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CHAPTERl

INTRODUCTION

An estimated 50,000 inactive municipal solid waste landfills exist in the United

States today. These landfills were typically sited along floodplains because floodplains

were areas with high groundwater tables which limited their economic use. Many of the

inactive landfills were established in the early 1900's and were not subject to regulation.

They were operated as open dumps with no historical record of the substances dumped in

them. Also many of these landfills were not lined. Without a liner, substances leached

from the landfills could move through the alluvial sediments toward the rivers (Lee &

Jones-Lee, 1995).

The former municipallandfiU for the city of Norman, Oklahoma, received solid

wastes from 1922 to 1985. In 1985 the landfill was closed and capped with a clay, sand,

and silt mixture (Scholl & Christenson, 1998). The landfill was never lined, and a

leachate plume developed and now extends down gradient from the landfill. The landfill

is situated adjacent to the Canadian River and the plume is moving southward into the

floodplain alluvium in the direction of regional groundwater flow. The floodplain of the

Canadian River consists of an unconfined alluvial aquifer. The aquifer is 10 to 15 meters

(32 to 48 feet) thick and composed of unconsolidated sediments ranging from clay to

gravel. The aquifer is underlain by the Hennessey Shale, which acts as a confining unit.



The sedimentologic characteristics of the Canadian River Floodplain adjacent to

the Norman Landfill have not been documented. These characteristics control the

permeability of the floodplain and the migration potential of the leachate plume. Because

the sedimentology has not been studied extensively, a study was proposed for the purpose

of establishing a 3-D model of the vertical and horizontal texture of the floodplain

alluvium. This exercise establishes the permeability pathways in the floodplain of the

Canadian River. A textural analysis of the floodplain can provide the V.S.O.S. with an

understanding of how the landfill leachate will move through the alluvium. The research

methods employed for this site can also be used to help other scientists working in similar

environments.

Goals and Objectives

The project entailed eight major tasks:

1) collect cores and conductivity logs from the floodplain alluvium;

2) describe and photograph the cores;

3) perform textural analysis on each core based on lithofacies;

4) determine the relationship between texture and permeability using established

equations;

5) inspect the conductivity logs to establish relationships between conductivity

and lithofacies;

6) correlate the conductivity logs;

7) create a 3-D model of subsurface permeability; and

8) make recommendations based on findings.
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Study Area

The Canadian River begins in the Sangre de Cristo Mountains of southeastern

Colorado and flows 1460 kIn to its confluence with the Arkansas River in eastern

Oklahoma. In the vicinity of the Norman Landfill, the Canadian River is a low-sinuosity,

sand-bed river that alternates between braiding and meandering in pattern. In central

Oklahoma, the Canadian River Valley ranges in width from 2.5 to 6.5 kIn, and is

composed of two geomorphic surfaces: a late Holocene valley fill and the modem

floodplain. The Norman City Landfill is situated on the north side of the Canadian River,

south of the city of Norman, between Chautauqua and Jenkins Avenues (Fig. 1). The

base of the landfill is 3.5 meters (11 feet) above the thalweg of the river. The valley fiU

is approximately 10-15 meters (32 to 48 feet) deep and composed of unconsolidated

sediments ranging from clay to gravel. The alluvial aquifer is underlain by the

Hennessey Shale, which acts as a confining unit.

3
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CHAPTER II

LITERATURE REVIEW

Investigations at the Norman Landfill

The Norman Landfill site is under investigation by several groups of researchers,

including the Toxic Substances Hydrology program of the United States Geological

Survey, the University of Oklahoma, and the United States Environmental Protection

Agency (Scholl & Christenson, 1998). The focus of the research program has been to

determine the microbiological, geochemical, and hydrological factors that control the

transport of contaminants in the plume.

Scholl and Christenson (1998) performed slug tests in the alluvial aquifer to

estimate the hydraulic conductivity of the area. These results showed two strata that

appeared to be continuous across the site. The first unit was a layer of low hydraulic

conductivity about 4 meters (13 feet) below the water table, and the second unit was a

zone of high hydraulic conductivity about 1.5 meters (5 feet) above the base of the

aquifer. This study provided indications of a permeability structure within the alluvium.

Lucius and Bisdorf (1995) performed electromagnetic induction (EM) surveys

surrounding the Norman Landfill in January and February 1995. Electromagnetic

induction surveys measure the electrical conductivity of the soils and fluids in the aquifer.

This study determined the vertical and horizontal extent of the h~achate plume. The



highest conductivities were found within 200 meters (656 feet) of the landfill. Moving

laterally away from the landfill, little variation occurred in the alluvium conductivity, but

changes were seen with depth. The EM methods, however, were unable to resolve the

vertical changes in conductivity with precision and the study noted the need for further

data to describe the thickness and lithologic characteristics of the aquifer aJLuvium.

Direct Push Technology

Direct push (OP) technology was used to collect data at the Norman Landfill site.

Direct push technology has recently seen more widespread use in aquifer assessment.

The DP technology is popular because the systems are more mobile than conventional

drilling systems, no drill cuttings are generated, and the subsurface is less disturbed.

Butler, et al. (1999) from the Kansas Geological Survey worked in cooperation

with Geoprobe Systems to determine subsurface detail of the Kansas sites using Direct

Push electrical logs. Electrical logs were collected at two sites in Kansas. Cores were

also collected at both sites adjacent to the locations of the DP e-logs. The relative

differences seen in the electrical conductivity logs were found to agree the cores. This

article does not discuss how the conductivity would be affected in areas that may be

contaminated with leachate or other fluids.

Resistivity Study of Alluvial Deposits

Klefstad (1973) used electrical resistivity equipment to detect landfill leachate in

alluvial deposits in Iowa. Klefstad found that limitations exist in the use of electrical

resistivity equipment to delineate contaminated zones in alluvial deposits. These

limitations result from the lateral variation present in alluvial deposits. Because alluvial

deposits exhibit vertical and horizontal heterogeneity, it is difficult to determine
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contaminated materials from natural variation. Klefstad noted the need for establishing a

stronger geologic framework within which to evaluate the log response.

Permeability Equations and Size Distribution Parameters

Beard and Weyl (1973) performed an investigation on the relationship between

porosity, permeability, and the texture of artificially mixed and packed sand. They were

concerned primarily with the effects of grain size and sorting on porosity and

permeability. In the study, 48 samples of artificially mixed sand were prepared that

covered eight grain size subclasses from upper coarse to very fine, and six sorting groups

from extremely well to poorly sorted. The data show that permeability decreases as

grain size becomes finer and sorting becomes poorer. Beard and Weyl also looked at the

effect of grain shape and roundness on porosity and permeability. They found the effects

of shape and roundness on permeability were far less pronounced than grain size and

sorting.

Many parameters for describing size distribution of sedimentary particles have

been devised. Krumbein (1936) and Trask (1930) defined size parameters based on

quartile measurements. These measurements included the 25 Lh
, 50th

, and 75th percentile

of the cumulative size distribution. Folk (1957) defined particle size parameters based on

these quartile measurements as well as on percentile measurements closer to the extremes

of the distribution. These parameters are important in calculating the median diameter or

average size, and the sorting of the grains, which is used in calculating the permeability

of sediments based on Beard and Weyl's (1973) equation.

7



CHAPTER III

METHODOLOGY

Obtaining Conductivity Logs and Cores

A sampling grid was designed to obtain uniform coverage of the floodplain

alluvium. The grid was composed of cross-lines, which ran parallel and perpendicular to

the Canadian River (Fig.1). Geoprobe® conductivity logs were taken along these cross­

lines to a depth of 10 to 12 meters (35 to 40 feet). The average distance between the

sample locations was about 37 meters (110 ft). A total of78 conductivity logs were

taken, and continuous cores were taken in 19 of these wells. A hand-held GPS system

and map were used to locate each of the sampling locations. This GPS system could

locate the latitude and longitude to within 1 m (3 feet). After the samples were collected

from each site, the site of each well on the floodplain was marked. A second GPS system

was used by Scott Christenson from the USGS office in Oklahoma City to obtain more

accurate readings. Christenson was able to measure the latitude (X), longitude (Y), and

surface elevation (Z) of each well to within 2 em. The set of readings taken by

Christenson provided the X, Y, and Z data for each well in the project.

