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CHAPTER I

INTRODUCTION

As the fields of computer science and engineering evolve, the amount of tasks

completed by a computer system in one unit of time increases. This is due

largely to the development of high performance computers, as well as computer

systems, which utilize paraUelism between processors. The pattern in which the

processors are connected for communication purposes is called a network

topology. Since the conception of parallel computer systems, the overhead of

communication cost has sparked many concerns, thus causing interconnection

networks to be a prevalent area of research. The problem more formally stated,

given a collection of nodes (processors, switches), define a set of communication

links (connections) between them such that node to node communication will be

minimum [21]. The topology of interconnection networks can be classified as

either being direct or indirect, where static or dynamic connections apply

respectively [10]. Static connections imply a processor to processor network

implementation. Dynamic networks imply a switch channel implementation. In

general, static networks are implemented with direct point to point connections

which do not change during the execution of a process while indirect networks

are essentially the central communication component between processors or

between processors and memory modules [4,10]. Past research suggests that

for extremely large computer systems consisting of several thousand processors,

a direct interconnection scheme is desired [4]. Such a scheme is preferred

because of the direct communication links between processors and simple



communication protocol [4). In general, many of the popular data structures

utilized in computer science today seem to have an impact on some of the static

network topologies introduced in past years. A data structure can be defined as

a record or an organization of information stored in a computer's memory [18,22].

A data structure generally has associated algorithms, which perform operations

to uphold its predefined properties [18). The operations also assist in the storing

and retrieval of information from within the data structure. The influence of the

conventional binary tree structure can be seen in the design of the binary tree

and binary fat tree interconnection networks. The channel width of a fat tree

increases as we ascend from leaves to the root to resolve the potential

communication bottleneck problem toward the root, since the traffic toward the

root becomes heavier [10). The linear array and the ring networks resemble the

traditional array or link list structure, while the mesh and the torus interconnection

network are comparable to the customary matrix structure. Just as data

structures and their node configuration properties are seen in the design and

implementation of old and/or new and efficient interconnection networks, the

reverse can also be observed. A network's topological properties can be studied

and modeled to devise a data structure and associated algorithms, which support

efficient sorting and searching operations.

Much effort has been directed towards practical methods of searching and

sorting data. It is said that much of a computer's processor time is spent either

searching for data or sorting it [11]. Minimizing these two operations are just as
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important if not more, as minimizing the cost of communication between two

nodes in an interconnection network. Reducing the cost of sorting and searching

operations is an ongoing issue in the area of computing technology. Cost is

defined in terms of time and space performance of algorithms and hardware.

Several techniques have been utilized. One such approach utilizes parallelism

between processors along with high-speed buses; however, the cost of such

hardware can be extremely expensive, thus causing such hardware to be

unattainable. When using a single processor, perhaps, two of the most efficient

means of searching for data is with the use of such abstract data types as S­

trees and hash tables, while heap sort and quick-sort are two successful sorting

algorithms.

The purpose of this research is to explore new solutions to the problems

associated with data searching and sorting. To combat these problems, we

define, design and implement a data structure using a popular interconnection

network. More specifically, the three dimensional torus/mesh interconnection

(3DTIN) network topology along with a translation of its node labeling scheme is

used to implement a data structure, which supports efficient sorting and

searching operations, as well as two algorithms.



CHAPTER 1/

Literatu re Review

The sorting and searching of integers are two basic problems in the computing

arena. Ordinarily when speaking of the two from a fundamental standpoint, one­

processor computing is implicit. As advancements in parallel computing evolve,

efficient solutions using parallel processors have been produced. Many of the

parallel computers used today utilize mesh-connected/torus-connected

processors [20]. This interconnection scheme is due largely to the

uncomplicated interconnection topology and simple communication protocols.

Olariu, Schwing, and Zhang introduced a method of sorting N integers on a mesh

connected computer of size N x N. The input values must range from 0 - (N-1)

and the N must be a perfect square. They described their algorithm as a hybrid

between bucket sort and radix sort [14]. Olariu, Schwing, and Zhang suggests

that their algorithm can also work for NC integers, where c is a constant number.

In addition they cite the time complexity of their algorithm as 0(1).

Ping Gu and Jun Gu present three algorithms which sort N2 integers in roughly

O(N) time. Using either torus or mesh-connected processors, their algorithms

sort random input values in row major order and snake-like row major order [9].

A processor array M is divided into blocks numbered in either a row major or

snake-like row major order. The values in each block are sorted and a series of

block rotations are completed [9].
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In [6], an analysis of a new algorithm .called Diffusion Algorithm Searching

Unbalanced Domains (DASUD) is introduced. This algorithm is presented as a

solution to the load-balancing problem common in the parallel-computing

environment. More specifically, the problem deals with the task of evenly

distributing a workload of computation over several processors [6]. The

underlining solution to this problem is to have a continuous flow of nearest

neighbor communication via message passing.

In [19], Rio, Macedo, and Freitas present a method of retrieving information

located in a distributed index mesh. The mesh consists of a number of

independent search engines [19]. Their system consists of three components:

leaf, router, and client agents [19]. An agent can be described as a software

module which queries and/or retrieves and/or processes data, based on some

predefined heuristic. The client agent interacts with the router and leaf agents,

which work together, to create an information mesh. The router and leaf agents

are arranged in a tree-like structure with the routers organized as parent nodes.

The leaf agents interact with a host/resource to gather available information,

build summaries based on the information obtained, and passes built summaries

upward to router agents. Each router produces its own summary based on

information received from its children nodes (leaf agents) and passes the

information upward. The summaries consist of meta-information and keyword

rankings. In the event that a client agent requests information via a query, the

default router agent (root) returns communications/pointers to routers or leaf

5



agents below it. Once a leaf agent is returned, presumably the highest-ranking

data in the mesh is returned [19).

Sera and Das present an analysis of dynamic location strategies used in the area

of wireless communication. Analyses were conducted on three strategies: time

based updating, movement based updating, and distance base updating. In the

analysis a NxN mesh was used. Each cell/node was identified with a pair

ordering (i,j). The selective paging search was the search strategy used in

locating a mobile user in the analysis. The strategy was proposed by Akyilidz,

Ho, and Lin in [2]. In the event of a mobile user search, the cell in which the user

was last reported is examined. If the user is not found, neighboring node with a

distance of d, where d = 1,2, ... , is searched until the user is found [2].

All solutions listed above utiHze parallel algorithms, which yield implementation

complications. Constraint is given either on the size of the network, the specific

value of the number of processors used, and number of input values. When

dealing with a realistic system of input, the number of integers and their values

are generally randomly distributed.
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CHAPTER III

3-Dimensional Torus Topology

Due to its routing and addressing schemes, the torus topology had become a

popular subject of discussion. In past years, it was proposed as a possible

architecture for metropolitan area networks as weU as an interconnection network

for multiprocessor computers [16,20]. The torus topology possesses mesh-like

connections with additional wrap-around connections, where boundary nodes in

each dimension are connected forming a ring. A torus can be described as a

collection of rings. Formally, an N-dimensional torus has been defined as

consisting of S = k1 * k2 *... * kN nodes, where kj is the size of its Ith dimension and

kj >= 2. An arbitrary node is represented by a vector [Xl, X2, ... ,XN] where Xi= 0, 1,

... kj-1 [1,17,20]. Each node has two neighbors per dimension suggesting a total

of 2N neighbors per node. Figure 1 depicts a 3-dimensional torus having the

dimensions 4*2*3. A node is identified by a 3-dimensional vector. The network

is a 3-dimensional structure. The topology also depicts a network size of twenty·

four.

Nezu, et al [13] cite a disadvantage of the three dimensional torus/mesh

interconnection network (3DTIN) as not exhibiting an environment which contains

an arbitrary network size. The one and two dimensional torus topologies are

variations of the 3DTIN.

7
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Figure 1. A 3D[4,2,3] utilizing the
uni versa) node-labeling scheme

3.1. 3DTIN Node Distribution

3,1,2)

2,1,2)

1,1,2)

In this section we present a different interpretation of the dimensions universally

defined in a 3DTIN. The 3DTIN can be defined as a triple 3D[ P, A,IlJ, where, P

represents the total number of regions in a plane, A represents the total number

of lots in a region, and Il represents the total number of planes. A lot can be

defined as a storage location. See figure 1 for illustration of a 3D[4, 2, 3]. The

nodes are interconnected within three planes, each of which, consist of four

regions. Each region consists of 2 lots. We use the symbols n, p, and Ato

denote a node's specific plane, region, and lot labels respectively. The lots

correspond to processor nodes. The maximum number of nodes in each plane is

N=(P * A). The maximum node value a plane can hold is obtained by
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((7t+ 1) * (P * 1\ - 1», where 1t is the plane identification number, P is the

maximum number of regions in each plane, and A being the maximum number of

lots (nodes) within each region. Just as the nodes in the binary n-cube are

labeled from 0 to 2n
- 1 with 2n-1 being the maximum node value, this

interpretation of the 3DTIN places an ordering on the nodes in it. The planes can

take on labels from 0 to I, where I is an integer. The regions in each plane are

labeled from 0 to (P-l). Similarly, the lots in each region are labeled from 0 to

(A-I). It should be noted that although lots correspond to reserved locations of

processor nodes, the label of the lot does not correspond to the label of the node.

By translating the three previously defined dimensions of a 3DTIN to plane,

regions, and lots, it now becomes apparent that a dimension can contain less

than two nodes. As an example a 3D[1 ,2,1] has one region consisting of two

lots, and 1 plane. One could argue that this is simply a ring consisting of two

nodes; recall that one and two-dimensional torii are variations of the 3DTIN.

