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CHAPTERl

INTRODUCTION

ImmuDobiology of the Skin

Skin 1S a highly organized dynamic system where cells constantly divide.

selectively migrate. differentiate and die. All these activities make skin a sturdy

physiological barrier to harsh environments. Although the skin acts primarily as a dry

mechanical barrier by constantly ridding itself of contaminating or,ganisms by means of

desquamation, it also adapts itself to various roles with great versatility. It aids in thermo­

regulation, acts as a sense organ, is a source of endocrine mediators, and initiates and

sustains various immune responses.

Until the late 1960s, skin was not recognized as an organ capable of immune

responses. In the 1970s, Streilein noted that skin has afferent and effer nt lymphatics.

lymphocytes, WBCs and dendritic cells and is hence capable of immune functions (114).

Later Margaret Kripke and her coworkers showed for the first time that UV light causes

tumors in the skin of mice by local immunosuppression (l05). Fichtelius described skin

as a primary-lymphoid organ in 1970 (63a), but his concept remains unproved. Though

no specific evidence exists for categorizing skin as either a primary or a secondary

lymphoid organ, its involvement in the generation and the regulation of immune reactions

has led to the coinage of various terms to describe a relationship between skin and

immunology. The foremost term that was used in the literature to refer to this relationship

was Skin Associated Lymphoid Tissue (SALT) introduced by Streilein and his co­

workers in 1978 (202). In 1986, Bos and others proposed the term Skin Immune System



(SIS) to emphasize the role of skin in immunology (25). In 1989 Sontheimer us d th

term Dermal Microvascular Unit (DMU) to focus on the center of immunological acti ity

(25). Nickoloff in 1993, proposed Dermallmmune System (DIS), a concept that r lat s to

the cellular and humoral aspects of SALT (25). Whatever the term used, tbe main point

is that skin actively participates in immune surveillance. The concept of SALT

encompasses or accounts for the presence of cells capable of ingesting, processing and

presenting antigens, the presence of specific peripheral lymph nodes for reception of

immune-related stimuli, the existence of T cells capable of directional movement and

production of immuno-regulatory molecules such as cytokines and chemokines (202).

The constituents of SALT are keratinocytes (KC), langerhans cells (LC), epidermal T

cells, vascular endothelial cells, lymphatic endothelial cells and draining lymph nodes. To

describe the complexity of immune response assooiated cells, SIS system is more valid.

The cellular components of SIS are LC, KC, macrophages, granulocytes, mast cells,

endothelial cells and T cells while their humoral components are anti-microbial peptides,

complement proteins, immunoglobulins, cytokines, coagulants, prostaglandins and free

radicals (24). Thus, it includes both the innate and adaptive parts of immunity.

Some of the facilitators of a successful immune response in skin include antigen

presenting cells (APCs), accessory cells, immunocompetent lymphocytes and soluble

mediators. KCs comprise the major portlon of the all epidermal cells (approximately 90

to 95%) and possess the abilIty to elaborate a number of cytokines that modulate

immunological reactions (128, 110, 75, 102). Cytokine production by KCs reflect on their

possible role as accessory cells as well as the fact that KCs can be induced to express la

antigens, intercellular adhesion molecule 1 (rCAM-1) and other surface molecules under

certain diseased conditions such as graft versus host disease (GVHD), allergic contact
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dermatitis, lichen planus and inflammatory dermatoses (1'0) or in response to certain pro~

inflammatory cytokines (54). In short, KGs have all the relevant signals needed for

accessory cell function but whether they function as accessory cells remains to be seen.

As opposed to KCs, LCs comprise only a minor portion of epidermal cells though th if

role as inducers of immune reactions is indisputable. Les belong to a class of

professional APCs that have a unique trait of inducing primary immune responses (201).

They are strategically located in the epidermis,a region that is continuously exposed to

innumerable antigens, posing as sentinel cells. They pick up antigens, process them and

put them up on the cell surface prior to journeying down to the afferent lymphatics via

endothelial cells. The intermittent cohesion and separation of various adhesion molecules

expressed on both immune-related cells and endothelial cells facilitate transendothelial

cell trafficking. Endothelial cells not only aid in LC migration but also in lymphocyte

homing to skin and other organs (154). The oocurrence of the synchronized spatial and

temporal events necessitates interaction with endothelial cells in a very compI x mann r.

In addition to these cells participating in cutaneous immunity there are dendritic

epidermal T cells in murine epidermis that may playa role in induction of tolerance and

immune surveillance (226), and dermal dendritic cells, mast cells and macrophages,

which may provide an interface with the external environment. All these cells and the

interactions among them, by the way of soluble mediators and surface molecules, give

the complete picture of immunophysiology of skin.

Layers of the SkiD

Skin is one of the largest, one of the most structurally diverse and the most visible

organ of the body. It is in direct contact with the external environment, which governs its
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functions and detennines its structure. It can be defmed as a multifunctional system that

sheaths and protects the body both passively as well actively. Skin or integum nt can

conveniently be classified into four zones, the ectoderm-derived epidermis tb

mesoderm-derived dennis, separated from each other by a junction, basement membrane

and subcutaneous fatty tissue. It also includes glands and its various modifications. The

outermost layer of the skin that is always in a state of constant renewal is epidermis. It is

multi-layered tissue, externally composed of cornified squamosal epithelium. The five

distinct layers of epidermis working downwards are stratum corneum, stratum lucidum,

stratum granulosum, stratum spinosum and stratum basale, also known as stratum

germinativum. Stratum corneum is usually composed of flattened, squamous, hexagonal

keratinized dead cells arranged in peculiar columns (37). Cell proliferation and

replacement are hormonally regulated (232). It essentially prevents desiccation,

modulates temperature changes and protects from exogenous agents. The next layer,

stratum lucidum, has compactly packed cells with degenerate nuclei and indistinct cell

borders. By the time the cells reach up from germinal layer, they lose their full set of

essential organelles. Stratum granulosum consists of four to five layers of polygonal cells

with rounded nuclei and endoplasmic keratohyalin inclusions, which were speculated to

be precursors of keratin. The layer below the granular layer is the stratum spinosum with

its polyhedral shaped cells. These cells when separated exhibit "spiny" morphology hence

the name. The cells in this layer are in contact with each other via intercellular bridges,

desmosomes and tonofibrils. They show active division but less frequently than the cells

in the layer beneath it, the basal layer. The keratinocytes as they pass this layer undergo a

process called keratinization.
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Stratum basale is the chief cell-producing layer of the epidennis. The cells in his

layer appropriately have more mitochondria and high enzymatic activity. The high lev I

of growth and division is supported by an easy access to nutrients from neighboring

dermal blood vessels. The cells are columnar or cuboidal in shape with their one surface

resting on the basement membrane. Keratinocytes grow from basale and acquire

connective junctions as they move up, which helps them keep anchored to each oth r.

LCs reside in the basal and the supra-basal region attached to the neighbouring Kes via

E-cadherin and Ca++ dependent mechanisms.

The dermis is directly present beneath the epidermis and is separated from it by a

non-cellular basement membrane, which serves to prevent the movement of materials and

cells across the junction (200). Dermis consists of connective tissue, collagen, reticulin,

elastin fibers, fibrocytes, tissue macrophages, mast cells, nerves, lymphatics and blood

vessels. Dermis has two indistinct layers: stratum papillaris, the papillary layer and

stratum reticularis, the reticular layer. The former layer is far richer in cells, blood

vessels, nerves and extra-vascular leukocytes than the latter. In most inflammatory

conditions, the responses are always greater in papillary layer than in reticular layer. The

dermal layer is essential for the viability of epidermis, thermo-regulation and cell

infiltration in skin immunity.

Langerhans Cells: Ontogeny, Morphology and Function

Paul Langerhans, in 1868, described a peculiar looking cell in humans having

dendritic processes in the suprabasal region of epidermis on gold impregnation. He and
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the other researchers believed that these cells should be classified as a part of the n rvous

system (112). In 1926, Masson suggested that LCs were precl.U"sors ofmelanocytes (133).

Only during the past three decades, the concept that LCs may have immune-related

function was explored and accepted.

In the early 1960s, Breathnach and others showed that LCs were neither related to

nerve cells nor to melanocytes (26). Only recently Katz demonstrated that LCs originate

from a pool of bone marrow derived mobile progenitor cells (90). This observation was

further reinforced by Frelinger et.a1. when they illustrated synthesis of LCs in X­

irradiated chimeric mice from bone-marrow derived donor cells (65). Precursors of LC

were speculated to be of myeloid origin because they express myeloid surface molecules

like CDll, CD13 and CD33 (69) and were presumed to immigrate to the skin through

blood circulation. Transforming growth factor pI (TGF 131) (22) has been demonstrated

to be an essential requirement for in vitro development of CD1a+, E-cadherin+ and BG+

LC from CD34+ stem cells, under serum free conditions, in the presence of granulocyte

macrophage-stimulating factor (GM-CSF), tumor necrosis factor ex (TNFa), (31) and

colony stimulating factor (CSF), while FLT-3 ligand was implicated in enhancing this

development process (209). The complete set of signals needed for in vivo development

and differentiation of LCs, from proliferating stem cell state to a precursor state, and

intermediate stages involved in the development and the functional specialization of LCs,

en route to skin are hardly known. Although a recent study suggested the involvement of

GM-CSF, in the emigration of LC into the skin and in the maturation of LC, ill vivo (29).