Conductivity Logs

Seventy-eight conductivity logs (Fig.2) were collected using a Geoprobe®. A

Geoprobe® is a hydraulil:ally powered, percussion soil probing instrument. The

8
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Geoprobe® uses static weight and the percussion force ofa soil probing hammer to

advance a direct-push electrical-logging probe through the subsurface. The Geoprobe®

is attached to a vehicle, which provides the static weight for the instrument. The direct­

push e-logging probe is attached to the leading end of a tool string and advanced into the

subsurface (Fig. 2,3). The probe used is a Wenner array design that is 38 cm (15 inches)

long with a maximum diameter of 3.8 cm (1.5 inches). The electrical conductivity data is

transmitted to a field computer, which is attached to the Geoprobe® via a cable. The

conductivity is measured in millisiemens/ft. Conductivity readings are taken every 1.5

cm (0.05 feet) and the computer displays a real-time log on its screen as the log is taken.

In addition to conductivity, the system also records the rate of penetration (Geoprobe

Systems). The data are discussed in feet and meters because the Geoprobe measurements

are taken in feet.

After collection, the conductivity log data were imported to an Excel spreadsheet.

Once in Excel, the log data were plotted as a curve with depth and printed out on oversize

paper. The logs were pieced together to fonn the cross-sections ofthe study area (Fig. 4).

These cross-sections were then correlated based on the following criteria:

1) vertical position of sands relative to mud layers

2) vertical variations in texture based on sieve analysis

3) depositional subenvironments

The macro-cores provided a check between the conductivity logs and the actual

lithology. No age control was available for the cores that were collected. Therefore, the

strata of the conductivity logs were matched based on similar lithologic characteristics as

seen in the cores. The sieve data were also used to match similar strata based on the

10



The USGS Geoprobe in Action

Fig. 3 - Kelli Collins and Tom Kropatsch collect conductivity data in the
Canadian River floodplain.
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premise that similar lithologies will exhibit similar texture. Missing sections in the

cores, because of compaction and poor recovery, provided problems for correlation. It

was impossible to check the conductivity log data against known lithology for the

sections that were missing.

Continuous Cores

Nineteen continuous cores were collected using a Geoprobe®. The Geoprobe®

yielded cores of alluvium in 1.2 meter (4 foot) depth intervals. The total depth of each

cored well ranged from 11 to 12.2 meters (36 to 40 feet) encompassing the entire

thickness of the floodplain alluvium. The Geoprobe® uses a macro-core piston rod soil

sampler. The macro-core sampling tube is 122 em (48 inches) long and 5 em (2 inches)

in diameter. The sampling tube contains a removable polycarbonate core liner that is 3.8

em (1.5 inch) in diameter (Fig. 5). The sampling tube also contains a piston rod, which

keeps the sampler sealed until the desired depth is reached for each sample interval.

The piston rod sampler is designed to enhance the recovery of unconsolidated materials.

Recovery of complete samples, however, proved difficult in the floodplain alluvium.

When samples contained clay, the recovery was around 75%, but when samples were

primarily sand the recovery was as low as 25%.

The Geoprobe® can only penetrate unconsolidated materials. Underlying the

alluvium is the Permian Hennessey shale bedrock. Once the Geoprobe® reached the

shale, the penetration slowed or stopped completely ensuring complete coverage of the

alluvium.

13
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Core Description

The cores, described in the laboratory, were stored upright to prevent mixing of

the sediments. The core liner was split open when the cores were described, but they

were kept sealed until then to prevent dessication. The cores were described using a

standard strip-log form. Core was described at a scale of 1 inch of strip log to I foot of

core. The core descriptions included details about lamina and bed thicknesses, lithology

sedimentary structures, color, and estimates oftexture (grain size, sorting). Color was

determined using a visual comparitor (Exxon-Mobil). Sediment texture was estimated

using a binocular microscope and a grain size/sorting visual comparitor. Grain

size/sorting estimates were taken about every .45 meters (1.5 feet), and each sediment

sample averaged about 1 to 2 grams. A range was recorded for the grain size of each

sample. This range included the smallest to largest grain viewed in the sample. Then an

average grain size was assigned to the sample based on the most frequent grain size seen

in the sample. The core descriptions with grain size/sorting estimates are included in

Appendix A.

After the description was complete for each well, the core was photographed with

Kodak 100 speed film. Photographs of the core covered about six meters (20 feet) of the

alluvial section, so a set of two photos was required to cover each well. In addition.

photographs were taken of key features (texture, structures, bounding surfaces,

lithoclasts) within the cores. The negatives from each core were scanned to create digital

image files. The images were then inserted to Powerpoint, pieced together, and

described (Appendix B).

15



Texture Analysis of Core Samples

Once the cores were described and photographed, they were divided into samples

for mechanical sieving. Approximately 15 samples were taken from each of the 78 cores,

and the average weight of each sample was about 150 grams. Samples were taken

whenever an abrupt contact or change occurred in grain size within the core. The

estimates of grain size, performed on the cores during the description process, helped to

identify any key changes in grain size when decisions were made on where to collect

samples for sieving.

The core samples were placed into labeled sample bags. Each sample was sieved

through a set of thirty wire mesh sieves using a Ro-Tap machine. The sieves ranged in

size from 1 to 230 according to the U. S. Standard Sieve number. This range is

equivalent to -4.64 to 4.00 phi grain size (25.0 to 0.0625 mm). Each core sample was

sieved for about 12 minutes. The amount of sediment collected in each mesh was

weighed and recorded in grams using a digital scale.

The results from sieving were input to an Excel spreadsheet. The spreadsheet

automatically calculates the weight percentages of the individual grain size fractions

present in each core sample. These weight percentages were summed to form a

cumulative weight percentage curve that was then plotted against phi grain size to form a

standard grain size cumulative curve (Fig. 6). A cumulative curve was generated for

each sample (Appendix C). Each curve was then used to determine a graphic mean and

inclusive graphic standard deviation for that sample. The graphic mean is equivalent to a

mean grain size and the standard deviation is equivalent to sorting. The equation used to

calculate the graphic mean is:

16
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Mz = ($16 + ~50 + $84) 13 (eq. 1)

The phi grain size was read from the cumulative curves at the 16%, 50%, and 84%

marks. By reading the data from these intervals the central two thirds of the grain size

data were encompassed. These three values were then averaged to provide a mean grain

size for the sample. The inclusive standard deviation equation used to calculate the

standard deviation is:

0"1 = ($84 -$16)/4 + (~95 - ~5)/6.6 (eq.2)

For this equation the phi grain size was read at 5%, 16%,84%, and 95% from each of the

curves and input into the equation. The inclusive standard deviation is an average of the

standard deviation calculated from ~ 16 and $ 84, and the standard deviation calculated

from ~5 and ~95. This is the best overall measure of sorting because it includes 90% of

the distribution (Folk, 1974). The mean grain size and sorting were then used to calculate

the penneahility.

The equations used to calculate the graphic mean and inclusive graphic standard

deviation followed the recommendations of Folk (1974). These equations were used for

this analysis because of inherent sensitivity to the "tails" of the grain size distribution.

This sensitivity is important to determinations of sediment grain sorting, a major control

on the porosity and permeability of sands.

18



Texture-Permeability Equation

The raw data (~, K, grain size, sorting) from the classic Beard and Weyl (1973)

paper was used to generate a permeability equation (Table 1, Fig. 7). These raw data

were input to an Excel spreadsheet that was imported to SAS (v.8.01). SAS was used for

analyzing the relationships among the variables. A step-wise multivariate statistical

technique was used to evaluate the controls on the permeability log units. Permeability is

a measure of the ease with which fluid can be transmitted through a porous medium. The

effects of grain size and shape, and their interconnectedness are included in the

measurement of permeability. In the SI system, permeability has units of m2
. Another

unit of permeability is the darcy, which was used in this study. The conversion factor to

the Sf system is 1 darcy = 0.987 x 10-12 m2 (Hermance, 1999)

The units of permeability were measured in Darcies (cgs). The results of the

statistical analysis indicate the grain size was the most important to the permeability

equation. Phi grain size explained 64% of the total variation, while sorting explained

32%. The r2 value for the multiple regression was 0.97. This value is so high that one

suspects that the Beard and Weyl raw data have been adjusted by some additional factor

not listed in their paper.

The multivariate equation that was produced to calculate the permeability is:

Log (10) of permeability = 6.18660-0.49463 (So) - 0.57248 (~gs)

or

Permeability = 10 6. I 8660 --{).49463 (SO) - 0.57248 (41gs)

where So = sorting and ~gs = phi grain size.

