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CHAPTER 1

INTRODUCTION

An estimated 50.000 inactive municipal solid waste landfills exist in the United
States today. These landfills were typically sited along floodplains because floodplains
were areas with high groundwater tables which limited their economic use. Many of the
inactive landfills were established in the early 1900’s and were not subject to regulation.
They were operated as open dumps with no historical record of the substances dumped in
them. Also many of these landfills were not lined. Without a liner, substances leached
from the landfills could move through the alluvial sediments toward the rivers (Lee &
Jones-Lee, 1995).

The former municipal landfill for the city of Norman, Oklahoma, received solid
wastes from 1922 to 1985. In 1985 the landfill was closed and capped with a clay, sand,
and silt mixture (Scholl & Christenson, 1998). The landfill was never lined, and a
leachate plume developed and now extends down gradient from the landfill. The landfill
is situated adjacent to the Canadian River and the plume is moving southward into the
floodplain alluvium in the direction of regional groundwater flow. The floodplain of the
Canadian River consists of an unconfined alluvial aquifer. The aquifer is 10 to 15 meters
(32 to 48 feet) thick and composed of unconsolidated sediments ranging from clay to

gravel. The aquifer is underlain by the Hennessey Shale, which acts as a confining unit.



The sedimentologic characteristics of the Canadian River Floodplain adjacent to
the Norman Landfill have not been documented. These characteristics control the
permeability of the floodplain and the migration potential of the leachate plume. Because
the sedimentology has not been studied extensively, a study was proposed for the purpose
of establishing a 3-D model of the vertical and horizontal texture of the floodplain
alluvium. This exercise establishes the permeability pathways in the floodplain of the
Canadian River. A textural analysis of the floodplain can provide the U.S.G.S. with an
understanding of how the landfill leachate will move through the alluvium. The research
methods employed for this site can also be used to help other scientists working in simitar
environments.

Goals and Objectives
The project entailed eight major tasks:

1) collect cores and conductivity logs from the floodplain alluvium;

2) describe and photograph the cores;

3) perform textural analysis on each core based on lithofacies;

4) determine the relationship between texture and permeability using established

cquations;

5) nspect the conductivity logs to establish relationships between conductivity

and lithofacies;

6) correlate the conductivity logs;

7) create a 3-D model of subsurface permeability; and

8) make recommendations based on findings.

~J



Study Area

The Canadian River begins in the Sangre de Cristo Mountains of southeastern
Colorado and flows 1460 km to its confluence with the Arkansas River in eastern
Oklahoma. In the vicinity of the Norman Landfill, the Canadian River is a low-sinuosity,
sand-bed river that alternates between braiding and meandering tn pattern. In central
Oklahoma. the Canadian River Valley ranges in width from 2.5 to 6.5 km. and is
composed of two geomorphic surfaces: a late Holocene valley fill and the modem
floodplain. The Norman City Landfill is situated on the north side of the Canadian River,
south of the city of Norman, between Chautauqua and Jenkins Avenues (Fig. 1). The
base of the Jandfill is 3.5 meters (1] feet) above the thalweg of the river. The valley fill
is approximately 10-15 meters (32 to 48 feet) deep and composed of unconsolidated
sediments ranging from clay to gravel. The alluvial aquifer is underlain by the

Hennessey Shale, which acts as a confining unit.
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CHAPTER 11

LITERATURE REVIEW

Investigations at the Norman Landfill

The Norman Landfill site is under investigation by several groups of researchers,
including the Toxic Substances Hydrology program of the United States Geological
Survey, the University of Oklahoma, and the United States Environmental Protection
Agency (Scholl & Christenson, 1998). The focus of the research program has been to
determine the microbiological. geochemical, and hydrological factors that control the
transport of contaminants in the plume,

Scholl and Christenson (1998) performed slug tests in the alluvial aquifer to
estimate the hydraulic conductivity of the area. These resuits showed two strata that
appeared to be continuous across the site. The first unit was a layer of low hydraulic
conductivity about 4 meters (13 feet) below the water table, and the second unit was a
zone of high hydraulic conductivity about 1.5 meters (5 feet) above the base of the
aquifer. This study provided indications ¢f a permeability structure within the atluvium,

Lucius and Bisdorf (1995) performed electromagnetic induction (EM) surveys
surrounding the Norman Landfil! in January and February 1995. Electromagnetic
induction surveys measure the electrical conductivity of the soils and fluids in the aquifer.

This study determined the vertical and horizontal extent of the leachate plume. The



highest conductivities were found within 200 meters (656 feet) of the landfill. Moving
laterally away from the landfill, little variation occurred in the alluvium conductivity, but
changes were seen with depth. The EM methods, however, were unable to resolve the
vertical changes in conductivity with precision, and the study noted the need for further
data to describe the thickness and lithologic characteristics of the aquifer alluvium.
Direct Push Technology

Direct push (DP) technology was used to collect data at the Norman Landfill site.
Direct push technology has recently seen more widespread use in aquifer assessment.
The DP technology is popular because the systems are more mobile than conventional
drilling systems, no drill cuttings are generated, and the subsurface is less disturbed.

Butler, et al. (1999) from the Kansas Geological Survey worked in cooperation
with Geoprobe Systems to determine subsurface detail of the Kansas sites using Direct
Push electrical logs. Electrical logs were collected at two sites in Kansas. Cores were
also collected at both sitcs adjacent to the locations of the DP e-logs. The relative
differences seen in the clectrical conductivity logs were found to agree the cores. This
article does not discuss how the conductivity would be affected in areas that may be
contaminated with Jeachate or other fluids.

Resistivity Study of Alluvial Deposits

Klefstad (1973) used electrical resistivity equipment to detect landfill leachate in
alluviat deposits in lowa. Klefstad found that limitations exist in the use of electrical
resistivity equipment to delineate contaminated zones in alluvial deposits. These
limitations result from the lateral variation present in alluvial deposits. Because alluvial

deposits exhibit vertical and horizontal heterogeneity, it is difficult to determine



contaminated materials from natural variation. Klefstad noted the need for establishing a
stronger geologic framework within which to evaluate the log response.
Permeability Equations and Size Distribution Parameters

Beard and Weyl (1973) performed an investigation on the relationship between
porosity, permeability, and the texture of artificially mixed and packed sand. They were
concerned priruarily with the effects of grain size and sorting on porosity and
permeability. In the study, 48 samples of artificially mixed sand were prepared that
covered eight grain size subclasses from upper coarse to very fine, and six sorting groups
from extremely well to poorly sorted. The data show that permeability decreases as
grain size becomes finer and sorting becomes poorer. Beard and Weyl also looked at the
effect of grain shape and roundness on porosity and permeability. They found the effects
of shape and roundness on permeability were far less pronounced than grain size and
sorting.

Many parameters tor describing size distribution of sedimentary particles have
been devised. Krumbein (1936) and Trask (1930) defined size parameters based on
guartile measurements. These measurements included the 25”‘, 50"‘, and 75" percentile
of the cumulative size distnibution. Folk (1957) defined particle size parameters based on
these quartile measurements as well as on percentile measurements closer to the extremes
of the distribution. These parameters are important in calculating the median diameter or
average size, and the sorting of the grains, which is used in calculating the permeability

of sediments based on Beard and Weyl’s (1973) equation.



