0.0198 0.0247 2.83 0.0479
PS38D

.. - ----
0.0206 0.0238 0.142 0.0358642 2.71 444 153 H 1.09

PS40 690 352 153 108 21.7 0.363 0.018 <0.0095 2.81 <0.035
PS43B 558 166 288 89.5 11.6 0.53 0.019 0.014 0.1« <0.014
PS~ 22" 7.8 98.8 48.3 1.49 0.525 <0.0042 <0.0095 0.324 <0.035
PSS-4B 382 2.8 358 131 13.2 0.819 0.0088 0.0154 0.617 0.036
PS~C 483 4.8 415 150 18.8 0.868 0.0101 0.0219 1.2 0.045
PS~O 585 4.5 418 146 14.3 0.98. 0.018 0.0205 1.13 0.041
JPESW 112 <1.0 94.4 35.7 1.34 0.41 <0.00042 <0.0095 <0.090 <0.035
JPWSW 163 1.4 1,(2 49.3 2.5-4 0.362 <0.0042 <0.0095 <0.090 <0.035
WSI 187 1.39 88..( 33.3 1.58 0.393 <0.0017 <0.015 <0.089 <0.011
PSQ.4 39." <0.12 334 61.8 21.9 1.13 0.0111 0.067 20.8 0.06
PS06 271 0.38 121 25." 1.39 0.049 0.0026 <0.015 2.,U 0.013
PS07 83.1 4•.2 157 3.(.5 3.08 0.526 0.0031 <0.015 2.02 0.02
PS08 SO.8 24.5 118 30.5 3.86 0.364 0.00041 <0.015 1.05 0.029

It, '. • •• . ..-



Prepared by Cindy Paul 3/5/96

Unfi"ered mg/L
Well 58 Cd Be Cu Sb Cr NI Zn Aa TI

Slough <0.040 0.0056 <0.0020 <0.076 <0.079 0.019 0.0277 0.035 <0.017 0.033
PS10 ·<0.038 0.0035 <0.0014 <0.078 <0.079 0.0206 0.108 0.015 <0.017 0.021
P512 <0.038 0.00"1 <0.0016 <0.076 <0.07U 0.0027 0.0269 <0.012 <0.017 <0.018

PS18D <0.038 <0.0021 <0.0013 <0.078 <0.079 <0.0019 <0.0070 <0.012 <0.017 <0.018
PS17 <0.038 0.0039 <0.0015 <0.076 <0.079 0.0022 0.011 <0.012 <0.017 <0.018
PS11 <0.034 <0.0022 <0.0019 <0.058 <0.096 <0:0024 <0.0098 <0.18 <0.017 <0.017
PS22 <0.034 <0.0022 . <0.0010 <0.058 <OJ)96 <0.0024 <0.0098 <0.18 <0.017 <0.017
PS35 <O.OM 0.004 <0.0021 <0.058 <0.096 0.01M 0.0356 <0.18 <0.017 0.02
PS36 <0.034 0.0055 <0.0020 <0.058 <0.0e6 0.02 0.0308 <0.111 <0.017 <0.017
PS37 <O.OM 0.0072 <0.0030 <0.058 <0.098 0.012 0.033 <0.18 0.031 0.02
PS38 <0.034 0.005 <0.0028 <0.058 <0.0e6 0.0036 0.0279 <0.18 0.022 0.022
PS30 <0.034 0.0049 <0.0026 <0.058 <0.096 O.OO·U 0.0268 <0.18 0.027 0.022
AB01 <0.023 <0.0009 <0.0018 <0.043 <0.038 <0.011 <0.0042 <0.0058 <0.0098 <0.021
eR01 >c0.023 0.0048 >c0.0023 >c0.043 >c0.038 >c0.011 0.0138 0.0115 0.0128 <0.021
FBDt <0.023 <0.0009 <0.0018 <0.043 <0.038 <0.011 <0.0042 <0.0058 <O.OOQfS <0.021

PS311B <0.025 0.0108 <0.0040 0.079 <0.039 <0.011 0.0454 <0.0057 0.040 0.061
PS38BD <0.017 0.0112 <0.0034 0.108 <0.021 0.0111 0.0414 O.ooe4 0.0374 0.047

PS38C <0.027 0.0088 <0.0033 0.093 <0.021 0.0225 0.0449 0.0207 0.0351 0.039
PS38D <0.018 0.0116 <0.0036 0.097 <0.021 0.0117 0.0438 0.0088 0.0368 0.037