19
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Raw Data

Table 1- Grain size
and sorting
controls on pre­
burial porosity and
permeability.
These raw data
were used for
generating the
permeability
equation discussed
in the text.

Data from
Beard and Weyl
(1973)

Sample ISortingl Size phiGS Porosity IPermeability Darcies LogPerm
Sample 1 1.0500 0.8550 0.2260 43.10 475000 475 5.6767
Sample 2 1.0500 0.6050 0.7250 42.80 238000 238 5.3766
Sample 3 1.0500 0.4250 1.2345 41.70 119000 119 5.0755
Sample 4 1.0500 0.3000 17370 41.30 59000 59 4.7709
Sample 5" 1.0500 0.2135 2.2277 41.30 30000 30 4.4771
Sample6"1.0500~0.1510 2.7274 43.50 15000 15 4.1761
Sampie 7 1.0500 0.1065 3.2311 42.30,

-
7400 7.4 3.8692

Sample 8- 1.0500 0.0660 3.9214 43.00 3700 3.7 -3.5682
Sample 91 1.1500 0.8550 0.2260 40.80 1 458000 458

-
5.6609

Sample 10 1.1500 0.6050 0.7250 41.501 239000 239 5.3784
Sample 11 1. 1500 0.4250 1.2345 40.20 115000 115 5.0607
Sample 12 1.1500 0.3000 1.7370 40.20 57000 57 4.7559
Sample 13 1.1500 0.2135 2.2277 39.80 29000 29 4.4624
Sample 14 1.1500 0.1510 2.7274 40.80 14000 14 4.1461
Sample 15 1.1500 0.1065 3.2311 41.201 7200 7.2 3.8573
Sample 16 1.1500 0.0660 3.9214 4180 3600 3.6 3.5563
Sample 17 1.3000 0.8550 0.2260 38.00 302000 302 5.4800
Sample 18 1.3000 0.6050 0.7250

-
38.40 151000 151 5.1790

Sample 19 1.3000 0.4250 1.2345 38.101 76000 76 4.8808
Sample 20 1.3000 0.3000 1.7370 38.80 38000 38 4.5798
Sample 21 1.3000 0.2135 2.2277 39.10 19000 19 4.2788
Sample 22 13000 0.1510 2.7274 39.70 9400 9.4 3.9731
Sample 23 1.3000 0.1065 3.2311 40.20 4700 4.7 3.6721
Sample 24 1.3000 0.0660 3.9214 39.80 2400 2.4 3.3802
Sample 25 1.7000 0.8550 0.2260 32.40 110000 110 5.0414
Sample 26 1.7000 0.6050 0.7250 33.30 55000 55 4.7404
Sample 27 1.7000 0.4250 1.2345 34.20 28000 28 4.4472
Sample 28 1.7000 0.3000 1.7370 34.901 14000 14 4.1461
Sample 29 1.7000 0.2135 2.2277 33.90 7000 7 3.8451
Sample 30 1.7000 0.1510 2.7274 34.30 3500 3.5 3.5441
Sample 31 1.7000 0.1065 3.2311 35.60 2100 2.1 3.3222
Sample 32 1.7000 0.0660 3.9214 33.10 1100 1.1 3.0414
Sample 33 2.3500 08550 0.2260 27.10 45000 45 4.6532
Sample 34 2.3500 0.6050 0.7250 29.80 23000 23 4.3617
Sample 35 i3500 0.4250 1.2345 31.50 12000 12 4.0792
Sample 36 2.3500 0.3000 1.7370 31.30 6000 6 3.7782
Sample 37 23500 0.2135 2.2277 30.40 3700 37 3.5682
Sample 38 2.3500 0.1510 2.7274 31.00, 1900 1.9 3.2788
Sample 39 2.3500 0.1065 3.2311 30.50 930 0.93 2.9685
Sample 40 2.3500 0.0660 3.9214 34.20 460 0.46 2.6628
Sample 41 4.2000 0.8550 0.2260 28.60 14000 14 4.1461
Sample 42 4.2000 0.6050 0.7250 25.20 7000 7 3.8451
Sample 43 4.2000 0.4250 1.2345 25.80 3500 3.5 3.5441
Sample 44 4.2000 0.3000 1.7370 23.40 1700 1.7 3.2304
Sample 45 4.2000 0.2135 2.2277 28.50 830 0.83 2.9191
Sample 46 4.2000 0.1510 2.7274 29.00 420 042 2.6232
Sample 47 4.2000 0.1065 3.2311 30.10 210 021 2.3222
Sample 48 4.2000 00660 3.9214 32.60 100 01 2.0000
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Interpretation of Conductivity Logs for Texture and

Generation of 3-D Block Diagrams

A database was set up in Rockworks 99 that contained the latitude (X)t

longitude(Y), and surface elevation (Z) for each of the sample locations. The files for the

conductivity log curves were then associated with the sample locations in the database.

Once these curve files were imported into Rockworks with the corresponding X t Y t and Z

locations, the software was able to plot the conductivity logs as cross-sections and 3-D

block diagrams. Digital strip logs for display were also created for each of the 19 cores

based on the log fonn descriptions (Appendix A).
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CHAPTER IV

RESULTS AND DISCUSSION

Description of Sedimentary Features

Figures 8, 9, 10, and 11 show excellent examples of the sedimentary features

noted in the 19-cored wells. The depth units are expressed in English units rather than

metric units as the Geoprobe probe rods are manufactured in increments of4' lengths.

Fig. 8 - Well #1 Core has a thin, incipient soil (b), mud rip-up clasts (b), and a

sharp contact of sands with the underlying mud layer (b). No cross bedding is

obvious in the sand beds.

Fig. 9 - Well #3 Core shows an excellent example of an accumulation of silt and

clay that has been carried past the piston by flowing water because of sudden

pressure drop in the core barrel (b). This well also has mud clasts and a solid

contact with the underlying Hennessey Fm.

Fig. 10 - Well #7 Core shows an excellent recovery of gravel near the base of the

valley fill and a very sharp contact with the underlying Hennessey red bed (b).

Mud in this core is red and black (organic-rich).
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W I #1 - Canadian River Floo •
D al

a.

Figs. 8a, b (ne t page) - Cores from Well #1 howing and / mud layer and mud
clast . Each core egment i 4' in length though compaction of the diment and
10 of some material (failure of core catcher?) alwa re ult in core length
egment that are <4'.
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Well #3 - Cana •
I

•
I F I •

I

a.

Fig. 9a, b (ne t pa ) - or fr m Well #3 ho ing la. r mud cia t ,and the
underl· H nne F. Du to rno ement of ater into the w II ore, om
e iment i al tran p rt d up arou d the coring pi ton, ccumula ing in

the upper portion of the c re leeve.
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Fig. 11 - Well #46 Core has some of the best-preserved cross bedding in any of

the 19 cored wells. Sedimentary structures were always absent or disturbed

below the water table because of the rapid movement of water into the well bore

during penetration of the probe. The preserved tough cross bedding in this well

occurred above the water table (b). Disruption (doming) of layering because of

water movement is apparent in images 11 b and d. Poorly sorted gravels were

recovered near the base of the well (c). Image 11 e contains two fining upward

cycles, each with gravel at the base.

Criteria for Correlating the Conductivity Logs

The vertical succession of the point bar from the basal contact with the underlying

Permian Hennessey Fm. to the present day land surface was vertically subdivided on the

basis of conductivity profiles, mud layers, and rapid changes in sediment texture (grain

size, sorting). No strong independent age-control exists for the stratigraphy of the point

bar. Consequently, the criteria used for correlating the conductivity logs were:

(1) similarities in conductivity response patterns,

(2) stratigraphic position (superposition), and

(3) lithologic similarity.

