PRESSURE ARCHITECTURE OF THE PERMIAN AND PENNSYLVANIAN SECTION IN CARSON, MOORE, HUTCHINSON, AND POTTER COUNTIES, TEXAS PANHANDLE

1

By

DANIEL A. HANNAH

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1992

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE August, 2001

PRESSURE ARCHITECTURE OF THE PERMIAN AND PENNSYLVANIAN SECTION IN CARSON, MOORE, HUTCHINSON, AND POTTER COUNTIES,

TEXAS PANHANDLE

 \sim . In the dotter house at $1/2^{-3} <$

化二氟酸二丁二氟化盐 化磷酸盐 化磷酸盐酸盐

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

PREFACE

This study was undertaken in an attempt to improve current understanding of the hydrodynamics and pressure architecture of a specific region within the Texas portion of the Panhandle-Hugoton gas field, the largest gas field in the coterminous United States. Data suggest that certain reservoir units within the area of study are underpressured with respect to a normal hydrostatic gradient, and might serve as possible disposal (injection) zones for oilfield brines and other types of liquid waste (municipal, industrial, etc.). Specific objectives of this research were to a) construct stratigraphic cross sections in order to better understand the geologic sequencing of formations within the study area, and b) construct contour maps displaying equipotential surfaces (hydraulic head elevation) over the study area. Both a) and b) were accomplished using Rockworks 99TM software developed by Rockware, Inc.

I sincerely thank my masters committee—Drs. Jim Puckette (Chair), Zuhair Al-Shaieb, and Richard A. Marston—for guidance, support, and advice in the completion of this research.

iii

NTENTS

ACKNOWLEDGMENTS

I wish to express my sincerest appreciation to my principal advisor and committee Chair, Dr. Jim Puckette, for his intelligent and thoughtful supervision and constructive guidance throughout the course of this study. My sincerest appreciation extends to my other committee members, Dr. Zuhair Al-Shaieb and Dr. Richard Marston, for their guidance, assistance, and encouragement. I would like to thank Dr. Jim Puckette and the School of Geology for providing me with this research opportunity.

I also wish to express my sincerest thanks to the administrative and clerical staff of the Oklahoma City Geological Society Well Log Library in Oklahoma City, Oklahoma, whose generous assistance made my research efforts considerably less time consuming.

	TABLE OF CONTENTS ATIONS 78
Chapter	PLANE RESIDEALS CONTOUR MAP Page
1. INT	TRODUCTION
1	Background
C	Dbjective of Study
2. Lľ	TERATURE REVIEW
]	Previous Studies
	Regional Structure
	Post-Permian Stratigraphy 16 Injection Well Parameters 18 Basic Hydrodynamic Principles 20
3. M	ETHODOLOGY
	Stratigraphic Cross-Section Generation
4. RI	ESULTS AND DISCUSSION
	Stratigraphic Cross Section Interpretation39Pressure-Depth Data Interpretation47Potentiometric Surface Map Interpretation53Hydraulic Head Cross Section Significance63
5. C	ONCLUSIONS
	Summary
REFERE	NCES CITED
APPEND	DICES
	APPENDIX ASCOUT CARD AND WIRELINE LOG DATA 69
	APPENDIX BWELL PRESSURE DATA

ŗ,

APPENDIX CWELL PRESSURE COMPUTATIONS
APPENDIX DTREND SURFACE RESIDUALS CONTOUR MAP
APPENDIX EDIRECTIONAL WEIGHTING CONTOUR MAP 87
APPENDIX FTRIANGULATION GRIDDING CONTOUR MAP
APPENDIX GE-Z MAP 2-D CONTOUR MAP 89
APPENDIX HKRIGING CONTOUR MAP
APPENDIX IDISTANCE TO POINT CONTOUR MAP91
APPENDIX JCLOSEST POINT CONTOUR MAP

Table Page
1. Geologic and Engineering Production Parameters for Texas Hugoton Field
2. Gas Chemical Composition for Red Cave Unit 14
3. Gas Chemical Composition for Wolfcampian Unit 14
4. Wolfcampian/GW Specific Gravity Data 15
5. Red Cave Gas Specific Gravity Data
6. Well Locations and Data Availability for Cross Sections
7. Formation Top Data for Cross Section A-A'
8. Formation Top Data for Cross Section B-B'
9. Production Data for Gas Wells Used in Study
10. Unit Thickness at Specific Well Locations
11. Production Depth and Recent BHP Values for Red Cave Gas Wells
12. Production Depth and Initial BHP Values for Red Cave Gas Wells
13. Production Depth and Recent BHP Values for Wolfcamp Gas Wells
14. Production Depth and Initial BHP Values for Wolfcamp Gas Wells

LIST OF TABLES

LIST	OF	FIGI	JRES
L 10 1	\sim	1 10	~~~~~

Page

Figure	Page
1. Panhandle-Hugoton Field Location	1
2. Study Area Location	3
3. Structure Map of Panhandle Field	5
4. Paleoenvironmental Evolution of Panhandle	7
5. Panhandle-Hugoton Field Stratigraphic Column	8
6. Chase Group Porosity and Permeability Histograms	9
7. Pennsylvanian/Permian Arkose Porosity and Permeability Histograms	10
8. Cross Sections of Gas, Oil, Water Positions in Panhandle Field	12
9. Gas-Oil-Water Contact Boundaries in Panhandle Field	13
10. Stratigraphic Chart of Middle and Upper Permian Salt Bearing Strata in Texas Panhandle	17
11. Surface Stratigraphy of Panhandle Physiographic Subdivisions	18
12. Deep Well Injection System	19
13. Diagram of Potential Sources of Deep Disposal Well Contamination	20
14. Pressure-Density Relationships in Static Fluid Body	21
15. Permian System Formation Water Constituent Concentrations	22
16. "Tank" Model of Hydrostatic Reservoir	23
17. Model Rock-Water System	24
18. Casing, Tubing, and Packer Arrangements in a Flowing Well	32
19. Hutchinson Co., Texas P-D Profile	34
20. Potentiometric Surface Map Example	39
21. Location of Cross Sections A-A', B-B'	42

Figure		Page
22. Structure Map of Top of Granite	Basement	
23. Cross Section B-B'	1. kao 1.2797	
24. Cross Section A-A'		
25. Red Cave P-D Plot (Recent Valu	ies)	
26. Red Cave P-D Plot (Initial Value	es)	
27. Wolfcampian P-D Plot (Recent V	Values)	
28. Wolfcampian P-D Plot (Initial V	'alues)	
29. Pressure-Depth Gradients for Ab	onormally Pressured Syste	ms52
30. Red Cave Potentiometric Surface	е Мар	
31. 3-D Red Cave Hydraulic Head C	Contours	
32. Structure Contours on the Tubb	Interval	
33. Wolfcampian Potentiometric Sur	rface Map	
34. 3-D Wolfcampian Hydraulic Hea	ad Contours	
35. Wolfcampian Hydraulic Head El	levation Cross Section Lo	cations 59
36. Wolfcampian Hydraulic Head C	cross Section C-C'	
37. Wolfcampian Hydraulic Head C	cross Section D-D'	61
38. Wolfcampian Hydraulic Head C	cross Section E-E'	
39. Potentiometric "Step" Cross Sec	ction	

CHAPTER 1

Introduction

The Panhandle-Hugoton gas field, the largest in the coterminous United States, covers portions of 19 counties in the states of Texas, Oklahoma, and Kansas. The field is approximately 275 mi long, and its width varies from 8 to 57 mi (Fig. 1). Understanding and evaluating the hydrodynamics of the field, particularly the Texas portions, is an important first-step in the process of selecting potential locations for deep subsurface disposal wells. Ideally, such wells would penetrate reservoirs with sufficient porosity and permeability to accommodate large volumes of fluid, maintain adequately low pore pressures as to not create additional stresses on the reservoir from pressure buildup during the injection process, and be vertically isolated from other formations by

Figure 1. Map of the United States showing location of Panhandle-Hugoton field (Pippin, 1970).

confining layers on both the top and bottom of the reservoir.

The primary purposes of this study are to establish the pressure architecture of the Panhandle-Hugoton field in the central part of the Texas Panhandle and evaluate the continuity of confining units. Reservoirs with sub-normal pressures have a much greater capacity to accommodate introduced fluids than reservoirs with normal or abnormally high pressures. Low injection pressures at the surface may reduce the possibility of fracturing confining beds, thereby limiting the risk of fluids migrating vertically out of the reservoir. Sub-normal pressure (underpressure) may be associated with a depleted reservoir that once contained oil or gas, and minimal or no pressure at the surface would be required to inject fluid into the reservoir. Such reservoirs normally maintain high volumes of storage space (available porosity) due to the removal of the original in-place fluids (gas, oil, water).

The area considered for this study lies in the central panhandle region of the state of Texas, and includes a significant portion of the Panhandle West field, a sub-unit of the larger Panhandle-Hugoton field (Fig. 2). Four counties, adjacent to and including the city of Amarillo, were selected as the focus of this study: Carson, Hutchinson, Moore, and Potter. This area was selected for the following reasons: 1) proximity to an urbanindustrial area that is a potential liquid waste source, 2) relative geographic isolation in relation to the more densely populated regions of the United States, 3) reservoirs that have relatively good porosity and permeability, 4) low pressure, and 5) abundant pressure

and fluid data accumulated during the development of the field over the last seven decades.

Figure 2. Location of Panhandle West field and counties included in the study area (Ruppel and Garret, Jr., 1989).

CHAPTER 2

thinks go bellives if

Literature Review

Previous Studies

Published information on the Panhandle-Hugoton field is somewhat rare considering its geographic size and the quantities of oil and gas it has produced over the past 70 years. Relatively little is known of the basic architecture of the reservoirs or the fundamental controls on the migration, trapping, and production of reservoir fluids. Pippin (1970) published a widely accepted general study of the field, including information on the lithology of the major late Paleozoic producing reservoirs and their general structural trends and stratigraphy. Ruppel and Garret, Jr. (1989) published a broad overview of the field, including geologic and engineering production parameters such as porosity and permeability values for late Paleozoic reservoir units. Recent studies conducted by Al-Shaieb et al. (1994) on the pressure characteristics of older (pre-Permian) Paleozoic reservoirs in the deep Anadarko Basin of western Oklahoma and the eastern portion of the Texas Panhandle emphasized the development and identification of reservoir compartmentalization. Very little published information exists on the pressure characteristics of shallower Permian and Pennsylvanian reservoirs in the Panhandle (Texas) field. As a result, a need exists for preliminary studies to be undertaken in order to provide information regarding pressure characteristics of the area and establish a data foundation for future studies.

Geologic Setting, History, and Regional Stratigraphy

The Panhandle (Texas) field is a complex structural trap overlying the Amarillo Uplift. It generally occupies a broad anticline formed by drape over the primary axis, a horst-like structure formed by the uplift's granite core (Fig. 3). The presence of numerous fault blocks, coupled with the irregularity of the uplift's surface, has resulted in a complex fold-and-fault controlled closure across the field. The Panhandle-Hugoton field occupies a structural feature known as the Hugoton Embayment that is widely interpreted as a broad, flat, shelf-like extension of the deeper Anadarko Basin. The ancestral Anadarko Basin was bounded on the south by the Texas peninsula and on the north by a broad, flat cratonic shelf until post-Mississippian time. Hunton Group and older rocks

Figure 3. Structure map of the Panhandle (Texas) field area. Datum is top of granite. (Pippin, 1970).

were truncated in the Texas and Oklahoma Panhandles as a result of regional uplift in northeastern New Mexico and southeastern Colorado at the end of Devonian time. Post-Mississippian diastrophism formed the Amarillo Mountains and two major faults just north of them. This uplift shifted the southern edge of the ancestral Anadarko Basin northward from the Texas Peninsula to the Amarillo Mountains, the present boundary of the Anadarko Basin (Pippin, 1970). Pre-Pennsylvanian sediments were later eroded from the Amarillo Mountains. Maximum uplift occurred during Atokan (Pennsylvanian) time, when erosion removed all sedimentary rocks from the mountain axis, exposing the granite core. Erosion of granite resulted in basinward deposition of Granite Wash over the Atoka unconformity. Granite Wash interbedded with marine mud and carbonate as the basin filled, and the Amarillo Mountains were covered by Wolfcampian time (Fig. 4). The Leonardian (Permian) Wichita Formation, which is composed of anhydrite and dense anhydritic dolomite, was deposited and formed a seal over the Wolfcampian reservoir beds (Pippin, 1970). The Leonardian Red Cave, the highest reservoir unit of interest in this study, was deposited on the Wichita Formation. The Red Cave consists primarily of red siltstone and shale, with interbeds of fine-grained sandstone along the west and southwest margins of the Panhandle field. The Red Cave has been interpreted as representing braided ephemeral streams along and emergent coastline (Ruppel and Garret, Jr., 1989). Figure 5 shows a widely accepted stratigraphic column of the Panhandle-Hugoton field. This column illustrates the local subsurface nomenclature of lower Permian and upper Pennsylvanian reservoir units.

Figure 4. Block diagrams showing paleoenvironmental evolution of Texas Panhandle during the early Permian (Ruppel and Garret, Jr., 1989).

ontiaci sea k 💚	from the section of		LOCAL NOMENCLATURE					
SYSTEM	SERIES	GROUP	PANHANDLE FIELD	HUGOTON FIELD				
States -			RED CAVE	RED CAVE				
	LEUNARD	SUMINER	WICHITA	WICHITA				
IP			BROWN	HERINGTON				
F			DOLOMITE	KRIDER				
R			WHITE DOLOMITE	WINFIELD				
м	WOLFCAMP	CHASE	ARK. DOLOMITE	FT. RILEY				
A N				WREFORD				
		COUNCIL GROVE	GRANITEL	COUNCIL GROVE				
	1. 1. 1. 1.	ADMIRE	V WASH X	ADMIRE				
	and By.	WABAUNSEE	GRANITE	WABAUNSEE				
PENNSYLVANIAN	VIRGIL	SHAWNEE	PE	SHAWNEE				

Figure 5. Stratigraphic column of the Panhandle-Hugoton field (Pippin, 1970).

Regional Lithology

Reservoir units of primary interest to this study include the Wolfcampian Chase Group (Brown Dolomite, White Dolomite, Moore County Lime, Arkosic Dolomite, Arkosic Lime) and the Permo/Pennsylvanian Granite Wash. Most gas production in the Texas portion of the Panhandle-Hugoton field comes from Chase Group dolostone and limestone. These rocks are believed to represent deposition on a shallow marine carbonate platform along the margins of the Amarillo Uplift during the earliest Permian. Further sea-level rise resulted in deposition across the entire area by the late Wolfcampian or early Leonardian (Ruppel and Garret, Jr., 1989). Chase Group carbonates consist primarily of skeletal/ooid grainstone and burrowed mudstone/wackestone deposited in repeated upward-shallowing sequences, and contain locally well-developed intergranular and intercrystalline pore space that results in high values of porosity and permeability (Fig. 6). The most productive reservoir to date in the Panhandle field has been the oolitic zone in the Brown Dolomite (Pippin, 1970). The

Figure 6. Histogram of (a) porosity and (b) permeability from core measurements in Chase Group (Brown Dolomite) in Panhandle Field (Ruppel and Garret, Jr., 1989).

Granite Wash represents a variety of rock types, ranging from loose, unconsolidated gravel to fine-grained arkosic red shale (Pippin, 1970). The wash, along with fractured crystalline basement rocks, are productive in the Panhandle field. The Granite Wash commonly contains well-developed intergranular porosity and possesses excellent permeability (Fig. 7). The Leonardian (Permian) Wichita Formation (also referred to as the Panhandle Lime) consists of anhydrite and dense anhydritic dolomite and overlies the Chase Group in the Panhandle Field. The Wichita forms a seal that is a barrier to upward fluid migration, although localized fracturing might breach this confining unit. The

Figure 7. Histograms of (a) porosity and (b) permeability from core measurements in Pennsylvanian/Permian arkose (Granite Wash) in Panhandle field (Ruppel and Garret, Jr., 1989).

Wichita Formation was most likely deposited when carbonate depositional systems migrated southward from the Panhandle into the Midland Basin during the early Permian. gradually transforming the Panhandle region into a vast, low-relief evaporite basin, where salt-bearing strata were deposited through the middle and late Permian (Presley, 1981). The Leonardian (Permian) Red Cave Formation overlies the Wichita Formation. The Red Cave consists primarily of siltstone and shale, with interbeds of fine-grained sandstone common along the western and southwestern margins of the Panhandle field. The sandstone is generally weakly cemented and exhibits well-developed porosity and permeability. The top seal for these sandstone reservoir units is the interbedded redbed shale. The Red Cave is locally productive in the southwest part of the Panhandle field, and is considered a separate reservoir from the Chase Group and Granite Wash (Ruppel and Garret, Jr., 1989).