Additionally, this translation suggests an arbitrary network size. The node­

labeling algorithm is presented in the next section.

3.2. Node labeling Algorithm

When labeling the nodes in the 3DTIN, the number of lots per region and the

total number of regions per plane should be defined precisely. Once specified,

the total number of nodes per plane (N) is easily computed by multiplying the

total number of regions per plane P by the number of lots per reg,on 1\.. The

regions are labeled from 0 to (P - 1) while the lots are labeled from 0 to (I\. -1).
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The planes are labeled from 0 to (fl - 1). Having labeled the planes, regions, and

lots, the labels of each node can be computed. With N being the total plane size,

a node is identified by the plane labeled i, the region labeled j, and the lot labeled

k, where 0::; i < Il, 0::; j < P, 0::; k < 1\..

The node labeled x is computed in three simple calculations.

1) x=k*P
2) x = x + J
3) x = x + (i * N)

Using figure 1, to label the node in plane 0, region 3, lot position 1, simply

calculate the following:

1) x=k*P=1* 4=4
2) x = x + j = 4 + 3 = 7
3) x = x + (i * N ) = 7 + ( 0 * 8) = 7

Thus, position(3,1 ,0) translates to the node(7). In short to label the entire 3DTIN,

the following algorithm is used,

for i =0 to fl-l
for j = 0 to P-l
for k =0 to 1\.-1

x=k*P
x=x+j =X

x = x + (i * N) = x
assign label to node

endfor
endfor

endfor

Figure 2. Algorithm to label the nodes in
a 3DTIN
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Figure 3. A 30[4.2,3) utilizing the
node-labeling scheme.

3.3 Node Location Algorithm

The 3DTIN offers an algorithm to locate a specific node within the topology. This

algorithm allows one to identify the potential location of a node in a changing

network in which network upgrades or network node additions are inevitable.

Defining an integer X as the node label, the location of the node in terms of

plane, region, and lot identification can be computed with the following

addressing algorithm:

A(X) =

=a[ p, A,n]

=a[ X % P, ( X - (n * P * 1\)) / P, X / (P '" 1\)] ,

11
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where "(X I P * A)} " computes the identification number of the plane containing

the reserved location, "X % P n computes the relevant region, and "(X ­

(n * P * A)) / P " computes the node's reserved lot (All divisions done are

considered to be integer divisions). For example, to calculate the location for the

node labeled 13 in our example, the following steps are taken.

1) Plane = n: = X I (P * A) =(13 I 8) = 1

2) Region = p = X % P = 13 % 4 = 1

3) Lot =A = ( X - (n * P * A) / P = (13 - (1 * 8 ) / 4 = 1

Node(13) resides in plane 1, region 1, at lot 1 . (figure 3.)

12



CHAPTER IV

3-Dimensi,onal Torus Data Structure

In this thesis, we develop a new data structure named as 3DTDS. The three­

dimensional torus data structure (3DTDS) is based entirely on the 3DTIN

topology and the node-labeling scheme outlined in section 3. Like the 3DTIN,

the 3DTDS is defined as a triple 30[P, A, TIl, where n represents the current

number of planes of the 3DTDS, P represents the total number of regions in a

plane, and A is the total number of lots in a region. Unlike the plane parameter in

the 3DTIN, the third component 0 in the 3DTDS is dynamic. More specifically,

this parameter can increase or decrease throughout the use of the 3DTDS. A

key is stored in a lot. In other words, a key is mapped into a lot. The mapping is

defined in terms of planes, regions, and lots. It maps a key K into (p,A,1t) where

1t, p, and A to denote a key's corresponding plane, region, and lot label

respectively. We note that all keys must have an integer value. The total number

of values (keys) a plane can contain, denoted by S, is defined as the plane size.

A plane size S is equivalent to P * A. Let r ={no, 7tj, ....1tj} be the set of allocated

planes in the 3DTDS where O~ i ~ 0-1, thus In =n. Let XE1tj, x is the maximum

element in 1tj if x>a for all a resident in 1tj. The upper bound of a plane 1ti, denoted

by ub(1tj), is the largest possible value that plane 7tj can contain. It is computed

with the formula (1t + 1) * (P * A) - 1, where 7t=1t; is the plane identification

number, P is the total number of regions in each plane, and A being the total

number of lots (nodes) within each region. The smallest possible value a plane



-

can contain is termed the lower bound. The lower bound of a plane 1t1 1 denoted

by Ib(1ti), is equal to ((1ti) * (P * 1\}).

4.1 Reserved Positioning

With the use of a 3DTIN-based structure and the node-labeling scheme, the

location of any integer value can be easily determined. Like the nodes in the

3DTIN, each integer has its own reserved position. The approach which allows

unique key values (integers) to be associated with a reserved location is termed

ReseNed Positioning (REPO). REPO is contingent on a structure that provides

planes holding regions with each region consisting of storage locations called

lots. There are two classifications of REPO - unconditional and conditional.

Differences between the two classifications are seen in the plane allocation

scheme used in alternative implementations of the 3DTDS.

In implementing a 3DTDS using the concept of unconditional REPO, the plane

allocation scheme is as follows:

1) Read in a key x

2) Determine the location of its reserved position (p,A,1t) using the Node­

Labeling Algorithm

3) Determine if plane 1t is resident (i.e. has been allocated) in the 3DTDS. IF

plane 1t is resident, place x in its reserved position (p)..,n) ELSE a'llocate

space for plane 1t and place x in its reserved position (p,A,n).

14
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Thus in the event that a plane is allocated, we see that it is possible for lots to

exist both after a key is seen and before it is seen.

Utilizing a conditional REPO, the plane allocation scheme is as follows:

1) Read in a key x

2) Determine the location of its reserved position (p,A,n) using the Node­

Labeling Algorithm

3) Determine if plane n is resident in the 3DTDS. IF plane n is resident

allocate space for lot A and place x in its reserved position (p,A,n) ELSE

use an identifier to indicate the virtual allocation of plane n and allocate

space for the lot A. Place x in its reserved position (p,A,n).

In general, the number of regions P is static when using this approach. A better

explanation is presented in section 5. Elaborating more on the two approaches,

given a plane size S=10 and a key=1; utilizing unconditional REPO, once the

plane holding the reserved lot for key one is created, nine other lots are

automatically created. Other keys processed in the future, which belong to this

specific plane, will simply be assigned to their reserve location. Applying the

conditional REPO approach, only the lot for value one is created. If the plane is

not present an identifier (Le. flag) is used to indicate the allocation of the plane.

Applications of both types of REPO are used in different implementations of the

3DTDS. Further explanation is presented in the section 5.

REPO is a modification of the currently known hashing methods. It utilizes one

major addressing function and the structure, in relation to the universally known

15



hash table, can be described best as a group of tables. While REPO implies that

distinct keys map to distinct locations, hashing allows distinct keys to hash to the

same location. Hashing also considers duplicate keys as "just another key",

meaning an identical key is placed in a distinct location as if it were a different

value, possibly causing a worst case O(N) search time, where N is the number of

values in a hash table. In addition, hashing only supports an equality search,

whereas REPO efficiently supports at least three different search/query types:

equality queries ( i.e. find an employee with a specific identification number),

range queries (Le. find all houses costing $100,000 - $500,000), and min-max

queries (Le. find the least expensive house and the most the most expensive

house).

The address function associated with REPO must be complemented with a

30TDS. The address function A(key) computes the reserved position for a

unique key. In short, the address function is

A(key) =

= A[ p, A,n ]

=A[ key % P, ( key - (n * P * 1\» I P, key I (P * 1\) ],

where "(key! P * A») " computes the identification number of the plane containing

the reserved location, "key % P" computes the relevant region, and

"( key -(n *P * A) ) I P " computes the node's reserved lot. This address function

is identical to the node-location algorithm outlined in section 3.3. The 30llN

16



topology directly impacts the current definition, design and implementation of the

30TOS. The node-labeling algorithm creates a means for inserting into the

30TOS. Additionally, the 30TIN node-location algorithm allows search time to be

at a minimum.

The use of REPO is implicit with utilizing the 30TOS. The use of REPO is

motivated by the ability to design and implement a structure, which after N

number of key insertions, the N keys would be organized in such an order that

sorting is minimum or unnecessary. Practical applications of REPO can be found

in the area of databases, where efficient retrieval and sorting of significant

amounts of data is continuously needed.

17



CHAPTER V

3DTDS Implementation

In this section, two implementation methods of the 3DTDS are discussed. Before

a detailed description of the 3DTDS is presented, it is important to note that

although the number of regions and lots in the structure are predetermined, the

allocation of planes is dynamic. More importantly if the region or lot sizes were

not static, labels for all nodes would need to be recomputed after each new

region or lot size change to account for the change in plane size. This approach

is undesirable, as it would yield an inefficient use of processor time.

5.1 Matrix!Array

The matrix implementation utilizes unconditional REPO. This method is a

straightforward approach. Figure 4.a depicts a 3DTDS implemented as a matrix.

It consists of two planes having nine regions. Each region consists of four lots.