The correlation style was strongly tempered by observations about the nature and

distribution of the modern Canadian River floodplain sediments. Observations of the

floodplain, sand bars, and mud layers are as follows:

(1) Floodplain: very flat with little relief (see Fig. 12)

(2) Sand Bars:
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Incised North Bank of the Canadian River,
Norman, Oklahoma

Fig. 12 - Pictur d above is a portion of the Canadian River floodplain that has been incised and abandoned. Note the flat,
horizontal nature of the floodplain. The inset photograph shows a thin, dried mud layer that will be eroded during the next major
high discharge event. This mud layer was observed near the yellow arrow in the larger photograph.



a) Initially sinuous-crested linguoid-shaped dunes that fonn during high

discharge events (Fig. 13, 14).

b) final morphology results from continuous dissection of the constructional bar

fonns by braids ofchannelized flow that accompany waning flow (Fig. 12)

c) incision of the constructional bar forms continues until the occurrence of the

next high discharge event

(3) Mud Layers

a) Occur adjacent to main channels; are flat-topped, may onlap an erosional

surface, are discontinuous (Fig. 15)

b) mud layers develop as silt and clay settles from suspension each time high

water (which has a high suspended load in the Canadian River) inundates the

topographic lows on the floodplain

c) the topographic lows are the erosional features mentioned above and are

produced subsequent to a high-discharge event

Subsurface evidence confirms these observations with respect to bar fonn shape

and relationship to mud layers. The contacts of some mud layers with underlying bar

sands are observed in core to onJap erosional sur1aces and vice versa (Fig. 16). [0

addition, mud clasts are found at the base of some of the sandbars (Fig. 17). The mud

clasts were derived from the underlying mud layers as the river erodes surface sediments

during a high discharge event.
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Sand Bars in Oklahoma Rivers
Fig. 13b - Migration of a thin unit bar down the
Canadian River channel at low flow - linguoid ripples
are advancing up the back of the bar form.
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Development of Mud Layers in the Canadian River,
Norman, Oklahoma

Fig. 15 - Subtle topographic lows on the margin of the main channel accumulate mud (and some algae) that fonns the
discontinuous mud layers seen in the subsurface cores and as depicted on the cross sections.
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ell #31

foam
rubber
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Evidence for Deposition on Erosional Surfaces within
the Point Bar

FIg. 16 The onlap f and or mud la e onto tratal urface that hibit r he u t th b al onta t of ch orr latl n unit
in the P Int bar (Inter I. 20 -500) i era ional (In part or entirel ). The ba~al contact ofth 10 Int rv I with the und rl ing
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Well #1 - Cana an •Ive

Mudclasts
or "rip-ups"

Fig. 17 Mudcla't or "rip-up "commonly occur at or near the ba e of many of
the major sand bed 10 the onnan Landfill pomt bar.
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Cross Sections of Conductivity Logs

Cross-sections of the conductivity ogs were correlated across the study area.

Eleven cross-sections were created; six run perpendicular to the point bar and five run

parallel to the point bar. Two cross-sections are included here: Cross-section D-O'

(Fig18) runs perpendicular to the point bar, and a portion of cross-section I-I' (Fig 19)

runs parallel to the point bar. The remaining cross-sections are shown in Appendix D.

The cross-sections indicate that the gross stratigraphy of the floodplain is

essentially horizontal (layer-cake) and similar to flat floodplain topography seen today

(Fig 12). The floodplain alluvium was broken up into 5 intervals that are labeled as Unit

100 through Unit 500. These units are identitied on each of the cross-sections.

Unit 100- Basal layer of the alluvium. It ranges in thickness from 1.8 to 2.4

meters (6 to 8 feet) from the base of the alluvium. This unit is characterized by

coarse grained sediments and gravels.

Unit 200- Sand overlying the basal layer. It is about 3 m (10 feet) thick.

Unit 300- Unit overlying the 200 unit. It ranges in thickness from 4.5 to 6 m (15

to 20 feet). This layer contains extensive mud layers and lenses.

Unit 400- Sand unit overlying the 300 unit. It is about 2.4 to 2.7 m thick (8 to 9

feet).
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Unit 500- Unit extending from the surface down to about 1 m (3 feet). This unit

is composed of very fine-grained sands.

These intervals have distinct texture (grain size/ sorting) and are bounded by mud layers.

Mud layers were drawn on the cross-sections to illustrate the number and thickness of the

muds in the floodplain alluvium. The cross-sections indicate that the number and

thickness of muds increases toward the slough. The lateral extent of the mud layers

throughout the alluvium is as follows:

1) Mud layers perpendicular to the bar complex range in length from <37

meters «120 feet) to about 148 meters (485 feet)

2) Mud layers parallel to the bar complex range in length from <37

meters(<120 feet) to about 222 meters (728 feet)

Vertical Profiles and Interval Units for Correlation

A Type Conductivity Log (Well #1, Fig. 20) shows the standard vertical

succession of sand and mud encountered in the 19 cores taken from the point bar. The

lower 6-8' of the fill yields a characteristic 'choppy' conductivity response that is related

to the basal layer (our 100 Interval) deposited on top of the underlying Permian

Hennessey Formation. The frequency distributions of grain size (Fig. 21) and sorting

(Fig 22) for the basal layer are negatively skewed and bimodal. One mode is medium

grained (0.25-0.5mm) and moderately sorted. The other mode is very coarse grained

(0.5-1mm) and poor- to very poorly sorted. Some wells contain granule- (2-4mm) and

pebble-size materials (>4mm).
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There was no geographic significance seen in the bimodality. The bimodality

may reflect inadequate sample size for such a heterogeneous population (n=55). The

texture (grain size / sorting) of the basal layer is distinctly different from the texture of all

the overlying layers on the basis ofa Satterthwaite· t-test (p < 0.0001) perfonned in SAS,

v. 8.0 1, 1999-2000 (Tables 2, 3). The null hypothesis (Ho) for this test assumes that the

means for the two populations are equal (or not different). In this exercise, a significant

difference was assumed to exist between populations means if p < 0.1.

A well developed but discontinuous mud layer (1-3' thick) was commonly present

above the basal gravel. The overl ying sand layer (Interval 200) is about 10' in thickness.

This interval was fine to medium grained and moderately to moderately-well sorted. A

few of the wells in this interval contain coarse grained, poorly sorted sand.

Another discontinuous interval of mud lenses (1-3' in thickness) lies above

Interval 200. The 300 Interval is fine to medium grained and moderately to

moderately-well sorted. This interval was the thickest (about 15-20') and most

heterogeneous of the layers with respect to the occurrence of mud layers and lenses. A t­

test suggests that the 300 Interval mean grain sorting is significantly different from the

underlying 200 Interval (p < 0.0001). The grain sizes between the two layers are slightly

different (p < 0.08) (Tables 2, 3). Another 1-3' thick mud lenses occurs throughout the

point bar at a depth interval between 5 and 10' ..

The 400 Interval is 8-9' in thickness and contains fine-grained, moderately-well

to well sorted sand. The t-tests again indicated that the 400 Interval sand is finer grained

(p < 0.04) and better sorted (p < 0.01) than the underlying 300 Interval.

• Satterthwaite assumes unequal variances
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Testing for Differences Between Layers in the NLF Point Bar

Table 2 - Grain Size (phi units)

Variable Method Variances OF t Value Pr> ItI

Interval

500 vs. 400 Grain Size Pooled Equal 82 -3.63 0.0005*
Satterthwaite Unequal 19.7 -4.71 0.0001*

Vl
~

400 vs. 300 " Pooled Equal 165 -2.24 0.0264*
Satterthwaite Unequal 114 -2.12 0.0365-

300 vs. 200 " Pooled Equal 161 -1.91 0.0578*
Satterthwaite Unequal 96.2 -1.75 0.0836*

200 vs. 100 " Pooled Equal 121 -6.78 <0.0001-
Satterthwa ita Unequal 79.5 -6.40 <0.0001-

* significant difference between population means



Testing for Differences Between Layers in the NLF Point Bar

Table 3 - Sorting (phi units standard deviation)

Variable Method Variances OF t Value Pr> ItI

Interval

500 vs. 400 Sorting Pooled Equal 82 -0.11 0.9158ns
Satterthwaite Unequal 38.7 -0.19 0.8519ns

Vo
t..:l

" 2.68 0.0081*400 vs. 300 Pooled Equal 165
Satterthwaite Unequal 107 2.50 0.0138*

300 vs. 200 " Pooled Equal 161 4.99 <0.0001*
Satterthwaite Unequal 83.9 4.44 <0.0001*

200 vs. 100 " Pooled Equal 121 4.89 <0.0001*
Satterthwaite Unequal 83.2 4.64 <0.0001-

• significant difference between population means
ns - not significant, means between two populations are the same



The 500 Interval extends from the surface down to about 3'. This unit is fine to

very-fine grained and moderately-well to well sorted. The 500 Interval was significantly

different from the underlying 400 Interval with respect to grain size (p < 0.0001).

Sorting does not vary between the 500 and 400 Intervals (p < 0.85). The textural

character of this upper layer is shaped by soil forming processes and aeolian

sedimentation.

