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PREFACE

This thesis is devoted to a study of the farthest-point distance function. For a

subset E of Rn
, we define the farthest-point distance function dE(x) as the supremum of

distances between x E Rn and the points of E. Being in fact the Hausdorff distance

between a point and a fixed set, dE(x) measures the distance from a point to the "whole"

E, comparing to the usual (nearest-point) distance function, which takes into account only

about the nearest points.

In Chapter I, we make a survey of the history of the question. We present the

main results on the farthest-point distance functions. The topic of the farthest points was

first studied from the viewpoint of the uniqueness of the farthest point. In Chapter II, we

give an elementary proof of the fact that the uniqueness of the farthest point on an open

set is equivalent to the differentiability of dE(x). After that, we deduce a sufficient

condition for C k -smoothness of dE(x) on an open set.

Recently, Pritsker [16] showed that in R 2 the logarithm of the farthest-point

distance function is subharmonic and is equal to the logarithmic potential of a unique

probability measure ()1; , and generalized this result to higher dimensions. In the third

Chapter, we will talk about the structure of ()E for polygonal E. In this case, the support

of cr£ coincides with the farthest-point Voronoi diagram and is contained in not more

than 2n-3 straight lines.
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Pritsker and Laugesen [12] conjecture that (J"E(E) s ~ for any compact E c c. In

Chapter IV, we prove their conjecture in the case E is a rhombus.

Finally, we will consider the conjugate of de(x) , which is convex as a supremum

of a family of convex functions. We will see that the conjugate of de(x) is easily

constructed from the support function of E and get some consequences of this result.
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CHAPTER I

INTRODUCTION

General Information

Definition 1.1 Let E be a subset of n-dimensional Euclidean space R". Function

dE (x) =sup Ix - y I is called the farthest-point distance function of E. We call Z E E the
yeE

farthest point ofE from x E W (or antiproj ection ofx on E) if Ix - Z 1= dE (x) .

In case E c R" is unbounded, dE(x) is infinite everywhere. If E is not closed, we

can easily see that dE =dE . Also, dE =dconvE as Laugesen and Pritsker showed in [12].

Hence, it makes sense to think of dE only for compact convex E.

Laugesen and Pritsker show in [12] that E = nBdr.{x)(x) as well. This means that
xeR"

the farthest-point distance function completely determines compact convex E. Thus, the

mapping E ---+ dE gives an interesting one-to-one correspondence between the compact

convex sets in R" and objects of quite a different type, certain functions on R". This

correspondence is similar to the one between closed convex sets and their support

functions, and we will see in Chapter V that this similarity is not casual.

after maximizing over z. That means dE is Lipschitzian with constant 1, as we can

interchange XI and X2 :



Throughout this paper we will denote the ball with radius r and center x by B,(x)

and its boundary by S, (x).

umber of Farthest Points

One of the initial steps in the study of the farthest points was done, seemingly, by

Motzkin, Straus and Valentine [13]. They considered the number of the farthest points,

and tried to answer a question, when there exists a unique farthest point of E from any

point of space. Most likely, they were inspired by 1935 Motzkin's work on the nearest

points [14]. Motzkin's result states that any point of R2 has a unique nearest point of

closed E if and only if E is convex. As the farthest-point distance function is closely

related to the usual ("nearest-point") distance between the point and a set, we start our

survey of the history with the description of the results on the usual distance.

Definition 1.2 Let E ~ Rn
. Function 6'e(x) =inf Ix- y I is called the distance

ye£

function of E, and we say Z E E is the nearest point of E for x ERn (or projection of x on

Notions of distance functions d£ and 0E' farthest and nearest point can be

naturally defined in arbitrary metric spaces.

Definition 1.3 Let X be a normed linear space. A subset E ~ X IS called a

Chebyshev set if for any x E X there exists unique nearest point of E.

Motzkin's theorem states that a closed set E ~ R2 is a Chebyshev set if and only

if E is convex. It was extended to R" by Jessen [9] in 1940. Later such authors as

Busemann, Klee, Bronsted and Valentine considered more general spaces and tried to
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find the relationship between certain geometric properties of the u.nit ball and Ch bysh v

sets. Perhaps the nicest generalization of Motzkin's theorem belong to Efimov and

Stechkin [3].

Definition 1.4 A convex body E in the topological linear space X is smooth if at

each of its boundary points there is a unique support hyperplane to E.

Definition 1.5 A convex body E in the topological linear space X is strictly

convex if E contains no straight line segments in its boundary.

Theorem 1.1 (Efimov, Stechkin) A finite dimensional Banach space X is strictly

convex and smooth if and only if Chebyshev sets are all the closed convex subsets ofX.

The infinite dimensional case turns out to be more delicate, and wi II not be

considered in this thesis.

For the farthest point case, the situation seems to be quite simpler. It was stated in

[13], bu.t not proved, that if any point of Rn has a unique farthest point of E then E is a

singleton. One can find proof of it in Valentine's book "Convex sets" ([19, Theorem

7.11]).