The columns correspond to regions while the rows correspond to lots. Though, it

is possible to use a one-dimensional plane, a matrix is used for added clarity. In

using a one-dimensional plane, the total number of regions P in any given plane

is equal to one (see figure 4.c). Additionally, the region label is equal to the

plane label. Referring to figure 4.a, the plane size is equal to 36. Taking a key

with a value of 21, we are able to compute the address of key 21 in three steps:

1) Plane => (21 / 36) =0
2) Region => 21 % 9 = 3
3) Lot => 21- (0 * 9 * 4) / 9 = 2

18



The value 21 is mapped to region 3, lot 2 in plane O. Referring to figure 4.a,

plane 0 has a lower bound of a and an upper bound of 35 and plane 1 has a

lower bound of 36 and an upper bound of 71. The maximal element of plane 0 is

35 while 69 is the maximal element corresponding to plane 1. By allocating

space for plane 4, reserved lots for values 144 - 179 become available. As one

might conclude, unconditional REPO works best with values located in close

proximity. In addition the region and lot sizes must be chosen carefully for

storage utilization. For instance, if an input of size three were to be processed,

one would not want a plane size of one hundred. Referring to figure 4.a, the

actual key values are placed in the reserved lots for explanatory purposes.

Ordinarily, after the allocation and initialization of a plane, a value of one is

placed in the lot designating that the key is present. In the event of a duplicate

key, the lot value is incremented by one. As the planes are allocated, they are

placed in a binary tree (termed the plane tree) for efficient access. For instance

the planes in figure 4.a would be placed in binary tree. See figure 4.b for a

detailed illustration. In figure 4.b, each node in the plane tree corresponds to an

allocated plane. The number in each node denotes the plane id or label.

Referring to figure 4.b planes a, 1, 4, and 100 have been allocated. As

previously stated the unconditional REPO scheme is appropriate for keys having

values in close proximity of one another. This locality constraint avoids the

inefficient use of memory. If the constraint is lifted, the 3DTDS wastes more

space than it uses. However, its performance is extremely efficient. Aside from

efficient performance, this implementation is fairly simple to incorporate. Let r be

19



the set of planes in the plane tree (by definition f is the set of planes in the

3DTDS which is equivalent to the set of planes in the plane tree), so it takes

O(log(lfl)) time to liocate a plane. In general, If! is much less than the input-size

N; however, If! is equal to N in the event that for each input key a plane is

allocated. This is a worst case scenario that is highly unlikely. Furthermore,

regarding sorting, the key values in each plane are indirectly sorted due to

REPO. The obvious disadvantage is that if key values are sparse, an inefficient

use of space is inevitable. To limit the amount of wasted space, a bit-vector

based 3DTDS can be used.

012345678

o

1

2

3

0 1 ! !
- I- - -- - -t~a

36 37 39 42 43 . - - -
1
~ -- -H45 48 49 50 53_. ._-- - - --- _._- -- -

0 1 2 3 4 54 59
-- --t-- - PLANE

0 1 3 4 6 8 69
J

9 10 12 16
PLANE 1

18 20 21 23 24 26

27 28 29 31 32 34 35

4

PLANE 100

PLANE 0

Figure 4.a. A matrix implementation of a 3DTDS.
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Figure 4.b. The planes are kept in a binary tree
structure called a plane tree for quick access

o 1 2 3

o

PLANE 0

Figure 4.c. A I-dimensional implementation
ofa 3DTDS.

The bit vector implementation is similar to that of the matrix implementation.

Instead of using arrays of integers, arrays of bits initialized to zero are used. If a

key value is processed, the bit in its reserved lot position is flipped to a one. The

obvious advantage to this modification is that it uses less than 4 percent of the

total space used in the matrix implementation; however, it is impossible to retain

duplicate key values and/or satellite data. The matrix implementation presents a

superficial explanation of the 3DTDS. In terms of wasted space, this

implementation behaves badly. In the next section a closer look at the 3DTDS is

taken via an alternative implementation termed the Chain-Tree, which utilizes the

conditional REPO approach.

5.2 Chain-Tree

The chain tree implementation uses a conditional REPO approach. It utilizes a

method similar to chaining (a collision resolution scheme used in hashing). This

implementation consists of a combination of popular data structures used in the

field of computer science today; namely, the splay tree, binary tree, double

ended queue, and array structures. It has four primary components: a plane
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tree, lot tree, plane template, and plane list. As aforementioned, the previous

implementation (matrix) presented a great possibility that several planes could be

created due to sparse key values, thus yielding large amounts of wasted space.

The chain-tree implementation initially allocates space for one plane, which is

used as a template for planes created in the future. This initially allocated plane

is termed the plane template. Each lot in the plane template is an actual pointer

to a binary tree. The binary tree at each lot is termed a lot tree. By definition lots

are contained within regions, so the number of regions wi,thin the plane template

is arbitrary. Each lot tree contains values/keys, which map to that specific lot A,

but may map to a different plane n. The concept is similar to chaining; however,

instead of a linked list, a binary tree is used. Initially, the value of each lot within

the plane template is initialized to null. Once a key is processed, its reserved lot

location is determined and space (i.e. a node) for the value is allocated. The

value is then inserted into the specific lot tree located at its reserved lot. After an

insert, an insertion into a separate tree, termed the plane tree, is at times

necessary. This insertion signifies the allocation of an entire plane. Figure 5

shows an example of a 3DTDS structure not fully connected.
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Figure 5. A chain-tree implementation of a 3DTDS

..

The plane tree consists of all allocated planes currently present as a result of all

inserted keys. We denote these pl,ane allocations as being virtual. In Figure 5,

planes 1, 2, and 3 have been virtually allocated. The plane tree is constructed as

a splay tree. This plane allocation scheme aids in space preservation. Space for

one plane is represented by one lot-sized node instead of an entire plane.

5.2.1 Plane Tree Nodes and Plane Template Nodes

Special attention should be given to the structure of nodes within the plane tree

and plane template. First, both the plane tree node and plane template node

consists of at least four pointers. See figures 6.a and 6.b for a detailed

illustration. The plane tree node has a LEFT and RIGHT pointer to aid in

implementing a binary tree. Each plane tree node allocated denotes a plane.

The chain tree implementation utilizes conditional REPO thus all lots in a newly

created plane are not allocated. The FRONT and REAR pointers of the plane
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tree node are used to maintain a list of existing keys present in a plane. This list

is termed the plane list. In Figure 7, three plane lists are depicted, the lists

belonging to plane 1, 2, and 3. It is noted that the REAR pointer of the plane tree

node is not pictu red.

Figure 6.a. A plane tree
node

Figure 6.b. A plane template
node

PLANE TREE

The FRONT and REAR pointers contain the address of the first and last key

values in a plane respectively. The plane tree node can contain an optional

PARENT pointer, which aids in splaying operations. Further explanation of the

splay operations is presented in the section 5.2.4. Similar to the plane tree node,

the plane template node contains LEFT and RIGHT pointers. Given a key X in a

plane list. A PREVIOUS pointer is used to point to the first

PLANE TEMPLATE

'----+-----'----+------'-------"----+~•••••~
;-e ___....~.---.~-'------- ..--,••~.

1." Ipo.~." -----+.1·'- .----.- .-2 2 2 2

Figure 7. A chain-tree implementation of a 3DTDS
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value smaller than X and a NEXT pointer is used to point to the first value larger

than X. In the following sections, a description of the fundamental operations

associated with the 3DTDS is presented. They are as follows:

1. Disconnect
2. Connect
3. Insert
4. Delete
5. FindMax and FindMin
6. Find
7. Find Range
8. FindNext and FindPrevious
9. Print_SortMin and PrinCSortMax
1O. Sort (optional)

We use the terms routine and procedure interchangeably when describing the

operations. Additionally we dedicate chapter six to the discussion of the optional

Sort procedure as it calls for an in-depth explanation.

5.2.2 Disconnect

This routine is used to disconnect a node from its plane list. Let X, YI and Z be

three connected nodes in a plane list. If Disconnect is executed on node Y, its

PREVIOUS and NEXT pointers are set to NULL. The NEXT pointer of X is

Figure 8.a. Plane list before
Disconnect operation is executed
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Figure S.b. Plane list after
Disconnect operation is executed.



assigned the value of Z, while the PREVIOUS pointer of Z is assigned the value

of X. Disconnect runs in 0(1) time.

5.2.3 Connect

This routine is the counterpart of Disconnect. It is used to connect a node to a

plane list. Let X and Z, be two connected nodes in a plane list. If Connect is

executed on a node Y, its PREVIOUS pointer is assigned the address of X and

its NEXT pointer is assigned the value of Z. The NEXT pointer of X is assigned

the value of Y, while the PREVIOUS pointer of Z is assigned the value of Y.

Connect runs in 0(1) time.

Figure 9.a. Plane list before
Connect operation is executed.

5.2.4 Insert

Figure 9.b. Plane list after
Conl1ect is executed.

The insertion operation is a three step procedure. The plane Xn, region Xp , and

lot XA, of a key X are computed. X is inserted into the plane template at location

(p,A), where p and A is X's associated region and lot. A TEMP pointer is

assigned the address of X. The plane tree then is searched to determine if plane

Xn is present. If plane Xn is not present, it is inserted into the plane tree and the
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FRONT and REAR pointers of the plane tree node is assigned the address of

TEMP. In contrast, if plane Xn is present then either the FRONT or REAR pointer

of the Xyt is traversed to identify the key already present in the plane that is

greater than or less than X respectively. The algorithm determines which pointer

to access by computing the midpoint M of the plane size S. If key X belongs in

one of the first M lots, the FRONT pointer is used; otherwise the REAR pointer is

used. Once the appropriate position is located, the node is inserted into the

binary tree. Connect is then executed to reestablish the plane list. See Figures

9.a and 9.b. Figures 10.a - 10.h show the results of inserting seven keys in a

3DTDS. The plane template is an array. A two-dimensional plane can be used;

however a one-dimensional plane is used for simplicity. In the example A=6 and

P=1, thus N=6, where N maximum possible nodes in any given plane. The gray

nodes denote newly inserted nodes. The value within each node denotes the

plane value while the value located to the lower right of the node denotes the

actual key value.