State University Library

Regional Structure

Pressure and production data suggest that all reservoir units in Panhandle field are in vertical communication and effectively constitute a single reservoir (Ruppel and Garret, Jr., 1989), although heterogeneities observed in the Chase Group in the Hugoton field in Kansas are likely present in Panhandle field as well. These include marked lateral and vertical variations in porosity that result in considerable reservoir compartmentalization (Ruppel and Garret, Jr., 1989). Table 1 lists various geologic, engineering, and production parameters of reservoirs in the Panhandle field. Data indicate that a combination of fault closure and faulted anticlines provides the predominant trapping mechanism in Panhandle field. Cross-section E-E' in Figure 8 is a generalized cross section that roughly parallels a cross section constructed for this study. These cross sections show structural closure and the relative positions of the oil, gas, and water columns to reservoirs in Panhandle field. More reservoir beds are present in this area than in any other part of the field (Pippin, 1970). The angle of dip is low, so the intersection of the oil column with these reservoir beds produces a wide band of oil pay. Migration of oil was limited southward by intersection of the oil column with granite (Pippin, 1970). Figure 9 shows the areal extent of the gas-water, gas-oil, and oil-water contacts within the study area. Oil accumulation is almost exclusively limited to the northern flank of the uplift, while the gas column is present on both the north and south flanks of the uplift. Most development of the shallower Red Cave (Leonardian) reservoirs occurred from 1960 to 1965 and Red Cave development continues to the present. The sandstones are porous and permeable in the productive area, but pore spaces are commonly filled with salt and anhydrite around the perimeter of the field, suggesting that gas did not migrate

Figure 8. NW-SE cross sections showing relations of oil, gas, and water in Panhandle field (Pippin, 1970).

laterally into the field, but probably migrated vertically through fractures from the

Wolfcamp below. This hypothesis is partially supported by evidence that formation

pressures were originally similar in both the Red Cave and the Wolfcampian, although chemical analysis shows some differences in the composition (Tables 2 and 3) of Red Cave and Wolfcamp gases (Pippin, 1970). Tables 4 and 5 show differences in gas

Figure 9. Map showing gas-oil-water contact boundaries within Panhandle field (Ruppel and Garret, Jr., 1989).

NHC COUNTY	FELD	RESINCE	DISC		UN	The	OWE	9%G	PR7	KOTES	POR	P(1)	LHOE	TEMP	MESS	-		TYPE R	CUMPROD	009
W CANNON	PNDNIDLE	CAMBON COLINITY FELD	-	30	13-00-55-0	OCOME FC/A			13			8		-	-				-	
N CALT	PROVIDLE	GIAN COUNTY FIELD	-	-	15-00.45-0	GLONE PC-FA	35		-	-					-	17			-	
NUTCHEON	PHONELE	NUTCHINGON COUNTY FELD	185	-	1400.48-0	APDIE ICAL	30	2910	-	-				105	-				-	
N NCORE	PROPAGLE	NOOFE COUNTY FELD	151	398	13-00-04-0	LOR BOUL	30	2010	125	-			8 M.		-		1.2		1000	
N NOOFE	AND HOLE	NED CANE	-	1798		COME FC./A	50	*			. 17		-		-	177			-	
N WEELD	PANEWICLE	WEELEN COUNTY FELD	1821	30	13-0038-0	COME PERM	80	7874		-		1.5		-	-	17				1999
N COLLINGINGITY	PROVINCI_L EAST	ONN MANNER CO.	155	-	1400.44-0		10		13	-					-	17			-	-
N HATCHINGCH	PROMOLE NEST	ORMI WARHERIN DOL	194	20	00.45-00	COME PLATA	-			13000					-				-	
-	MININGLE WEST	NED CINE	188	-	18-00.	COME PC/1	-			1200					-		-		-	
N DERM	TECHS HUDDRON		-	201	11-001-01	STALL PC	-		119	-			š.		-		-			-
							100							-	-				2.400	
											•						1	ind Cu	-	

Table 1. Geologic and engineering production parameters for Texas-Hugoton field (Ruppel and Garret, Jr., 1989).

(0)(0)

Table 2. Gas chemical composition analysis data for Red Cave unit (Moore, 1982).

Table 3. Gas chemical composition analysis data for Wolfcampian unit (Moore, 1982).

Table 4.	Gas Specific Gravity Data for Wolfcampian/GW Units							
Well #	Туре	SG	Prod. Unit					
2A**	GAS	0.87	Wolfcampian					
3A	GAS	0.83	Wolfcampian					
4A	GAS	0.85	Wolfcampian					
6A*	GAS	0.83	Wolfcampian/GW					
7A*	GAS	0.89	Wolfcampian					
8A*	GAS	0.85	Wolfcampian					
12A	GAS	0.85	Wolfcampian/GW					
6B	GAS	0.79	Granite					
8B*	GAS	0.83	Wolfcampian					
9B	GAS	0.96	Wolfcampian					
14B	GAS	1	Wolfcampian					
15B**	GAS	0.65	Wolfcampian					
16B	GAS	0.66	Wolfcampian					
1P*	GAS	0.84	Wolfcampian					
3P	GAS	0.88	Wolfcampian/GW					
4P	GAS	0.92	Wolfcampian					
8P	GAS	1.02	Wolfcampian					
9P	GAS	0.89	Wolfcampian					
11P	GAS	0.67	Wolfcampian					
14P	GAS	0.87	Wolfcampian					
15P*	GAS	0.83	Wolfcampian					
16P	GAS	0.85	Wolfcampian					
17P	GAS	0.79	Wolfcampian/GW					
18P	GAS	0.8	Wolfcampian					
19P	GAS	0.72	Wolfcampian					
20P**	GAS	0.79	Wolfcampian					
21P	GAS	0.87	Wolfcampian					
22P	GAS	0.95	Wolfcamplan					
24P	GAS	0.82	Wolfcampian					
25P**	GAS		Wolfcampian					
26P	GAS	0.81	Wolfcampian					
27P**	GAS	0.75	Panhan./Wolfcamp					
28P	GAS	0.79	Wolfcampian					
29P	GAS	0.88	Wolfcampian					
30P**	GAS	0.7	Wolfcampian					
31P	GAS	0.75	Wolfcampian					
37P	GAS	1.01	Wolfcampian					
38P	GAS	0.93	Wolfcampian/GW					
39P	GAS	0.81	Wolfcampian					
40P	GAS	0.74	Wolfcampian					
41P	GAS	0.84	Wollcampian					
42P	GAS	0.73	GW					
43P	GAS	0.99	Wollcampian					
44P	GAS	0.8	Wolfcampian					
45P	GAS	0.95	Wolfcamplan					
46P*	GAS	0.9	Wolfcampian/GW					
47P	GAS	0.81	Wollcampian					
48P	GAS	0.95	Wollcampian					
49P	GAS	0.85	Wolfcampian					
50P	GAS	0.84	Wolfcampian					
	Mean:	0.840816	1					
		N=49						

Table 5.	Gas Spe	clfic Gravit	y Data for
	Red Cave	Units	
Well #	Туре	SG	Prod. Unit
5B	GAS	0.69	Red Cave
78	GAS	0.75	Red Cave
2P	GAS	0.74	Red Cave
5P	GAS	0.74	Red Cave
6P	GAS	0.77	Red Cave
7P	GAS	0.73	Red Cave
10P	GAS	1.03	Red Cave
12P	GAS	0.69	Red Cave
13P	GAS	0.89	Red Cave
23P	GAS	0.77	Red Cave
32P	GAS	0.68	Red Cave
33P	GAS	0.75	Red Cave
34P	GAS	0.77	Red Cave
35P	GAS		Red Cave
36P	GAS	0.96	Red Cave
	Mean:	0.78285	7
		N=14	

אַנענים <u>היוויפּוטיוע</u> בוטומוץ

specific gravity for Red Cave and Wolfcampian samples. Ruppel and Garret, Jr. (1989) considered the Red Cave a separate reservoir, and this study utilizes their conclusions that the Wichita Formation provides a barrier between the Wolfcampian and Red Cave throughout the study area.

Post-Permian Stratigraphy

The stratigraphic position and lithology of units overlying the Permian section in the study area are of interest, considering the potential for vertical migration of fluids injected into Permo/Pennsylvanian reservoir units. Overlying Permian rocks in the Panhandle area are terrestrial clastic facies of the Triassic Dockum Group and alluvial facies of the Miocene-Pliocene Ogallala Formation (Presley, 1981). Figure 10 is a stratigraphic chart of Middle and Upper Permian salt bearing strata and associated formations in the Texas Panhandle. Multiple layers of evaporites are present throughout the Middle and Upper Permian section between the Leonardian Red Cave and Triassic Dockum Group. Most of these formations form effective confining layers, though exceptions may exist in areas of localized fracturing or salt dissolution. The Glorietta Sandstone is considered an aquifer, although waters from the Glorietta are high in total dissolved solids (TDS) and non-potable (salaquifer). Middle and Upper Permian evaporite units range from 1000 to 1500 ft in thickness, with member formations typically ranging from 50 to 500 ft in thickness (Presley, 1981). These units often outcrop in the Panhandle region. Overlying the Permian section are sandstone, siltstone, and mudstones of the Triassic Dockum Group (Collins, 1990). Figure 11 shows the general surface stratigraphy for each physiographic subdivision of the Texas Panhandle and

CIGANDIO

adjacent areas of the Oklahoma Panhandle and eastern New Mexico. The portion of the Panhandle-Hugoton field occupying the study area lies within the Canadian Breaks

SYSTEM	SERIES	PA (LO DURO BASIN SUBSURFACE)		TERN TEXAS	DALHART BASIN	WESTERN ANADARKO BASIN Imodified from Johnson, 19781
R ?			Dockum Group				
[']	DAN	Lake	Dewey Lake Red Beds	Quartern Red B	asler eds	Dewey Lake Red Bed	Doxey Red Beds
	CH	alado evey enetic	Alibates Fm.	Alibotes	3	Alibates Dolomite	5
		even R S ates Gen- D tic Unit 6	Yales Fm, Seven Rivers Fm.	White	horse	Whitehorse Red Beds	Cloud Chief Formation
	NAIC	burg K	Queen-Grayburg Rec Beds		- Fe		Whitehorse Group (Dog Creek Sh.)
	GUADALUF	res Genetic Unit Gro	San Andres Formation	Bla Form	ine nation	Blaine Formation	Blaine Salt
IAN		San Andre		Fluero	owerpot Shale	Flowerpot Salt Glorieta	Flowerpot Salt
PERM		r Fork – netic Unit	Glorieta Red Beds	-	<u> </u>	Sandstone ·	Flowerpot (Glorieta) Red Beds
	NDIAN	upper Clear Glorieta Gen	upper Clear Fork Salt	Group	Choza Red Beds	Clear Fork Formation	upper Cimarron (upper Clear Fork) Solt
	NAF	1.7	Tubb Red Beds	ork		(Cint	Tubb Red Beds
	LEO	lower Clear Fork Tubb Genetic Ur	lower Cleor Fork Sall	Clear F	Vale Red Beds	Tubb-Wichita undifferentiated Red Beds	lower Cimarron (lower Clear Fork) Salt
		Red	Cave Formation		Arroyo Fm.		Red Cove Formation

PARTICIPATION PA

Figure 10. Stratigraphic chart of Middle and Upper Permian salt-bearing strata and associated formations in the Texas Panhandle. Asterisk indicates salt dissolution has occurred between units; outcropping units lack salt (Presley, 1981).

physiographic subdivision. The Cretaceous section is absent in this area, and the Tertiary (Mio-Pliocene) Ogallala Formation overlies the Triassic Dockum Group. The Ogallala contains sand, silt, mud, gravel, caliche, and some sandstone and mudstone. The Ogallala serves as the region's principal aquifer and outcrops at the surface over significant portions of the four-county study area. The Ogallala is considered a terrace alluvium

	North	Plains	Southern Hi	gh Plains	Canadian Breaks		
	Unit	Lithology	Unit	Lithology	Unit	Lithology	
Recent to Pleistocene	Windblown deposits, alluvium, and lake deposits	Sand, slit, and mud *	Windblown deposits, alluvium, and lake deposits	Sand, silt, and mud®	Windblown deposits, alluvium, terrace and lake deposits	Sand, silt, and mud	
Pleistocene	Lake deposits, Blackwater Draw Formation	Sand, silt, and mud*	Lake deposits, Blackwater Draw Formation	Sand, silt, and mud*	Lake deposits	Silt, mud, and sand	
Tertiary	Ogaliala Formation	Sand, slit, mud, gravel, caliche, and some sand- stone to mudstone	Ogallaia Formation	Sand, slit, mud, gravel, caliche, and some sand- stone to mudatone	Ogallala Formation	Sand, silt, mud, gravel, caliche, and some sand- stone to mudstone*	
Cretaceoue	Dakota and Purgatoire Formations	Sandstone and shale	Duck Creek and Klamichl Formations, and Edwards Group	Shale, limestone, some saridstone			
Triassic	Dockum Group	Sandstone, silt- stone, and mud- stone	Dockum Group	Sandstone, silt- stone, and mud- stone	Dockum Group	Sandstone, silt- stone, and mud- stone*	
Permian					Quartermaster, Alibates, and Cloud Chief formations, and Whitehorse Group	Sandstone, silt- stone, dolomite beds, and gypsum beds*	

Figure 11. General surface stratigraphy for various physiographic subdivisions of the Texas Panhandle and adjacent areas of the Oklahoma Panhandle and eastern New Mexico (Collins, 1990).

type aquifer, and ranges in thickness from 50-600 ft, with an average depth to water of 50-300 ft. Hydraulic conductivity varies from 10-700 ft/day, and typical well yields range from 50-1000 gal/min (Todd, 1983). Pressure evaluation of Permo/Pennsylvanian reservoirs should examine possible routes or mechanisms for fluid migration from these deeper units upward into the Ogallala aquifer.

Injection Well Parameters

Injection wells are commonly used for the permanent underground storage of industrial wastes (Warner, 1968). Deep-well injection may become an increasingly important alternative to conventional surface and near-surface waste disposal methods. Large urban areas producing voluminous amounts of municipal and industrial waste might consider deep-well disposal as a means to better protect surface environmental resources such as soil and water. Suitable locations for deep-well injection would include areas with oil and gas production, as existing wells might be used for waste injection and subsurface data would be available for well planning. Such locations are commonly found in the Mid-Continent, Great Plains, Rocky Mountains, and Gulf Coast (Collins, 1975). In the case of deep injection wells, the term "deep" refers to rock (not soil) that is below and completely isolated from all freshwater aquifers (Keller, 2000). A more conventional definition might be an injection well with a storage horizon that is greater than 305 m (1000 ft) deep. Figure 12 is a schematic cross section of a hypothetical deepwell injection system. The figure shows the position of the disposal reservoir with

Figure 12. A deep-well injection system (Keller, 2000).

respect to confining layers and fresh water aquifers. Acceptable geologic areas for deep injection wells include most synclinal basins with porous sedimentary rocks available as reservoirs. Such strata are found under approximately 50% of the land area in the United

States, including the Mid-Continent and Great Plains (Collins, 1975). Reservoir characteristics of suitable disposal zones include; large porosity, permeability, and thickness, large areal extent, uniform and not too heterogeneous reservoir units, salaquifer, injection zone laterally and vertically separated from freshwater zones, and no unplugged or improperly plugged wells penetrating the zone in the vicinity of the disposal well (Collins, 1975). Figure 13 illustrates how liquid waste might enter a freshwater aquifer through abandoned wells, implying that careful geologic and hydrodynamic planning is essential when considering possible sites for deep-well waste injection.

Figure 13. Diagram illustrating importance of knowing locations of abandoned wells in relation to disposal and water supply wells (Keller, 2000).

