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PREFACE

This thesis is the study of certain intersectional preoperties of
families of compact convex .subsets of finite dimensional -normed real
linear spaces., Some of the results, especially these in Chapter I, are
stated in a more general setting since it is just as easy to do so.

The problems which are ceonsidered are centéred around a theorem setting
forth conditions under which the intersection of a.family of.convex -
sets cannot be empty. This famous theorem of Eduard Helly was .
discovered by him in 1913 and is referred to as Helly's theorem. A
form of Helly's theorem is stated in Chapter II using the notation
developed in this study.

The symbol R® will denote the n-dimensional real linear space
which consists of all n~tuples of real numbers. The symbol . g® denotes
n-dimensional ‘Euclidean space. The terminology, ¢ is a family of
subsets of X, is used to mean that {§ = {Aa: o € A} for some index
set . A, and Aa(: X for each a‘'e A. Moreover, it is possible to

have A, = A, for a,B € A with o # B. The rest of the symbolism

8
and terminology used is.either'defined or is the same as that in.
Valentine [10]. The en-d,'ofa proof is marked by the symbol m ..
The first chapter concerns itself with a generalization of a
well-known theorem about families of closed and compact sets with the

finite intersectional property. In Chapter II certain intersectional

properties of families of mutually_parallel.parallelotopes in E" are



studied. It should be pointed out that in some mathematical writings
the term '"parallelotope'" always implies the existence of an interior
point; however, thils is net the case in this thesis. Chapter III is a
study similaf to that of Chapter II, except more .general families of
compact convex sets are considered.

I wish to express my appreciation to all those who assisted me in
the preparation of this thesis. In particular, I would like to thank
Professor E. K. McLachlan for hisvinspiration, advice and assistance.
For their encouragement and cooperation while serving as members of my
committee, my thaﬁks goes to Professors Forrest Whitfield, Joe Howard-
and Earl Ferguson. Also, I want to thank the typist, Cynthia Wise, for
the .typing of this .thesis, fellow student Gloria Gautier for proof
reading a rough draft, and my wife, Judy, without ‘whose help- I could
never have finished my work.

Finally, I am indebted to John Jewett and the Department of
Mathematics and Statistics for a Graduate Assistantship the past five

years.
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CHAPTER I
FAMILIES OF COMPACT SETS

Let- X be a topological space and r a positive integer. A
nonempty.family 3 of_subsets of X 1is said to have the
r-intersectional property 1f there exist nonempty subfamilies

51,82, ey Gr of ¥ such that

(d) N{A: A e Si} #@ for 1<ic<r,

The families Elj}z, cees Er give a finite partition of & dinto r
subfamilies. For example, if _5 coﬁtains n sets, r could be n,
and each 51 could contain a single set of . Thus, in general a
finite family {§ will always have the r-intersectional property with
r equal to the cardinality of the family 8. Notice that nething
requires that the subfamilies Si' be disjoint. Consequently, gi
might indeed be identical to Sj, l.i_i < j <r. Thus, even if 3
contains a finite number of sets, r can be arbitrarily large.
Moreover, if n is a pesitive integer with n > r, then 8 also has
the n-intersectional property.

However, the minimum value for r 1is well-defined since the
infimum of the possible numbers r 1is a positive integer. Let |5| be

the minimum value of r such that ,5 has the r-intersectional property.



If |3| = 1, the sets of {8 have a nonempty intersection. It is also

clear that if G is a nonempty subfamily of 5, then IQI j_]5
Thus, if § has the r-intersectional property, then every nonempty
subfamily of ¥ also has the r-intersectional property. If a family
8 fails to have the r-intersectional property for any r, then ]8|
is defined to be «. This is the case for example whemn ¢ is the
family of all subsets of an infinite set.

Choose a peint X, from each of the‘nonempty sets N{A: A ¢ Si}
in (b) and let D =.{xl,x2, weey xr}. Then the set D .may contain
less than r distinct points. Moreover, given,any A e 3§ we have
that A contains at least one point.of the set D. Conversely, if ]
is a nonempty family of subsets of X such that there exists a nonempty
subset D of X containing no more than r points with the property
that DN A # ¢v for all A ¢ 5, then ,8 has the r—~intersectional -
property. To see this, let DN U{A: A e &}) = {xl,xz, ce xk}.
Then k;i‘r and each of the subfamilies 51 = {A e & X, € A} are
nonempty-for 1 <'i < k. Morepver, X, € N{A: A e 81}. Thus, '3 has
the k-intersectional property,’énd since R’j_r, 8 also haé the
r-intersectional property. Moreover, |5| =r 1if and oﬂly if there
exists a subset D of X containing r points such that AN D‘# @
for all A € 3, and no set with fewer than r points has this property.
Griinbaum and others have defined a family & to .be r-pierceable if .
there exists a set D confaining T pointévsuch that AND# @ for
all Ae . Thus, a family § of sets is r-pierceable if and only if
¥ has the r-intersectional property.

A well-known theorem about  families of closed and compact subsets

of X with the finite intersection property is as follows: Letvrg be



a family of closed and compact subsets of X such that each finite
subfamily of {§ has a nonempty intersection. Then the family ¥ has
a nonempty intersection. In order to motivate the following two
theorems, we state this theorem as follows: If @, a famlly of clesed
compact subsets of X, 1is such-thaﬁ IQ] < 1 for each nonempty finite
subfamily G of §, then ]8] j!l.

Really [Q] cannot be less than one, but the less or .equal symbol

is used to show'a,pattern that will appear in the next theorem.

Theorem 1-1. Let % be a nonempty countable family of closed compact

subsets of X and m, a positive integer. If ]Q[ iva for each

nonempty finite subfamily G of §, then || < my

Proof: The set {|G|: G is a noneﬁpty finite subfamily of . 3} - of

positive integers is bounded above.by m thus it has a maximum, and

0}

. 1
the maximum is attained on some nonempty finite subfamily & of o.
1 1
Since |§¥ | < my, it suffices to show that B3] = [8]. Let
§={c;:1=1,2, ...} and § ={C;:1<1 <k} for k=1,2, ... .
1

1]
For each integer k we have that &% < U Gk; thus,

1 1 1
|53 I_i ]8 3] Ek]. However, & U Sk is a finite subfamily of J, so

1 1

A
the definition of {§ implies that- | U Sk] j_lS ]. Thus,
A 1 .
S | =8 US| foreach k. Let  m= [g']. Then the definition of

t
IS U gk[ implies that for each k there exists a set Dk of m

1]
distinct points of X such that each set of - 8k_U 3] contains a point

' .
of . Dk’ Let K denote the compact set U{A: A e }. If there exists

a point x € Dk ~ K, then there would exist a subset of Dk consisting

\
of fewer than m points such that each set of 3 contains one of

1
these points. This would imply that {§ has the r-intersectional



property for some r < m. This would then contradict the definition of

m. Therefore, Dkt: K for each k.

Let ‘xl "for 1 =1,2, ... . Then the sequence {xi}

1 € Dy

contains a convergent subsequence

x}» in K such that x? = xl,
i, i, 1
J J
Let Dl'= D,, and for each k. and j > 2  with i, <k < i, let
1 1 - j-1 -] :
1
D =Dy 3
J‘
also, for 1, <k <1i, let
- i1 -3
1 nd —
Yo = % and y; X, .
J J

Then for ij_

%Csi-’
. J-
which implies each set in 5k, contains a point of Di' for
k=1,2, ... . Also, the sequence {yi} is a convergent sequence.

Suppose now for 1 < r <m it has been shown that for each

r

Kk containing m points with the

integer k there exists a set D

following properties:

(a) Each set of Ek contains a point of Di.