PS40 <0.036 0.0053 <0.0014 <0.11 . <0.067 0.013 0.0248 0.0111 0.018 <0.049
PS43B <0.025 0.0062 <0.0029 0.046 <0.038 <0.011 0.0266 <0.0057 0.0293 0.036

PS54 <0.032 <0.0017 <0.0011 <0.11 <0.067 <0.0013 0.0118 0.0037 <0.011 <0.049
PSS4B <0.033 0.0003 <0.0030 <0.11 <0.087 0.0068 0.032 0.0038 0.035 <0.049
PS54C <0.035 0.0108 <0.0034 <0.11 <0.067 0.0163 0.047 0.0208 0.048 <0.049
PSS4D <0.034 0.01 <0.0034 <0.11 <0.067 0.0151 0.0469 0.0234 0.038 <O.04V

JPESW <0.032 0.0028 <0.0011 <0.11 <0.067 <0.0013 <0.0086 0.004 <0.011 <0.049
JPWSW <0.032 0.0029 <0.0014 <0.11 <0.067 <0.0013 0.0126 0.0013 <0.011 <0.049

WSI <0.017 0.0037 <0.0019 <0.043 <0.020 <0.0012 0.0117 <0.0009 0.0131 <0.0097
PS04 0.049 0.0113 <0.0032 0.233 0.066 0.23 1.52 3.38 0.1043 0.086
PS06 <0.017 0.0039 <0.0020 <0.043 <0.020 0.0075 0.0204 0.0317 0.0128 0.0112
PS07 <0.017 0.0038 <0.0021 <0.043 <0.020 0.0048 0.0242 0.0245 0.221 <0.0097
PS08 <0.017 0.0039 <0.0020 <0.043 <0.020 0.00« 0.0383 0.0352 0.0144 0.0116

to' .• . .. - • If. ~



Prepared bV Cindy Paul 3/5/96

Unfiltered mg/L
-Well Pb Hg 1I Te Sf Ge V Ba B TI

Slough <0.03-4 <0.095 0.89 <0.074 2.73 0.16 <0.027 1.21 1.32 0.295
PS10 <0.033 <0.057 1.24 <0.073 0.769 0.18 <0.027 0.539 0.18 0.086
PS12 <0.033 <0.05-4 0.85 <0.074 1.29 <0.10 <0.027 0.08 0.114 <0.014-

1.2PS16D <0.033 <0.053 0.65 <0.073 <0.10 <0.027 0.804 0.238 <0.014
PS17 <0.033 <0.052 1.13 <0.073 1.45 <0.10 <0.027 0.309 0.111 <0.014_.-f---- --_.-

--<0.35 <0.090 1.23 0.025 <0.032 0.&48 0.228 <0.018PS18 <0.037 <0.045
PS22 <0.037 <0.043 <0.35 <0.090 0.645 0.031 <0.032 0.353 0.078 <0.018
PS35 <0.037 <0.053 0.46 <0.090 2.36 0.089 <0.032 3.82 5.37 <0.018
PS36 <0.037 <0.055 0.« <0.090 2.72 0.0« <0.032 8.01 7.74 <0.018
PS37 <0.037 <0.044 1.22 0.092 2.09 0.124 <0.032 0.185 3.25 <0.018
PS38 <0.037 <0.051 0.95 <0.091 2.77 0.059 <0.032 0.219 1.07 <0.018
PS39 <0.037 <0.044 1.32 <0.091 1.89 O.O~ <0.032 0.178 2.75 <0.018_..----- --_.-
AB01 <0.020 <0.098 <0.38 <0.040 <0.0007 <0.15 <0.014 <0.0016 <O'()28 0.0037
CR01 <0.021 <0.098 0.64 <0.040 2 <0.15 <0.014 0.18 0.281 0.0315
FB01 <0.020 <0.098 <0.38 <0.040 0.0009 <0.15 <0.014 <0.0016 <0.029 <0.0027

PS38B <0.021 <0.11 1.84 0.148 7.15 0.19 <0.014 7.48 8.85 0.0058
PS38BD <0.015 <0.074 1.57 0.089 6.92 0.129 <0.010 7.28 8.7 <0.0055