Theorem 1.2 (Motzkin, Strauss and Valentine) Let E be a set in a Minkowski

space Ln whose unit ball is strictly convex. Then for each point x E Ln there exists a

unique farthest point of E if and only if E consists of a single point.

If the property of uniqueness of the nearest or farthest point does not hold for the

entire space, we may still ask ourselves where it does hold.

Definition 1.6 The set E ~ R n is said to be of positive reach if there is a c> 0 so

that every x with c5E (x) < c has a unique nearest point in E.
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Federer developed quite an accurate treatment of sets of positive reach in hi

article "Curvature measures" [6]. The following theorem is a consequence of his results.

Theorem 1.3 (Federer) Let E ~ R n
+

1 be the n-dimensional C 2 manifold. Then E

is of positive reach.

Krantz and Parks [11] give an example of a C2
-

s curve in R2 which does not have

positive reach.

2 2

In the farthest point case, such an analytic curve as ellipse x
2
+; =1 in R2 with

a b

eccentricity e > .J2 /2 does not satisfy the condition of having the unique farthest point at

x =(0, ±b), for example.

Jessen was the first to show the interrelation between the uniqueness of farthest

point and the centers of osculating spheres [9].

Theorem 1.4 (Jessen) In a Euclidean space, every point of a complement of a

compact convex set E has a unique farthest point of E if and only if E has interior points

and contains the centers of all osculating spheres of its boundary.

His results were enhanced by Motzkin, Straus and Valentine [13] in planar case.

They extend the generalized notions of curvature described by Bonnesen and Fenchel [2]

in the following way. Choose a point x E C , where C is a closed convex curve, together

with a line of support L(x). The circle tangent to L(x) at x and passing through a point

pEe \ x has its center z(p) on the normal N(x) to L(x) at x. Establish an order on N(x) in

terms of the distance from x and let Es (x,f3(x)) = sup z(p), E,(x,f3(x)) = tnf z(p),
pep(x)\x pep(x)\x

where f3(x) is an arc of C containing x. Four types of centers of curvature are defined as



follows:

Defillition 1. 7 The sets

Es =UE/x), Eo =U Eo (x), Ej =UEj(x) and Ej =U E,(x)
xeC xeC xeC xeC

are respectively called the superior, the outer, the inner and the inferior evo/utes .

Theorem 1.4 ([13, Theorem 6]) Let E be a compact convex set in R2 with

boundary C. Then z has a unique farthest point of E if z (j'; Es(x) Vx E C and z has more

then one farthest points of E if z = Es(x), z:t:- Eo (x) for some x E C .

We should note that a lot of researchers studied the question of the uniqueness of

the farthest point on the closed convex surfaces (boundaries of the open bounded convex

sets) in R 3 with respect to the intrinsic metric on the surface (see, for example, [22]).

Unfortunately, thi.s exciting and fruitful topic is going beyond our tudies.

Differentiability of the Distance Function

The study of the differentiability of the nearest-point distance function was

initiated by Federer [6]. Again, we pick just one result we are most interested in, from his

extensive and thorough work.

Theorem 1.5 ([6, Theorem 4.8]) Let E be a nonempty closed subset of RN and

let U be the set of all points which have the unique nearest point of E. Then 0E(X) i



continuously differentiable on Int(U) \ E and gradoE(x) =x-c;(x) , where c;(x) denote
°E(X)

the nearest point of E from x.

In 1980 Fitzpatrick proved very general theorem on the differentiability of nearest

and farthest-point distance functions [7, Corollary 3.6].

Theorem 1. 6 (Fitzpatrick) Let E be a closed subset of a Banach space X such

that the norm of X is both Frechet differentiable and uniformly Gateaux differentiable and

the nonn of X· is Frechet differentiable.

(a) The following are equivalent for a point x of X \ E :

(i) 0E is Frechet differentiable at x;

(ii) 0E is Gateaux differentiable atx and lido/:, (x)11 =1;

(iii) the metric projection onto E is continuous at x.

(b) IfE is bounded and x EX, the following are equivalent:

(i) dE is Frechet differentiable at x;

(it) dE is Gateaux differentiable atx and Ild(d" (x»11 =1;

(iii) the metric antiprojection onto E is continuous at x.

Fitzpatrick's proof extensively uses the notion of Clarke subgradient. In the next

chapter, we will give an elementary proof of a result similar to Federer's theorem 1.5 for

Extra differentiability of the distance function was first studied by Serrin. He

proved that if E c Rn
+ ' is n-dimensional Ck manifold with k ~ 2 , then, near E, 0E is of

class Ck [18]. Gilbarg and Trudinger strengthen Serrin's result in [5 J.
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Theorem 1.7 ([5; Lemma 14.16]) Let E be a bounded domain inR" having

non-empty boundary 8E E C*, k ~ 2. Then there exists j.1. > a such that OaE(x) E C* on

Finally, Krantz and Parks [11], followed by Foote [8], come to the following

formulation.