CHAPTER 111

METHODOLOGY

Obtaining Conductivity Logs and Cores

A sampling grid was designed to obtain uniform coverage of the floodplain
alluvium. The grid was composed of cross-lines, which ran parallel and perpendicular to
the Canadian River (Fig.1). Geoprobe® conductivity Jogs were taken along these cross-
lines to a depth of 10 to 12 meters (35 to 40 feet). The average distance between the
sample locations was about 37 meters (110 ft). A total of 78 conductivity logs were
taken, and continuous cores were taken in 19 of these wells. A hand-held GPS system
and map were used to [ocate each of the sampling locations. This GPS system could
locate the latitude and longitude 10 within 1 m (3 feet). Afier the samples were collected
from each site, the site of each well on the floodpiain was marked. A second GPS system
was used by Scott Christenson from the USGS office in Oklahoma City to obtain more
accurate readings. Christenson was able to measure the latitude (X), longitude (Y), and
surface elevation (Z) of each well to within 2 em. The set of readings taken by
Christenson provided the X, Y, and Z data for each well in the project.

Conductivity Logs
Seventy-eight conductivity logs (Fig.2) were collected using a Geoprobe®. A

Geoprobe® is a hydraulically powered, percussion soil probing instrument. The
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Geoprobe® uses static weight and the percussion force of a soil probing hammer to
advance a direct-push electrical-logging probe through the subsurface. The Geoprobe®
is attached to a vehicle, which provides the static weight for the instrument. The direct-
push e-logging probe is attached to the leading end of a tool string and advanced into the
subsurface (Fig. 2, 3). The probe used is a Wenner array design that is 38 cm (15 inches)
long with a maximum diameter of 3.8 cm (1.5 inches). The electrical conductivity data is
trapsmitted to a field computer, which is attached to the Geoprobe® via a cable. The
conductivity 1s measured tn millisiernens/ft. Conductivity readings are taken every 1.5
cm (0.05 feet) and the computer displays a real-time log on its screen as the log is taken.
In addition to conductivity, the system also records the rate of penetration (Geoprobe
Systems). The data are discussed in feet and meters because the Geoprobe measurements
are taken in feet.

After collection, the conductivity log data were imported to an Excel spreadsheet.
Once in Excel, the log data were plotted as a curve with depth and printed out on oversize
paper. The logs were pieced together to form the cross-sections of the study area (Fig. 4).
These cross-sections were then correlated based on the following critena:

1) wvertical position of sands relative to mud layers

2) vertical vanations in texture based on sieve analysis

3) depositional subenvironments

The macro-cores provided a check between the conductivity logs and the actuoal
lithology. No age control was available for the cores that were collected. Therefore. the
strata of the conductivity logs were matched based on similar lithologic characteristics as

seen In the cores. The sieve data were also used to match similar strata based on the
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The USGS Geoprobe in Action

Fig. 3 — Kelli Collins and Tom Kropatsch collect conductivity data in the
Canadian River floodplain.
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premise that similar lithologies will exhibit similar texture. Missing sections in the
cores, because of compaction and poor recovery, provided problems for correlation. It
was impossible to check the conductivity log data against known lithology for the

sections that were missing.

Continuous Cores

Nineteen continuous cores were collected using a Geoprobe®. The Geoprobe®
yielded cores of alluvium in 1.2 meter (4 foot) depth intervals, The total depth of each
cored well ranged from 11 to 12.2 meters (36 to 40 feet) encompassing the entire
thickness of the floodplain alluvium. The Geoprobe® uses a macro-core piston rod soil
sampler. The macro-core sampling tube is 122 ¢cm (48 inches) long and 5 cm (2 inches)
in diameter., The sampling tube contains a removable polycarbonate core liner that is 3.8
cm (1.5 inch) i diameter (Fig. 5). The sampling tube also contains a piston rod, which
keeps the sampler sealed until the desired depth is reached for each sample interval.
The piston rod sampler is designed to enhance the recovery of unconsolidated materials.
Recovery of complete samples, however, proved difficult in the floodplain alluvium.
When samples contained clay, the recovery was around 75%. but when samples were
primarily sand the recovery was as low as 25%.

The Geoprobe® can only penetrate unconsolidated materials. Underlying the
alluvium is the Permian Hennessey shale bedrock. Once the Geoprobe® reached the
shale, the penetration slowed or stopped completely ensuring complete coverage of the

alluvium.
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Core Description

The cores, described in the laboratory, were stored upright to prevent mixing of
the sediments. The core liner was split open when the cores were described, but they
were kept sealed until then to prevent dessication. The cores were described using a
standard strip-log form. Core was described at a scale of 1 inch of strip log to 1 foot of
core. The core descriptions included details about lamina and bed thicknesses, lithology.
sedimentary structures, color, and estimates of texture (grain size, sorting). Color was
deterrmined using a visual comparttor (Exxon-Mobil). Sediment texture was estimated
using a binocular microscope and a grain size/sorting visual comparitor. Grain
size/sorting estimates were taken about every .45 meters (1.5 feet), and each sediment
sample averaged about 1 to 2 grams. A range was recorded for the grain size of each
sample. This range included the smallest to largest grain viewed in the sample. Then an
average grain size was assigned o the sample based on the most frequent grain size seen
in the sample. The core descriptions with grain size/sorting estimates are included in
Appendix A.

After the description was complete for each well, the core was photographed with
Kodak 100 speed film. Photographs of the core covered about six meters (20 feet) of the
alluvial section, so a set of two photos was required to cover each well. In addition.
photographs were taken of key features (texture, structures, bounding surfaces,
lithoclasts) within the cores. The negatives from each core were scanned to create digital
image files. The images were then inserted to Powerpoint, pieced together, and

described (Appendix B).



Texture Analysis of Core Samples

Once the cores were described and photographed. they were divided into samples
for mechanical sieving. Approximately 15 samples were taken from each of the 78 cores.
and the average weight of each sample was about 150 grams. Samples were taken
whenever an abrupt contact or change occwrred in grain size within the core. The
estimates of grain size, performed on the cores during the description process, helped to
identify any key changes in grain size when decisions were made on where to collect
samples for sieving.

The core samples were placed into labeled sample bags. Each sample was sieved
through a set of thirty wire mesh sieves using a Ro-Tap machine. The sieves ranged in
size from 1 10 230 according to the U. S. Standard Sieve number. This range is
equivalent to —4.64 to 4.00 phi grain size (25.0 to 0.0625 mm). Each core sample was
sieved for about 12 minutes. The amount of sediment collected in each mesh was
weighed and recorded in grams using a digital scale.

The results from sieving were input to an Excel spreadsheet. The spreadsheet
automatically calculates the weight percentages of the individual grain size fractions
present in each core sample. These weight percentages were summed to form a
cumulative weight percentage curve that was then piotted against phi grain size to form a
standard grain size cumulative curve (Fig. 6). A cumulative curve was generated for
each sample (Appendix C). Each curve was then used to determine a graphic mean and
inclusive graphic standard deviation for that sample. The graphic mean is equivalent to a
mean graip size and the standard deviation is equivalent to sorting. The equation used to

calculate the graphic mean is:
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Mz = ($1s + dso + dga) /3 (eq. 1)

The phi grain size was read from the cumulative curves at the 16%, 50%, and 84%
marks. By reading the data from these intervals the central two thirds of the grain size
data were encompassed. These three values were then averaged to provide a mean grain
size for the sample. The inclusive standard deviation equation used to calculate the

standard deviation is:

o1= (¢34 -$16)/4 + (dos - $5)/6.6 (eq. 2)

For this equation the phi grain size was read at 5%, 16%, 84%, and 95% from each of the
curves and input into the equation. The inclusive standard deviation is an average of the
standard deviation calculated from ¢16 and ¢ 84, and the standard deviation calculated
from ¢5 and $95. This is the best overall measure of sorting because it includes 90% of
the distribution (Folk, 1974). The mean grain size and sorting were then used to calculate
the permeability.