LCs exhibit a unique morphology. They have dendritic processes that interdigitate

between keratinocytes and these processes can be seen with an aid of a light microscope.

As mentioned previously, they are located in the basal and the suprabasal region of the
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epidennis and make up 2 - 4% of the epidennal cell population. The most ~ liabJ

marker that can only be visualized under electron microscope (78), in LC is the birbeck

granule (BG). It is a rod shaped intracellular organelle speculated to have formed via an

endocytic process (79) with an unknown function (18). Teunissen et al. have tentatively

associated BG with antigen-trapping and antigen-presenting functions of Les (218). The

other classical markers used to identify Les are la antigens, which are encoded by MHC

II genes and membrane-bound ATPase (233, 63). These markers are unique to LC in

normal epidermis and therefore are commonly used in immunochemical staining

strategies. In case of skin disorders, KCs can be induced to express Ia antigen (10) or can

acquire ATPase activity. In addition, LCs express CDla in human epidermis (140), ly-5

antigens in mice (119) adhesion molecules, cytokine and Fc receptors for IgG and IgE

(166, 115). The adhesion molecules intercellular adhesion molecule I (ICAM-I) and

leukocyte functional antigen 3 (LFA-3) (217) are weakly expressed on freshly isolated

LCs though ICAM-3 is constitutively expressed (2). However, the mRNA for

costimulatory molecules CD80 and CD86 is present in the cytoplasm of LCs, but it is not

expressed on freshly isolated LCs from human epidermis (70, 210). Once LCs are

cultured they resemble the mobile class of activated LCs found in vivo. Thus, the

culturing of LCs stimulates LCs to undergo maturation and migration processes in vitro.

The sets of changes that occur during this period are loss of BG, COla, FcyRII

expressions (217), upregulation of MHC I; MHC II, ICAM-I, LFA-3 molecules and

synthesis and expression of CD80 and C086 (217, 216, 210, 165, 70). In brief, the

phenotype or the morphology of LCs depends heavily on its milieu. Les have a vast

number of mitochondria indicating their high metabolic activity, well-developed
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endoplasmic reticulum, golgi bodies and lysosomes (231). Their phagocytic capacity was

found to be considerably less than that ofmacrophages and KCs (231).

The principal physiological functions of LCs in skin appear to be antigen

recognition, antigen-uptake, antigen processing and seleotive migration towards T cell

rich areas in order to present antigens to naIve T cells (203, 204,179). While perforrning

all these functions LCs differentiate from an immature state to a mature state that finally

culminates in a apoptotic death (134). LCs have also been implicated in contact

hypersensitivity, skin-graft rejection, allergy and cutaneous immunologic tolerance.

Antigen presentation:

LCs similar to other DC's express pattern recognition receptors, complement

receptors and Fc receptors that are involved in recognition and uptake of antigens.

Studies suggest that LC express a mannose receptor that probably acts as an antigen

receptor (161) and IgG receptors: CD32, CD64 and both high and low affinity receptors

for IgE (164) that allow for specific uptake of opsonized antigens. Once the antigen is

engulfed via macro-pinocytosis or receptor mediated endocytosis (l 71), the next stage

involves antigen processing. LCs belong to a professional class of antigen presenting

cells that present exogenous antigen in conjunction with MHC class II molecules to CD4+

T-cells (29). The MHC II molecule is synthesized and translocated to ER where it is

associated with invariant chain. This complex is then moved to the endosomal

compartment of the Golgi. The engulfed antigen is processed to a peptide form, which

then binds with the cleaved MHC molecule in the MHC II compartment (MIIC), and is

subsequently transported to the cell surface (145). This is a very important event because

neither MHC II nor antigen individually can activate unprimed T cells due to the high
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specificity of T cell receptor (TCR) for antigen. Lanzavecchia and oth rs noted that

efficiency of antigen uptake is crucial for peptide loading and presentation by MHCclass

n (113). In the nonnal unperturbed tissue, LCs have a strong antigen capture capacity but

low APC activity hence they are termed as immature. Upon activation, LCs undergo a

process of differentiation that triggers changes in the level of expression and repertoire of

cell surface molecules. During in vitro cultivation of LCs for 2-3 days, differentiation

signals are obtained from their microenvironments that in tum induce the maturation of

LCs into potent immunostimulatory cells. These signals can be in the fonn of cytokines

such as GM-CSF, ll..,-lP, ll..,-la and TNFa (81). Once LCs are activated, they acquire a

high level expression of MHC n, ICAM-I, ICAM-3, LFA-3, C080, CD86, C040 and

ability to produce ll..,-1, ll..,-6, IL-12 and ll..,-15 (70, 216, 217, 198). Some of them serve

to trigger migration of LC from the cutaneous region to peripheral lymph nodes and some

to initiate T cell responses. In particular, TNFa and ll..,-1 p have been demonstrated to

cause LC migration (41, 43) as well as downregulation of E-cadherin that cements LCs to

the neighboring KCs (183). Besides these, two other molecules implicated in LC

migration are CD44 and integrin chains a6/b 1 (156, 225). On reaching the lymph node,

the antigen-MHC n complex on LC physically interacts with the TCR-C03 complex on

T-cells essentially delivering one signal while the binding of CD80/CD86 with their

ligand CD28 on T-cells delivers a second signal for activation (180). Induction of a

cascade of cytokines by activated T-cells, followed by upregulation of homing receptors

on T-cells paves the way for their recruitment into skin (155) and a full-blown cell­

mediat~j response.

Contact hypersensitivity:
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LCs play a dominant role in the induction of T-cell activation in respons to

contact sensitizers.. The proof that LCs serve as target structures in contact

hypersensitivity type IV (CHS IV) reactions in humans on exposure to DNCB was

gathered by Silberberg in 1976 (188). Since then other investigators have shown

induction of delayed hypersensitivity reactions on exposure to haptens in a high LC

density area whereas in a LC deficient area the same hapten application induced

unresponsiveness or peripheral tolerance (219). Haptens are small chemical molecules

that bind to a protein carrier, which confers immunogenicity. When the haptens are

painted on the skin of sensitized individuals, the LCs gradually disappear from the

epidermis, migrate to the draining lymph node, activate CD4+ T cells, which then

selectively migrate to skin, causing a local intracutaneous inflammation characterized by

the presence of erythema and swelling (103, 106, 189, 217) as seen in the case of contact

dennatitis. Although the mechanism of triggering and controlling the migration of LC is

unclear, some recent studies indicate that caspase1 may playa role (7). It has also been

speculated that certain cytokines like TNFa., IL-1P (59), secreted by KCs following

hapten painting provide signals for LC migration. Adhesion molecules such as ICAM-I

are believed to playa central role since anti-ICAM-l moAb blocked the APC function of

EC in a hapten-painted mice (142).

Allergy:

Allergens may cause inflammation vIa triggering accumulation of

immuno~ompetent cells in dermis and epidennis, glvmg nse to specific clinical
•

manifestations such as atopic dennatitis. Studies indicated the presence of the high

affinity receptor for IgE (Fcc:RI) on LCs in patients with atopic dennatitis (27). LCs with
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these receptors apparently present the airborne allergens such as mites and pollen to

specific Th2 subtype-cells which in turn may trigger a cascade of events resulting th

activation of mast cells and basophils (28, 224). It was recently shown that ll..r4 plays a

key role in upregulation ofFceRl on human ODla+ Les in atopic dermatitis patients (67).

It has also been suggested that protein kinase C~ (PKC) may provide a signal for LC

mobilization in allergic and in irritant contact dermatitis cases (163).

Skin graft rejections:

In the murine system it was demonstrated that LCs induce allogeneic epidennal­

cell-lymphocyte reaction indicating their involvement in allograft rejection and the graft­

versus-host reaction (1) and it was also demonstrated that murine grafts depleted of LCs

survived longer on I-region-disparate hosts (206). A study by Larsen et. al. suggests that

epidermal LCs migrate from skin to afferent lymphatics and initiate transplantation

rejection (117). The upregulation 0 f cytokine IL-IO and lowered expression of MHC II

molecules have been held responsible for the tolerogenecity of neonatal skin grafts (48).