PS38C <0.015 <0.14 1.41 0.058 7.43 0.241 <0.010 7.15 8.95 0.0429
f--i19

-_.'._.-
2.88 3.85 <0.0055PS36D <0.015 <0.096 0.077 5.97 0.14 <0.010

PS40 <0.022 <0.13 0.53 <0.029 3.09 <0.092 <0.015 11.5 5.88 0.048
PS43B <0.021 <0.11 1.18 0.064 3.n <0.15~01" 5.84 3.53 <0.0029

PS504 <0.022 <0.093 0.304 <0.029 1.49 <0.091 <0.015 0.492 0.855 <0.020
PS5-4B <0.022 <0.11 1.36 0.074 4.88 0.123 <0.015 1.4 4.45 <0.020
PSs.4C <0.022 <0.12 1.87 0.135 8.08 <0.092 <0.015 2.8 72 0.028
PS5-4D <0.022 <0.11 1.78 0.083 5.65 <0.092 <0.015 2.39 4.57 <0.020

JPESW <0.022 <0.093 0."3 <0.029 0.968 <0.091 <0.015 0.355 0.388 <0.020
JPWSW <0.022 <0.094 0.62 <0.029 1.71 0.104 <0.015 1.19 0.309 <0.020

--WSI <0.012 <0.023 0.228 0.033 1.22 <0.081 <0.010 0.102 0.458 <0.0018
PS04

-----
<0.11 <0.12 0.142 2.9 <0.081 0.042 1.74 0.386 0.2430.089

PS08 <0.012 <0.023 0.213 0.037 2.45 0.084 <0.010 0.53 ois9 0.0329
PS07 <0.012 <0.026 0.52 0.046 1.02 <0.081 <0.010 0.236 0.689 0.0297

0.5 ._----
PS08 <0.012 <0.028 0.0504 0.955 <0.081 <0.010 0.372 O.M3 0.019

" .



Pl1Ipal"lld by Cindy Paul 315196

USGS Samples collected from Norman landfill flIte
Samples collected October 25 and 26. 1gg5
ImgIL Gla.. PlastIc

Silver filtered Acldmtd
Well' DOC DOC TOC F Br CI ~

WS1 No umple 5.2 5.1 1.88 <.5 135 83
PSO.. 1.5 2.2 2.7 1.1 3.07 ".81 33.8
PSOl5 0.2 0.1 0.5 <2 <2 508 M.8
PS07 ..... U ".5 2.23 3.81 32.8 153
PS08 U U 5.3 1 3.27 15.8 77.5
P610 3.5 · 17.7 <506 <15.5 1U 43.7
PS12 3.3 · 30.1 <5.5 <5.5 2.88 85.8
PS17 4.5 · 16 <5.5 <5.5 8.18 188
PS18 U · 24.1 <5.5 <5.5 25,8 5.31
PS22 2.1 · U <5.5 <5.5 <5.5 3.02
PS35 101 • 302 <5.5 <5.5 803 4.82
PS38 101 • 248 <5.5 <5.5 723 --<5.5

PS37 S7.5 • 118 <5.5 <5.5 281 458
PS38 M.8 • 85.5 <$05 <5.5 250 303
PS39 33.5 • 79.8 <5.5 <5.5 208 184
PS18D 4.5 • 11.3 <5.5 <5.5 20.8 $.88
Slough 28.1 • 75 <5.5 <5.5 300 133
PS43B 110 111.3 117 <3 <3 832 <3
PS40 182 181.8 107.4 <3 <3 870 <3
PSM 23.7 21.3 23.3 <.5 10 265 17.7
FB01 <0.1 0.1 0.1 <3 <3 <3 <3
PSS4B 77.8 78.4 82.7 <3 <3 822 3.37
PS38B 142 • 147.5 <3 <3 821 <3
PS38BD 143 147.8 149.8 <3 <3 838 <3
PS54C 102 103 108 <3 <3 823 <3
PS38C 154 157.8 182.7 <3 <3 1000 <3
AB01 <0.1 0.1 0.1 <3 <3 <3 <3
PS38D 118 111.4 123 <3 <3 1081 <3
PS54D 109 110.5 114.8 <3 <3 848 <3
eR01 2.8 2.8 3.8 <3 <3 124 486
JPESW nosamDle 2.3 3 <3 <3 81 61
JPWSW no sample 3.2 3.9 <3 <3 188 75