Basic Hydrodynamic Principles

Hydrodynamic evaluation of the Panhandle field requires the acceptance of certain fundamental principles of fluid behavior with depth. Any body of fluid has, with respect to pressure, the following attributes (Dahlberg, 1995):

- 1) The internal pressure increases with depth in the body
- The rate at which the pressure increases is called the *static pressure gradient* and it depends only on the density of the particular fluid concerned
 - The two- or three-dimensional orientation of the vector representing the direction of maximum rate of pressure increase is vertical if the fluid concerned is static
 - Pressure-depth relationships are completely independent of the shape of the fluid's container (or formation)

Figure 14 illustrates pressure-density and gradient relationships in a static body of

Figure 14. Pressure-density and gradient relationships in a static body of fluid (Dahlberg, 1995).

fluid. Pressures at all points within a confined fluid body (or system) plot graphically on a single straight line which represents the pressure gradient (Fig. 14). At any point on the line, pressure is dependent on three factors (Dahlberg, 1995):

- 1) The density of the fluid itself
- 2) The depth of the point below the top of the fluid column

The pressure at the top of the fluid column The pressure build-up with depth is attributable to the increasing weight of the fluid column above the particular point concerned and the rate at which the pressure increases downward with depth (Dahlberg, 1995). Fluids in the reservoir units examined are assumed to be in continuous contact through the pore network. The graphical slope of the pressure gradient, dP/dZ, is numerically equal to D x g, where D is fluid density (lb/ft3) and g is the acceleration of gravity (ft/sec2). The pressure gradient (grad P = dP/dZ) can be calculated for practical purposes using the specific gravity and the following equation (Dahlberg, 1995):

$$gradP = \frac{specific gravity \times 62.4}{144} = \frac{dP}{dZ} \quad (2.1)$$

Constituent	Concentration	Number of samples	
	highest	average	
Lithium	6	3	3
Sodium	109,000	47,000	54
Potassium	405	170	3
Rubidium	2	0.80	3
Cesium	0.20	0.13	3
Calcium	22,800	8,600	54
Magnesium	5,800	2,000	53
Strontium	10	7	3
Boron	20	8	3
Copper	0.88	0.88	1
Chloride	177,000	92,700	54
Bromide	68	46	3
Iodide	3	3	1
Bicarbonate	281	77	49
Carbonate	36	36	1
Sulfate	3,400	730	41
Organic acid			
as acetic	220	170	2
Ammonium	24	24	3

Figure 15. Highest concentration of a constituent found, average concentration, and number of samples analyzed for Permian system formation waters throughout the United States (Collins, 1975).

Formation waters of Permo/Pennsylvanian reservoirs in the study area are estimated to have an average chloride concentration of 92,700mg/l (Fig. 15). This value results in a specific gravity of 1.074 and a pressure gradient of 0.465 psi/ft, a commonly accepted brine gradient value for Oklahoma, Texas, and the Gulf Coast (EG & G Continental Laboratories, 1982). As stated earlier, reservoir units in this study are assumed to be in a hydrostatic environment, where there is no internal motion or movement of the fluid. The maximum internal pressure gradient is vertical and attributable to the weight of overlying fluids. All internal forces are oriented vertically with buoyancy as the major one (Dahlberg, 1995). Figure 16 is a mechanical "tank" model of a hydrostatic subsurface reservoir. It shows the essential internal and external components and the dimensional

Figure 16. A "tank" model of a hydrostatic reservoir illustrating the relationships between internal fluid pressure at a point in the fluid body and the corresponding hydraulic "head" of the fluid at that point reflected by the height of the fluid column in a manometer tube (Dahlberg, 1995).

variables from which the hydrologic parameters can be calculated (Dahlberg, 1995). The Permo/Pennsylvanian units within the study area are underpressured with respect to a normal hydrostatic gradient. This may be the result of reservoir compartmentalization (isolation of certain reservoir units by impermeable or semi-permeable barriers). Figure 17 shows a hypothetical rock-water system with an internal, completely impermeable seal that is supported by the underlying grains or its own mechanical rigidity. The seal transmits little of the weight of the overburden and fluids above the seal to the fluids below the seal. This mechanism, combined with the relatively shallow depths of reservoir units within the study area, may explain their underpressured nature. Barker (1974) states that if a normally pressured zone becomes effectively isolated from its surroundings

Figure 17. A model rock-water system with an internal, completely impermeable seal. The rock framework in the compartment underneath the seal supports the weight of the rocks *and* the water overlying the seal (Dahlberg, 1995).

(i.e., the Wichita Formation seal on the Wolfcamp), and if this zone is cooled by uplift or removal of overburden during erosion, the pressure in the isolated volume will fall below the normal hydrostatic gradient (the pressure must decrease in order to maintain a constant fluid density). The Panhandle (Texas) field discovery well, drilled in 1918 to a depth of 2395 ft, recorded an initial shut-in pressure of 420 psi. This value falls well <u>composition</u> below the normal hydrostatic gradient for that particular depth, suggesting Permo/Pennsylvanian reservoirs in Panhandle field were underpressured before largescale production of the area began. Other North American basins that are naturally underpressured or display characteristic zones of underpressure include the Alberta Basin of western Canada (Dahlberg, 1995), portions of the Denver Basin, and the Salina and Forest City Basins of northeastern Kansas (Warner, 1968). Underpressured intervals in normally or abnormally pressured basins, produced by hydrocarbon depletion, might serve as suitable zones for deep-well injection, provided adequate confining layers exist above and below the interval.

CHAPTER 3

Methodology

Stratigraphic Cross Section Generation

Evaluating the areal extent, continuity, and thickness of reservoir and confining units within the area of study is an important first step in characterizing the hydrodynamics of Panhandle field. The study area includes parts of Carson, Hutchinson, Moore, and Potter Counties, Texas (Fig. 2), and lies between latitudes 35°15' and 36°00' N and longitudes 101°15' and 102°00' W. Two stratigraphic cross sections were constructed for this study using wells that were selected from 1"=1 mile scale Herndon geologic maps of the representative counties.

Cross section A-A' (Fig. 24, Chapter 4) trends NW-SE and extends approximately 55 miles. Thirteen wells were used as control points, resulting in an average spacing of 4.2 miles. Cross section B-B' (Fig. 23, Chapter 4) trends SW-NE and extends approximately 59 miles. Seventeen wells were used as control points, resulting in an average spacing of 3.5 miles. No specific standards exist for determining stratigraphic cross section control well spacing. Miall (1999) suggests that spacing should conform to the scale and type of cross section under consideration. Spacings of 6.2-12.5 mi per well have yielded statistically acceptable formation correlation results in certain basinwide studies. Formation tops of interest, ground elevation, total well depth, production depth, and well type were determined using wireline electric logs and production and completion data available in the Oklahoma City Geological Society Well Log Library. Table 6 lists the counties, names, locations, well types, and data availability for all wells Iklahoma State University Library

Well #	Well Name	County	Location	Strip Log	Wireline	Scout Card	Production Decline Plot	Туре
10B	Cities Service #12 Deahl "B"	Carson	H & GN Sec. 4	N	Y	Y	N	OIL
9A	Citles Service Deahl "B" #5	Carson	AB & M BLK 3 Sec. 8	N	Y	Y	N	OIL
10A	A. C. Bruce Burnett #1-81	Carson	I & GN BLK 5 Sec. 81	N	Y	Y	N	D & A
11A	Cities Service Oil Co. #1-C-50 Burnett Ranc	Carson h	1 & GN BLK 5 Sec. 50	N	Y	Y	Y	D & A
12A	Cities Service Gas Co Burnett 101 A	Carson	I & GN BLK 5 Sec. 2	N	Y	Y	Y	GAS
13A	Cities Service Pet. #3-8 Empire GW Unit	Carson	I & GN BLK 7 Sec. 12	N	N	Y	N	OIL
11B	Phillips Petroleum J. M. Sanford #3	Hutchinson	B & B BLK 1 Sec. 1	N	Y	Y	N	OIL
128	J. M. Huber #4 Johnson "B"	Hutchinson	A & B BLK Y Sec. 37	N	Y	Y	Ŷ	OIL
13B	Gulf Oil Corp. #3 K. Reimer	Hutchinson	H & TC BLK 47 Sec. 29	N	Y	Y	N	OIL
8A	Phillips Pet. Co. #3 Kermicle	Hutchinson	H & TC BLK 46 Sec. 89	N	N	Y	Y	GAS
15B	Pathfinder Pet. 19-1 Wisdom	Hutchinson	TC RR BLK M23 Sec. 19	N	N	Y	Y	GAS
16B	Pathfinder Pet. #1-4 Wisdom	Hutchinson	FREDERICK Sec. 1	N	Y	Y	Y	GAS
17B	Ladd Pet. #1 Dent	Hutchinson	D & P BLK 17 Sec. 1	N	Y	Y	N	D&A
14B	J. M. Huber #1 Hazel	Hutchinson	H & OB BLK XO2 Sec. 4	N	N	Y	Y	GAS

Table 6. Well Locations and Availability of Data for Panhandle Study-Cross Sections AA', BB'
Well #	Well Name	County	Location	Strip Log	Wireline	Scout Card	Production Decline Plot	Туре
1A	Texas Co. #1 R. L. Beard	Moore	H & TC BLK 44 Sec. 369	Y	Y	Y	N	D&A
2A	Shamrock #2 Harrington	Moore	H & TC BLK 44 Sec. 307	N	N	Y	Y	GAS
3A	Nat. Gas P. G1 R Powell LB	Moore	H & TC BLK 44 Sec. 227	N	N	Y	Y	GAS
4A	Nat. Gas P. #33 R. S. Coon	Moore	H & TC BLK 44 Sec. 189	N	Y	Y	Y	GAS
5A	Kerr-McGee #1-31-A Sneed	Moore	T & NO BLK 6T Sec. 31	N	Y	Y	N	D&A
6A	Colo. Int. Gas D-2 Sneed	Moore	T & NO BLK 6T Sec. 42	Y	Y	Y	Y	GAS
7A	Colo. Inter. #6-A Fee	Мооге	G & M BLK 3 Sec. 79	Y	Y	Y	Y	GAS
18	Plains Res. 1-156 O'Brien Trust	Potter	BS & F BLK 9 Sec. 156	N	N	Y	N	D&A
28	U.S. Bureau of Mines Bush #A-8	Potter	BS & F BLK 6 Sec. 26	N	Y	Y	N	HELIUM
38	U.S. Bureau of Mines Fuqua A-1	Potter	BS & F BLK 6 Sec. 18	Ν	Y	N	N	HELIUN
4B	Baker & Taylor Emeny #1	Potter	G & M BLK M19 Sec. 29	N	N	Y	Y	OIL
58	Eason Oil Bivins Ranch #1-3	Potter	ACH&B BLK 4 Sec. 3	N	Y	Ŷ	Y	GAS
6B	Colo. Interstate Gas B-99 Masterson	Potter	H & TC BLK 47 Sec. 67	N	N	Y	Ŷ	GAS
7B	Colo. Inst. B 55R Masterson	Potter	G&M BLK 3 Sec. 26	N	N	Y	Y	GAS
98	Pioneer Nat. Res. A-208 Bivins	Potter	G & M BLK 5 Sec. 11	N	Y	Y	Y	GAS
88	Col. Inter. Gas #163-A Bivins	Potter	H&TC BLK 46 Sec. 103	N	Y	Y	Y	GAS

AIRIUI (AIISIAAIIII) AIRIS PUBLIERA I

used in cross section construction. The physical locations of wells were converted to X and Y coordinates (northings and eastings in ft) using the southwest corner boundary of Potter County as the origin (0,0). Depths to various rock units, including the Red Cave, Panhandle Lime (Wichita Formation), Wolfcampian, Pennsylvanian and older Paleozoic units, Granite Wash and Granite, as well as total depth were determined from scout cards and wireline electric logs. Well coordinates, rock unit data, and well collar elevations were entered into spreadsheets (Tables 7 and 8) and used to create stratigraphic cross sections using Rockworks 99[™] software. These cross sections are presented in Chapter 4.

Pressure Data Analysis

Pressure data for control wells used in this study were obtained from PI/Dwights PLUS on CD database. Wellhead shut-in pressure (WHSIP) and bottomhole pressure (BHP) values for both active and inactive gas wells were obtained from detailed well test reports. Pressure values and all other engineering units used in this study are U.S. Customary (Harnmer and MacKichan, 1981). Wells were identified on Herndon geologic maps (Herndon Map Service, 2001) of the four-county study area and their positions reported as northings and eastings in ft. Figure 18 is a simplified schematic of a producing oil well (the same diagram could apply to a producing gas well). Instrumentation at the wellhead records static shut-in pressure (WHSIP) that can be used to calculate bottomhole pressure (BHP) if certain variables are known. "Bottomhole" pressure is reservoir pressure at the point of the lowest (deepest) perforation in the production casing (Fig. 18) and not the actual bottom (total depth) of the drilled hole, though the two are sometimes the same. Wahnma State I Iniversity Library

Formation tops in feet above/below datum (mean sea level)											
Well #	Easting (ft)	Northing (ft)	Red Cave	Panhandle	Wolfcamp Dol	Granite Wash *	MDSO **	TD			
1A	26822	274560	1062	562	312	-288		-388			
2A	42768	258202	1585	824	555			322			
зА	61248	240250	1729	963	715			200			
4A	81312	225994	1494	1075	762	-162	-1802	-2622			
5A	104016	198010	1756	1366	1072	476		-214			
6A	124608	190882	1627	1307	983	583		203			
7A	134112	172930	1678	1288	1023	713		201			
8A	166056	179424	1508	1158	728			-252			
9A	184642	147797	1391	1143	723	191		26			
10A	215900	139613	1616	1403	795	493		-144			
11A	218540	119021	1626	1407	991	701		-65			
12A	242458	101861	1419	1184	799	430		380			
13A	253018	92093		1018	606	220		-12			
Grani	te Wash may be Perm	no/Pennsylvanian						114			
MISS	Mississippian, Devonian, Silunan, Ordovician										

1105

Northing and Eastings from southwest corner boundary of Potter Co. (0,0)

30

VIRIAL I VIRIAVIAL ARTE EMOREINO

Well #	Easting (ft)	Northing (ft)	Red Cave	Panhandle	Wolfcamp Dol	Pennsylvanian *	Granite Wash **	Granite ***	MDSO ****	тр
1B	33792	38016		-191	-676	-1436	-2711			-4747
2B	50160	52272	737	313	-25					-270
3B	57552	65472	851	373	-53			- 1.		-251
48	73392	82368	808	271	-149	-1476	-2410	-2571		-2723
5B	95568	89760	616	322	-200					-419
68	103435	111936	1579	1357	1221		1126	1050		267
7B	106392	127248	1706	1506	1336		1216			-109
8B	129096	133848	1645	1859	1111		861			309
9B	140712	144778	1694	1446	1316		836			406
10B	181474	151536	1361	1114	699		207			132
118	198898	173712	1531	1361	926		259			-140
128	199109	186120	1462	1207	824					-150
13B	199980	203438	1216	961	477		106		2 B	-22
148	194172	223396	1195	921	419	2			승 전 -	-10
15B	211596	246100	1135	785	235					-104
168	212916	252436	1149	802	227				1	-92
178	228756	279628	1171	811	91	-1771			-3611	-4999
* Pennsyn ** Granite *** Granite **** Missia	vanian sedimentary Wash may be Pem e most likely Cambr ssipplan, Devonian,	units no/Pennsylvanian or oldi an-Pre Cambrian Silurian, Ordovician	er Pennsylvanian							ogbistPl detailer dar vorti

Northing and Eastings from southwest corner boundary of Potter Co. (0,0)

Table 8. Cross Section B-B', SW-NE

3

Ŧ

VIRICI | VIPTOVIOL | OTEL? EMOREINO

Most BHP values used in this study were taken directly from Dwights/PI detailed well test reports. In some cases, only the WHSIP was listed for a particular well. Echometer Acoustic Bottomhole Pressure Survey (version 2.1), a DOS based program, was used to calculate a BHP value, provided the well's maximum production depth, gas specific gravity, and basic gas chemical composition (if available) were known. BHP values were obtained and tabulated for producing gas wells in both the Wolfcampian and Red Cave. Initial BHP values were tabulated separately from the most recent BHP

values. Pressure-depth (P-D) plots were constructed using Excel 2000 for initial and recent BHP values from both Wolfcampian and Red Cave data. A sample pressure-depth plot from Hutchinson County, Texas is shown by Figure 19. Depth is plotted on the y-axis, decreasing upward, and pressure plotted on the x-axis, increasing to the right. A hydrostatic gradient line using 0.465 psi/ft brine density is then plotted on the graph to provide a reference for the individual data points (points suggesting normal, subnormal, or abnormal reservoir pressures). Wolfcampian and Red Cave P-D plots are presented in Chapter 4.