Calculated Permeabilities Relative to Stratigraphic Intervals

A SAS (v. 8.01) step-wise multivariate analysis of the grain size, sorting, and

permeability data, taken from the experiments of Beard and Weyl (1973), was performed.

The intent of this analysis was to estimate the relative importance of grain size and

sorting in controlling the permeability of the grain packs used in their experiments. This

analysis indicated that phi grain size explains 60% of the variation in permeability. This

was followed in importance by grain sorting, which accounted for another 37% (60 + 37

= 97% total variation in permeability accounted for by these two variables). This

analysis and inspection of the permeability equation (eq.4) suggests that the permeability

of the point bar will increase directly with increasing grain size and vice versa. Likewise.

better-sorted sands will have higher permeability, but this tendency can be offset quickly

if the grain size grows small, resulting in lower permeability.

Accordingly, the vertical permeability profile for all the sieve data· (Fig. 23a)

suggests that permeability varies more strongly with grain size than with sorting.

Consequently, the permeability profile appears more similar in shape to the grain size

• calculated from an equation generated from data pUblished by Beard and Weyl, 1973
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profile (Fig. 23b) than to the sorting profile (Fig. 23c). The basal 100 Interval (in red)

exhibits the highest calculated penneabilities in the profile because of a population of

large grains. This high penneability population has not been offset by the potential

reduction in penneability because of poor sorting. Clearly, calculated penneabilities

would be much higher if the coarsest grained sediments in the point bar of the Nonnan

Landfill were better sorted. Likewise, the rapid fall in penneability in the 500 Interval at

the surface results from a strong shift in grain size to very fine-grained sand in these

moderately-well sorted sands.

T-tests were perfonned on the penneability populations (Fig. 24) to detennine if

statistically significant penneability differences exist between the layers of the point bar.

The basal 100 Interval penneability is significantly different from the overlying 200

Interval (p < 0.0001). The 200 and 300 Interval penneabilities are not significantly

different from one another (p < 0.47). Likewise, the 300 and 400 Intervals are

essentially the same with respect to penneability (p < 0.19). The mean permeability of

the 500 Interval population is significantly different from the underlying 400 Interval (p

< 0.002). These tests are summarized in Table 4.
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Testing for Differences Between Layers in the NLF Point Bar

Table 4 - Permeability (log units, mDarcies)

Variable Method Variances DF t Value Pr> ItI

Interval

500 vs. 400 Log Perm Pooled Equal 82 4.98 <0.0001*
Satterthwaite Unequal 14.6 4.85 0.0002*

'JI
-...J

400 vs. 300 " Pooled Equal 165 1.35 0.1775ns
Satterthwaite Unequal 140 1.33 0.1867ns

300 vs. 200 " Pooled Equal 161 -0.75 0.4537ns
Satterthwaite Unequal 122 -0.72 0.4715ns

200 vs. 100 " Pooled Equal 121 6.68 <0.0001*
Satterthwaite Unequal 81.2 6.32 <0.0001*

* significant difference between population means
ns - not significant, means between two populations are the same



Permeability and Fining Upward Profile of Fluvial Sediments

Vertical profiles of the sieve data (Fig. 23) indicate that the 'classic fining­

upward' profile for fluvial systems is punctuated at both the channel base and at the top

by rapid changes in grain size and I or sorting (at least for the Canadian River). The 100

Interval displays a very rapid yet progressive grain size decrease and improvement in

size sorting from the channel base to about 8' up from the base. Likewise, the grain size

of the upper few feet (500 Interval) of the point bar is much finer grained. As mentioned

above, this rapid shift to finer grain size is due primarily to aeolian reworking of the

floodplain sediments.

Excluding these deepest and shallowest intervals, the grain-size sorting improves

progressively from 30' to a depth of about 3'. Grain size does not change very much

through the base of the 200 Interval to the top of the 400 Interval (Fig. 23). Visual

inspection of the grain size trends in the thick 300 Interval shows no vertical variation in

grain size. The statistically significant differences in grain size noted earlier for the 200

to 400 Intervals (upward fining) appears to not be translated to an upward decrease in

permeability. This finding appears compatible with the following observations: (I) the

vertical grain size differences are quite subtle and (2) there is a concomitant improvement

(statistically significant) in grain sorting. The improved grain sorting has resulted in

higher porosity that compensates for the progressively decreasing grain size upward.

The work of Christenson et al. (1998) used slug tests and calculations of hydraulic

conductivity to conclude that the highest permeability in the alluvium adjacent to the

NLF is located at the base of the sediment package. The vertical permeability profile in

Fig. 23a is similar in appearance to the data of Christenson et al. (1998) (Fig. 25a).
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Conversion of the NLF permeabilities calculated from sieve data to hydraulic

conductivity values (Fig. 25b) yielded a profile that is also similar in appearance to the

Christenson et al. (1998) data. The present study concurs with the findings of the

Christenson et al. (1998) and finds significant evidence for a preferred permeability

pathway at the base of the alluvial fill. The sand intervals above the base (with exception

of the 500 Interval near the surface), however, all have comparable permeability.

The calculated hydraulic conductivity resulted in a range from IAE-04 mls to 9.22E-04

mls. The higher hydraulic conductivity was seen in the basal segment of the alluvium. It

is estimated that the plume is moving at a rate of at least 48 meters per year in the basal

unit. This estimate was calculated using a gradient of .0006 which is characteristic

between the floodplain and the slough. The gradient becomes steeper, however, as you

approach the slough so the rate of plume movement may increase. This rate of

movement also decreases shallower in the section as hydraulic conductivity of the

sediments declines (Fig. 26).

Texture and permeability profiles for Wells # I and 15 are provided in Figs. 27

and 28, respectively. In some of the wells, the correspondence between grain sizes,

sorting, and conductivity is quite striking (Fig. 27, 28). The correspondence suggests that

lower conductivity sand intervals are finer grained and better sorted than higher

conductivity sand intervals. This relationship is not understood. The data would suggest

that deeper, coarser grained and more poorly sorted sand intervals contain more

disseminated silt and clay than the shallow sand intervals. No evidence for this was seen

the cores.
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Norman Landfill
Calculated Rate of Plume Movement
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Fig. 26 - Rate of plume movement based upon calculated hydraulic conductivity of each of the sand intervals. The velocity ofthe
plume was calculated using the equation V = ( K * 1) / effective porosity. The effective porosity for each unit was calculated from
the mean grain size / sorting data obtained from the cores. A gradient (1) of 0.006 was used for the calculation. This gradient is
characteristic of the floodplain between the slough and the river. The gradient becomes steeper near the slough and landfill.
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Block Diagrams

Six block diagrams were created of the floodplain alluvium. They provide a

three-dimensional (3-D) perspective of the geometry and thickness of the five distinct

sand intervals in the point bar. Three of the block diagrams view the study area from the

southwest comer (Fig. 29), and three view it from the southeast comer (Fig. 30). The

southwest and southeast views are illustrated with 25%,50%, and 75% of the model

cutaway. These diagrams provide a 3-D view of the gross stratigraphy of the floodplain.

As determined by the cross-sections it is essentially horizontal (layer-cake) and similar to

the flat floodplain topography seen today.

Two block diagrams of the conductivity data were also created. These diagrams

provide visuals of changes in conductivity throughout the floodplain. One is viewing the

site from the southeast comer (Fig 31), and the other is viewing the site from the

southwest comer (Fig. 32). In Figure 31 the higher conductivity values near the slough

are apparent between 1055 and 1075 feet. These higher conductivity zones, near Wells

#23 and #28, are between the slough and the landfill. Thick, dense clay layers were

found in these cores about 1070 feet, which is 15 feet below the surface.

Conductivity slices were also created for each of the five sediment intervals (Figs.

33-37). The slices provide visualization of conductivity changes with depth. By

comparing each ofthe slices it is seen that not much differentiation exists in conductivity

in the west side of the study area. The highest conductivity zones are limited to the area

adjacent to the landfill. In the east side ofthe study area very high conductivity occurs

in the upper part of the 300 unit (Fig 35). This high conductivity zone is associated with

the thick, dense clay as seen in cores from wells 23 and 28. The conductivity in this zone
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remains high near the landfill and decreases as you move further west. Conductivity

near the landfill is higher than expected for clay rich sediment, and may suggest

interaction of the clay with the leachate.