Theorem 1.8 ([8, Theorem 1]) Let E ~ R" be a compact C* manifold with

k 2c 2. Then E has a neighborhood U so that (\ E Ck on U \ E .

Analogous result for the farthest-point distance function in planar case will be

proved in Chapter II.

Potential Theory of d£(x)

In 1994, Boyd was studying inequalities connecting a product of uniform norms

of polynomials on the unit circle with the norm of their product, and acquired an

interesting result about the farthest-point distance function in the polygonal ca e on the

plane [1].

Theorem 1.9 (Boyd) Let E ={c" ... ,cm }, m > I be a finite set ofcompJex numbers.

Then there is a probability measure 0'E whose support is contained in a finite number of

straightlines,suchthat log dE (x) = floglz-tldO'E(t) for all ZEC.

c

In 200 1 Pritsker generalized Boyd's result to arbitrary compact subset of the

complex plane. Before we state his result, we need to introduce the notion of

subharmonic function.

.,
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Definition 1.8 A function u(x) defined In a domain D s, Rn is aid to be

subharmonic if

a) -00 ~ u(x) < 00 in D

b) u(x) is upper semicontinuous in D

c) 'Vxo ED there exists '0 > a such that for every positive r < ro w have

I 2,,"/2
u(xo) ~ ----;;:I f u(x)da(x), where cn = r(n / 2) is the surface area of

cnr 5'("0)

the ball of radius one in R n
•

Definition 1.8 says that subharmonic functions are those functions u(x). which

are at most the mean value of u(x) on every small sphere around xo' at any Xo ED.

Riesz's Representation Theorem is one of the key facts in the theory of

subharmonic functions.

Theorem 1.10 (Riesz) Suppose u(x) is subharmonic and not identically -00, in a

domain D c R" , n ~ 2. Then there exists a unique Borel measure er in D such that for

any compact subset F s, D u(x) = fK(x - c;)da(c;) +h(x), where h(x) is harmonic in the
{;

{
IOgIX 1,

interior of D and K(x) = 2
-Ixl-m

,

n=2

n>2

Pritsker's theorem [16, Lemma 5.1] asserts that 10gdE(x) has a very specific

Riesz representation.



Theorem 1.11 (Pritsker) Let E ~ C be a compact set (not a single point). Then

logd£(x) is a subhannonic function in C and log dE (x) = flog Iz-t IdaE(t), z E C,
('

where a E is a positive unit Borel measure with unbounded support.

In the rest of this chapter E is a compact subset of a complex plane, different from

a single point.

The structure of measure a E is closely related to the differentiability propertie of

d£. It is known that if a subharmonic function is C2 -smooth, then its representing

measure is found as its Laplacian [10). Precisely, if d£ E C2 (U) for some domain U, then

a E can be calculated in U by

1 .
dal:(z) =-~(logdE(X+ly»dxdy, z =x+iy E U

- 2n -

Laugesen and Pritsker [J 2] explored further properties of the Riesz representation

of the distance function above.

Theorem 1.12 [12] The representing measure a E IS Ul1lque. The integral

flog Iz -t IdaE(t) converges absolutely.
c

The uniqueness of (JE implies that we have one more bijective correspondence:

between compact convex subsets of R 2 and certain measures on the complex plane.

The following theorems deal with the support of a E: when support does not

intersect an open set and when the support equals to the whole plane.
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Theorem 1.13 ([12, Theorem 2.1 (a)]) Let G be a domain in the plane. Then

log dE is harmonic in G, that is suppaEnG =0, if and only if there exists a point

Theorem 1.14 ([12, Theorem 2.1 (b)]) aE Eel => supp a E =C

Estimates on the distribution of a £ with respect to small and large disk are given

in the next theorem. B, (z) denotes the closed ball with radius r and center z.

Theorem 1.15 ([12, Theorem 2.2]) For each z E C

for all sufficiently small r > 0,

for all sufficiently large r > 0 .

1
Hence a£(B,(z)) ~ OCr) as r ~ 0, andaECB,(z» ~ 1-0(-) as r ~ 00.

r

Laugesen and Pritsker also study how much of a E can be captured within E

itself, and conjecture that a}; (E) ~..!:... This is proved in some special cases., 2

Theorem 1.16 ([ 12, Theorems 2.5 and 2.6])

(a)
1

If E is a polygon that can be inscribed in a circle then aeCE) ~"2 holds,

with equality if and only if E is a regular n-gon for some odd 11.

(b) If E is a C 2 -smooth convex body of constant width, then aliCE) =~.