Potentiometric Surface Map Generation

Potentiometric surface maps were selected as the primary form of graphical representation of pressure conditions present in Wolfcampian and Leonardian reservoirs examined in this study. A potentiometric surface represents a calculated imaginary surface, the topography of which reflects geographic variation in the fluid potential of the formation water within a particular aquifer or subsurface reservoir (Dahlberg, 1995). The elevation of the surface at any point reflects (but does not exactly equal) the height to which a column of water would rise above a reference datum within a vertical tube (ignoring capillarity). This is an approximation of the hydraulic "head" (H_w), which reflects the level of potential energy of the water in the reservoir/aquifer. The height of the column mirrors the pressure within the aquifer (or reservoir) at that point (Dahlberg, 1995). Hydraulic head is normally calculated from pore pressure (BHP) measurements in fluid-saturated rock as follows (Dahlberg, 1995):

$$H_w = \mathbf{Z} + \frac{P}{D_w g} \tag{3.1}$$

Figure 19. Hutchinson County, Texas P-D profile (Oklahoma State University, 2000).

where Z = reference datum in feet above or below a constant datum (mean sea level for this study); P = bottomhole pressure in psi; D_w = density of the water throughout the fluid column above the point of measurement (lb/ft3); and g = acceleration of gravity (ft/sec2). Substituting grad P for D_w g in (3.1) yields:

$$H_w = Z + \frac{P}{gradP}$$
(3.2)

For the purposes of this study, grad P maintains a constant value of 0.465 psi/ft. Therefore, hydraulic head values for control wells may be calculated using the relationship:

$$H_w = Z + \frac{P}{0.465}$$
(3.3)

Table 9 lists elevation (Z), bottomhole pressure (BHP), pressure head (HP), and total head (HT) for control wells used in this study. Elevation (Z) is the height above mean sea level (MSL) in ft of the lowest producing (perfed) interval in the well. Pressure head (HP) is the height in ft of the water column in the production tubing, and total head (HT) is the sum of the elevation and the pressure head in ft. Calculations were performed in a standard Excel 2000 spreadsheet. Only gas wells that were active during or up to the years1996-2000 were used as control points. This screening minimized reservoir pressure differences between wells that were the result of drawdown and provided a more accurate "snapshot" of current reservoir pressure conditions.

Once positions and total head values were determined for control wells, Rockworks 99[™] software was used to generate two and three-dimensional equipotential surface contour maps for both Wolfcampian and Leonardian (Red Cave) reservoir units. An inverse distance method, one of the more common gridding methods, was selected to produce the contour maps presented in Chapter 4. This modeling method was selected over seven other modeling methods offered by Rockworks 99[™] based upon perceived accuracy of interpretation of the existing geologic and pressure data. Appendices D-J offer examples of 2-D contour maps constructed with other Rockworks 99[™] modeling methods using the same data set. Most of the maps generated a pattern of concentric contours ("bulls-eyes"), a result of the particular gridding algorithm. Figure 20 shows an example of a potentiometric surface map (with flow direction arrows) of part of the San Juan Basin. Wolfcamp and Red Cave potentiometric surface maps are presented in Chapter 4. Oklahama Ctata I Iniwaraihi I ihran

Table 9. Production data used for determining pressure head and total head for control wells. * Echometer program used for BHP values ** Data not used for contour maps

Well #	Easting (ft)	Northing (ft)	Type	<u>5G</u>	Prod. Unit	Prod. Depth (ft)	Elev. KB (ft)	KB-PD (ft)	BHP (psi)	Date	Pressure Head (ft)	Total Head (ft)
2A**	42768	258202	GAS	0.87	Wolfcamplan	3322	3667	345	22	6/28/1989	47.31183	392.3118
3A	61248	240250	GAS	0.83	Wotfcampian	3140	3643	503	23	6/8/2000	49.46237	552,4624
4A	81312	225994	GAS	0.85	Wolfcampian	3031	3358	327	25	6/8/2000	53.76344	380.7634
6A*	124608	190882	GAS	0.83	Wolfcampian/GW	2957	3283	326	53	5/18/1998	113.9785	439.9785
7A*	134112	172930	GAS	0.89	Wolfcampian	2844	3138	294	36	5/27/2000	77.41935	371.4194
8A*	166056	179424	GAS	0.85	Wolfcampian	3040	3078	38	35	5/4/2000	75.26882	113.2688
12A	242458	101861	GAS	0.85	Wolfcampian/GW	2921	3304	383	1	5/1/2000	2.150538	385.1505
5B	95568	89760	GAS	0.69	Red Cave	2929	3270	341	375	10/25/1996	806.4516	1147.452
68	103435	111936	GAS	0.79	Granite	2545	3269	724	1	5/1/2000	2.150538	726.1505
78	106392	127248	GAS	0.75	Red Cave	1629	3126	1497	50	5/18/1987	107.5269	1604.527
8B*	129096	133848	GAS	0.83	Wolfcampian	2670	3259	589	30	7/29/1996	64.51613	653.5161
9 B	140712	144778	GAS	0.96	Wolfcampian	2610	3016	406	17	5/12/2000	36.55914	442.5591
14B	194172	223396	GAS	1	Wolfcampian	2885	3104	219	1	5/1/2000	2.150538	221.1505
15B**	211596	246100	GAS	0.65	Wolfcampian	3135	3196	61	239	4/3/1987	513.9785	574,9785
168	212916	252436	GAS	0.66	Wolfcampian	3238	3208	-30	1	5/1/2000	2.150538	-27.84946
1P*	74646	183744	GAS	0.84	Wolfcampian	2900	3500	600	2	5/1/2000	4.301075	604.3011
2P	78144	178728	GAS	0.74	Red Cave	2300	3500	1200	153	7/22/1992	329.0323	1529.032
3P	64112	183744	GAS	0.88	Wolfcampian/GW	2900	3665	765	1	5/1/2000	2.150538	767.1505
4P	61776	192192	GAS	0.92	Wolfcampian	3265	3500	235	1	5/1/2000	2.150538	237.1505
5P	74712	190080	GAS	0.74	Red Cave	2272	3546	1274	163	5/24/1999	350.5376	1624.538
6P	74976	205392	GAS	0.77	Red Cave	2282	3550	1268	140	5/25/1999	301.0753	1569.075
7P	84374	200904	GAS	0.73	Red Cave	2110	3452	1342	124	9/14/2000	266.6667	1608.667
8P	167059	213048	GAS	1.02	Wolfcampian	3140	3149	9	14	4/25/1997	30.10753	39.10753
9P	185539	216216	GAS	0.89	Wolfcampian	2850	3122	272	23	5/20/2000	49.46237	321.4624
10P	181051	209880	GAS	1.03	Red Cave	1891	3110	1219	65	5/6/1996	139.7849	1358.785
11P	181051	198264	GAS	0.67	Wolfcampian	2867	2973	106	1	5/1/2000	2.150538	108.1505
12P	175771	197736	GAS	0.69	Red Cave	1748	3036	1288	22	9/11/1997	47.31183	1335.312
13P	172867	205761	GAS	0.89	Red Cave	1885	3050	1165	55	8/21/1997	118.2796	1283.28
14P	229416	139392	GAS	0.87	Wolfcampian	2475	3167	692	15	5/24/1999	32.25806	724.2581
15P*	252120	156499	GAS	0.83	Wolfcampian	2700	3258	558	2	5/1/2000	4.301075	562.3011
16P	223080	156024	GAS	0.85	Wolfcampian	2740	3192	452	29	8/6/1997	62.36559	514.3656
17P	232848	148368	GAS	0.79	Wolfcampian/GW	3020	3124	104	1	5/1/2000	2.150538	108.1505
18P	177936	117744	GAS	0.8	Wolfcamplan	3022	3424	402	1	5/1/2000	2.150538	404.1505
19P	177461	110088	GAS	0.72	Wolfcampian	3120	3456	336	1	5/1/2000	2.150538	338.1505
20P~	168696	135538	GAS	0.79	Wolfcampian	2690	3420	730	44	5/21/1989	94.62366	824.6237
21P	147576	259512	GAS	0.87	Wolfcampian	3110	3397	287	18	7/8/2000	34.4086	321.4086
22P	115051	225720	GAS	0.95	Wolfcampian	2714	3245	531	12	6/8/2000	25.80645	556.8065
23P	87490	141768	GAS	0.77	Red Cave	1699	3320	1621	31	6/11/1993	66.66667	1687.667
24P	41870	225456	GAS	0.82	Wolfcampian	3463	3675	212	22	10/17/1999	47.31183	259,3118

היה האתי כוחות ושיית היות היות וארסתו

Table 9. Production data used for determining pressure head and total head for control wells. * Echometer program used for BHP values ** Data not used for contour maps

** **** ** ** **

them of

Well #	Easting (ft)	Northing (ft)	Type	<u>SG</u>	Prod. Unit	Prod. Depth (ft)	Elev. KB (ft)	KB-PD (ft)	BHP (psi)	Date	Pressure Head (ft)	Total Head (ft)
25P**	235488	157872	GAS		Wolfcamplan	3065	3106	41	16	5/3/1994	34.4086	75.4086
26P	244992	142666	GAS	0.81	Wolfcampian	2800	3143	343	14	6/9/2000	30.10753	373.1075
27P**	244200	166056	GAS	0.75	Panhan.Wolfcamp	2770	3033	263	18	1/15/1989	38.70968	301.7097
28P	50424	197525	GAS	0.79	Wolfcampian	3309	3597	285	16	6/28/2000	34.4086	322.4086
29P	188760	132634	GAS	0.88	Wolfcampian	2828	3250	422	15	5/26/2000	32.25806	454.2581
30P**	190450	110088	GAS	0.7	Wolfcampian	3086	3376	290	155	6/7/1989	333.3333	623.3333
31P	190344	124714	GAS	0.75	Wolfcampian	2868	3320	452	1	5/1/2000	2.150538	454.1505
32P	166795	190344	GAS	0.68	Red Cave	1574	3072	1498	27	6/28/1998	58.06452	1556.065
33P	99792	112992	GAS	0.75	Red Cave	1787	3287	1500	96	9/3/1999	206.4516	1706.452
34P	111144	124608	GAS	0.77	Red Cave	1829	3295	1466	54	5/9/1989	116.129	1582.129
35P	194172	220228	GAS		Red Cave	2000	3138	1138	122	7/20/1998	262.3656	1400.366
36P	155232	146256	GAS	0.96	Red Cave	1580	3186	1608	42	8/7/1992	90.32258	1698.323
37P	161332	148108	GAS	1.01	Wolfcampian	2585	3294	709	11	8/15/1999	23.65591	732.6559
38P	46675	143510	GAS	0.93	Wolfcampian/GW	2833	3497	664	12	5/1/2000	25.80645	689.8065
39P	31680	164208	GAS	0.81	Wolfcampian	3387	3687	300	18	5/16/2000	38.70968	338.7097
40P	97152	89232	GAS	0.74	Wolfcampian	3560	3275	-285	127	12/7/1998	273.1183	-11.88172
41P	114840	135168	GAS	0.84	Wolfcampian	2660	3050	390	1	5/1/2000	2.150538	392.1505
42P	129835	114576	GAS	0.73	GW	2908	3170	262	25	5/22/2000	53.76344	315.7634
43P	111144	152592	GAS	0.99	Wolfcampian	2885	3186	301	13	5/22/2000	27.95699	328.957
44P	115051	252120	GAS	0.8	Wolfcampian	3100	3505	405	28	7/27/1999	60.21505	465.2151
45P	60139	149582	GAS	0.95	Wolfcampian	3334	3634	300	21	6/19/2000	45.16129	345.1613
46P*	78514	141768	GAS	0.9	Wolfcampian/GW	3025	3494	469	34	6/9/2000	73.11828	542.1183
47P	122496	188506	GAS	0.81	Wolfcampian	3097	3302	205	23	5/27/2000	49.46237	254.4624
48P	69960	273514	GAS	0.95	Wolfcampian	3070	3585	515	1	5/1/2000	2.150538	517.1505
49P	135485	272712	GAS	0.85	Wolfcampian	3090	3411	321	24	5/1/2000	51.6129	372.6129
50P	141979	224400	GAS	0.84	Wolfcampian	2686	3300	614	6 1 4	5/1/2000	2.150538	616.1505

2 3

Metahan Ctata I Inimarath I inton

Figure 20. Example of a potentiometric surface map (Dahlberg, 1995).

CHAPTER 4 Results and Discussion

Stratigraphic Cross Section Interpretation

Figure 21 shows the transects of stratigraphic cross sections A-A' and B-B', along with interpreted subsurface fault trends in the study area. Fault positions were obtained from a structure contour map of the top of basement, southern Texas Panhandle (Fig. 22). Tables 7 and 8 list formation top elevations in feet above/below a datum (mean sea level) and well locations (northings and eastings) for cross sections A-A' and B-B'. Table 10 lists thickness values for units of primary interest to this study at specific well locations in the cross sections. Leonardian Red Cave units averaged 347 ft in thickness, with Leonardian Panhandle Lime (Wichita Formation) units averaging 386 ft in thickness. Wolfcampian units averaged 521 ft in thickness, and the Permo/Pennsylvanian Granite Wash averaged 544 ft in thickness. Assuming that Wolfcampian and Granite Wash units are in vertical communication (Pippin, 1970), a total average Lower Permian reservoir thickness of approximately 1000 ft exists within the study area. The Wichita Formation's mean thickness of approximately 386 ft provides an adequate confining layer over Wolfcampian reservoir units. A minimum confining layer thickness of only 20 ft is sufficient for some deep disposal wells (Warner, 1968). Well surface elevations averaged 3308 ft above mean sea level in the study area.

Cross section B-B' (shown with vertical exaggeration) traverses southwestnortheast and crosses the axis of the Amarillo Uplift in a direction normal to the primary trend of the axis. Cross section B-B' crosses at least five mapped subsurface faults (Fig.

21). Wells at both the southwest and northeast ends of the cross section are located off the uplift's axis and were drilled deeper than other wells used in the cross section (Fig. 23). Well 1B does not include the Red Cave in its column due to limited wireline log data. Well 1B, located off the southwest flank of the uplift, penetrates a thick section of Pennsylvanian rocks directly underlying the Wolfcampian section. The well penetrates approximately 2,000 ft of older Pennsylvanian Granite Wash without encountering granite basement. Wells 2B and 3B were drilled on the local structural high of the Bush Dome (Fig. 22), and both penetrate fairly thick sections of the Red Cave and Wichita, while the Wolfcampian section is much thinner here than in well 1B. Both wells 2B and 3B produce helium. Wells 4B and 5B were drilled in a small graben (Fig. 21). Well 4B penetrates a thick Wolfcampian section (1326 ft), approximately 1,200 ft of Pennsylvanian section including 200 ft of older Pennsylvanian granite wash, and approximately 160 ft of granite basement. The Wolfcampian and Red Cave sections thin dramatically in well 5B (deepest penetration), though the Wichita thickens between wells 4B and 5B. Red Cave, Wichita, and Wolfcampian units all thin to the northeast between wells 5B and 6B, and appear to truncate against uplifted granite basement (Fig. 23) along the flank of the Potter County Fault (Fig. 21). Wells 6B, 7B, 8B, and 9B all sit atop a local structural high known as the John Ray Dome (Fig. 22). Red Cave, Wichita, and Wolfcampian units are locally thin on the structural high, but thicken to the northeast. Well 6B penetrates approximately 800 ft of fractured granite basement and produces gas from the granite (the only granite production identified in the study). Well 7B penetrates a thick section (1325 ft) of Permo/Pennsylvanian granite wash that directly underlies a relatively thin Wolfcampian section (Fig. 23). The Granite Wash thins progressively to

Oldahama Chata I Iniuaraiha I ihrani

1004				
Well ID	Red Cave	Panhandle	Wolfcamplan	Granite Wash
1A	500	250	600	100
2A	761	269	233	
ЗA	766	248	515	
4A	419	313	954	1610
5A	390	294	596	690
6A	320	324	400	380
7A	390	265	310	512
8A	350	430	980	
9A	248	420	532	165
10A	213	608	302	637
11A	219	416	290	766
12A	235	385	369	50
13A		412	386	232
1B		485	760	2.036
2B	424	338	245	
3B	478	426	198	
4B	537	420	1326	161
5B	294	522	219	
6B	222	136	95	76
7B	200	140	150	1,325
8B	245	289	230	572
9B	248	130	480	430
10B	247	415	492	75
11B	170	435	667	399
12B	255	383	974	
13B	255	484	371	128
14B	274	502	429	
15B	350	550	339	
16B	347	575	319	
17B	360	720	1862	
Mean Thickness (ft):	347.0357	386.1333	520.7667	544.4211

Table 10. Unit Thickness (ft) at Specific Well Location in Cross Section

j,

Figure 21.