Plane Tree

•
o

Plane Template

2 3 4 5

Figure lO.a. Initial stale of Plane Tree and Plane Template: Both are EMPTY
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Plane Tree
o

Plane Template

2 3 <1-

Figure IO.b. Inserting key 409.
n(409) = 409/6 = 68
),,(409) = (409 - (68 * 6))/1= 1
p(409) = 409%1 = 0

5

Plane Template

'2 3 4o
Plane Tree

0------_
/

Figure IO.c. Inserting key 5
P(5) =5/6 =0
L(5) = (5 - (0 * 6))11= S
R(5)=5%1=O

Plane Tree

o
Plane Template

2 3 4

Figure IO.d. Inserting key 352
n(352) = 352/6 = S8
),,(352) = (352 - (58 * 6))11= 4

p(352) =352% 1 =0
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Plane Template

2 3 4 5
Plane Tree

~---j~~
,/

Figure 10.e. Inserting key 6000
7t(6000) = 6000/6 = 1000
1.(6000) = (6000 - (1000 * 6»11= 0
p(6(00) = 6000% 1 = 0

Plane Template

2 3 4o

68 @ 0
_~__------ 81 1352 / 5

- --l /

---- /--. '"'-----._---
Figure 10.1. Inserting key 81
7t(81) = 81/6 = 13
1.(81) = (81 - (13 * 6»/1= 3
p(81)=81%1=0

Plane Tree
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Plane Tree

o
Plane Template

2 3 4 5

Figure to.g. Inserting key 349
7t(349) =349/6 =58
A(349) = (349 - (58 * 6»11= 1
p(349) =349% I = 0

Plane Tree o
Plane Template

1 2 3 4 5

0dGj{0/" I'" ,

Figure lO.h. Inserting key 451
7t(451) = 45116 = 75
A{45 I) = {451 - (75 * 6»11= 1
p(45 I) =451%1 =0

As a result of checking the plane tree for a value after each insertion, the

insertion routine is charged with the responsibility of attempting to keep the

search on the plane tree at a minimum. This task is accomplished by splaying
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the plane tree at predefined intervals. The interval is denoted by the splay

parameter (float value). The splay parameter notifies the routine when to

execute a splay operation. The parameter is based on the depth of the newly

inserted plane tree node and the ideal height of the pl,ane tree. Let the splay

parameter =k. If the newly inserted node is k times the ideal height of the plane

tree, a splay operation on the inserted node is executed [3]. To compute the

ideal height, the logarithmic value of the total number of nodes in the plane tree

is computed. This implies that a count of planes in the plane tree is kept.

Formally, a splay tree is used for primarily two reasons. The first reason is to

allow a minimum search on an accessed node, as past research has shown that

an accessed node will more than likely be accessed in the near future [3].

Prevention of the worst case scenario, a sequence of bad accesses, is the

second reason [3]. In addition as a by-product of splaying, the worst case search

time of O(N) on a binary tree becomes almost non-existent. Primarily, the reason

splaying is used with the 3DTDS is for the latter reason. The first reason does

not apply because generally when dealing with an input of random values, no

one node will be accessed increasing more than another. However, it is

extremely important that the plane tree be balanced to some level, to avoid a

worst case search time. In summary, it takes O(log(lrl») to insert a node into the

plane template and O(log(lfl)) to search the plane tree. Having a plane size

equal to S, it takes 0(5/2) :::: O(S) to identify the position for the newly created

plane template node.
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5.2.5 Delete

The delete algorithm is similar to that of the binary tree. Once the location (p,A.)

in the plane template has been identified, traverse the lot tree for the desired

node V. Once Y is located Disconnect is immediately executed. There are three

main cases necessary to observe when deleting a node from a binary tree. If the

node Y has no children, the node is deleted immediately. In the event that Y has

one child, the LEFT or RIGHT pointer of the parent of V (depending on the

scenario) is assigned the value Y's child (see figure 11).

Figure 11. Deleting node Y from a binary tree. Node Y has one child. The
dotted lines denote the disconnected links, while the solid black line denotes
the new established link. Disconnect and Connect operations are not shown.

If Y has two children, the content of Y is replaced with the contents of the value

of the smallest element in the right subtree of V, denoted as Z. Node Y now has

the value of Z. Connect is then performed on Y. After minor pointer re-

adjustment with the parent of V, node Z is immediately deleted (see figure 12).

In the event that all keys from a plane list have been deleted, the plane node

corresponding to the plane list is deleted. A lazy deletion scheme (tagging a
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node as being deleted instead of actually de-allocating its space) could be used if

it is thought that a key from that plane might be processed in the future.

Unfortunately, if a lazy deletion scheme is used search time on the plane tree

could become slow if a large number of nodes were tagged as being deleted.

For instance if a plane tree consisted of one hundred nodes and eighty were

tagged as being deleted, the time to search would be extremely slowed due to

the deleted nodes. It is cost-effective to delete the plane tree node immediately,

given that each time a key is processed, the plane tree is searched.

z ,o z·
Figure 12. Deleting node Y from a binary tree. Node Y has two children. The
dotted lines denote the disconnected links, while the solid black line denotes the
new established link. Disconnect and Connect operations are not shown.

5.2.6 FindMax and FindMin

These operations return the value of the largest and smallest element in the

30T08. To perform a FindMax, start a1 the root of the plane tree and traverse
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right until the node holding the largest value is obtained. Once the node is

identified, the largest value in the 3DTDS is obtained by accessing the rear

pointer located in the node. The FindMin is the same, except the traversal is

done on the left side of the tree. This operation has an average case and worst

case time complexity of O(log(lrl)).

5.2.7 Find

The Find routine is done by first computing the region p and lot "A location of the

value being searched. Once computed, a binary search is done on the tree

located at address (p,"A). In the event that the key is found, its value is returned;

otherwise, NULL is returned. The average case time complexity is O(log(lrl)). In

general the size of a tree in the plane template will be less than or equal to the

size of the plane tree. The worst case time for the search is O(lrl).

5.2.8 Find Range

This operation returns an array of all keys between a start value A and an end

value B inclusively. The idea behind this routine is to utilize the plane tree, which

contains If! nodes where If! is generally much less than N, thus minimizing the

search time. The keys between the values A and B inclusively, reside in planes

between A and B's planes. All values in the plane tree meeting the criteria are

evaluated. Evaluation includes confirming that the value obtained in the plane

tree is valid. Once validation is complete a traversal of the FRONT pointer of the

node is done to obtain the keys within the specified range. The algorithm first
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computes the planes for values A and B. Let 1tA and 1tB denote the plane values

for A and B respectively. A level order traversal is then done on the plane tree.

A queue is used to perform the level order traversal. Each node in the queue is

evaluated only when it arrives at the queue's front end. The front node is

denoted as F and 1tF is the plane value of F. This algorithm presents three initial

cases.

1) In the event that 1tF is less than or equal to 1tA and the RIGHT pointer of F is

not equal to NULL, enqueue the right child of F.

2) In the event that 1tF is greater than or equal to 1t8 and the LEFf pointer of F is

not equal to NULL, enqueue the left child of F.

3) If case one and two fails the right child and left child of F are enqueued.

If 1tF is between 1tA and 1tB, the FRONT pointer of F is traversed to obtain values

present in that plane. The values are inserted into an array. In the event that the

front of the queue is equal to NULL, the routine ends and the array of values are

returned. Figure 13 depicts a plane tree. Fi9ure 14 depicts the plane tree nodes

evaluated by FindRange (gray nodes). In this example 1tA =55 and 1t8 =500.

Figure 13. A Plane tree
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The algorithm takes the optimal approach to this problem. It attempts to evaluate

only the nodes necessary to solve the problem. It is clear that this strategy

eliminates the processing of arbitrary nodes. The run time complexity of this

routine is O(lrl), given that a range consisting of all plane tree values could be

processed at any given time.

Figure 14. Requesting values in the range of A to B, FindRange identifies aU
planes between A and B's planes inclusively. The gray nodes are evaluated by the
algorithm.

5.2.9 FindNext and FindPrevious

These routines return the first value greater than and less than a specific key in a

plane. NULL is returned if the key is not found, the previous value is not present,

or if the next value is not present. FindNext is done by first computing the region

p and lot A location of the value being searched. Once computed, a binary

search is done on the tree located at address (p,A). In the event that the key is

found, the value pointed to by the NEXT pointer is returned. FindPrevious is
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done the same way, except that the PREVIOUS pointer is evaluated. The

average case time complexity is O(log(lfl)).

5.2.10 SortMin and SortMax

These routines are not sorting operations in the traditional sense. As previously

mentioned, the central motivation in using REPO and the 3DTDS is to design

and implement a structure, which after N number of key insertions, the N keys

would be organized in such an order that sorting is unnecessary. The insertion

operation allows the keys in each plane to be sorted; therefore to output all

values in ascending order an in-order traversal starting on the left side of the

plane tree is done. This is done for the SortMin routine. Upon reaching a node

in the plane tree, its FRONT pointer is traversed to output the sorted values held

in that plane. SortMax is the same except an inorder traversal is done to the

right side of the plane tree and the REAR pointer is traversed.
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CHAPTER VI

Chain-Sort Algorithm

The chain-sort algorithm is motivated by the 30TOS. It sorts keys residing in a

30TOS-like structure. This algorithm sorts keys without comparing or swapping

values. Furthermore, it is stable. This algorithm can be used as an optional

routine in the chain-tree implementation of the 30TOS. More precisely, rather

than connecting all nodes to the plane list during the Insert operation, the chain-

sort algorithm can be called at user defined intervals to perform that action. We

remind the reader that as a byproduct of the connected nodes in a plane list, the

keys are sorted. The chain-sort algorithm links all nodes together as if they were

connected during Insert. It offers an alternative approach to the Insert operation.