The high conductivity zone seen adjacent to the landfill appears to extend

vertically through units 400, 300, 200 and 100. The conductivity values decline as you

move away from the landfill towards the floodplain. These elevated conductivity values

could result from the increase in number of muds in the east side of the study site, or it

could be possible that the higher conductivity in the east is a reflection of leachate

contamination. Not enough information exists at this point to distinguish between what

may be the plume or may be clays.
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CHAPTER V

CONCLUSIONS

Principle findings of the study are as follows:

1) On the basis of conductivity patterns, sediment texture, and vertical succession,

five distinct layers exist beneath the floodplain. Of these, the basal layer is the

most significant in the transport of the plume. Earlier studies, based on specific

conductance of the groundwater, have detennined that the plume is already in this

layer.

2) The flow pathways are bounded by mud layers that are discontinuous. The mud

layers act as impenneable units locally and can direct movement of the leachate.

These mud layers are found in similar stratigraphic positions and were likely

formed during periods of time when the surface was exposed. Some layers do

appear to be more extensive throughout the area. The dimensions of these larger

mud layers are:

a) Mud layers perpendicular to the bar complex range in length from <37

meters «120 feet) to about 148 meters (485 feet)

b) Mud layers parallel to the bar complex range in length from <37

meters«120 feet) to about 222 meters (728 feet)
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3) The number and thickness of mud layers increases toward the slough (adjacent to

the landfill).

4) The maximum permeability pathway (as defined by grain size / sorting) occurs in

the basal segment of the valley fill. This interval encompasses the lower 1.8 to

2.4 meters ( 6 to 8 feet) of the alluvium and has an average permeability of 105

Darcies.

a) The sediment overlying the basal unit has a permeability of 38

Darcies. This encompasses units 200, 300, and 400 for a total

thickness of about 8.6 meters (28 feet).

b) The sediments in the upper 0.6 meters (2 feet) of the alluvium have a

permeability of 16 Darcies. These sediments are mainly aeolian.

5) Block models of the different sand units provide a 3-D view of the geometry and

thickness of the five distinct sand intervals in the point bar. The models suggest

the highest conductivity occurs in the lower part ofthe 400 unit and the upper part

of the 300 unit.

6) Conversion of permeability data to hydraulic conductivity results in a range from

1.4E-04 mls to 9.22E-04 m/s. The higher hydraulic conductivity is seen in the

basal segment of the alluvium. This data compared very favorably to hydraulic

conductivity measurements taken by Scholl and Christenson (1998).

7) It was estimated that the plume is moving at a rate of at least 48 meters (157 feet)

per year in the basal unit. This estimate was calculated using a gradient of .0006

which is characteristic of the area between the floodplain and the slough. The

gradient becomes steeper, however, as you approach the slough, so the rate of
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plume movement may increase. This rate ofmovement also decreases shallower

in the section as hydraulic conductivity of the sediments declines.

8) Block models were also created of the conductivity data. These models show

higher conductivities near the landfill and slough. This supports the findings that

the number and thickness of muds increases as the slough is approached. A thick,

dense clay layer is located about 4 meters (13 feet) below the surface between the

landfill and the slough (wells 23 and 28). This clay is highly conductive as

compared with the rest of the landfill alluvium and does not appear in cores away

from the slough.

9) On balance, much higher conductivities are found in the areas near the slough and

landfill because of the number of clays in the area. However, the base

conductivity level for clean sands in this area is much higher than seen in most of

the floodplain sands. Therefore, it is possible these higher conductivities are

indication of direct detection of the leachate plume with the Geoprobe

conductivity tooJ.

10) The pebbles and gravels in the high penneability zones are not derived from the

bedrock in the vicinity of Norman, Oklahoma.

Recommendations

The purpose of this project was to gain an understanding of the penneability

•

pathways in the Canadian River alluvium. With over 50,000 inactive municipal solid

waste landfills existing in the United States, the Nonnan Landfill site was established as a

test site to develop methodology for evaluating similar environments. Based on this
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work, future studies should consider the following recommendations that attempt to

define landfill plumes.

1) A sampling grid should be designed that provides adequate and representative

coverage of the surrounding floodplain. A higher concentration of cores should

be collected from areas where the leachate is believed to be present. In this study

it was difficult to determine whether the higher conductivities seen in the

conductivity logs around the slough indicated the presence of leachate or if the

conductivities simply reflected clays. Without an intensive sampling of cores

within the contaminated area it may be difficult to determine whether or not the

higher conductivity values are associated with leachate or with clays.

2) The depth of the valley fill is another consideration. The location of the leachate

within the fill and the thickness of the alluvium are factors that determine how

easily the leachate plume could be dissected by the river. If the valley fill is not

thick, the river could easily incise the alluvium and release leachate into the river.

If the valley fill is very deep, and the leachate is traveling along the base of the

fill, the river may not be able to dissect the plume regardless of the magnitude of

the discharge event.

3) The type of river system is also important. A channel that is more active, such as

a braided or meandering channel, may be of more concern than a straight channel

because the more active systems have a higher potential for eroding laterally into

the landfill or the leachate plume. The main channel of the Canadian River has

been located at the base of the Norman Landfill approximately 15 percent of the

years between 1937-1997 (Marston, et aI., 200 1).
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4) The penneability pathways in the floodplain alluvium can be strongly influenced

by the sediment provenance. The gravel in the basal unit of the Canadian River

alluvium was not derived from local bedrock but from northeastern New Mexico.

The basal gravel unit is the main penneability pathway in the alluvium. The

texture of the basal gravel is inherited from durable sediments that were probably

deposited after fonnation of the incised valley. Consequently, when evaluating

permeability pathways at new landfill locations, consideration should be given to

the potential role of texture from upstream sediment sources. If the basal

sediment fill is derived form a provenance that is finer grained, the preferred

permeability pathway may not necessarily be located at the base of the channel.
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Floodplain
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Well #3 - Canadian River Floodplain
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Well #3 - Canadian River Floodplain

Mud, silt,
and
fine
sand
carried
past the
piston
by fluid
flow
during
Coring
process.

, Underlying
Hennesey

Fm
Permian
Redbed
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Well #7 - Canadian River Floodplain
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Well #7
Canadian
River
Floodplain
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Gravel
der'ived
from
upstream
bedrock

Underlying
Hennesey

Fm
Permian
Redbed



Well #11 - Canadian River Floodplain
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Well #11 ­
Canadian
River
Floodplain

Sand and
mud

contacts

ItO



I 11

Well #11 ­
Canadian River
Floodplain



Well #11 - Canadian
River Floodplain

Gravel at base
of alluvium
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Well #15 - Canadian River Floodplain
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..

Well #21 - Canadian River Floodplain
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-

1[6

Organic-rich
mud (soil?)

Gravel
derived
from
upstream
bedrock

Well #15
Canadian

River
Floodplain



Well #21 - Canadian River Floodplain
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Well #21
Canadian River Floodplain
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Well #23 - Canadian River F odplain
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Well #23­
Canadian
River
Floodplain
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Well #23 - C
River Floodp

nadian
•In
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Well #23 - Canadian
River Floodplain
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Well #28 - Canadian River Floodplain
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Well #28 - Canadian River Floodplain
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Well #28­
Canadian River
Floodplain



Well #28­
Canadian River
Floodplain
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Well #31 - Canadian River Floodpla-n
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Well #31, - Canadian River Floodplain
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Well #31 - Canadian River Floodplain
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Well #31 ­
Canadian River
Floodplain
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Well #42 - Canadian River Floodplain
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Well #42­
Canadian
River
Floodplain
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Well #42­
Canadian
River
Floodplain
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Well #42­
Canadian
River
Floodplain
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Well #44 - Canadian River Floodplain

o
•

~
Ir:n....~I,..~

o

8-12'

13S



Well #44 - Canadian River Floodplain
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Well #44­
Canadian River
Floodplain
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Well #46 - Canadian River Floodplain
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Well #46
Canadian, River
Floodplai"n
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Well #46
Canadian River
Floodplain
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Well #46
Canadian River Floodplain
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Well #46
Canadian
River
Floodplain

142

Fining
-upward

Fining
-upward
cycle



Well #56 - Canadian River Floodplain
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Well #56­
Canadian River
Floodplain



22.7-23.7'~...~

~ 26.7-27.7'