In organ systems like the pancreas, eIiminati.on of Ia+ de~dritic cells (DCs) facilitated

acceptance of pancreatic grafts in rats (61). In addition to decreased MHC II expression,

decreased B7 costimulatory molecule expression in photodyanamic-treated mice led to

prolonged graft survival (147).

Immunological tolerance:

Les playa decisive role in inducing immune responses as well as establishing

tolerance. The knowledge concerning either immunogenic properties of LC or the factors

that transform LC to be tolerogenic can be exploited to design vaccines against
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neoplasms and micro-organisms, to control allergies, to treat skin djsorder'S and to

prolong graft survival. One of the extraneous factors responsible for hyporesponsiven ss

is UVB radiation. Dandie et al. observed in mice that even after two weeks aft r

exposure, LCs were not capable of functioning oonnally (45). UVB irradiation has been

shown to deplete the epidennal LC population (16). When these areas were exposed to

contact sensitizers, CHS was not induced (219). This led to the belief that the ability of

the skin to support the induction of CHS or specific unresponsiveness was influenced by

the presence of functionally intact LCs (207). It was shown that suppressor T cells were

responsible for induction of tolerance in vivo (226). Cytokines IL-lO (58), TGF-p (208)

neuropeptides (98), a-melanocyte stimulating honnone (126), lowered B7 expreSSIon

(101) have been implicated in establishing DC tolerance and T cell anergy.

Epidermal Cytokines and Chemokines

The emigration of LCs from skin to dermal lymph nodes is essential to mount a

cell-mediated response and hence immune surveillance. Prior to migration, LCs have to

become functional antigen presenting cells. This activation and the imminent migration

of LCs are initiated and regulated in part by KCs derived inflammatory mediators called

cytokines. Cytokines arc low molecular weight proteins that are produced in a tightly

controlled manner, by various cell types and act in both paracrine and autocrine fashion

(8) as soluble mediators of immunity, inflammation, cell growth and differentiation in

either synergistic or antagonistic way (127). The first cytokine discovered in 1976,

interleukin 2 (IL-2), promoted in vitro T cell growth (139). Later it was discovered that
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cytokines represent a wide array of different molecules with overlapping biological

activities: hence, their function is considered as pleiotropic and redundant. Th se

features emphasize the importance ofcytolcines in cellular function. Cytokines can

induce expression of other cytokines (52, 91), interact with other mediators such as

hormones, and bring about a cascade of events. Epidermis has been termed as a "cytokine

factory", having producer and responder cells as well as the cytokines themselves

responsible for skin disorders including contact allergy, atopic eczema, psoriasis etc. (56,

213). Some of the constitutive and inducible epidermal cytokines are IL-la., IL-lP, IL-6.

IL-I0, IL-12, GM-CSF, TNFa. and interferon y (IFNy). The cytokines IL-la., TNFa. and

GM-CSF will be dealt in detail below.

Chemokines belong to a family of cytokines with cell-specific chemotactic activity.

The three sub families of chemokines,. a.-chemokines or C-X-C chemokines, P­

chemokines or C-C chemokines and y-chemokines or C-chemokines are differentiated

based on their protein sequence and function. The members of a.-chemokine are

chemotactic to basophils, lymphocytes and keratinocytes and are mostly produced by

KCs in the epidermis (21). The members of ~-chemokines subfamily, MIP-1 a, MCP-l,

MCP-3, RANTES and MDC are chemotactic for macrophages/ monocytes, T cells and

DCs (12, 71, 193, 235). MCP-3 and RANTES are produced by KCs on challenge with

allergen (237) and are potent attractants for eosinophils; T cells macrophages and APCs

(178, 193). MIP-3a. has been shown to playa role in LC precursor recruitment into the

epithelium during inflammation (49) while MCP-l does the same in the absence of

inflammation too (141). The stimuli for regulation of chemokine expression are provided

by cytokines such as IL-l P and TNFa. (72) as well as contact sensitizers tolerogens and

irritants (138).
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IL-l:

The a-l triad that includes IL-I a., IL-IP and IL-I RA (receptor antagonist) are 17­

20 kDa proteins mainly involved in the initiation and maintenance of inflammation.

Originally named as epidermal cell thymocyte activating factor (ETAF), IL-l was the

first cytokine detected in epidermal cells (128). ll.r1 transcription in monocytes was

induced by adhesion to surfaces, lipopolysaccaride (LPS), S. aureus, IL-l itself, phorbol

esters, zymosan, TNFa., IFNy, Calcium ionophores, C5a, indomethacin and GM-CSF

(46, 62, 82). IL-l a. and IL-lp show similar biological activities since they bind signal

transducing type I receptor with similar affinity (53). Some of the responder cells in

which IL-l induces proliferation are fibroblasts, smooth muscle cells (158).

keratinocytes, hematopoetic precursors, Th2 cells and mature B cells (50). The other

biological implications of IL-I include induction of other cytokines expression such as

IL-6. TNFa, GM-CSF from KCs; induction of TNFa. and adhesion molecules on

endothelial cells; induction of acute phase protein in hepatocytes; differentiation and

surface IgM expression on pre-B cells; and immunoglobulin secretion from mature B

cells; IL-2R expression and chemotaxis of T cells; and augmentation of macrophage

cytotoxic activity. IL-l plays physiological roles that influence pathological conditions

such as fever, cachexia, wasting, septic shock, rheumatoid arthritis and atherosclerosis

(51). Some of these observations are supported by the fact that the inhibitors ofIL-l are

capable of suppressing such responses in vivo (60).

In epidermis, as mentioned earlier, KCs produce constitutively IL-l a., a cytokine

essential for peripheral T cell activation. LCs are induced to produce IL-l P upon skin

sensitization (59). IL-l P is important in the context of LC migration and cytokine

upregulation (57).
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GM-CSF:

GM-CSF IS a 20-30-kDa glycoprotein named after the ability to indue

proliferation and maturation of granulocytes and macrophages. Bacterial ndotoxins,

phorbol esters, TNFa, IL-1a and macrophage activating proteins can induce it. GM-CSF

is a polyfunctional regulator that affects the growth and function of KCs DCs,

endothelial cells, T cells; increases DNA synthesis in transformed cells; enhances

neutrophil chemotaxis; and augments the turnoricidal and the anti-microbicidal activity of

neutrophils and macrophages (167). Excessive levels of GM-CSF can lead to blindness

and muscle wasting in mice (111) and mild flu-like symptoms, rashes, capillary-leak

syndrome and respiratory distress in patients (215).

In the skin, GM-CSF production has been observed both at the mRNA as weLL as at

the protein level in fibroblasts, mast cells, macrophages and endothelial cells and in KCs

it is induced upon reception of stimuli such as antigen, allergen, irritant, IL-l, UV­

irradiation or inflammation (228). It was found to be important for LC viability in vitro

(230). LC generation from precursors, antigen-presenting ability of DCs (86) and LC

migration (168). Because of its potent immune-enhancing properties, is being exploited

as a vaccine adjuvant in flu-vaccine, tumor vaccine, hepatitis B vaccine and HIV vaccine

(211 ).

TNFa:

TNF is a 17-kDa protein originally described as macrophage-derived cytokine and

also is known as cachetin and necrosin because of its biological effects. Macrophages,

NK cells, T cells, B cells, granulocytes, fibroblasts, mast cells, smooth muscle cells,

epidennal cells and tumor cells primarily produce T F. It is produced in response to both
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gram-positive and gram-negative bacteria and their products; UV-radiation' mycoplasma'

immune complexes; cytokines such as GM-CSF, ll..,-IP, ll..,-2, IF y; tumor cells C5a"

PKC activators; protein phosphatase inhibitors; platelet aggregating factor (pAF) among

others. TNF displays a broad spectrum of effects, which includes inhibition of tumor

cells hence its therapeutic application as anti-tumor agent proliferation of fibroblasts

expression of adhesion molecules on endothelial cells, induction of cytokines, induction

of MHC expression on various cells. It exhibits peculiarly contradictory effects such as

viricidal effects against DNA and RNA viruses and induction of viral replication (234,

148). TNFa was demonstrated In vitro, to activate phagocytes to kill bacteria; fungi;

protozoa and helminths (229).

In epidermis, the expression of TNFa by keratinocytes is upregulated by allergens,

LPS and UV-radiation (102). In cutaneous immunity it exerts its influence by increasing

production of IL-Ia by KCs (110), causing migration of LCs from epidermis (31),

infiltration of macrophages, neutrophils and CD4+ T cells in dennis and generating

apoptotic KCs (181). It acts with GM-CSF synergistically to generate LC from CD34+

bone marrow precursors (30).