• Samole not analyzed for DOC



Prep.red by Cindy Paul Sf5JQ8

mgIL

W8i1.-- N02+N03 N02 N03 NH3 o-P0.4 Total P0.4--
1.57WS1 <.05 <.05 0.3

PS04 <.OS 0.12 0.21 0.....
psoe <.05 0.72 <.05 0.05
PS07 <.05 <.05 0.11 0.13
PS08 <.05 <.05 0.25 0.51
PS10 0.31 0.51 <.02 0.27
PS12 0.29 0.69 0.61 0.57
PS17 0.23 1.83 1.02 1.1
PS18 0.14 2.47 1.28 1.27
PS22 0.09 1.72 O.M 0.95
PS35 0.38 212 0.8 0.87
PS36 0.49 233 0.58 0.81
PS37 0.38 202 0.21 028
PS38 0.3-4 54 0.48 0.48
PS39 0.29 36.1 1.07 1.03
PS16D 0.15 2.48 1.31 1.33
Slough 8.3 4.75 0.75 0.81
PS439 <.05 <.05 164 <.05 0.07
PS40 <.05 <.05 321 <.05 0.1
PS54 <.05 <.05 0.87 <.05 0.31
FB01 <.05 <.05 <.05 <.05 0.05
PS549 <.05 <.05 2.82 <.05 0.1
PS38B <.05 <.05 5.3 <.05 0.08
PS36BD <.05 <.05 5.3 <.05 0.09
PS54C <.05 <.05 5.41 <.05 0.1
PS38C <.05 <.05 45.4 <.05 0.08
AB01 <.05 <.05 <.05 <.05 0.12
PS3BD <.05 <.05 4.23 <.05 0.07
PS54D <.05 <.05 4.73 <.05 0.11
CR01 <.05 1.71 <.05 <.05 0.09
JPESW <.05 <.05 1.22 <.05 0.08
JPWSW <.05 <.05 1.54 <.05 0.06

~~-
Note: Some samples were analyzed for N02+N03 and some were for both N02 and 003.



Prepared by Cindy Paul 3/9/96

IDPb ppm ppm •ppm
Ha As 5e Pb

Slough igold fixed <1.0 <1.0 <1.0 <1.0
PS10 gold fIXed <1.0 <1.0 <1.0 <1.0
PS12 gold fIXed <1.0 <1.0 <1.0 <1.0
PS16D Igold fIXed <1.0 <1.0 <1.0 <1.0
PS17 gold fIXed <1.0 <1.0 <1.0 <1.0
PS1B gold fixed <1.0 <1.0 <1.0 <1.0
PS22 Igold fIXed <1'.0 <1.0 <1.0 <1.0
PS35 gold fixed <1.0 <1.0 <1.0 <1.0
PS36 gold fIXed <1.0 <1.0 <1.0 <1.0
PS37 gold fIXed <1.0 <1.0 <1.0 <1.0
PS38 Igold fIXed <1.0 <1.0 <1.0 <1.0
PS39 Igold fIXed <1.0 <1.0 <1.0 <1.0
AB01 Igold fIXed <1.0 <1.0 <1.0 <1.0
CR01 Igold fIXed <1.0 <1.0 <1.0 <1.0
FB01 Igold fixed <1.0 <1.0 <1.0 <1.0
PS38B gold fixed <1.0 <1.0 <1.0 <1.0
PS38BD gold fixed <1.0 <1.0 <1.0 <1.0
PS3BC gold fixed <1.0 <1.0 <1.0 <1.0
PS38D gold fIXed <1.0 <1.0 <1.0 <1.0
PS40 gold fixed <1.0 <1.0 <1.0 <1.0
PS438 gold fixed <1.0 <1.0 <1.0 <1.0
PS54 gold fixed <1.0 <1.0 <1.0 <1.0
PS54B gold fixed <1.0 <1.0 <1.0 <1.0
PS54C gold fixed <1.0 <1.0 <1.0 <1.0
PS54D laold fIXed <1.0 <1.0 <1.0 <1.0
JPESW gold fIXed <1.0 <1.0 <1.0 <1.0
JPWSW Igold fixed <1.0 <1.0 <1.0 <1.0
WSI filtered <1.0 <1.0 <1.0 <1.0
WSI unfiltered <1.0 <1.0 <1.0 <1.0
PSD4 filtered <1.0 <1.0 <1.0 <1.0
PS04 unfiltered <1.0 <1.0 <1.0 <1.0
PS06 filtered <1.0 <1.0 <1.0 <1.0
PS06 unfiltered <1.0 <1.0 <1.0 <1.0
PSD7 filtered <1.0 <1.0 <1.0 <1.0
PS07 unfiltered <1.0 <1.0 <1.0 <1.0
PS07 'gold fixed <1.0 <1.0 <1.0 <1.0
PS08 filtered <1.0 <1.0 <1.0 <1.0
PS08 unfiltered <1.0 <1.0 <1.0 <1.0
PS08 gold fixed <1.0 <1.0 <1.0 <1.0