(b) There exist r convergent sequences {xi}, l<j<r,

: J r , : N
with x; € D/ such that for j # t, xy # X

'.I'.‘=D

(¢) D =D, for some i, and Dl D .

r
k i
Now for each positive integer i choose

r+1 . 2 r
X, x, 1.

T 1
€D ~ {xi,xf, coey

r+
Then the sequence: {xi l} contains a convergent subsequence

x?+l such that x?+l =,xr+l.
i ' i 1

3 1

Let prtl ot .

1 1’ and fer each k and j > 2 with ij-l:< k <i, let

= 3

r+1 -

Dk 'Di.;
3
also, for 41 <k <i, let,
j-1 =3 :
€ ot and o = 4F
Yk T Xy, #ME V1T X
i 1
for t=1,2, ..., t+1. Then for ij-l <k i_ij we have
% .
chzsi,
3.
which implies each set of - Sk contains a peint of D£+l for

k=1,2, ... .



i}, 1 <j < r+l, and the sets D£+l

satisfy properties (a), (b) and (c¢), with r replaced by r+l.

The r+l sequences Iy

Thus, by induction there exist sets . D, k =1,2, ..., containing

k’.

m distinct points, and sequences {xi},; 1 <.j <m, which satisfy

properties (a), (b) and (c) with r = m.

J

Let x° denote.a point te which the sequence. {xi}, 1 <3 <m,

converges. . It will be shown that each element of 3 contains one of
. . 1 2 m NN

the points of the set D= {x ,x", ..., x }. Suppose that this is not

the case. Then there exists a set A € S such that A contains no

point of D. Since. A 1is a closed set, for each j with 1 < j < m,

there exists an integer . ny such that - 1 > n, implies that xi ¢ A.

J

Let n, = max{n,, «.., n_}. Then for i >n x ¢ A for all j with
1 m - i

0 0°

1l <j<m Now Ace gi for some " i > n thus, A contains no point

03
m 1 2 m .. . o :
of Di = {xi,xi, ...,'xi}. This is a contradiction of property  (a).
Hence, each set of {§ contains one of the peints of 'the set D. This

implies that {§ has the m~intersectional property. Hence, |$|;i m;

however, ‘Zs' c § implies that || = |$' | = m.m

Theorem 1-2. Let J = {AB: B € A} be a nonempty family of closed
compact subsets of a space X. If IQI §“m0 for, each nonempty finite

subfamily G of §, then [{§] < mye

Proof: The proof proceeds by transfinite inductien on the cardinality
of A. If the cardinality of A 1is the same as that of the positive
integers, then the desired result follows from Theorem 1-1l. Let I be
a cardinal number and suppose that if the cardinality ef A is less
than I, then the desired conclusion holds. - To prove the theorem when

the cardinality of A 1is equal to I, well-order A by a relation <’



such that for each X ¢ r the set ~ {B: B <' A} has cardinality less
than I. For each X e A let 5>\ = {AB: B <' A}. The induction
hypothesis implies that ]Skl < my for each X € A. .The proof now
follows in a similar manner as that of Theorem 1-1 using nets with the.

directed set (I,<') instead of sequences. The theorem follows by

transfinite induction. ®

We now state and prove a corollary to Theorem 1-2 which will be

used in the sequel.

Corollary 1-2.1. Let {8 be a nonempty family of compact subsets of

En

8] < mge

. 1If IQ] _<_m0 for each nonempty finité subfamily G of 5,‘ then

Proof: ' The corollary follows from Theorem 1-2 after noticing that

n .
every compact subset of E is closed. W



CHAPTER II
FAMILIES OF MUTUALLY PARALLEL PARALLELOTOPES

In this chapter, families of mutually parallel parallelotopes in
E' will be defined and certain intersectional properties of these

families considered.

Definition 2-1. Let {Xl’x2’ ceos xn} be a basis for E®. A subset
P of E® is called a paralleletope with respect to the basis -

{xl,xz,
B,y i=1, ..., n, with Ai §¥Bi such that

«vey X_}  1f there exist scalars A,, i =1, ..., n, and
n N . - l .

A nonempty family of-subsefs of E is called a family of mutually
_pa;allel parallelotopes in EY  if there exists a basis
{Xl’XZ’ ceey xﬁ}' for E°  such that each set in § is a parallelotope

with respect to the basis {xl,xz, vous xn},

Neote that if P 1is .a parallelotope ‘in En and A 1s a set of -
points in E-, theﬁ the family 3 - {x + P: x.e A} 1is a family of
mutually parallel paralleloteopes in BT, Moreover, if te each x € A
there is associated a scalar Oy then the family {x + uXP: x € A}

is also a family of mutually parallel parallelotopes in ET,



Bounds on |3]

The following theorem is due to Edward Helly. It is stated here
without proof and shall be referred to in the sequel as Helly's theorem.

A proof can be found in Valentine [p. 70, 10]. .

Helly's Theorem. Let {8 be a family of compact convex sets in E®

containing at least ntl sets. A necessary and sufficient condition
that |§| =1 is that |Q| = 1 for every subfamily G of $ which

contains nt+l sets.

The following theorem is due to B. Sz.-Nagy [9]; however, to be

complete we shall give a proof.

Theorem 2-1. Let { = {Pa: a € A} be a family of mutually parallel
parallelotopes in E®. 1If each two sets of 3 have a common .point,

then 5] = 1.

Proef: We proceed by induction on n,; the dimension of B, If n = 1,
then the result follows from Helly's theorem. So assume the theorem
holds for all k with 1 <k < n. Due to the compactness of the sets
of § it suffices to assume .that § 1is finite. Thus, assume

3 = {Pl, e Pm} forASOme integer m > 1. Let {xl, ...,-xni be a
basis for E" such that each set in 8 1s a parallelotope with

respect to the basis {xl, ey xn}. Each P, ¢ 8 has the form

i

for some set
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i1 i .4 1 i
{Al,kzi cees An, 31,32, cens en}

of scalars. Let BT = min{Bi: j=1, ..., n}, Then let H  be the

1
hyperplane

n e~ g
m
"
m
]
w

3 i‘ i30T

For Pk’Pj in . there exists a point o) Xg + e + o X in

. , n , ’
Pk N Pj Also, ?k N Pi # @ and Pj Pi # ¢ dimplies that
k i k j i |
A <.B) < By and A <8< 8.
i : ‘
let y = lel + a2x2_+ + o X . Then y belongs to Pk n Pj N H.
1
Thus, the family § = {P_, AH: r =1, ..., m} pairwise intersect in

r

the (n-1)-dimensional Hyperplane H. The theorem follows by induction.
.

Definition 2-2., A family  8 of .nonempty convex sets in E® has the
(p,q)—property, where p and .q are integers with p > q > 2, if R}
contains at least p sets and from each p sets of § some q have a.

commoen point.

Relating this definition to Theorem 2-1 we see that 1f the family
88 given in the hypothesis has at least twé sets, then 8 has the
(2,2)-property. Thus, Theorem 2-1 implies that a sufficient condition
that a family § of mutually pafallel parallelotopes in En, with at

least two sets, have a common point so that & have the (2,2)-property.

Example 2-1. The four.sets illustrated in Figure 1 is a family of sets

in E% with the (2,2)-property; however, there is no point which is
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common to all four sets. Thus, we see that a theorem such as

Theorem 2-1 cannot hold fer arbitrary families of convex sets with the -
(2,2)-property. Figure 2 illustrates a family of five translates of a
given parallelotope in E2 with the (3,2)-property. Figure 3
illustrates .a famlly of seven translates of a given parallelotepe in-

E2 with the- (4,2)-property.

Definition 2-3. Let k .be an odd positive integer such that k > 5.
Then a family 8 of mutually parallel parallelotopes in E® is said to
be a k-cycle if 3 'consists of- k. distinct translates of a

parallelotope no three of which have a commen point and 8 has the

(1/2(k+1) ,2)~property.