145

Well #56­
Canadian River
Floodplain



Well #57 Canadian River Floodplain
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Well #57 - Canadian River Floodplain
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Well #57 - Canadian River Floodplain
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Well #62 - Canadian River Floodplain
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Sharp contact
between

very-fine sand (above)
and

medium sand

150

Well #62­
Canadian River
Floodplain
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Well #62­
Canadian River
Floodplain

35-36'

Gravel
derived
from
updip bedrock



Well #64 - Canadian River Floodplain
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Well #64­
Canadian River
Floodplain
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Well #73 - Canadian River Floodplain
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Well #73
Canadian River

Floodplain
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Well #73
Canadian River

Floodplain
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Well #74 - Canadian River Floodplain
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Well #74
Canadian River
Floodplain,
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Well #74
Canadian River
Floodplain
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Well #74
Canadian River
Floodplain
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Well #78 - Canadian River Floodplain
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162

ell #78
Canadian River

Floodplain
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Well #78
Canadian River

Floodplai.n

25.5-26.5' 32.5-33.5'

29.5-30.5'
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Norman Landfill Well #23
Cumulative Curves
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Norman Landfill Well #28
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Cumulative Curves

l-<:r Well 42-1

I
, .- Well 42-2

I -tr- Well 42-3

-7- Well 42-4

-f- Well 42-5

---- Well 42-6

-+- Well 42-7"

..L Well 42-8

LL Well 42-9

-<r- Well 42-1 0

o Well 42-11

-tr- Well 42-12

-7- Well 42-13

-f- Well 42-14

-0- Well 42-15

--+- Well 42-16

..L Well 42-17
5432o-1

I
~

-2,J

--+ ----+-~

o +t:;<~~t:::;~m••~:t:::::t:------l------1
-5

70 : ­
1

90 j-

30 }--

80 ~ --.

100 -

- -I----4-
I--- --II

60 ~,'. I. --, --1---
~ I I I
:;:; 50 j-1__.....__"..._.....j_""""!I
-S ~
E

<3 40}

Grain Size in Phi Units



1

Norman Landfill Well #44
Cumulative Curves
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Norman Landfill Well #46
Cumulative Curves
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Norman Landfill Well #56
Cumulative Curves
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Norman Landfill Well #57
Cumulative Curves
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Norman Landfill Well #62
Cumulative Curves
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Norman Landfill Well #64
Cumulative Curves
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Norman Landfill Well #73
Cumulative Curves
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Norman Landfill Well #74
Cumulative Curves
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Norman Landfill Well #78
Cumulative Curves
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APPENDIXE

SIEVE SAMPLE DEPTHS
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Well I Interval ISample # I Depth Interval in Feet

w01 100 1-19 3309-3409 33'09" - 34'09"
w01 100 1-20 3503-3509
w01 200 1-14 2303-2310
w01 200 1-15 2602-2607
w01 200 1-16 2706-2711
w01 200 1-17 2903-3004
w01 200 1-18 3103-3110
w01 300 1-11 1808-1901
w01 300 1-12 1906-1910
w01 300 1-13 2110-2207
w01 300 1-10 1800-1804
w01 300 1-9 1506-1510
w01 300 1-8 1405-1410
w01 300 1-7 1303-1308
w01 300 1-6 1106-1110
w01 300 1-5 0907-1000
w01 400 1-4 0610-0703
w01 400 1-3 0511-0603
w01 400 1-2 0305-0400
w01 500 1-1 0106-0200

w03 100 3-14 3406-3500 34'06" - 35'00"
w03 100 3-15 3505-3510
w03 100 3-16 3702-3800

I w03 100 3-17 3806-3811

l w03 200 3-10 2908-3001
w03 200 3-11 3006-3011
w03 200 3-12 3105-3110
w03 200 3-13 3300-3400
w03 300 3-6 1303-1403
w03 300 3-7 2109-2202
w03 300 3-8 2306-2310

! w03 300 3-9 2603-2702
,

w03 400 3-3
w03 400 3-2 0304-0310
w03 400 3-4 0703-0710
w03 400 3-5 0910-1003
w03 500 3-1 0110-0204

w07 100 7-1 3509-3500 35'09" - 35'00"
w07 100 7-2 3402-3408
w07 100 7-3 3307-3311
w07 200 7-4 3100-3165
w07 200 7-5 2900-2903
w07 200 7-6 2609-2707
w07 200 7-7 2510-2604 ,

199



w07 300 7-8 2108-2111
w07 300 7-9 1904-1907
w07 300 7-10 1711-1803
w07 300 7-11 1305-1308
w07 400 7-12 0907-0911
w07 400 7-13 0505-0509
w07 400 7-14 0307-0310
w07 400 7-15 0203-0207

w11 100 11-1 3506-3510 35'06" - 35'10"
w11 100 11-2 3109-3200
w11 100 11-3 3008-3102
w11 100 11-4 2909-3003
w11 200 11-5 2704-2709
w11 200 11-6 2511-2604
w11 200 11-7 2304-2309
w11 200 11-8 2108-2203
w11 300 11-9 1607-1700
w11 300 11-10 1404-1409
w11 300 11-11 1005-1100
w11 400 11-12 0706-0711
w11 400 11-13 0603-0608
w11 400 11-14 0304-0310

w15 100 15-13 3003-3007 30'03" - 30'07"
w15 100 15-14 3103-3108
w15 100 15-15 3311-3403
w15 100 15-16 3405-3408
w15 100 15-17 3505-3510
w15 200 15-11 2305-2309
w15 200 15-12 2706-2710

I w15 300 15-6 1411-1503
r w15 300 15-7 1506-1510

w15 300 15-8 1709-1801
w15 300 15-9 1807-1811
w15 300 15-10 2106-2200
w15 400 15-2 0304-0308
w15 400 15-3 0702-0706

--lw15 400 15-4 0904-0908
r--w15 400 15-5 1106-1110 ---i

w15 500 15-1 0101-0106

w21 100 21-1 3501-3510 35'01" - 35'10"
- -

w21 100 21-2 3107-3110
w21 200 21-3 2903-2907

~w21 300 21-4 2607-2610.5
w21 300 21-5 2206-2211

i
w21 300 21-6 1802-1806 I

w21 300 21-7 1400-1405
,

w21 300 21-8 1302-1306 I
I

I w21 300 21-9 1000-1004.5 I :

I w21 400 21-10 0702-0705
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w07 300 7-8 2108-2111
w07 300 7-9 1904-1907
w07 300 7-10 1711-1803
w07 300 7-11 1305-1308
w07 400 7-12 0907-0911
w07 400 7-13 0505-0509
w07 400 7-14 0307-0310
w07 400 7-15 0203-0207

w11 100 11-1 3506-3510 35'06" - 35'10"
w11 100 11-2 3109-3200
w11 100 11-3 3008-3102
w11 100 11-4 2909-3003
w11 200 11-5 2704-2709
w11 200 11-6 2511-2604
w11 200 11-7 2304-2309
w11 200 11-8 2108-2203
w11 300 11-9 1607-1700
w11 300 11-10 1404-1409
w11 300 11-11 1005-1100
w11 400 11-12 0706-0711
w11 400 11-13 0603-0608
w11 400 11-14 0304-0310

w15 100 15-13 3003-3007 30'03" - 30'07"
w15 100 15-14 3103-3108
w15 100 15-15 3311-3403
w15 100 15-16 3405-3408
w15 100 15-17 3505-3510
w15 200 15-11 2305-2309
w15 200 15-12 2706-2710
w15 300 15-6 1411-1503
w15 300 15-7 1506-1510
w15 300 15-8 1709-1801
w15 300 15-9 1807-1811
w15 300 15-10 2106-2200
w15 400 15-2 0304-0308