Ran on AA Graphite
Detection limit for Hg =1 ppb
Detection limit for As. Se and Pb =1 ppm
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The following i~ a li~t of organic compounds dececced in water quality

samples taken trom the Norman landfill.

VOLATILE ORGANIC COMPOUNDS

Benzene
Chlorobenzene

CONCENTRATION
ug/l
5
23

TARGETED PESTICIDE COMPOUNDS
(All of these hi~s were later

Diazinon
Ethylparathion
4,4- DDT
gamma-aHCllindane)
delta-BHC

CONCENTRATION
refuted on a second column) ug/l

1.0
0.47
0.16
0.28
0.081

3 10 16 13
2 ~O

1 7.3

2 7.2
1 4.6
5 4.6 23 16
3 16 21 19
1 5.5

1 6.3

1 14
1 24
1 16
3 5.7 8.~ 7.6
1 9.3
1 5.~

1 12

2 26

1 6.4

77

CONCENTRATION
avg. ug/l

6.4
12.3

8.3
13

15
9.6

8. E
6.8
5.2
4.6
5.2
6.7

11
17

t:l.3
12

35
21

33
17

7.2
6.8

30

40

21

17

81
36

6.6

5

4.1 100

9.2

4.6

10
6.9

SEMI-VOLATILE COMPOUNDS (TIC's)
Occ~rances min. max.

1
12

1
1

45
1
6
1
1
1
1
1
1
6
1
5
1
1
5
6
1
1

TENTATIVELY IDENTF!ED

1,3- Oxathiolane
Siloxane
2-bromo-Hexane
nitro-Methane
~xygenated Hydrocarbons
3,3'-oxybis-2-Butanol
1-(2 methoxy-1-methylethoxy)-2-Prcpanol
1-methyl-5-trideutero Methyltetrazole
Propaline Glycol
1-Amino-4-methylpiperazine
1,3,3-Tri~thoxybutane

2,3, 4, 6-Tetramethy1-4-pyror.e
'2-ethoxy-1-Propanol
Diethylto1uamid
6-chloro-1H- Purine
N-ethyl-4-methyl Benzenesulfonamid
1, 8-Diaza-2,9-diketocyclotetradecane
Octadecanoic acid, butyl ester
Nitrogen compound
Cyanogen chloride
3-Methylaniline
2-methyl-3-Buten--2-o:
5-Isopropyl-2,4-dioxo-l,2,3,4-

tetrahydropyrirnid
N,N-4-trimethyl Eenzenesulfona~id

2 (3H)-Benzothiazolonc
2,2-dimethy1etheny: ester,

Pentanoic acid
l,1'-oxy~is~2-et~vxy) Ethane
2-(2-ethoxyethoxy)Ethanol
4-acetyl-Morpholine
Sterol
1-hydroxymethyl-5,S- cli .. ...
2,4-~idazolidinedione

6-rnethyl-2-(1-methylethyl)-
4-(18) pyrimidinone

p-tert-butyl Benzoic acid
1,1'-oxybi3-2-Propano:
Cyclic Hydrocarbon~

_-ethoxy-1-rnethoxy Ethane
A-propoxy-Phenol
Aromatic hydrocarbon
1,1'-(1-methyl-l,2-ethanediyl) bis .....