Figure 2 then-represénts a 5-cycle in- E2, and Figure 3 represents
a 7-cycle in E2. It is a simple exercise to construct figures such as
Figures 2 and 3 to show that a k-cycle exists in E® for all odd
integers k with k > 5 and all n with n > 2.

The following theorem is original; however, the proof is similar te

the proof of Theorem 85 of [5];

Theorem 2-2. Let § be a family of .mutually parallel parallelotopes in
E', and let k and q be integers such that . k > 1 - q where ¢ > 3.
If X has the (2q+k,q)-property and does not have the

(2(gq~1)+k,q-1)=property, then ]8| <qg+k+ 1.

Notice that the restrictions on q and k make the two mentioned

properties meaningful with regard to their definition.

Proof:. Since % does not have the (2(q-1)+k ,q~1)-property, there is a

subcollection . G of ¥ containing 2(q-1)+k  sets such that no q-1



bttty vy

—P

Figure 1. Sets with the (2,2)~-property

Figure 2, Translates with the (3,2)-property.

N

X o

Figure 3. Translates with the (4,2)~property.

»

12
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sets of § have a common point. Let D and E be distinct sets of
% ~G. Then GU {D,E} 1s a collection of 2q+k sets of &, and
hence, some gq. of the sets in G U {D,E} must have a common point.
Recall that no gq-1 sets of .G have a common point. Hence, any ¢
of the sets of G U {D,E} which have a nonempty intersection cannot
contain more than gq-2 sets from G.  Thus, any such q sets with a
nonempty intersection must contain beth D and E. - Thus, 8 >~G has
the (2,2)~-property. Mo;eover; every set in © >~ G must have a nonempty
intersection with some gq-2 sets of G.

Let ¥ be any collection of q-2 sets of & which have a
nonempty intersection. Let Al’AZ’ sy Aq+k denote the sets in
G ~ H. Define subcollections m&; l<iz<q+k+ 1, of & as

follows:

M= ({AeF:An A, #01~Q) U {Ai}, l1<i<qg+k

m ={Aed: An (N{B: B e H) #0}.

qtk+1
We shall show that

gqtk+l )
(a) g§= U m and that
. i=1

() NAa: AeMi4g for 1 <1<q+k+ 1

Proof of (a): Suppose
o qk+l
8¢ U

i=1

that is, there exists
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gtk+1
A'ed N TF .
i=1

Then A' 1is not in @; hence, A' belongs to § ~G. The definition
of M for 1 <1i<q+k+ 1 implies A"N A =@ for 1<1<q+k
and A'N (N{B: B ¢ H}) = . We know that A' belongs to & ™ G;
hence, it must intersect ‘the intersection of some §f2~ sets of G,
Since A' N Ai =@, 1<i<q+k, any such q-2 sets of G which
intersect A' must come from the%colléction G 5~{Al, vees A L} = H,
However, this implies A' must intersect the intersection of the q-2

sets of M. This is a contradiction since A' does not belong to

$h+k+l.' Therefore,
+k+l
5= U m.
i=1

Proof of (b): Let m& be such that 1 < i < q+ k. 1If M& consists
of only the single set A;, then clearly N{A: A ¢ ma} # §. So assume
M& contains at least two sets. Let C and D be two arbitrary sets
of M. If Ce G, the defiﬁition of M, implies C = A . Then
D e ME‘ implies that DN C=D N Ai # . Similarly, if D e G,
DN C#®. So assume D and C belong.to & ~G. Since § ~G has
the (2,2)-property, DN C# 0. Hence; m&, l<i<q+k, is a
family of mutually parallel parallelotopes in E" such thdt each two
sets of M& have a.common point. - Theorem 2-1 implies that
NtA: Ae MY #9, 1<is<q+k

Let C and P be two arbitrary sets of mg+k*l. Then neither C

nor D can be in G ~ ¥ since no q-1 sets of G have a common point.

Thus, C and D belong to (3 ~G) U H¥. If one of these sets, say
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C, belongs to ¥, then DN (N{B: B c¥}) ¢ @ implies CN D ¥ §.
So assume that C and D both belongs to {§ ~ (. Since 8 ~G has
the (2,2)-property, Cn D # @#. Therefore, m%+k+l has the

(2,2)-property. Theorem 2-1 implies that N{A: A ¢ m% } # @.  Thus,

+k+1
8 has the qtk+l-intersectional property which implies that

[8’ <qtk+1.

Theorem 2-3. If § is a family of sets in P with the
(ptk,qtk)-property for p > q > 2 and k > 1, then- 3 has the

(p,q)-property.

Proof: Suppose & fails to have the (p,q)-property. Then there
exists a subcollection G of © with . p sets such that no q of
them have a common point.ﬂ Let m be an arbitrary subcollection of-
8 >~ G containing k sets. :Then -GUM i5 a famiiy of ptk sets.
such that no  q+k of them have a common point. This is a centradictien.
|
The following theorem is equivaien; to Theorem 78 of [5]. However,

we will give a proof to be comblete.

Theorem 2-4. Let 3 be a family of mutually parallel parallelotopes.:
in El' with the‘(p,q)?property for some  p > q > 2. Then

Igl:qu.+l.

Proof: Now {§ has the (p-q+2+(q-2),2+(q-2))-property. Theorem 2-3
implies that {§ has the,(p—q+2,2)—§roperty. Hence, it suffices to
prove the theorem for q = 2. We now proceed by induction on p teo
show that if ¥ is any familyvof-mutually parallel parallelotopes in

El with the (p,2)-property, then- ]5] Sp=-2+1l. For p =2 the
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result follows from Theorem 2-1. Suppose now that the result holds for
p>2. Let {§ be a family of mutually parallel parallelotopes in El'
with the (p+l,2)-property. Corollary 1-2.1 implies that it suffices to
assume that § is finite. Then 8.= {Pi,;o.., Pm}‘ where each Pi is

of the form. B, = {e: a, <e < B,}. Without less of generality, assume

i i
B, = min{B.: 1 < i <m}, If P, €y, then either B, ¢ P, or P,
1 it i 17 7] 73
fails to intersect P;. Let § = {Peq: By € P} and
1 i : ' '
g ={Ped: PN Pl = @}, Then O = 31 US . I1f 8 =40, then

1 1
3 =8, implies I¥] = 1. If § # @, then either ¥ has the
oy
(p,2)-property, or 8 fails to contain p sets. In either case, we

have [8'] <p=2+1., It is clear that
Bl 81+ 18 <+n-2+1.

Hence, by induction the theorem follows. W

Theorem 2-5. Let 'k and q be integers such that k > 1 - d, where
q >3, and 3§ is a family of mutually parallel paralleleotopes in B,
Suppose that . % has the«(2q+k;§)-property and that there exists an

integer m with 0 < m < min{q~2,q+k} such that g does not have' the

(2(q-m)+k,q-m)-property. Then -]Sl < q + k + 1.

Notice here again that the restrictions on gq, k. and m make the

two mentioned properties meaningful with regard to their definition.