Costimulatory Molecules: CD80 and CD86

LCs, like other DCs are critical for induction of primary immune responses and

constitutlon of immunological memory (199). Following tissue damage or perturbation of

nonnal skin milieu, Les undergo a learning process, where they transform from a

powerful antigen capturing state to an even more powerful antigen presenting state. One
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of the events that co-ordinates tightly with the maturation process is the upregulation of

costimulatory molecules such as CD40, CD58, CD80 and CD86 on LCs (179)~ Th

maturation of LCs is closely associated with its movement from ep,jdermis to dennal

lymph nodes and eventual priming of quiescent CD4+ T lymphocytes which, is closely

linked with expression of,Ia antigen (186); C080 and CD86 (94, 130, 69, 5); ICAM-l

and LFA-3 (190, 217) on APC. CD80/CD86 expression is predominant over expression

of other costimulatory molecules on mouse dendritic cells (83). CD80 and CD86, integral

membrane proteins, also known as B7-1 and B7-2 molecules respectively (99), are

members of immunoglobulin superfamily that participate in T cell costimulation via

C028 and cytotoxic T lymphocyte antigen 4 (CTLA-4) ligands, surface proteins, on T

cells (176, 179, 230). Witmer-Pack and others have demonstrated that in the absence of

costimulation by C080/C086, TCR engagement is incapable of delivering effective

signal in inducing T cell activation and instead induces anergy (179, 230). This

specifically shows that the TCR-Ag+MHC complex provides one stimulus for T cell

activation while COBOl CD86 crosslinking with CD28 provides the other stimulus (176,

222). This enhances T cell survival by augmenting expression of Bel XL an inhibitor of

apoptosis (20). The engagement of C080/CD86 with CTLA-4 on T-cells leads to the

inhibition of T cell activation, validated by the fact that a CTLA-4 null strain of mice

exhibits severe lympho-proliferative disorder (184) and exposure to CTLA-4-lg renders

DCs tolerogenic (94, 124). Some of the mechanisms that were reported to account for the

action of CTLA-4 include induction of apoptosis (73), cell cycle arrest (175) and

establishment of an effective threshold for activation of T cells (93, 107, 122,223).

CD80 and CD86 are differentially expressed and regulated on Les in response to

cytokines (92). Though the molecules exhibit some functional redundancy, in cases like
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detennining Thl response versus Th2 response, they show distinct effects (64, 108). A

study conducted to demonstrate differential Thlffh2 activation pathway showed that

IFNy and ~10 down regulate Th I clonal expansion by suppressing CD80 expression

(149). CD80 expression is positively regulated by cytokines TNFex., GM-CSF but not

IFNy and IL-10; LPS; CD40L feedback (149, 170); by contact sensitizers (146, 162) on

LCs while CD86 expression is positively regulated by few of the same mediators and also

IL-4, but not TNFa. and IL-IO (135). Recent findings showed that CD80 and CD86

mediate costimulatory functions with different magnitude. Expression of CD80 was

reported to have increased the sensitivity of TCR for low affinity ligands (238).

Transgenic mice expressing CD80 on KCs, a ligand normally absent on these cells,

showed enhanced response to topical antigen, underlying its functional significance

(227). Although recent studies indicate that CD86 is the major player in costimulation

(159, 211). It was implicated in inducing allogeneic T cell responses as well as Ag­

induced T cell proliferation (159). Though the mechanism of action is not clear, it is

hypothesized that functional attributes of CD80/CD86 are due to decreasing the

proximity, and facilitating signaling and lowering the threshold of activation.

Blocking of B7-CD28 interaction represents a powerful immunosuppressive tool to

control allograft rejections by maximizing tolerogenic signals (120).

Adhesion Molecules: ICAM-I and LFA-I

As mentioned previously, adhesion molecules aid in selective leukocyte migration

to specific sites during immune responses by interacting with endothelium and aid in the
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costimulation of resting T cens (131,195,38,45). Three classes of adhesion molecules

are known: the selectins, the integrins and the Ig supergene family (195). Des including

LCs, express a variety of adhesion molecules. Some of them are ICAM-l, ICAM-2

ICAM-3, E-cadherin, E-selectin and V-CAM. These molecules exhibit selective

expression and regulation patterns.

In the epidermis, KCs and LCs show the expressIOn of homophilic adhesion

molecules called E-cadherin that acts like cement maintaining the cellular contact.

between the two cells (214). Loss of E-cadherin was found to be linked with

accumulation of DCs in lymph nodes (22). Allergens and cytokines such as TNFa. and

IL-l P have been to some extent implicated in the downregulation of these molecules

(183). Another molecule that is important in LC migration is ICAM-I (27). ICAM-l is a

95-kDa member of the Ig superfamily, also known as CD54, found on leukocytes,

endothelial cells and DCs among others (143). It interacts with its ligand LFA-I, known

as CD 11 a/CD18, a heterodimer surface molecule expressed on all leukocytes (118, 197)

and particularly endothelial cells in the epidennis. It modulates intercellular adhesions

(118, 196) as well as costimulatory effects (109). Antibodies against both these molecules

have been shown to prolong allograft survival (80, 85, 221), reduce the severity of

autoimmune response (l04), and inhibit contact hypersensitivity (129) by blocking

leukocyte migration (167). ICAM-l was shown to have a non-MHC restricted effect on

tumor cells (143, 144). A synergistic effect was observed between CD80 and ICAM-I, in

delivering a more intense second signal for T cell triggering in artificially constructed

drosophila cells (194). T cells also possess adhesion molecules LFA-2 and ICAM-3 that.
bind with LFA-3 and LFA-Ion DCs and cause upregulation of costimulatory and other

functional molecules (157).
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Maturation and Migration of Langerhans Cells

The strategic location of LCs on the skin surface makes them ideal for monitoring

invasion by extraneous factors and protecting the integrity of epithelial surfaces from

these factors. They evolved to perfonn the role of antigen presenting cells to dormant T

cells. The sequences of steps involved in the life cycle of LC starting from its recruitment

as APC are: capturing exogenous antigens) processing them to small peptides and

complexing them up with MHC n moieties, exporting this epitopio complex on to the

surface, upregulating expression of various costimulatory molecules, downregulating

expression of other molecules such as E-cadherin, undergoing changes in the cell

morphology: depolarization, appearance of filopods, cytoskeletal rearrangement, binding

to Laminin, regulating access across basement membrane, accumulating in lymphatics,

engaging specific surface structures with their respective ligands on T cells, bringing

about activation of T cells and undergoing apoptosis. All these events form an

inseparable part of a maturation and migration process of LCs and are intricately

governed by the changing cytokine scenario.

In the epidermis, LCs are maintained at a specific density (15, 233) and their tum

over rate is low (121, 205). This implies that LCs are not native residents of epidennis

and have immigrated from other organ/organ systems. This was proved by Katz and

others that LCs predecessors are nomadic bone marrow-derived CD34+ cells (90). In vitro

culture of human cells, CD34+ blood cells generated a subset of cells with CDl a, HLA­

DR, CD86 and birbeck granules, in the presence ofGM-CSF and TNFa (30).
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Recently, common myeloid progenitors (CMP) were isolated (132). On

transplantation in irradiated congenic recipients, these progenitors gav rise to LCs. The

homeostasis of LC is believed to be regulated by cytokines. Though in vi 0 factors ar

not clear, it has been shown that GM-CSF, ll...-I and TNFa maintain Les in viable state

in culture (101).

After they develop from progenitors, LCs populate skin and remain In an

unfledged state. They are induced to mature and migrate by a variety of stimuli including

microbial antigens, inflammatory mediators, tissue damage, UV radiation and other

antigen non-specific signals. In vitro oulture of LCs triggers the maturation process and

increases their immuno-stimulatory ability (230). Once the integrity of the skin is

disturbed, LCs undergo phenotypic and functional changes that imitate changes that

occur in cell cultures. Studies indicate that in skin grafts (118) on treatment with skin

sensitizers (4), on exposure to enterotoxins (35) DCs show marked induction of Ia+

antigens as it does on stimulus with GM-CSF, IL-I, TNFa and CD40 ligation (32.171).

IL-1 Pand TNFa are responsible for switching of LC from the Ag-capturing stage to the

Ag-presenting state (172) as they are responsible for shut down of macropinocytosis.

Keratinocytes produce increased levels of GM-CSF, TNFa and IL-Ia expression in

response to danger signals whereas Les produced increase levels of IL-I P (59).

Cytokines have been implicated in activation, maturation via upregulation of various

surface molecules and migration of LCs both directly and indirectly by regulating cellular

adhesions. Recent publication indicated that Cytosine-guanosine (CpG) motifs present in

the bacteria DNA induce LC migration by modifying expression of E-cadherin and

ICAM-I (13). Reynolds and his co-workers have suggested based on their data that LC

migration in the case of CHS involves the PKC-P signaling pathway (163). TNFa has
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been demonstrated to produce subsequent effects that may possibly influence th

maturation and migration process: reduction in the expression of E-cadberin in situ (183

an increase in the expression of ICAM-l (42, 220), induction of the expr ssion of

gelatinase in macrophages (173), chemotaxis for roLC (236) and upregulation of

expression of CD80 and CD40 (170). IL-I P induces expression of gelatinase, reduces

expression of E-cadherin (183), induces expression of other cytokines such as TNFa., IL­

l a, IL-IO, MIP-2 ('57), induce expression of chemokines (11) and thereby regulates both

maturation and migration process. GM-CSF is another cytokine that modulates

maturation and migration process of LCs by upregulating costimulatory molecule

expression (170). IL-l8 has been shown to induce LC migration by an IL-I dependent

mechanism (39).