Figure 22. Structure map of top of granite basement in study area (Collins, 1990).

Figure 23. Cross section B-B'.

100291114102014011 6404 Come going

\$

÷

the northeast. Wells 10B. 11B, and 12B all sit atop a shallow graben (Fig. 21). Red Cave units remain fairly thin (approximately 300 ft), while the Wichita gradually thickens to the northeast to approximately 500 ft. Wolfcampian units thicken to the northeast across the graben, and well 12B penetrates approximately 1000 ft of Wolfcamp. A wedge of Permo/Pennsylvanian granite wash thickens to the northeast, but is not penetrated by well 12B. Red Cave, Wichita, and Wolfcampian units all remain fairly constant in thickness across wells 13B, 14B, 15B, and 16B. Only well 13B penetrates a thin (128 ft) section of granite wash. Well 17B sits off the northeast flank of the uplift's axis and penetrates a thick (1862 ft) section of Wolfcampian which overlies approximately 2000 ft of Pennsylvanian rock. The Pennsylvanian section directly overlies a thick section (1500 ft) of Mississippian and Devonian sedimentary units. Well 17B does not penetrate either granite wash or granite (Fig. 23).

Cross section A-A' (with vertical exaggerations) roughly parallels the Amarillo Uplift's primary axis (Fig. 21). Well 1A sits atop a graben and penetrates a relatively thick section of Red Cave (500 ft). The well penetrates a moderately thick (250 ft) section of the Wichita Formation and approximately 500 ft of Wolfcampian before encountering approximately 100 ft of Permo/Pennsylvanian granite wash (Fig. 24). Red Cave units thicken markedly to the southeast, as seen in wells 2A and 3A. The Wichita maintains a fairly constant thickness, while the Wolfcampian varies from approximately 250 to 500 ft in thickness. Well 4A, the deepest in the cross section, penetrates a thick section of Granite Wash (1610) ft that directly overlies Mississippian and Ordovician (Simpson and Ellenburger) units (Fig. 24). Pennsylvanian sedimentary units may have been eroded off the older Paleozoic units before younger Permo/Pennsylvanian Granite Wash was Wahama Nata University Libron

BIT I REALIZED

deposited. Wells 5A, 6A, and 7A sit atop a local structural high. Granite wash and Wolfcampian units thin to the southeast, while Wichita and Red Cave units maintain a fairly constant thickness (Fig. 24). Wells 8A and 9A sit atop a deeper portion of the graben (Fig. 21). Red Cave units thin gradually to the southeast, while Wichita units thicken to approximately 400 ft. Well 8A penetrates a thick section of Wolfcampian (980 ft) without encountering granite wash. Wolfcampian units thin toward well 9A, which penetrates approximately 165 ft of granite wash. Red Cave units maintain a fairly constant thickness in wells 10A and 11A, which sit atop a local structural high (Fig. 24). Wichita units thicken to approximately 600 ft, and approximately 700 ft of granite wash is encountered in wells 10A and 11A. Red Cave, Wichita, and Wolfcampian units maintain fairly constant thicknesses progressing to the southeast from well 11A to well 12A, although only 50 ft of granite wash is penetrated at well 12A. Well 13A does not include a Red Cave section due to limited data availability. Wichita and Wolfcampian units maintain a fairly constant thickness progressing to the southeast from well 12A to well 13A. Well 13A penetrates approximately 230 ft of granite wash.

Adabases Alate Habmank I Kron

Pressure-Depth Data Interpretation

Tables 11 and 12 represent pressure-depth relationship data for Red Cave unit wells included in this study. Initial and recent BHP values for fifteen producing gas wells were compared, and the data plotted on two separate P-D graphs (Figures 25 and 26). Production depth for the fifteen wells averaged 1968 ft below surface (mean surface elevation of 3308 ft for study area). Recent BHP values averaged 101 psi, while initial BHP values averaged 380 psi. Both initial and recent BHP values lie well within (to the left of) the normal hydrostatic gradient of 0.465 psi/ft for this region, suggesting

		Red Cave	Unit	
<u>Well #</u>	Prod. Unit	Year	<u>BHP (psi)</u>	Prod. Depth (ft)
5B	Red Cave	1996	375	2929
7B	Red Cave	1987	50	1629
2P	Red Cave	1992	153	2300
5P	Red Cave	1999	163	2272
6P	Red Cave	1999	140	2282
7P	Red Cave	2000	124	2110
10P	Red Cave	1996	65	1891
12P	Red Cave	1997	22	1748
13P	Red Cave	1997	55	1885
23P	Red Cave	1993	31	1699
32P	Red Cave	1998	27	1574
33P	Red Cave	1999	96	1787
34P	Red Cave	1989	54	1829
35P	Red Cave	1998	122	2000
36P	Red Cave	1992	42	1580
		Mean:	101.2667	1967.667
			N=15	N=15

Table 11. Production Depth and Most Recent BHP Values for Gas Wells Used in Study:

Table 12.	Production Depth and Initial BHP Values
	for Gas Wells Used in Study:
	Red Cave Unit

Well #	Prod. Unit	Year	BHP (psi)	Prod. Depth (ft)
5B	Red Cave	1972	589	2929
7B	Red Cave	1960	384	1629
2P	Red Cave	1989	399	2300
5P	Red Cave	1996	547	2272
6P	Red Cave	1997	494	2282
7P	Red Cave	1999	383	2110
10P	Red Cave	1963	428	1891
12P	Red Cave	1960	373	1748
13P	Red Cave	1961	402	1885
23P	Red Cave	1962	315	1699
32P	Red Cave	1960	396	1574
33P	Red Cave	1962	304	1787
34P	Red Cave	1968	234	1829
35P	Red Cave	1996	342	2000
36P	Red Cave	1987	118	1580
		Mean:	380.5333	1967.667
			N=15	N=15

Figure 25.

Figure 26.

underpressured reservoir conditions. Initial and recent BHP values used were not date selective, resulting in some scatter amongst the values plotted on the P-D graph. Initial (maximum) pressure conditions associated with early production dates may still be observed as individual points on the plot (Table 9 lists the dates of recent BHP values for both the Wolfcampian and Red Cave).

Tables 13 and 14 represent pressure-depth relationship data for Wolfcampian/Granite Wash unit wells included in this study. As with the Red Cave data, initial and recent BHP values for producing gas wells were compared and the data plotted on two separate P-D graphs (Figures 27 and 28). Production depth for the Wolfcampian/GW wells averaged 2965 ft below surface (mean surface elevation of 3308 ft). Recent BHP values averaged 24 psi, while initial BHP values averaged 160 psi. Both initial and recent BHP values lie well within (to the left of) the normal hydrostatic gradient of 0.465 psi/ft, also suggesting underpressured reservoir conditions.

W.I. Lana

ŀ

Risi.

į÷۲

in sam

Figure 29 illustrates a hypothetical system containing abnormally low, high, and normal (hydrostatic) plotted formation pressure measurements. Dahlberg (1995) defines abnormal formation pressure as an accurately measured formation pressure value that differs significantly from the pertinent hydrostatic pressure for a fluid column from the surface down to the depth of measurement. Factors such as rapid burial and addition of overburden, pore space reduction by crystalline overgrowths, heating of reservoir rock, or infusion of gases into rocks with limited pore space may lead to abnormally high formation pressures. Underpressured reservoirs may be produced by such factors as osmosis of fresher waters in a reservoir out of the reservoir and into a more saline unit through a semipermeable membrane (shale), overburden weight being

Table 13. Production Dapth and Most Recent BHP Values for Gas Wells Used in Study: Wolfcamp Unit

Table 14. Production Depth and Initial BHP Values for Gas Wells Used in Study: Wolfcamp Unit

Well #	Prod. Unit	BHP (osl)	Prod. Depth (It)	Year	Well #	Prod. Unit	BHP (osl)	Prod. Depth (ft)	Your
24	Wolfcampian	22	3322	1989	2A	Wolfcsmplan	140	3322	1965
34	Wolfcampian	23	3140	2000	34	Wollcampian	41	3140	1993
44	Wolfcampian	25	3031	2000	44	Wollcampian	242	3031	1961
6A	Wollcampian/GW	26	2957	1998	6A	Wollcampiar/GW		2957	
7A	Wolfcampian	38	2844	2000	7A	Wollcampian		2844	
BA	Wollcampian	35	3040	2000	BA	Wollcampian		3040	
12A	Wollcampian/GW	1	2921	2000	12A	WollcamplaryGW	240	2921	1956
58	Granite	1	2545	2000	68	Granite	129	2545	1973
88	Wollcampian	30	2670	1995	6 B	Wollcamplan	ALC: NO DECISION OF	2670	
98	Wollcampian	17	2610	2000	98	Wollcamplan	18	2610	1995
148	Wolfcampian	1	2885	2000	148	Wolfcampian	462	2885	1930
15B	Wolfcampian	239	3135	1987	158	Wollcampian	316	3135	1984
168	Wollcampian	1	3238	2000	168	Wollcampian	373	3238	1083
1P	Wolfcampian	2	2900	2000	1P	Wolfcampian		2900	1000
3P	Wollcampian/GW	1	2900	2000	3P	Wolfcampian/GW	36	2900	1980
4P	Wolfcampian	1	3265	2000	49	Wollcampian	16	3265	1997
BP	Wollcampian	14	3140	1997	BP	Wollcampian	17	3140	1990
OP	Wollcampian	23	2850	2000	0P	Wollcampian	46	2850	1980
11P	Wolfcampian		2867	2000	110	Wollcompian	15	2867	1004
14P	Wolfcampian	15	2475	1000	140	Wollcempian	387	2475	1000
159	Wollcampian	2	2700	2000	15P	Wolloamoing		2700	1020
16P	Wolfcampian	29	2740	1007	160	Wollcampian	487	2740	1008
17P	Wollcampian/GW	1	3020	2000	170	Wollcampian/GW	70	2020	1920
180	Wollcompian		3022	2000	180	Wolfermain	35	1020	1071
100	Wollcampian		3120	2000	100	Wollcampian	94	3190	1000
200	Wolfcampian	44	2600	1080	200	Wolloamplan	468	2020	1000
21P	Wollcampian	16	3110	2000	210	Wolfcampian	70	3110	1830
200	Wolfcampian	12	2714	2000	200	Wolfermolan	23	5714	1000
24P	Wollcampian	22	3463	1000	240	Wollcampian		2462	1895
260	Wollcampian	16	2085	1004	245	Wellempine	16	3403	1970
269	Wollcampian	14	2600	2000	201	Wollcampian	10	3005	1994
270	Paohan Allolicamo	10	2770	2000	201	Bachan Allollonmo	17	2000	1000
280	Wolleamian	16	3300	2000	200	Wolleamping	374	2770	1905
200	Wolfenmoinn	15	2020	2000	200	Wolleamplan	473	3309	1947
200	Wolfcampian	165	2020	2000	295	Wollcampian	104	2628	1929
110	Wallampian	100	3000	1909	30P	Wollcampian	1.0	3060	1870
370	Wallaampian		2000	2000	31P	woncampian	140	2008	1071
300	Wolfcampian	12	2000	1999	3/P	Wollcampian	149	2565	1971
300	Wallasmain	12	2033	2000	36/	Wollcampland	99	2033	1978
JOD	Wolkcampian	107	3367	2000	300	woiicampian		3387	1994
100	woncampian	121	3560	1998	402	wolicampian	781	3560	1990
41P	wolicamplan		2000	2000	41P	wollcamplan	62	2660	1982
427	GW	25	2908	2000	42P	GW	84	2908	1993
43P	Wollcamplan	13	2885	2000	43P	Wollcampian	18	2885	1998
44P	Wollcampun	28	3100	1999	44P	Wolkcampian	28	3100	1999
45P	Wolfcampian	21	3334	2000	45P	Wollcamplan	37	3334	1995
46P	WollcamplaryGW	34	3025	2000	46P	Wollcampian/GW	290	3025	1959
47P	wollcampian	23	3097	2000	47P	wollcampian	46	3097	1898
48P	wolicampian		3070	2000	48P	Wollcampian	138	3070	1966
499	Wollcampian	24	3090	2000	40P	Wollcampian	40	3090	1989
50P	Wollcampian	1	2686	2000	SOP	Wollcampian	48	2686	1989
	Mean:	24.32	2965.2			Mean:	160.5349	2965.2	
		N=50	N=50				N=43	N=50	

Minteres Child Station & Station

Figure 27. N=50, <BHP>=24.3 psi (Table 13).

Figure 28. N=43, <BHP>=160.5 psi (Table 14).

supported by a rigid confining layer (discussed earlier), or shallow depth of burial (Dahlberg, 1995). Wolfcampian/GW reservoir units have been produced over a longer time interval than Red Cave reservoir units, which may account in part for their significantly lower pressures. These data indicate Red Cave reservoir units currently maintain higher pressures than Wolfcampian/GW reservoir units, implying that any fluid migration through fractures in the Wichita Formation or through faulty wells would be downward from the Red Cave into the Wolfcampian.

3

..

. 2

Figure 29. Pressure-depth gradient diagram illustrating locations of positions of plotted formation pressure measurements and corresponding hydraulic head values for abnormally low, high, and normally (hydrostatic) pressured systems (Dahlberg, 1995).

Potentiometric Surface Map Interpretation

Figures 30 and 31 show 2-D and 3-D potentiometric surface maps of the Red Cave generated with Rockworks 99[™]. Contours (2-D map) represent lines of equal hydraulic head elevation (above a datum). Inferred water flow paths are represented by arrows oriented normal to the contours. The Potter County Fault (trending NW-SE) is represented at the bottom of Figure 30. It extends to the underlying granite basement and is evident in the overlying Leonardian (Permian) Tubb interval (Fig. 32). Such a fault could serve as a possible migration route for fluids between reservoir units located at different stratigraphic levels. Theoretical flow paths are directed primarily to the northeastern and eastern part of the map area, away from pressure highs associated with wells 36P, 33P, and 23P. All computed hydraulic head elevations for the Red Cave are higher than Wolfcampian/GW hydraulic head elevations, suggesting any vertical communication between the reservoirs would result in downward flow from the Red Cave toward the Wolfcamp. Pressure data used for the Red Cave potentiometric surface map are not date selective. Red Cave reservoirs are not the primary focus of the study, and all Red Cave pressure data was presented in order to obtain a general idea of pressure conditions above the Wolfcampian and Wichita units.

1

3

- 11

:4

Figures 33 and 34 show 2-D and 3-D potentiometric surface maps of the Wolfcampian/Granite Wash generated with Rockworks 99[™]. As with the Red Cave map, inferred water flow paths are represented by arrows oriented normal to the contours. The Potter County Fault (trending NW-SE) is represented at the bottom of Figure 33. Water flow appears to be directed toward a low pressure "sink" located at the northeast corner of the map. The areal extent of the Wolfcampian/GW pressure study area is

:

4

:

1

Figure 30.

Figure 31.

A

. .

Figure 32. Structure contours on top of Tubb interval (Collins, 1990).

Figure 33.

T

Figure 34.

Figure 35.

P

3 2 2

Figure 37.

61

99.5 . 199 ÷ 1.11.20

approximately 1646 square miles (1,053,644 acres). Well 3P, located in the east-central region of the map, represents the pressure high for the study area. Well 40P, located at the bottom of the map on the downthrown side of the Potter County Fault, showed anomalously high initial WHSIP and BHP values (705 psi and 781 psi) for the Wolfcampian at a total depth of 3800 ft when first produced in February of 1997. Wells in the immediate vicinity were drilled into deeper Pennsylvanian and Mississippian units with higher reservoir pressures, and it is possible that Wolfcampian units in the area are in vertical communication with older Paleozoic units. Bottomhole pressure in this well decreased to 127 psi after only two years of production, and the well's total head value is one of the lowest encountered in the study area.