Proof: Let m, be,the smallest positive integer such that @ does not
have the.(2(q—m0)+k,q—m0)—propertye' Such an integer exists by

hybothesis; moreover, O < m < min{q-2,qtk}. Let r = my = 1. Then

the definition of m, implies that § has the (2(g-r)+k,q~r)-property

0
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but not the (2[(q-r)-1]+k,(q-r)-1)-property.. Theorem 2-2 implies that

llglf_q-r+k+‘l=q—mo

t+k+2<qg+k+ 1, since m

+ k + 2, However,

q-m >1l.m

0 0

Lemma 2-6.1. Let 8§ be a family of mutually parallel parallelotopes

in E" with the’(p;Z)—property for some .. p > 2. Then

o< (727)-

n

Proof: We proceed by induction. For n = 1 the result follows from
Theorem 2-4. So assume the lemma.holds in E" for n > 1. To prove
that the lemma holds ‘in En+l we proceed by induction on. p. For

P = 2 the result follows from Theorem 2-1. Thus, assume for p > 2

n+l

the résuit holds in E Te prove.the result holds for p + 1, let

§=1{P.,P, ..., Pm} be . a finite family of mutually parallel

1

parallelotopes in Env+ with the (p+l,2)-property. Let

n+l

{x xn+l} be a basis for E such that each set in {¥ is-

19%gs wres
a parallelotbpe with respect to.the basis {xl,xz, e ey xn+l}' Each .

L 33 has the form

nt i i
P, = I a,Xx,: A, < a, < B, =] n+1
i j=1 3 I—73 "BJ’ J ? >
for some set
i.i L1 i1 i
{Al,kz, cees Ao 81,82,_..., 6n+1}

of scalars. Letv,61>= min{Si: j=1, ««., m }. Then let H be the"



18

hyperplane

Let 31 ={Ped: PN H#@P} and 52 =3~ El’ Now the family

|
81 = {PN H: P ¢ 51} either fails to contain pt+l sets or has the -
. ’ '
(p+1,2)-property on the n-dimensienal hyperplane H. If- 51 fails to

(p+1)‘.-2+n.>° If gi

1
contain p+l sets, then clearly _]81[ < ( n

contains ptl sets, then our induction hypethesis en n. implies that
' - 1y _ )
5.1 < (P20 i then implies that [T, | < [ PTR7ZR Y
10 — n. ~ 1’ - n
Now the definition of H implies each set of 82 fails to intersect

the set Pi' Hence, either ., “fails to contain p sets, or 82' has

2
the (p,2)-proeperty. If 82 has the (p,2)-property, then our induction
hypothesis on. p impliés,that. Igél j_( P—2:i§+2) ). If 52 fails te

: -2+(n+
contain p sets, then again we clearly have .that ]521‘i~( P 2ni2A1)>

or EZ = ¢. In either case, we have

(p+L)-2+n~> + ( P-2+(n+l)>
. n ) n+l

81 = I8, U 5, _(

(p=l+n)! (p=1+n)! _ (ntl) + (p-1)
nl(p-l)? - (t+D) ! (p-2)! (p-ltn)! [(n+l)!(p-l)! ]

_ (pt)! . _ ( (p+1)-2+(n+1) )
T (D) (p-1) !t o+l ’

Thus, for each finite family U. of mutually parallel parallelotopes in
- -2+ (n+

En+l with the  (p+l,2)-property we have [5[_1 ( (P+l)nil(n D ).

Corollary 1-2.1 implies the same is true for infinite families. By

‘ , +1
induction on p we have for all p > 2 the desired result in EN,
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By induction on n° we conclude. that the theorem is true in E® for all:

n>1.m

Theorem 2~-6. Let k and gq be integers such that 2 < q < 2q + k.
Then for any'family % of mutually parallel parallelotopes in- EY

with the (2q+k,q)-property we have
[5[ f_max‘{q+k+l, ( 2+§+n )},

where we take the standard convention by defining ( : > =0 1if m < n.

Proof:. The proof consists of two cases: (a) "k < -2 and (b) k > -2.

Proof of (a): If k = -q, then {8 has thei(q,q)—property.

Theorem 2-3 implies that % has the (2,2)-property. Thus, for k = -q,
Theorem 2-~1 imﬁlies the desired result. If k > -q, let m =g + k.~
Since -q <k < -2, we have that 0 < m < min{q-2,q+k}. If 8 has the
(2(q-m)+k,q-m)-property, that -is, the (-k,~k)-property, then as before
Theorems 2~3 and 2-1 impiy that lg[ =1, If § fails to have the -
(2(q-m)+k ,q-m) -property, Theorém 2-5 implies that |J| < g+ k + 1.

Hence, in either case we have || <q+k+ 1. Thus, for k < -2,

Bl j_max‘{q+k+l, ( 2+E+n.>} =q+k+ 1.

Proof of (b): If gq = 2, then the resuylt follews from Lemma 2-6.1. If
qg >3, let m=gq- 2. Then O < m < minf{g-2,q+k}. If 8 has the
(2(q-m)+k,q~m)-property, that is, the (4+k,2)-property, then as above

Lemma 2-6.1 implies the desired result. If § fails to have the
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(2(q-m)+k ,q-m)-property, Theorem 2-5 implies that ng <q+k+1.

Thus, in elther case we have
IS[ < max {q+k+l, < 2+§+n )}.ll

The Functions. N (p,q) and T (p,q)

Two functions of Fhree variables Nﬁ(p,q) and Tn(p,q) will now
be defined. Properties of thése furictions will then be studied in .
detail, The function: Nn(p,q) has been_définedvby,Hadwiger and
Debrunner [p. 32, 5]. The definition of Tn(p,q) is similar to that ef

Nﬁ(p,q) and is due to the author.

Definitién 2-4, Let p>q> 2, aﬁd n > 1. Then- Nn(p,q) is defined
to be the maximum value of |8| where $ ranges over all families of
mutually parallel parallelotopes in E® with the (p,q)-property. Also,
define Tn(p,q) to be the maximum value of [5[ where O ranges over
all families of mutually parallel parallelotopes in E' with the
(p,q)-property, and each set in - g3 ié a translate of every other set in

9.

Theorem 2-6 implies that the number Nn(p;q) is Weli defined and
is a positive integer. . Since we clearly have Tn(P’q).i'Nn(p’q>’ the
same is true of Tn(p,q).

Theotrem .2—-6 implies that: N2(3,2),§;3; however, by considering
the family & in. E2 illustrated in Figure 2, we see that .

3 i;T2<3,2). Thus, T2(3,2) = N2(3,2) = 3. Also, by considering

Figure 3 we see that 4 j_Tn(4,2) _f_Nn(4,2)° Theorem 2-1 implies that-
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Nn(2,2) =1 for all n > 1, from which it follows that
Nn(p,p) - Tn(p,p) =1 for all p>2 and n > 1,

To determine exactly what one of the numbers Nn(p,q) 1g, 1t
appears that in most cases two things:are required., One must prove
that for some known integer r, uNh(p,q) <r, and construct.a famlly
8 of mutually parallel parallelotopes in E® with the (p,q)-property
. such that ]5[ > r. A similar statement holds for the numbers Tn(p,q).
Some of the results in the following theorem are equivalent to

results of Theorems 79, 80 and 81 of [5].

Theorem 2-7. Let p >q > 2, and n > 1. Then

’ ~2q+2+
p-q+1l>= Tn(p,q)» _<_Nn(p,q) imax{p—q+1’ »(P qn n>}

and

I,(s9) =N, (py9) =p - q+ L

If the supplementary condition 2 < q' < p < 2q - 2 is satisfied, then

-q+ 1.

[
o

T, (1) =N (p,q) =

Proof: Let Xy sXgs . eees X be : p-gt+l distinct points of En._

p-q+lL

Let Pi.= {xi} for 1 <i<p-q and P, = { } for

X
j o Tpqtl

Pp-q+1<3j<p. Then 3= {Pl, ey Pp} is a family of mutually

parallel parallelotopes in E" with the (p,q)-property. Moreover, each

set of 8 is a translate of any other set in 3. It is also clear that

13| 2 p - q + 1. Hence,

p-q+1=<T(p,q) =N (p,q).
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let k =p - 2q. Then 2 < q < 2q + k. Theorem 2-6 implies that .