The significant aspect of LC migration is that LCs do not need to be fully mature in

a functional sense before they migrate from epidermis. This was demonstrated by Larsen

et al. who showed that LC start migrating even before they acquire all the relevant

maturation markers (117). Studies have indicated that LCs enter lymph nodes just after 4

hours exposure to FITC, reach a maximum after 2 days and gradually decline thereafter

(130). As stated in the previous section, LCs start undergoing maturation in response to

external stimuli, while at the same time acquiring molecules that regulates their

trafficking from the epidermis. The two most important molecules on LCs that are

involved in the exodus are E-cadherin and ICAM-l. Downregulation of E-cadherin and

upregulation of ICAM-l on LCs and upregulation of LFA-Ion endothelial cells aid in

direction r I movement of LCs across the basement membrane. The three steps involved

are: a, detachment of LCs from their neighbors, KCs by downregulating E-cadherin

expressIon; b, Attachment of LCs and Endothelial cells via ICAM-I and LFA-I and
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initiating the rolling movement that resembles molecular 'Velcro"; and c,

transendothelial translocation. The migration of LCs is important because the event is

succeeded by the elicitation of antigenic-specifio T cell responses that could have a range

of implications for cutaneous immunity. The pathological importance of this event is

supported by the fact that a murine retrovirus, Rauscher leukemia virus ensures its

survival by blocking LC migration (66).

The factors that are responsible for LC migration are numerous and intricately

linked together. Any strategy that tries to explain this must consider the complex

interactions between various costimulatory molecules, adhesion molecules, cytokines,

chemokines and cell populations. For instance, Kitayarna et al. showed that ligation of

CD80 with CD28 delivers a signal leading to the secretion of ll..,-l ~ (97). Cumberbatch et

al. showed IL-I ~ as one of the main signals for LC migration (41). Thus it remains to be

seen whether ligating CD80 promotes LC migration. The present study endeavors to

examine the effect of antibody against CD80 and focuses on the role of cytokines in an

anti-CD80 induced response.
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CHAPTER II

MATERIALS AND METHODS

Animals

Young female BALB/c strain mice, 6-to-12 weeks old were obtained from Charles

River (Wilmington, MA). These mice were maintained in the Animal Resources

Laboratory, an approved facility at Oklahoma State University.

Media and Solutions

Phosphate buffered saline (PBS, 0.15M) was used as diluent for solutions of trypsin

(type n from porcine pancreas, Sigma Chemical Company, St. Louis, MO),

deoxyribonuclease I (DNase I, from bovine pancreas, Sigma Chemical Company, St.

Louis, MO), antibodies and cytokines. One liter of 0.15 M PBS contains 1.15 g dibasic

anhydrous sodium phosphate (Na2HP04. Sigma Chemical Company, St. Louis, MO), 0.2

g potassium chloride (KCI, Fisher Scientific, Fairlawn, NJ), 0.2 g monobasic potassium

phosphate (KH2P04, E M Science, Gibbstown, NJ) and 8.0 g sodium chloride (NaC!, J.

T. Baker Chemical Co., Phillipsburg, NJ) in 1000 mL deionized water and adjusted to pH

7.2 using 1 solution of HCI before sterilization at 15 psi for 20 min.
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PBS with Tween 20 (pBS Tween, Sigma Chemical Company, St. Louis. MO) was

used as washing buffer and PBS with 10% Fetal Bovine Serum (FBS, Sigma Chemical

Company, St. Louis, MO) was used as blocking buffer in immunohistochemical staining

of epidermal skin section. In the same experiments, skin sections were floatd on 2 M

sodium bromide (NaBr, Fisher Scientific, Fairlawn, NJ) to separate epidermal and dermal

layers.

Skin sections, epidermal cells suspensions were cultured in and cell washings were

performed in sterile RPMI 1640 media (Sigma Chemical Company, S1. Louis, MO)

supplemented with 10% FBS (Sigma Chemical Company, St. Louis, MO), 100 llg/mL

penicillin (Sigma Chemical Company, St. Louis, MO), 0.1 llg/mL streptomycin (Sigma

Chemical Company, St. Louis, MO), 0.1 mM MEM non-essential amino acids (Sigma

Chemical Company, St. Louis, MO), 2 mM L-glutamine (Sigma Chemical Company, 51.

Louis, MO) and 0.1 mM sodium pyruvate (Sigma Chemical Company, St. Louis, MO).

Antibodies

To stain MHC class II (Ia) cell surface antigen, encoded in the I-A region of H_2d

haplotype, on Langerhans cells, purified mouse anti-mouse-l-Ad monoclonal antibody

(Pharmingen, San Diego, CA) of IgG isotype was used.

Purified monoclonal rat anti-mouse CD80 (B7-1) (Pharmingen, San Diego, CA),

monoclopal rat anti-mouse GM-CSF (Pharmingen, San Diego, CA), monoclonal hamster

anti-mouse ICAM-l/CD54 (Pharmingen, San Diego, CA), monoclonal hamster anti­

mouse lL-l ~ (Genzyrne, Cambridge, MA), monoclonal hamster anti-mouse lL-1 a
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COenzyme, Cambridge, MA), monoclonal rat anti-mouse LFA-lICDlla (pharmin n

San Diego, CA), and monoclonal hamster anti-mouse TNFa (pharmingen, San Diego,

CA) antibodies were subcutaneously administered for neutralization. All antibodies were

of the IgG isotype. PBS was used as negative control for in vitro and in vivo studies.

Cytokines

Recombinant munne granulocyte macrophage colony stimulating factor,

recombinant murine tumor necrosis factor a and recombinant munne interleukin-l p

(Genzyme, Cambridge, MA) were added to epidermal cell suspension before performing

immunoassays for TNFa and GM-CSF.

Preparation of Epidermal Sections

Female Balb/c mIce were injected intraperitoneally with neutralizing antibodies

against CD80, GM-CSF, ICAM-l, IL-la, IL-lP, LFA-l, and TNFa individually and

concomitantly with anti-CD80 antibody. After a lapse of two hours in order to let the

antibodies circulate throughout, the mice were euthanized in a CO2 chamber. Hair from

the dorsal side of the mice were removed initially by shaving and additionally by using

an over-tte-counter depilatory lotion (Nair™). After a thorough wash with sterile distilled

water and 70% ethanol, the dorsal skin was surgically removed, the subcutaneous adipose

tissue was scraped off and then the skin was cut into l-cm
2

sections in a sterile laminar
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flow hood. These skin sections were then placed epidermal side up on a stack of three

sterile filter disks soaked with 600 ~L of supplemented RPMI 1640 media in a Falcon T I

24-well tissue culture plate. Following 48 hours of incubation at 37° C in the presence of

5% CO2, the skin sections were floated deonal side down on 2 M sodium bromide for 45

minutes at 37° C to separate the epidennis from the dennis. Epidermis was gently pried

off from the dermis with a scalpel in a petri dish of PBS. The epidermal sections were

then stored in PBS at 4
0

C for future usage.

Immunocytochemical Staining

Epidermal sheets were fixed for staining in HistoChoice™ tissue fixative (Fisher)

for 20 min at 40 C and subsequently washed thrice with PBS. The sheets were then

incubated for 30 minutes at room temperature in 3% hydrogen peroxide to neutralize

endogenous peroxidase activity. Afterwards they were washed three times with PBS­

Tween 20, further incubated in fresh 3% hydrogen peroxide for an additional 20 minutes

at room temperature. Sections were washed again with PBS-Tween and blocked with

10% FBS in PBS for 30 minutes at room temperature. After a final wash with PBS,

epidermal sections were incubated at 4° C overnight with anti-mouse I_Ad antibody.