The theorems presented in the preceding pages represent the main results on the

farthest-point distance function.
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CHAPTER II

DIFFERENTIABILITY OF THE FARTHEST-POINT DISTANCE FUNCTION

In this section we prove results on differentiability of the farthest-point distance

function analogous to the results on the usual distance, Everywhere in this chapter E is a

compact subset of R" ,

Theorem 2.1 If for some point x E Rfl there exist at least two farthest points of

E then dE(x) is not differentiable at x, Moreover, if E is convex and is not a singleton,

there always exists x E E with such a property,

Proof: Let a,bEE, dE(x)=llx-all=llx-b IFf. As rigid motions of Rfl do not

change the property of differentiability, we may think that

x =0, a =(r, 0, .. " 0), b =(r cOSlp, r sinlp, 0, ..., 0) where lp E (0,27Z'); basically we are

working in R2
,

We will prove now that the partial derivative of ds(x) with respect to the frrst

coordinate does not exist at 0, Consider c(L>x) = (L>X, 0, ,." 0), If L>X < 0, then it is clear

that a is the farthest point of B,(O) for c(L>x), and as E c B,(O), a is the farthest point

of E for c(L>x). The left partial derivative of dE(x) with respect to the first coordinate at

O 1 1, ds(c(L>x)-r l' r-L>x-r 1 1'h d" h d' ,equa s 1m = 1m =-, e correspon· mg ng t envat1ve
6X .... -{) L>X 6X....-{) L>X

satisfies

(d )
'(O)-}' dc·(c(L>x)-r }'. Ilc(L>x)-b II-r _ l' ~(rsinlp)2+ (rcoslp-L>x)2 -r _

s+ -lID ~lm -1m -
6X.... -Hl L>X 6X--+-Hl L>X .x--++O L>X

11



= lim -2rcostp.o.x + (.o.X)2 =~ lim -2r costp.o.x + {.o.xi =-costp>-l,
...:<-+-0 .o.x{Jer sin tp)2 + (rcostp-.o.X)2 +r) 2r .u....-o .0. X

which means that dE is not differentiable at x.

The proof of the rest of the theorem coincides with the proof of Motzkin, Strauss

and Valentine's theorem one can fmd in [20, Theorem 7.5.6]. Let E be a convex set and

not a singleton. Suppose that for every point x E E there is a unique antiprojection f{x)

ofx on E. We claim that f(x) is continuous on E. Suppose it is not. Let x" E E, x E E,

x" ---+ x but I f(x,,) - f(x) I~ £ > O. As E is compact, we may assume that

f(x,,) ---+ Y E E without loss of generality. Passing to the limit as n ---+ 00 m the

inequalities we get

Ix- y I~I x- f(x) 1~lx-y I, i.e. Ix- y 1=1 x- f{x) I. Hence, by uniqueness, y = f(x)

and I f(x,,)- f(x) 1---+ O. Contradiction.

By Brouwer's fixed point theorem, a continuous function f(x) mapping compact

convex set E to itself has a fixed point. As E is not a singleton, it is impossible.

Contradiction. Q.E.D.

Corollary 2.2 dE{x) is not differentiable on the whole R" for any compact E.

Corollary 2.3 The set of points, which have at least two farthest points of E, has

Lebesgue measure zero.

Proof: According to Rademacher's theorem, Lipschitzian function dE is

differentiable almost everywhere. By the preceding theorem, it means that for almost all

X E R" , there exists a unique farthest point of E from x. Q.E.D.

A result on the nearest points, similar to Corollary 2.3, was obtained by Erdos [4].

12



Theorem 2.4 Let U be an open subset of Rn and suppose that every point

X E U has a unique farthest point of E, where E is not a singleton. Then dE(x) is

continuously differentiable on U and grad dE (x) =x - .r(x) , where .r(x) denotes the
de(x)

farthest point of E from x E U .

Proof: In the same way as in proof of Theorem 2.1, .r(x) is continuous on U,

Define a unit vector a =.1:- .r(x) directed from .r(x) to x. As for t > 0
dE (x)

conclude that x + at has unique farthest point of E and .r(x + at) = .r(x) , Thus, one-

sided directional derivative of dE (x) with respect to a equals

lim dE(x+ta) -de(x) =lim Ix+ta - I(x) I-I x- .r(x) I= lim Ita 1= 1
1->+0 t I-HO t I~+O I

Now suppose that dE is differentiable at x. As dE is Lipschitzian with con tant

1, anyone-sided directional derivative of d£(x) with respect to a unit vector h l1a

absolute value

I(grad dE(x),h) I~ Ilim d,Jx +/h) - dE(x)1 = lim IdE (x +/h) -dE (x) I~ lim Ith 1= 1
I~+O t i~+O I i +0 /

Hence, IgraddE(x)I~1. But (graddE(x),a) =1 , so gradd£(x)=a=x-.r(x) ,
dE (x)

Note that all functions on the right-hand side of the preceding equation are continuous on

U.

Now, we use Lemma 4.7 from [6], which says that if we have real valued

Lipschitzian function u(x) on open W c Rn
, and at points where u(x) is differentiable

13



au =g(x) for some g(x) E C(W), then au =g(x) everywhere 011 W. According to thatax ax

Lemma, dE(x) has continuous partial derivatives on U. Thus, dE(x) is continuously

differentiable on V , which finishes the proof of the theorem. Q.E.D.

Corollary 2.5 dE(x) is differentiable on an open set V c R" if and only if every

point x E V has a unique farthest point of E .

Theorem 2.6 Let E be a compact subset of R 2 with C k boundary, k ~ 2, U be

an open subset of R2 and suppose that

(a) Every x E V has a unique farthest point of E.