The equations used to calculate the graphic mean and inclusive graphic standard
deviation followed the recommendations of Folk (1974). These equations were used for
this analysis because of inherent sensitivity to the “tails” of the grain size distribution.
This sensitivity is important to determinations of sediment grain sorting, a major control

on the porosity and permeability of sands.
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Texture-Permeability Equation

The raw data (¢, K, grain size, sorting) from the classic Beard and Weyl (1973)
paper was used to generate a permmeability equation (Table 1, Fig. 7). These raw data
were input to an Excel spreadsheet that was imported to SAS (v.8.01). SAS was used for
analyzing the relationships among the variables. A step-wise multivariate statistical
technique was used to evaluate the controls on the permeability log units. Permeability is
a measure of the ease with which fluid can be transmiftted through a porous medium. The
effects of grain size and shape, and their interconnectedness are included in the
measurement of permeability. In the SI system, permeability has units of m’. Another
unit of permeability is the darcy, which was used in this study. The conversion factor to
the SI system is 1 darcy = 0.987 x 10"'* m® (Hermance, 1999)

The units of permeability were measured in Darcies (cgs). The results of the
statistical analysts indicate the grain size was the most important to the permeability
equation. Phi grain size explained 64% of the total variation, while sorting explained
32%. The r* value for the multiple regression was 0.97. This value is so high that one
suspects that the Beard and Weyl raw data have been adjusted by some additional factor

not listed in their paper.

The multivariate equation that was produced to calculate the permeability is:

Log (10) of permeability = 6.18660-0.49463 (Sy) — 0.57248 (dgs) (eq. 3)
or

where Sq - sorting and $gs = phi grain size.



Raw Data

Table 1- Grain size
and sorting
corntrols on pre-
burial porosity and
permeability.
These raw data
were used for
generating the
permeability
equation discussed
in the text.

Data from
Beard and Weyl
(1973)

Sample |Sorting| Size | phiGS | Porasity | Permeability [ Darcies [LogPerm
Sample 1 1.0500 0 8550|0.2260| 43.10 475000 475| 5.6767
Sample 2 1.0500 0 6050|0.7250 42 80 238000 238| 5.3766
Sample 3 1.0500 0 425012345 4170 119000 118 5.0755
Sample 4 1.0500 0.3000| 1.7370 41.30 53000 59| 4.7709
Sample 5 1.0500 0.2135|22277| 4130 30000 30| 4.4771
Sample 8 1.0500 0.1510|2 7274| 4350 15000 15| 41761
Sample 7 1.0500 0.1085|3.2311 42.30 7400 74| 3.8692
Sample 8 1.0500 0.0660|3.9214| 43.00 3700 37| 35882
Sample 9 1.1500 0.8550|0.2260| 40.80 438000 458| 56809
Sample 10 1.1500 0.6050|0.7250, 41.50 239000 239| 53784
Sampie 11 1.1500 0.4250|1.2345| 40.20 115000 115| 5.0807
Sample 12 4.1500 0.3000(1.7370 40.20 57000 57| 4.7559
Sample 13 1.1500 0.2135|2 2277| 39.80 29000 29| 4.4624
Sample 14 1.1500 0.1510|2 7274 40.80 14000 14| 4 1461
Sample 15 1.1500 0.1065|3 2311 41.20 7200 7.2 38573
Sample 16 1 1500 0.0660|3 9214 41 80 3600 3.6| 35563
Sample 17 1 3000 0.8550|02260| 3800 302000 302| 5.4800
Sample 18 1 3000 0.6050|0 7250, 38.40 151000 151 51780
Sample 19 1.3000 0 4250|1.2345| 38.10 76000 76| 4.8808
Sample 20 1 3000 0.3000(1.7370| 38.80 38000 38| 45798
Sample 21 13000 0.2135|2.2277 39.10 19000 19] 4.2788
Sample 22 13000 0 1510[2.7274] 39.70 9400 9.4| 39734
Sample 23 1 3000 0 1085|3 2311 40 20 4700 4.7 3.6721
Sample 24 13000 0 0660|3 9214| 3980 2400 24| 3.3802
Sample 25 1.7000 0.8550|0 22601 32.40 110000 110 5.0414
Sample 26 17000 0.6050(0 7250 33.30 55000 33| 47404
Sample 27 17000 0 4250]1.2345| 34.20 28000 28| 4.4472
Sampte 28 1 7000 0.3000|1.7370 34 60 14000 14| 4 1461
Sample 29 1.7000 0.2135|2 2277| 3390 7000 71 3.8451
Sample 30 1.7000 0 1510]2.7274| 3430 3500 35| 35441
Sample 31 1.7000 O 1065|3.2311 3560 2100 21| 33222
Sample 32 17000 0 0660|3.9214 3310 1100 11 30414
Sample 33 2 3500 0 8550|0.2260 27 10 45000 45| 46532
Sample 34 2 3500 0605007250, 29.80 23000 23| 43817
Sample 35 23500 0.4250|1 2345, 3150 12000 12| 40792
Samgple 36 2 3500 03000| 1 7370| 31.30 6000 6] 37782
Sample 37 2 3500 0 2135|2.2277 30 40 3700 37| 35682
Sample 38 2 3500 0 1510|2 7274| 31.00 1900 19| 32788
Sample 38 2 3500 0 1065|3.2311 30.50 830 0.93| 2.9685
Sample 40 2.3500 0 0660|3 9214 34 20 480 0.46| 26628
Sample 41 4 2000 0.8550|0.2260| 28 €0 14000 14| 4.1461
Sample 42 4 2000 0 6050|0.7250 2520 7000 7l 38451
Sampie 43 4.2000 0.4250| 1 2345| 2580 3500 35| 35441
Sample 44 4.2000 0.3000| 1 7370| 2340 1700 17 32304
Sample 45 4.2000 0.2135|2.2277 28 50 830 083 295191
Sample 46 4.2000 0 1510(2.7274 2900 420 042 26232
Sample 47 4 2000 0 1065| 3 2311 30.10 210 021 23222
Sample 48 4 2000 0 0660]3.9214 32.60 100 01 20000
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Beard and Weyl Data (1973)

Grain Size & Sorting - Controls on Pre-Burial
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Interpretation of Conductivity Logs for Texture and
Generation of 3-D Block Diagrams
A database was set up in Rockworks 99 that contained the latitude (X),

longitude(Y), and surface elevation (Z) for each of the sample locations. The files for the
conductivity log curves were then associated with the sample locations in the database.
Once these curve files were imported into Rockworks with the corresponding X, Y, and Z
locations, the softwarc was able to plot the conductivity logs as cross-sections and 3-D
block diagrams. Digital strip logs for display were also created for each of the 19 cores

based on the log form descriptions (Appendix A).



CHAPTER 1V

RESULTS AND DISCUSSION

Description of Sedimentary Features
Figures 8, 9, 10, and 11 show excellent examples of the sedimentary features
noted in the 19-cored wells. The depth units are expressed in English units rather than

metric units as the Geoprobe probe rods are manufactured in increments of 4 lengths.

Fig. 8 - Well #1 Core has a thin, incipient soil (b), mud rip-up clasts (b), and 2
sharp contact of sands with the underlying mud layer (b). No cross bedding is

obvious in the sand beds.

Fig. 9 - Well #3 Core shows an excellent example of an accumulation of silt and
clay that has been carried past the piston by flowing water because of sudden
pressure drop in the core barrel (b). This well also has mud clasts and a solid

contact with the underlying Hennessey Fm.

Fig. 10 - Well #7 Core shows an excellent recovery of gravel near the base of the

valley fill and a very sharp contact with the underlying Hennessey red bed (b).