I w15 400 15-3 0702-0706
I-

w15 400 15-4 0904-0908

r w15 400 1S-S 1106-1110
w1S SOO 15-1 0101-0106

w21 100 21-1 3S01-3510 35'01" - 3S'10"
w21 100 21-2 3107-3110
w21 200 21-3 2903-2907
w21 300 21-4 2607-2610.5
w21 300 21-5 2206-2211
w21 300 21-6 1802-1806 i
w21 300 21-7 1400-140S I

w21 300 21-8 1302-1306
w21 300 21-9 1000-1 004.S
w21 400 21-10 0702-0705
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w21 500 21-11 0111-0203

w23 100 23-14 3708-3800 37'08" - 38'00"
w23 100 23-15 3806-3810
w23 200 23-10 2701-2704
w23 200 23-11 3006.5-3100
w23 200 23-12 3108-3111
w23 200 23-13 3409-3500
w23 300 23-5 1809-1901
w23 300 23-6 1906.5-1910
w23 300 23-7 2107.5-2200
w23 300 23-8 2307.5- 2310.5
w23 300 23-9 2508-2511
w23 400 23-1 0301-0305
w23 400 23-2 0605.5-0609.5
w23 400 23-3 1005-1009
w23 400 23-4 1301-1307

w28 100 28-1 3700-3709 37'00" - 37'09"
w28 100 28-2 3409-3503
w28 100 28-3 3310-3405
w28 100 28-4 3204-3210
w28 200 28-5 3011-3104
w28 200 28-6 2900-2907
w28 200 28-7 2705-2710
w28 200 28-8 2507-2603
w28 300 28-9 2210-2303
w28 300 28-10 2103-2200
w28 300 28-11 1905-1910
w28

- -
300 28-12 1706-1711

w28 300 28-13 1506-1600
w28 400 28-14 1102-1107
w28 400 28-15 0706-0800
w28 400 28-16 0304-0310

-
w31 100 31-1 3507-3600 35'07" - 36'00"

-
w31 100 31-2 3405-3410

---
w31 100 31-3 3300-3305

-
w31 200 31-4 3102.5-3107
w31 200

--
31-5 2906-2909

200
- -

w31 31-6 2706-2710
w31 200 31-7 2602.5-2608.5 --
w31 200 31-8 2308-2400 ---
w31 200 31-9 2300-2305
w31 300 31-10 1806-1810
w31 300 31-11 1506·1510.5
w31 300 31-12 1305-1311

-
w31 300 31-13 1106·1110.5 -
w31 300 31-14 0910.5-1002
w31 400 31-15 0704-0708
w31 400 31-16 0605-0609
w31 400 31-17 0505-0508

-

-
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w31 400 31-18 0304-0309
w31 400 31-19 0204-0210
w31 500 31-20 0103-0108

w42 100 42-1 3506-3509 35'06" - 35'09"
w42 100 42-2 3500-3503
w42 100 42-3 3403-3406
w42 200 42-4 3107-3110
w42 200 42-5 3006-3010
w42 200 42-6 2906-2909
w42 300 42-7 2608-2611
w42 300 42-8 2307-2310
w42 300 42-9 2201-2205
w42 300 42-10 1810-1902
w42 300 42-11 1506-1510
w42 300 42-12 1402-1405
w42 400 42-13 1106-1110
w42 400 42-14 0911-1003
w42 400 42-15 0611-0703
w42 400 42-16 0305-0310
w42 500 42-17 0109-0200

w44 100 44-1 3803-3807 38'03" - 38'07"
w44 100 44-2 3709-3801
w44 100 44-3 3700-3704
w44 100 44-4 3500-3505
w44 200 44-5 3009-3102
w44 200 44-6 2608-2701
w44 300 44-7 2106-2110
w44 300 44-8 1904-1910
w44 300 44-9 1701-1707
w44 300 44-10 1401-1407
w44 300 44-11 1104-1110
w44 300 44-12 0908-1001
w44 300 44-13 0705-0710
w44 300 44-14 0605-0609
w44 400 44-15 0305-0310

~
w44 400 44-16 0201-0206

w46 100 46-1 3506-3510 35'06" - 35'10"
w46 100 46-2 3405.5-3408
w46 100 46-3 3308-3311
w46 100 46-4 3102-3105
w46 200 46-5 2610-2725
w46 200 46-6 2305-2309.5
w46 300 46-7 1500-1505
w46 300

--
46-8 1310-1403

~ w46
-

300 46-9 1100-1103
w46 300 46-10 1000-1004

~
w46 400 46-11 0707-0710
w46 400 46-12 0511-0602
w46 400 46-13 0502-0507 i I
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w46 400 46-14 0205-0209
w46 500 46-15 0106-0110

w56 100 56-1 3508-3600 35'08" - 36'00"
w56 100 56-2 3411-3504
w56 200 56-3 3106-3111
w56 200 56-4 2706-2711
w56 200 56-5 2600.5-2606
w56 200 56-6 2306-2310.5
w56 300 56-7 2205.5-2210.5
w56 300 56-8 2106-2110.5
w56 300 56-9 1809.5-1900
w56 300 56-10 1400-1403.5
w56 300 56-11 1305-1310
w56 300 56-12 1104-1110
w56 400 56-13 1003.5-1008
w56 400 56-14 0808-0810
w56 400 56-15 0604-0611
w56 400 56-16 0306-0310
w56 400 56-17 0201.5-0207.5

w-57 100 57-1 3504-3509 35'04" - 35'09"
w-57 100 57-2 3311-3405
w-57 200 57-3 3103-3107
w-57 200 57-4 3008-3101
w-57 200 57-5 2705-2709
w-57 200 57-6 2507-2511
w-57 200 57-9 2309-2400
w-57 300 57-7 2211-2303
w-57 300 57-8 2106-2111
w-57 300 57-10 1709-1801
w-57 300 57-11 1003-1007
w-57 400 57-12 0706-0710
w-57 400 57-13 0600-0605- --
w-57 400 57-14 0306-0310

- -
w-57 400 57-15 0111-0204 -- -

r- w-57 500 57-16 0102-0107
I
I -

I w62 100 62-1 3605-3610 36'05" - 36'10"
w62 100 62-2 3507-3511-
w62 100 62-3 3407-3500
w62 100 62-4 3300-3306
w62 200 62-5 3108-3200
w62 200 62-6 2811-2904L_ w62 200 62-7 2705.5-2709 --
w62 200 62-8 2507-2600
w62 300 62-9 2107-2200- .-
w62 300 62-10 1804-1807

f-- --
w62 300 62-11 1504-1509

-
w62 300 62-12 1104-1109

f--

w62 400 62-13 0704-0710
w62 400 62-14 0305-0309--
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w62 500 62-15 0203-0206

w64 100 64-1 3311-3403 33'11" - 34'03"
w64 100 64-2 3304-3309
w64 200 64-3 3105-3110
w64 200 64-4 2705-2710
w64 200 64-5 2606-2611
w64 200 64-6 2308-2400
w64 300 64-1 1505-1510
w64 300 64-8 1404-1408
w64 400 64-9 1102-1107
w64 400 64-10 0704-0709
w64 400 64-11 0604-0608
w64 400 64-12 0510-0602
w64 400 64-13 0305-0310
w64 500 64-14 0110-0203

w73 100 73-1 3505-3510 35'05" - 35'10"
w73 100 73-2 3106-3111
w73 200 73-3 3000-3006
w73 200 73-4 2705-2710
w73 200 73-5 2600-2607
w73 300 73-6 2300-2305
w73 300 73-7 2106-2200
w73 300 73-8 1905-1910
w73 300 73-9 1800-1806
w73 300 73-10 1311-1404
w73 400 73-11 1103-1109-
w73 400 73-12 1004-1008
w73 400 73-13 0909-1001

I w73 400 73-14 0606-0700
w73 400 73-15 0301-0307
w73 500 73-16 01,05-0111

-
w74 100 74-1 3504-3507 35'04" - 35'07"
w74 100 74-2 3409-3500
w74 200 74-3 3106-3110
w74 200 74-4 3005-3008-
w74 200 74-5 2908-3001

I
w74. 200 74-6 2705-2709
w74 300 74-7 2303.5-2308

l w74 300 74-8 2205-2209.5
w74 300 74-9 2108-2201

I w74 300 74-10 1907-1911
w74 300 74-11, 1802-1806.5
w74 300 74-12 1700-1705 ---1w74 300 74-13 1507-1511

I w74 400 74-14 1301-1305
w74 400 74-15 1105-1109.5 I

I -
w741 400 74-16 0704-0709,

\ WJiC 400 74-17 0306-0310.5
I 400 74-18 0211-0305.5I w74-- -
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w74 500 74-19 0102.5-0107.5

w78 100 78-1 3406-3400 34'06" - 34'00"
w78 100 78-2 3010-3104
w78 200 78-3 2704-2710
w78 200 78-4 2305-2310
w78 200 78-5 2103-2110
w78 300 78-6 1703-1709
w78 300 78-7 1505-1510
w78 300 78-8 1406-1411
w78 400 78-9 1010-1103
w78 400 78-10 0611-0704
w78 400 78-11 0603-0609
w78 400 78-12 0306-0311
w78 400 78-13 0210-0302
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