(b) There are no centers of curvature of aE in V

Proof: Let fez) denote the farthest point of E from Z E U. Consider arbitrary

point A E U. Choose coordinate system and parameterization of the boundary of E in

such a way that f(A) =0 and neighborhood of leA) in aE is given by

{(t, cp(t» I-r < I < r} for some positive r, cp E Ck
, q;(0) = 0 and cp '(0) = O.

Consider circle Sdr.<A)(A) with center A and radius dE(A). As

A-f(A).laE at f(A), i.e. A-f(A) J..(t,cp(t»'I,=o=(l,cp'(O» =(1,0) and therefore

A = (O,Yo) for some Yo E R.

Since SdE(A)(A) and aE have contact of the first order at 0 and aEcBddA)(A),

the curvature of aE at 0 is not greater than the curvature of Sdr.<A)(A) at 0, which equals

14



_1_· . Since A is not a center of curvature, we obtain strict inequality K < _1_, where K

IYo I IYo I

denotes the curvature of BE at O.

As we showed in the proof of Theorem 2.1, uniqueness of the farthest point

implies continuity of I in U. Therefore, there is some smaller neighborhood V ~ U uch

that I(A) E V, and for every (x,y) E V I«x,y» is given by (t(x,y),qJ(t(x,y») for

some -r < t(x,y) < r. As (t(x,Y),qJ(t(x,y») maximizes the function

then

~ [(t - X)2 + (qJ(t) - y l ]= 2 (t - x) + 2q/(t) (qJ(t) - y) =0

at t =t(x,y).

We will show now that the equation

F(x, y,t) =2(t - x) + 2qJ'(t)( qJ(t) - y) =0

implicitly determines the function t =t(x,y) in some neighborhood of A. In fact,

F(x,y,t) is (k-1)-times continuously differentiable on Vx(-r,r) as qJECk(V),

F(A,O) =O. Thus, we only need to show that F;'(x,y,t) '# 0 at (A,O). As

we get

F;'(A,O) =1+ lp"(O) (lp(t) - Yo) + lp,2 (0) = I-lp"(O)yo
2

15
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By the well-known fonnula of differential geometry, the curvature of curve aCt)

1S gIven by
I[a',aW]1

1 ,

la'l'
[u, v] denoting the vector product of u and v. In our case

a(t) = (t,qJ(t» , therefore a'(t)=(1,qJ'(t»), aW(t) = (O,qJW(t» and a'(O) =(1,0),

I[(1,0), (0, qJ"(0)]1
a"(O) = (0, qJW(O» . Hence, the curvature of BE at 0 equals Ie = 1 =1 qJ"(O) I.

I(1,0) I'

1
Consequently, IqJW(O)yo 1> Ie - =1, and F,'(A,O):t:- 0 .

Ie

By the implicit function theorem, there exists unique C·-I function t =t(x,y) in

some neighborhood Wof A. By theorem 2.4, grad dE(z) = Z - fez) = z -fez) is a ratio of
dE(z) dE(z)

two continuously differentiable functions, thereby grad dE (z) E c l (W) , I.e.

d£(z) E C 2(W). Using the same expression for grad dE(z) again, we see that grad dE(z)

is a ratio of twice continuously differentiable functions, so that grad de(z) E C2(W) and

dE(z) E C 3(W). Applying this reasoning inductively, we obtain dE(z) E C k (W). As A is

an arbitrary point uf V, dE(z) E C· (U) . Q.E.D.

Corollary 2. 7 Under the conditions of Theorem 2.6, the representing measure a £

is given in Vby daE(z) = 2~ Li(log dE(x + iy»dxdy, z =x + iy E U .
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CHAPTER ill

COMPLEXITY OF (J"E

Boyd's Theorem 1.9 states that the support of (J"E consists of the finite number of

straight lines in the polygonal case all the plane. Actually, Boyd remarks in his paper [1]

that the number of these lines is not greater than n(n -1) , where n is the number of
2

vertices of polygon E. In this chapter we will show that the growth of the number of

straight lines that contain supp (J"E is, in fact, linear. In other terms, we will show that the

farthest point Voronoi diagram has linear complexity in the planar case.

Theorem 3.1 Let E be a polygon in C with vertices a"a2 ,oo,an , n> 2. Then

supp (J"E is a union of n rays and not more than n-3 line segments. There are at most

n - 2 points in C which lie in more than one such segment or ray.

Proof: Let us consider the "influence zones" of the vertices of E:

"
Ai ={z Eel Iz- a, I~I z- aj I V) 1::s; ) ::s; n} =n{Z Eel IZ - a, I~I z - aJ I}

J-I

Inasmuch {z E C liz - aJ::: Iz - a} I} IS a half-plane when i '* ), all AI are

intersections of finite number of half-planes. Thus, Ai are convex polyhedra. Let us now

show by a simple geometric argument that all A, are nonempty and unbounded. Take any

vertex a and find a support line I to E such that In E = a. Line I divides complex

plane in two parts, and E lies in one of those parts completely. Let m be a line through

a, which is perpendicular to l. Moving along m from a deeper to the half-plane

17
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containing E , we can clearly see that Ix - zl attains its maximum on E at a when we are

sufficiently far from a. Thus, A contains some ray. Consequently, all ~ are unbounded

convex polygons.