Mud in this core 1s red and black (organmc-rich).
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Well #1 — Canadian River Floodplain
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Figs. 8a. b (next page)  Cores from Well #1 showing sand / mud layers and mud
clasts. Each core segment is 4 in length though compaction of the sediment and
loss of some materials (failure of core catcher?y alwavs results in core length
seements that are <47,
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Well #3 — Canadian River Floodplain

24-28’

5

} ! \

Figs. 9a. b (next page) — Cores from Well 43 showing lavers, mud clasts. and the
underlying Hennessey Fm. Due to mavement of water into the well hore, some
sediment is always transported up around the coring piston. accumulating in
the upper portion of the core sleeve.
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Well #7 — Canadian River Floodplain
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Figs. 10a, b (next page) — Cares from Well #7 showing sand / mud lavers

and gravel at the basal contact with the Hennessey Fm.
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Fig. 11 - Well #46 Core has some of the best-preserved cross bedding in any of
the 19 cored wells. Sedimentary structures were always absent or disturbed
below the water table because of the rapid movement of water into the well bore
during penetration of the probe. The preserved tough cross bedding in this well
occurred above the water table (b). Disruption (doming) of layering because of
water movement is apparent in images 11b and d. Poorly sorted gravels were
recovered near the base of the well (¢). Image 11e contains two fining upward

cycles, each with grave] at the base.

Criteria for Correlating the Conductivity Logs

The vertical succession of the point bar from the basal contacl with the underlying
Permian Hennessey Fm. to the present day [and surface was vertically subdivided on the
basis of conductivity profiles, mud layers, and rapid changes in sediment texture (grain
size, sorting). No strong independent age-control exists for the stratigraphy of the point
bar. Consequently, the criteria used for correlating the conductivity logs were:

(1) similarities in conductivily response patterns,

(2) stratigraphic position (superposition), and

(3) lithologic similarity.
The correlation style was strongly tempered by observations about the nature and
distribution of the modern Canadian River floodplain sediments. Observations of the
floodplain, sand bars, and mud layers are as follows:

(1) Floodplain: very flat with little relief (see Fig. 12)

(2) Sand Bars:
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Well #46 — Canadian River Floodplain
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Figs. 1Ta-e (following pages) — Cores from Well #46 showing sand / mud
lavers. trough cross bedding. fining upward cycles, and gravel intervals that
have high calculated permeability.



Well #46 — Canadian River Floodplain
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Well #46 — Canadian River Floodplain
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Well #46 — Canadian River Floodplain
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Incised North Bank of the Canadian River,
Norman, Oklahoma

ud-crusts thatyield
“mudiclasts;Z™

Fig. 12 - Pictured above is a portion of the Canadian River floodplain that has been incised and abandoned. Note the flat,
horizontal nature of the floodplain. The inset photograph shows a thin, dried mud laycer that will be eroded during the next major
high discharge event. This mud layer was observed near the yellow arrow in the larger photograph.



a) Initially stnuous-crested linguoid-shaped dunes that form during high
discharge events (Fig. 13, 14).

b) final morphology results from continuous dissection of the constructional bar
forms by braids of channelized flow that accompany waning flow (Fig. 12)

¢) incision of the constructional bar forms continues until the occurrence of the

next high discharge event

(3) Mud Layers

a) Occur adjacent to main channels; are flat-topped, may onlap an erosional
surface, are discontinuous (Fig. 15)

b) mud layers develop as silt and clay settles from suspension each time high
water (which has a high suspended load in the Canadian River) inundates the
topographic lows on the floodplain

¢) the topographic lows are the erosional features mentioned above and are

produced subsequent to a high-discharge event

Subsurface evidence confirms these observations with respect to bar form shape
and relationship to mud layers. The contacts of some mud layers with underlying bar
sands are observed in core to onlap erosional surtaces and vice versa (Fig. 16). In
addition, mud clasts are found at the base of some of the sandbars (Fig. 17). The mud
clasts were derived from the underlying mud layers as the river erodes surface sediments

during a high discharge event.
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Sand Bars in Oklahoma Rivers

Fig. 13b - Migration of a thin unit bar down the
Canadian River channel at low flow - linguoid ripples
are advancing up the back of the bar form.
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Development of Mud Layers in the Canadian River,
Norman, Oklahoma

Fig. 15 - Subtle topographic lows on the margin of the main channel accumulate mud (and some algae) that forms the
discontinuous mud Jayers seen in the subsurface cores and as depicted on the cross sections.
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Evidence for Deposition on Erosional Surfaces within
the Point Bar
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Well #11 — Canadian River Floodplain
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Cross Sections of Conductivity Logs

Cross-sections of the conductivity logs were correlated across the study area.
Eleven cross-sections were created; six run perpendicular to the point bar and five run
parallel to the point bar. Two cross-sections are included here: Cross-section D-D’
(Fig18) runs perpendicular to the point bar, and a portion of cross-section [-I” (Fig 19)
runs parallel to the point bar. The remaining cross-sections are shown in Appendix D.

The cross-sections indicate that the gross stratigraphy of the floodplain is
essentially horizontal (layer-cake) and similar to flat floodplain topography seen today
(Fig 12). The floodplain alluvium was broken up into 5 intervals that are labeled as Unit

100 through Unit 500. These units are identitied on each of the cross-sections.

Unit 100- Basal layer of the alluvium. It ranges in thickness from 1.8 10 2.4

meters (6 to 8 feet) from the base of the alluvium. This unit is characterized by

coarse grained sediments and gravels.

Unit 200- Sand overlying the basal layer. It is about 3 m (10 fect) thick.

Unit 300- Unit overlying the 200 unit. It ranges in thickness from 4.5t0 6 m (15

to 20 feet). This layer contains extensive mud layers and lenses.

Unit 400- Sand unit overlying the 300 unit. [t is about 2.4 to 2.7 m thick (8 to 9

feet).
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Norman Landfill
Cross-Section D-D°
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Unit 500- Unit extending from the surface down to about 1 m (3 feet). This unit

is composed of very fine-grained sands.

These intervals have distinct texture (grain size/ sorting) and are bounded by mud layers.
Mud layers were drawn on the cross-sections to illustrate the number and thickness of the
muds in the floodplain alluvium. The cross-sections indicate that the number and
thickness of muds increases toward the slough. The lateral extent of the mud layers
throughout the alluvium is as follows:

1) Mud layers perpendicular to the bar complex range in length from <37

meters (<120 feet) 10 about 148 meters (485 feet)
2) Mud Jayers parallel to the bar complex range in length from <37

meters(<120 feet) to about 222 meters (728 feet)

Vertical Profiles and Interval Units for Correlation

A Type Conductivity Log (Well #1, Fig. 20) shows the standard vertical
succession of sand and mud encountered in the 19 cores taken from the point bar. The
lower 6-8' of the fill yields a characteristic ‘choppy’ conductivity response that is related
to the basal layer (our 100 Interval) deposited on top of the underlying Permian
Hennessey Formation. The frequency distnbutions of grain size (Fig. 21) and sorting
(Fig 22) for the basal layer are negatively skewed and bimodal. One mode is medium
grained (0.25-0.5mm) and moderately sorted. The other mode is very coarse grained
(0.5-1mm) and poor- to very poorly sorted. Some wells contain granule- (2-4mm) and

pebble-size materials (>4mm).
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Norman Landfill - Well #7
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There was no geographic significance seen in the bimodality. The bimodality
may reflect inadequate sample size tor such a heterogeneous population (n=55). The
texture (grain size / sorting) of the basal layer is distinctly different from the texture of all
the overlying layers on the basis of a Satterthwaite’ t-test (p < 0.0001) performed in SAS,
v. 8.01, 1999-2000 (Tables 2. 3). The null hypothests (H,) for this test assumes that the
means for the two populations are equal (or not different). In this exercise, a significant
difference was assumed to exist between populations means 1f p <0.].

A well developed but discontinuous mud layer (1-3' thick) was commonly present
above the basal gravel. The overlying sand layer (Interval 200) is about 10’ in thickness.
This interval was fine to medium grained and moderately to moderately-well sorted. A
few of the wells in this interval contain coarse grained, poorly sorted sand.

