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PREFACE 

This thesis is the study of certain intersectional properties of 

families of compact convex subsets of finite d:i,mensional normed real 

linear spaces~ Some of the results, especially _those in Chapter I, are 

stated in a more general setting since it is just as easy to do so. 

The problems which .are considered. are centered around a theorem setting 

forth conditions under which the intersection of a .. family of convex 

sets cannot be empty. This famous theore!)l of Eduard Helly was. 

discovered by him in 1913 and is referred to as Helly's theorem. A 

form of .Helly's theorem is stated in Chapter II using the notation 

developed in this study. 

The symbol Rn will denote then-dimensional real linear space 

which consists of all n-tuples of real numbers. The symbol - En denotes 

n-dimensional Euclidean space. The terminolQgy, l3 is a family of 

subsets of X, 

set, A, and 

is used to mean that· l3 ={A: a EA} for some index 
a 

A c X for eacq. a · E A, 
a 

Moreover, it is possible to 

have Aa = AS for a,S EA with a 'F S, The rest of the symbolism 

and terminology used is either defined or is the same as that in. 

Valentine [10]. The end of a proof is marked by the symbol • , . 

The first chapter concerns itself witlJ a generalization of a 

well-known theorem about families of c+osed and compact sets with the 

finite intersect.ional property. In Chapter II certain intersectional 

properties of families of mutually parallel parallelotopes in En are 



st.udied, It should be pointed out that in some math~matical writings 

the term "parallelotope 11 always implies the existence of an interior 

point; however, this is not the case in this thesis. Chapter III is a 

study similar to that of Chapter II, except more general families of 

compact .convex ·sets are considered. 

I wish to express my appreciation to all those who assisted me in 

the preparation of this thesis. In ·particular, I would like to thank 

Professor E. K.· McLachlan for his inspiration,, advice and assistance. 

For their encouragement and cooperation while serving as members of my 

committee, my thanks goes to Professors Forrest Whitfield, Joe.Howard 

and Earl Ferguson. Also, I want to thank the typist, Cynthia Wise., for 

the typing of .this thesis, fellow student Gloria Gautier for proof 

reading a rough draft, and my wife, Judy, without whose help I could 

never have finished my work. 

Finally,. I am indebted to Jol)n Jewett and the Department of 

Mathematics and Statistics for a·Graduate Assistantship the past five 

years. 
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CHAPTER I 

FAMILIES OF COMPACT SETS 

Let· X be a topological space and r a positive integer. A 

nonempty family t5 0f subsets of X is said to have the . 

r-intersectional property if there exist nonempty subfamilies 

(a) and 

(b) n {A: A e: 0. } :/: 0 for 1 < i < r. J. . 

The families [5 1 ,[5 2 , •. , , or give a finite partition of [; into r 

subfamilies. For example, if [; contains n sets, r could be n, 

and each [Si could contain a single set of . t5. Thus, in general a 

finite family t5 will always have the r-intersectional property with 

r equal to the cardinality of the family '3. Notice that nothing 

requires that the subfamilies [;i be disjoint, Consequently, 

might indeed be identical to [;j, 1 ..::_ i < j < r. Thus, even if 

contains a finite number of sets, r can be arbitrarily large. 

Moreover, if n is a positive integer with n > r, then [5 also has 

the n-intersectional property, 

However, the .minimum value for r is well-defined since the 

infimum of the possible numbers r is a positive integer. Let lo I be 

the minimum value of r such that . t5 has the r-intersect.ional property. 
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If Jo J = 1, the sets of ij have a nonempty intersection, It is also 

clear that if q is a nonempty subfamily of t5, then JQ J ..::_ JtS J. 

Thus, if t5 has the r-intersectional property, then every nonempty 

subfamily of 0 also has the r-intersectional property. If a family 

t5 fails to have the r-intersectional property for any r, then JtSJ 

is defined to be 00 This is the case for example when iJ is the 

family of all subsets of an infinite set. 

Choose a point x. 
J. 

from each of the nonempty sets n{A: A e: i).} 
J. 

in (h) and let D = .{x1 ,x2 , , . , , xr}, Then the set D may comta;f.n 

les.s than r distinct points. Moreover, given .any A e: !) we have 

that A contains at. least one point of the set D. Conversely, if !) 

is a nonempty.family of subsets of X such that there exists a nonempty 

subset D of X containing no more.than r points with the property 

that D n A f:. 0 for all A e: t5, then iJ has the r--intersectional · 

property. To see this, let D n (U{A: A e: t3}) = {x1 ,x2 , , ,, , xk}. 

Then k < r and each of the subfamilies !J. = {A e: r,: x. e: A} are 
J. J. 

none111pty for 1 < i < k. More0vei;-, x. e: n{A: A e: !J.}. 
J. J. 

Thus, · !J has 

the k-intersectional property, ·and since k .::. r, !J also has the 

r-intersectional property. Moreover, Jr, J = r if and only if there 

exists a subset D of X containing r points such that An Dr 0 

for all. A e: i), and no set with fewer than r points has this property. 

Griinbaum and others have defined a family !) to be r-pierceable if . 

there exists a set D containing r points such. that A n D f:. 0 for 

all A e: r,. Thus, . a family iJ of sets. is r-pierceaqle if and only if 

lj has the r-intersectional property. 

A well-known theorem about, families of closed and compact sub.sets 

of X. with the finite intersection property is as follows: Let !J be 



a family of closed and compact subsets of X such that each finite 

subfamily of o has a nonempty intersection, Then the family 0 has 

a nonempty intersection. In order to motivate the following two 

3 

theorems, we state this theorem as follows: If [;; a family of closed 

compact subsets of X, is such tha.t jq I ..::._ 1 for each nonempty fi.nite 

subfamily q of o, then lo I ..::.. 1. 

Really IGI cannot be less than one, but the less or equal symbol 

is used to show a pattern that will appear in the next theorem, 

Theorem 1-1. Let o be a nonempty countaple family of closed compact 

subsets of X and a posiUve integer •. If for ea.ch 

nonempty finite subfamily. Q of 0, then Joi..::.. mo. 

Proof: The set {IQ I : .Q. is a nonempty finite subfamily of. m of 

positive integers is bounded above by m0 ; thus it has a maximum, and 
I 

the maximum is attained on some nonempty finite subfamily 0 of O, 
I I 

Since 10 I.:. mo, it suffices to show that lo! = lo I. Let 

0 = {Ci: .i = 1,2, • • e} and t\ = {c.: 1 < i < k} for k = 1,2, 
1 -
I I 

For each integer k we have that .0 co u ~ . - ck' thus, 
I I I 

lo I < lo u i3kl. However, 0 u ok is a finite. subfamily of o, se -
I I I 

the definition of o implies that 10 u 0k I .:. lo I . Thus, 
I I I 

10 I ·= lo u Ok I for ei;i.ch k, Let. m = Jo J. Then the definition of 
I 

lo u Ok I implies that for each k there. exi!,!tS a set Dk of m 
I 

distinct points of X such, that each set of ok U o contains a point 
I 

of. Dk. Let K denote the c0mpact set U {A: .A E t5 } , If there exists 

a point x E Dk, K, tqen there would exist a subset of Dk consisting 
I 

of fewer than m points such that each. set of o contains one of 
I 

these points. This would imply that o has the r-intersectional 
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property for some r < m, This would then .. contradict the definition of 

m, Therefore, Dk c K for each k, 

for i • 1,2, Then the sequenc~ 

contains a convergent subsequence 

in K such that 
1 1 x. = x1 . 
J. • 

J 

Let D1 - D 1 1' and for each k. and j > 2 with 

also, for i. l < k < i. 
J- J 

Then for 

let 

Dl = 
k 

and 
1 1 

Y1 = x. 
J. • 

we have 

t\ c t)i ' 
j 

J 

which implies each set in t\ contains a point of 

i. l < k < i, 
J- - J 

Dl 
k 

for 

let 

k = 1,2, ... Also,. the sequence 
1 

{yk} is a convergent sequence. 

Suppose now for 1 < r < m it has bee.n shown that for each 

integer k there exists a set D~ containing m points with the 

following properties: 

(a) Each set of , [:,k contains a point of 



(b) 

(c) 

There. exist r convergent sequences 

with x{ e: n; such that for j :f,. t, 

for some i, and 

Now for each positive integer i choose 

• e • ' 

r 
x.}. 

1 

Th h {xri+l} en .t e sequeI}ce · contains a convergent subsequence 

such that r+l 
x. 

Let Dr+! r and for each k = Dl' 1 

Dr+l 
k 

also, for ij-l < k < ij let. 

t t 
Yk = x. 

. 1. 
J 

and 

= 

and 

11 

j > 2 with 

D. 
1, 

; 
J 

t t 
Y1 = x.-

11 

i. 1 J- . 

for t = 1,2, _ ••. , r+l.. Then for i , 1. < k < i . we have 
J- - J 

which implies. each. set of · Ok 

k = 1,2, ... , 

contains a point of Dr+l 
k 

< k < i. 
- J 

for 

5 

let 
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The r+l sequences 1 .::_ j .::_ r+l , and the sets 

satisfy properties (a), (b) and (c), with r replaced by r+l. 

Thus, by induction there exist sets k = 1,2, •.. , containing 

m distinct points, and sequences which satisfy 

properties (a), (b) and (c) with r = m. 

Let xj denote a point to .which the sequence. {x{}, 1 .::_ j .::_ m, 

converges .. It will be shown that each. element of ~ contains one of 

the points of the set 1 2 
D = {x ,x , • • e ' 

m x }. Suppose that this is not 

the case. Then there exists a set· A e: t5 such that A contains no 

point of D. Since A is a closed set, for each j with 1 .::. j .::_ m' 

there exists an integer. n. such that· i > n. implies that xj ~ A. 
J - J i 

Let no = max{n1 , .... , n } . Then for i .::.. no' x~ ~ A for all j with m ]. 

1 .::_ · j .::_ m. Now A e: ~l.. for some· i > n · 
D - O' thus, A contains no point 

of 
m · 1 2 

D. = {x. ,x., 
]. ]. ]. 

m 
••• ,·x.}e 

]. 
This is a contradiction of property (a) . 

Hence; each set of n contains one of the points of.the set D. This 

implies that ij has the .m-intersectional . property. Hence, I tSI .::_ m; 
I I 

however, t5 c ij implies tha~ I UI = IO I = m. • 

Theorem 1-2. Let o = {AS: Se: A} be a nonempty family of c+osed 

compact subsets of a space X. If IQ. I .::_ _m0 for, each nonempty finite 

sub family G of o, then lo I .::. m0 • 

Proof: The proof proceeds by transfinite induction on the cardinality 

of A. If the cardinality of. A is the.same as that of the posi1;:ive 

integers, then the desired result follows from Theorem 1-1. Let E be 

a cardinal number and suppose tha~ if the cardinality of A is less 

than E, then the desired conclusion holds •. To prove the theorem W'hen 

the cardinality of A is equal to E, well-order A by a relation . .::_' 



such_ that for each A e: A the- set: {S: S ::._' ).} has cardinality less 

than E, For each >.. e: A let i)A = {AS: (3 .:.' >..}. The induction 

hypothesis implies that Ji:5>..J .::._ m0 for each >.. e: A. The proof now 

follows in a similar manner as that.of Theorem 1-1 using nets with the 

directed set (E,::_') instead of sequences. The theorem follows by 

transfinite induction. • 

We now state and prove a corollary to Theorem 1-2 which will be 

used in the sequel. 

Corollary 1-,2,1. Let i) be a nonempty family of compact subsets of 

En, If JqJ .:_ m0 for each nonempty finite subfamily Q of i:5, then 

Proof:· The corollary follows from Theorem 1-2 after noticing that_ 

every compact subset of En is closed. • 

7 



CHAPTER II 

FAMILIES OF MU_TUALLY PARALL_EL PARALLELOTOPES 

In this chapter, families of mut1;1ally parallel parallel,otopes in 

En will be defined and ce~tain intersectional properties of these. 

families considered. 

Definition 2-1. Let {x1 ,x2 , ... , xn} be a basis for En. A subset 

P of En is called a parallelotope with respect to the basis 

;\ . , i = 1 , ... , n , and 
l. . 

Si , · i = 1 , ... , n , with >-. < S. such that 
l. - l. 

n 
E a.x.: ;\, < a < Si'' 

i=l l. l. l. - i 
i • 1, ... , n }· 

A nonempty family t5 of subsets of En is c~lled a family of mutually 

parallel parallelotopes in En if there exists a basis 

{x1 ,x2 , ..• , x11J for En such that each set in o is a parallelotope 

with respect to the basis {x1 ,x2 , •.• , xn}. 

Note that if p is a parallelotope in En and 

points in En 
' then the family 

mutually parallel .parallelotopes 

there is associated a scalar a ' x 

\3 = {x + p: x . E: A} 

in En. Moreover, 

then the family 

A is a set of · 

is a family of 

if to each x E: 

{x + a P: x E: A} 
x 

A 

is also a family of mutually parallel parallelotopes in En. 
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Bounds on li31 

The following theorem is .due to Edward Helly. It is stated here 

without proof and shall be referred to in the sequel as Helly's theorem. 

A p~oof can be found in Valentine [p. 70, 10]. 

Helly' s Theorem. Let ~ be a family of compact .convex sets in En 

containing at.least n+l sets. A necessary and sufficient condition 

that lo I = 1 is that Jq I = 1 for every subfamily q- of o which. 

contains n+l sets. 

The following theorem is due to B. Sz.~Nagy [9]; however, to be 

complete we shall give a proof. 

Theorem 2-1. Let 0 = {P : a E: J\} be a family of mutually parallel 
a 

parallelotopes in En. If each two sets of 0 have a cotnmon point, 

then l~I = 1. 

Proof: We proceed by induction cm n, the dimension of En. If n = 1, 

then the result follows from Helly's theorem. So assume the theorem 

holds for all k with 1 < k < n. Due to the compactness of the sets 

of i3 it suffices to assume that . t5 is finite. Thus, assume. 

o = {P1 , •.• , Pm} for some integer. m > 1. Let {x1 , ..• , xn} be a 

basis for En such that each set in iJ is a parallelotope with 

respect to the basis {x1 , , .. , xn}. Each Pi E: t5 has the form 

for some set 

P. 
]. 

a. x. : A~ < a. < S~, 
J J J J J 

j=l, ••• ,n} 



of scalars. Let 

hyperplane 

For in . t5 

Let 

Thus, the family 

... , ... ' 

a1i = mi'n{aJ1. ·. J. = 1 ·n} 
µ µ ' • ' '·' • 

{ ~ E.X.: 
j=l J J' 

there exists a point 

Then let H be the 

•••+ax 
nn in 

+ a x . n n Then y belongs to 
I 

0 = {P n H: r 
r 

1, ... , m} pairwise inter~ect in 

10 

the (n-1)-dimensional hyperplane H. The theorem follows by induction. 
• • 

Definition 2-2. A family .tJ of nonempty convex sets in n· E has the 

(p ,q)-property, where p and .q are integers with p .:. q .:. 2, if t5 

contains at least p sets and from each p sets of lj some q have a. 

common point. 

Relating this definition to Theorem 2-1 we see that if the family 

t5 given in the hypothesis has at least two sets, then rs has the 

(2,2)-property. Thus, The_orero. 2-1 implies that a sufficient condition 

th.at a family t5 of mutually parallel parallelotopes in with at 

least two sets, have a common point so that. rs have the (2,2)-property. 

Ex,;1mple 2-1. The four sets illus_trated in Figure 1 is a family of sets 

in En with the (2,2)-property; however, there is no point which is 
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common to a],1 four sets. Thus, we see that; a theorem such as 

Theorem 2-1 cannot hold for arbitrary families of convex sets with the· 

(2,2)-property. Figure 2 illustrates a family of five translates of a 

given parallelotope in E2 with the (3,2)-property. Figure 3 

illustrates ,a family of seven translates of a ·given parallelotope in 

E2 with .the (4,2)-property. 

Definition 2-3. Let k be an odd positi.ve integer such that· k > .5. 

Then a family (', of mutually parallel parall,elotopes in En is said to 

beak-cycle if l3 consists of k · distinct translates of a 

parallelotope no three of which .have a common point and (', has the 

(l/2(k+1,),2)-property. 

Figure 2 then· rep.resents a 5-cycle in· E2 , and Figure 3 represents 

a 7-cycle in E2 • It is a simple exercise to construct ,figures such as 

Figures .2 and 3 to show t4at·a k-cycle exists in En for.all odd 

integers k with k > 5 and all n with n > 2. 

The following theorem is original; however, the proof is similar to 

the proof of Theor.em 85 of (5] • 

Theorem 2--2. Let 13 be a family of .mutually parallel parallelotopes in 

n E , and let: .. k and q be integers such that., k .:_ 1 - q where q .:_ 3. 

If ~ has the (2q+k,q)-property and does not have the 

<2 (q-1)+k,q-1) -'-property, . then lo I 2 q + k + 1. 

Notice that the restrictions on q and k make the two mentioned 

properties meaningful with regard to their definition. 

Proof:. Since [5 does not have the (2(q-l)+k,q~l)-property, there is a 

sub collection Cl of o containing 2 (q'.""l)+k. sets such that. n0 q-1 



12 

Figure 1. Sets with the (2,2)-property 

Figure 2, Translates with the (3,2)-property, 

Figure 3. Translates with the (4,2)-property. 
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sets of Q have a commc;m point •. Let D and E be distinct· set:s of 

o , Q. Then Q U {D ,E} is a cc;,llection of 2q+k sets of o, and 

hence, some q of the sets in Q U {D ,E} must have a common point. 

Recall that no q-1 sets of. Q have a cotmnon point, Hence; any q 

of the sets of Q U {D ,E} which have a nonempty intersection C.!!,nnot 

contain more.than q-2 sets from Q. Thus, any such q sets with a 

nonempty intersection must conta:!-n both D and E. Thus, i3 ' Q has 

the (2,2)-property. Moreover, every set in t; '- Q must have. a nonempty 

intersection with s0m.e q-2 sets of Q, 

Let J:/. be any collection of q-2 sets of Q which have a 

nonempty intersection. Let A1 ,A2 , ••• , Aq+k denote the sets in 

Q '- J:/.. 

follows: 

Define subcollections ~o, 
J. 

1..:::.. i..:::.. q + k + 1, of i3 as 

~q+k+l = {A e: l3: Ail (il{B: Be: J:r) =I= QI}, 

We shall show that 

q+k+l 
(a) u ~-

i=l J. 

and that 

(b) il{A: A e: ~i} ~ QI for 1..::, i..::, q + k + 1. 