After incubation with primary antibody, sections were washed and incubated for 35

minutes first with biotinylated anti-mouse 19G antibody from Vectastain™ elite mouse

IgG ABC kit (Vector Laboratories Inc., Burlingame, CA) and followed with Vectastain

ABC
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Female Balb/c mice
(8- 16 weeks old)

i.p. administration of antibodies
(100 ~L in volume diluted with PBS)

2-3 hours of incubation

Skin Explants (in duplicates) incubated for 48 hours at 37° C in 5%

C02 incubator on RPMI soaked filter disks

Epidennis isolated upon treatment with NaBr and subjected to further
treatment with H20 2 and 10% FBS in PBS followed by overnight

incubation with anti-lad antibodies

Epidermal sections treated with Vector-VIP™ immunoperoxidase staining
reagents; sections mounted on slides to enumerate LC

density per square mm.

l~
~

Cells counted under 40X objective
(10 random fields each from two duplicate epidermal sections)

Figure 1. Flow Chart depicting Immunohistochemical Staining
of Murine Epidermis. Ia+ LCs are counted following treatment
with antibodies specific against C080 molecules, cytokines
and adhesion molecules.
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reagent and finally for 12 minutes with substrate solution from Vector VIP peroxidase kit

(Vector). Each treatment was preceded by a washing step. Finally, the sections were

rinsed with distilled water, mounted on a slide in glycerol and quantified for Langerhans

cells with an aid of a microscope. The frequency of Ia+ Les (measured as cells/mm2) was

obtained by enumerating 10 random fields on two duplicate epidermal sections.

Epidermal CeU Suspensions

Each Balb/c mouse was sacrificed with ether and its hair removed using clippers

and depilatory cream. After washing the mouse, the skin from dorsal and ventral sides,

the ears and the tail were surgically sectioned out. In a sterile Laminar flow hood the

subcutaneous layer was scraped out, the skin was cut into two or more manageable

segments and incubated dermal side down in 0.5% trypsin for 45 minutes at 37° C.

Following incubation, the epidermal layers were obtained by smoothing out skin sections

with their epidermal sides down on a clean and a dry petri dish and jerking them gently to

the side. Immediately the exposed basal layer of the epidermis was covered with 0.05 %

DNase. The basal layer was removed from the tail region by using forceps and DNase

was added as before. The samples were rubbed with a blunt-tip glass rod to bring the

cells into suspension. Three volumes of RPM] 1640 medium were added to the

suspension, aspirated approximately 15 times with a 60 cc syringe (Fisher. Fairlawn, 1)

and filtered through a Falcon 70 Jlrn nylon mesh cell strainer (Becton Dickinson, Lincoln

Park, NJ) into a Sarstedt 50 mL test tube (Sartedt, Princeton, J). The cells were then

precipitated out in a Damon CRU-5000 centrifuge (lEe, Needham Heights, MA) for 8
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minutes at 4° C, washed three times to remove all traces of D ase I resuspend d in 1<:)

mL of media and quantified by adding 10 ~L of cell suspension in trypan blu (Sigma

St. Louis, MO) exclusion to hemacytometer. The suspension was finally adjusted to

obtain a desired cell concentration. .,

Cytokine Assays

To assay for TNFa and GM-SCF commercially available Quantikine™ mouse

TNFa and Quantikine™ mouse GM-CSF kits (R&D Systems, Minneapolis, MN) were

respectively used.

Epidermal cell suspension at a concentration of 1.0 x 106 cells/mL was plated out

1.0 mL/well in a 24-well tissue culture plate (Sigma), in duplicates, and stimulated with

50 JlL of 10 Jlg/rnL anti-CD80 antibody, 0.1 Jlg/mL IL-l, 0.01 Jlg/mL TNFa: and 2

Jlg/mL GM-SCF separately and in combination with the fonner. Additionally 50 ilL of

10 Jlg/mL anti-LFA-I was added to a new well containing I mL of cell suspension. 0.15

M PBS was added to the control group and the plate was incubated at 37° C. Supernatants

from each treatment group were directly analyzed for cytokine production after

appropriate incubation times.

TNFa Immunoassay:

This assay employed a quantitative sandwich enzyme immunoassay principle where

a 96-well microtiter plate was pre-coated with purified polyclonal antibody specific for

mouse TNFa. After 24 hours of incubation, samples from various treatment groups were

added in 50 JlL volumes to the well and incubated for 2 hours at room temperature to
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allow binding of mouse TNFa present in the samples to immobilized antibody. Unbound

material was washed away and horseradish peroxidase conjuga ed anti-mous Ig was

added and the mixture was incubated as before. Following a wash to remove any

unbound antibody-enzyme complexes, a substrate solution was added to the wells. The

enzyme reaction subsequently yielded a blue product, which turned yellow on addition of

stop solution. The optical density of each treatment group was read using an EL800

Universal Microplate Reader (Bio-Tek Instruments Inc., Winooski, VE) set to a

wavelength of 450 run. Standard curve for each set of samples was generated by plotting

the mean absorbance value for each standard on the y-axis against the known values of

concentration on the x-axis. Then the sample values were read off the standard curve in

pg/mL.

GM-CSF hnmunoassay:

This assay employed a quantitative sandwich enzyme immunoassay principle where

a 96-well microtiter plate was precoated with affinity purified polyclonal antibody

specific for mouse GM-CSF. After 48 hours of incubation, samples from various

treatment groups were added in 50 ~L volumes to the wells and incubated for 2 hours at

room temperature to allow binding of mouse GM-CSF present in the samples to

immobilized antibody. Unbound material was washed away and horseradish peroxidase

conjugated anti-mouse antibody was added and the mixture was incubated as before.

Following a wash to remove any unbound antibody-enzyme complexes, a substrate

solution was added to the wells. The enzyme reaction yielded a blue product, which

turned yellow on addition of stop solution. The optical density of each treatment group

was read using an EL800 Universal Microplate Reader (Bio-Tek Instruments Inc.,
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Winooski, VE) set to a wavelength of 450 run. The sample values were then obtained in

pglmL from the standard curve generated by linear regression analysis of standard GM­

CSF concentrations versus absorbance values.

Indirect Immunofluorescence

Each epidermal cell suspensions were adjusted to 2 x 107 cells/rnL and 50 J.LL of this

was aliquoted in a 96-well tissue culture plates. The suspensions were then treated with

10 JlglmL of INFo. and 2 JlglrnL of GM-CSF separately and in combination with each

other and incubated for 48 hours at 37° C. The cells were washed twice in 2% FBS in

PBS, centrifuged for 7 min at 1700 rpm and fixed. Cells were incubated on ice with 10

JlglmL of anti-CD80 antibodies for 43 minutes. Washed and centrifuged, the cell

precipitates were then incubated in ice with anti-rat IgG FITC for 40 minutes. After a

final wash and centrifugation step, the cells were resuspended in 2 drops of 90% glycerol

in PBS and mounted on a slide. The cells positive for C080 were counted using a

fluorescent microscope and their percentage was calculated.
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CHAPTER III

RESULTS

The primary aim of this study was to investigate the role ofCD80 in the induction

of Langerhans cell (LC) migration in a murine system and its dependence upon pro­

inflammatory cytokines. The effect of cytokines GM-CSF, IL-la, IL-lP and TNFa on

LC migration has already been elucidated to a certain extent, but not their impact on anti­

CD80 antibody induced LC depletion. Hence, this project also focuses on the latter aspect

of anti-CD80 induced LC migration. All the data recorded were pooled from three

experiments for each investigation and expressed in terms of the standard error of the

mean (SEM). The Student t-test was perfonned to ascertain the statistical significance of

the results. In addition, Dunnetts t-test was used to estahlish the difference between the

mean of the control group and the means obtained from various treatments.

Effects of Antibody against CD80 on I" Vitro LC depletion

CD80 and CD86 are the chief costimulatory molecules that are differentially

expressed and regulated on Langerhans cells (92). These molecules arc involved in

activation of primary resting T cells by providing one signal for the activation while

crosslinking of MHC II-Ag complex with TCR provides the other signal. Interest in the

role of CD80 in LC migration was sparked by a chance demonstration of depletion in LC

number in epidennis on treatment of a mouse with neutralizing antibody against the



CD80 molecule. Hence a series of experiments were performed to examine the influence

of these antibodies on LC migration from epidermis.

For this purpose epidermis was harvested and stained for IA+ cells VIa

immunoperoxidase staining two hours after intraperitoneal administration of Anti-CD80

antibody. Figure 2 indicates that 50 ~g/mL of anti-CD80 antibody caused a decrease in

the density of LC, determined as the mean number of LC per square millimeter of

epidermis in two representative experiments. In another independent research we tried to

determine the dosage effect of anti-CD80 antibody (100 glmL and 200 glmL) as well the

effect of incubation time (24 hours) on LC depletion (data not shown). We found no

substantial difference either due to the increase of antibody concentration or decrease of

incubation period. The controls were from mice that were not treated with any antibodies

and were observed to be with in 800-1000/mm2 range mostly, consistent with

experiments performed by others (42). A Student t-test was performed to establish a

difference between control and experimental groups and this difference was found to be

statistically insignificant. The results from the Dunnett's test emulated basically the

results of the Student's t-test. Indirect evidence to ascertain if the decrease observed

involved migration of LC in response to antibody against CD80 was obtained when

antibodies administered against both ICAM-l and LFA-l adhesion molecules were

shown to have blocked the depletion as depicted in the Figure 2.