2-Propano1
2-(2-methoxy-l-methyl ethoxy)

1-Propanol
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Baseline Chlorofonn Degradation using 100 llaIL CHCI,

Chromatogram Peaks
Methanogenlc i Den!trifying Sulfate-Redud"Sj

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 912,781 781,587 668,655 0 652,495 487.327 439,751 0 1,687,391 1,980,231 1,538,084
3 423,896 325,687 336,452 3 324,543 253,n6 210,681 3 759,056 987,543 793,254
7 17,596 17,278 17,520 7 34,600 27,218 26,347 7 23,154 23,233 16,195

Fir8t~rderDegradation
Methanogenlc (Natural Log) Denitrify1nsJ (Natural Log) Sulfate-Reduclng (Natural Log)

Time Cone. Cone. Cone. Tlmei Cone. Cone. Cone. Time Cone. Cone. Cone.
D 7.01 6.85 6.69 0 6.66 6.36 6.25 0 7.63 7.80 7.54
3 6.21 5.93 5.97 3 593 5.66 5.46 3 6.82 7.09 6.86
7 1.60 1.68 1.62 7 2.78 1.94 1.n 7 0.65 0.70 1.90

Notes:
1. Use y=8D5.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in /-lg/L
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Chloroform Degradation WIth Added Zine using 100 "giL CHCI)

PeaktCh romalogram s
Methanogenie Deni trifying Sulfate-Reduein ~

Time Cone. Cone. Cone. Time Cone. Cone. Cone. nme Cone. Cone. Cone.
a 296,600 443,222 287,930 0 266,230 269,601 269,788 0 249,502 '127,720 378,559
16 95.388 84.729 85,981 16 109.528 76,273 72.4'12 16 84,114 105.n8 83,290
24 19.765 16.111 10.923 24 47,025 34,018 19.336 24 14.744 119,193 14,054

First-order Degradation
Methanogenie (Natural Log) DenitritYinc (NabJral Log) Sulfate-Reducing (Natural Log)

Time Cone. Cone. Cone. nme Cone. Cone. Cone. nme Cone. Cone. Cone.
a 5.83 6.26 5.80 0 5.72 5.73 5.73 a 5.64 5.54 6.09
16 4.52 4.36 4.38 16 4.69 4.25 4.14 16 4.35 4.65 4.34
24 0.83 1.92 2.58 24 3.45 2.73 1.04 24 2.14 4.80 2.24

Notes:
1. Use y=805.7x+21606 from calibration curve
2. TIme is in days
3. Cone. is in ~g/L
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Chloroform Degradation With Added Nickel using 100 ugIL CHel,

Chromatoaram Peaks
M c Den Sulfat8-R8ducln I

TIme Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
0 94,508 34,965 52,906 0 220,177 257,773 392,980 0 276,865 372,552 356520
16 8,552 8,776 0 16 43359 107,673 114,276 16 105.291 111.948 80,044
24 445,554 44,258 12,551 24 26,772 163,104 243,685 24 51,798 16,467 12,410

First-order Dearadation
Methanogenic (NabJral Log) (NabJral Log) Sulfate-Reductng (Nanni Loa)

TIme Cone. Cone. Cone. Time Cone. Cone. Cone. nme Cone. Cone. Cone.
0 4.51 2.81 3.66 0 5.51 5.68 6.13 0 5.76 6.08 6.03
16 2.79 2.77 3.29 16 3.30 4.67 4.75 16 4.64 4.72 4.28
24 6.27 3.34 2.42 24 1.86 5.17 5.62 24 3.62 1.85 2.43

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in J.l9/L
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Chlorofonn Degradation With Added Cadmium using 100 uglL CHCI,

Chromatoaram Peaks
Methanogenic Den bffying Sulfate Reduein ~

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
a 308,559 33,672 267,744 0 267,527 3n,484 246,974 0 26,132 202,730 276916
16 109,777 116,249 110,766 16 112,157 106.099 70,986 16 81.940 130,635 105.531
24 14,373 27,481 22,476 24 68,631 16,894 15,066 24 183,557 248,407 31,890

Flrst-order Degradation
Methanogenie (Natural Log) Den

.
(Natural Log) Sulfate-Reducing (Natural Loa)

Time Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
a 5.68 2.71 5.60 0 5.72 6.08 5.63 a 1.73 5.42 5.76
16 4.70 4.77 4.71 16 4.72 4.65 4.12 16 4.32 4.91 4.65
24 2.19 1.99 0.08 24 4.42 1.77 2.09 24 5.30 5.64 2.55

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in ~g/L
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Chlorofonn D!q!,!dation With Added Chrspm"'" ...inq 100 uaIL CHCb