Another discontinuous interval of mud lenses (-3’ in thickness) lies above
Interval 200. The 300 Interval is fine to medium grained and moderately to
moderately-well sorted. This interval was the thickest (about 15-20") and most
heterogeneous of the layers with respect to the occurrence of mud layers and lenses. A t-
test suggests that the 300 Interval mean grain sorting is significantly different from the
underlying 200 Interval (p < 0.0001). The grain sizes between the two layers are slightly
different (p < 0.08) (Tables 2, 3). Another -3 thick mud lenses occurs throughout the
point bar at a depth interval between 5 and 10",

The 400 Interval is 8-9° in thickness and contains fine-grained, moderately-well
to well sorted sand. The t-tests again indicated that the 400 Interval sand is finer grained

{p <0.04) and better sorted (p < 0.01) than the underlying 300 Interval.

* Satterthwaite assumes unequal variances



(s

Interval

500 vs. 400 Grain Size

400 vs. 300

300 vs. 200

200 vs. 100

Table 2 - Grain Size (phi units)

Variable

Method

Pooled
Satterthwaite

Pooled
Satterthwaite

Pooled
Satterthwaite

Pooled
Satterthwaite

Variances

Equal
Unequal

Equal
Unequal

Equal
Unequal

Equal
Unequal

DF

82
19.7

165
114

161
96.2

121
79.5

t Value

-3.63
-4,71

-2.24
-2.12

-1.91
-1.75

-6.78
-6.40

* significant difference between population means

Testing for Differences Between Layers in the NLF Point Bar

Pr> |t

0.0005*
0.0001*

0.0264"
0.0365*

0.0578*
0.0836"

<0.0001*
<0.0001*



Testing for Differences Between Layers in the NLF Point Bar

Table 3 - Sorting (phi units standard deviation)

Variable Method Variances DF t Value Pr> |t

Interval

500 vs. 400 Sorting Pooted Equal 82 -0.11 0.9158ns
Satterthwaite Unequal 38.7 -0.19 0.8519ns

400 vs. 300 “ Pooled Equal 165 2.68 0.0081*
Satterthwaite Unequal 107 2.50 0.0138*

300 vs. 200 “ Pooled Equal 161 4.99 <0.0001*
Satterthwaite  Unequal 83.9 4.44 <0.0001*

200 vs. 100 “ Pooled Equal 121 4.89 <0.0001*
Satterthwaite  Unequal 83.2 4.64 <0.0001*

* significant difference between population means
ns — not significant, means between two populations are the same



The 500 Interval extends from the surface down to about 3°. This unit is fine to
very-fine grained and moderately-well to well sorted. The 500 Interval was significantly
different from the underlying 400 Interval with respect to grain size (p < 0.0001).
Sorting does not vary between the 500 and 400 Intervals (p < 0.85). The textural
character of this upper layer is shaped by soil forming processes and aeolian

sedimentation.

Calculated Permeabilities Relative to Stratigraphic Intervals

A SAS (v. 8.01) step-wise multivariate analysis of the grain size, sorting, and
permeability data, taken from the expenments of Beard and Weyl (1973), was performed.
The intent of this analysis was to estimate the relative importance of grain size and
sorting in controlling the permeability of the grain packs used in their experiments. This
analysis indicated that phi grain size explains 60% of the variation in permeability. This
was followed in importance by grain sorting, which accounted for another 37% (60 + 37
= 97% total variation in permeability accounted for by these two vanables). This
analysis and inspection of the permeability equation (cq.4) suggests that the permeability
of the point bar will increase directly with increasing grain size and vice versa. Likewise.
better-sorted sands will have higher permeability, but this tendency can be offset quickly
if the grain size grows small, resulting in lower parmeability.

Accordingly, the vertical permeability profile for all the sieve data” (Fig. 23a)
suggests that permeability varies more strongly with grain size than with sorting.

Consequently, the permeability profile appears more similar in shape to the grain size

" calculated from an equation generated from data published by Beard and Weyl, 1973
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profile (Fig. 23b) than to the sorting profile (Fig. 23c). The basal 100 Interval (in red)
exhibits the highest calculated permeabilities in the profile because of a population of
large grains. This high permeability population has not been offset by the potential
reduction in permeability because of poor sorting. Clearly, calculated permeabilities
would be much higher if the coarsest grained sediments in the point bar of the Norman
Landfill were better sorted. Likewise, the rapid fall in permeability in the 500 Interval at
the surface results from a strong shift in grain size to very fine-grained sand in these
moderately-well sorted sands.

T-tests were performed on the permeability populations (Fig. 24) to determine if
statistically significant permeability differences exist between the layers of the point bar.
The basal 100 Interval permeability is significantly different from the overlying 200
Interval (p < 0.0001). The 200 and 300 Interval permeabilities are not significantly
different from one another (p <0.47). Likewise, the 300 and 400 Intervals are
essentially the same with respect to permeability (p < 0.19). The mean permeability of
the 500 Interval population is significantly different from the underlying 400 Interval (p

< 0.002). These tests are summarized in Table 4.

55



] v

Permeability - NLF

N All Data
50 =460
: =034
i I = 302
2 | |5 I"I

3 T xt

Frequency
Lot

0
o | =iEE . -
38 47 48 50 54 545 0
Log Permeability (mDarcies)
. All Data
Lall
it
S a0 i
[~
g 30 l
o .
E R ;
eh ==
= =
110 -q— Ly x | B .-‘:
, =Tl imimal EEE . -
A4 4z 4k 500 54 58

Log Permeability (mDarcies}

L M4 Frequenes distiibubions of mean permeabilins caleulated Trom sieve data

cic v used for correlineon purposes are <how o e the riehs

b

[=

B s00
B 400
B 300
200

B 100

500 inlerval

o &
- B=1p
.
¥ 4
-
. 2
4 .
[
1. s ' a
Loy Forrpupamy iy
40D bnzeresd
v 2
H :
1
r
L
I3
- [ | | In
T
L o Bt e [l S
3040 [t
Z i
b r odr
[}
= |
-
-
ce

| g P mmdl iy | S04 C e

ol immeew

+—

R R, T a—

10K g ynd

= L] .
: I% l
A R -

i o Perrpahidity irulies e

he wtervils or untt desyemations {1060, 2000,



Ly

interval

500 vs. 400 Log Perm

400 vs. 300

300 vs. 200

200 vs. 100

Variable

&

[

* significant difference between population means

Table 4 — Permeability (log units, mDarcies)

Method

Pooled
Satterthwaite

Pooled
Satterthwaite

Pooled
Satterthwaite

Pooled
Satterthwaite

Variances

Equal
Unequal

Equal
Unequal

Equal
Unegual

Equal
Unequal

DF

82
14.6

165
140

161
122

121
81.2

t Value

4.98
4.85

1.35
1.33

-0.75
-0.72

6.68
6.32

Testing for Differences Between Layers in the NLF Point Bar

Pr > |t|

<0.0001*
0.0002*

0.1775ns
0.1867ns

0.4537ns
0.4715ns

<0.0001*
<0.0001*

ns — not significant, means between two populations are the same



Permeability and Fining Upward Profile of Fluvial Sediments

Vertical profiles of the sieve data (Fig. 23) indicate that the ‘classic fining-
upward’ profile for fluvial systems is punctuated at both the channel base and at the top
by rapid changes in grain size and / or sorting (at least for the Canadian River). The 100
Inferval displays a very rapid yet progressive grain size decrease and improvement in
size sorting from the channe] base to about 8* up from the base. Likewise, the grain size
of the upper few feet (500 Interval) of the point bar is much finer grained. As mentioned
above, this rapid shift to finer grain size is due primarily to aeolian reworking of the
floodplain sediments.