Proof of (a): Suppose 

q+k+l 
u ~ 

i' 
i=l 

that is, there exists 
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q+k+l 
A' e: t3 ' 'cf !ill • 

i•l i 

Then A' is not _in Q; hence, A' belongs to l3 ' Q, The defir1,ition 

of . !In . i for 1 < i..::. q + k + 1 implies A' n Ai= 0 for 1 ..::_ i ..::_ q + k 

and A' r, (n {B :. B e: JO) • 0, We know that A' belongs to i3 ' Q; 

hence, it must intersect the intersectioq of some q""."2 sets of Q, 

Since A' n Ai = 0, 1 .::_ i ..::. q + k, any such q-2 sets _of Q which 

intersect _ A' must come from the- collection Q ' {A1 , ... , Aq+k} = M, 

However, this_implies A' must intersect the intersection of the q-2 

sets of M, .· This is a con tradict_ion since A' does not belong_ to 

!illq+k+l' Therefore, 

l3 = 
q+k+l __ 

u !ill, • 
i=l 

1 

Proof of (b): Let !illi be st,1ch that - 1 ..::_ i ..::_ q + k, If !ill, consists 
1 

of only the single set A.' 1 
then clearly n {A: A e: !illi} ·'/: 0, So assume 

!illi contains at lea.st two sets. - Let C and D be two arbitrary sets 

of !illi. If C e: Q, the defin;,L tion of !illi implies C = Ai. Then 

D e: !ill. implies that D n C = D n A. '/: 0. Similarly, if _ D e: Q, 
1 1 

D n c '/: 0, So assume D and c belong to l3 ........ Q. Since 

the (2-,2)-property, D n c "f 0, Hence, !ill,' 1 < i ..::. q + k, 
1 

family of mutually parallel parallelotopes in En such. tha'.t 

sets of !ill. have a common point. Theorem 2-1 implies that 
1 

i3 '-Q 

is a 

each 

has 

two 

Let C and D be two arbitrary sets of !illq+k+l' Then neither C 

nor D can be in Q '- ~ since no q-1 sets of Q have a common point. 

Thus, C and D belong. to (o , Q) U M. 1f one of these_ sets, say 
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C, belongs to J:i, then D n Qi tB: B e: J:i}) ,;, 0 implies C n D ~ 0. 

So assume· that C and D ho.th belongs to (; , q. Since· (; ' q has 

the (2,2)-property, C .n D -:/: ·~. Therefore, !Dl has the q+k+l 

(2,2)-property. Theoreiµ 2-1 implies that n{A: A 8 !Dlq+k+l}-:/: (ij, Thus, 

t3 has the q+k+l-intersectio11al property which implies that 

In I .:5..q + k + 1. • 

Theorem 2-3. If o is a family of sets in En with the 

(p+k,q+k)-property for p .::_ q .::_ 2 and k > 1, then· 0 has the. 

(p, q)-property. 

Proof: Suppose 0 fails to have the (p,q)-property. Then there 

exists a subcollection G of ~ with p sets such that no q 0f 

them have a common point. Let !Dl be an arbitrary subcollect,ion of 

O' q containing k sets. Then q U !Dl is a family of p+k sets 

such that µo q+k of them have a common point. This is a contradiction . 

• 
The following theorel\l is equivc!,lent to Theorem 78 of [5], However, 

wiz will give a proof to be complete. 

Theorem 2-4. Let o be a family of mutually parallel ,parallelotepes. 

in E1 with the (p,q)-property for some· p ~ q .::_ 2. Then 

JoJ_:5.p-q.+l. 

Proof: Now o has the (p-q+2+(q-2),2+(q-2))-property. Theorem 2-3 

implies that o has the (p-q+2,2)-property. Hence, it suffices to 

prove the theorem for q = 2. We 11ow proceed by induction on p to 

show that if t3 is any family of mutually parallel parallelotopes in 

E1 with the (p ,2)-property, then J ol .:5. p - 2 + 1. For p = 2 the 
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result follows from Theorem 2-1, Suppose now that the result holds for 

p ..::._ 2, Let i) be a family of mutually parallel parallelotopes in E1 

with the (p+l,2)-property. Corollary 1-2.1 implies that it suffices to 

assume that i3 is finite. Then i3 = {Pl' ' , • ' p } where each P. is m 1 

of the form. P, = {E : a, < E < s }. Without.loss of generality, assume 
- i 1 1-

s1 = min{S,: 1 < i < m}. If P. 8 t3' then either s1 e P. or P. . 1 J J J 

fails to intersect Pl. Let t31 = {P e t3: 1\ e P} and 

' ' 13' i3 = {P s B: p·n pl = (i:l}. Then . o = i\ U B 0 If. = (i:l, then 

' 
., 

i3 = 01 implies !Bl = 1. If B =f (i:l; then either lj has the 

' (p,2)-property, or B fails to contain p sets. In either case, we 

' have. lo I ..::. p - 2 + 1. u is c1ear that 

' !Bl < lt3 I+ io1 J < Cp + 1> - 2 + 1. 

Hence, by induction the theorem follqws. II 

Theorem 2-5. Let k and q be-integers such that k.:. 1 - q, where 

q ..::._ 3, and !J is a family of mutually parallel parallelotopes in En. 

Suppose that 0 has the (2q+k,q)-property and that there exists an 

integer m with O < m .:'.:.. min{q-2 ,q+k} such that B does not have the 

(2(q--m)+k,q-m)-property. Then j Bl .:'.:.. q + k + 1. 

Notice here again that .. the restrictions on q, k and m make the 

two mentioned properties meaningful with regard to their definition, 

Proof: Let be the sm.allest positive integer such tha.t · B does not 

have the .(2(q-m0)+k,q-m0)-property, Such an integer exists by 

hypothesis; moreover, 0 < m0 ..:. min{q-2,q+k}, Let r = m0 - 1, Then 

the· definition of implies that lj has the (2(q-r)+k,q-r)-property 
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but not the (2[(q-r)-l]+k,(q'"'.r)-l)-property. Theorem 2-2 implies that 

li3 J ~ q - r + k + 1 = q - m0 + k + 2, However, 

q - m0 + k + 2 .::_ q + k + 1, since m0 .:. 1. • 

Lemma 2-6 .1. Let t5 be , a family of mutually parallel parallelotopes 

in En with the (p ,2)-property for some ... p .:.. 2. Then 

Proof: We proceed by induction, For n = 1 the .result follows from 

Theorem 2-4, So assume the lemma holds in En for n > 1. To prove 

that the lemma h0lds in n+l E we proceed by induction on. p, For 

p = 2 the result follows from Theorem 2-1. Th,us, assume for p _.::. 2 

the result hold.s in . En+l. Tei prove .. the result holds for p + 1, let 

n = {P1 ,P 2 , , , , , Pm} be .. a finite family of mutually parallel 

11 1 ' En+l with· the ( +1 2) L para e otopes in · l? , -property. et 

{x1 ,x2 , , , , , xn+l} be a basis for En+l such that each set in· t5 is 

a parallelot.bpe with respect to the basis {x1 ,x2 , .. , • , xn+l}. Each . 

P. E ~ has the form, 
1· l) 

P. { n;l i i j 1, n+ 1} = Cl. .x.: Aj < a. < 13J, = • e e , 
1· 

j=l J J - J 

for some set 

e r, • J 
'i Cli i 
An+l' .,.,1,S2' '' '• s!+1} 

of scalars. ' { Qj • ' = rn1,n µl . J = 1 ,-, ..• ' m }. Then let H be th,e · 



hyperplane 

J n; 1. E , X , : E 1 = 13 i } • l j =l J J 

Let ~l ={Pe: 0: P n H -:f, 0} and £52 = o, £51 . Now the family 
I t\ = {P n H: P E o1} either. fails to contain p+l sets or has the· 

I 
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(p+l,2)-property on the n-di~ensional hyperplane H. If £51 fails to 

contain p+l sets, then clearly lo, I < ( (p+1)·-2+n ) . 
1 - n 

I 

If ,3i 
contains p+l sets, then our induction hypothesis on n. implies that 

li3~J.::. ((p+l~-2+n ), This then implies that Ji31 J .::_ ((p+l~-2+n )· 

Now the definition of H implies ea.ch set of 02 fails to inter.sect 

the set Pi. Hence, eit·her £52 'fails to co~tain p sets, or '32 has 

the (p,2)-property. If 02 has the (p,2)-property, 

hypothesis on p implies that. I"" . I < ( p-2+<n+2) ) 
0 2 - n+l ' 

contain p sets, then again we »clearly have that 

or £5 2 = 0. In either case, we have 

then our induction 

If 0 2 fails to 

( p-2+(n+l) ) 
n+l 

I I I I < ( (p+ln)-2+n \\, + ( p-2+n+(n1+1) ) i3 = 01 u i:52 ) 

= (p-l+p.) ! + (p-l+n) ! _ I ·[ (n+l) + (p-1) J 
n ! (p--1) ! (n+l) .! (p-2) ! - (p-l+n) · (n+l) ! (p-1) ! 

Thus, for each finite family '3. of mutually parallel parallelotopes in 

n+l I ""I .:'.:. ( (p+l)n-·+2+1 (n+l) ) , E with the (p+l ;2)-property we have u 

Corollary 1-2.1 implies the same is true for infinite families. By. 

induction on p we have for all p ~ 2 the desired result in En+l, 
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By induction on n · we ,conclude .. that .the theor~m is true .in En· for a],1 · 

n > 1. • 

Theorem 2-6. Let . k and . q be i~tegers such that 2 .::_ q .::_ 2q + k, 

Then ,for· any family O of mutually parallel parallelotopes in· En· 

with the (2q+k,q)-property we have· 

where we take the. $tandard convention by defiµing: ( : ) =. 0 if m < n. · 

Pr0of: , The proof. consists of two cases: (a) · k < -2 and. (b) , k > -2. 

Proof of (a): If k = -q; then·· o· has the·. (q,q)-propert:y. 

Theorem 2-3 implies that o has the (2,2)-prope+ty. Thus,'. for k = -q, 

Theorem 2-1 implies the. desired .r~sult, If k > -q~ let m = q + k~ · 

Since -q < k .::_-2, we have that, 0 < m .::_ miri{q-2,q+k}. If l3 has the 

(2(q-m)+k,q-m)-property, that·is, the (-k,-k)-pr0perty, .then as before 

The0.rems 2-3 and 2-1 imply that lo I = l. If O fails to have the . 

(2(q-m)+k,q-m)-property, Theor~m 2-5· implies tha.t IOI .::_ q + k + 1. 

Hence, in ·either. case ~e have 1'11 .::. q + k + 1,. Thus, for k ·.::. -2, 

101 .::_ max ·{ q+k+ 1 , ( 2+~+n ) } = q + k + 1. 

Proof of (b): If q = 2, then the result f€1lbws from Lemma .2-:-6.L If 

q .~ 3~ let m = .q - 2, . Than O < m ~ min{q-2,q+k}. If o has the· 

(2(q-m)+k,q-m)-property, that is, the (4+k,2)-property, then as above 

Lemma 2-6.1 implies the .desired result. If o fails to have the· 
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(2(q-m)+k,q-m)-property, .Theorem 2""'.5 implies that 1,i3 J ,.::. q + k + 1. 

Thus, in ei.ther case we have 

The Functicms . Nn (p ,q) at).d Tn (p ,q) 

Two functions of th.ree variables Nn(p,q) and Tn(p,q) will now 

be defined. Properties of these functicms will then be st.udied in 

detail. The function Nn (p ,q) has been defined by Hadwiger and 

Deb runner [p. 32, 5] . The definition of T (p ,q) is similar to that of 
n 

Nn(p,q) and is due to the author. 

Definition 2-4. Let p..:. q..:. 2, and n > 1. Then Nn(p,q) is defined 

to be the maximum value of ji::,j where i3 ranges over all families of 

mutua],ly parallel parallelotopes in En with. the (p,q)-pr0perty. Also, 

define Tn (p ,q) to be the maximum v:alue of I t§j where i3 ranges over 

all families of mutually parallel parallelotopes in En with the 

(p ,q)-property, and each set. in · 'i3 is a translate of every othe.r set in 

Theorem 2-6 implies that the number Nn(p;q) is wiell defined and 

is a positive integer. Since we clearly have T (p,q) < N (p,q), 
n - n 

the 

same is true of T (p ,q). 
n 

Theo.rem 2-6 implies tha.t ·· N2 (3,2) ..'.:.· 3; however, by considering 

the family i3 in. E2 illustr13-ted in Figure 2, we see that 

3.::_T2 (3,2). Thus, T2 (3,2) =N2 (3,2) = 3. Also, by_considering 

Figure 3 we see that 4 < T (4,2) < N (4,2). 
- n - n 

Theorem 2-1 implies that 



N (2,2) = 1 for all n.:. 1, from which it follows that n 

Nn(p,p) • Tn(p,p) = 1 for all p.:. 2 and n > 1, 

To determine exactly what one of the numbers Nn(p,q) is, it 

appears that in most ca~es two things are requi~ed. One must prove 

that for some known integer r, N (p,q) < r, n - and construct. a family 
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t3 of mutually parallel parallelotopes in En with the (p,q)-property 

such that . IG 1 .:. r, A similar statement holds for the numbers T (p,q), 
n 

Some of the results. in the following th_eorem are equivalent to 

results .of Theorems ·79, 80 and 81 of [5]. 

Theorem 2..;.7. Let p .:. q .:. 2, and n > 1. Then 

p - q + 1 < T (p, q) < N (p, q) < max · p-q+ 1, . { ( p-2q+2+n ) } 
- n - n - n 

and 

If the supplementary condition 2 ..:, q·..:, p ..:, 2q - 2 is satisfied, then 

Proof: Let 

{x.} for 
1 

p - q + 1..:, j..:. p. 

1 ..:. i ..:. 'p 

Then rs = .. 

be 

- q 

{Pl, 

p-q+l 

and p. 
J 

.... , p } 
p 

distinct_ points G>f 

= {x +l} for p-q 

is a family of mutually 

parallel parallelotopes in En with the (p,q)-property. Moreover, each 

set of [S is a tra~slate of any other set in 3-. It is also clear that 

Joi..::_ p - q + 1. Hence, 

p - q + 1 < T (p,q) < N (p~q). 
- n - n 



Let k .. p - 2q. Then 2 .:.. q .:. 2q + k, Theorem 2-6 implies that , 
~ 

that is, 

The inequality of the theorem now follows. 
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Theorem 2-4 implies that N1 (p ,q) .:_ p - q + 1. This fact and the 

first part of the theor_em implies that 

Tl(p,q) N1 (p,q) = p - q + 1. 

If 2 .:_ q .:_ p .:_ 2q - 2, then p - 2q .:_ -2. This implies that 

( p-2q+n2+n ) .:_ -1. Thu-s, for · Tn (p ,q) = Nn (p ,q) = p - q + 1 

2 .:_ q .:_ p .:_ 2q - 2. • 

From the discussion following Definition 2-4 we have that 

T2 (3 ,2) = N2 (3 ,2) = 3. From th.is it follows that the equation 

Nn(p,q) = p - q + 1 is not always true. In fact, it will be shown 

later that T (p,2) - (p - 1) becomes infinite as p becomes large 
n 

and n > 2. 

Theorem 2-8. Let k be a fixed integer such tha_t k > -2 -· ' and 

t = min{N (2m+k,m): m = 2, 
m n •• 0 ' 

q}. Then for q.::_2, we have 

N (2q+k,q) < max{t ,q+k+l}. 
n - q 
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Proof: To prove, this. we must show that if. t5 is any family of mutually 

parallel·· parallelotopes in En with tlle (2q+k ,q)-property, then 

131 ~ max{tq ,q+k+l}. 

We proce~d by induction on q~ If q = 2, then t = N (4+k,2), 
<l n 

Thus, Nn(4+k,2) :::_ max{t2 ,k+3}, 

Suppose.· nG>w the result hol.ds for q - 1 .::_ 2. Then if f3 has th~ 

(2(q-l)+k,q-1)-property, our induction hypothesis .implies that 

If · t .> t , 
q-,-1 q. 

then we must have 

and .the required inequality is s13:tis:fJed, If t = t q-1 . q' 

t. = N (2q+k,q), 
q n. 

then we. have. 

and again the desired result follows. · If f3 does not have the 

(2(q-l)+k,q-l)-prope~ty, the_n The_ot:em 2-5 implies that lt31 _:: .q + k.+ 1. 

Therefo.re, .in eac;:h case we have 

Lemma 2-9.1. Let p 2:_ q.:. 2~ , Then .Nn(p,q) + 1 _:: Nn(p+l,q) and 

Tri(p,q) + 1_:: Tri(p+l,q). 

Proof;. We t,rove, only: _the first : inequality since the second . follows by 

' 
a similar argument.· Definition 2-4 and Corollary 1:-2.1 imply tha~ 

there exists .a finite f~niily f, of mutually parallel parallelotopes in 

En with. the: (p ,q)-prciperty such tha,t ·· lt5 J = Nn(p ,q), Let x e: En sucQ. 

tha~ x·~ P fcir all Pe: iJ. ' Then the family i3 = .iJ U { {x}} of 

mutually parallel parallelotopes in En has the (p+].,q)-property, 

Since !O I = Nn (p ,q) and x i P for all P e: f,, it is clear that 
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' li3 I > ji) j + 1 .. N (p ,q) + 1. 
n 

Thus, N (p,q) + 1 < N (p+.1,,q).• n · - n 

In the abov~ theorem, we note. tha~ equality need_ not hold since· 

N2 (2,2) = Tn(2;2) = 1 and N2 (3,2) = T2 (3,2) = 3. However, at -this 

time it is unknc;,wn whether equality holds or not for q = 3 and n > 2. 

If it was known that equality was true :for q ..::_ 3 and. n · .::_ 2, then 

one would. be able to obt~in al_l the numb.ers Nn {p ,q) and Tn (p ,q) for. 

p ..::.. q .:. 3 and n '> 2, The· value~ of N (p ,q) 
n 

anq T (p ,q) 
n 

obtained 

in Theorem 2-7 do satisfy the equations N (p,q) + 1 = N (p+],,q) 
n · n · and 

T (p,q) + 1 = T (p+l,q). n n 

Lemma 2-9. 2 ,. Let p .:_ q .:. 2. Then' N {p,q) > N (p~q+l) + 1 and 
n - n 

T (p,q) > T·(p,q+l) + 1.· 
n - n 

Proof: Here again, we prove only the first inequality since the second. 

follows by a similar argument. · Theorem 2-3 implies that 

N (p+l,q+l) < N (p,q). Lemma.2-9,1 implies that 
n · - n 

N (p,q+l) + 1 < N (p+l,q+l), 
n - n 

Thus, N (p,q) > N (p,q+l) + 1. • 
n · - n · 

Since· T (3,3) = N (3;3) = 1 and for n > 2 
n n 

3 ~ T2 (3,2) < T (3,2) < N (3,2), 
- n - n 

we see that equality in the _above theorem need not hold. However, .here 

again the ._values of Tn (p ,q) and Nn (p ,q) obtained in Theorem 2-7 do 

satisfy the equations· Nn(p;q) = Nn(p,q+l) + 1 and 

Tn (p ,q) = Tn (p ,q+l) + 1. . 
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Theorem 2-9, Let t be a fixed integer with t > 1. Then for each 

integer m > 1 we have the following: . Any family [; of m1,1tua1ly 

parallel parallelotopes in En (with the property that each set of · ~ 

is a translate of any other set in m with the (p+t+m,q+t)-property 

which fails to have the (p ,q)-property satisfies the inequality . 

/(;/ 2,. P - q+ 1 + Nn(t+m,t+l) (/(;/ 2..P - q + 1 + T~(t+m,t+l)). 

Proof: The proof of the statement in parentheses is almost identical 

to the following proof, so we omit it. 

We proce~d by induction on m. Let. p ?_. q .::._ 2 and [; be any 

family of mutually parallel parallelotopes in. En with the 

(p+t+l,q+t)-property but not .the (p,q)-property. Let 

k = p + t + 1 - 2 (q + t) .. Then p ?_. q implies that 

k p + 1 - 2q - t .::_ 1 - (q + t). Thus, o has the 

(2 (q+t)+k ,q+t)-property with k > 1 - (q + t). If t5 has the 

(2(q+t-2)+k,q+t-,.l)-property, that is, the (p+t-l,q+t-1)-property, then 

Theorem 2-3 would imply that t5 has. the (p ,q)-'property, a contradiction. 