Chromatogram ~ks
Metha S&Mat8Reduclna

rme Cone. Cone. Cone. Tme Cone:. Cone. Cone. Tme Cone. Cone. Cone.
0 254,404 408,935 1,290.206 0 211,961 1,349.120 255.530 0 296,044 1,597,282 347,778
16 111.038 85,747 1,171,571 16 87,147 1,789.531 74,044 16 62,373 2,145,952 96,879
24 16,235 5,006,720 2,820,701 24 21,236 2,007,782 92,395 24 86,875 20,468 17,136

First-order Dearadation
Metha •(Natural Log) .. inll (Natural Loa} Sulf8te-Redu~ (Natural Loa)

Time Cone. Cone. Cone. Tme Cone. Cone. Cone. r ... Cone. Cone. Cone.
0 5.67 6.18 7.36 0 5.46 7.41 5.67 0 5.83 7.58 6.00
16 4.71 4.38 7.26 16 4.40 7.69 4.18 16 3.92 7.88 4.54
24 1.90 8.73 8.15 24 0.00 7.81 4.48 24 4.39 0.35 1.71

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in ~gll
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Chlorofonn Degradation With a Combination of the Metals using 100 "aiL CHCI3

Chromatoaram Peaks
Methanogenie Den Ir'Ifying Sulfllte Reducing

Time Cone. Cone. Cone. Time Cone. Cone. Cone. TIme Cone. Cone. , Cone.
0 18,883 268,134 2.a,715 0 289,131 306,<416 297,n6 0 252,492 29.572 237,<471
16 8,488 53,401 54,707 16 88,960 66,968 64.961 16 75,992 8,541 65,139
24 11,755 40,487 12,654 24 21.474 12,555 23.007 24 18,<482 10,058 81,654

First-order Degradation
Methanogenie (Natural log) Denl .(Natural log) Sulfate-Reducing (Natural Log)

Time Cone. Cone. Cone. Time Cone. Cone. Cone. TIme Cone. Cone. Cone.
0 1.22 5.72 5.63 0 5.81 5.87 5.64 0 5.66 2.29 5.59
16 2.79 3.68 3.72 16 4.43 4.03 4.36 16 4.21 2.79 3.99
24 2.50 3.15 2.41 24 0.00 2.42 0.55 24 1.36 2.66 4.31

Notes:
1. Use y=805. 7x+21606 from calibration curve
2. Time is in days
3. Cone. is in Ilg/L
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Chlorofonn Degradation WIth Added Ethylbenmne usina 100 "giL CHCI"

Chromatogram Peaks
Methanogenie Den Sulfate Reducln II

TIme Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
0 305,374 222,265 205,608 0 220.862 357,182 372,799 0 400,684 351,653 446,160
14 26,591 46,881 6,295 14 31,735 5,345 4,069 14 4,213 4,451 6,322
24 8,694 15,934 1,295 24 10,365 946 824 24 759 628 1,598

FI t rde De datirs~ r ,gra on
Methanogenie (Natural Log) Denitrifvinc (Natural Log) SUlfate-Reducing (Natural Loaa

TIme Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
a 5.86 5.52 5.43 0 5.51 6.03 6.08 0 6.15 6.02 6.27
14 1.82 3.45 2.94 14 2.53 3.00 3.08 14 3.07 3.06 2.94
24 2.77 1.95 3.23 24 2.64 3.24 3.25 24 3.25 3.26 3.21

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in ~g/L
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Chlorofonn Degradation With Added Decahydronapthalene using 100 HaiL CHCI)

Chromatogram Peaks
Methanogenie Oenltrtfytng Sulfate Redueln II

TIme Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
0 350,893 208,608 234,180 0 254,216 189,571 173.734 0 322,088 411,990 316,232
14 2.989 3.511 6,145 14 2.969 6.091 3,513 14 4.154 59.834 5,821
24 203 389 673 24 286 564 302 24 364 12.356 458

De dtiFlrst-order tgra a on
Methanogenie (Natural Log) Denitrifyini: (Natural Log) Sulfate-Reducing (Natural Loa.

Time Cone. Cone. Cone. TIme Cone. Cone. Cone. TIme Cone. Cone. Cone.
a 6.01 5.45 5.58 a 5.67 5.34 5.24 0 5.92 6.18 5.90
14 3.14 3.11 2.95 14 3.14 2.96 3.11 14 3.08 3.86 2.98
24 3.28 3.27 3.26 24 3.28 3.26 3.27 24 3.27 2.44 3.27

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in ~g/L
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Chlorofonn Degradation With Added 2,2,4-TrimeUwlpenane using 100 "giL CHCI~

Chromatogram Peaks
Methanogenie

Time Cone. Cone. Cone.
o 401.2n 328,345 407,718
14 6,873 56.294 58,401
24 853 17,854 18.632

Time
o
14
24

Denttrffying
Cone. Cone. Cone.