By electing to exploit this approach, the node connection time during the

execution of an Insert is reduced considerably. Insert would therefore only be

responsible for insertions into the plane tree and plane template, not the plane

list, which has a worst case 0(8/2) ::::: O(S) insertion time. If this optional approach

is used, special attention must be given to operations such as FindNext,

FindPrevious, FindMax, FindRange, and FindMin. The 30TOS may not return

the correct result when the procedures mentioned above are called due to newly

inserted nodes that have not been connected to the plane li,st. For example,

applying the alternative approach, jf a node K is inserted after the chain-sort

procedure has been called, K will not be connected to the plane list. Node K

could possibly be the minimum or maximum value in the 30TOS. If it is not

connected to the rest of the nodes in the plane list and either FindMin or FindMax
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is called, the incorrect value will be returned instead of the correct value, the

value of K. The execution of the chain-sort algorithm is recommended if new

insertions have succeeded the latest chain-sort call.

When initiating the Sort operation, the plane template is traversed. Each lot tree

in the plane template is evaluated. Formally a plane template is either a one­

dimensional or two-dimensional structure of size S, where S=P*A. Each lot

within the plane template is traversed in a row major order. Once a lot is

accessed, the lot-tree is evaluated. Evaluation consists of accessing each node

in a 10t-tree(A) or 10t-tree(p,A) when using a two-dimensional plane, determining

its plane value and once determined, connecting the accessed node to its

corresponding plane tree node located in the plane tree. A modification of the

plane template node is important to the efficient execution of this algorithm. The

address of a node's corresponding plane tree node is retained in every node

resident in a lot tree. In contrast by not retaining the plane tree node values, a

total of N (input size) searches on the plane tree would be necessary to locate

each key's corresponding plane during chain-sort. Such continuous searching

has proved costly. Essentially, keys with identical plane values are connected

together producing a list of ascending key values per plane, more precisely

creating the plane list in the 3DTDS. See figures 15.a - 15.i for explanation. In

the example A=6, P=1, and plane size S=6 (Appendix A. depicts a plane

template with P=2). The gray nodes. denote newly ins.erted nodes. The value

within each node denotes the plane value while the value located to the lower
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right of the node denotes the actual key value. After connecting all nodes. an in-

order traversal of the plane tree is necessary to output the sorted keys.

Plane Tree

•
o

Plane Template

2 3 4 5

Figure IS.a. Initial slate of Plane Tree and Plane Template: Both are
EMPTY

Plane Tree
o

Plane Template

2 3 4 5

Figure IS.b. Inserting key 409
n(409) =409/6 =68
A(409) = (409 - (68 ... 6»/1= 1
p(409) = 409%1 =0

Plane Tree

@
/

o
Plane Template

2 3 4 5

Figure IS.c. Inserting key 5
n(5) = 5/6 = 0
A(5) =(5 - (Q * 6»11= 5
p(5) =5%1 =0
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Plane Template

2 3 4 5

Plane Tree

Figure IS.d. Inserting key 352
7t(352) = 352/6 = 58
)..(352) = (352 - (58 * 6))/1 = 4
p(352) = 352%1 = 0

o
Plane Template

2 3 4 5

Plane Tree

Figure IS.e. Inserting key 6000
n(6000) =6000/6 =1000
/"'(6000) = (6000 - (1000 * 6))/1= 0
p(6000) = 6000%1 = 0

Figure 15.f. Inserting key 81
7t(81) = 81/6 = 13
/"'(81) = (81 - (13 * 6»/1= 3
p(81)=81%1=O

Plane Tree
o

Plane Template

1 2 3 4 5
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Plane Template

2 3 4 5

Figure I5.g. Inserting key 349
1t(349) =349/6 =58
},.(349) = (349 - (58 * 6»11= I
p(349) = 349%1 = 0

Plane Tree

~l6000 409

58
349

@
8\

@
352

o
5

I"..
,"

Plane Tree o
Plane Template

1 2 :\ 4 5

..

Figure 1S.h. Inserting key 451
1t(451) = 451/6 = 75
}"(45 I) = (451- (75 * 6»/1= 1
p(451) = 451%1 = 0

~oo j€J.
@

349 451

@
81

@0
352 5

...

Plane Tree o
Plane Template

1 2 3 4 5

Figure IS.i. Sorted Numbers: 5, 81, 349, 352.409,451.6000
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The time taken to insert and output keys is not considered in the chain-sort

analysis. The analysis is presented in section 7. As previously mentioned, this

algorithm sorts keys resident in a 3DTDS-like structure. Using chain-sort as a

possible stand-alone sorting algorithm has been considered and researched.

Current research yields one primary concern. As with the heapsort algorithm, the

time to build the heap is computed in the analysis. Similarly, the cost to construct

the 3DTDS must be computed in the analysis. The primary concern lies in the

continuous search on the plane tree during each Insert call. Although efficient,

the search considerably increases the time required to execute a stand-alone

chain-sort.
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CHAPTER VII

Chain-sort Analysis

In this section, the chain-sort analysis is presented. Chain-sort consists of at

most S lot accesses to ensure that each node is evaluated and placed in the

correct sorted order. Figure 16 is an implementation of the algorithm. A one-

r 1-/

r 2-/
r 3"/

void chain_sort(ElementType LOTD, int PLANE_SIZE, int N)
{

int lot_number;

for(loCnumber =0 ;loCnumber < PLANE_SIZE, N > 0; loCnumber++)
{

if(LOT[loCnumber) != NULL)
leveUraversal(&LOT[lot_number), &N);

}
}

Figure 16. Chain-sort algorithm

'."I
'.

't
I
I
I

dimensional plane is assumed. Line 1 is a loop, which accesses each lot in the

plane. The loop will terminate if one of two conditions are true: 1) if the last lot of

the plane has been accessed or 2) all N keys have been processes. We note

that if condition 1 is true then condition 2 must be true; however the reverse is

not. For instance given a plane of size 10, when executing chain-sort, let all keys

be located in lot zero. After accessing the first lot, the loop terminates yielding a

sorted list. This case yields a best case sorting time of 8(N). Line 2 is a

condition statement to confirm that the lot accessed is contains a lot tree. If the

condition fails the next lot is accessed. If the condition is true line 3 is executed.
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In line 3, a basic level ordered traversal of a lot tree (binary tree) is done. In

essence, line 3 has a time complexity equal to the number of elements in a lot­

tree. The worst case time for a level ordered traversal is O(N), assuming that all

keys are located in one lot-tree. In this case the loop will only execute until the

particular lot is identified. Once the lot is identified, the elements are sorted.

The worst case time complexity for the loop (line 1) is O(S), where S is equal to

the size of the plane. If this worst case occurs all N elements must be located in

the last lot of the plane; executing line 3 will take B(N). We conclude that the

running time for chain-sort is O(S + N) :::: 8(N}, S having a constant value.

7.1 Empirical Analysis

Random integer values were used as test input. Two pseudo-random generators

were used. One pseudo-random generator was used to generate a float value XI,

where Xi is in the interval zero to one. The second generator was used to

produce an integer value Yh where Yi ranges from one to nine inclusively. The

value of a random key Z was constructed by for following formula: 10yi * XI. This

scheme yields a wide range of integers ranging from 0 to 999999999. For

instance, given yi = 7 and xi = .89432, Z is given the value 8943200 (107 *

.89432). Tests were conducted on a Unix Sun Solaris Operating system. All

programs were completed using the C programming language and compiled with

a GNU compiler.
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The experimental test runs used an input size of N=2i
, 7sis14. The plane sizes

used ranged from 10 to 100000, by multiples of 10. The heapsort algorithm was

used as a test comparison because of its consistent time complexity of

O(N(log(N». Figure 16 depicts the actual sort times of the chain-sort algorithm,

using various plane sizes and heapsort. As the plane size increases, the

execution time of the chain-sort decreases. For input sizes less than 8192,

chain-sort and heapsort have similar performance. As the input size increases

beyond 8192, chain-sort performs better (see figures 17-18).
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Figure 17. Comparison of Chain-sort and Heapsort algorithms. Various plane sizes tested are
depicted (all times are in seconds).
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CHAPTER VIII

Parallel Algorithm

In this section a parallel algorithm which sorts N integers using a distributed­

shared memory environment is presented. A master - slave processor

configuration is assumed. Figure 20 gives a detailed illustration. The white

squares represent processors while the gray squares denote memory modules.

The parallel algorithm presented in this section is modeled after the chain-tree

implementation of the 3DTDS described in section 5.2. One master processor is

used. The primary objective of the master processor is to read and distribute and

collect and merge data. The master processor sends signals and data via a

communication medium (i.e. a bus) to its slave processors to request that an

operation be executed. In relation to the chain sort model, the number of slave

processors corresponds to the number of lots in a plane template. In other

words, the number of processors are equivalent to the plane size S. As with the

chain-tree implementation presented previously, one region is assumed. Each

processor(i) is responsible for operations on its own lot-tree(i), 0 ~ i ~ (S-1). A

copy of the plane tree, implemented as a bit-vector, is stored with all processors

as a shared structure. We denote this vector as the plane tree vector. The total

number of bits in the vector corresponds to the total number of available planes

denoted as B. Each bit corresponds to an available plane. For instance bit zero

corresponds to plane zero and bit two corresponds to plane two. Given the total

number of available planes B and the plane size S, the algorithm can sort
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integers aj, a $; aj $; ((S * B) - 1). Thus with a plane size equal to 100 and the

plane tree vector size equal to 1000000, the algorithm sorts integers ranging

from a to 99999999. Additionally, a vector with a size equivalent to the number

of processors (which is equal to S) is stored with all processors as a shared

structure. Thils vector is termed the processor vector.