Therefore, i3 has the (2(q+t)+k,q+t)-property and does not have the· 

(2(q+t-l)+k,q+t-l)-property. Theorem 2-2 implies that 

ltSl 2. (q + t) + k + 1. · However, N (t+l,t+l) > 1 implies tha.t 
n -

p - q + 2 2. p - q + 1 + N (t+l,t+l). . n 

Thus , the theorem holds for m = 1. 

Suppose now that for all p?_.q?_.2 the theorem holds for 

with 1 2. m1 < m. Let t5 be any family of mutually parallel · 

parallelotopes in En with the (p+t,+m,q+t)-property but not the 

(p,q)-property. If t5 also fails to have the (p+l,q)-property, then 



we have that (; has the ((p+l)+t+(m-1) ,q+t)-property and not the · 

(p+l ,q)-property. The induction hypothesis implies that .. 

In I .2. (p + 1) - q + 1 + Nn ( t+ (m-1) , t+l) . Lemma 2-9 .1 implies that. 

N (t+(m-1) ,t+l) < N (t+m,t+l) - 1. Thus, 
n - n 

(p + 1) - q+ l+ Nn(t+(m,-1),t+l) 2. p - q+ 1 + Nn(t~,t+l). 

Hence, if t5 fails to have the (p+l,q)-property, the desired 

conclusion follows. So assume that· t5 has the (p+l,q)-property. To 

complete the proof we shall use an argument similar to the proof of 

Theorem 2-2. 

Since t5 does not have the (p, q)-property, there is a subfamily 

Q of t5 containing p sets such that no q sets of Q have a. 

common point. Let ~ be a subcollection of o 'Q containing t+m 
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sets. Then ~ U Q consists of p+t+m set.s of l3. Thus, the 

hypothesis of the theor.em implies that some q+t sets of ~ U Q have 

a common point. Since no q sets of Q have a common point, .some 

t+l sets of ~ must have a common point, Hence, o ' Q has the 

(t+m,t+l)-property. So there exist nonempty subfamilies 

1 < i < N (t+m, t+l) of lj '- Q, such that 
- - n 

(a) lj '-- Q = U { C. : 1 < i < N ( t+m, t+ 1) } 
i - - n 

c.' 1 

Let A e:: c1 . Then {A} U Q. is a subfamily of l3 consisting of p+l 

sets. Since ~ has the (p+l,q)-property, {A} U Q cont?ins q sets 

with a nonempty intersection. Now n0 q sets of Q have a. common· 

point, so A must have a point in common with q-1 sets of· Q. Let· 



J:I. be any subfamily of Q which consists of q-1 sets and JJ:1. I • 1. 

Then for each A e: c 1 we have either the sets of {A} U J:I. have a 

common pc;>int, or A intersect.s some set in Q ' :J:i. 

••• ' A +1 p-q denote the sets in Define 

subfamilies !JJti, 1 ..:. .i .::_ p - q + 2, . of c 1 U Q as follows; 

:mp-q+2 = {A e: cl: A n (n {B: B e: J:1.}) 'f 0} u J:I., 
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Then each set of c 1 U Q belongs to some !D1 •• Since each two sets in 
. l. 

c1 . have a common point, it can be shown as in the proof of Theorem 2-2 

that j:miJ = 1 for 1 ..::_ i .::_ p - q + 2. Now 

C UQ=U{!D1,:l<i<p-q+2} 
1 l. - -

and 

Hence, . 

and :T.nj , 1 ..:. j .::_ p - q + 2, is such that l!.rnj J = 1. Thus, 

..::_ p - q + 2 + N (t+m,t+l) "" 1. n . 

= p - q + 1 + N (t+m,t+l).• 
n 
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We shall now illustrate how Theorem 2-9 may be used to determine 

certain values of Nn(p,q) when others are known. It will be shown 

later that N2(17,5) • 13. Assuming that this is true, let t3 be a 

family of mutually parallel parallelotopes in E2 with the (34 ,9)-

property. Also let t = 4 
. ' m = 13, p = 17 and q = 5. Then . t3 has 

the (p+t+m,q+t)-property, If {) also has the (17,5)-property, then 

lo]..::_ N2 (17,5) = 13, If tJ fails to have the (17,5)-property, then 

Theorem 2-9 implies that loj ..::_ 17 - 5 + 1 + N (17,5) = 13 + 13 = 26. 
n 

Hence, in either case /ol ..::_ 26, Thus, N2(34,9) ..::_ 26, · Theorem 2-7 

implies that N2(34,9) > 26. Therefore, N2 (34,9) = 26. 

Theorem 2-10. Let n > 2 and k > 1. Then T (2k+l ,2) > 3k and 
n· 

T (2k,2) > 3k - 2. 
n -

Proof: Let 11 ,12 , ... , Lk be k 5-cycles in . En such tha_t 

O = {P: P e: 1., 1 ..::_ i ..::_ k} is a family of trans lat.es of a given 
1 

parallelotope, and P e: Li, . P' e: Lj, with i #- j , implies that· 

P n P' = Ql. Let Q be a subfamily of. i3 consisting of. 2k+l sets. 

Then q contains at least three sets from some However, each L. 
1 

has the (3,2)-property. Thus, two elements of Q have a.common point. 

This implies that o has the (2k+l,2)-property. MG>reover, the 

definitio~ of ~ and the fact that l1il .:_.3 for each i, 1 < i ..::_ k, 

implies that 

Thus, T (2k+l,2) > 3k. 
n 

k 
Jt3 I = E 

i=l 
11.J > 3k. 

1 
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Now let be k-2 5--cycles in and a 

7-cycle in En such that.~• {P: PE Li, 1 < i ~ k - l} is a 

family of translates of a given parallelotope .in and PE Li, 

P' E Lj, with. i :/:- j, implies that: P n P' = i. Let Q be a 

subfamily of l3 containing 2k sets. Then either .. Q contains three 

sets from some Li' with 1 < i < k - 2, or Q contains four sets 

However, .each Li, with 1 < i < k - 2, has the 

(3,2)-property, and L has the '(4,2)-property. Thus, in either case 
K.-1 

some two elements of Q have a common point. Hence, o has the 

(2k,2)-property. Now for each i, with 1 < i < k - 2, we have 

]Lij.:. 3 and J~_1 1.:. 4. The definition of ~ implies that 

Joi 
k-1 

E 
i=l 

jL:J = (k - 2)3 + 4 = 3k - 2. 
1 

Thus, · T (2k,2) > 3k - 2. • 
n 

Corollary 2-10.1. Let n > 2 and k > L Then there exists .a family 

o of translates of a given parallelotope in En with the following 

property: ~ contains 5k sets (Sk-3 sets) with the (2k+l,2)-property 

((2k,2)-property) no three of which have a common point. 

Proof: The corollary follows by taking O to be the families of sets 

used in the proof of Theorem 2-10. • 

The lower bounds given in Theorem 2-10 fer T (p,2) are clearly 
n 

lower bounds for the number N (p,2). From this theorem it follews that· 
n 

T (p,2) f p - 2 + 1 for n > 2 and p .:. 3. n 
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Theorem 2-11. Let n > 2 and k > 3. Then·· N (k,2) > 2k - 4. . n -

Proof: Since any family of mutually parallel parallelotopes in E2 

may·also be considered as a family of mutually parallel parallelotopes 

• En in for n .::_ 2, it suffices to prove the theorem for n = 2. For 

each positive integer i define four sets as follows: 

Gi = {(x,y): 3i < x < 3i + .1, 0 ::_ y ::_ 3i}, 

s. = {(x~y): 0 < x ::_ 3i, 3i ::_ y ::_ 3i + l}, 
l. 

R. { (x,y): 3i - 2 < x < 3i - 1,' 3i ·- 3 ::_ y < 00}' 
l. 

Bi = { (x,y): 3i - 3 < x < 00 

' 3i - 2 ::_ y ::_ 3i - 1}. 

For each positive integer k with k .::.. 3, let 

Qk = {G. : 1 < i < k - 2}, 
l. 

gk { s. : 1 < i < k - 2}, 
l. 

!Rk {R.: 
l. 

,1 < i < k - 2}' 

!Sk = {B. : 
l. 

1 < i < k - 2}' 

i:\ = Qk u ~\ u !Rk u !Sk. 

Note that each family 1\ contains 4k-8 se.ts •. Figur:e 4 

represents. the family o7, Note . also that .. each of the followil),g hold: 

(1) For i::_j, (3j ,3i-l) E B. n G,' and for i < j ' l. ' J 

B. n G. = 0. 
J l. 

(2) For i::_j, (3i-l,3j) E Ri n s. ' and for i < j ' 
J 

R. n s. = 0. 
J l. 
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Figure 4. The Family t5 7 . 



(3) · For all i, (3i,3i) E Gin Si' and for.· i 'F j t 

G .. n sj = 0, 
l. 

(4) For all i, ' (3i,3i+l) E Si n 
Bi+l' and for j :/: i + 1, 

Sin B, 
J 

= 0, 

(5) For all i, (3i+l,3i) E G, n 
Ri+l' and for j 'f i + 1, 

l. 

G.n R = 0. 
l. j 

(6) For all i, (3i-l,3i-:l) E Bi r'l Ri, and for i 'F j, 

Bi r'l Rj = ~· 

Mo,reover, each of· the families. Qk, Sk, !Rk and· !Bk consist.s ef. 

pairwise .disjoint sets. 

Suppose that for some k ..:. 3, i)k contaiIJ.S ·three sets with a 

commQn poi:nt, Then either two of these sets .are of the form Si and 
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B. 
J 

or of the form G. · and 
l. 

R, 
J 

f<ilr some. i and j. Without loss of 

generality, assume two of the sets are of the form Gi and Rj, · Then , 

(5) implies that · j = i + 1. 'I'he third set must ei_the:t;' be a B: or.a 
ni 

S for some· m. 
m 

If the third set. is a B 
m 

for some m, tq.en (1) 

implies that m < i. and (6) implies that; m = j. • This cont;radicts tp.e 

fact thati j = i + 1. A similar. argument yields a contradic.tfon wheq.. 

the . third set is a Sm for some m, Hence., ,fe:,r each k ..:. 3, ~ . 

fails to contain three sets with a _common point •. This implies that if 

l:f is any subfamily of t5 such. that; il=fl =.·l, then. l:f contains at· 

most' two sets .• 

We _now proceed by induction on .. k to show that each of the 

families t\c have. the. (k,2)-property. For k = 3, we have tha·t . 

~3 = {G1 ,s1 ,R1 ,B3;}, . Moreover, G1 rl B1 'F ~' . G1 r'l s1 'f 0, Bl r'l R1 'F 0,. 
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and . R1 n s1 .;. (II. Thus, 03 fails to conta.i1+ thr~e pairwise disjoint 

sets. He.nee,. 03 has. the .(3,2)-property. 

Suppose now that; i)k has_ the . (k ,2)-property for k > 3. To prove 

that. !Jk+l has the (k+J,,2)-property, suppose this were false. Then 

t\+i contains a su.bfaniily . J:i consistit1g of . k+l sets, .no .. two of. 

which have a common point. Now Ok+l = t5k U {Gk-l 'Sk-l '1\.-l ,Bk-l}. 

Since ~ has the (k,2)-property, Jf must ._contain at leas.t two sets 

from the family. {Gk-l'Sk-l'l\.-l,Bk-l}. More<:>ver, since:. 

Gk-l n Bk-l 'F 0 ~- Sk-l n 1\.-l :f, (II, Gk-l n Sk-l :f, (II; and· 

Bk-l n 1\.-l 'F !II; J:i contains .no more thaQ. two sets of 

{Gk-l'Sk-l'l\.-l,Bk:._1 }. We have that.~ither 

M n {Gk-I ' 8k-1 '1\.'-i,;Bk-l} = {Gk-l'~-1} 

or 

:i:i n {Gk-1' 8k-l'l\.-l'Bk-l} ·= {Sk-1 'Bk-lL 

Without·loss·of generality, assume that 

From (2), we have that Rj n Sk-l :f, (II for all j ..:. k - 1; thus, 

J:i n !Rk = (II. From (4), we have that.: Sk_2 n Bk-l :/: (II. Hence, 

Thus, Ok ' !Rk U {sk_2 l must contain · k-1 · · sets from ;i:i. Figure 5 

represents __ the family ~ -..... !Rk U {Sk_!z} for k + 1 = 7. 

We shall now prove by induction on r that £, '- !R U { S . 2 } has · 
r r r-

the (r-1,2)-property for r > 3. This will then _contradict the fact. 



Figure 5. The Family i3 k ' !Rk U { Sk_2 } • 
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that· t\ '!Rk U {Sk_2 } contains. k-1 pairwise disjoint sets of J:!, 

This will then cot)trad,ict the original assumption that Uk+l fails to 

have the (k+l,2)-property. 

For r = 3, we have o3 'm 3 U {s1 } = {B1 ,G1 }, which has the 

(2, 2)-property by (1). Now supp0se for._ r .:. 3, it ha~ beet) shown ·that 

0 '!R U {S 2 } has the (r~l,2)-property. To prove that 
r r r-

r,r+l '!Rr+l U {Sr;..l} has the (r,2)-property, .suppose this were false. 

Then t5r+l '!R~1 U {Sr_1 } contains a subfamily ml·· consisting of r 

pairwise disjoint sets. Now 

Our induction hypothesis on r implies tha_t · ml contains two sets from 

the family {B l'G. l'S .2}. r- r- r- However, (1) and (4) implies that 

Since we have PY (1) that B. i ml for all 
l. 

i < r - 1. Moreover, since . Sr-Z e: ml, we have by (3) that Gr_2 i ml. 

Hence, ml is contained in 

Since. ml contains r sets, ml contains r-4 sets. from 

Thus, for some i ' 
(3) implies that 

definition of ml. 

{Gl' ,,,·-,.G 3' Sl, ,,,, S -3}, r-· r-

1 < i < r - 3 !In contains -- - ' ' . _ .. 
and s .. 

l. ' 

G. · n S. :/. 0, · This is a contradiction to the 
l. l. 

'l'he·refore, <i: , !R U {S } has the · 
ur+l r+l. r-1 

However, 

(r,2)-property. By induction, we now have that Or '!Rr U {Sr_2 } has 
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the (r-1,2)-property for all r > 3, This implies, by induction on k, 

that - i:;k has the (k,2)-property for all k > 3. 

Note that the sets in i\ are not parallelotopes; thus, Ok 

needs to be adjust.ed so. that the sets considered are parallelotopes. 

Let Hk = {(x,y): 0 .::_ x .::_ 3k - 4, 0 .::_ y .::_ 3k - 4}, · k .::_ 3, a square 

set.. We note that for i < k - 2 and j < k 2 the points in (1) 

thrqugh .(6) all belong to ~· Thus, if A,C E t\ with An c f' ~' 
I I 

then (An ~) n (C r, Hk) 'F (iL Let ok = {An Hk: A E Ok}. Then ok 

is a family of mutually parallel parallelotopes in E2 with the 
I 

(k,2)-property. Moreover, Ok contains 4k-8 sets, .no three of which 
I 

have a common point. Thus, if en is any nlDnempty subfamily ii£ t)k 

such that lcn I = 1, then en contains at most two sets. Hence, 

I 

,~k, .::_ l/2(4k - 8) = 2k ~ 4. 

I 

Therefore, N2 (k,2) > 2k - 4. Figure 6 illustrates the family t57 . • 

Corollary 2-11. l. Let n > 2 and k > 3, Then there exists a family 

~ of mutually parallel parallelotopes in En with the rollowing 

property: ~ contains 4k-8 sets with the: (k, 2)-property, no three of 

which have a common point. 

Proof: The proof is contained in the proof of Theorem 2-11. • 

We note that· the lower bound of 2 given in Theorem 2-11 for 

N (3,2), n.::.. 2, is not the best result we have, .since from 
n 

Theorem 2-10 it follows that 3 .::. Tn(J,2) .::_ Nn (3 ,2) for n > 2, 
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I 

Figure 6. The Family 07. 
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Theorem 2-12, For k > 2 and n ..::. 2, 

Proof: Let '3 = {P.: i = 1,2, , , , , m} be a finite family of mutually 
1 

parallel parallelotopes in En wi.th the (k+2,2)-property. Then there 

exists a basis {x1 , ... , xn} 'for En such that ea.ch Pi has the 

form 

i· 
II. < aj 

J - < cS~ }· - J 

Without loss of generality, assume that. cSi = min{oi: i = 1, ••. , m}. 

Let ·H1 be the hyperplane 

a. x.: a. 
J J J 

If each set of [; intersects H1 , . then. jtS I .::_ Nn-l (k+2 ,2), If there 

exists· a set in tS whid1 fails to intersect H1 , then the se.t 

is nonempty. Without loss of generality, assume that 

1 
cS l}. be th,e hyperplane . 

OI.. x.: 
J J 

Define subcollections l)i, i = 1, , , .. , 5, of tS as follc;iws: ·. 
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131 II {Pie: l): oi < 2 
1 15!}' 

'32 = {Pie: 0: Ai< o2 < oi} 
1 -- 1 - 1 ' 

'33 {P. e: o: Af > 
2 = c5i}, 

1 

i34 {P. e: iJ : 01 i 2 i = < \ .:5.. 01 .:5.. 81}' 1 1 

r5s {Pi e: O : i 1 
Al .:5.. 81}. 

We note that pl E: 01 ~ Ple:05, P2 e: 02' p2 e:i34, and o3 may be 

emp.ty. If o 3 = (il, then the definitions of H1 and H2 imply that 

o = t\ U o5 • Moreover, .each set of o4 intersects H2 and fails to 

intersect P1 . Thus, either o4 has the (k+l,2)-property or.fails to 

contain k+l sets. In either· case, 104 1 .:5_ Nn-l (k+l ,2), Now o5 

either fails to contain k+2 sets, or 05 has the (k+2,2)-property. 

Also, since each set .in· i35 intersects H1 , we conclude;that· 

J05 I .:5.. Nn-l (k+2, 2) , Thus,. if i.33 = (/J, . it follows that 

Theorem 2-7 implies that N (k,2) - k + 1 > 0. 
n . 

Hence, 

I··· i 2 
If '33 'F (il, · let i3 = {pie: '3: o1 .:5.. o1.}, and let h be the 

I 

maximum number of pairwise disjo~nt sets in O. Since '33 # (/J, we 

' have that h < k. Moreover, P1 ,P2 e: i3 implies that h > 2. The 
I 

definition of h implies that either i3 has the (h+l ,2)-pr0perty, or 
I 

O fails to contain h+l sets.. Since each set of. o2 inte.rsects 



40 

I 

H2, it follows that l'he fact that i31 C: ~ 

implies that either i:51 has the (h+J,,2)-property, or i\ fails to 

contain h+l sets, Since each set of i\ intersects . H1 , we have in 

either case Ji'\ I .::., Nn-l (h+l ,2). Since each set of t53 fails to. 
I 

intersect all sets of t5, we have either '33 has the 

(k+2-h,2)-property, or o3 fails to contain (k+2-h) sets, In either 

case, 1'33 i .::_ Nn (k+2"'."h ,2). The definitions of H1 and H2 imply that 

t5 = o1 U '32 U o3 • Hence, 

Lemma 2-9 .1 with h-2 iterations implies tha.t 

N (k+2-h,2) + n - 2 < N (k,2). 
n · - n 

Also, Lemma. 2-9 .1 with k-h iterations implies that 

Nn-l (h+l,2) + k - h .::_ Nn_1 (k+l,2). 