Hydraulic Head Cross Section Significance

Figure 35 shows the locations of three hydraulic head elevation cross sections for the Wolfcampian/GW units constructed using Rockworks 99[™]. The cross sections show total head (HW), pressure head (HP), and elevation head (Z) for each well in the cross section. Z represents the elevation above/below a datum (mean sea level) at the well's lowest perforated (production) interval. HP represents the height of the water column in the well above the lowest perforation in the well, and HW represents the sum of Z and HP. Figures 36, 37, and 38 show hydraulic head elevation cross sections in three different directions across the study area. The cross sections were constructed in order to obtain a more comprehensive view of potential water flow directions in the Wolfcampian/GW reservoir units.

Possible explanations for the large number of concentric contours around individual wells include lateral and/or vertical changes in reservoir permeability
(compartmentalization), fluid migration barriers such as faults (Fig. 21), or effects produced by the particular computer gridding and contouring algorithm. Figure 39 represents a hypothetical cross section illustrating a potentiometric "step" that reflects a water flow constriction resulting from a zone of reduced permeability (Dahlberg, 1995). According to Pippin (1970) and Ruppel and Garret, Jr. (1989), such zones of reduced permeability are present throughout Permo/Pennsylvanian reservoir units in both the Panhandle and Hugoton portions of the field. Later initial production dates for particular wells might also produce this effect. A well that began production twenty or thirty years

Figure 39. Potentiometric "step" cross section (Dahlberg, 1995).

after a particular well (or wells) in a less developed portion of the field might not have created as much reservoir drawdown, reflected by a higher current BHP.

CHAPTER 5

Conclusions

Stratigraphic cross sections of the four-county study area show thick (up to 1000 ft total) Permo/Pennsylvanian reservoir units (Granite Wash and Wolfcampian carbonates) overlain by a relatively thick Leonardian (Permian) confining layer, the Wichita Formation. The Wichita consists primarily of anhydrite and dense anhydritic dolomite and generally forms a seal over the Permo/Pennsylvanian reservoir units. Some limited Wichita production may occur in areas of localized fracturing. The Leonardian Red Cave, a fairly thick sequence of shale and siltstone and gas producing unit, overlies the Wichita and appears to maintain higher reservoir pressures than Permo/Pennsylvanian units. Wells penetrating older Paleozoic sedimentary units in the study area are not producing gas from those units, and do not appear to be pressurizing the overlying Permo/Pennsylvanian reservoirs. Several exceptions may exist in the southeast part of the study area near the Potter County Fault. Granite basement may act as a lower confining layer for Permo/Pennsylvanian reservoir units, although limited gas production from fractured basement does occur in the study area.

Local anticlinal highs are evident on the cross sections, and the dominant fluid trapping mechanism appears structural in nature. Both Red Cave and Permo/Pennsylvanian reservoirs are underpressured with respect to a hydrostatic gradient of 0.465 psi/ft standard for the region. Such conditions are the result of reservoir compartmentalization and/or depletion after decades of production. Red Cave and Permo/Pennsylvanian potentiometric surface maps both indicate a general flow trend

toward low pressure "sinks" in the east-northeast portion of the study area. Possible explanations for observed concentric, closed contouring effects present in the B. Ely Megacompartment Wolfcampian/GW potentiometric surface maps include lateral variations in reservoir permeability and/or processes in the mapping algorithm.

Pressure data presented in this study indicate that Permo/Pennsylvanian Granite Wash and Wolfcampian carbonate reservoir units have the potential to accommodate large quantities of injected fluids. Red Cave pressure data infer that liquids injected into Wolfcamp/Granite Wash reservoirs would remain confined at lower elevations. Any fluid migration between Red Cave and Permo/Pennsylvanian reservoirs would be in a downward direction. This downward flow eliminates the risk of potentially hazardous liquids migrating upward from Permo/Pennsylvanian disposal wells, either through fractures in the Wichita, existing boreholes, or through poorly designed disposal wells, and contaminating surface or near-surface aquifers. Further detailed reservoir characterization studies are needed to examine suitability of Wolfcamp/Granite Wash units as deep subsurface disposal zones. Reservoir heterogeneity, mineralogy, and temperature must be considered. Additionally, the injectibility of a particular waste depends on the physical and chemical characteristics of the waste, the aquifer (reservoir), and the reservoir fluids. Physical or chemical interactions between the waste and the aquifer minerals or fluids could cause plugging of aquifer pores and a consequent loss of intake capacity. The observed pressure architecture and dynamics of the Permo/Pennsylvanian section in this study appear favorable for continued deep well waste injection feasibility analysis.

REFERENCES CITED

Al-Shaieb, Zuhair, J.O. Puckette, A. A. Abdalla, and P. B. Ely. <u>Megacompartment</u> <u>Complex in the Anadarko Basin: A Completely Sealed Overpressured Phenomenon</u>. Oklahoma State University. Stillwater, OK: 1994. 55-68.

Barker, Collin. "Aquathermal Pressuring-Role of Temperature in Development of Abnormal Pressure Zones." <u>Abnormal Subsurface Pressure</u>. AAPG Reprint Series No. 11. Tulsa, OK: American Association of Petroleum Geologists, 1974. 137-140.

Collins, A. Gene. <u>Geochemistry of Oilfield Waters</u>. Developments in Petroleum Science, 1. Amsterdam: Elsevier, 1975.

- Collins, Edward W. <u>Geologic Significance of Remotely Sensed Physiographic Features</u> of the Texas Panhandle and Adjacent Regions. Geological Circular 90-1. Austin, TX: The University of Texas at Austin, 1990.
- Dahlberg, Eric C. <u>Applied Hydrodynamics in Petroleum Exploration</u>. 2nd ed. New York: Springer-Verlag, 1995.
- EG & G Continental Laboratories. <u>Geopressure Detection and Evaluation Techniques for</u> the Hydrocarbon Well Logger. Denver, CO: EG & G, 1982.

Hammer, Mark J. and Kenneth A. MacKichan. <u>Hydrology and Quality of Water</u> <u>Resources</u>. New York: John Wiley & Sons, 1981.

Herndon Map Service. Texas Panhandle Geological Maps. Oklahoma City, OK: 2001.

Keller, Edward A. Environmental Geology. 8th ed. Upper Saddle River, NJ: Prentice Hall, 2000.

Miall, Andrew D. Principles of Sedimentary Basin Analysis. Berlin: Springer-Verlag, 1999.

Microsoft Excel 2000©. Microsoft Corporation, 1999.

- Moore, B.J. <u>Analyses of Natural Gases</u>, 1917-80. U.S. Bureau of Mines Information Circular 8870. Washington, D.C.: 1982. 365-529.
- Oklahoma State University (2000). Pressure Data on the Anadarko Basin. http://www.okstate.edu/geology/gri/startup2.htm (25 Sep. 2000).
- Petroleum Extension Service. <u>Fundamentals of Petroleum</u>. Austin, TX: The University of Texas at Austin, 1979.

REFERENCES (CONT.)

Pippin, Lloyd. "Panhandle-Hugoton Field, Texas-Oklahoma-Kansas-the First Fifty Years." <u>Geology of Giant Petroleum Fields</u>. AAPG Memoir 14. Ed. M. T. Halbouty. Tulsa, OK: American Association of Petroleum Geologists, 1970. 204-22.

Presley, Mark W. Middle and Upper Permian Salt Bearing Strata of the Texas Panhandle: Lithologic and Facies Cross Sections. Austin, TX: The University of Texas at Austin, 1981.

Rockworks 99[™]. Rockware, Inc. Golden, CO: 1999.

Ruppel, Stephen C. and Chester M. Garret, Jr. "Permian/Pennsylvanian Shallow-Marine Carbonate and Siliclastics, Texas Panhandle." <u>Atlas of Major Texas Gas Reservoirs</u>. Austin, TX: The University of Texas at Austin, 1989. 148-151.

Todd, David K. <u>Ground Water Resources of the United States</u>. Berkley, CA: Premier Press, 1983.

Warner, Don L. "Subsurface Disposal of Liquid Industrial Wastes by Deep-Well Injection." <u>Subsurface Disposal in Geologic Basins-A Study of Reservoir Strata</u>. AAPG Memoir 10. ed. J. E. Galley. Tulsa, OK: American Association of Petroleum Geologists, 1968. 11-19.

APPENDIX A

14

Example of scout card and wireline log data for wells 1A thru 13A and wells 1B thru 17B used for construction of stratigraphic cross sections A-A' and B-B'. Data obtained from Oklahoma City Geological Society Well Log Library, Oklahoma City, Oklahoma.

All a state	Sec. 5A
MAP NO	ELEV. 328 1DF . 3271GL
STATE TEXAS COUNTY MOULA SEC. 12	BLK 6-T SUI T&NO
OPERATOR Colorado Interstate Gas Co.	
WELL NO. D-? FARM NAME Speed Estate	2.6LO FT. FROM SINE
rooi_W_ Panhandle(PD 3076)	2640 FT. FROM WUNE
FR. 4-3.4-6! SPUD 4-28-61 COMP 8-21-61	
CONT./GEOL. Panhandle Drilling	┟┥╸┟╺┼╸╉╺┼╺┥╸╿
NAME PRODUCING INTERVAL FROM - TO PERF. W/HOLES TREATME	NT RECORD
Brown Dolomite & 2300-2957 Slotted 6000A	
Granice Wash	
C]-++++++
d I. P. OIL/DIST,WTRGASOOUUM.C.F.P.D	CHK <u>4L_DU</u> HRS
· · · · ·	
4	
	DBAL
SIP# 1.85 FITP# FLCP#	SIBHP
GOR GR PBTD	т <u>р 3080</u>
SIZE DEPTH W/SAX. SIZE	DEPTH W/SAX.
10-3/4" 240 1.50 Set 696' of	f 45" slotted liner @
<u>7" 2300 250</u>	2.957 W/50 BX.
	2957 w/50 sx.
OPERATOR Colorado Interstate Wels No. #D-2 Sneed.	<u>2957 w/50 sx</u> Estate ELEV. 3283 DF
OPERATOR Colorado Interstate WHS NO. #D-2 Sneed. SAMPLE TOPS DEPTH SUB SEA ELEC. TOPS	2957 W/50 GX . Estate ELEV. 3283 DF DEPTH SUB SEA
OPERATOR COlorado Interstate Webs No. #D-2 Sneed. SAMPLE TOPS DEPTH SUB SEA ELEC. TOPS TILDD	2957 w/50 gx . Estate ELEV. 3283 DF DEPTH SUB SEA 1.367
OPERATOR Colorado Interstate Wels No. #D-2 Sneed. SAMPLE TOPS DEPTH SUB SEA ELEC. TOPS Tilbb Red Cave	2957 W/50 GX Estate ELEV. 3283 DF DEPTH SUB SEA 1.367 1.656
OPERATOR Colorado Interstate Melson SAMPLE Tops DEPTH SUB SEA ELEC TUbb Red Cave PROPERTY OF OCGS Panhandle	2957 w/50 GX Estate ELEV. 3283 DF DEPTH SUB SEA 1.367 1.656 Lime 1976
OPERATOR Colorado Interstate CHL NO. #D-2 Sneed SAMPLE TOPS DEPTH SUB SEA ELEC. TOPS TUDD PROMERTY OF OCGS PROMERTY OF OCGS Brown Dolom	<u>2957 w/50 6x</u> <u>Estate</u> <u>ELEV. 3283 DF</u> <u>DEPTH</u> <u>SUB SEA</u> 1.367 1.656 Lime 1976 nl.te 2300
2300 250 OPERATOR Colorado Interstate CERNO. #D-2 Sneed. SAMPLE TOPS DEPTH SUB SEA ELEC TOPS SAMPLE TOPS DEPTH SUB SEA ELEC TOPS TUBD RECHERTY OF OCGS GEOLOGICAL LIBRARY Brown Dolom GEOLOGICAL LIBRARY	<u>2957 w/50 бж</u> <u>Estate</u> <u>ELEV. 3283 DF</u> <u>DEPTH</u> <u>SUB SEA</u> 1.367 1.656 Lime 1976 nl.te 2300 sh 2700
7" 2300 250 OPERATOR Colorado Interstate WHS NO. #D-2 Sneed. SAMPLE TOPS DEPTH SUB SEA ELEC TOPS Tubb RECPERTY OF OCGS GEOLOGICAL LIBRARY Brown Dolon GEOLOGICAL LIBRARY Brown Dolon Granite Was 13½ mi. NE Masterson, Spud 4-28-61. 10-3/4" @ 240 w/150 sx. 7" @ TD 3080, logs (Lane Wells- GR-Den) to 2982. Set 696' of 4½" slotted liner @ 2957 w/50 s Swb all 1d. IP 4: pt COF 8,600 MCF, SIP 185, from Dolomi (2300-2957). COMPLETE 8-21-61.	<u>2957 w/50 5x</u> <u>Estate ELEV. 3283 DF</u> <u>1.367</u> 1.656 Lime 1976 mi.te 2300 sh 2700 2300 w/250 sx. MICT. sx. Slotted from 2300- 12,000 sd. 4000-15% Ac

P G	A GGamma Ray Neutron Log	Tr.38
IE NO. IE NO. IE NO. IE NO. IS A STATE OF THE INFORMATION IN THE INFORMATION INTENDING INTENDINA INTENDING INTENDING INTE	COMPANY	
Panha P	Represented by undle Electrical alog Service Deller 2, Taux REFERENCE 1256228 EDNFLETION RECORD	
SPUD DATE		
DST RECORD		
CASING RECO	80	

APPENDIX B

Pressure data for wells 2A, 3A, 4A, 6A, 7A, 8A, 12A, 5B, 6B, 7B, 8B, 9B, 14B, 15B, 16B and 1P thru 50P all obtained from PI/Dwights PLUS on CD database, a division of the IHS Energy Group, Englewood, Colorado, U.S.A. The following example is for one well and represents a well test report.