Nn(2q+k,q) < max < qtk+l, <2+§+n )

that is,
n

. ~2q+2 '
N_(p,q) j.maX<{p-q+l, ( préqritm >}-

The ‘inequality of the theorem now follows.
Theorem 2-4 implies that Nl(p,q) <p-q+ 1. This fact and the -

first part of the theorem implies that

Tl(p,q) = Nl(p,q) =p-qg+ 1.

If 2 <q<p<2q=-2, then p - 2q < -2. This implies that

B

( p-2qtzn ) <1. Thus, T (p,q) =N (p,q) =P -q+1 for
2

<q<p<2q-2.1

From the discussion following Definition 2-4 we have that
T,(3,2) = N,(3,2) = 3. From this it follows that the equation
Nn(p,q) =p -q+ 1 1is not always true. In fact, it will be shown
later that Tn(p,Z) - (p - 1) becomes infinite as . p becomes . large

and n > 2.

Theorem 2-8. Let k be a fixed integer such that - k > -2, and
£ = min{Nn(2m+k,m): m=2, ..., q}. Then for. q > 2, we have

Nn(2q+k,q) j_max{tq,q+k+l}.
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Proof: To prove this we must show that if § is any family of mutually
parallel parallelotopes in g* with the (2q+k,q)-property, then
B < max{t.q,q+k+l},.
We proceed by induction on q. If q = 2, then tq = Nn(4+k,2).
Thus,. Nn(4+k,2) j_max{tz,k+3}.
Suppose now the result holds for q.- 1> 2. Then if 8 has the
(2(q-1)+k,q-1)-property, our induction hypothesis implies that
]8| frmax{tqil,q+k}e. If- tq—l'> tq% then we must have tc.1 = Nn(2q+k,q),

and .the required inequality is satisfied. If: tq-l =”tq, then we have

]5[ < max{t q+k} j_méx{tq,q+k+l},

q-1’

and again the desired result follows. If 8 does not have the
(2(q—1)+k,q—l)—propefty,’then Theorem 2-5 implies that |[§] < q + k + 1.°

Therefore, in each case we have

I3 < m.ax{tq,q-i,-k+l},, -

Lemma 2-9.1. Let p > q > 2. ,Then Ng(p,q) + 1 f_Nn(p+l,q) and

T.(p,q) + 1 < T (p+l,q).

Proof:. We broveionly,;he first inequality since the secon& fellows by

a simiia? argument. Definitien 2-4 ;nd Corollary 1=2.1 imply that

there exists a finite family § of mutually»parallel parallelotopes in
E" with the (p,q)-property such that ]El = Nn(p,q). Let x € E? such
that x ¢ P for all P € §. Then the family 5' =3 U {{x}} of
mutually parallel parallelotopes in E® has the (p+l,q)~property.

Since |J| = N (p,@) and x ¢ P for all P e {§, it is clear that
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B2 Bl +1=N (0 + 1
Thus, N_(p,q) + 1 <N (ptl,q).m

In the above theorem, we no;e‘that equality need not hold since-
N2(2,2) = Tn(252) =-1 and N2(3,2),= T2(3,2) = 3, However, at -this
time it is unknown whether equali;y holds or not for q =3 and n'> 2,
If it was known that equality was true for q > 3 and n > 2, then
one would be able to obtain all the numbers Nn(p,q) and Tn(p,q) for
P>q>3 and n > 2. The values of Nn(p,q) and Tn(p,q) obtained
in ‘Theorem 2-7 do satisfy the equations Nn(p,q) + 1= Nﬁ(p+L,q) and

T, (P, +1 =71 (ptl,q).

Lemma 2-9.2., Let p > q > 2. Then ‘Nn(p,q) E_Nn(p;q+l) + 1 and

Tn(P,CI‘) _>_ Tﬁ(P’q+l) + 1.

Proof: Here again, we prove only the first inequality since the second
follows by a similar argument. Theorem 2-3 implies that
Nn(p+l,q+l) :_Nn(p,q).v Lemma 2-9.1 implies that

N (p,qtl) + 1 < N (p+l,q+l). Thus, N (p,q) 2 N (p,qtl) + 1. M

Since- Tn(3,3) = Nn(3,3) =1 and for n > 2
3 < T2(3,2) < Tn(3,2) < Nn(3,-2),

we‘sée that equality in the above theorem need not hold. However, here
again fhe:valueS‘of Tn(p,q) and Nn(p,q) obtained in Theorem 2-7 do
satisfy -the equations- Nn(p,q) = Nn(p,q+1) + 1 and

= + 1..
Tn(p,q) Tn(p,q+l) 1
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Theorem 2-9. Let t be a fixed integer .with t > 1. Then for each
integer m > 1 we have the following: Any family §§ of mutually
parallel parallelotopes in E* (with the property that each set of
is a translate of any other set in @) with the (p+t+m,q+t)-property
which fails to have the (p,q)-property satisfies the inequality .

I3 <p-q+1+ N_(t+m,t+1) (lg’[ <P -aq+ 1+ T (thm,t+l)).

Proof: The proof of the statement in parentheses is almost identical

to the following proof, so we omit it.

We proceed by induction on m. Let p >q>2 and 8 be any
family of mutually parallel parallelotopes in E® with the
(p+t+l,q+t)-property but not the (p,q)-property. Let

k

p+t+1-2(q+t). Then p > q implies that

k=p+1-2¢q-t>1-(q+ t). Thus, 3 has the
(2(q+t)+k,q+t)-property with k > 1 - (q + t). If $ has the
(2(q+t-2)+k yq+t=-1)-property, that is, the (ptt-1l,q+t-1)-property, then
Theorem 2-3 would imply that § has the (p,q)-property, a contradictioen.
Therefore, &3 has the (2(q+t)+k,q+t)-property and does not have the -

(2(q+t-1)+k,q+t-1)-property. Theorem 2-2 implies that

]{S| < (q+t)+ k+ 1. However, Nn(t+l,t+l) >1 impliés that

p-q+2<p-gq+ 1+Nn(t+1,t-i-1).

Thus, the theorem holds foer m = 1,

Suppose new that for all p > q > 2 the theorem holds for my
with 1 < m < m. Let % be any family of mutﬁally parallel
parallelotopes in E® with the (ptt+m,q+t)-property but not.the

(p,q) -property. If § also fails to have the (p+1,q)-property, then
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we have that § has the ((p+l)+t+(m-1),q+t)-property and not the
(p+l,q)-property. The induction hypothesis implies that
|S]‘§_(p +1) -qg+ 1+ Nn(t+(m—l),t+l). Lemma.2-9.1 implies that .

N (t+(m-1) ,t+1) < N (ttm,t+l) - 1. Thus,
(p+1) -q+ 1+ Nn(t+(m—l),t+l) <p-gq+1l+ Nn(t+m,t+l).

Hence, if § fails to have the (p+l,q)-property, the desired
conclusion follows. ' So assume that- 3 has thei(p+l,q)—pr0pefty. To
complete the proof we shall use an argument similar to the proof of
Theorem 2-2,

Since § does not haVevthe‘(p,q)—property,-there is ‘a subfamily
G of J¥ containing p sets such that no q sets of G have a.
common point. Let ¢ be a subcollection of {§ ~G containing t+m
sets. Then J U G consists of p+t+m sets of . Thus, the
hypothesis of the theorem implies that some g+t sets of J UG have
a.common point. Since no q sets of G have a common point, .some
t+l sets of J must have a common point. Hence, 8 >~ G has the
(t+m, t+1l) -property. So there exist nonempty subfamilies cif

1<ic< Nn(t+m,t+l) of § ~G, such that

(@ F~G=uvic: 1<4< N (t+m,t+1)}

(b) N{P: P e ci} #0 for 1<1 <N (tm,tt+l).