Thus, 

ll3J..:. Nn_1 (k+l,2) + Nn_1 (k+2,2) + Nn(k,2) - k + 2. 

Corollary 1-2.1 implies that. 

Corollary 2-12.L If k .::_ 1, theJ:l N2 (2k,2) < k 2 + 2k - 2 and 

N2 (2k+l,2) :.:_ k 2 + 3k - 1, 
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Proof: For p ..:. :q ..:. 2, Theorem 2'"".7 implies that; N1 (p ,q) = p - q + 1. 

Fo.r r ..:. 2, Theorem 2-12 implies . that 

Thus, for r ..:. 2, N2 (r+2 ,2) 2_ N2 (r ;2) + r + 3. The proof will now be 

completed by induction. For k = 1, Theorem 2-7 implies that the 

equation N2 (2k,2) 2_ k 2 + 2k - 2 holds. So suppose the result holds 

for k > 1. Now N2 (2 (k+l) ,2) 2_ N2 (2k,2) + 2k + 3, Since the result 

2 
holds for k, we have. N2 (2k,2) 2_k + 2k - 2, Hence, 

< k2 + 2k - 2 + 2k + 3 

= (k+l/ + 2(k+l) - 2. 

Thus, N (2k 2) < k 2 + 2k - 2 2 , - for c:j.ll k > l. - . 

The discussion following Theorem 2-7 implies that the inequal.ity 

2 . . 
N2 (2k+l,2) 2- k + 3k - 1 holds for k.= 1. So suppose the result holds 

for k > 1. We have N2 (2 (k+l)+l,2) 2_ N2 (2k+l,2) + 2k + 1 + 3. Since 

2 
the result holds for k, we have N2(2k+l,2) 2_ k + 3k - 1. Hence, 

N2 (2(k+l)+l,2) 2_ N2 (2k+l,2) + 2k + 4 

< k 2 + 3k - 1 + 2k + 4 

=: (k+l/ + 3 (k+l) - 1. . 

Thus, 

N2 (2k+l,2) < k 2 + 3k - 1 for all k > 1.• 



Results in. E2 and E3 

The following sequence of theqrems gives deeper :results fo.r the 

lower dimensi.ona+ spaces. 
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Theorem 2-13 •. If o is a family of mutually parallel parallelotopes in 

E2 with both·the (3,2)-p.roperty ,and the (S,3)-prope:i:-ty, the-q JoJ 2_ ·2. 

Proof: Corollary 1-2, l implies that it suffices to prove the theorem 

when t5 is finite. So let l3 = {P 1 , : .•. , Pm} be a firti te family of 

mutually parallel pa.rallelotopes in E2 with both the (3,2)-property 

and the (S,3)-property. Then there exists a basis {x,y} · for E2 

such that . each P ::i.. has the .form. 

Without.loss of generality,. ai,sume that o1 = min{oi: i = 1, .... , m}, 

.Let · . Hr .denote the line { o 1 x + Sy: f3 is real}. If every element of 

t5 intersects the line Hl' ·then it follows from Theorem 2-'7 that 

JoJ 2_,2, Thus, assume that some set in O fails to it\tersect·. H1 • 

Then without loss of.generality, assume that 

). 2 = ma:x:{).i: .i = 1,2, •••.• m}, and· A2 > o1 • 

Let·. H2 be the line {;\2x + Sy: f3 is real}. By a similar argument it 

may 

e:k 

be assumed . that 

== max{e: i: i = 1, 

Let H' 
k 

.. there 

... ' 
exists sets pk and Ph in 0 such :that 

m} arid nh = min{n.: i = :1, 
• e • ' ' 

m}' wit}:). 
iL 

denote ·the lines· {ax+ e:ky: a is real} 

and fox + nhy: a is real}, respectively. Let a = o 1 x + nhy, 
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b • o1x + €kY' c • >- 2x + €ky and cl • >. 2x + nhy. It will now be 

shown in detail how to deal with one of the four cases h = 1, h = 2, 

k = 1 or k = 2. The other three cases follow similarly. If. h = 1, 

Consequently, P. 
J 

fails Pj E a2 , then either Aj > o1 or Ej > n1 , 

to intersect the set P1 • · Thus, either a2 has the (2,2)-property; or 

o2 contains fewer than two sets. ln either case, jQ2 j = 1. Thus, 

1n1 = 1a1 u a21.:. ![\! + 1n2 1 = 2. 

Now assume that h i { 1,2} and k i { 1, 2} (c, f. Figure 8). Since 

o has the (3,2)-property, every set in O intersects pl or p2 and 

also Ph or Pk. Thus, every set in .o contains one of the four 

points front the set {a,b,c,d}. Suppose that the set {a,b,c,d} fails 

to cqntain two points such that each set in o contains one of these 

two points. It will now be shown that one of the four cases 

pk n p 1 = 0 ' pk n p 2 = 0' p h n p 1 = 0 ' or p h n p 2 = 0 leads to a 

contradiction. The other three also lead to a contradiction by a 

similar argument. If Pk n Pil = 0, then from the (3,2)-property it 

follows that Pk n P2 # 0, By the assumptions there exists a set 

P. E 0 such that P. n {a,c} = 0, Since each set in O contains at 
l l 

least one point from the set {a,b,c,,'d}, it follqws that 

Pi r, {b,d} # 0, If b E Pi, then a i Pi implies that Pi r, Ph= 0, 

Moreover, c i Pi implies that P 2 n Pi = 0. Con.sequently, no three ·. 

of the five sets {P1 ,P2 ,Pk,Ph,Pi} have a common point, If 

then a i Pi implies that Pin P1 = 0, Moreover, c i Pi 

d E P,, 
l 

implies 

that Pin Pk= 0, Consequently, no two of the three sets {P1 ,Pk,Pi} 

have a common point. Hence, Pk n P1 = 0 leads to a contradiction. 
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b c 

d 

Figure 7. The Case of h = 'l. 

I I l 

Figure 8. The Case of h f {1 9 2} and k f {1,2}. 
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Ph r, P 2 'F (lL . By the assumptions, thel:'e exist se.ts P,,P, e;l) 
l. J 

such that.: 

Pi n {a, c} = 0 and P j n {b ,d} = 0. Without loss of generality~ assume · 

that · a e: P. , . Then · P. n {b ,d} = .rJ . impli,es tha~ PJ. r, F2·. = 0 . and·· 
J J 

Pj n Pk= 0'. Now either. b e: Pi or d e: Pi' If de: Pi' then· it 

follows . that . Pi n P 1 = 0 and Pi n Pk = 0, Consequerit:ly, no 'three of 

If be:P,, 
l. 

then .one argues. si!,T1ilarly that n€> _three. of the· five sets 

{P2 ,Ph,Pk,Pi,Pj} have a com111on point. Thus, the assumption tl~at the 

set fa,b,c,d} fails to contai):i two points such that each set in t5 

contains one of these two points leads to a cqntradiction. Thus., 

lnl .::..2.• 

It follows from Theorems 2-13, 2-.2 and 2-7 that N2 (5,3) == .3. 

Moretirv~r, Theorem 2-13 imp lie~ that 1;:he .maximum value of ll:51, where 

lj ran;ges over all families of ml,ltua],ly parallel parallelotopeE? in 

is not taken on when lj also ha$ the, (3,2)-property. Howev¢r, the 

following example shows that this is not .the case in: En for ri > 3. 

Example 2-2. Define sets P., i = 1,2, ••• ~ 7, in E3 . as follows:. 
]; 

P1 = {(x,y~z): -1 _:: x _:: 1, -1 _:: y _:: 1, -1 ;_ z _:: 1}, 

p2 = p. + (2,2,0), p = p + (2,1,-1), 
1 3 1 

p4 =pl+ (1,-l,1), PS = pl+ (2 ,-2 ,O) , 

p6 =l1 + (4 ,O ,Q), p7 = pl+ (3,0,2). 



Figure 9 represents the. projection of P1, l,::.. i,::.. 6, into the 

xy-plane, · and the sets marked with an I are the sets. which P7. 

intersects. 

Let O.= {P1,P2, ... , P7}.. Then t5 is a family of mutually 

parallel pa~al~elotopes in E3 with: both the (5,3)-property and the 

(3,2)-property. Moreover, t5 is a family of t:i;anslates of pl such 
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that no four sets in t5 have a common point. Consequently, li:51 ~ 3. 

Corollary 2-13.1. N3 (5 ,3) = 3. 

Proof: Let t5 = {P1 ,P2 , .•• , Pm} be .a finite family of mutually 

parallel parallelotopes in E3 with. the (5 ,3)-property. If O fails 

to have the (3,2)-property, then ·Theorem 2-2 implies that ltSI ,::.. 3. So 

assume that ~ also has the (3,2).-property. 

There exists a basis {x,y,z} such that each 

has the form 

i i i i i i 
pi= {al· x + a2y + a3z: ~. < a. < s.~ j = 1,2,3}. 

J .....,. . J - J 

P. E O 
]. 

Without loss. of generality, ass.ume. that . Si = min{Si: i = 1 ,2, ••• , m}. 

Let H denote the 2-dimensional hyperplane 

1 {S1x +Sy+ ~z: S,e are real}. 

If every set in f5 intersects H· ' then Theorem 2-13 implies tha~ 

lol ~·2. If some set in f5 fails to intersect H, let 

t5 2 ={Pe{;: Pr, H =~}'and [5 1 ={Pe~: Pr, H :f,. (/J}. Now either .. t51 

has .the (5, 3)-property and the G3 ,2)-property, or .. t\ fails to contain 

five sets. Suppose i:\ contains fewer than five sets_. If i:51 



Figure 9. The Projections of the Sets p •• 
]. 
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contains fewer-than four.sets, it follows from the (3,2)-property of l3 

that 1,\1 ~ 2. If l31 = {P1 ,Pi,Pj,Pk}, that is o1 consists of four 

sets, then we may assume P1 n Pi# 0, If Pj n Pk# 0, then clearly 

101 I ~ 2. If Pj n Pk = 0, then because of the (3,2)-property it may 

be assumed that P1 n Pj 'f 0. Now also because of the (3,2)-property, 

we have either 

c1ear1y 1n1 1 

P. n Pj ,,. 0 
l. 

or Pin Pk# 0, If Pin Pk# 0, then 

< 2. If P. n P. :f:.·0, then j{P1 ,P.,P.}j = 1. 
l. J l. J 

Consequently, j l)1 J < 2, Thus, if o1 fails to contain five sets, 

I nl I ~ 2, If l)l contains at least five sets, then Theorem 2-13 

together with the fact that each set in l31 intersects H implies 

that I '31 J ~ 2, 

Since each set in 32 fails to intersect P 1 , we have either l3 2 

has the (2,2)-property, or l) 2 fails to contain two sets. Theorem 2-1 

implies lo 2' ~ 1. Hence' lo I = lo 1 u !) 2 I ~ 3. Therefore' jl3 J < 3 

for any finite family l3 of mutually parallel parallelotopes in E3 

with the (5,3)-property. Corollary 1-2.1 i~plies the same result for 

infinite families. Thus, N3 (5,3) ~.3. Theorem 2-7 implies that 

N/5,3) .::._ 3; hence, N/5,3) == 3. • 

Example 2-2 implies·that there exists a falllily O of mutually 

parallel parallelotopes in E3 with both the (5,3)-property and the 

(3,2)-property such that !l31 ..::_ 3. Ori. the other hand, Theorem 2-13 

implies that this is not the case in E2 • Thus, in some sense the 

situation in E3 is quii;:e different from that of E2 •. However, this 

difference is not expressed in the equation N2(5,3) = N3 (5,3) = 3. 

Corollary2-13.2. N2(6,3) = 4. 
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Proof: Let ij • {P1 ,P2 , ... , Pm}· be a finite family of mutually 

parallel parallelotopes in . E2 with the. (6, 3)-property. If t5 fails 

to have the (4,2)-property, then Theorem 2-2 implies jt5j < 4. So 

assume that f3 also has the. (4 ,2) --property. 

There exists a .basis {x,y} for E2 such that each Pi E t5 has· 

the form 

Without lol:!S of generality, assume that 1 i s1 = min{S1 ~ i = 1, •••. , m}, 

Let H den0te the line If every set .in . n 
intersects H, then it follows fr,0m Theorem 2-7 that li:51 < 3, So· 

assume.that some set in t5 fails to.intersect H. Let 

definition of· H implies that each set in i:51 intersects H. · Also, 

t;2 'F (IJ, since there exists a set in O which fails to intersect H. 

Since each set in t52 fails to intersect P1 , we have either· '32 has 

the (5,3)-property and the (3,2)-property, .or o2 fails to cot).tain five 

sets. In either case, it follows from the proof.of Corollary 2-13.1 

and the conclusion of The0rem 2-13 that I o2 I .::, 2, 

There are two cases lo2 1 = 1 or lo2 1 = 2. If lo2 J = 2, then 

Theorem 2-7 implies that. o2 contains sets P. 
1 

and P. with 
J 

P, n P, = (IJ, Suppose now that· o1 contains a subfamily G consisting 
1 J 

of three pairwise disjoint sets. Then G U {P1 }U. {P. ,P •. } · is a family 
1 J . 

of six sets from t5 no three of which have a cqimnon point. This 

contradicts the fact that [, has the (6,3)-property. Hence, either 

[51 has the (3, 2)-prnperty, or '31 fails to contain three sets. If \ 

has the (3,2)-property, it follows fr0m Theorem 2-7 and the fact .that .. 



each set of {J 1 int.ersects H, that· Jt\J _:: 2. If {; 1 fails to 

contain three sets, then clearly Jt5 1 I < 2. Thus, 
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Suppose now 1'3 2 1. = 1. Reca.11 i:\ has the (4,2)-property, or t\ 
fails to contain four sets. In either case, it follows that Ii\ J < 3. 

Thus, li:51 = lr,1 u [5 2 1..:: 3 + 1 = 4. Therefore, li:51 ..:_ 4 for a~y 

finite family t5 2 
of .mutually parallel parallelotop~s in. E with the. 

(6, 3)-property. Corollary 1-2.1 implie~ the .same result for infinite 

families. Thus, N2 (6,3) < 4. Theorem 2-7 implies that N2 (6,3) .:::._ 4; 

hence, N2 (6,3) = 4.• 

A te·chnique will not be illustrated which aJ,lows one to determine 

some of the numbers N2 (p,q) and upper bounds on others which are. 

smaller than those given previously in this. chapter. 

First, it is shown that;N2 (10,4) = 7. Theorem2-7 implies that .. 

7 _:: N2 (10 ,4). Thus, it suffices to .show that .if t5 is a family of 

mutually parallel parallelotopes in E2 with the (10,4)-pr0perty, then· 

l~I ..:_ 7. If o fails to have the (4,2)-property, then Theorem 2~9 

with p = ,4, q = 2, t = 2 and m = 4 implies that 

llJI ..:_ 4 - 2 + 1 + N2(6,3). However, Corqllary 2-13.2 implies that 

N2 (6,3) 4. 

Jt5 j ..:_ N2 (4 ,2). 

Consequently, 

Thus, /ol _:: 7. has the (4,2)-property, .then. 

Corollary 2-12.1 implies that. N2 (4,2) _:: 6. 

jt5J _:: 7 which imp.lies that N2 (10,4) = 7. 

Now it will be shown that . N2 (17 ,5) = 13. The technique used to 

do this may also be used together with the theorems ef this chapter to 

determine the values of N2 (p,q) listed in Table L Again; by 



~ 2 3 4 5 6 7 8 9 10 
2 1 3 

3 1 2 3 4 

4 1 2 ' 4 5 6 7 

5 1 2 3 4 5 6 

6 1 2 3 4 5 

7 1 2 3 4 

8 I 11 2 3 

9 I 1 2 

·10! 
I 1 I 

111 ! 
12 

113 
[14 

15 

!16 

I 17 

'18 

! 19 

:20 

21 

22 

23 

24 

25 

26 

271 

28! 

291 

30 

31 

32 ---

TABLE I 

N2(p,q) 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5\)' 

7 8 9 10 11 12 13 14 15 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 
---

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 

2 31 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 
- ---

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3;l 34 35 36 37 38 39 40 --~ ---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27 28 29 30 31 32 33 34 35 36 37 38 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34. 35 36 37 

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 _20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23) 24 25 26 27 28 29 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2' 24 25 26 27 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

l 2 3 4 5 6 7 8 9 10 11 12 l' 14 15 16 17 18 19 
- Vt 

I-' 
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Theorem 2-7, 13 .::_ N2 (17 ,5), Thus, it suffices to show that .if ·~ is 

a family of mutually parallel parallelotopes in E2 with the 

(17 ,5)-property, then Joi .::_ 13. If o fails to have the (7 ,2)-

property, then Theorem .2-9 with p = 7, q = 2, m = 7 and t = 3 

implies that JoJ 2_6 + N2 (10,4) = 13. If \3 fails to have the 

(11,3)-property, then Theorem 2-'9 implies that Jt5J .::_ 9 + N2 (6,3)~ 

However, Corollary 2-13.2 implies that N2 (6~3) = 4; thus, joJ 2_ 13. 

If t5 fails to have the (15,4)-property, then Theorem 2-9 implies that 

JijJ .::_12 +N2 (2,2) = 13. Thus, assume that t5 has the (7,2), (11,3), 

(15,4) and (17,5)-property. 

Suppose that· tS fails to have the (14 ,4)-property. Then there 

exists a subfamily G of t5 cqntaining 14 sets, no four of which 

have a common point, Consequently, t5 'q has the (3,2)-'property. 

The discussion following Theorem 2-7 implies that N2 (3,2) = 3; thus, 

lo 'GI .::_ 3. Since \3 has the ~11,3)-property, some three sets from 

q have a common point. Hence, Q contc;Lins a subfamily J:t'. which 

contains three sets with a common point. The family Q '- l:[ is a 

family of 11 sets and thus must contain a subfamily J which contains 

three sets with a common point. Consequently, 

Io I = I m ..... c:t) u q I < Io , GI + I QI 

< 3 + /:i:rJ +IP!+ JQ'- (J:f U e?)I 
< 3 + 1 + 1 + (14 - 6) = 13. 

Thus, assume that i3 also has the (14,4)-property. 

If tS fails .to have the (10 ,3)-property, then there exists a 

subs.et Q of o containing 10 sets, no three of which have a common 

point. Since tS has the (14 ,4)-property, .the family O "q has the 
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(4,2)-property. Corollary 2-12,1 implies that 113 'GI..::_ 6. Since G 

has the (7 ,2)-property, . q contains two distinct subfamilies J:f and 

p each of which contains two sets with a common point. The family 

Q '- (l! U P) then consists of 6 sets, If some two sets of the family 

G' (J:I u :n have a common point, then IQ"- J:( U.PI.::. s. Consequently, 

< 6 + 1 + 1 + 5 = 13. 

Thus, assume G , Q::f U ~) consists of 6 pairwise disjoint sets. Let 

Q,:i:i:up = {A1 , ... , A6 } and p = {B1 ,B2 }. Since O has the 

(7,2)-property, some two of the sets from the family {A1 , •••. , A6 ,B1 } 

have a .common point. Without loss of generality, :e1 n A1 f- 0, 

Similarly, B2 n Ai f 0 for some i, 1 < i < 6. If i = 1, then 

B1 n B2 n A1 f- ¢. Consequently, 

If i f- 1, then 

Jq' :i:i:I < l{A2, ... , Ai-1'Ai+l' ... , A6}1 + l{Al,Bl}I 

+ i{Ai,B2 }J 6. 