PI/Dwights PLUS on CD Detailed Well Test Report

Lease Number: 44896 Can Ga: 1,966,725 State: TEXAS CARRATION Can Gas: 1,966,725 Can Gas: 1,966,725 Can Water: 7LL 1970 Field: PANHANDLE W/EST Can Water: 7UL 1970 Field: PANHANDLE W/EST Sopt TX Kalford Dist TEXAS DISTRICT 10 Sopt TX Kalford Dist TX Kalford	Lease Name:	н	AZEL				Well Numbe	r:	1							
Operator Name: HUBER J. M.CORPORATION Cum Gar: 1,966.723 State: TEXAS Cum Water: Cum Water: Operator PARAMDLE WEST Last Production Date: SEP 2000 State: TEXAS DISTRICT 10 Spd State: TEXAS DISTRICT 10 Spd State: Section 4 Laignod Dist. TEXAS DISTRICT 10 Spd State: Section 4 Laignod Dist. Completion Date: JUL 01, 1930 Areited.ong/inde: Latitude/Long/inde: Latitude/Long/inde: Cargenizory * 24896 Completion Date: JUL 01, 1930 API: 4223131316000 Total Count: 2833 Reservoir Name: UNKNOWN Lower Perforation: 2833 Reservoir Name: ANARKO BASIN Temp Gradient: 1.1 Prod Zone: UNEL N Pactor: 0.713 Cargenti Marker Perf. Perf. To Test Namber Type Date Perf. Perf. To Test </th <th>Lease Number:</th> <th colspan="4" rowspan="4">24896 HUBER J M CORPORATION TEXAS HUTCHINSON</th> <th>(</th> <th>Cum Oil:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Lease Number:	24896 HUBER J M CORPORATION TEXAS HUTCHINSON				(Cum Oil:									
Sume TEXAS Cum Water Common PLUTCHINSON First Production Date: SEP 2000 Field PANHANDLE WEST Last Production Date: SEP 2000 Started Name TEXAS DISTRICT 10 Spot Section 4 Eague, Spot code Labor Labor Labor 1 Township Lator Lator Lator Lator Lator APRIMOUS 24856 Completion Date: JUL 01, 1930 A First Production Date: JUL 01, 1930 Production DD: 242100224866 Upper Perforation: 2833 Reservoir Name: UNKNOWN Gas Gravity: 1.00 Prod Zone: UNKENOWN Gas Gravity: 1.00 Prod Zone: O/UREL N Pator: 0.713 Gas Gravity: JUL 01, 1930 AFI N Pator: 0.713 GOR: Cond GGR Pator: 0.713 Gas Gravity: JUL 01, 1930 AFI N Pator: 0.713 GGR Cont 0.713 GGR Cont 0.713 GGR Cont 0.713	Operator Name:					(Cum Gas: Cum Water: First Production Date:		1,966,725							
County HUTCHINSON First Production Date: JU 1930 Field PANIANDLE WEST Last Poduction Date: SEP 2000 Survey Name H&OB Abstract Number 615 Block X02 Section 4 Latges, Spot code Labor Lot Township Lot Completion 24336 Latitude/Longitude: Lat/Long Source: Regulatory 4 24396 Production Dit 243101360000 Total Depth: 700. Production Dit 24300004896 Upper Profession: 2833 Reservoir Name: UNKNOWN Low Gravity: 1.00 Prod Zone: OKEL N Prod cone 0.713 Gas Gatherer: GAS GOR: 300 API Well Test Test Oper Abstract To Test Valid Gatherer: Suckey GAS 3131191 105 116 119 C Zignisinstoomo 1 Chi Prestosi To Test To Test Type B/D <th>State:</th> <th>(</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	State:					(
Field PANEANDLE WEST Last Production Date: SEP 2000 TX Railmood Dist TEXA SD ISTRICT 10 Spot Spot Block X02 Section 4 Laggis, Spot odd Labor Labor Township Lot Lattude/Long Source: Lattude/Long Source: Regulatory # 24896 Completion Date: FUL 01, 1930 API: 42231311360000 Total Depth: Production: 2833 Reservoir Name: UNKNOWN Gas Gravity: 1.00 Prod Zone: OUKINKOWN Gas Gravity: 1.00 Prod Zone: DUKKL N Pactor: 0.713 Gas Gatherer: DUKEL N Pactor: 0.713 Goat Scate GOX: Status: ACTIVE GAS Test Test Test Test Test Test Status: ACTIVE GAS Status: 1.1 Number Status: Status: ACTIVE GAS 1298631 105 116 119<	County:					1 88 F			JUL	1930					1	
TX & Bainord Dist Survey Name TEXAS DISTRICT 10 Spot Survey Name H4OB Abstract Number 615 Block X02 Section 4 Lagge, Spot code Labor Labor Latitude/Longitude: Lat/Long Source: Regulatory # Regulatory # 24896 Completion Date: UL 01, 1930 API 42233131360000 Total Depth: Production Dize: 2883 Prod Zone Code: 000UNK WN Gas Gravity: 1.00 Production Code: 0713 Gas Gatherer: DUKEL N Proton: 0.713 GGR: Source: GOR: Stanse: ACTIVE GAS GOR: Source: Total count: 30 AOF API Well Test Test Upper Lower Cum Prod WHFP BHP BHP/Z BHP Gas AOF Test Upper Lower Cum Prod WHSP BHP BHP/Z BHP Mater Cond float GOR Test Upper Lower Cum Prod WHSP BHP BHP/Z BHP Mater	Field: 13 13 6900	P	ANHAN	DLE WEST		1	Last Production Date:		SEF	2000						
Surgery Name H&OB Abstract Number 613 Block X02 Section 4 Lagger, 5pot code Labor Labor Township Latitude/LongSource: LuU.01, 1930 API: 422313136000 Total Depth: Production ID: 24896 Completion Date: 7UL.01, 1930 Production ID: 242100024896 Upper Perforation: 2833 Reservoir Name: UNKNOWN Cost Gravity: 1.00 Prod Zone: UNKNOWN Cost Gravity: 0.00 Prod Zone: DUKEL N Pactor: 0.713 Cigat Gravits ACTIVE GAS Cost Stateser: Statust: ACTIVE GAS Cost Stateser: Di/D Cigat Stateser: Pref. Perf. To Test To Test Stateser Test Upper Lower Cum Prod WHSIP WHFP BHP BHP Wast Cost GaS Cigat Gravits ACTIVE GAS Cost Type B/D MCFD <th>TX Railroad Dist</th> <th colspan="4" rowspan="2">TEXAS DISTRICT 10 H&OB</th> <th>5</th> <th>Spot</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	TX Railroad Dist	TEXAS DISTRICT 10 H&OB				5	Spot									
Pites X02 Section 4 Larges, Spot code Township Lot Labor Latitude/Longitude: Lat/Long Source: Regulatory 8: 24896 Completion Date: JUL 01, 1930 API 42231313160000 Total Depth: 2833 Reservoir Name: UNKNOWN Low Gradient: 2833 Prod Zone Code: OUNINKNOWN Low Gradient: 1.1 No Prod Zone Code: OUNINKNOWN Gas Gravity: 1.00 Prod Zone Code: OUNINKNOWN Gas Gravity: 0.00 Basin Name: ANADARKO BASIN Teenp Gradient: 1.1 N Pactor: 0.713 Liquid Gatherer: DUKEL N Pactor: 0.713 GOR: ACF Status: ACTIVE GAS GOR: ACF Type B/D MCPD MCPD Valued Test Upper Lower Cum Prod WHSIP WHFP BHP BHP /Z BHP MCPD MCPD MCPD MCPD MCPD MCPD MCPD MCPD MCPD	Survey Name					1	Abstract Numbe	ar	615							
League Labor Township Lot Attitude/Longitude: Regulatory # Regulatory # 24896 Completion Date: UL 01, 1930 APE 4223131336000 Tord Zone: UNENOWN Constraint 2883 Prod Zone: UNENOWN Gas Gathere: DUKEL N Pack Zone Code: Status: ACTIVE Gas Gathere: DUKEL N Pack Zone: GGR: Status: ACTIVE Gas GAS	Block Block	X	02		134254	S	ection		2.114							
Township Lot LattLadiLongitude: LattLadiLongitude: Regulatory: 24896 Completion Date: JUL 01, 1930 API: 42233131360000 Total Depth: Production ID: 242100024896 Production ID: 242100024896 Upper Perforation: 2833 Reservoir Name: UNKNOWN Gas Gravity: 1.00 Prod Zone: OUKKLW Gas Gravity: 1.00 Ford Zone: OUKEL N Pactor: 0.713 Liquid Gathere: GOR: GOR: Satus: ACTIVE Status: ACTIVE GAS GOR: Satus: Satus: Satus: Test Test Test Test GoR: Type BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test Type BHP BHP/Z BHP Water Cond Gas AOF Yumber Number Type Date Perf. Perf. To Test Type BHP BHP	League, Spot code					I	abor									
Latitude Longitude: Regulatory 2 24896 Completion Date: JUL 01, 1930 API: 4223313156000 Total Depth: Production ID: 242100024896 Upper Perforation: 2833 Prod Zone: Code: 000UNKWN Gas Gravity: 1.00 Prod Zone: Code: 000UNKWN Oil Gravity: Basin Name: ANADARKO BASIN Cas Gatherer: DUKEL N Pactor: 0.713 Cas Gatherer: Coll Case Code: 0.713 Cas Case Code: 0.713 Case Case Code: 0.713	Township					1	ot									
Regulatory f: 24896 Completion Date: JUL 01, 1930 API: 4223131360000 Total Depth: Production 12: 2833 Production ID: 242100024896 Upper Perforation: 2833 Reservoir Name: UNKNOWN Lower Perforation: 2835 Prod Zone: UNKNOWN Gas Gravity: 1.00 Prod Zone: DUKEL N Pactor: 0.713 Gae Gatherer: DUKEL N Pactor: 0.713 Gas Gravity: GOR: GOR: Status: API Well Test Test Upper Lower Number Number Type Date Perf. Perf. To Test Type B/D MCFD MCFD Valid Souther: 30000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 4223313136000 4AP 1950715 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C	Latitude/Longitude:					1	at/Long Source	e:								
API: 42233131360000 Total Depth: Production ID: 242100024896 Upper Perforation: 2833 Reservoir Name: UNKNOWN Lower Perforation: 2885 Prod Zone: OUNKNOWN Gas Gravity: 1.00 Prod Zone: OUNKNOWN Gas Gravity: 1.00 Prod Zone: OUNKNOWN Gas Gravity: 0.713 Cas Gatherer: DUKEL N Factor: 0.713 Liquid Gatherer: GOR: GOR: GOR: Status: ACTIVE GAS GOR: Test Test Test Upper Lower Cum Prod WHSIP BHP BHP Z BHP Gas AOF Number Number Number Perf. Perf. Total Total Gas AOF Z223113160000 1 IP 19300715 413 462 528 C 3500 Z2231313160000 1 CAP 19670533 1311391 105 116 119 C 4223313136000 1 CAP 19670533 1311391 105 116 119 C 4223313136	Regulatory #:	24	896			0	Completion Dat	e:	JUL (01, 1930						
Production ID: 242100024836 Upper Perforation: 2833 Reservoir Name: UNKNOWN Lower Perforation: 2835 Prod Zone UNKNOWN Gas Gravity: 1.00 Prod Zone OUKNOWN Gas Gravity: 1.00 Basin Name: ANADARKO BASIN Temp Gradient: 1.1 Gas Gatherer: DUKEL N Factor: 0.713 Status: ACTIVE GAS Gor: Status: 0.713 Value Test Gor: Status: Condition: 28.7 Value Test Opper Lower Cum Prod WHEP BHP BHP/Z BHP Water Cond Gas AOF Value Type Date Perf. Perf. To Test WHEP BHP BHP/Z BHP Water Cond Gas AOF Value Type Date Perf. Perf. To Test To Test Type BHP BHP/Z SHP BHP BHP/Z BHP BHP/Z BHP BHP/Z BHP BHP BHP/Z <	API	42	2331313	60000	S 1 3	1	fotal Denth:									
Reservoir Name: UNKNOWN Lower Perforation: 2885 Prod Zone: UNKNOWN Gas Gravity: 1.00 Prod Zone: OWUNK WN Oil Gravity: 1.00 Basin Name: ANADARKO BASIN Temp Gradient: 1.1 Cas Catherer: DUKKEL N Pactor: 0.713 Clquid Gatherer: GOR: GOR: Status: ACTIVE GAS API Well Test Test Type Date Perf. To Test Type First Test Type Date Perf. To Test Type First Test 4223131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19670503 13191 105 116 119 C 423313136000 1 CAP 19670503 13191 105 116 119 C 423313136000 1 CAP 19670503 13191 105 116 119 C 423313136000	Production ID:	24	2100024	1896		i	Unner Perforation		2833							
Pred Zone: UNKNOWN Gas Gravity: 1.00 Pred Zone Code: 000UNKWN Oll Gravity: Basin Name: ANADARKO BASIN Temp Gradient: 1.1 Gas Gatherer: DUKEL N Factor: 0.713 GOR: Status: ACTIVE GAS GOR: GOR: Status: ACTIVE GAS GOR: GOR: Z223131350000 Test Test Test Perf. Perf. To Test To Test Type BitP BitP BitP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test WHFP BitP BitP Water Cond Gas AOF First Test 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 4223131316000 1 CAP 19680715 1311391 105 116 119 C 42231313136000 <th>Reservoir Name:</th> <th>U</th> <th>NKNOW</th> <th>N</th> <th>10.1</th> <th>1</th> <th>ower Perforati</th> <th>on:</th> <th>2885</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Reservoir Name:	U	NKNOW	N	10.1	1	ower Perforati	on:	2885							
Prod Zone Code: 000UNKWN Oil Gravity: Temp Gradiant: I.1 Basin Name: ANADARKO BASIN Temp Gradiant: I.1 Gas Gatherer: DUKEL N Pactor: 0.713 Liquid Gatherer: GOR: GOR: Status: ACTIVE GAS Cas Tests Total count: 30 API Well Test Number Type Date Perf. Perf. To Test First Test GAS 42233131360000 1 IP 19300715 42233131360000 1 CAP 19660515 1298631 105 116 119 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19660715 1341508 164 182 191 C 4223313136000 1 CAP 19700518 133604 88 13 95 96 C 105 4223313136000 1 CAP 19700518 <th>Prod Zone:</th> <th>U</th> <th>NKNOW</th> <th>N</th> <th></th> <th>G</th> <th>las Gravity:</th> <th></th> <th>1.00</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Prod Zone:	U	NKNOW	N		G	las Gravity:		1.00							
Basin Name: Gas Gatherer: Liquid Gatherer: Status: ANADARKO BASIN UUKEL Temp Gradient: N Pactor: GOR: 1.1 0.713 GOR: Gas ACTTVE GAS Gas Tests Total count: 30 API ACTTVE GAS Mumber Well Number Test Type Date Date Perf. Perf. Cum Prod To Test WHFP BHP BHP/Z BHP/Z BHP BHP/Z	Prod Zone Code:	00	OUNKW	/N		0	Dil Gravity:									
Cas Gatherer: Liquid Gatherer: Status: DUKEL N Factor: GOR: GOR: 0.713 Gas Tests ACTIVE GAS Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Mumber Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test 10 11 0 Gas AOF 42233131360000 1 CAP 19600715 1298631 105 116 119 C 42233131360000 1 CAP 1960505 1320580 106 117 120 C 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19690715	Basin Name:	A	NADAR	KOBASIN		1	emp Gradient	0	1.1							
Liquid Gatherer: ACTTVE GOR: Status: ACTTVE GAS Carrents Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Mumber Number Type Date Perf. Perf. To Test WHFP BHP BHP/Z BHP Water Cond Gas AOF First Test 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19660715 1326580 106 117 120 C 42233131360000 1 CAP 19660715 1341508 164 182 191 <c< td=""> 42233131360000 1 CAP 19690715 1316 <tr< th=""><th>Gas Gatherer:</th><th>D</th><th>UKEL</th><th></th><th></th><th>h</th><th>Factor:</th><th></th><th>0.713</th><th>È</th><th></th><th></th><th></th><th></th><th></th><th></th></tr<></c<>	Gas Gatherer:	D	UKEL			h	Factor:		0.713	È						
Status: ACTIVE GAS Gas Tests Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test BHP BHP/Z BHP/Z BHP/Z BHP BHP/Z BHP/Z<	Liquid Gatherer:					0	GOR:									
Gas Tests Total count: 30 API Total count: 30 Well Test Test Upper Perf. Cum Prod To Test WHFP BHP BHP/Z BHP Water Cond BHD Gas AOF First Test Vumber Number Type Date Perf. To Test To Test Type BHP/Z BHP	Status: 11360000	A	CTIVE		G	AS										
Gar Terts Total count: 30 API Total count: 30 Well Test Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test To Test Type BHP BHP/Z BHP Water Cond Gas AOF First Test 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19660515 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1390404 88 13 95 96 C 105	2332213110/00/															
Gas Tests Total count: 30 API Well Test Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test WHFP BHP BHP/Z BHP Water Cond Gas AOF First Test 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 422331313600000 1 CAP	THE OWNER OF TAXABLE PARTY.	_		1. 12		_		-								_
Gar Tests Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test To Test Type B/D MCFD MCFD First Test 42233131360000 1 TP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 19670515 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 105 422331313600000 1 CAP 19720601	#223313131360000			2.175.13												
Gas Tests Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test WHFP BHP BHP/Z BHP Water Cond Gas AOF 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 19690715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176	422331315580030															
Gar Tests Total count: 30 Test Test Test Test Test Test Perf. Perf. To Test WHSIP WHFP BHP BHP/Z BHP Water Cond B/D Gas AOF MCFD Number Number Type Date Perf. Perf. To Test WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF First Test 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 19680715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1	ALL SAMO				a											
Gar Terrs Total count: 30 API Well Test Test Upper Lower Cum Prod WHSIP WHFP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test To Test Type BHP BHP/Z BHP Water Cond Gas AOF 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19680715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 <t< th=""><th>(1231)31160000</th><th></th><th></th><th>1000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	(1231)31160000			1000												
API Well Test Test Upper Lower Cum Prod WHSP BHP BHP/Z BHP Water Cond Gas AOF Number Number Type Date Perf. Perf. To Test Type BHP BHP/Z BHP Water Cond Gas AOF 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 19660715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720501 1390404 88 13 95	Gas Tests		Total c	ount: 30							-				3 4 377	
Number Number Type Date Perf. Perf. To Test Type B/D MCFD MCFD MCFD First Test 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 19660715 1326580 106 117 120 C 42233131360000 1 CAP 19680715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720518 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1	API	Well	Test	Test	Upper	Lower	Cum Prod	WHSIP	WHFP	BHP	BHP/Z	BHP	Water	Cond	Gas	AOF
First Test 42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 422331313600000 1 CAP <th>Number</th> <th>Number</th> <th>Туре</th> <th>Date</th> <th>Perf.</th> <th>Perf.</th> <th>To Test</th> <th></th> <th></th> <th></th> <th>2</th> <th>Туре</th> <th>B/D</th> <th>B/D</th> <th>MCFD</th> <th>MCFD</th>	Number	Number	Туре	Date	Perf.	Perf.	To Test				2	Туре	B/D	B/D	MCFD	MCFD
42233131360000 1 IP 19300715 413 462 528 C 3500 42233131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233131360000 1 CAP 196607503 1311391 105 116 119 C 150 42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 1960715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1365396 153 169 176 C 316 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19700518 139054 88 13 95 96 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP	First Test	225														
42233 131360000 1 CAP 19660515 1298631 105 116 119 C 150 42233 131360000 1 CAP 19670503 1311391 105 116 119 C 150 42233 131360000 1 CAP 19670503 1311391 105 116 119 C 150 42233 131360000 1 CAP 19680715 1326580 106 117 120 C 42233 131360000 1 CAP 19690715 1341508 164 182 191 C 316 42233 131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233 131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233 131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233 131360000 1 CAP 19730601 1400538 86 13 93 94 C 100	42233131360000	1	IP	19300715				413		462	528	С				3500
42233131360000 1 CAP 19670503 1311391 105 116 119 C 42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19700518 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100 <td>42233131360000</td> <td>1</td> <td>CAP</td> <td>19660515</td> <td></td> <td></td> <td>1298631</td> <td>105</td> <td></td> <td>116</td> <td>119</td> <td>С</td> <td></td> <td></td> <td></td> <td>150</td>	42233131360000	1	CAP	19660515			1298631	105		116	119	С				150
42233131360000 1 CAP 19680715 1326580 106 117 120 C 42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19670503			1311391	105		116	119	с				
42233131360000 1 CAP 19690715 1341508 164 182 191 C 42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19680715			1326580	106		117	120	С				
42233131360000 1 CAP 19700518 1356396 153 169 176 C 316 42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19690715			1341508	164		182	191	С				
42233131360000 1 CAP 19720601 1390404 88 13 95 96 C 105 42233131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19700518			1356396	153		169	176	С				316
42233 131360000 1 CAP 19720718 1393054 88 97 99 C 105 42233 131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233 131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19720601			1390404	88	13	95	96	С			105	
42233131360000 1 CAP 19730601 1400538 86 13 93 94 C 100 42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19720718			1393054	88		97	99	С				105
42233131360000 1 CAP 19730703 1401158 86 95 97 C 100	42233131360000	1	CAP	19730601			1400538	86	13	93	94	C			100	
	42233131360000	1	CAP	19730703			1401158	86		95	97	С				100

l of 2

PI/Dwights PLUS on CD Detailed Well Test Report

λ.