Excluding these deepest and shallowest intervals, the grain-size sorting improves
progressively from 30’ to a depth of about 3”. Grain size does not change very much
through the base of the 200 Interval to the top of the 400 Interval (Fig. 23). Visual
inspection of the grain size trends in the thick 300 Interval shows no vertical variation in
grain size. The statistically significant differences in grain size noted earlier for the 200
to 400 Intervals (upward fining) appears to not be translated to an upward decrease in
permeability. This finding appears compatible with the following observations: (1) the
vertical grain size differences are quite subtle and (2) there is a concomitant improvement
(statistically significant) in grain sorting. The improved grain sorting has resulted in
higher porosity that compensates for the progressively decreasing grain size upward.

The work of Christenson et al. (1998) used slug tests and calculations of hydraulic
conductivity to conclude that the highest permeability in the alluvium adjacent to the
NLF is located at the base of the sediment package. The vertical permeability profile in

Fig. 23a is similar in appearance to the data of Christenson et al. (1998) (Fig. 25a).

58



Hydraulic Conductivity

Measured Log K Calculated Log K
§ 5 4 4 a0 L B
} o ] N a
| \ [

- a - o -

-I ) \ o *. .‘.%' .. :" I \ -I' 7

'1:I rr- -' ’l.l-,*‘ . 4 : 1[ . W
t. 1m0 - .tnﬁ. | i} | o
£ 2 . 5" MW P o5l §
§ N\ A : w0l 8 % :
0 7 \ : § et d 0y i
g & s ®y ’ !E [} - :
o Y AR R A CF -

r L 5 ™ i m *
¥ ) . LR |, BB A
z / 2 L il ST B

O i Sl cul ool D

188 4 0C ] 4 % 80 (1] -9
35 \ Parmeability g mlarcies) 35‘ J
. [ o

Frg 25 Cadvulaed hyidiaudic conductiviss toght, this stads compared 1o measured hydraoshie conductiaty lefl) reported by
Scholl and Chostenson 19951 at Norman Landtillb well U7SET The hvdraulic conductv ity wints are mnr s, The color inset

shiow s the verteal protile ot permeabi bty that s color coded by the mierval Tayers



Conversion of the NLF permeabilities calculated from sieve data to hydraulic
conductivity values (Fig. 25b) yielded a profile that is also similar in appearance to the
Christenson et al. (1998) data. The present study concurs with the findings of the
Christenson et al. (1998) and finds significant evidence for a preferred permeability
pathway at the base of the alluvial fill. The sand intervals above the base (with exception
of the 500 Interval near the surface), however, all have comparable permeability.

The calculated hydraulic conductivity resulted in a range from 1.4E-04 m/s to 9.22E-04
m/s. The higher hydraulic conductivity was seen in the basal segment of the alluvium. It
is estimated that the plume is moving at a rate of at least 48 meters per year in the basal
unit. This estimate was calculated using a gradient of .0006 which is characteristic
between the floodplain and the slough. The gradient becomes steeper, however, as you
approach the slough so the rate of plume movement may increase. This rate of
movement also decreases shallower in the section as hydraulic conductivity of the
sediments declines (Fig. 26).

Texture and permeability profiles for Wells #1 and 15 are provided in Figs. 27
and 28, respectively. In some of the wells, the correspondence between grain sizes.
sorting, and conductivity is quite striking (Fig. 27, 28). The correspondence suggests that
lower conductivity sand intervals are finer grained and better sorted than higher
conductivity sand intervals. This relationship is not understood. The data would suggest
that dceper, coarser grained and more poorly sorted sand intervals contain more
disseminated siit and clay than the shallow sand intervals. No evidence for this was seen

the cores.
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Fig. 26 - Rate of plume movement based upon calculated hydrauvlic conductivity of each of the sand intervals. The velocity of the
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Block Diagrams

Six block diagrams were created of the floodplain alluvium. They provide a
three-dimensional (3-D) perspective of the geometry and thickness of the five distinct
sand intervals in the point bar. Three of the block diagrams view the study area from the
southwest comer (Fig. 29), and three view it from the southeast corner (Fig. 30). The
southwest and southeast views are illustrated with 25%, 50%, and 75% of the mode}
cutaway. These diagrams provide a 3-D view of the gross stratigraphy of the floodplain.
As determined by the cross-sections it is essentially horizontal (layer-cake) and similar to
the flat floodplain topography seen today.

Two block diagrams of the conductivity data were also created. These diagrams
provide visuals of changes in conductivity throughout the floodplain. One is viewing the
site from the southeast comer (Fig 31), and the other ts viewing the site from the
southwest comer (Fig. 32). In Figure 31 the higher conductivity values near the slough
are apparent between 1055 and 1075 feet. These higher conductivity zones, near Wells
#23 and #28, are between the slough and the landfill. Thick, dense clay layers were
found in these cores about 1070 feet, which is 15 feet below the surface.

Conductivity slices were also created for each of the five sediment intervals (Figs.
33-37). The slices provide visualization of conductivity changes with depth. By
comparing each of the slices it is seen that not much differentiation exists in conductivity
in the west side of the study area. The highest conductivity zones are limited to the area
adjacent to the landfill. In the east side of the study area very high conductivity occurs
in the upper part of the 300 unit (Fig 35). This high conductivity zone is associated with

the thick, dense clay as seen in cores from wells 23 and 28. The conductivity in this zone
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remains high near the landfill and decreases as you move further west. Conductivity
near the landfill is higher than expected for clay rich sediraent, and may suggest
interaction of the clay with the leachate.

The high conductivity zone seen adjacent to the landfill appears to extend
vertically through units 400, 300, 200 and 100. The conductivity values decline as you
move away from the landfill towards the floodplain. These elevated conductivity values
could result from the increase in number of muds in the east side of the study site, or it
could be possible that the higher conductivity in the east is a reflection of leachate
contamination. Not enough information exists at this point to distinguish between what

may be the plume or may be clays.
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CHAPTER V

CONCLUSIONS

Principle findings of the study are as follows:

1

2)

On the basis of conductivity patterns, sediment texture, and vertical succession,
tive distinct layers exist beneath the floodplain. Of these, the basal layer is the
most significant in the transport of the plume. Earlier studies, based on specific
conductance of the groundwater, have determined that the plume 1s already in this
layer.
The flow pathways are bounded by mud layers that are discontinuous. The mud
layers act as impermeable units locally and can direct movement of the leachate.
These mud layers are found in similar stratigraphic positions and were likely
formed during periods of time when the surface was exposed. Some layers do
appear to be more extensive throughout the area. The dimensions of these larger
mud layers are:

a) Mud layers perpendicular to the bar complex range in length from <37

meters (<120 feet) to about 148 meters (485 feet)
b) Mud layers parallel to the bar complex range in length from <37

meters(<120 feet) to about 222 meters (728 feet)
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3)

4)

5)

6)

7)

The number and thickness of mud layers increases toward the slough (adjacent to
the landfill).

The maximum permeability pathway (as defined by grain size / sorting) occurs in
the basal segment of the valley fill. This interval encompasses the lower 1.8 to
2.4 meters ( 6 to 8 feet) of the alluvium and has an average permeability of 105
Darcies.

a) The sediment overlying the basal unit has a permeability of 38
Darcies. This encompasses units 200, 300, and 400 for a total
thickness of about 8.6 meters (28 feet).

b) The sediments in the upper 0.6 meters (2 feet) of the alluvium have a
permeability of 16 Darcies. These sediments are mainly aeolian.

Block models of the different sand units provide a 3-D view of the geometry and
thickness of the five distinct sand intervals in the point bar. The models suggest
the highes! conductivity occurs in the lower part of the 400 unit and the upper part
of the 300 unijt.