278.788 232.869 572.464
9,336 4.273 50.151
1,549 358 15,982

Time
o
14
24

Sulfate Redueln II
Cone. Cone. Cone.

373,920 174,121 311.920
4,089 25.918 4,701
589 7,352 692

First-order Degradation
Methanogenic (Natural Log~ Den (Natural Log) SUlfate-Reducing (Natural Log)

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 6.16 5.94 6.17 0 5.n 5.57 6.53 0 6.08 5.24 5.89
14 2.91 3.76 3.82 14 2.72 3.07 3.57 14 3.08 1.68 3.04
24 3.25 1.54 1.31 24 3.21 3.27 1.94 24 3.26 2.87 3.26

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in I!g/L
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Chlorofonn Degradation WIth • Combination
of Non-ChlorinatBd Organics using 100 "giL CHCI,

Chromatogram Peaks
Methanoaenie Den trffyIna Sulfate Redueln ~

Time Cone. Cone. Cone. Time Cone. Cone. Cone. TIme Cone. Cone. Cone.
0 235,284 407,354 286,400 0 266,683 512,186 418,en 0 474,598 236,286 287,495
14 7,916 10,416 11,050 14 10,048 8.071 10,416 14 7,031 12,465 10,116
24 436 1,896 1,854 24 1,267 753 1,687 24 649 1,598 1,064

First-order Degradation
Methanogenie (Natural Log) DenI . I (Natural Log) Sulfat8-ReduelnalNatural Log)

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 5.58 6.17 5.79 0 5.72 6.41 6.20 0 6.33 5.59 5.80
14 2.83 2.63 2.57 14 2.66 2.82 2.63 14 2.90 2.43 2.66
24 3.27 3.20 3.20 24 3.23 3.25 3.21 24 3.26 3.21 3.24

Notes:
1. Use y=805.7x+21606 from calibration curve
2. TIme is in days
3. Cone. is in 119/L
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Chlorofonn Degradation WIth 100 "aiL CHCI,.nd 500 "giL p-DCB

Chromatogram Peaks
Methanogenie Den b'ifying Sulfate Reduetn ~

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 388,546 379,262 321,504 0 330,819 349,888 412,320 0 358,654 333,846 342,359
7 171,485 290,118 257,933 7 299,576 278,367 283,990 7 220,439 217,702 286,618

24 12,840 12,136 12,539 24 14,188 14,891 17,253 24 13,906 15,334 17,139

First-order Degradation
Methanogenie (Natural Log) Deni . (Natural Log) Sulfate-Reducing (Natural Log)

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 6.12 6.10 5.92 0 5.95 6.01 6.18 0 6.04 5.96 5.99
7 5.23 5.81 5.68 7 5.84 5.76 5.79 7 5.51 5.49 5.80

24 2.39 2.46 2.42 24 2.22 2.12 1.69 24 2.26 2.05 1.71

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in mg/L
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Chlorofonn Degradation With 100 mgJL CHCI" and 60 mWL p-DCB

Chromatogram Peaks
Methanogenie Denlbifying Sulfllte Reduein II

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 403,790 349,692 387,357 0 309,879 393.464 340,762 0 385,090 457.291 '427,114
7 290,560 271,556 290,790 7 224,475 319,557 164,825 7 316,762 295,446 305,849

24 10,564- 10,201 4,986 24 10.462 5,174 9,962 24 195,341 14,068 11,163

First-order Degradation
Methanogenie (Natural Log) Denitrifyint: (Natural Log) Sulfate-Reducing (Hatu,..1 Loa)

Time Cone. Cone. Cone. Time Cone. Cone. Cone. Time Cone. Cone. Cone.
0 6.16 6.01 6.12 0 5.88 6.13 5.98 0 6.11 6.29 6.22
7 5.81 5.74 5.81 7 5.53 5.91 5.18 7 5.90 5.83 5.87
24 2.62 2.65 3.03 24 2.63 3.02 2.67 24 5.37 2.24 2.56

Notes:
1. Use y=805.7x+21606 from calibration curve
2. Time is in days
3. Cone. is in mg/L
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