42233131360000	1	IP	19740313	1407998	82		91	93	С	792
42233131360000	1	CAP	19740601	1424475	71	13	77	78	С	640
42233131360000	1	CAP	19740625	1429583	71		78	79	С	640
42233131360000	1	CAP	19750601	1491053	74	13	80	81	С	679
42233131360000	1	CAP	19750804	1503933	74		82	83	С	679
42233131360000	1	CAP	19760603	1557484	62		68	69	С	528
42233131360000	1	CAP	19770526	1608236	43		47	47	С	89
42233131360000	1	CAP	19780703	1653900	51	47	56	56	С	196
42233131360000	1	CAP	19790604	1699674	46	38	51	51	С	192
42233131360000	1	CAP	19800617	1745132	47	45	52	52	С	190
42233131360000	1	CAP	19810611	1795243	40	28	44	44	С	190
42233131360000	1	CAP	19820603	1829880	48	45	53	53	С	134
42233131360000	1	CAP	19830610	1869470	23	14	25	25	С	137
42233131360000	1	CAP	19840518	1894223	12	4	13	13	С	113
42233131360000	1	CAP	19850516	1906420	6	1	7	7	с	63
42233131360000	1	CAP	19860501	1916287	5	2	6	6	С	42
42233131360000	1	CAP	19870508	1924275	3	1	3	3	С	27
42233131360000	1	CAP	19880510	1930038	1	1	1	1	С	21
42233131360000	1	CAP	19890515	1935457	13	10	14	14	С	16
42233131360000	1	CAP	20000501	1966272	1		1	1	С	
		and the second second second								

APPENDIX C

Bottomhole pressure (BHP) values for wells 6A, 7A, 8A, 8B, 15P, and 46P calculated using Echometer Acoustic Bottomhole Pressure Survey© (version 2.1) developed by the Echometer Company, Wichita Falls, Texas, U.S.A.

WELL: 6A ********* DATE:03-29-2001 * ACOUSTIC STATIC + * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 2957 * SURVEY . B) WELLHEAD PRESSURE (PSI) = 23C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 29 * * * BY ECHOMETER + ********************* AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= .83 CALCULATING I) H2S%= 0 J) CO2*= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= N) WATER SPECIFIC GRAVITY= 0 1 1 PRESSURE AT GAS/OIL INTERFACE= 26 PSIG @ 2900 FT. * BHP= 53 PSIG @ 2957 FT + ******* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: 6A *********************** DATE:03-29-2001 * ACOUSTIC STATIC * BOTTOMHOLE PRESSURE . A) DEPTH TO PRESSURE DATUM (FT) = 2957 * SURVEY A) DEPTH TO PRESSURE DATOM(FT) = 295B) WELLHEAD PRESSURE (PSI) = 23C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 29 * BY ECHOMETER ********************* AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= .83 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= N) WATER SPECIFIC GRAVITY= 0 1.1 PRESSURE AT GAS/OIL INTERFACE= 26 PSIG @ 2900 FT. * BHP= 53 PSIG @ 2957 FT *********************** TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? ************************* WELL: 6A * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE * SURVEY A) DEPTH TO PRESSURE DATUM(FT) = 2957 *

RETURN TO CONTINUE?

and work of a sector and a sector a

B) WELLHEAD PRESSURE (PSI) = 23

C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 29 * BY ECHOMETER *********************** AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= .83 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= M) LIQUID HYDROCARBON API= 0 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 26 PSIG @ 2900 FT. * BHP= 53 PSIG @ 2957 FT * ************************* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: 7A ********************* DATE:03-29-2001 * ACOUSTIC STATIC . * BOTTOMHOLE PRESSURE . * SURVEY A) DEPTH TO PRESSURE DATUM (FT) = 2844 ٠ B) WELLHEAD PRESSURE (PSI) = 13C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 28 * * BY ECHOMETER ******************** AT 100.00 FT/JT=(FT) H) GAS SPECIFIC GRAVITY= 2800 CALCULATING .89 I) H2S%= 0 J) CO2%= K) N2%= .1 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 16 PSIG @ 2800 FT. * BHP= 36 PSIG @ 2844 FT * TO PRINT RESULTS, TYPE SHIFT+PrtSc **************************** RETURN TO CONTINUE? WELL: 7A ********************* * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE * * SURVEY A) DEPTH TO PRESSURE DATUM (FT) = 2844 B) WELLHEAD PRESSURE (PSI) = 13 C) SURFACE TEMP. (F) = 60 E) BOTTOM HOLE TEMP (F) = 90 G) DEPTH TO LIQUID = OF JOINTS 28 -* BY ECHOMETER ********************* AT 100.00 FT/JT=(FT) 2800 CALCULATING H) GAS SPECIFIC GRAVITY= .89 I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6

L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 A.S. S. S. S. S. S. S. PRESSURE AT GAS/OIL INTERFACE= 16 PSIG @ 2800 FT. * BHP= 36 PSIG @ 2844 FT * ************************* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: 8A ******************************** DATE:03-29-2001 * ACOUSTIC STATIC * BOTTOMHOLE PRESSURE * A) DEPTH TO PRESSURE DATUM(FT) = 3040 * SURVEY B) WELLHEAD PRESSURE (PSI) = 14 * + C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 30 * BY ECHOMETER ٠ ********************* AT 100.00 FT/JT=(FT) 3000 H) GAS SPECIFIC GRAVITY= .85 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 17 PSIG @ 3000 FT. * BHP= 35 PSIG @ 3040 FT * TO PRINT RESULTS, TYPE SHIFT+PrtSc ************************* RETURN TO CONTINUE? ****************** WELL: 8A * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 3040 * SURVEY B) WELLHEAD PRESSURE (PSI) = 14 . C) SURFACE TEMP. (F)= 60 E) BOTTOM HOLE TEMP (F)= 90 G) DEPTH TO LIQUID= OF JOINTS 30 * BY ECHOMETER ************************ AT 100.00 FT/JT=(FT) 3000 H) GAS SPECIFIC GRAVITY= CALCULATING .85 I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1

PRESSURE AT GAS/OIL INTERFACE= 17 PSIG @ 3000 FT.

BHP= 35 PSIG @ 3040 FT * TO PRINT RESULTS, TYPE SHIFT+PrtSc **************************** RETURN TO CONTINUE? ******************** WELL: 8B DATE:03-29-2001 * ACOUSTIC STATIC * * BOTTOMHOLE PRESSURE * SURVEY A) DEPTH TO PRESSURE DATUM (FT) = 2670 B) WELLHEAD PRESSURE (PSI) = 27 + C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 26 * BY ECHOMETER ********************* AT 100.00 FT/JT=(FT) 2600 H) GAS SPECIFIC GRAVITY= .83 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 30 PSIG @ 2600 FT. * BHP= 63 PSIG @ 2670 FT ************************* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? ******** WELL: 8B * ACOUSTIC STATIC DATE:03-29-2001 * * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 2670 * SURVEY B) WELLHEAD PRESSURE (PSI) = 27C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 26 * BY ECHOMETER AT 100.00 FT/JT=(FT) 2600 H) GAS SPECIFIC GRAVITY= .83 CALCULATING I) H2S%= 0 .1 J) CO2%= K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 30 PSIG @ 2600 FT. * BHP= 63 PSIG @ 2670 FT * ************************* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? ******************** WELL: 8B * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE *

WELL: ******** DATE:03-29-2001 * ACOUSTIC STATIC * BOTTOMHOLE PRESSURE + A) DEPTH TO PRESSURE DATUM(FT) = 2900 * SURVEY B) WELLHEAD PRESSURE (PSI) = 1 C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 29 60 * BY ECHOMETER 90 ********* AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= .84 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIOUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 2 PSIG @ 2900 FT. * BHP= 2 PSIG @ 2900 FT * ********************** TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: IP ***************************** DATE:03-29-2001 * ACOUSTIC STATIC * BOTTOMHOLE PRESSURE * A) DEPTH TO PRESSURE DATUM(FT) = 2900 * SURVEY * B) WELLHEAD PRESSURE (PSI) = 1 * C) SURFACE TEMP. (F) = E) BOTTOM HOLE TEMP (F) = * BY ECHOMETER 60 E) BOTTOM HOLE TEMP (F) = 90 G) DEPTH TO LIQUID= OF JOINTS 29 ********************* AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= .84 CALCULATING I) H2S*= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 2 PSIG @ 2900 FT. * BHP= 2 PSIG @ 2900 FT * TO PRINT RESULTS, TYPE SHIFT+PrtSc ************************* RETURN TO CONTINUE? ********************* WELL: * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM (FT) = 2900 * SURVEY B) WELLHEAD PRESSURE (PSI) = 1C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90* BY ECHOMETER ********************

G) DEPTH TO LIQUID= OF JOINTS 29 AT 100.00 FT/JT=(FT) 2900 H) GAS SPECIFIC GRAVITY= CALCULATING .84 I) H2S*= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIOUID= D M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 2 PSIG @ 2900 FT. PRESSURE AT GAS/OIL INTERFACE= 2 PSIG @ 2900 FT BHP= + ************************* TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: 15P ********************* * ACOUSTIC STATIC DATE:03-29-2001 . * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 2700 * SURVEY B) WELLHEAD PRESSURE (PSI) = 1 C) SURFACE TEMP. (F) = 60 E) BOTTOM HOLE TEMP (F) = 90 G) DEPTH TO LIQUID = OF JOINTS 27 BY ECHOMETER ********************* AT 100.00 FT/JT=(FT) 2700 H) GAS SPECIFIC GRAVITY= CALCULATING .87 I) H2S%= 0 J) CO2*= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= N) WATER SPECIFIC GRAVITY= 0 1.1 PRESSURE AT GAS/OIL INTERFACE= 2 PSIG @ 2700 FT. * BHP= 2 PSIG @ 2700 FT * TO PRINT RESULTS, TYPE SHIFT+PrtSc *********** RETURN TO CONTINUE? WELL: ************************* * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE . A) DEPTH TO PRESSURE DATUM (FT) = 2700 * SURVEY . B) WELLHEAD PRESSURE (PSI) = 1 * * BY ECHOMETER (F) = 60EMP (F) = 90C) SURFACE TEMP. 60 E) BOTTOM HOLE TEMP (F) = 90 G) DEPTH TO LIQUID= OF JOINTS 27 ********************* AT 100.00 FT/JT=(FT) 2700 H) GAS SPECIFIC GRAVITY= CALCULATING .87 I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0

N) WATER SPECIFIC GRAVITY= 1.1 AN ARTS - NEW DO PRESSURE AT GAS/OIL INTERFACE= 2 PSIG @ 2700 FT. * BHP= 2 PSIG @ 2700 FT * ************************ TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? WELL: 46p ************************ DATE:03-29-2001 * ACOUSTIC STATIC * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 3025 * SURVEY * B) WELLHEAD PRESSURE DATOM (FT) = 302B) WELLHEAD PRESSURE (PSI) = 19C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 30 * BY ECHOMETER ********* AT 100.00 FT/JT=(FT) 3000 H) GAS SPECIFIC GRAVITY= .9 CALCULATING I) H2S%= 0 J) CO2%= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 22 PSIG @ 3000 FT. * BHP= 34 PSIG @ 3025 FT * ********************** TO PRINT RESULTS, TYPE SHIFT+PrtSc RETURN TO CONTINUE? ************************* WELL: 46p * ACOUSTIC STATIC DATE:03-29-2001 * BOTTOMHOLE PRESSURE A) DEPTH TO PRESSURE DATUM(FT) = 3025 * SURVEY B) WELLHEAD PRESSURE (PSI) = 19C) SURFACE TEMP. (F) = 60E) BOTTOM HOLE TEMP (F) = 90G) DEPTH TO LIQUID= OF JOINTS 30 * * BY ECHOMETER ********************* AT 100.00 FT/JT=(FT) 3000 H) GAS SPECIFIC GRAVITY= .9 CALCULATING I) H2S%= 0 J) CO2*= .1 K) N2%= 13.6 L) WATER % IN LIQUID= 0 M) LIQUID HYDROCARBON API= 0 N) WATER SPECIFIC GRAVITY= 1.1 PRESSURE AT GAS/OIL INTERFACE= 22 PSIG @ 3000 FT. * BHP= 34 PSIG @ 3025 FT ********************** TO PRINT RESULTS, TYPE SHIFT+PrtSc

E. E.

APPENDIX D

Example of contour map constructed with Rockworks 99[™] Trend Surface contained Residuals method.

APPENDIX E

Example of contour map constructed with Rockworks 99[™] Directional Weighting method.

APPENDIX F

Example of contour map constructed with Rockworks 99[™] Triangulation

APPENDIX G

Example of contour map constructed with Rockworks 99™ E-Z Map 2-D method.

APPENDIX H

Example of contour map constructed with Rockworks 99™ Kriging method.

APPENDIX I

Example of contour map constructed with Rockworks 99[™] Distance to Point Gridding method.

APPENDIX J

Example of contour map constructed with Rockworks 99[™] Closest Point Gridding method.

Daniel A. Hannah

Candidate for the Degree of

Master of Science

Thesis: PRESSURE ARCHITECTURE OF THE PERMIAN AND PENNSYLVANIAN SECTION IN CARSON, MOORE, HUTCHINSON, AND POTTER COUNTIES, TEXAS PANHANDLE

Major Field: Geology

Biographical:

- Personal Data: Born in Tucson, Arizona, on December 13, 1966, the son of John W. and Janice C. Hannah.
- Education: Graduated from Nathan Hale High School, Tulsa, Oklahoma in May 1984; attended New Mexico Institute of Mining and Technology, Socorro, New Mexico, 1984-87; attended New Mexico State University, Las Cruces, New Mexico, 1989; received Bachelor of Science Degree in Geology from Oklahoma State University, Stillwater, Oklahoma in August 1992. Completed the requirements for the Master of Science degree with a major in Geology at Oklahoma State University in May, 2001.
- Experience: Employed in the petroleum services sector as a hydrocarbon well logger (1994-95), core analysis technician (1995-96), and drilling fluids engineer (1996-98). Employed in the environmental services sector as a geotechnician, 1999 to present.