This treatment was chosen to verify LC migration due to the fact that other

investigators have found that successful accumulation of LC in draining lymph nodes

occurs on upregulation of ICAM-l expression (44) and also subcutaneous administration

of antibody to ICAM-I and LFA-l led to a complete inhibition of contact

hypersensitivity (129). The results also indicate that antibody to ICAM -1 produced a
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Figure 2. In vitro blocking of Anti-CD80 induced LC depletion by Anti-lCAMl and
Anti-LFA 1 Antibodies. After 2-4 hours on i.p. administration of antibodies, skin sections
were dissected out and incubated on RPMl soaked filter for 48 hours. Epidermal sheets
were then isolated and prepared for immunoperoxidase staining with anti-MHC class II
antibodies. The density of Langerhans cells was determined by counting 10 random fields
per sheet (2 duplicate sheets per experiment). The results are expressed as mean +/- of the
S.E~ from two independent experiments (i.e., 2 mice per treatment group). Statistically
slg~l1ficant difference in the means of the control group and the other groups treated with
varIous antibodies are indicated by an *.
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more pronounced inhibitory effect when compared to treatment with antibody to LFA-I.

No synergistic effect was established as a result of co-administration of anti-ICAM-l and

anti-LFA-l antibodies. Again, the Student t-test showed no significant differ nee

between the various treatment groups. Nevertheless, these results demonstrate that there

is likelihood that anti-CD80 antibody causes LC migration though quite small in

magnitude and this mechanism is in part, dependent upon upregulation of adhesion

molecules ICAM-l and LFA-l. Another observation of note in this experiment is that

anti-LFA 1 specific antibody which belongs to the same isotype class as anti-CD80

(lgG2a) does not cause depletion in LC frequency. This is important because in this study

no IgG controls were used to rule out the involvement of Fc receptors.

Effects of inbibiting LC depletion by Anti-CD80 Antibodies

using Anti-GM-CSF, Anti-IL-la, Anti-IL-IJ3 and Anti-TNFa Antibodies

As previously mentioned, studies have been performed to explain the role of

cytokines in regulating LC migration in response to haptens. Evidence gather d from

these studies indicates that TNFa and IL-l pplaya significant part in mobilizing LC from

epidermis to dermallyrnph nodes (41) while GM-CSF and IL-lo: were implicated in the

process also (168, 185). Therefore our investigations focussed on these cytokines to

determine if they were the candidate cytokines that regulated the anti-CD80 induced

effect on LC migration. The antibodies to these cytokines were injected in combination

with ant'-CD80 in Balb/c mice intraperitoneally. The skins were harvested and incubated

for 48 hours at 37% in a 5% CO2 incubator. The epidermis was then isolated and stained

for I_Ad surface antigen by the peroxidase Vector VIP reaction mixture.

36



The results indicated that simultaneous injection of 100 /-11 of 100 /-1g1mL anti-TNFa

antibody blocked the anti-CD80 induced LC dep,letion as assessed by the frequency of

1a+ cells (Figure 3). The anti-CD80 induced effect was statistically significant at the 95%

confidence level as established by both Student's t-test and Dunnett's t-test. Also of

interest in this experiment was the observation that a -27% inhibition of anti-CD80­

induced decrease was achieved with anti-TNF antibody. In Figure 4, it can be noted that

100 ilL of 100 Ilg/mL of neutralizing antibody against IL-l p partially blocked anti-CD80

induced depletion effect. The relatively less significant effect of anti-IL-l p can be

explained based on the indirect nature of 1L-l p'S effect on LC migration suggested by the

work of others (41). The current theory is that IL-IP interacts with keratinocytes to

trigger production of TNFa. But another possibility is that the culture media might have

been contaminated with LPS, a factor with known effect on LC depletion. The decrease

in LC number on treatment with IL-l ~ specific antibody also supports this possibility

(Fig. 4). Treatment with the 100 llg/mL antibody against IL-I a was without effect on the

influx of LC as depicted in Figure 5 while I00 ~lg/mL antibody against GM-CSF

produced ambiguous results. Interestingly again anti-IL-la seemed to have caused som

depletion on its own. A peculiar aspect of this experimental set up was that the controls

were much below the range (800-1000/mm\ This could loosely be attributed to the

possible LPS contamination of the media, as in previous case, or to the age of mice used

in these series of experiments. Some researchers in the past have established a direct

relationship between the number of LCs residing ill the skin and the age of the organism.

In Figure 6, it is illustrated that antibody against GM-CSF on its own caused some

depletion in LC number.
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To explain this the LPS induced depletion theory could be revoked but few other

possibilities are discussed with in the chapter IV. When administered concomitantly with

anti-CD80 antibody it blocked the effect of anti-CD80 antibody induced LC depletion but

to a lesser extent. The Student's t-test and Dunnett's t-test showed a statistically

insignificant outcome for the anti-IL-la and the anti-GM-CSF-induced effects.

Overall, these results implicate TNFa as a primary mediator of anti-CD80 induced

depletion and GM-CSF as a secondary mediator due to its less pronounced effect.

Cytokioe Secretion by Epidermal Cells

One of the important questions to be addressed was whether cytokines play an

upstream or a downstream role in anti-CD80 induced depletion effect. Earlier studies

demonstrated cytokine production by epidermal cell populations. Hence, immunoassays

were performed to analyze the secretion of TNFa and GM-CSF by epidermal c lis on

treatment with anti-CD80 antibody. Whole epidermal cell suspensions at a concentration

of 1 x 106 cells/mL were cultured for 24 hours at 37°C in the presence TNFa, IL-l P.

GM-CSF separately and in combination with anti-CD80 antibody to determine the levels

of TNFa secreted using Quantikine™ murine TNF immunoassay kit (data not shown).

The data obtained from two such experiments does not demonstrate that TNFa

expression was induced exclusively as a result of anti-C080 treatment to any significant

level. On the contrary, control and the groups treated with IL-I. GM-CSF individually

and in combination with anti-CD80 also showed comparable levels ofT Fa production
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which were in the range of 200 pglmL. The experiment was repeated ith 48 hours time

point with out any significant change in the level of expJ1ession of 1: 0.. In addition to

TNFo., whole epidermal suspensions were exposed to the same set of cytokines for 48

hours and assayed for GM-CSF production in three separate experiments using

Quantikine™ murine GM-CSF kit. The results again indicated that there was negligibl

difference in the levels of GM-CSF induced as a result of anti-CD80 treatment wh n

compared with either control group or other treatments. The GM-CSF concentration was

approximately in the range of 220 to 250 pglmL in all cases except when the treatment

involved exposure to GM-CSF itself in which 'case it was 500 pglmL, presumably due to

the presence of residual cytokine. The results of this study show that the cytokine

production by anti-CD80 may not possibly explain the anti-CD80 effect. Thus, it is more

likely that cytokine upregulation of CD80 expression; GM-CSF (116) and TNFo. in

particular, may explain anti-CD80 induced mobilization of LC as depicted in the Figure

6. The data presented in the Table 1 indicate that modulation ofCD80 expression by GM-

CSF and TNF was not very substantial. But considering that LCs compris -1 % of total

EC population, and only a subset of these LCs might express CD80, the results seem

interesting. Also of some import is the fact that trypinization of epidennis to obtain cell

suspension (indirect immunofluoresence staining) impairs the expression of CD80 (63b).

To avoid this in the future, enzymes such as dispase can be used as a substitute.

Summary

The outcome of the various experiments undertaken in this study has revealed important

information about the aspect of LC migration via the engagement of the costimulatory

molecule CD80 that is expressed on its surface during maturation. The results sindicate
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significant involvement of cytokine TNFa in anti-CD80 induced migration of LC from

epidennis. It also showed that cytokine GM-CSF, adhesion molecules ICAM-l and to

lesser extent LFA-I may possibly be involved in the anti-CD80 induced migration

process while ruling out the involvement of IL-I. ELISAs for GM-CSF and TNFa did

not detect significant differences in the levels of these cytokines secreted among various

groups. These results support the possibilities that cytokine induction is probably not the

cause of the anti-CD80 induced effect. The mechanism by which anti-CD80 antibody

causes depletion is unknown, though the possibility that these cytokines might exert an

affect pror to anti-CD80 induced migratory pathway cannot be ruled out completely.
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Table I

Percentage of CD80-positive epidennal cells as obtained by Indirect

Immunofluorescence Staining. The epidennal cells were cultured

with TNF and GM-CSF for 24 hours, stained with FITC-CD80

Abs and observed under fluorescence microscope

Treatments TNFa +
Percentage of Control TNFa GM-CSF GM-CSF
FITC positive

cells =>

Trial 1 0.7<) 3.25 2.5 2.88

Trial 2 0.83 2.1 1.8 3.3
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CHAPTER IV

DISCUSSION

r.