Let A e Cl" Then {A} UG is a subfamily of § consisting of p+l
sets. Since {§ has the (p+l,q)-property, {a} U G contains q sets
with a nonempty intersection. Now no q sets of G have a.common-

point, so A must have a point in common with q-1 sets of . Let
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¥ be any subfamily of G which consists of . g-1 sets and |¥| = 1,
Then for each . A ¢ Gl we have either the sets of {A}U ¥ have a
common point, or A intersects some set in G ~ H.

Let Al,A2,k vy Ap-q+l denote the sets in G ~ H. Define
subfamilies M, 1 <i<p-q+2, of C UG as follows:

M={aeCizana #0r~®HU{A), 1<ic<p-q+l,

m

g2 " {aec:An (N{B: B eyd) #0}U M

Then each set of Cl U G belongs to some ‘-mi. Since each two sets in
Cl have a common point, it can be shown as in the proof of Theorem 2-2

that pﬁi]=l for 1 <4i<p-=-gq+ 2. Now-

Cl ug-s= Uﬁmi: 1<41i<p=-gq+ 2}

and
3~@Quc)Hc U{Ci:_ 2 <1 <N (thm,t+D) ],
Hence,
S=UWC;: 2 <i<N (thmt+l)H U U : 1 <i<p-q+2D
and mj, "1 <j<p=-q+2, is such that |fmjl = 1. Thus,

A
T

1@ ~@Gue U @Gue)l

| A

p-q+ 2+ Nn(t+m,t+l) -1

=p-q+ 1+ Nn(t+m,t+l).-
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We shall now illustrate how Theorem 2-9 may be used to determine
certain values of Nn(p,q) when others are known. It will be shown
later that N,(17,5) = 13. Assuming that this is true, let 3 be a
family of mutually parallel parallelotopes in E2 with the (34,9)-
property. Also let t =4, m= 13, p=17 and q =5. Then 8 has
the (ptt+m,qt+t)-property. If 3 also has the (17,5)-property, then
IS] §;N2(l7,5) =13, If O fails to have the (17,5)-property, then
Theorem 2-9 implies that |8] < 17 -5+ 1 + N (17,5) = 13 + 13 = 26.
Hence, in either case lﬁ[ < 26. Thus, N2(34,9) < 26. * Theorem 2-7

implies that N2(34;9) > 26. Therefore, N2(34,9) = 26,

Theorem 2-10. Let n > 2 and k > 1. Then. Tn(2k+l,2) > 3k and
Tn(2k,2) >3k - 2.°

Proof: Let Ll’LQ’ ceny Lk be k 5-cyc¢les in . o such that

8 =1{P:Pc Li’ 1 <1<k} is a family of translates of a given
parallelbtope, and P ¢ Li"'P' € Lj’ with 1 # j, implies that-

PN P' = ¢. Let G be a subfamily of {§ consisting of 2k+l  sets.
Then G contains at least three sets from somé Li' " However, each Li
has the (3,2)-property. Thus, two elements of G have a common point.
This implies that { has the (2k+l,2)-property. Moreover, the
definition of §§ and the fact that ]Lil > 3 for each i, 1 <1 <k,

implies that

8= 5 gl 2 3.

1

N ~mx
'—A

Thus, Tn(2k+l,2) > 3k.
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Now let L,,L be k-2 5-cycles in E° and L a

2"511’ Lk—z
7-cycle in E" * such that . 8 = {P: P e L

k-1

1 l1<i<k=-1} is a

family of translates of a given parallelotope in En, and P E‘Li’
P' € Lj? with 1 # j, dimplies that PN P' =¢. Let G be a

subfamily of 3 containing 2k sets. Then either .G contains three
sets from some Li’ with 1 <1<k =2, or G contailns four sets

from L However, each Li’ with 1 < i <k - 2, has the

k-1°
(3,2)~property, and Lk—l  has the "(4,2)-property. Thus, in either case
some two elements of G have a common point. Hence, @ has the

(2k,2)-property. Now for each i, with 1 <1<k -2, we have

|L;] >3 and |L_,| > 4. The definition of § implies that

k-1
8] = ¢ |i;| = k=-2)3+4=3k-2.
1=1

Thus, ‘Tn(2k,2) >3k -2.m

Corollary 2-10.1. Let n > 2 and k > 1. Then there exists a family
8 of translates of a given parallelotope in E' with the following
property: U contains 5k sets (5k~3 sets) with the (2k+1,2)-property

((2k,2)-property) no three of which have a common point.

Proof: The corollary follows by taking 8 to be the families of sets

used in the proof of Theorem 2-10, W

The lower bounds given in Theorem 2-10 for 'Tn(p,2) are clearly
lower bounds for the number Nn(p,2). From this theorem it follows that-

T (p,2) #p—-2+1 for n>2 and p > 3.
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Theorem 2-11. Let n > 2 and k > 3. Then-‘Nn(k,Z) > 2k - 4.

Proof: Since -any family of mutually parallel parallelotopes in E2
may also be considered as a family of mutually parallel parallelotopes
in E° for n >.2, it suffices teo prove the theorem for n = 2. For

each positive integer <1 define four sets as follows:

Gi={(x,y):31_<_x_<_31+‘1, 0 <y < 3i},
si={(x;y):oixi3i, 3i <y <31 + 1},
R, = {(x,y): 31 -2 <x<3i-1, 31-3<yc<}
Bi='{(x»7)’43i‘3i>‘<°°’ 3i -2 <y<3i-1L

For each pesitive integer k with k > 3, let

G, = (6 1<d<k=-2},
§ =1{s;:1<iz<k-2l,
R ={Ry:1<di<k=2l,
ﬁk=«{Bi: 1<ic<k-2},
Ek=QkUSkUmka6k.

Note that each family Ek’ contains 4k~8 sets. . Figure 4

represents. the family 87. Note also that each of the following held:

(1) For i< j, (3j,31-1) ¢ Bi_ﬂ Gj‘ and for 1< j,

(2) For i< 3, (3i-1,3j) ¢ R, n sj,‘ and for i < j,
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Figure 4, The Family 87.
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(3) - For all i, (31,31) ¢ GilT S and for 1 # j,

i’
N =
G, sj g.
. . + n A . . .
(4) TFor all i, . (3i,3i+l) ¢ Si Biiqo and for j # i+ 1,
n =
8y Bj a.
i - e N , ; .
(5) For all i, (3i+1,31) ¢ Gi Ri+l’ and for j #.1i + 1,
Glﬂ ij = 9.
(6) For all i, (3i-1,3i-1) ¢ Bi n Ri’ and for 1 # j,
N R, = | |
By N & 9.

Moreover, each oflthe families Qk’ Sk’vmk and Ek consists of
pailrwise disjoint sets.

Suppose that for some k > 3, Sk contains three sets with a
common -point. Then either two of these sets are of the form Si and
Bj or of the form Gi and Rj for some 1 and j. Without less of
generality, assume two of the sets are of the form Gi and Rj.' Then .
(5) implies thaf' j =14 1. The third set must either be a Bﬁ or .a
Sm for some m. If the third set is a Bm for some m, then (1)
implies that m < i. and (6) im?lies that m = j. This contradicts the
fact that j =1 + 1. A similar argument yields a .contradiction when
the third set is a §_ for some. m. Hence, :for each k > 3, ﬁk
fails to- contain three sets with a common point. ' This implies that if
H 1s any subfamily of 3§ such that |Hl =1, tﬁen» H contains at:
most two sets.

We now proceéd by induction on. k to show that each of the
families Sk have the (k,2)-property. For k = 3, we have that-

53 = {Gl’sl’Rl’Bl}° ‘Moreover, G, N B, 0, ,Gl_ﬂ 5, #0, B, N Ry #0,
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and . Ry N 8¢ # @. Thus, 53 fails to contain three pairwise disjoint
sets, Hence, 53 has the (3,2)-property.