Conversion of permeability data to hydraulic conductivity results in a range from
1.4E-04 m/s to 9.22E-04 m/s. The higher hydraulic conductivity is seen in the
basal segment of the alluvium. This data compared very favorably to hydraulic
conductivity measurements taken by Scholl and Christenson (1998).

[t was estimated that the plume is moving at a rate of at least 48 meters (157 feet)
per year in the basal unit. This estimate was calculated using a gradient of .0006
which is characteristic of the area between the floodplain and the slough. The

gradient becomes steeper, however, as you approach the slough. so the rate of



plume movement may increase. This rate of movement also decreases shallower
in the section as hydraulic conductivity of the sediments declines.

8) Block models were also created of the conductivity data. These models show
higher conductivities near the landfill and slough. This supports the findings that
the number and thickness of muds increases as the slough is approached. A thick,
dense clay layer is located about 4 meters (13 feet) below the surface between the
landfill and the slough (wells 23 and 28). This clay is highly conductive as
compared with the rest of the landfill alluvium and does not appear in cores away
from the slough.

9 On balance, much higher conductivities are found in the areas near the slough and
landfill because of the number of clays in the area. However, the base
conductivity level for clean sands in this area is much higher than seen in most of’
the floodplain sands. Therefore, it is possible these higher conductivities are
indication of direct detection of the Jeachate plume with the Geoprobe
conductivity tool.

10)  The pebbles and gravels in the high permeability zones are not derived from the

bedrock in the vicinity of Norman, Oklahoma.

Recommendations
The purpose of this project was to gain an understanding of the permeability
pathways in the Canadian River alluvium. With over 50,000 inactive municipal solid
waste landfills existing in the United States, the Norman Landfill site was established as a

test site to develop methodology for evaluating similar environments. Based on this
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work, future studies should consider the following recommendations that atterapt to

define landfill plumes.

1)

2)

3)

A sampling grid should be designed that provides adequate and representative
coverage of the surrounding floodplain. A higher concentration of cores should
be collected from areas where the leachate is believed to be present. In this study
it was difficult to determine whether the higher conductivities seen in the
conductivity logs around the slough indicated the presence of leachate or if the
conductivities simply reflected clays. Without an intensive sampling of cores
within the contaminated area it may be difficult to determine whether or not the
higher conductivity values are associated with leachate or with clays.

The depth of the valley fill is another consideration. The location of the leachate
within the fill and the thickness of the alluvium are factors that determine how
easily the leachate plume could be dissected by the river. If the valley fill is not
thick, the river could easily incise the alluvium and release leachate into the river.
[f the valley fill is very deep, and the leachate is traveling along the base of the
fill, the river may not be able to dissect the plume regardless of the magnitude of
the discharge event.

The type of river system is also important. A channe] that is more active, such as
a braided or meandering channel, may be of more concern than a straight channel
because the more active systems have a higher potential for eroding Jaterally into
the landfill or the leachate plume. The main channel of the Canadian River has
been located at the base of the Norman Landfill approximately 15 percent of the

years between 1937-1997 (Marston, et al., 2001).
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The permeability pathways in the floodplain alluvium can be strongly influenced
by the sediment provenance. The gravel in the basal unit of the Canadian River
alluvium was not derived from local bedrock but from northeastern New Mexico.
The basal gravel unit is the main permeability pathway in the alluvium. The
texture of the basal gravel is inherited from durable sediments that were probably
deposited after formation of the incised valley. Consequently, when evaluating
permeability pathways at new landfill locations, consideration should be gtven to
the potential role of texture from upstream sediment sources. If the basal
sediment fill is derived form a provenance that is finer grained, the preferred

permeability pathway may not necessarily be located at the base of the channel.
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CORE DESCRIPTIONS
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Well #1 — Canadian River Floodplain
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Well #3 — Canadian River Floodplain
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Well #11 — Canadian River Floodplain
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Well #21 — Canadian River Floodplain
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Well #21 — Canadian River Floodplain
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Well #44 — Canadian River Floodplain
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Well #44 — Canadian River Floodplain
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Well #46 — Canadian River Floodplain
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Norman Landfill Well #11
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Norman Landfill Well #28
Cumulative Curves

- Well 28-1

o e
_, ,A.'.;“ ; _g-Well 28-2
o | ) ,;Z/ A Well 28-3
80 - o ./ —— Well 28-4
_x_Well 28-5
" o Well 286
80 - —+ Well 28-7
. __Well 28-8
% > _—_Well 28-9
3 . —o—Well 28-10"
. o Well 28-11
* —+—Well 28-12
20 - __Well 28-13
| > ¢ Well 28-14
b s o Well 28-15
0 - JR—ah—a +Wel| 28-16
-5 4 5 _ R

Grain Size In Phi Units



Norman Landfill Well #31

Cumulative Curves ~(- Well 31-1
,._Wel! 31-2
100 _A_Well 31-3
%0 —y Well 314
| _y Weli 31-5
860 . - - - - _._We" 31-6
4 Well 31-7
70 ___Well 31-8
60 - —— Well 31-9 i
% _o—Well 31-10
g 50 o Well 31-11
£
3 40 - +We|| 31-12
' _y Well 31-13
0 - _y Well 31-14
_o Well 31-15
20 - - R - — - i - —
“ {7 > _, Well 31-16
TP EIEA . T
L | 1a
- . T | e e — - Weli31-18
0 - A R TR R A O D= Dt - o —— Well 31-19
-5 4 -3 -2 1 0 1 2 3 4 5

Grain Size in Phi Units



1A

Norman Landfill Well #42
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Norman Landfill Well #44
Cumulative Curves
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Norman Landfill Well #46
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Norman Landfill Well #56
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Norman Landfill Well #57
Cumulative Curves
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Norman Landfill Well #62
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Norman Landfill Well #64
Cumulative Curves
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Norman Landfill Well #73
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Norman Landfill Well #74
Cumulative Curves
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Norman Landfill Well #78
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| Well [ Interval | Sample #| Depth Interval in Feet

WOt 100 1-19 3309-3409 33'09" - 34'09"
. w01 100 1-20 3503-3509 !

w01 2000  1-14'2303-2310

wo1 2001 1-15 2602-2607 R

wo1 200  1-16-2706-2711

wOT 200 1-17 2903-3004

w01 200 1-18 3103-3110

wO1 300 1-11 1808-1901

wo1 1300 1-12 1906-1910

wot  300]  1-13]2110-2207

wo1l  300| 1-10,1800-1804

WOt 1300 1-9/1506-1510

wol 300 1-8'1405-1410

wo1 300 1-7 1303-1308 _

w01 300 1611081110

wol 300: 11-5/0907-1000

w01 400 '1-410610-0703

w01’ 400! 1-3[0511-0603]

w1 400 1-2.0305-0400

wo1 500" 1-1 0106-0200

w03 100 3-14 3406-3500 34'06" - 35'00"

w03 100 3-15 3505-3510

w03 100: 3-16,3702-3800!

w03 100 3-17.3606-3811:

wo3: 200 3:10:2908-3001,

w03 200 3-11 3006-3011

w03 200  3-12 3105-3110

w03 200  3-13 3300-3400

w03 300 3-6 1303-1403. ]

w03 T 300 3.7)2109-2202

w03 300 3-82306-2310 o

wo3”  T300  3-9l2603-2702

w03 400 33

w03 400 3-2°0304-0310

w03 400 3-4 0703-0710

w03 - 400- 3-5 0910-1003

w03’ 500 3-1 0110-0204

w07 19_oj 7-1 3509-3500135'09" - 35'00"

w07 100 T 7-2 3402-3408

w07 100 7-3'3307-3311 )