Figure 20. Distributed shared memory - master-slave
processor configuration

In the event that an integer value is read by the master processor, it is

immediately distributed to its assigned slave processor(i). The assigned slave

processor(i:) is computed using the 3DTDS addressing function discussed in

previous sections. As with the chain sort algorithm, the plane value of the integer

is computed. The bit in the plane tree vector corresponding to the newly

computed plane value is flipped to one. It is important to note that no

synchronization of the processes is needed to modify the plane tree vector.

Once a bit is flipped to one, it retains its value of one signifying that that particular

plane is in use. If another processor attempts to access that bit the value

remains one. In sorting all va ues, the algorithm starts at the zero bit location of

the plane tree vector and traverses until the end of the vector is reached. In the
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event that a bit with a value of one is encountered, signifying that that plane is in

use, (more specifically an integer value addressed to that plane has been

previously processed) all processors evaluate their lot trees searching for a value

that addresses to the plane corresponding to the bit. If a value which is

addressed to the plane in question exists in a lot-tree(i), the ith bit located in the

processor vector corresponding to that processor is flipped to one. The master

processor processes the processor vector by identifying all bits having a value of

one and merging all data. Given the lot id (processor id), plane size (8), and the

number of regions (one), the master processor is able to calculate all

corresponding integer values in constant time. It is noted that once a bit having a

value of one is encountered it is flipped back to zero to ensure that the vector is

initialized for the next plane. A pseudo parallel algorithm is presented in figure

21. Two approaches were taken in implementing this algorithm. The first

approache implements the lot trees stored at each processor as a binary tree.

MASTER:
For j=O to PLANE_VECTOR_SZ

{
if(plane_vector[j] == 1)
I

notify processors to search their lot trees for a value from plane j
Check processocvector - Merge current data

}

SLAVE(i):
Parbegin

curr= Find_value( j );
if(curr != NULL)

{
processor_vector_bit[i] = 1;

)
Parend

Fieure 21. Sorting algorithm for processors
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The second approach implements the lot trees as a bit vector with a size

equivalent to the plane tree vector. This method allocates a bit for all possible

integer values within the range of 0 to ((8 * 8) -1). This approach uses

potentially less space and from the results given in figure 22 performs better than

that of the first approach. The first approach may be used when satellite data

plays a major role. Using the first approach the sort operation is completed in

0(8(log(lrl») time where In is the number of virtually allocated planes in the

plane tree and 8 is the size of the plane tree vector. In on average is much less

than N, the size of the input data. In the worst case In equals N. This scenario

implies that each input N required a new plane allocation and all the values went

to one processor(i). Using the second approach the sort operation essentially

takes 0(8) time since all lot trees are implemented as vectors. The times

recorded in figure 22 were generated from a simulation done on a single

processor. One hundred processors were assumed with a plane tree vector size

of one million.
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0.0027
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0.0038
0.0039
0.0037
0.0027
0.0033
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0.0254
0.0336
0.0434
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0.0036
0.0032
0.0037
0.0038
0.0039
0.0046
0.0054
0.0062
0.046

0.0493
0.4567
0.7107
1.079

Figure 22. Chain sort parallel algorithm performance.
Times correspond to vector and binary tree
implemented lot trees
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CHAPTER IX

Conclusion, Summary, Recommendations

In this study, the familiar problems of sorting and searching were analyzed.

Several approaches to these two problems, which use single and multiple

processors, have been presented in past years and still remain as popular

solutions. The solutions explored in this research consider an approach different

from many that have been proposed in the past. More specifically topological

properties of the three-dimensional torus/mesh ,interconnection network were

used to devise a node-location algorithm, node-labeling algorithm, and a data

structure with associated algorithms. All of which when used together, present

alternative solutions to the problems of sorting and searching. The three-

dimensional torus/mesh data structure (3DTDS) offers several corresponding

operations that provide users with the opportunity to manipulate data in an

efficient manner. More importantly sorting and searching can be done with

minimal time complexities of 0(1) and 0(log(111)) respectively. Additionally, it

offers three main searching options: equality, minimum and maximum, and a

range search. The chain-sort algorithm sorts random integers existing in a

3DTDS-like structure in O(S+N), where S is an arbitrary constant. It is modeled

from the chain-tree implementation of the 3DTDS presented in section 5.2, which

utilizes a conditional REPO approach.

Furthermore, a parallel algorithm proposed for a distributed shared memory

environment was presented. The algorithm was influenced by the chain-tree
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implementation of the 3DTD8. A master/slave processor configuration is

assumed. Empirical analysis of the parallel algorithm shows a linear time

performance on N/p , where P is the number processors used.

All solutions presented in this research offer a different perspective on the

historical problems of sorting and searching. Future work in this particular area

can be directed towards the creation of a different plane tree structure. In all

algorithms presented in previous sections, the plane tree component (binary tree)

is used most often and plays a vital role to the faster execution of operations.

Although the solutions presented provide efficient accesses on the plane tree, an

introduction of a constant time search structure would prove to be beneficial. If

an optimal structure is used, the search and sort time could be minimized more.

We note that one must be extremely careful when exploring a constant time

search structure. A hash table solution was researched, however a series of

problems arose. First, the number of planes virtually allocated per input is not

known, thus varying with input. As a result a table that is too large or too small

can yield search and allocation and re-computation problems respectively. The

severity of these problems would depend primarily on the collision resolution

scheme used. Secondly, the hash function used must be chosen carefully as to

minimize the probability of a worst case insertion of O(N). Finally, if problems

one and two are alleviated, in the event of the sort operation, the values in the

hash table must be sorted. Consequently, the initial sorting problem has

therefore resurfaced.
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An effort to minimize the search time on the plane tree component used in the

chain-tree implementation of the 3DTDS was presented in the form of the splay

parameter. To reiterate, the splay parameter utilized in the Insert routine serves

as a signal. This signal notifies Insert when to execute a splay operation on a

newly inserted node. The parameter is based on the depth of the newly inserted

plane tree node and the ideal height of the plane tree. Let the splay parameter =

k. If the newly inserted node is k times the ideal height of the plane tree, a splay

operation on the inserted node is executed. To compute the ideal height, the

logarithmic value of the total number of nodes in the plane tree is computed.

This parameter is used in an effort avoid a worst case insertion of O(N) and

therefore a worst case search of O(N). By eliminating these worse case

scenarios the time to build the 3DTDS is minimized as well. Splay parameters

tested ranged from 1.0 to 4.0. Research concludes that a splay parameter of 2.0

is the most optimal. Using two as a value allows the build time of the 3DTDS to

be at a minimum. This value was expected because one would not want to call

splay operations too often as the time/overhead to execute the operations will

eventually outweigh the time to build the structure (Le. binary tree). This situation

occurs if the splay parameter is too small. On the other hand in choosing a

larger value for the splay parameter, a great amount of the build time will be used

searching for an appropriate position to insert nodes as the time to search will

certainly increase converging on a time complexity of O(N),

55

"

II,
,,'

,~

'\



References

[1] Banerjee, Dhrit, Mukherhee, Biswanth and Ramamurthy S. "The
Multidimensional Torus: Analysis of Average Hop Distance and Application
as a Multihop Lightwave Network." IEEE Transactions on Parallel and
Distributing Systems. 1994.

[2] Bera, Asimava, Das, and Nabanita. "Performance Analysis of Dynamic
Location Updation Strategies for Mobile Users." IEEE Transactions or
Parallel and Distributed Systems. 2000.

[3] Chandler, J. P.. Personal Communication. Nov. 2000.

[4] Chen, Chienhua and Dharma P. Agrawal. "A Class of Hierarchical Network
for VLSIJWSI Based Multicomputers." IEEE Transactions on Computers.
(1991): 267-272.

[5] Chen, Yen-Cheng, and Chen, Wen-Tsuen. "Constant Time Sorting on
Reconfigurable Meshes." IEEE Transactions on Computers. 43.6 June 1994.

[6] Cortes A., Ripoll A., Senar M.A., and Luque E. "Performance Comparison of
Dynamic Load-Balancing Strategies for Distributed Computing." Proceeding
of the 32nd Hawaii International Conference on System Sciences. 1999.

[7] Dandamudi, Sivarama, and Derek L. Eager. " Hierarchical Interconnection
Networks for Multicomputer Systems." IEEE Transactions on Computers.
39.6 (1990) : 786-797.

[8] Foster, L. S.. C by Discovery. 2nd ed. EI Granade, CA: Scott/Jones
Publishing, 1994.

[9] Gu, Qian Ping and Gu, Jun. "Algorithms and Average Time Bounds of Sorting
on a Mesh-Connected Computer." IEEE Transactions on Parallel and
Distributed Systems. 5.3, Mar. 1994.

[10] Hwang, Kai. Advanced Computer Architecture: Parallelism, Scalability,
Programmability. New York: McGraw-Hili, 1993.

[11] Knuth, Donald E. The Art of Computer Programming-Sorting and Searching.
2nd ed. Vol. 3, California: Addison-Wesley, 1998.

[12] Lin, Rong and Olariu, Stephen. "Efficient VLSI Architectures for Columnsort."
IEEE Transactions on Very Large Scale Integration Systems. 7.1, March
1999. -

56

..~
I

'1

"

I"

"

:'1



[13] Nezu, Nobuyuki, and Lu, Huizhu. "Incremental Construction of Torus
Networks." ACM Symposium on Applied Computing. Mar. 1998.