Suppose now that Ek has the .(k,2)-property for k > 3. To prove.
that {§

8k+l

which have a common point. Now

bl has the (k+l,2)-property, suppose this were false. Then

contains a subfamily Y consisting of kt+l sets, no.two of.

= 8k U {c oo

e+l k=151 281281

Since 8k has the (k,2)-preperty, H must contain at least two sets

from the family - Yoo Moreover, since.

G125k 2R m1 9B
Gp M By #05 S g VR #0s G NSy #0, and

Bk—l N Rk—l # @, H contains no more than two sets of

{ }. We have that either

C-125k-1°Re-1 281

BN (G 158 15R 153 3) = {6 _15Ry 4)
or

Hn {G = { 1.

151101081} T BB oBiy

Without loss of generality, assume that

B0 AG 158, 1sR 1B 1 = {8, 1.8 1.

From (2), we have that- R, N S # ¢ for all j <k - 1; thus,

, N
BN Ry = @, From (4), we have that_.,Sk_2 N Bk—l.# @. Hence,
He @ SR U (s, b U s, .8 ;3

Thus, &, > mk U {Sk_z}. must contain k-1 sets from ¥. Figure 5

k

represents the family Sk ~R U {S; &,} for k+ 1=7,

k-2
We shall now prove by induction on. r that Er \\Wr V) {Sr—2} has -

the (r-1,2)-property for r > 3. This will then contradict the fact
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that - gk \~Rklj {Sk#Z} contains k-1 palrwise disjoint sets of ¥. -

This will then contradict the original assumption that 6k+l fails to

i

have the -(k+1,2)-property.

For r = 3, we have 83 \~RB U {Sl} = {Bl,Gl}, which has the
(2,2)-propefty by (1). Now suppose for r > 3, 41t has been shown that
Br ~ Rr U {Sr_z} has the (r-1,2)-property. To prove that
o

\ N < o s *
Then 5r+l mr+l U {Sr—l} contains a subfamily m consisting of «r

~ ' - is
ol mr+l U {Sr;l} has the (r,2)-property, suppose this were false.

pairwise disjoint sets. Now

b= @, % U {s_,D U B },

Bppg SRy U 18, r-12Cr-125102

Our induction hypothesis on r dimplies that - I contains two sets from
the family { }. However, (1) and (4) implies that

{

Br—l’Gr—l’Sr—Z
Gr_.l,Sr_z}Cfm. Since Gr-l e M, we have by (1) that Bi si:im for all

i <r - 1. Moreover, since 'Sr-2 e M, we have by (3) that Gr—2 ¢ m.

Hence, M 1s contained in

@, ~% . UB U hHU {Gr—l’sr—_Z}'

Since. M contains r sets, M contains r-2 sets from

Er .\ (mr U %r U {Gr_z,sr—z}) = {Gl, s ey Gr_3, Sl’ "oy Sr_B}-
Thus, for some i, 1 <& <r - 3, M contains Gi and Si‘ However,
(3) implies that Gifﬂ Si # @. - This is a contradiction to the

definition of M. Therefore, mr+l u {Sr_l} has the -

ZSI:+1_ h

(r,2)-property. By induction, we now have that Er \-mr U {Sr_z} has
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the (r—l,2)—§roperty for all r > 3. This implies, by induction on k,
that'-ﬂk has the (k,2)-property for all k > 3.

Note that the .sets in 6k are not parallelotopes; thus,, 5k
needs to be adjusted so that the sets considered are parallelotopes.
Let H = {(x,y): 0 <x <3k -4, 0<yz<3k-4}, k23, asquare
set. We note that for 1 <k -2 and j <k - 2 the points in (1)
through (6) all belong to H . Thus, if A,Ce q{ with AN C # ¢,
then (AN H)N (CN H) # @. Let 51'( = {anN Ho:Ace Ek}_, Then 3;{

is a family of mutually parallel parallelotopes in E2 with tHe

k

) '
have a common point. Thus, if ¢ 1is any nenempty subfamily ef 5k

(k,2)-property. Moreover, O 'contains 4k~8 sets, no three of which

such that IMI =1, then M contains at most two sets.. Hence,

I}

18,] > 1724k - 8) = 2k - 4.

\
Therefore, Nz(k,Z) > 2k ~ 4, Figure 6 illustrates the family 870"

Corollary 2-11.1. Let n > 2 and k.> 3. Then there exists a family
8 of ﬁutually parallel parallelotopes in E® with the following
property: O contains - 4k-8 sets with the (k,2)-property, no three of

which have a commeon point.
Proof: The proof is contained in the proof of Theorem 2-11.8

We note that -the lower bound of 2 given in Theerem 2-11 for
Nn(3,2), n > 2, is not the best result we have, since from

Theorem 2-10 it follows that 3 j_Tn(B,Z) f_Nﬁ(B,Z) for n > 2.
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Theorem 2-12, For. k > 2 and n > 2,

Nn(;<+2,2) SN (,2) + N (kH1,2) + N (k42,2) -k + 2,

Proof: Let O ={P,: i =1,2, ..., m} be a finite family of mutually
parallel parallelotopes in E® with the (k+2,2)-property. Then there
exists a basis {xl, seay xn} for B such that each Pi has the

form

Without loss of generality, assume that . 6i‘= min{éi: i=1, «v., m},
Let 'Hl be the hyperplane

n

I o, O =_61

1f each set of {§ intersects Hy, then. K j_Nn_l(k+2,2). If there

exists 'a set in ¢ which fails te intersect H then the set-

1’

{51: A; > Gi} is nonempty. Without leoss eof generality, assume that

2 il 41y e
61 = m1n{6l, A > 61}._ Let H, be»thg hyperplane

[ =
Q
Q
i
[e]

Define subcollections Ei’ i=1, ..., 5, of: 8 as follows: -
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§, =, eT: 6T < 62},

1
5, = (P, & xii__aiisl?},
8, = (B, e §:0] > 871,
3, = {p, e3: Bi < Ai i_di i_di},
85 = {Pi R Ai_i 51}.

We note that P, s»%lg P, € 85, P, € 52, P, € 84, and 53 may be .

and  H, imply that

empty. If 83 = @, then the definitions of Hl. )

8 = 84 U 35. Moreover, each set of 84 intersects H, and fails to
intersect Pl. Thus, either 84 has the (k+l,2)—proper;y or . fails to
contain k+l sets. In»either-casé, |54| j_Nn_l(k+l,2). Now 35

either fails to contain k+2 sets, or @, has the (k+2,2)-property.

5
Also, since each set .in- 55 intersects HI’ we conclude that-

I8 < N _(+2,2). Thus, if B, =@, it follows that
18] =18, UBs| < [B1 + [8g] <N _; Geb1,2) + N, (e42,2).
Theorem 2-7 implies that Nn(k,Z) -k+1>0. Hence,
18] < N _p(41,2) + N (k$2,2) + N (k,2) - k+ 1.

2

T .
If 53 # 0, let ¥ = {p, e B 61,5_61}, and let h be the

\
maximum number of pairwise disjoint sets in & . Since 53 ¢ 0, we
, : ' '
have that h < k. Moreover, Pl,P2 e 8§ dimplies that h > 2. The
. ‘ '
definition of h implies that either ¢ has the (h+l,2)-property, or

t
8 fails to contain - h+l sets. Since each set of QE intersects
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H,, 1t follows that ]82} SN _;(k+2,2). The fact that g, < 3
implies that either 51 has the (h+l,2)-property, or 51 falls to
contain h+l sets. Since each set of 51 intersects Hl, we have in
either case ,51| :_Nn_l(h+l,2).' Since each set of 53_ fails to
intersect all sets of 5', we have either 53 has the
(k+2-h,2)-property, or 53 fails to contain (k+2-h) sets. In either
case, |53l j_Nn(k+2fh,2). The definitions of Hl and H2 imply that-
3 = 51 U 52 U 53. Hence,

18] < 131 + I8, ] + [85] < N__; (ht1,2) + N

n-1 n-1 (k+2 »2) + Nn(k+2—h,2) .