“wo7 200 T 7-4 3100-3185

w07 200  7-52900-2903

wo7' 200 7-6 2609-2707 o

w07 200 7-7 2510-2604
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w07
w07
w07

w07|
w07
w07

w07
w07

wil

_'w11" _
w11 B

__w11
wil
wi1

wit
w11__

wii

w11_j
w11

wit
w11

_!” 1___

w15
w15

w15’
wis
w15
w15

wi5
w15

w15
w15

w15’

w15

w15i
w15

w15
w15
w15

w21
w21

w21

w21
w21

w21

w21
w21
w21
w21

300
300
/300

300,

400]

400]

__..400,
400
100,
100
100

100
200
200

200

200
300
300
300
400

400,
400
100
100
100

100
100
200

200
300
300
3001

300
300

400
400

400
400
500

100
100
200
300
300
300
300

300

300
400

7-8 2108-2111
~7-9.1904-1907'
7-10.1711-1803

7-11 13051308
7- 12[0907 -0811
7- 13‘0505 0509
'7-14]0307-0310

~7-15{0203-0207

11-1 3506-3510'35'06" -
11-2'3108-3200
11-3°3008-3102
11-4 2909-3003
11-5.2704-2709
11-6(2511-2604
11-712304-2309,
11-8 2108-2203

11-9°1607-1700

11-10 1404-1409

11-11 1005- 1100

11-12[0706-0711

11-13|0603-0608'
11-14]0304-0310:

15-13 3003-3007 30'03" -

15-14 3103-3108

15-15(3311- 3403|

© 15-16|3405-34081
15-17 3605-3510i

15-11 2305-2309

16-12 2706-2710

156 1411-1503
15-7 1506-1510,
15-8 1709-1801
15-9 1807-1811
15-10 2106-2200'
15-2 0304-0308
15-3 0702-0706
154 0904-0908
15-5 1106-1110
156-1:0101-0106

21-1 3501 3510135 01" -

©21-2 3107-3110

21- 3 12903-2907
21-4'2607-2610.5
21-5 2206 2211
216, 1802 1806
21 7 1400- 1405

T 21-8 1302-1306

21-9'1000-1004 5
21-10 0702-0705
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" 11-3/ 3008-3102

11-612511-2604

15-10 2106-2200

7-8 2108-2114 !

7-9 1904-1907
7-10 1713-1803
1= B 1305-1308;
7-12]0907-0811.

7-13|0505-0509,

7- 14 0307-0310

7-1510203-0207

“11-1 3506-3510 35'06" - 35'10"

11-2 3109 3200 )
114’[2905 -3003
11:5]2704-2708,

11-7 2304- 2309
1 8 2108-2203

11 9 1607- 1700

- 41-10, 1404—1409|

11 ‘]1‘1005 1100!
19- 12|0706 0711
11-13! 0603 0608

_ 11 14 0304 0310

15-14/3103-3108

15-13/3003-3007,30'03" - 30'07"
15- 15T3311 -3403|

~ 15-16'3405-3408!

15-17 3505-3510
15-11 2305-2309
15-12 2706-2710,
15-6'1411-1503]
15-7 1506- 1510}
15-8 1709-1801]
15-9 1807-1811
15-2 0304-0308
15-3 0702-0706
15-410904-0908
15-5 1106-1110°
15-1 0101-0106

21-1 3501-3510 35'01" - 35'10"
21-2 3107-3110

21-3 2903-2907

21-4 2607-2610.5

21-5 2206-2211

21-6 1802-1806'

21-7 1400-1405

21-8 1302-1306

21-9 1000-1004.5

'21-10 0702-0705
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) 200

~300]

500,

100

100

200
200

200
300|

300
300

3001
400

21-11]0111-0203

23-14 3708 3800|—37 08" ag' 00'_

23-15 3805 3810

'23-10 2701-2704
23-11 3006.5-3100

23-12 3108-3111"

~ 23-13 3409-3500-

23-5 1809-1901

23-6 1906.5- 1910

23 8 2307 5 2310.5

23- 9 2508-2511
23-1.0301- O305|

123-2 0605, 5-0609.5

© 23-3 1005- 1009
23-4 11301 1307

28-1 3700-3709|37' '00" -

28-2 3409-3503
28 3'3310-3405
2843204-3210
285 3011-3104/
28629002907
128727052710

28-8 2507-2603
28-912210-2303

28-10 2103-2200.

28-11'1905-1910,
28-12 1706-1711
28-13'1506-1600
28-14 1102-1107

'28-15 0706-0800

28-16 0304-0310

31-1. 3507 3600|3507 -36 '00"

31-2; 3405 3410|
31 3 3300-3305

31-4,3102.5- 3107

31 5'2906 2909
31-6,2706- 2710

31-7 2602.5-2608.5

31-8 2308-2400

31-9 2300- 2305

31-10 1806-1810.

31-11'1506-1510.5
31-12'1305-1311
31-13 1106-1110.5
31-14 0910.5-1002

31-15 0704-0708
31-16 0605-0609
31-17 0505-0508

201

=



w3t]

w31]
_w31:

wd2

wa2

w42

wa2
wa2'
wd?2

w42,
w42
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_ w42
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- wad

wad
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wd4
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wd4
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w46

was

w46
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w46
w46
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500
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100;
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300
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300
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400

400
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100
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300
300
300
300

500

100
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300

400

400

100
100

100
100
200
200
300
300
300
300,
400
400’
400

l

- 31-20:0103- 0108

42-113506-3509 35'06" - 35'09"
42-2|3500-3503
- 42- #3403 -3406

 42-4|3107-3110

42-53006-3010

42-6[2906-2008

42-7 2608-2611

~42-8 2307-2310

42-9 2201-2205
42-10 1810-1902
42-11 1506-1510
42-12,1402-1405
42-13|1106-1110
42-14|0911-1003
42-15|0611-0703
42-16|0305-0310
© 42-17 0109-0200

44- 2 3709- 3801
44-3 3700-3704
444 3500-3505
44-5 3009-3102,
446 2608-2701
44-7 2106-2110
44-8:1904-1910.
44-9\1701-1707
44-10|1401-1407
44-11/1104-1110
44- 1210908 1001,
44-13 0705-0710
44-14 0605-0609
44-15 0305-0310
44-16 0201-0208 [
46-1 3506-3510 3506" - 35 10"
46-2.3405 5-3408
46-3 3308-3311)
48-4 3102-3105
46-5 2610-2725
46-6 2305-2309.5
46-7 1500-1505
46-8 1310-1403
46-9 1100-1103
46-10 1000-1004
46-1110707-0710"
46- 12'0511 0602
46- 1310502 0507
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w62

w62
wb2
w62
w62
wb2
w62
wB2
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_.300
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400
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400
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100
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400
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100
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300
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400

46-14 0205-0209
46-15 0106-0110

56-1 '3508—3600'35'08"

56-213411-3504
56-3]3106-3111

56—4 2706 2711

56-5-2600.5-2606

' 56-8 2308 2310.5

56-7]2205.5-2210. 5

' 66-812106-2110.5

56-9/1809.5-1900
56-10'1400-1403.5
56-11 1305-1310

- 56- 12 1104-1110
56-13 1003.5-1008

56- 14_0808 0810>
56-15|0604-0611
56-16 |0306- 0310'

56 -1710201.5- 0207 5

I

57-1 3504-3500 35 04 -

57-2 3311-3405
57-3 3103-3107
57-4.3008-3101
57-5|2705-2709
57-612507-2511
57-9/2309-2400
57-7 2211-2303
57-8 2106-2111
57-10 1708-1801
57-11 1003-1007
57-12 0708-0710
57-13 0600-0605
57-14 0306-0310
57-15 0111-0204
57-16 0102-0107:

62-1 3605-3610 36'05" -

62-2 3507-3511
62-3 3407-3500
62-4'3300-3306:
62-5 3108-3200
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