Thus, in either case jQ, J:rJ..:. 6. Consequently, 

lt5l < 1!3 , GI + IG, J:rl + IJ:rl .:. 6 + 6 + 1 = 13. 

Thus, assume that t5 also has the (10,3)-property. 

If tS fails to have the ( 6, 2) -property, then since o has the 

(10,3)-property, Theorem 2-9 implies that ltSJ .:_ 5 + N2 (4,2). However, 



Corollary 2-12 .1 implies that · N2 (4 ,2) .::_ 6 '. Consequently, lt5 I .::_ 11. 

If t5 has the (6,2)-property, th.en Corollary 2-12.1 implies that 
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lo I < 13. Thus, this reduct.ion process yields p:s I .'.:. l3 in each case. 

Therefore, N2 (17 ,5) = 13. 

The number N2 (19,5) may also be evaluated by this technique. 

However, due to the length of the reduction process, N2 (17,5) was 

evaluated in detail ins.tead of N/19 ,5). The evaluation of N2 (19;5T 

proceeds as follows~ First, show that if o is a family of mutually 

parallel parallelotopes in E2 with the (19,5)-property which fails to 

have the (9,2), (13,3) or (17,4)-property, then \oi .'.:_ 15. Then shc;,w 

that if ij fails to have the (16,4), (12,3) or (8,2)-propetty, then 

\ol.:::. 15. The proof must show that t5 fails to have these pr0perties 

in the order in which they are listed. Next. show that .if O fails 

to have the .0,2), (15,4) or ·(11,3)-property, then \ol ..'.:_ 15, Here 

again the proof must follow the order in which the properties are 

listed. Now if t5 fails to have the (6 ,2)-property, Theorem 2-9 with 

p·= 6, q == 2, t == 1 and m = 4 implies that iol .::_S + N2 (5,2). 

Rowever, Corollary 2-12.1 implies that N2 (S,2) ..'.:_ .9. Thus, lol < 14. 
' -

If· t5 has the (6,2)-property, then Corollary 2-12.1 implies that 

\ol < 13. Thus, in each case lo\.'.:. 15. Theorem 2-7 implies that 

N2 (19~5) ~ 15; thus, N2 (19,5) == 15. 

If orie tries to evaluate the number N2 (20,5) by this technique, 

he obtains the following: If t5 is. a family of tnutlually parallel 

paralleletopes in E2 with the (20,5)-properti which fails tb have the 

(7,2), (12,3) or (16,4)-property, then jo\ .'.:.16. Moreover, no further 

reduction of these properties is possible with the previous technique. 

Thus; one is only able to conclude that N2 (20,5) ..'.:. max:{16,N2 (7,2)}. 



Since Corollary 2-12,1 only implies_ that N2(7 ,2) .::_ 17, this 

technique fails to determine N2(20,5) since Theorem 2-7·says that 

N2(20,5).:. 16. 
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The va.lues of Nip ,q) which appear to the left of the dark stair 

step curve in Table I are those given in Theorem 2-7 and were determined 

prior to this study by Hadwiger and Debrunnor [5]. The values which 

appear to the right of the stair step curve are those which the author 

has determined in this study. 



CHAPTER III 

FAMILIES OF COMPACT CONVEX SETS 

In this chapter' the problem of determining whether or not lo I is 

finite for a family o of compact convex subsets of En with the. 

(p,q)-property will be considered, This problem is motivated by a 

theorem of Hadwiger and Debrurtner [4], which implies that for certain 

pairs of natural numbers p and q there exists a smallest natural 

number Mn(p,q) such that ioJ ~ Mn(p,q), for any finite family 0 of 

compact convex subsets of En with the (p,q)-property. 

The (p,q,k)-property 

The space 1 n is defined to be Rn with the norm whose unit ball 

is the set 

Bn = { (a1 , ... , an) : -1 < a. < 1, i = 1, ... , n}. 
- J. -

The norm for 
n· 

•.. ,a) E 1 is then given by . n 

= max{Ja.J: i = 1, .. ,, n}. 
J. 

Since all norms on Rn give an equivalent tG>pology, the results of the 

previous chapter remain true when En is replaced by Ln. Henceforth, 
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Ln will .denote the above described normed linear space and Bn the 

unit ball of this space. 

The following theor.em is stated in however, the theorem also 

holds in any complete normed linear space, a Banach space. Note also 

that the sets in the family l3 need not be required to be convex. 

Theorem 3-1. Let l3 ={A: a EA} be a family of compact sets in Ln a 

with the (2,2)-property, 

Proof: For A E l)' . let a 

{ i3 } 
a. 

such that i3 a. 
-+ 0 

1 1 

W,' E A n A Then 
1J a. a. 

1 J 

Since i3 + (3 -+ 0 a, a, 
1 J 

as 

is a Cauchy sequence. Let 

sequence {x,} 
1 

converges. 

If inf{ diam(A ) : a E A} = D, then a. lol = 1. 

i 

i3 = a diam(A ), a There exists a sequence. 

and i3 < i3 
ai+l ~ a, 

1 

Choose x, EA and 
1 · a 1 

at1d j become large, it follows that· {x.} 
1· 

x denote the point in L n · to whi.ch the 

Suppose that there exists A EA such that .. x ~ AA, Since AA is 

a closed set, there exists an E :.,, · 0 such that I\ x - ~I > .E for all 

a E AA, There exists an integer N1 such that if. k .:::_ N1 , then 

Sak< E/2. Also, there exists a:n integer N2 such that JJx - ~II < E/2 

for all k ..:. N2 • Let k .:::_ max{N1 ,N2 }. Then for y E ~, 

JI~ - ~, ~ 13<\: < E/2, Thus, 

IJ Y - xJJ ~ 11 Y - ~II + IJ ~ - xJJ < t + I .= E • 

Hence, . a E AA implies that 11 x - a!J > E , and y E A implies that· 
ak 
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Censequen tly., a contradiction. There.fore, 

x e; AA for all A' and he~ce it f~llows that ' lo I = 1.. 

The remainder of this study concerns certain real numbers which. can. 

be associated .with .a compact.· convex set A. These numbers are defined 

below. 

Definition 3-L Let A be a nonempty compact. convex set in LO • For 

x e: A, let . I (x,A) 
. n = sup{A: x + A~. c:: A} and 

E(x,A) = inf{').. > 0: AC: x + "AB0 }. 

The sets {'A: x + "AB0 c:: A} and {'A> 0: AC:: x + AB0 } are both 

nonempty since O e: {'A: x + 'AB0 c A}, · and 

diam A e: {'A . ..:, 0: A c:: x + 'AB0 }. Thus, . I (x,A) and E(x,A) are both· 

nonnegative real numbers. 

Since the set . A is compact, a .simple sequence argumen:t; can be 

constructed to prove that x+ I(x,A)B0 c:: A and AC x + E(x,A)B0 , for 

each x e: .A. These facts will be used. extensively .in the sequel. 

A set A which has an empty -interior will have the. property. 

I (x,A) == 0 for all x .e: A, while on the other hand. if A has a 

nonetµpriy. interior, A will centain at least one point . x so.ch. that, 

I (x,A) > 0. If A is a nondegenerate set, that is;· A contains at· 

ieast two ·points, then E (x ,A) > 0 for all x e: A. Thus, if A is a 

nondegenerate set,. the liatio 

; 

i(:x;,A) 
E(x,A) 

is defip.ed for each x e: A. · This ratio will lie of inter~st in the 

sequel. Note th!:it if A is a non.degenerate set, then· the inequality 



is valid for all x E: A, 

O < _I """(x ... , .... A..,.) < l 
- E(x,A) 
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If A = x + o:Bn for some o: > 0, then it follows that I (x,A) = o:, 

E(x,A) = o: and (I(x,A)/E(x,A)) = 1 ·. (c.f. Figure 10 for the case 

n = 2). If A denotes a ci_rcular disk in L 2· of radius o: > 0 with 

center x, then. I(x,A) = (.fi/2)0:, E(x,A) = ~ and 

(I(x,A)/E(x,A)) = .fi/2 (c.f, Figure 11). However, if y 'F x, then it 

is clear that I(y,A) < (.fi/2)o:, E(y,A) > o: and 

(I(y,A)/E(x,A)) < lz/2. Thus, the ratio assumes its. maximum at x. 

The following theorem implies the existence of such. a point for each set · 

A. However, Figure 12 gives an example of a compact convex body. A 

where the point x0 given in the following theorem is not unique. 

Theoretn 3-2. Let A be a nondegenerate compact .convex set in L n, 

There exists a point x0 E: A such that 

I(x0 ,A) 

E(x0 ,A) = {
I (x,A) 

.sup E(x,A) 

Pro0f: Let b = sup{ (I (x,A) /E (x,A)): x E: A}, Then O <. b < 1. Sin~e 

diam(A) 'F O, there exists a.number r > 0 such that r < E(x,A) for 

all x E: A. Without loss of generality, assume that'. there exists a 

sequence {xi} of points of A such that (I(x1 ,A)/E(xi,A)) -+ b, 

I(x. ,A) -+ I 
1. 

and E(x. ,A) -+ E, 
1. 

for some teal numbers 

and E where E > d. It. will be shown that .. I = I (x0 ,A) and . 

E(:lt0 ,A) = E, which will complete the proof. 

I 
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f 
a 

l 

Figure 10. I(x,A) = E(x,A) = a. 

Figure 11. I(x,A) = (lf/2)a, E(x,A) = a. 

2 ------)I(--- 1 ~ 
- -- - -, f 

I 1 

1 

-_ J 
Figure 12. Nonuniqueness of x0• 
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Suppose that; I <. I (x0 ,A). · Let e • ·I (x0 ,A) - I. Then :there 

exists an integer. N sue~ that i > N impl:l,es that I! x0 - x~! < e /2. 

Let · k > .N and x e: :x;k. + (I+ €2-1)Bn. ·Then· 

Thus, x e: x0 + I (x0 ,A)Bn c A, whi~~ imp.lies that x · e: A. That is, 

-1 n 
~ + (I+ €2 )B · c A. The definitiqn of I(~,.A) b.plies that 

-1 
I C,c ,A) ..::. I + e 2 for k > N. . This contraclicts the . convergence of the 

sequence {I(xi,A)} to. I; therefore, I(x0 ,.A).::. !. 

Suppose now. that: I (x0 ,A) < ·I. Let e = I - I (x0 ,A) > 0. There 

-1 
exists :an integer N1 such that-. k ..::. N1 implies that llx0 - ~I! < €4 • 

. . . -1 
Moreover, since I (~0 ,A) + € 2 < I, there exists an . integer N 2 such 

. -1. 
that k ..::. N2 implies that _ I(~ ~A) > I (x0 ,A) + e2 .· • Now for 

· · · -1 n · 
k.:. m:ax{Nl,N2} 1:1.ri.d Ix: e: XO + (I(xo,A) + E4 )B , · it folif.s}WS that 

.::. (iI(Xit,A) - I) + ! = I(~~A). 

Hence, ·!Ix - Xitll.:. I(~,A). This implies tha,t x e: ~· + ](~,A)Bn CA, 

and therefore, x0 + (I(x0 ,A) + ~4-1)Bn I= A,·- a centli'adiction to the. 

defiµition of I (x0 ,A). . Thl)s, w~ obta:i;n I (x0 ,A)_ = I. 

Since Gl(x0 ,A)/E(x0 ,A)) .::. b and b ~ I/E; it _follows t~at 

(I(x0,A)/E(x0 ,A)) ..::_ 1./E, that: is~ inver_ting gives E.:. E(x0 ,A), ··. since 
! . . 

I== I(x0 ,A). Suppose E < E(x0 ,A). Let -:·e = E(x0 ,A) - E > o. Then 

there exists an integ~r N1 _ such that·._ k .::, N1 implies that 

!!xo - Xit!! < €/4 and an integer N2 such that:. k ..::. N2 implies that 
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-1 
E(~,A) < E + € 4 , Then for k ..::. max{N1 ,N2} and x e: A, it follows· 

that 

< E + £... + £... = E + £... = E + 1:. (E(x0 ,A) - E) 4 4 2 2 

This implies that which is a contradiction 

to the definition of E(x0 ,A). Therefore, E = E(x0 ,A). • 

Definition 3-2. Let p and q be integers with p.::. q .::. 2 and k a 

refil number with 0 < k < 1. A family t5 = {A : a e: A} is said to have 
a 

the (p,q,k)-property in Ln if and only if the following two conditions 

are satisfied: 

(1) o is a family of nondegenerate compact conv~x sets in Ln 

(2) 

with the (p ,q)-pr0perty; .and 

inf 1 sup { 
ae:A xe:A 

a . 

I(x,Aa) 

E(x,A) 
a 

}} ~ k, 

Theorem 3-3. A family t5 = {A : a e: t5} of riondegerierate compact convex .·. a 

subsets of Ln has the (p,q,k)-property in n 
L if and only if t5 has 

the (p,q)-property, and for each there exists a point x e: A 
a a 

such that (I(x ,A )/E(x ,A))> k, 
a a a . a -· 

Proof: The theorem follows directly from Definiti.on 3-2 and Theorem 3-2 • 

• 
A family of circular disks in L2 with the. (p,q)-property will 

also have the (p,q,/2/2)-property in L2 as seen from Figure 10. Thus, 
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Figure ;I.3 represents a family of sets. with the (2 ,2, i/2/2)-property in. 

t 2 • If a family G of subsets. of Ln has .the (p,q,l):...property, then .. 

it·follows from Theorem 3-3 that for each A£ U there exists a point 

x £ A such that (I(x,A)/E(x,A)) = 1. Thus, I(x,A) = E(x,A), from 

which it follows that n A = x + I(x;A)B (c.f. Figure 10 for the case 

n = 2). Hence, u is a family of.mutually parallel parallelotopes in 

Ln with the (p,q)-property. Figure 2 then represents a family with 

the (3,2,1)-property in 12 , and Figure 3 represents a family with the 

(4,2,1)-property in 12 • On the otheJ;" hand., however, every family of 

mutually parallel pa:rallelotopes in 1n with the (p,q)-property does 

not necessarily have the (p,q,1)-property. 

Figure 14 represents the sets a.\B2 and 2 EAB , 

A is any compact cori,vex set whidh contains Q in 1 2 

0 <a< E, If 

' 

and whose 

boundaty lies in the shaded portion of Figure 14, then it is true that 

I(O,A) 2:_ a>.., E(O,A) < EA and (I(O,A)/E(O,A)) .:_ a/€, Thusi ;i.f U is 

a family of compact convex subsets of 12 with the .(p,q)-property such 

that for each A £ u there exists an x £ A such that the boundary of. 

A - x lies in this shaded region, then U has the (p,q,a/E)-property 

in 12 . 

If O ..::_ r .::_ k ..::. 1, and u is a family of subsets of L n with the 

(p,q,k)-property, then it is clear that u also has the 

(p, q, r)-prG>perty. Moreover, if r > 0, then u is a family of compact -

convex bodies in that is, each set in u has a nonempty interior. 

The Function Pn(p,q,k) 

A function P (p,q,k) of four.variables will now be defined which 
n 

is similar to the aforementioned functions Nn(p,q) and T (p,q). 
n 
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Figure 13. Sets with the (2,2,12/2)-property. 

+ 

i 

Figure 14. The Sets aAB2 and €AB2• 



Definition 3-2, Let p, q and n be positive integ~rs with 

p,.::. q.:. 2, and let k be a real number with O ~ k ~ 1, Then 

P (p ,q ,k) = sup{ lo J : 0 has the (p ,q ,k)-prope:r;ty in L n}. 
n 

Note that P (p,q,k) need not be finite; in fact, it will be 
n 

proven later that P . (n n O) == oo 
n ' ' 

for all n > 2. However, if 

p (p,q,k) 
n 

is finite, then p (p,q,k) 
n 

must be a positive integer. 
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If n = 1, it follows that any family U in 11 with the 

(p,q,k)-property is a family of mutually parallel parallelotopes in 1 1 • 

Hence, from Theorem 2-7, it follows that P1 (p,q,k) = N1 (p,q) =,p - q + 1 

for all k. By a similar argument as that used in the proof of 

Theorem.2-7, it can be shown that P (p,q,k) > p - q + 1 
n -

for all 

k E [O,l] and all ri > 1. 

It follows from Helly' s theorem that P (n+l,n+l,k) = 1 n .. for all 

k E [O,l]. In the case when k = 1 it is not difficult to conclude 

that 

T (p,q) < P (p,q,l) < ~ (p,q). 
n - n · - n 

Thus, Theorem 2-7 implies that if 2 ~ q ~ p ~ 2q - 2, then 

p (p ,q ,1) = p - q + 1. 
n 

The following two theorems determine whether or not 

finite for certain combinations of p, q, n and k. 

p (p,q,k) 
n 

Lemma 3-4.1. Let [, = {A : a. E J\} be a family of sets with the 
Cl. 

is 

(p,q,k)-property in Ln and x be a fixed point in 
0 

Ln. Then for any 

fixed real number S > .o, 

(p,q,k)-property in Ln. 

I 

the family O = {x + SA : 
O Cl. 

a £ J\} has the 
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Proof: Let a e: A. Then Theorem 3-2 implies that there exists a point 

x · e: A 
ct ct 

such that (I(x ,A )/E(x ~A)) > k. a.a a.a - Now n 
x + I (x ,A ) B C:: A 

a a ct a 

implies that x0 + S (xa + .I (xa ,Ao;)Bn) c x0 + SAa ;. similarly, 

x0 + SAo; C:: x0 + S (xct + E(xa ,Aa)Bn), . That .is, 

n <xo + Sx ) + s (I (x ,A )B ) c XO + SA a a ct a 

and 

Hence, I(x0+Sx ,x0+SA) > SI(x ,A) 
ct · ct - a ct 

and E(x0+Sx ,x0+SA ) < SE(x ,A ) .' 
ct ct - ct ct 

from which it follows that 

I (xo+Sx ,xo+SA. ) SI (x ,A ) a a a ct 
E (1i:0'+Sx. ,x0+SA ) .::'.. SE. (x ,A ) > k. .. ct . . ct ct ct 

I 

It is also clear that [; has the (p,q)-property .. Thus, Theorem 3-2 
I 

implies that lj = {x +SA: ct e: A} 
O Cl. 

has the (p,q,k)-property in. Ln.• 

Theorem 3-4. Let p, q and n be positive integers with p .:::_ q.:... 2 

and k a real number with O < k < 1. Then P (p,q,k) n . 

Moreover, the followirtg inequality is satisfied: 

p .... q + 1 < P (p ,q,k) 
- n 

is finite. 

r 1 +k 2k )n + 2n( 1 + kk2+ k2 )n-1] • :5. (p " ~ + 1) l ( 

Proof: . The fact that p - q + 1 < P (p,q,k) 
·- n 

was disc.ussed after 

Definitiot1; 3-2. Let N1 be the minimum number 0£ translates of kBn 

required to cover (1 + k)Bn and N2 th~ minimum number <if translates 



· of k2Bn with centers on bd[(l + k)Bn] r~quired to cov-.r · 

bd[(l + k)BnJ. ·· Then it is not difficult to show that. 