There is no doubt that the induction of LC migration is one of the important

physiological events occurring in the skin with an imminent effect on the activation stat

of naive and quiescent T-cells and hence by extension on all T cell dependent cutaneous

immune responses (84). Antigen loaded LCs move down the afferent lymphatic vessels

to T-cell ricb paracortical regions of the lymph node where they encounter and activate

T-cells. The activated T cells then enter or "home" towards the original site of

inflammation and bring about a secondary phase of the immune response (152). An

impressive quantity of data regarding the factors eliciting LC departure from epidermis

has accumulated over last few years. T~e complete understanding of the molecular

mechanisms involved in the migration process is still being unraveled. Hence, th

knowledge gained so far is mostly fragmentary, and some results are seemingly

inconsistent and conflicting. It is of utmost importance to obtain an overall picture to

exploit the potential of LCs and by extension DCs, in immunotherapy.

As reported earlier, diverse factors such as antigens, chemical aHergens, UV light,

FITC, cytokines and several members of chemokine family induce the vectorial

movement of LCs (40, 9, 77, 95, 76, 236). The morphological changes influence the

functional aspects of LC and involve upregulation of CD80, CD86, CD40, CD54 and

MHC IT molecules (5). It is imperative to stress that maturation and migration processes

occur paraHel to each other. Hence, the questions arises whether molecules such as

CD80 that are traditionally associated with the maturation process of LC and the
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costimulation of virgin and resting T cells, are also involved in the migration of LCs.

Though traditionally CD80 and CD86 were associated with regulation ofT c 11 activation

versus tolerance, we have hypothesized that CD80 may influenoe LC egress and

localization by triggering signaling pathways on ligation with CD28/CTLA-4 in ivo.

Thus the crosslinking of the ligand pairs may operate in reciprocal dir ctions. We

assumed for our present study that crosslinking of CD80 with its antibody mimics th

engagement of CD80 receptor with its ligand CD28 or CTLA-4 on T cells.

In the present endeavor, we have attempted to uncover an unknown facet of CD80.

In the course of this, we have investigated and analyzed a triad of questions. Do

antibodies against CD80 induce a change in the frequency of LC number in the murine

epidermis? If yes then, is the change in the frequency due to migration? If yes again, then

do the cytokines influence the anti-CD80 induced migration?

As reported earlier, adhesion molecules and their ligands actively participate in

cutaneous inflammatory episodes by directing leukocyte trafficking and by mediating

antigen presentation. Modifications in adhesion molecule expression were reflected by

changes in the cell morphology including cell depolarization, the appearance of filopods

and loss of adherence (13). Anti-ICAM-l and anti-LFA-l antibodies have been shown to

prevent allo-graft rejections and contact hypersensitivity among others. In particular,

ICAM-I specific antibody has been observed to have had a pronounced effect on contact

sensitivity induced LC migration while LFA-I effected LC migration to a lesser degree

(129). Our fmdings that i.p. administration of antibodies against CD80 causes depletion

in LC density can be supported by the fact that anti-ICAM-] antibody and to a certain

extent anti- LFA-l antibody block the anti-CD80 induced effect. This also allows us to

speculate that the depletion may be due to migration of the LC from epidermis.
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Therefore, our data agree with the above obseIVations to a certain extent. Ho er th

synergistic effect of anti-ICAM-I and anti-LFA-I reported by Ma et al. was not se n in

our case (129). Our results indicate that both these adhesion molecules must b use a

similar mechanism in the induction of migration. The lower effect of anti-LFA-I might

be attributed to a lower level expression of LFA-I by immunocompetent cell in tb

epidermis or to the amounts of antibody used as well as the fact that LFA-I can coupl

with its ligand ICAM-I only upon activation. In fact, Ma and others barely detected the

presence of LFA-Ion LCs by immunohistochemical techniques and also observed that

endothelial cells do not express LFA-I (129). Activation ofLFA-l on T cells was shown

to have occurred via engagement of different cell surface receptors. For instance antibody

and CD28 crosslinking (187) and, TCR and MHC 11 interactions were observed to have

had an influence upon the LFA-l and ICAM-l interactions (221). Therefore, one

possible explanation for blockade of anti-CD80 induced LC migration by anti- ICAM-l

and anti-LFA-l is that crosslinking of antibody with C080 initiates LFA-l and ICAM-I

interaction by producing some unknown signal.

OUf next goal was to examine the effect of cytokines that were reported in the

literature to have had an effect on LC migration- GM-CSF (89, 168), IL-la. (185), IL-lP,

TNFa. (41) on anti-C080 induced effect. Consequently, we examined the effect of anti­

cytokine antibodies on anti-C080 induced LC migration. We found that both anti-TNFa

and anti-GM-CSF though the latter to a lesser extent, seemed to have prevented the anti­

C080 induced effect on LC migration. While IL-la. and IL-I p were shown to have had a

negligible effect.

Two possibilities that might explain the influence of TNFa and GM-CSF are that

the antibody/CD80 crosslinking induces expresslOn of these cytokines and hence the
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effect, or that the cytokines were produced upstream of the anti-CD80 induced effect as

result of the trauma to tissue which was caused while recovering skin explants. B

performing TNFa. and GM-CSF ELISAs we tested these possibilities. Both the cytokines

were found to be secreted by all the treatment groups in fairly high amounts and no

significant difference was established between the control groups and the various groups

treated with CD80 specific antibodies. Hence one possible explanation might be that the

cytokines TNFa. and GM-CSF induce expression of CD80 molecules on LCs in vitro

culture since their expression on freshly isolated epidermal LCs was very poor (92, 34).

Recent evidence also indicates that a dramatic increase in the expression of CD80

occurred on acute myeloid leukemia cells on addition of GM-CSF and other cytokines.

Hence, our model contends that the upregulation of CD80 by itself does not cause egress

of LC from epidermis but once CD80 binds with antibodies, signals are generated in the

fonn of cytokines (Fig. 7) or chemokines that are eventually responsible for migration of

LC.

Some recent works in the literature indicate that ll..,-1 p or TNFa. is not sufficient to

induce CD80 expression on LCs in vivo (149) while others like Salgado showed that

TNFa. is required for upregulation of CD80 in vitro (170). It was also reported by Ozawa

et at. that while none of the antibodies to lL-l p, TNFa., or GM-CSF changed the

upregulation of Ia antigen, ICAM-l, or CD40 on cultured Langerhans cells, anti-GM­

CSF suppressed that of CD80 and CD86. Regardless, taken together the studies indicate

that IL-l p is required for the upregulation of la, ICAM-1, CD86, and CD40 and not for

the upregulation of CD80, while GM-CSF and TNFa. are required for the upregulation of

CD80 (34,170,149,150).
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Our results that anti-TNFa and anti-GM-CSF antibodies induced blockade of anti­

CD80 induced LC depletion can be explained based on the above-publish d works and

by evoking the overly-simplistic paradigm we put forward. The findings of Larsen et al.

also corroborate these observations and link GM-CSF induced upregulation of CD80

with functional maturation and migration of LCs out of skin (116, 177). Our data was

found to be statistically significant for anti-TNFa treatment and not for anti-GM-CSF.

This inconsistency can be attributed to the observation that GM-CSF apart from its effect

on migration also plays a role in LC precursor recruitment from circulating blood to the

skin (89). This also explains the partial decrease in LC number on administration of anti­

GM-CSF alone.

Alternatively, the effect of TNFa on LC migration can be attributed to its influence

on the regulation of the expression of adhesion molecules on LC (96). TNFa induced

endothelial E-selectin, intercellular adhesion molecule-l (lCAM-l) and vascular cell

adhesion molecule-l (V-CAM-1) in all groups, and adhesion molecule ICAM -1 and V­

CAM-l expression by interstitial dermal dendritic cells and ICAM-l by keratinocytes

was observed (74). Interwoven with this is one possiblity that crosslinking of C080 and

its antibodies effectively signals upregul.ation of ICAM-l and LFA-l indirectly and hence

the explanation that they mediate anti-C080 induced migration becomes much more

plausible. Another explanation might be that the antibody against C080 induces

chemokine production that directs mobilization of LCs from epidermis. Richins eL at

have shown that antibody against the chemokine MCP-l prevented depletion induced by

anti-CD86 (Richins unpublished).

The exact roles played by cytokines TNFa and GM-CSF or by the adhesion

molecules ICAM-I and LFA-I in anti-CD80 orchestrated LC migration have still to be
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elucidated. Also of the interest is the nature of the signals that regulate expression of the

adhesion molecules. Nevertheless, it may be that cytokines like TNFa or chemokines like

MCP-l serve as important mediators of anti-CD80 induced migration.
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Figure 7. Schematic representation of the mechanism involved in Langerhans cell
migration from murine epidermis on treatment with antibodies against CD80 co­
stimulatory molecule.
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