[14] Olariu, S., Schwing J. L., and Zhang J. "Integer Sorting in 0(1) Time on an
NxN Reconfigurable Mesh." IEEE Transactions on Computers. 1992.

[15] Osterloh, Andre. "Sorting on the OTIS-Mesh." IEEE Transactions on
Computers. 2000.

[16] Pittelli, Frank, and Smitley, David. "Analysis of a 3D Toriodal Network for a
Shared Memory Architecture." IEEE Transactions on Computers. 1988.

[17] Qiao, Wenjian and Ni, Lionel, "Efficient Processor Allocation of 3D Tori",
IEEE Transactions on Parallel and Distributing Systems. 1995.

[18] Rawlins, Gregory. Compared to What? An Introduction to the Analysis of
Algorithms. New York, NY: Computer Science Press, 1992.

[19] Rio, Miguel, Joaquim Macedo and Vasco Freitas. "Cooperative Agents in
Distributed Indexing and Retrieval." IEEE International Conference on
Intelligent Processing Systems. Beigjing, China, Oct. 1997.

[20] Robertazzi, Thomas. "Toroidal Networks." IEEE Communication Magazine,
26.6 June 1988.

[21 JScherson, Issac D., and Abdou S. Youssef. interconnection Networks for
High Performance Parallel Computers. California: IEEE Computer Society,
1994.

[22] Tucker, Allen B., Jr. , The Computer Science and Engineering Handbook.
CRC Boca Raton, Florida: Press, Inc., 1997.

[23] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C. 2nd ed.
Menlo Park, CA: Addison-Wesley Publishing Company, 1997.

57



Appendix A.

Chain-sort Algorithm (R=2, L=6, 8=12)

The following diagrams further describe the chain-sort algorithm. Furthermore

they can be used as an elaboration of the 3DTD8. The 3DTDS viewed in the

below figures has a plane template containing two regions with each region

consisting of six lots, thus a plane size of twelve.

Plane Template

,..---------._-----------,

Plane Tree

• p=o

o

o

2

2

3

3

4

4

5

5

p=l

Figure 25.a. Initial state of Plane Tree and Plane Template: Both are
EMPTY
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Plane Template

Plane Tree o 1 2 3 J 5

p=o

Figure 25.c. Inserting key 5
n(5) = 5/12 = 0
/..(5) = (5 - (0 * 12))/2= 2
p(5) =5%2 =1
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Figure 2S.d. Inserting key 5
n(352) = 352/12 = 29
1.(352) = (352 - (29 '" 12»/2= 2
p(352) = 352%2 = 0

Figure 2S.e. Inserting key 6000
n(6000) = 6000/12 = 500
).(6000) = (6000 - (500 '" 12»/2= 0
p(6000) = 6000%2 = 0
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349

Figure 25.g. Inserting key 349
n(349) =349/12 =29
).(349) = (349 - (29 * 12»12= 0
p(349) =349%2 = 1
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Figure 25.h. Inserting key 451
n(451) =451/12 = 37
1.(451) = (451 - (37 * 12»/2= 3
p(451)=451%2=1

Plane Template

Plane Tree
o 2 3 4 5

Figure 2S.i. Sorted Numbers: 5, 81, 349, 352, 409, 451, 6000
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Appendix B.

Algorithm Implementations

/***************************************************************

procedure finds the set of values in a specific range. parameters
are the source value, destination value, and root of plane tree.
the sort operation must be called before doing this operation
the difference between the destination value and source value must
be greater than or equal to zero
****************************************************************/

int Find_range(int source, int destination, pt_nodeptr root)
(

int begin-plane,end-plane;
pt_nodeptr curr=root;
struct que_tree head;
ptrtype node;
head. rear=head. front=NULL;

begin-plane=source/NUM_LOTS; I*identifies plane of source*/
end-plane=destination/NUM_LOTS; /*identifies plane of destination*/
IIprintf("begin: %d end: %d \n",begin-plane,end-plane);

enque-ptree(&head,curr) ; /*enqueue head of tree*1

/*loop to do a level order traversal of lot tree*/
while(head.front != NULL)
(

/*checks to see if node has a right child*/
if((head.front->right != NULL)&&(head.front->plane <= begin-plane))

(

/*i£ right child present enqueue*/
enque-ptree(&head,head.fronl->right) ;

}

/*checks to see if node has a left child*/
else if((head.front->left != NULL)&&(head.front->plane >= end-plane))

{

/*if left child present enqueue*/
enque-ptree(&head,head.front->left};

}

else
{

if (head.front->right!= NULL} /*if right child present enqueue*/
enque-ptree(&head,head.front->right} ;

if(head.front->left != NULL) /*if left child present enqueue*/
enque-ptree(&head,head.front->leftl;

}

curr=deque-ptree(&head) /*dequeue node at front of queue*/
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/*condition to determine if plane node contains values in range*/
if((curr->plane >= begin-plane)&&(curr->plane <= end-plane))

{

while(curr->queue.front != NULL)
{

if((curr->queue.front->value >= source) &&(curr­
>queue.front->value <= destination))

printf (n%d\nn, curr->queue. front->value);

curr->queue.front=curr->queue.front->next;

} /*end while loop*/
}/*end procedure*/

/***************************************************

procedure accepts a node value and the head of the lot
tree (binary tree) as parameters. Searches for the proper
insertion location. Once a location is found, space
is allocated for a new node and a copy of the parameter
value is made. The newly allocated node is inserted in
the tree. procedure is NON_RECURSIVE
*****************************************************/

ptrtype insert_into-p1anetemplate(struct nodel newnode, ptrtype *head)
(

ptrtype curr,temp;
temp=*head;

/*call to create a new node*/
curr=create_node-plane_template(newnode);

/*condition to check if tree is empty*/
if(*head ==NULL)

{

*head=curr;
return curr;

}/*end if*/

/*loop traverses tree to find proper position for incoming node*/
while(temp != NULL)

(

/*incoming value is less than equal to current tree value*/
if (newnode.plane <= temp->plane)

(

/*position located to left of current tree node*/
if(temp->left ==NULL)

{

temp->left=curr; /*assign value*/
break;

}

else
temp=temp->left; /*keep traversing left*/

/*incoming value is greater than current tree value*/
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else if(newnode.plane > temp->plane)
{

I*position located to right of current tree node*1
if(temp->right ==NULL)

{

temp->right=curr; I*assign value*/
break;

)

else
temp=temp->right; /*keep traversing right*/

)

)/*end while loop*/

return curr;

)/* end procedure*1

/**************~************************************

procedure accepts a node value and the head of the
plane tree as parameters. Searches for the proper
insertion location. Once a location is found, space
is allocated for a new node and a copy of the parameter
value is made. THe newly allocated node is inserted in
the tree. procedure is NON_RECURSIVE
*****************************************************/

pt_nodeptr iosert_ioto-planetree(struct plane_tree_node newnode,
pt_nodeptr *headl
(

pt_nodeptr curr,temp;
int depth=O,IDEAL_HT=O;

temp=*head; I*assign root of tree*1

I*increment the count of number of keys in tree*1
PLANETREE__CT++ ;

I*condition to check if tree is empty*1
if(*head ==NULL)

{

/*call to create a new node*1

curr=create_node-plane_tree(newnode);
curr->parent=NULL;
*head=curr;
return curr;

}/*end if*/

/*loop traverses tree to find proper position for incoming node*/
while(temp != NULL)

{

depth++; /*gets depth of currently inserted node*1

I*incoming value is less than equal to current tree value*1
if(newnode.plane < temp->plane)

{
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/*position located to left of current tree node*/
if(temp->left ==NULL)
{

/*call to create a new node*/
curr=create_node-plane_tree(newnode) ;
curr->parent=temp;
temp->left=curr; /*assign value*/
break;

)

else
temp=temp->left; /*keep traversing left*/

/*incoming value is greater than current tree value*/
else if(newnode.plane > temp->plane)

{
/*position located to right of current tree node*/
if(temp->right ==NULL)
{

/*call to create a new node*/
curr=create_node-plane_tree(newnode);
curr->parent=temp;
temp->right=curr; /*assign value*/
break;

}
else

temp=temp->right;
}
else if(newnode.plane

return temp;
}

}/*end while loop*/

temp->plane)

/*keep traversing right*/

/*computes ideal height of tree*/
IDEAL_HT=(int) (loglO(PLANETREE_CT)/log10(2));

/*if depth of newly inserted node> ideal tree height, SPLAY*/
if((depth> IDEAL_HT*SPLAY_PARAM)&&(SPLAY == 1))

{
splay(&curr);
*head=curr;

return curr;

}/* end procedure*/

/*call to splay currently inserted node*/

/**************************************+

This routine is used to disconnect a
node from its plane list.
*****************************************/

int disconnect(ptrtype node)
{

pt_nodeptr temp;
pLrtype curr=node;
if (curr->prev == ~ULL)
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temp = Find_equal i ty-.planetree (curr->plane, tree_root) ;
temp->queue.front=curr->next;
/*if(temp->queue.front == NULL)

{ ) * /
}

else if(curr->prev != NULL)
curr->prev->next=curr->nexc;

if(curr->next != NULL)
curr->next->prev=curr->prev;

1******************************************

The delete algorithm deletes a node from
a binary tree. Calls various procedures
according to case indication.
*******************************************/

int delete(ptrtype *root, int value)
(

ptrtype prev=NULL,curr,treeroot=*root,newnode;
int left=O;
curr=*root;
while (curr!=NULL)

(

if (value < curr->value)
{

prev=curr;
curr=curr->left;

1
else if(value > curr->value)
(

prev=curr;
curr=curr->right;