N < ( 1 + Zk ·)n 
1 - k 

d N 2 ( 
1 + k + kz )n-1 

an Z ..:. . n k2 ' 

The theo,rem will now follow by showing that. 
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To prove this, Corollary 1-2 .1 implies that ,.it suffices to sh<:>w that if 

t5 is any finite. family of. sets in Ln with the (p,q,k)-p:l'.'operty, then 

jl) j ..:_ (p - q + 1) (N1 + N2) , 

n 
be .. a finite fam:f-1y of subsets of .. L with 

the (p,q,k)-prop~rty. Theorem 3~3 implies that for each A. E O there 
1 

exists a point x. E A. such that 
1 :L 

Without 

· loss 0figenerality, .assume that E(x1,A1) = min{E(xi,Ai): i = 1, • , , , m}. 

I ' -1 
Lemma 3-4.1 implies that o = .{ (E(x1 ,A1 )) Ai: i = 1, ••• , m} has the 

I 

(p ,q,k)...iproperty. It is also clear that Jo I = lo , . Hence, we may 

assume that .. o has the property that 

E(x1 ,A1) = min{E(x. ,A.): i = 1, ••. , m} = L 
· 1 1 

By Lemma 3-4.1 we may also assume that x1 = 0. 

oz = {A. E o: A. n A1 = .Ql}. 
· 1 1 . 

We note that Oz may be empty; however, Ol f Ql since Al E o1 • It 



There exist N1 poi.nts . zl' ••• , zN 
1 

Nl 
(l + k)Bn C: U 

1=1 

it _follows that 

such that 

n 
(z. +kB). 

]. 

for some j, 

I(xi,Ai) ~ k(E(xi,A1)) ~.k. This implies that 

and 

n n n 
xi+ kB C: xi+· I(xi,Ai)B c Ai~ Thus, xi€ zj + kB · implies that 

Hence, each set in· 

points zl' Zz' ... ' ZN ; consequently,. 
1 

C1 contains one of the N1 

IC1l2.N1. 

If C2 = !i1; then clearly_ l,\J 2.N1 + N2 •. If C2 'f 0, let 

Ai E C2 , Then !lxi\\ > l + k.. Sirtce Ai n A1 'f :0 and A1 C: Bn, · it 

follows that Ai n Bn 'F ¢. Let , y i c: (bd(Bn)) n Ai, Th&n 
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k = 1 + k - 1 < l!x1 11 - l!Yi!l 2- !Iii - Yill ~ E(xi~Ai), Since y1 c: Bn and 

II xiii > 1 + k, the set. O.xi + (1 - 11.)y i: 0 < 11. < 1} · intersects the 

boundary of (1 + k)Bn. at some point w1 = 11. 0xi + (1 - 11. 0)yi, for 

some O < 11.0 < 1. The set 

is ccmtaiI).ed in the convex hull of the set 

which· ~s contained in Ai. Now 
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2 n · n 
Therefore, wi + k B c: wi + A0I(xi,Ai)B C: Ai. Let ul' • • • ' . ~ 

2 
be 

N2 points such that; ui e: bd( (1 + k)Bn) and 

N2 
bd((l + k)Bn) c: U 

i=l 

2 n 
(u.+kB). 

l. 

Then for Ai e: c2, it follows that wi e: u. + k2Bn 
l. 

implies that 

one.of the N2 

t\ = c1 u c2 , 

uj 
2 n 

Therefore, each e: w. + k B c: A., 
l. l. 

pain ts u1 , ... , ~ ; . consequently, 
2 

it follows that Ii:\ I .::_ N1 + N2 , 

for some j ' which 

set in c2 contains 

Since 

To cemplete the pnof we. proceed by induction on s = p - q. If 

s = O, then o has· _the (p,p,k)-property. In this case it clearly 

follows that 02 = 0. Thus,. lo! .::_Nl + N2. 

been shown that 10 I .::_ (p0 - qO + 1) (N1 .+ N2) 

and let p and q be .such that. p - q = . s. 

Suppose now that it h~s 

fo~ all O .::.~a - qo < s, 

Since each set in o2 

fails to intersect. A1 , it ·fol],ows that either o2 has the · 

(p-,-1,q,k)-property, <H 02 _ fails to contain p-1 sets. If o2 has 

the (p-1,q,k)-property, then our induction hypothesis implies that 

I o2 I ..:_ (p - q) (N1 + N'2) , In th1s case 

If o2 fails to contain p-1 sets, let j denote the cardinality of­

o2, Then O .::_ j < p - 1. If j = 0, then 02 = (a, and it follows· 



that lu I = 131 I .::. (p - q + 1) (Nl + N2). If O < j < p - q' then 

lu2 I .::. j ·.::. P - q .::. (p - q) (Nl + N2) and 
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Thus, assume .that . p - q < .j < p - 1. Theorem 2-3 implies that [5 has 

the (j+l,q-p+j+l)-property. Since each set of 02 fails to intersect. 

A1 , o2 has the (j ,q-p+j+l)-propeJ;"ty. Hence, some subfamily Q of 

[52 containing q-p+j+l sets has a nonempty intersection •. Hence, 

lo2 1.::. IQI + 1'32 , QI.::. 1 + j - Cq - P + j + 1) 

Thus, lol .::_ Jt51 1 + lo2 1 .::_ (p - q + l)(N1 + N2). By induction, it now 

follqws if o is any finite family of sets in Ln with the 

(p ,q ,k)-property, then lo J .::_ (p - q + 1) (Nl + N2). The theor.em now 

folfows. • 

Note that it is shown in the proof of Theorem 3-4 that 

Pn(p,q,k).::. (p - q + l)(N1 + N2). In some cases, that is, when a 

partict,ilar k is given, the number (p - q + l)(N1 + N2), when 

calct.tlat.ed, may be smaller than the upper bound for P (p ,q ,k) which is 
n· 

given in the theorem. It can also be concluded from the proof of 

Theorem 3-4 that if. p > q, then P (p,q,k) < P (p-1,q,k) + (N1 + N2), 
n - n 

where N1 and N2 depend on k. These upper boun.ds are probably 

rather large as compared to the value of p (p ,q ,k). 
n 

The imp<Drtant 

thing, h(j)wever, is the fact that P (p,q,k) is finite for O < k < L . n 
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It should also be noted that Theorem 3-4 fails to .give any 

information about P (p ,q ,O), The next theor.etn partially answers the · 
n 

question as to whether or not P (p,q,O) n . is finite. 

Theorem 3-5. Le.t p ..::.. q ..::.. 2 and n > 2 be integers. If q .s_ n, 

then P (p,q~O) = oo, 
n 

Proof: Suppose first that p = q = n, Let· gj denote the linear 

equation 

n 
E 

i=l 

i-1 a.j , = 
J. 

.n. 
J ' 

where j is a positive integer. Let· H. denote the hyperplane 
J 

. I 

and [, 

i 

{ (ai' ... ' 
n 

a)c:L: 
n 

= {H.: j = 1,2, ,,,}. 
J 

Given n dist~nct eqU:atiens 

... ' i ' 
n' the d!aterlllinain.t formed by the coefficients of these 

equations is known as the Vandermonde determinant,. which is never zero 

[p. 70, 7]. Hence, any n distinct equations gj, j = i 1 ,:i, 2 , ,,,, in' 
I 

hl:l.ve a common solution, · Hence, the family o has the (n,n)-property. 

I , ' 

Let N be any positive integer and ON = {Hj: j = 1,2, , •. , n:N}. Since 
I o~ is finite' it is possible to fi,nd an integer' m such, that each n 

I 

sets of ON have a common point in the set mBn. Let 

o = {Hj n mBn: j = 1, , •. , nN}. Then l3 has the (n ,n)-prope:rty. 

Moreqver, [5 consists. of nondegenerate compact convex sets. 

Consequently, o has the (n,n,0)-property in Ln. Suppose some n+l 

sets in [5 ,have a nonempty intersection, . Then there exists a point 
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(a.~, , , , , a.~) such that the polynomial 

~ 0 i-1 n 
L, a.iy - y = 0 

i=l 

is satisfied for n+l distinct.values of y. However, this is 

impossible since an nth degree polynomial has at most n zeros, Thus, 

no n+.l sets of o have .a conutlon point. Thus, if a subfamily G of. 

u has a nonempty intersection, then q contains at mo.st n sets. 

This implies that . lu I .::. N. Hence, P (n,n,O) > N for every integer n . -

N. · Thus, Pn (n;n,O) = co, 

Theorem 2-3 implies that every family u with the (n,n,0)-property 

n n in. L also has the {q,q,0)-property in L where q .:_n; Thus, 

Definition 3-2 implies that p (q· q 0). = co 
. n ' ' fer all q with 

Also, any family with the (q ,q ,O)-property in. :):.n · has the · 

(p ,q ,0)-property in. L n; thus, Definition 3.:.2 implies that 

P n (p , q; 0) = co for 2 .:_ q .:_ p and q < n. • 

2 .:_ q .:_ n. 

Corollary 3-8. 2 will further ·answer. the question of the . fini tenes.s 

of P (p,q,O) for some .. q > n. The folhwing theorem describes how 
n 

the function Pn(p,q;k) behaves relative to increasing one of the 

var~able.s while holqing the others constant, 

Theorem 3-6. 
i -

be integers and k and Let and n > .1 

real numbers with O < k < 1 and O .:_ k1 < 1. Then the following 

results hold; 

(a) 

(b) 

If k < k < 1, 
1 - 2 -

the~· P (p,q,k1 ) > P (p,q,k,2). 
n - n 

If is an integer with then· 

p (p,q,k) < p (pl,q,k). 
n n 



(c) If q1 is an integer with 2 .:_ q1 < _q, then 

Pn(p,q1 ,k) > Pn(p,q,k), 

(d) . If d is an. integer with n .::_ d, then· 
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(e) If Pn (p,q,k1 ) is finite, .then (b) and (c) remain true when 

k is replac~d by k1 . 

Proof; The .parts (a)-(d) will be proven in order, and on (b) and (c) 

part (e). wiil be checked. 

Let i3 be a family of sets in L n, If i3 has the 

(p ,q ,k2)-property, then O also has the (p ,q ,k1)-prope+tY. Hence, 

Definition 3-2 implies that P (p,q,k1) > P (p,q,k2), 
n · - n 

which proves (a) • 

A proof similar _to the prooiE of Lemma 2-9.1 can be used to show that 

Pn(p,q,k1) + (p1 - p) .::_ Pn(p1 ,q;kl)· Thus, .if Pn(p,q,k1 ) is finite, 

we ha_ve Pri (p,q,k1 ) < Pn (P;i;,q,k1). Since TheCilrem 3-4 implies that 

Pn(p,q,k) is finite, (b) foll@ws and also the part G>f (e) which 

concerns (b). Also a _proof similar to the proof of Lemtna. 2-9 .2 can be 

us.ed tio show that Pn(p,q1 ,k1 ) 2_ Pn(p,q,k1 ) + (q - q1). Thus, if· 

Pn(p,~,k1) is finite~ then Pn(p,q1 ,k1 ) > Pti(p,q,k1 ), Since 

Theorem 3-4 implies that p (p ,q ,k) n . . is .finite, (c) follows and also 

the part of (e) which concerns (c). 

It now remains. to prove .(d), and to do th_is it suffices to prove. 

that J;>n(p,q,k1 ) .::_ Pn+l (p,q,k1). From Definition 3-2, we see that this 

will follow if we can show that .for ea.ch family 0 of sets with the 
I 

there_ e~ists a family O of sets with the. 

(p ,q,k1) --property in Ln+l such that 
I 

JoJ = Ji3 J. So let 

£5 = {Aa.: a e: A} be a family of. sets. with the (p,q,k1 )-property in Ln. 



Theorem 3-3 implies tha.t · fo1: each a e: A there exists a point 

sucl} that: 

I(x ,A) 
a a.> ·k 

E(x ·,A ) - 1 · a a 

For each a .e: A · define a set A~ . in L n+l - by _ 
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x e: A 
a. a· 

and - I a 1 1 < I (x ,A ) }. 
n+· - a a 

!'!:' = Then the ·family u {A' : a e: · A} 
a. 

is a family of nondegenerate compact 

can be considered as a subset of Ai ,;,.a' convex.sets in n+l 
L • S:i,nce 

I 

it fol,lows that ts has the _ (p ,q)-property. Let x~ = (!\, , ... , .Sn ,O). 

Then if y .= (nil.' , , •. , nn+l) e: .A~, we have 

< ,E(x ,A ) • 
- a a 

Hence;· iti follows that .. E(x A ) = E(x'·- A')-. Also, it follows from the. a.' ·a. . a' a -

definitiCi>n of A' that I(x ,A) = I(x' ,A'.). Consequently', .Theor_em 3-3 
' a a I a ·a a 

I 

imp_lieS! that o has the ,(p,q~k1)-property. Since 

(n 1 , • , • t n~+l) e: A~ implies that (n 1 , ••• , ·nn) e: Aa, it follGlws that 
I 

Its I = Its I· The theorem now follows. • 

Theorem 3-7. Let p .:_ q ..::_ 2 and n > l be integers, and 

f(k) = Pn:(p,q,k) for O < k < 1. If O .:. k0 < 1, then 

limit+ f(k) = 
k -+ k 

0 
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Proof: If k < k' - ' then any family ~ with the (p ,q ,k·' );_property also 

has the (~,q,k)-property. Hence, f(k') ~ f(k), that is f. is a 

decreasing function. If k > k0 , then k > 0, and Theorem 3-4 implies 

that f (k) i~ finite. The theorem will clearly follow i:I; one can show 

that f (k0 ) = sup{f(k): k > k0 }. · Suppose that _this is not the case. 

Then. sup{f(k): k > k0 } < f(k0 ) (note, f(k0 ) may be infinity). Thus, 

{f(k): k > k0} is a set of positive integers which is bounded above. 

Let m = sup{f(k): k > k0 } = max{f(k): k > k0 }. Then m is a positive 
I 

integer. Now Pn (p,q,k0 ) > m implies that there e:ldsts a family i3 

of sets in Ln with the (p,q,k0)-property such that 
I 

Io I > m. 

Corollary 1-2.1 implies that there exists a finite subfamily 
I 

D = {Ai: i = 1, ..• , h} of O such that /~/ > m. We may also assume 

that h ~ p, so that D also has the (p,q,k0)-property. 

Theorem 3-3 implies that for each i = 1,2, •.. , h there exists a 

p~int. x. EA. such that 
l. ' l. 

Let 

min [{E(x.,A,) - I(x.,A.): E(x.,A.) - I(x.,A.) > 0 
l. l. l.. l. L l. l. .. l. 

and 1 < i < h} _,. -

u {l} J . 

Then O < f3..::. 1. Let E = max { E ( x . , A . ) : i = 1 , , . . , h } • 
l. l. 

Then. E > 0. 

Choose a such that O <a< min{f3/E,l-k0 }. Fo.r each positive integer 

j and Ai E t5 let 

Aj. ·. -1 · n conv(A. U [x. + (I(x.,A.) + f3j )B ]), 
l. l. l. l. l. 



and 

~j={Ai:i=l, ••• ,h}. 

Then ~ . i f 'l f . Ln, M ' u . s a ami yo c0mpact convex sets in oreover, since . J 

Ai c: A{, . it follows that ~ j has the (p ,q)-property. Let · AI E: tS j . 

-1 n j 
Then x. + (I(xi,A.) + Sj )B C:A.; consequently, 

]. ]. . . ]. 
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j. .-1 
I(xi,A.) > I(x.,A.) + SJ • Also, if E(x.,A.) - I(x.,A.) > O, then it 

]. - ]. ]. ]. ]. ]. ]. 

follows that E(x. ,A.) - I(x. ,A.) > S/j, · which- implies that· 
]. ]. ]. ]. -

n 
Since.we also have A_. c:: xi+ E(x. ,A.)B , it follows that 

1 . ]. ]. 

j n j 
A1• C:: xi· + E(x1:.,A1.)B ; consequently,. E(x. ,A.) < E(x. ,A.). Thus, 

]. ]. - ]. . ]. 

-1 
I(x. ,A.) + Sj 

J. ]. > k 
E(x. ,A.) - 0 

]. ]. 

+~>k +~ 
jE O j 

If E(xi,_A.) = I(x.,A.), then A.= x. + I(x.,A.), which implies that 
l. L l. l. l. l. . l. 

j .-1. n 
Ai = xi. + (I(xi,Ai) + BJ )B • Hence; 

I(x.,A~) 
1· l 

. j 
E(x.,A.) 

]. ]. 

Let kj = k 0 + a/j. Then Theorem 3-3 implies that t5j has the 

(p,q~kJ)~property. 

m that f(k!) < m. 
J -

Since 

Hence, 

kj > k0 , it folfows from the definiti_on of 

I t5. I < f (k ! ) < ,tn which implies that each 
J - J -

family Oj has the m-intersectional property. For .each integer j 

ther~ exists a.set D. 
J 

containing m. points such that H 
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j 
then Ai~ Dj 'f 0, The points of Dj may also be chosen to. lie in the 

1 
compact set U {Ai: i•l,2, ... ,h} since l'< j < h. - -

In a manner similar to the proof of Theorem 1-1, one can construct 

sets 

Let 

m 
Dj, j ~ 1,2, ... , contai:ning m points such. that:. 

(a) 

(b) 

(c) 

i 
x 

each set of oj contains a point of 

there exist m convergent sequences 

i 
D~ :/: with xj E such that for i t, 

J 

Dm = D 
j . i for some L 

denote the point to which the sequence 

m 
D.; 

J . 

i 
{x.}' 1 < i ..:. m, 

J 
i t 

x. :/: ~.; 
J J 

converges. It 

will be shown that each set in ~ ccmtains one of the points of the .set 

D = {x1 ' .... ' xm}. This will then imply that I ol ..:. m, which 

contradiczts the fact that. lol > m. 

Suppose th.at for some set Ai e: t), A. ri D = 0, 
l. 

Let 

cS = inf{l\x - YII= x e: Ai and ye: D}. Then cS > O, since Ai and D 

are disjoint con\.pact sets. Let 

C = { y : 11 y - xl l ..:_ cS / 2 for some x,e:A.}, 
l. 

Then C is a cqmpact convex.set; moreover, the definition of. cS 

implies that C ri D = 0, Let 
.-1 n 

y e: xi. + (I (x. ,A.) + SJ ) B ; 
l. l. 