Note, that the set of polygons {A,} is called the farthest point Voronoi diagram of

the set {Qi } .

By Theorem 1.13 the measure a E can be supported only on the edges of Ai' Let

K be one of the infinite edges of polygon AI and b be the vertex of AI contained in K.

Surely, b is also contained in one of the other sides of AI' call it L. We claim that b is

contained in at least three different edges of some polygons Ai' In fact, one of the angles

between K and L is greater than 1r and thus cannot be an angle between two sides of

the convex polygon Ai'

Let V be the set of all vertices of Ai and S be the set of edges of all Ai' 1:5 i :5 n .

Given some set of edges Dr;;;. S, we call vertex v E V open In D if

:Jso ED: v E So and :Js E S : v E S & s \it D, i.e. there is some edge in D containing v, but

not all such edges are in D. Also, define V(D) = {v E V l:Js ED: v E s} be the set of

vertices incident to edges from D, and for set of vertices W ~ V let

SeW) ={s E S l:Jv E W :v E s} be the set of edges, incident to the vertice of W.

We will consequently add edges of convex polygons Ai to K, and look at some

characteristics of the set we will get.

First, let D, =S( {b}) . Suppose D, consists of m l segments and nl rays, besides

K. Added rays (together with K) separate complex plane into nl + I connected regions,

18



segments do not change the number of connected regions, so D, separates plane into

n, +1 connected regions. The total number of edges in D, is m\ + n\ + 1, and there are m,

open vertices in D, .

Next step, let D2 = S(V(D\)). Suppose D2 contains m2 segments and ~ rays in

addition to those in D,. Notice that one of the endpoints of any of the added segments

should not lie in any of the elements of D2 • If it does, then we have a cycle in D2 that

bounds some polyhedral region, which contradicts unboundedness of ~. Then D2

separates the plane in nl + n2 + 1 or more connected regions, the cardinality D2 of equals

ID2 1 =m2 + m, + n2 +~ + I, and there are m2 open vertices in D2 .

Now, we iterate this procedure till we get Dk =S (it is possible in finite number

•
of steps as U8A; is connected). On the last k-th step we add nk rays and mk =0

i~1

k

segments to Dk _,. The number of connected regions becomes n ~ In/ + 1, the number of
i-I

k k

open vertices is 0, and IDk I is equal to In; +I In; + 1.
;~, ;~I

Recall that there are at least three different edges containing each vertex v E V .

Hence, for every vertex v open in D;, we should add at least two edges on step i+ I,

which implies that mi +\ + n;+1 ~ 2m;. Summing the latter inequality through i =0 to k -1

(here we assume that mo = I represents the open vertex of the original ray K), we get

k k k k k k

In; ~Imi+2.Thus, 2n~In;+In;+2~In;+ Im;+4=ISI+3, i.e·ISI~2n-3.
;~I ;~, i~1 ;~I ;=, i=\

19



It is easy to see why the number of rays in S equals n: each ~ has two ray sides,

and each of them is counted twice.

Now we can estimate IV I. In fact, the number of the segments in S should be

greater or equal to 31 V I-n (minimum 3 rays or segments from each vertex minus total
2

number of rays and divided by two as each segment is counted twice). Concequendy,

31 VI-n
2n-3 ~ +n and IV I~ n-2. Q.E.D.

2
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CHAPTER IV

REPRESENTING MEASURE OF A RHOMBUS

I
Laugesen and Pritsker [12] conjecture that CJE(E) s 2" for any compact E c C.

They prove it for polygons that can be inscribed in a circle and C2 -smooth bodies of

constant width [12, Theorems 2.5 and 2.6]. In this short chapter, their conjecture is

proved in the case E is a rhombus.

Theorem 4.1 If E is a rhombus, tben (J'E (E) s ~ .

Proof: As we already know from the proof of the theorem 3.1, the representing

measure of any polygon is supported on the boundaries of "influence zones"

Ai = {z Eel Iz-G; I~I Z - G
J
I Vj 1s j s n}, a j denoting vertices of a polygon.

Suppose that t is an interior point of a boundary segment separating Aj from Aj (which,

of course, is a part of a perpendicular bisector to the segment alaj)' On thi segment,

choose local coordinates (~,TJ), with ~ parallel and TJ perpendicular to the boundary,

and so that TJ = 0 on that segment of a boundary. Then (~, 0) is equidistant from al and

aj' so a; =(c,d) and aj =(c,-d) , say, where d >0 without loss of generality. Boyd [1,

pA51] proved that the representing measure on the segment is found by

I d
CJE(~,TJ)d~dTJ =- 2 2 5(TJ)d~dTJ.

- lZ"(~-c) +d
5 denoting Dirac measure.