1
else

break;

if(curr == root)
(

/* node FOUND*/

/* delete node is root of tree*/

disconnect (curr) ;
root=root_delete(curr) ;
if(*root != NULL)
reconnect (*root) ;
return 0;

/*call to disconnect */
/*call to root_delete ./

/*call to reconnect*/

if(curr != NULL)
{

/*node has either one or two children·/

disconnect (curr) ; /*call to disconnect */

/*node has two children·/
if(curr->left != NULL && curr->right != NULL)
{

newnode=deletemin(curr->right,&left) ;
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newnode->left=curr->left;
if (left == 1)

newnode->right=curr->right;

*curr=*newnode;
reconnect (curr) ; /*call to reconnect*/

)

else /*node has one child*/
delete_one (curr,prev) ;

)/*end if*/
else

printf ("NOT FOUND\n");
}/*end procedure*/

/****************************************

This procedure is used to connect a node
to its plane list.
******~**********************************/

int reconnect (ptrtype node)
{

ptrtype curr=node;
if(curr->prev != NULL)

curr->prev->next=curr;
if(curr->next != NULL)

curr->next->prev=curr;

/***********************************************************

procedure to find a node value the plane tree. function
returns a pointer to the node if found and NULL otherwise
procedure takes the integer value being searched and the
root of the binary tree. procedure is NON-RECURSIVE
***********************************************************/

pt_Dodeptr Find_equality-planetree(int value,pt_nodeptr temp)
{

pt_nodeptr head=temp;

/*loop to traverse tree for designated value*/while(head !=NULL)
(

if(value < head->plane)
head=head->left;

else if(value > head->plane)
head=head->right;

else if(value == head->plane)
return head;

/*traverse right*/

/*traverse right*/

/*value found*/

if(head == NULL)
return NULL;

/*value not found*/
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1*******************************************************************
procedure to find a node value the plane template. function
returns a pointer to the node if found and NULL otherwise
procedure takes the integer value being searched and the
root of the binary tree. procedure is NON-RECURSIVE
***********************************************************/

ptrtype Find_equality_via_lot(int value,ptrtype temp)
{

ptrtype head=tempi

while(head !=NULL)
{

!*loop to traverse tree for designated value*!

if(value < head->plane)
head=head->left;

else if(value > head->plane)
head=head->right;

else if(value == head->plane)
return head;

!*traverse right*/

!*traverse right*/

!*value found*!

if(head == NULL)
return NULL;

!*value not found*!

1*****************************************************

procedure to return the minimum value in the chaintree
structure. procedure takes root of plane tree as
parameter
******************************************************/

int Find_Min-p1ane(pt_nodeptr root)
{

int value;
pt_nodeptr head=root;

if (head == NULL)
{

printfl"EMPTY\n") ;
return;

while(head != NULL)
{

if(head->left == NULL)
{

iflhead->queue.front != NULL)
return(head->queue.front->plane)

}

head=head->left;
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/*********************~*******************************

procedure to return the maximum value in the chaintree
structure. procedure takes root of plane tree as
parameter
******************************************************/

int Find_Max-p1ane(pt_nodeptr root)
{

int value;
pt_nodeptr head=root;

if (head == NULL)
{

printf (IEMPTY\n") ;
return;

while(head != NULL)
{

if(head->right == NULL)
{

if(head->queue.rear != NULL)
return (head->queue. rear->plane)

}

head=head->right;

/*****************************************************

This procedure returns the first value greater than
a specific key in a plane.
*****************************************************/

ptrtype Find_next(int value,ptrtype temp)
(

ptrtype head=temp;

/*loop to traverse tree for designated value*/while(head !=NULL)
(

if (value < head->planeJ
head=head->left;

else if(value > head->plane)
head=head->right;

else if (value == head->plane)
return (head->next);

/*traverse right*/

/*traverse right*/

/*value found*/

if (head == NULL)
return NULL;

/*value not found*/
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/*****************************************************

This procedure returns the first value less than
a specific key in a plane.
*****************************************************/

ptrtype Find-previous(int value,ptrtype temp)
{

ptrtype head=temp;

I*loop to traverse tree for designated value*1while(head !=NULL)
{

if(value < head->plane)
head=head->left;

else if(value > head->plane)
head=head->right;

else if(value == head->plane)
return (head->prev);

I*traverse right*1

I*traverse right*1

I *value found* I

if(head == NULL)
return NULL;

I*value not found*1

/*************************************************k***

This procedure is a component of the insert procedure
that establishes the connection to the plane list.
*****************************************************/

int list_connect (ptrtype node. pt_nodeptr *head)
{

ptrtype curr,prev,temp=node;
int FLAG=O;
curr=(*head)->queue.front;
prev=NULL;

if (curr == NULL)
{

(*head)->queue.front=(*head)->queue.rear=temp;
temp->prev=NULL;II(*head}->queue.front;
return 0;

while((curr != NULL)&&(temp->value > curr->value»)
(

prev=curr;
curr=curr->next;

if(curr == NULL)
{

prev->next=temp;
(*head)->queue.rear=temp;
temp->prev=(*head)->queue.rear;

}

else if(curr == (*head)->queue.front)
{

temp->prev=NULL;
temp->next=curr;
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curr->prev=temp;
curr=temp;

(*head)->queue.front=curr;
)

else
{

temp->next=curr;
curr->prev=temp;
temp->prev=prev;
prev->next=temp;

}

/*********************************~********************~**

procedure does a level order traversal of a binary tree.
procedure takes address of the root of a binary tree as
a parameter
*************************************************************/

int Level_traversal(ptrtype *root)
(

struct que head;
ptrtype curr=*root,nextnode=*root;
pt_nodeptr temp;
head.front=head.rear=NULL;

enque (&head, curr) ;
while(head.front != NULL)

(

if(head.front->right != NULL)
enque(&head,head.front->right);

if(head.front->left != NULL)
enque(&head,head.front->left) ;

curr=deque(&head) ;
temp=(pt_nodeptr) curr->pad;

/*decrement COUNT NOTE: COUNT is number of values in D.Structure*/
COUNT--;
if(curr != NULL)

(

nextnode=temp->queue.rear;
curr->next=NULL;

/*call to Make_link to link dequed node to respective plane*/
Make_link(curr,&temp) ;
if(temp->queue.front == curr)

curr->prev=temp->queue.front;
else

curr->prev=nextnode;
}

}/*end while (curr !=NULL*/
}/*end procedure
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/**********************************************

function prints values in the plane in ascending
order. The values are held in a queue within a
plane_tree node. function takes the value of the
front of a queue held within a planeTree node
**********************************************/

priot_min-p1ane_list(ptrtype curr)
(

while(curr t= NULL)
{

fprintf (op, "%u\n", ((curr->plane*NUM_LOTS) +curr->lot})
curr=curr->next; /*gets next value*/

/******************************************************

procedure to traverse the plane tree to print the values
of each plane. procedure is passed the root of the plane
tree. procedure call print_rnin-plane_list to print all values
of a specific plane. procedure is RECURSIVE-INORDER
****************************************************** *1
priot_mio_sorted-Plane(pt_nodeptr curr)
(

if(curr != NULL)
(

print_sorted-plane(curr->left)
if(curr->queue.front != NULL}

print-plane_list(curr->queue.front)
print_sorted-plane(curr->right} ;

/**********************************************

function prints values in the plane in decending
order. The values are held in a queue within a
plane_tree node. function takes the value of the
front of a queue held within a planeTree node
**********************************************/

priot_max-plane_list(ptrtype curr}
{

while(curr != NULL)
{

fprintf(op, "%u\n" , ((curr->plane*NUM_LOTS}+curr->lot})
curr=curr->prev; /*gets next value*/
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/************************************************~*****

procedure to traverse the plane tree to print the values
of each plane. procedure is passed the root of the plane
tree. procedure call print_max-plane_list to print all values
of a specific plane.
*******************************************************/

print_max_sorted-p1ane(pt_nodeptr curr)
{

if(curr != NULL}
{

print_sorted-plane(curr->right) ;
if(curr->queue.rear != NULL)

print-plane_list(curr->queue.rear) ;
print_sorted-plane(curr->left} ;
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Lot

Lot tree

Lower bound

Maximum element

Minimum element

Plane

Plane list

Plane size

Appendix C.

Glossary
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A storage location residing
within a 3DTDS region, which
hold values (keys).

A binary tree residing within a
lot A which contain values
(keys) that map to that specific
lot A but may map to a different
plane n.

The lower bound of a plane 1tj,

denoted by Ib(1tt), is the
smallest possible value that
plane 1tj can contain.

The largest value (key) resident
within a plane of a 3DTDS.

The smallest value (key)
resident within a plane of a
3DTDS.

A component of the 3DTDS,
which consists of a set of
regions and lots.

A component of the 3DTDS
implemented as a double ended
queue, which contains are
values currently resident in the
3DTDS.

The total number of values
(keys) a pre-defined plane of a
3DTDS can contain, denoted by
S.



Plane template

Plane tree

Region

Reserved Positioning (REPO)

Upper bound
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An initially allocated plane
which is used as a template for
planes created in the future ­
usually used in the chain-tree
implementation of the 30TOS.

A binary tree (splay tree) which
contains previously allocated
30TDS planes.

One of two components of a
3DTOS plane - contains a set
of lots or storage locations.

An approach used in computer
science which allows unique
key values (integers) to be
associated with a reserved
location, usually within a three
dimensional torus data structure
(30TOS) like structure.

The upper bound of a pl,ane 1tj,

denoted by ub(1Ij), is the largest
possible value that plane 1tt can
contain.
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