I (x. ,A.) 
. l. . l. e: = 1 - __. __ _ 

IJxi - YJJ 

with 

Then O < e: < 1 and JJe:x1 +(1- e:)y - xi!I = (1- E:'.)l!Y - xii\= I(xi,A), 

n 
This implies that e: xi + (1 - e: )y e: x. + I (x. ,A. )B C A., Also, 

l. l. l. l. 
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Jlexi + (1 - e)y - YII • ell xi - YII = llx1 - YII - I(xi,Ai) ~ 6/j. Thus, 

-1 n 
if 6/j ~,o/2, then xi +(I(xi,{\i) + 6j )B cc. Let N1 be an 

integer such that: j > N1 implies that 6/j ~ o/2. Since· C is a 

compact set and en D = (IJ, 

j > N2' then, t 
~ c for xj 

then it follo~s that x. + 
]. 

the:i.e exists an integer N2 such that 

all t '·.= l, ... ' m. If j > max{N1 ,N2}, 

· -1. n 
(I(xi ,Ai) + Sj .· )B c C, and clearly, 

if 

Ai c: C; hence,. Ai~ C. Also, j > N2 implies .that.: x; -~ C for ail 

t = 1, .... , ·m; ccmsequ~ntly, xr~ Ai. for t=.l, ••. ,m. From (b) 

m 1 m· Aj m 
it follows .that Dj =.{xj, ·~·, .xj};. thus, in Dj = (IJ. Howeve.r, 

D~ ,f, (IJ, 
J 

since A~e:;i:., 
. J. UJ it follows from (a) that Thus; the ·· 

assumption that , .Ai n D = (/J mus·t be .false.· Therefqre, each set in t5 

contains a point of the :set D. The theorem no:w fol.lci>ws. • 

For fixed P.:_:q.:_ 2 and n ~.l, let f(k) = p (p ;q ,k) •. Then 
n 

is a functi(!)n. defined for each k e: [O,l]. Thearem 3-4 implies that· 

f 

f(k) i1:3 .finite for all k with 0 < k ~.l; consequently; f(k) is a 

positive int!.eger for each k e: (O,l,]. Theorem 3-6(a) and Theorem 3-7 

imply that f is a dec.reaE?ing function on (0 ,1) and is continuous· 

from the right -at. each k e; [O ,1). In particular, this is und.erstood to 

mean tha.t if . f (O) = 00 , then f (k) -+ 00 a1:1 k + 0 +. Thus, f can, hav¢ 

. at most a .countable number of discontinuities in [0,1), and each 

di$contin.uity of f. is a juµtp discontinuity. (Not:e · f is being 

considered as an extended real. valued functiqn ·on [O ,il with its 

relative topo+ogy,) Let D(p,q;n) denote.the set of discqntinuities 

of L Notetqatsince.P1 (p,q,k)=p-q+l forall ke:(0,1), 

D(p,qJl) = (/J. Also, H.elly's theorem implies that D(n+l,n+l;n) = (/J 

for, n > 1. The~rem 3-.5 implies that if. q ~ n, then D (p ,q. ;n) is an. 

infinite set. If· D(p,q;-q.) # (IJ, then the fact that f is continuous 
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from the right at .each point of [Q,l) implies that D(p,q;n) can ·be 

written in the form. {~1 (p,q;n): i e: J}, where. J is either the 

positive integ~rs .or an initi~l segmen.t of .the posit:t,ve integers, and 

f(~i+l (p,q;n)) > f(~i (p,q;n)). The set D(p,q;n) is an infinite set if 

and only: if, f (O) = co and is a finite set. if and only. if f (0) < co. 

In ·the case when D(p,q;n) ,f, (/}, the exact location of the points 

~i (p ,q ;n) are .. unknown. 

Let· f'.(k) = P2 (2,2,k) · for k e: [0,1] and ~i = .;1 (2,2;2), Since 

f' (0) = co, the set D(2,2;2) = {.;i: i e: J} is an infinite set. It· 

will be ;shown later that if . k < 1, then f' (k) .:_ 3; Theere.m 2-7 

implies that f' (1). = N2 (2,2) = 1; conse.quently, .;l = 1. Thus, · f' 

is not an onto map, The graph of: f' looks,soniething like Figure 15. 

The· proof of the fo.llowing lheorem is similar to th~ proof of a 

theorem .of Hadwiger and Debrunner [4]. 

Theorem 3--8. Let·. p .:_ ·q .:_ Z and . n . .:. 1 be intiegers. · If . o is a 

finite family of cempact.subsets o( Ln with t!1e (p+n,.q+J:i .... 1)-pr~perty, 

there exists a subfa~:Uy J:! of. 0 such that lo I 2. IJ:J I + 1 Ii . and 

either J:! has the (p,q)-property or jJ:J I 2. p ... q + 1. 

Proof:· Let o = {A1, ... , Am} be a finite family of .compact. -subsets of .. 

Ln with the (p+t\,q+n-1)-:--property. Define a family C of subsets of 

n 
L by· Ce: C if and only if t:: is a compact co~vex-set and 

{A. n C: 
]. 

i=i, ••·;·m} . . has the (p+q,q+n-1)-property. The set C is 

nonemp.riy since .. o is fin,ite, and there. exists a. compact CQnvex set·· C 

which contains ea.c):t set; in t), Let 3 be a nest in C, that: is, if 

C,D e: 3, then either C c D or D cc. Let c0 = n{c: C e: S}, Then 

c0 being the i"Q~ersection ef a ·rhonoto~ic family of cqmpact sets is . 
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nonempty. Let 3 = {Ai n c0 : i = 1, ••• , m}. Suppose that 0 ' fails 

to have. the (p+n ,q+n-1)-property. 
I 

("'. I 
Then there exists a subfamily ~ of 

o containing p+n sets na q+n-1 of whicl:i. have a common.point. Let 
I 

G = {Ai: Ai n c0 e: Q }. Let· G1 , •.. , Gr denote all possible 

subfamilies of Q containing q+n-1 · sets such that 

H. =n{A: A e: Q..} 'F (1J for i = 1, ... , .r. By our supposition, 
J. J. 

Hi n c0 = (1J for: i = 1, ••• , r. Thus, . the family {Hi n c: c e: g} is 

a mcmotonic family of compact sets with an empty inte!section; 

consequently, there exists a set c. e: g such that H. n Ci = ~. Since 
J. J. 

g is a chain, there exists a set c' e: g such that C' c c. for 
J. 

i = 1, ... ,. r. The family. {A. n CI : i = 1, ... ' m} has the 
J. 

(p+n,q+n-1)-property; thus, some q+n-1 sets from {An C': A e: G} has 

a nonempty intersection. Any such. q+n-1 sets. must be of the form 

{An C': .A e: Q.i} for some L Consequentln 

for some i. However, 
I 

c' n [n{A: A e: Q.}J = 
J. 

C' n H. c Ci n H. = !1J., a contradiction. 
J. J. 

[5 has the (p+n,q+n-1)-property. Hence, c0 e: g. 'l'ne minimal· 

Thus, 

principle [p. 33, 8] impltes that there exists a set M e: C such tha.t · 

if Ce: C and Cc M, then C = M. It will be shown next that M is 

a polytope, 

Let . t\ = {Ai n M: i = 1, .•. , m}. Then . ~\ has the 

(p+n,q+n-1)-property. Choos.e a point x. e: A. n M for each 
J. . J. 

i = 1, ... , m. Let 181 , ..• ·~· lat denote the collectfon of all 

subfamilies of 01 containing q+n-1 sets. such that n{A: A e: 18,} 'F (1J 
J. 

for i = l, •.. , t. Choose a point yi e: n{A: A e: !Bi} for 

i = i, ... ' t. Let u denote the .convex hull of .the set· 
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{x1 , , , , , xm,Yi, , , , , yt}. Then tt· is easy to see that 

{Ai n U: i .. 1, , , , , m} has the (p+n,q+n"':'1)-property. Since Uc: M, 

it follows that U • M, Thus, M is a polytope. 

Let x . be a vertex of M. Then there exi.sts .. a line1;1.r functional,. 

f n on L suc.h that {w: f (w) • :L} n M • {x} and f(y) .:. .1, for all 

y e: M, Let J denote the support hyperpla~e · {w: f (w) • 1}, It will 

now be shown that {xl •n{A: A e: l'.Ji and x e: A}, Let 

{w: f(w) -1 
J n J = .:.l+r}. Then for each integer. r > O, M is a r r 

proper subset of M; thus, J r n M ~ c. Hence, f<:>r ec;1ch r there 

exists a subfamily Qr of 13 containing p+n sets no q+n..;.l of 

which have a common point in J n M, 
r 

Since there are only a finite 

numb~r of ways of choosing p+n sets of. t5' there exists a subfamily 

q of cont~ining p+n sets such that Q ... q for infinitely many r. 
r 

Since {J n M: r .. 1, . • .. } is a monotonic fa1').ily of sets, it follov1s r 

that no q+n-1 sets of Q. have a common;point ih Jr n M for all r. 

Hence, no q+n-1 set of Q have a common point .in 

U{J. n M: i = 1, .• • ) = {w: f(w) > l} n M = M , {x}. However, some· 
1 

q+n-1 sets of Q must have. a common point in M; consequently, the. 

intersection of some qtn-1 sets of Q is {x}, This clearly implies 

that. {x} = n{A: A e: i3i and x e: A}. 
I 

Let J:f = {A. n M: x e: A.} and J:f = {Ai n M: x ~A,}, Then 1 1 1 1 1 
I I 

i\ :J:f-1 u Ml and n{A: A e: :J:f. } = 
1 

{x}. Supp0se that each n sets of. 
I 

J:[11 ha Ve a common point in M which is different from x. Let 
I 

!R1 , •.. , \ denote all subfamilies of J:i1 containing n sets. Choose 

a point z. e: n{A n (M,{x}}: A e: !R,}. Then there exists an integer 
1 1 

r > 0 such that f (zi) > 1 + r -1 for i = 1, k, Since ... ' 
f (z ,) 1 + -1 f (x) and and both belong each set in !R. ' > r > x z. to 

1 1 1 
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it follows. that the sets in· !Ri have a· common point in. 
I -1 

{w: f(w) • 1 + r } n M. FJ;ence, every n sets .of the family J:i1 . have 

.a commori point in ·the n-l dimensional hyperplane {w: f(w) .. 1 + r-1}. 

Helly's theorem implies that there exists a point 

I. -1 
y e: (n{A: A e: J:r1 }) n {f(w): f(w) = 1 + r }, This is a co.ntradiction. 

since n{A: A e: lf~} = {x} · and x.i {f(w): f(w) = 1 + r-1 }. Thus, 
I 

either l:!1 fails to contain n sets, or the intersection of some n 

sets of 
I 

I 

lf .· is 
1 

{x}, In either case-, there exists a subfamily 

J:t 1 containing j sets with j 2_ n . such that· n {A: _A e: Q0 } = {x}. 

Theorem 2-3 implies that· t\ has the (p+j ,q+J-1)-property. If one 

cho0ses p sets from {A: A e: J:i 1 } and j sets from Q0 , some q+j~l. 

must have a common point, llo.weve_r, this point cannet ·be x; thus, the · 

p sets from {A; A e: J:i1 } 

point, Thus, either J:i1 

must 9ontaiµ·some q sets with a common 

has the (p~q)-property, 0r J:i fails to 
1. 

contain· p sets, . If J:r1 = ~, let J:f consist of a single set of [,, . 

Then ltSI = 1; consequently, Joi 2. JJ:rJ + 1 where IJ:rl 2-P - q+ L 
I 

let J:f = {A. e: o: x e: A.} and J:f = {Ai e: t,: x i A.}, 
1 1 · 1 . 

Then each set .of J:f contains a set in J:r1 ; conse·queritly; I J:f I 2_ I J:r1 I, 

If ;i:i1 fails to .contain p sets, then it can be shown as in the proof 

of Theorem 3-4 that I :i:i1 I 2_ p - q + 1. If J:r1 has the (p ,q)-property, 
I 

then the same is true of J:f, Thus, J iJJ 2_ I J:f J + I J:rJ = 1 + I J:rJ, where 

I J:ri 2_ p - q + 1 or J:f has the (p ,q)-property and J:f C: 0. • 

Corollary 3-8.1. Let. p.:. q.:. 2 and n.:. 1 be integers. Then 

Pn(p+n,q+n~l,k) 2_ Pn(p;q,k) + 1 for all k with O < k < 1. 

Proof:. If p (p,q,k) 
n 

is infinite, then the result clearly follows. 

assume that P (p,q,k) is finite,. Let iJ be any finite family of­
n 

So 



subsets ·of 1° wit:h the (p+n,q+n-1,k)-property. Then .Theorem 3-8 

implies that there exists ,a subfamily J:i of. '3 such that.· 

1'3 I .::_ l:i:i I + 1, and either :J:f. has the (p,q,k)-property or 

IJ:i I .::_ p - q + · 1. . Sine~ by Theorem 3-4 p (p,q,k) > p -n . -

follows that in either case IJ:il .::_Pn(p,q,k). Thus, 

1'31 .::_ Pn(p,q,k) + 1. Corollary 1-2.1 implies that 

p (p,q,k) < p (p,q,k) + 1.. 
n - n 

q + 1, it 

The following corollary is similar to a result of Hadwiger and 

Debrunner [4]. 

Corollary 3-8. 2. If p .::_ q .::_ n + 1 .::_ 2 and nq .::_ (n - 1) p + n + 1; 

then P (p,q,k) = p - q + 1 · for all k E [O,l]. 
n 

Proof: 'Theorem 3-4 implies tha.t P (p,q,k) .::._ p - q + 1 
n 

fer .all 

k s [O ,1];; thus, it suffices to show th.at P (p,q,k) < p - q + 1. 
n -

We proceed by induction on m = p.- q. If m = O, then 

p = q .::._ n + 1, and Helly's theorem implies that P (p,p,k) = 1 · for 
n 

all ks [0,1]. Suppose now that if p.::._q.::._n·+l.::._2, 
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nq .::_ (n - l)p + n + 1 and O .::_ p - q < m, then P (p , q, k) = p - q + 1 · 
n 

for all. k E [0,1]. Let· p and q be such that p .::._ q .::_ n·+ l .::._ 2, 

net .::._ (n - 1) p + n -i- 1 and p - q = m.. Cor(?llary 3-8 .1 implies that · 

P (p,q,k) < P (p-n,q-(n-1),k) + 1. Moreover,. 
n - n 

ri(q ~ n + 1) > (n - l)(p - n) + n + 1. 

The tnequality n(q - n + 1) .::._ (n - l)(p - n) + n + 1 and the fact 

m > 0 can also be used to show that p - n .::._ q - (n - 1) .::._ n + 1. 

Since O .::_ (p - n) - (q - .n + 1) < m, our induction hypothesis implies 



that Pn(p-n,q-(n-1),k) = p - q, Hence, 

Therefore, P (p,q,k) • p - q + 1 •• n 
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P (p,q,k) < p - q + 1. 
n -

From Corollary 2-8.2 and the .fact that P1 (p,q,O) • p - q + 1, it 

follows that the simplest case, namely, the case with the smallest 

values for p, q and n, in which the question is unanswered as to 

whether or not P (p,q,O) is finite or not is that of p = 4, q • 3, 
n 

and n = 2. From Theorem 2-7 it follows that N2(4,3) = 2. Moreover, 

since 2 ~ P2(4,~,1) ~ N2(4,3), it follows that P2(4,3,1) • 2, An 

example will now be given whi c.h shows that P 2 ( 4 , 3, k) ..::_ 3 arid 

P 2 (2 ,2 ,k) ..::_ 3 for all k with O < k < 1, . Conse.quently, this implies 

that the equation P (p,q,k) = p - q + 1 is not always valid for 
n 

q > n, If D(4,3;2) is the set defined in the discussion following 

Theorem 3-7, then.this example will also imply that·. D(4,3;2) rJ, 0 and 

~1 (4,3;2) • 1. 

E~ample 3-1. Define points in 12 as follows: 

A = ( - ~n ' 0 ) ' B = ( ~n ' 0 ), n n 

c (-1 -1 - 2n ) D ( 0' 
1 ) ' = 

n 2n 2 ' n n 2n 

E Un· 1 - 2n ). F (1,0), = n 2n2 

G = (-1,0), H = ( 1 -! ) 
n , n ' 

I (1 ~-1) , J = (-1,-1), 



1 - 2n ) 
2n ' 

L .. (0,~1), 

N = ( -1, l 
n· 

R = (-1,2), P = (1,2), 

Using the above points, define sets in . L 2 as follows: 

s1 conv{R,P,F,D ,G}~ 
n n 

s! .. COt1V{En,F,I,L}, 

s3 = conv{D ,H ,I,L}, n n·n · 

s4 = conv{G,M ,L,J}, 
n n 

s5 = conv{G,C ,K ,N },·· n ·· · n n n 

s6 = conv{A ,B ,E ,C }, 
n n n n-n 
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- 2n ) , 
2n 

Moreover, let 13 = {Si: i = 1, ... ' . 6} for· n = 3,4, ... Fi&ure.16 
n n 

illustrates the family 13 for n = 4. For each n· with n..:..3, n 

family iJ has both the (2,2)-property and the (4,3)-preperty. 
n 

Moreover, 

large~ 

lo. I = 3 for all. n 2:.. 3. Note also that as n becomes 
n 

approaches a square. Let x 
n 

(0 ,--1/2n). 

Then. it is not difficult to show that 

I(x ,s6 ) 
n n -----+ 1 

E(x ,S6) 
n n 

as·n-+ 00 , 

the 



87 

• x 

L 

Figure 16. The Family e4• 
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Thus, given any k with O ~ k < 1, there exists an integer· N such' 

that n > N implies that l\. has both the. (2 ,2 ,k)-property and 

(4,3,k)-propel;:'ty. Consequently, P2 (2,2,k) :.::_ 3 and P2 (4,3,k) ..:. 3 

for all k with O < k < 1, 

Families of Homo~heties and Applications 

The following sec.tion is concen\ed with families of homotheties in 

Ln with the· (p,q)-property. At the __ end of the section a;e applications 

of the theorems to transver_sal type. problems, 

Definiti.on 3-3, If B is .a subset of a linear ·space, the set · x + >-B, 

for· A .;,. 0, is said to be homothetic to B and. positively hom0theti<;: 

if >. > 0, 

If 3 is a family of sets wit:t,. the (p,q,1)-property in then· 

it has already bee_n noted that each set in 3 Has the form 

x + I (x,A)Bn for sonte x.. Consequently, each set. in 3 is positively 

homothetic to Bn. 

Let K be a compact convex subset of Ln. GrUnbaum [3] defined 

H(K) = sup{ I~ I} where. ~ is a family of homotheties of. K. with the 

(2,2)-property and proved that H = max{H(K): Kc Ln} 
n 

is finite. The 

following theorem. implies that.the number H defined by GrUnbaum . n 

satisfies the inequality H < P (2,2,l/2n). n - n · · 

Lemma 3-9.1. If K 
n is a compact convex body _in- L and 3 a.family 

of sets with the (p ,q)-property such that each. set _in· 3 is homotheti_c 

to K, then !3!~Pn(p,q,l/2n). 
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Proof: · Corolla.ry 1-2, 1 implies that it suffices to prove the theorem 

for (; finite, Let (; • {xi + a K: i • 1, , , .. , ·m} be a finite family 
i 

of homotheties of K with the. (p ,q)-property, It has been shown by · 

Chakerian and Stein [2] that _there exists a n-dimensional parallelotope 

Pi such. that P 1 c:: K and K c y + nP 1 for some .. y, The parallel.otope 

P 1 has the form P 1 = x + P where. P is the parallelotope 

with respect; to some basis ••• ' a } n 
n of 1, 

li · i hi f Ln into Ln h th t . nea:i; · somorp sm o sue a .· 

Let f be the 

f (ai) = (0, .. , , 1,0, .. , , 0) where the one is in the ith position. 
I 

Then . ) n f (P • ·B , Le.t (; == {f (x1 .+ aiK) : i .. 1, , , , , m}, Since . f is 
I 

a linear isomorphism, it follows that i3 µas the (p,q)-property and 

I o' I = I oj • Moreover' i31 is a family of homotheties of f (K) . 

Without.loss of generality, assume that x = O. Then P = P1 • Since 

P c:: K and K c y + nP, it follows that Bn c f (K) and 

f (K) c:: f (y) + nBn. . Let z e: f (K) . Then 

11~1 .:. llz - f(y)I! + llf(y)IJ 2 n .+ Jlf(y)JI. 

Since 0 e: K and f(K) c f (y) n + nB , it follows that· llf(y)ll 2 n,.· 

Thus, 11 zll 2n .for all f (K). Consequently, f(K) 
n Let < z e: c 2nB . -· 

I 

. Bn c f(K) f(xi) + aif (K) e: 0 . Then implies that 

Moreover, f (K) c:: 2nBn implies that . 