Similarity transformations of the plane do not change CJE(E) , as Laugesen and

Pritsker point out in [12]. Hence, we can think that vertices of our rhombus are QI =(-b,O),
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a2 =(0,1), a J =(b,O), and a4=(O,-1) for some b 0 < b:S; 1. Figure 1 illustrat how thr

perpendicular bisectors border the "influence zone' of G-2 • Figure 2 r presents th

structure of the support of (jE and the position of the ' influence zones in rhombic case.

The "influence zone" of a2

Figure 1

"Influence Zone" of a Vertex of
a Rhombus

... 1'\2 ,/
, ,

"'......... "Zone" of a
4

//

~"''''......... )/~:... ,
,---------<, ...

"Zone" ofa /' ... "Zo " f3 ' ...... ne 0 al, ..., ..., ..., ,, ...

,/ The "influence zone 't of a2 "'''''.

Figure 2

"Influence Zones" in a Rhombic
Case

In general, the measure (jE is supported on the horizontal segm nt KL and on

four rays LS, LR, KP and KQ (see Figure 3). On can analytically find that

K =lk__1 oj and L = (_1 _!!- 0'\ so that
2 2b' 2b 2' )'

1 L

J
I 2 (1 b)(j.(KL) =- --d~=-arctan ---

r: 1r K ~2 + 1 7! 2b 2

The diagonal a
l
a

3
is contained in KL when _1__ !?- ~ b , i.e. b:s; J3 . In this case,

2b 2 3
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Figure 3

Support of 0"E in a Rhombic

Case

If b > J3 then, inside E, (J'E is supported on the horizontal segment KL and on
3

four inclined segments LS, LR, KP and KQ (see Figure 3). Due to symmetry,

(J'H(LS) = (J'r:;(LR) =(J'/:..(KP)=O'E(KQ). By simple calculation one obtain

S =(b(1- ~2), 2b
2

1
J.Using the formula given in the heginning of the chapter, we have

1+b 1+b-

2b

1 s d 1 Jbi:i' fb2;l 1 ( 4b 1)
O'E(LS)=- f 2 2 dC;=-~ ( 2 JdC;=- arctan-2--arctan-

Jrr(c;-c) +d Jr 1 2;:2 b +1 Jr b +1 b
. b+J ':> +--

--:u;- 4

after an appropriate change of coordinates.

Finally, we obtain

I J3
::::"'arctg(b),b~-
Jr 3

4 ( 4b 1) 2 1 b J3- arctg(--) - arctg(-) +- arctg(- - -) - < b ~ 1
Jr b2 + 1 b Jr 2b 2' 3
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four inclined segments LS, LR, KP and KQ (see Figure 3). Due to symmetry,
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2

2
J. Using the formula given in the beginning of the chapter, we have

l+b l+b

2h

1 s d 1 Jbl':I.jj;2;1 1 ( 4b 1)
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after an appropriate change of coordinates.

Finally, we obtain

2 J3
-arctg(b),b~-
Tr 3
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or, after simplification,

2 J3
-arctan(b), b~-

'7r 3
O'E(E) = ( J-2 1 b4 -14b2 +1

-arctan -----
7r 8 b(b 2 +1)

The derivative of O'E(E) with respect to b equals

J3
-<b~1
3

O'~(b) =

and IS clearly positive on [0,~)U[ ~, I]' Moreover, left and right derivatives

coincide at b=J3, so O'E(b) is differentiable on [0,1), with derivative positive
3

everywhere. This means that 0'E (b) attains maximum on [0,1] at b =1, i.e. when E is a

square. To specify, 0'£(1) = ~ arctan(~):::::: 0.409665 ... , which is obviously less than ~

Q.E.D.
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or, after simplification,

CYe(E) =

2 J3
-arctan(b), b::;-
1C 3

-2 (lb
4
-l4b

2
+l) J3 b 1- arctan - - < ::;

1C 8 b(b2 +1) '3

The derivative of CYe(E) with respect to b equals

CY~(b) =

and IS clearly positive on [0,~ )u[~ ,Il Moreover, left and right derivatives

coincide at b= J3, so cyE(b) is differentiable on [0,1], with derivative positive
3

everywhere. This means that CYE(b) attains maximum on [0,1] at b=l, i.e. when E is a

square. To specify, cy£(1) =~ arctan(~) ~ 0.409665 ... , which is obviously less than ~

Q.E.D.
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or, after simplification,

2 .J3
-arctan(b), b5-
f( 3

-2 (lb 4 -14b2 +1J.J3 b I-arctan - ,-< 5
7r t 8 b(b2 + 1) 3

The derivative of (TE(E) with respect to b equals

(T~(b) =

and IS clearly positive on [0, ~)U( ~, l)' Moreover, left and right derivatives

coincide at b =~, so (JAb) is differentiable on [0,1], with derivative positive

everywhere. This means that (TE(b) attains maximum on [0,1] at b =1, i.e. when E is a

square. To specify, (Jt(l) = ~arctan(~)o::::::0.409665 ... , which is obviously Ie

Q.E.D.
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CHAPTER V

FARTHEST-POINT DISTANCE AND THE SUPPORT FUNCTION

This chapter is devoted to the study of the convex conjugate to the farthest-point

distance function. The notion of conjugate function is of great significance in the convex

analysis. There are many theorems connecting various properties of a function to the

behavior of its conjugate (see, for example, the wonderful book of Rockafellar [17]). In

our particular case, we will find out that the conjugate of dE(x) is somehow formed from

the support function of E. The support function is one of the basic instruments of the

theory of convexity, so that the interplay between the support function and the farthest-

point distance function seems to be, at least, interesting.

As usual, E is a compact subset of R n in this chapter, but we do not demand

convexity. We denote the unit ball in R" by B:= {x E R" Ilxl ~ I} and a unit phere by S.

We follow Rockafellar's notation. Particularly, we denote the support function of

E by o·(xl E), the convex conjugate function to I by f·(y) :=sup{(x,y)- f(x)} and
xe/l"

the recession function of I by fO+. We think: of convex functions as of function

defined everywhere on Rn and probably having infinite values at some points. Domain of

function f(x) is defined as dom/(x):= {x E R" II(x);c oo} .

{
/(X)' XED

We denote the restriction of function f(x) on a set D as liD (x) = D
+00, X ~
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To make the notation shorter, we think that unitary minus has more priority than

the operation of restriction, i.e., - f ID(x) means (- f(x» ID .

We remind that dE(x) is convex as a supremum of convex functions.

Theorem 5.1 The following statements hold:

e) The best Lipschitz constant for dE(x) is 1

Proof: a) The proof follows from the chain of equalities below:

d£(x) =sup Iy-x 1= sup sup (Y -x, z) =sup sup (Y - x,z) =sup sup ((y,z) - (x, z)) =
ye£ yeE zeB zeB yeE zeB yeE

=sup[(su~ (y, z)) - (x, z)] =sup[15' (z IE) - (x,z) ] =sup[(x, z) -(-15' (z I-E»)] =
zeB yen zeB zeB

=sup [ (x,z) -( -rt (z I-E») 18 ] = (-15' (X I-E) IB)'
zeR"

To prove b) we just need to replace B by S in preceding proof.

c) We need to carefully perfonn conjugation of the equality we obtained in a). It

is a well-known fact that the double conjugate of any function f equals to closure of its

convex hull cl(conv(f» (see [17]). It is also known that if f (in our case

f(x) =-15' (x I-E) Ie) is continuous on a compact set (B , in our case) and is equal to

+00 at all other points, then conv(f) is closed proper function ([ 17, Theorem 17.2.1D.

Hence, we can delete the operation of taking closure. Q.E.D.
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d) This result is a consequence of the fact that [0+ is the support function of

dom(f·), when f is proper closed convex functi.on [17, Theorem 15.3]. In our case,

e) The last assertion of the theorem may be proved directly, but we deduce it from

the nice theorem [17, Theorem 13.3.3], which says that the best Lipshitz constant of a

convex function coincides with the maximum norm of the elements of dom([·) =B .

Q.E.D.

So, this is the way to get dE (X) : we take set -E, which is symmetrical to original

set E, and consider its support function. We tum this support function upside down and

take its restriction to the unit ball. Finally, we apply conjugation to get dE'
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CHAPTER VI

CONCLUSIONS

The basic purpose of this study has been to examine the structure of the farthest

point distance function de and to determine its properties, which are analogous to those

of the "usual" distance function. The sufficient condition of k-differentiability of dE was

found. The complexity of supp (JE was estimated in the polygonal case. Laugesen and

Pritsker's conjecture on (Je(E) was proved in case E is a rhombus. Some convex

analytic considerations on de led to determining the relation between de and the support

function of E.

Several problems have been raised by this study, which would be of interest for

further consideration. As in the nearest-point distance case, it should be possible to prove

extra-smoothness of de in case of smooth BE in spaces with dimension greater than two.

Also, one can hope to obtain estimates on the complexity of supp (Je in the polyhedral

case. The powerful and effective apparatus of convex analysis may as well lead to some

surprising results.
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surprising results.
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CHAPTER VI

CONCLUSIONS

The basic purpose of this study has been to examine the structure of the farthest

point distance function dE and to detennine its properties, which are analogous to those

of the "usual" distance function. The sufficient condition of k-differentiability of d£ was

found. The complexity of supp a £ was estimated in the polygonal case. Lauge en and

Pritsker's conjecture on aE(E) was proved in case E is a rhombus. Some convex

analytic considerations on dE led to determining the relation between dE and the support

function of E.

Several problems have been raised by this study, which would be of interest for

further consideration. As in the nearest-point distance case, it should be possible to prove

extra-smoothness of dE in case of smooth 8E in spaces with dimension greater than two.

Also, one can hope to obtain estimates on the complexity of supp a E in the polyhedral

case. The powerful and effective apparatus of convex analysis may as well lead to some

surprising results.
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