Thus, 

I(f(xi) ,f(xi)+ctif(K)) > . lail 

E(f(xi),f(xi)+aif(K)) - 2njaij 
1 . - . 
2n 

Theor.em 3-3 implies that {J 1 has the (p,q,l/2n)-pt":operty, Thus, 
I 

IOI .. IO I ,S_·Pn (p,q,l/2n), • 

The proof of the above lemma leads to the following discus.sion: 
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Let {J be a family of sets with the (p,q,k)-property in Ln and f be 

a linear. isomorphism from L n to L n. Let 01 
- { f (A) : A. e: O}. Then . 

I I "1: I a has the (p ,q)-pr<:>perty and JO I ... Jo I, It is possible that u 

has the (p,q,r)-propertywith r > k, If the :set D(p,q;n) ~ 0,. let 

i;i = i;i(p,q;n) for ·i e: J, If. {i;i: Pn(p,q,i;i) < liJI} ~ 0, let. 

i;j = min{i;i: Pn(p,q,1;1) <. lol}, Then r < !l;j, for if this is not the 

case, it would follow from Theorem 2-7(a) that 

p (p,q,1;.) > p (p,q,r) > lol, contradicting the fact that n · J-n · -

lol > Pn(p,q,i;j). Thus, by means of a linear isomorphism it is 

somet.imes possible to transform a family a ~ith the. (p ,q ,k)-property. 

in Ln into a family 0 1 with the (p,q,r)-pr6perty in Ln with 

r > k. However, r m,ust satisfy the ine.quaiity 

r < min { 1; i: P ( p, q, 1;. ) < I t5 I } whenever . the se.t 
n J. 

The following theorem removes the restriction that·· K be a body 

in the above . lennna. 
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Theor.em 3-9, If K is a compact convex set in L n and l3 a family of 

sets with the" (p,q)-property such t;hat each set in l3 is homo.thetic 

to K, then ll31 .::_ Pn(p,q,1/2n). 

Proof: Corollary 1-2.1 implies that it suffices to prove the·theorem 

for l3 finite. Let 0 = {x. + a .K: i = 1, ... ' m} be a finite family 
l. l. 

of homo,theties of K with the (p,q)-property. Without loss of 

generality, assume that O e; K, For each positive integer s and 

i=l, ... ,m, let As ( -1 n 
j =xi+ ai K + s B ). Let 

i\ = {A~: i = 1, •. , , m}. Then t5 is a family of homotheties of the 
s 

compact convex body K + -lBn s . Moreover, since. t5 s 

has the (p ,q)-property. Lemma 3-'9 ,1 implies tha~ 

la I< P Cp,q,1/2n> s - n 
for all s = 1, . . . . . Theorem . 3-4 implies that 

P (p,q,1/2n) is finite. Thus, for each pasitive integer s there. 
n 

exists a set D containing P (p,q,1/2n) · points such that if s n . 

A~ e; t5s, then A~ n D :/: 0 .. The points of D may also be chosen 
l. s 

lie in the compact set 1 
U{A.: i= 1, ... , m}. 

l. 

s 

Let r = P (p,q,l/2n), In a ·manner similar to the proof of 
·n 

Theorem 1-1 one·can construct sets 

points such that: . 

(a) each set of f,s contains a 

(b) there exists r convergent 

with 

( ) Dr. c. 
J 

i D1: such that yj e; 
J 

D fer some .. s. 
s 

for 

s = .. 1, .. •,, containing 

point of Dr, 
s' 

i 1 sequences {y j}' < i ,.::. r ' 

i :/: i :/: t t, yj yj; 

r 

to 

Let i y denote the point to which the sequence converges. It· 



92 

will be shown that each set in O contains cme of the points of the 

{y 1 r 
imply that· IOI < P (p,q,1/2n) .. set D = 

' ... ' ·y }. This will then - n . 

Suppose that for some set x. 
1 

+a..Keij, 
1 

(xi + a.iK) n D = f/J. 

Let 8 = inf{JJx - y\\: X E X. + a..K and y .. E D}' Then 8 > 0 since 
1 1 

xi+ a.iK and. D are disjoint compact sets. There exists a positive 

integer s 0 such, that I a.i J /s 0 < 8, 

there exists a point 

Consequently, [xi + 

z Ex.+ a..K 
1 1 

-1 n 
a.i(K + s 0 B )] 

If X E 

such .that 

n D = ~. 

-1 n · 
xi + a.i (K + ,s 0 B ) , . then 

llx - zll 2_.Ja.il/s0 < 8. 

Since 
-1 n 

. xi+ a.i(K + s 0 B) 

is compact aIJ,d contains no point. of D, there exists an integer N 

such that if. j > N, then y; ¢ 
t • 1, •••. , r. Thus , if j > N, 

for a:).l 

contains no points 

of the set . Dj. Let j .::_ max{N ,s0}. Then 

The definition of implies that 

conttad.icts the fact that . y: 1 x. + ' J II- . ]; 

This 

Additional information on the. r-intersectional properties of 

families of homotheties and translates of compact convex sets· in En 

with the (2,2)-property can be found in Hanner [6] and Chakerian and 

Sallee [1]. 

The following·theorem is an application: of TheC:>re'qi, 3~9 tGl a 

transversal type prehleU\, 

Theorem 3-10. Let p .::_ q .::_ 2 and 1 2. m 2. n · be integers. Also., let 

L ·bean m-dimensional subspace o:f Ln and ij ={A: a. .EA} 
a. 

a family of 
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homotheties of a compact convex set K. in ·Ln with the property t4at 

for each subfamily Ci of £; which contains · p sets, . there exists a 

point y · e: L n such .that y + L intersects· some q se.ts in Q. Then· 

there exist r points x1 , 

. -1 
0 < r < Pri-m(p,,q,(2n-2m) ) 

(xi.+ L) n- Aa ,/,. r/J for some 

in· Ln with 

such that if A e: o, 
a 

i with 1 <.i < r, 

then 

Proof: There exists a linear isomorphism f n n from L into· L 'such 

that.·. f(L) is the span of the set 

Qi = (0' .. .'. ' 1,0, ... ) with the 
I 

... ' 
one in the ith 

0 }, 
n 

where 

position, Let 

L' = f (L), 0 = { f (A ) : a e: A} and K' = f(K). Then it follo'Ws that a 
I I 

0 is a family of homotheti.es of KI' . and from each p sets of 0 

some q. sets are inters.ected by a single translate of L', Let S 

denote the span of the set { Q.1' ••• ' 0 } ' ·. · n-m that.is, L' e S • Ln, 

the direct sum of L' and S. For each a e: A let 

B = {x t S: (x+ L') n f(A) 'F r/J} and let 
a 

B = {x e: S: (x + L') n K'. :f. r/J}, If a i:: A, then A = y + AK for 
a 

s0me point y and some scalar A ,,J 0. Thus,. f(A) = f(y) + AKt, 
a 

f(y) = u+ v for some, u e: s and v e: LI. Thus, f(A ) = u + v + 
a. 

Now 

AK I. 

Recall x E: B if and only if (x + L') n K 'f .r/J and x. e: s. However, 

(x + L ') n K' 'F r/J if and only if 

< u + . Ax + v + AL' ) n < u + v + xk' ) ,;. r/J. 

Since v E: L' ' it follows that u+ AX+ v + AL 1 = ti + AX + LI. Thus, 
! 

x e: B if and only if (u + AX+ LI) n f(A ) 'F r/J and x e: s, that is, a 

x e: B if and only if u+ AX e: B and x e: s. Consequently, a 

B = x + AB, Let q = {B : a e: A}. Then· q is a family of homotheties a CJ. 
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of the set B, Since K' is. compact, a simple sequence.argument .can be 

conetructed to show that B iS! compact, Moreover, since fl;'om eijch p 
I 

sets of t5 some q. sets are intersected by a single tr.ans late of L', 

it follows that Q hae; the (p,q)~property, Since S is linearly 

isomorphic to n-m 
L ' it follows from TheQrem-3-9 that there exist r 

points x1 , , , , , x 
r 

with -1 r < P (p,q,(2n-2m) ) - n-m such that·if. a€ A, 

then xi€ Ba. for some i, Hen~e, if a€ A, then 

(xi + L') n f (A ) ::j, 0 
a. 

for some i with 1 < i < r. Since f is a 

linear isomorphism, it follows that if a € A, then· 

-1 + L) n A 'F 0 (f (xi) for some i with 1 ~.i ~ r. • a 

Let t5 denote the family of.circ4lar disks in 12 which are 

illustrated in Figure 17. Then it is clear from the figure that if Q 

is a subfamily of r; containing th_ree sets, then some two sets of Q 

are intersected by a line with slope zero. Consequently, Theorem 3-10 

implies that there exist P1 (3,2,1/2) = 2 lines with slope zero such 

that each set _in t5 is _inter_secied by at least one of these lines. 

Two such lines are shown.in the figure. 

The following theorem yields results similar to those of 

Theor_em 3-10 when o is a family of parallel line segments in L n. 

T4eorem 3-11. Let K be a compact line segment in Ln artd O a 

finite family of-homotheties of K. If from each p sets of ~ some 

q sets are intersected by a hyperplane, then there exist r 

hyperplanes with r < P (p,q,O) 
- n 

by one of these hyperplanes. 

such that each set in t5 is intersected 
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Figure 17. Homotheties of a Circular Disk in 12 • 

(m,b)-plane 

Figure 18. The Set Ci. 
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Proof: By means of. an affine transformation it. suffices to prove the 

theorem when K = {(O, ••• , O,y): -1 ~ y ~ l}. Let 

~ = {A.: i = 1, ..• , ml. 
]. 

Since each Ai is homothetic to K, each A. 
]. 

has the form ... ' i 
xn-·l,y): a.i < y < S.} - - ]. 

for some point 

i i 
(x1 , •• , , x 1 , 0) n- . in L n and some .. real scalars and For each 

i with 1 < i < m let 

The set Ci is clearly .a closed convex set, a closed "strip" between 

two parallel hyperplanes.. A point 
n 

(a1 , ... , an) e: L · belongs to Ci 

if and only, if · the hyperplane 

x ): x n , n = a + 
n 

n-,,1 } 
L a .xj· 

j=l J 

int,ersects the set A.• 
]. . 

Consequently, the family 

C. when. 
]. ' 

has the (p,q)-property. Figure.18 represents.the set 

A. = { (1,y): a. < y < S} c L 2 . Since the family C' 
]. - - is .finite, there 

exists an integer k such.that the family 

is a family df nondegenerate compact,convex sets with the 

(p, q) -property in Ln. If p (p,q,O) = 00 then the fact that t5 
n ' 

finite clearly implies the existence of the r in the theorem. So 

assume that p (p,q,O) < 00. Then there exist r points. (ai' . .. ' n 

1 ~ j ~ r, with r ~ Pn(p,q,O) such that if. Ci n kBn e: C, then 

(ai, ..• , a!) e: Ci n kBn for some j. For 1 ~ j ~· r, let 

is 

)) 
n ' 



Then each set· in t, 

n-1 
= aj + }:; 

n j=l 

is intersected by one of the hyperplanes H. • • 
J 
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It will now be illustrated .h0w Theorem 3-11 can be applied to an 

approximat:Lcm type problem. Let S = { (xi ,y i) : i = 1, •.• , 8} denote 

the set of points illustrated.in Figure.19 where the points are 

indexed in order from left to right. Let € > 0 and 

A = { (x. ,y): ·. ly - y. I < € }, 1 < i < 8. Figure 20 represents the sets 
i. J., - J..- - -

A., 1 < i < 8. One can now ask the following question: Does there 
J. 

exist a line {(x,y): y = ax+ b} such that· !axi + b - yij .::, € for 

all :L with 1 < i < 8? That is, is there a line L which int~rsects 

each of the sets Ai? Since. no en(;l line. meets A5 , A6 and A7 the 

above question has a.negative answer. However, one may extend the above 

question as follows: Is it. possible to find twe lines 11 and 12 

such that each Ai is inte.rsected by at least one ,of these two line~? 

C0r0llary 3-8.2 imp1ies that: P2 (5,4,0) = 2. Consequently, if from 

each five of the A. some four are intersected by a single line, then 
J. 

Theorem 3-11 would.imply the .existence of two such lines 1 1 a:nd 1 2 . 

The sets Ai illustrated in Figure 20 do indeed have the property. that .. 

from each five of the A. some four are intersected by a line .. 
J. 

Figure 21 illustrates two lines and 

intersected by at least one 0f these. lines. 

such that each k 
i 

is 

A situation in which the ab.ave. approximation type problem may 

arise would be as follows: Suppose that we are given the set 0f data 

in the plane, where x. = x. 
J. J 

if and 
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I 

• 
• • • 

• 
• 

Figure 19, The Set S. 

·I I I 
t I I 

Figure 20. The Sets A .• 
1 

• 

I 

Figure 21, Lines L1 and L2• 
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only if i • j. The real numbers x1 are known with. certainty but the 

numbers yi: are subject to an error .of e:. The data may have been 

gathered by several persons or by a single person at different·times; 

we do.not know, ,but we would like to make a good guess about this. 

Somehow we feel the phenomenon is linear in nature and thus our .. problem 

is one.of finding "linear patterns" in the data. Each linear pattern. 

would represent a data gc!,thering episode and, thus, give us clues about, 

the number of sources from which the data came. Clearly, this is not. 

the usual problem of line.ar regression whereby the method of least 

squares a .line of best fit is found. Furthermore, whereas, any two 

points determine a line it would be unreasonable to think of just two 

points determining a "linear pattern". Intuitively we would.feel .like 

we had discovered a "line.ar pattern" if there was a line L given .by· 

y .... ax+ b such that. !axi + b - yij < e: for each (xi,yi) belonging 

to some suitably large subset S' of S. To get a well-defined 

probietn we would ne.ed to specify the number m of elements required in 

S' and ask what is the minimum number.of "linear patterns" determined 

by the data S. The theoret11 gives a sufficient criteria--c,ne easily. 

a~enable to computers--for knowing that there exist less than 

P2(p,q,O) lines such that one of the lines passes sufficiently close 

to each data point. The problem: of finding a .set of such. lines such 

that each line would pass close to a sufficiently large number of 

points or s would remain to be solved. 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The ,basi~ purpose.of this study has been to examine c~rtain 

intersectional • properties whi.ch· a, family of. subsets of a space X. may 

possess. The problem which was of p:i;-imary interest was. for~ulated first 

by Hadwiger and Debrunner [4], and is as follows: Given a family U 

of compact convex subsets o~ En with tqe (p,q)-property, what can be 

concluded about. lu 1, the minimum pierctns number. 

Corollary 1..,.2. l implies that if t5 is a family of .. compact subsets 

of · En such that IQ J .::_ m for ea.ch finite subfamily Q of . t5, then 

it5 I < m. Consequen,tly, many of the problems of the above type were 

reduced to considering finite families of sets. 

In ·Chapter II families of mutually parallel parallelot0pes are· 

considered. The definition of the function Nn(p ,q) is due to. 

Hadwiger and Debrunner [p. 32, 5], and the definition of Tn(p,q) 

which is similar t0 that of N (p,q) 
n 

and is due to the. author. 

Theorem 2-7 contains practically all the results which were known .. about 

the ;number Nn(p,q) prior to this study. However, the upper bound 

given .in Theorem 2-7 for Nri(p,q) is considerably smaller than those 

previously known (p. 32, 5]. Cor01lary 2-12.1 gives even.smaller upper. 

bounds for the .numbers N2(p,2), Theorems 2-,10 and 2-11 give lower 

bounds for the numbers N (p ,2) and T (p ,2). These. lower bounds are 
n n 

considerably larger than those obtained by Hadwiger.and Debrunner. 

100 
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Corollaries 2-10.1 and 2-11.1 were stated.in order to give rise to 

problems for further study, That is, if tS is a family of mutually 

parallel parallelotopes in En with the (p, 2)-property and no th.ree . 

sets in l3 have a commot:1, point, then what is the maximal number h (p) 
n 

of elements l3 can contain, The number. hn(p), clearly, satisfies 

the inequality h (p) < 2(N (.p,2)), 
n - n 

Also, from Corollary 2-11,l it 

follows tha.t h (p) > 4p - 8,. 
n -

The author has shown that h (3) • 5 
n. 

and. h (4) • 8 for n.::. 2; 
n 

however, the prc,of of these. results does 

not appear in this study, It is conjectiired that .. h2 (p) .. 4p - 8 for 

all p .::_ 4; that is, Corollary 2-11,1 is the best possible result in 

E2 for p ~4. To go,even,farther the author conjectures that 

N2(p,2) = 1/2(h2 (p)) for all p.::. 4. 

The values. of Nn (p,q) for q .::_ 3, which have been ·determined in 

this study, all satisfy the equation N (p ,q) ... p - q + 1. 
n 

Theorems 2-5 and. 2-9, whic.h csn.sidered • families of mutually parallel 

parallelotopes with the (p,q)-praperty whic.h fail te have the 

(p1 ,q1)-property for some· p1 ..:. p - 1 and q1 ..:_ q - 2, strongly 

indicate that the equation N (p,q) = p - q + 1 n . may be valid for all 

q .::_ 3. The difficulty in shewing that. Nn(p;q) = p - q + 1 for q.::. 3 

seems to be. in showing that Jt3 J ..:. p - q + 1 whenever O ::i.s a family. 

of mutually parallel parallelotopes with the (p,q)-property which also 

has the (p1 ,q1)-property for some p1 _::_ p - 1 and q..:. q - 2. One 

would think that the more properties l3 had, the sm~ller Joi would. 

be; however, the author has not been able to conclude.this in general. 

However, Thebrem 2-'13 gives a result of this type. 

The problem of determining upper bounds for lol when O is an 

arbitrary family of compact convex subsets of En w~th the 
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(p,q)-property is much more complicated than the one for mutually 

parallel parallelotopes. It was known prior to this study that if 

q ~ n there exists families ij of compact convex sets in En with 

the (q,q)-property such that .. li:3 I was arbitrarily large, Grilnbaum [3] 

discovered that if in addition to the (q,q)-property. i:3 was required to 

be a family of homotheties of a cG:>mpact convex set K then li:3 I was 

always bounded above.· by a fixed finite number. However, requiring ij 

to be a family of homotheties was a rather strong restriction, The· 

search for a more general restriction leads the author to. define the 

(p,q,k)-property. In some sense k is a measure of tl)e "squareness" of 

the sets of a family ij. 

0 < k < 1 and pn (p ,q ,0) 

The fact that P (p ,q, k) was .finite for . n 

= ·co for q~n seemed· to imply that the . 

definition of the (p,q,k)-property had some merit, 

It was established that as a function of k, p (p,q,k) 
n 

:Ls a 

decreasing function which is continuous from the right in k for 

0 < k < 1, Also, several problems have been raised by considering 

P (p,q,k) as a function of· k, For example, for what values.of p, q 
n ·. 

and n is th:e set D(p,q;n) = 0? Also, if D(p,q;n) ef, 0, what are 

the values t;,(p,q;n) and how do these values relate to the geometry of. 
1 

the sets. in the families? 

In the case k = O, Corollary 3-8,2 can be shown,to be equivalent 

to a theorem of Hadwiger and Debrunner [4], which cqntains practically 

all the earlier known results in n.:. 2, about arbitrary families 

of compact convex sets with the (p,q)-property. 
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