Lemma 2-9.1 with h-2 diterations implies that

N (k+¥2-h,2) +h - 2 < N_(k,2).

Also, Lemma.2-9.1 with k~h iterations implies that

Nn_l(h+l,2) +k - h j_Nn_l(kﬁl,Z).
Thus,

B] <N _jG+1,2) + N (k+2,2) + N (k,2) - k + 2.

Corollary 1-2.1 implies that.

Nn(k+2,2) j_Nn_l(k+l,2) + Nn_l(k+2,2) + Nn(k,2) k + 2.

2

Corollary 2-12.1. If k > 1, then Ny(2k,2) <k° + 2k - 2 and

N, (2k+1,2) <1+ 3.- 1.
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Proof: For p >.q > 2, Theorem 2-7 implies that Nl(p,q) =p=-q+ 1.

For r > 2, Theorem 2-12 implies that

N2(r+2,2) j_Nl(r+l,2) + Nl(r+2,2) + N2(r,2) + 2 - r,

Thus, for r > 2, N2(r+2,2) j_Nz(r,Z) + r + 3. The proof will now be
completed by induction. For k =fl, Theorem 2-7 implies that the
equation N2(2k,2) :_kz + 2k - 2 holds. So suppose the result holds
for ‘k_i 1. Now N2(2(k+l),2) :_N2(2k,2) + 2k + 3, Sincé»the result

holds for k, we have N,(2k,2) < k? + 2k - 2. Hence,

N2(2(k+l),2) j_N2(2k¢2) + 2k + 3

k2 + 2k ~ 2 +2k+ 3

I A

(kH1)% + 2(k+1) - 2.

Thus, N2(2k,2) :_kz + 2k - 2 for all. k > 1.
The discussion following Theorem 2-7 implies that the inequality

2 + 3k - 1 holds for k = 1. So suppose.the result holds

N,(2k+1,2) <k
for k> 1. We have N, (2(k+1)+1,2) < N2(2k+1,2) + 2k + 1+ 3. Since

the result holds for k, we have N2(2k+1,2) j_kz + 3k - 1. Hence,

N2(2(k+l)+l,2)

| A

N2(2k+l,2) + 2k + 4

k2 + 3k -1+ 2k + 4

| A

= k1) + 3(kHL) - 1.

Thus,

N2(2k+l,2) f_kz + 3k -1 for all k> 1.8
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Results in. E2 and g3

The following sequence of theorems glves deeper results for the

lower dimensional spaces.

Theorem 2-13. If § is a family of mutually parallel parallelotepes in

E2 with both the (3,2)-property and the (5,3)-property, then ISI < 2.

Proof: Corollary 1-2.1 implies that it suffices to prove the theorem

when § d4s finite. So let { = {P_, ..., Pm} be a finite family of

l’..
mutually parallel parallelotopes in E2 with beth the (3,2)-property
and the (5,3)-property. Then there exists a basis {x,y} for g
such that each P; has the form

P = {ox + By: AiAjra <6, €, <8 <l

Without.loss of generality, assume that &, = min{8.,: i =1, ..., m}.

. : » 1 i :
Let'.Hl,hdenote the line {Glx.+ By: B 1is real}. If every element of
8 intersects the line Hl, then it follows from Theorem 2-7 that

]6] <2, Thus, assume that some set in U fails to intersect Hl'

Then without loss of generality, assume that

AZ = max{Ai:‘i = 1,2, ..., m} K and AZ > 61.

Let- H, be the line {A2x7+‘6y: 8 is real}. By a similar argument it
may be assumed that there exists sets Pk and . Ph in 8 such that
€y ='max{ei: i=1, ..., m} and n, = min{nii i=1, ..., m}, with

' ' ' ) . . .
€~ Npe Let Hk and Hh denote the lines ~{ax + €y o is reall

and . {ax + nyi o is real}, respectively. Let a = Glx + Y,
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b= Glx + € Ys c = Azx + €y and d = Azx +-nhy. It will now be

shown in detail how to deal with one of the four cases h =1, h =2,

k=1 or k =2. The other three cases follow similarly. . If h

It
—

let 31 = {Pi ed: ac Pi} and 62 =3 ~3; (c.f. Figure 7). If

Pj € 82, then either Aj_> 8§, or ej'> ny. . Consequently, Pj fails

to intersect the set Pl.j Thus,.either 32 has the (2,2)-property, or
32 contains fewer than'two,setsh In either case, !32| = 1. Thus,
81 = 8, U 8,1 < 18,1 + [5,] = 2. |

Now assume that h ¢ {1,2} and k ¢ {1,2} (c.f. Figure 8). Since

3 has the (3,2)-property, every set in 3§ intersects Pl or P2 and

also Ph or Pk'

points from the set {a,b,c,d}. Suppose that the set {a,b,c,d} fails

Thus, every set in § contains one of the four.

to contain two points such that each set in § contains one of these -
two points. It will now be shown that one of the four cases

Pk n'Pl =0, Pk N P2 =0, Ph n-Pl =@, or Ph n P2 =@ leads to a

contradiétion. The other three also lead to a contradictien by a
similar argument. If Pk n Pl = ¢, then from the (3,2)-property it
follows that P, N P, # @0. By the’assumptions there exists a set.

Pi e 8 such that Pi N {a,c} = ¢. Sincé each set in {§ contains at
least one point .from the set {a,b,c,d}, it follows‘that

PN {b,d} # 0. If be?P, then a4?P, implies that p, N e =4

h

Moreover, c é Pi implies that P2 n Pi = (). Consequently, no three.

of the five sets {P P.} have a common point. If d € P,

‘ 1°F2 PPy
then a ¢ Pi implies that Pi ne

1= #. Moreover, c ¢ P, implies

that Pi N Pk = (. Consequently, no two of the three sets {Pl,Pk,Pi}

have a commen point. Hence, Pk N Pl = @ leads to a contradiction.



Figure 7. The Case of h =-1.

aér‘(ﬁ) T TT7TT d By
P,
/:;/l}l‘l’“u%

The Case of h ¢ {1,2}

Figure 8. and k ¢ {1,2}.

b4
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Now assume that Pk n e, # 0, Pkﬂ P, 0, Ph N Py # ¢ and

Ph N P2 # (. . By the assumptions, there exist sets Pi’Pj e 8 such that .

Pi N {a,c} =@ and Pj N {b,d} = @. Without loss of generality, assume

[}

that  a € Pju Then 'ijﬂ {b,d} = ¢ implies that Pj NP, =0 and

. 2

P, AP =(@. Now either be P, or deP,. If de P,, then it

J k : i ~ i i

follows that P, A P, = @ and P, NP = @. Consequently, no three of
the five sets {Pl,Pz,Pk,Pi,Pj} have a commen point, If b € Pi’

then one argues.similarly that no three of the five sets
{Pz,Ph,Pk,Pi,Pj} have a common point. Thus, the assumption that the

set {a,b,c,d} fails to contain two points such that each set in 3

contains one of these ‘two points leads to a contradiction. Thus,

3] < 2.m

It follows from Theorems 2-13, 2-2 and 2~7 that ,N2(5,3) = 3,
MoreOVér, Theorem 2~13 implies that‘the_maximum value of I%], where
8 ranges over all families of mutually parallel parallelotopes in E2,
is not taken on when {§ also haS'they(B,Z)—property. However, the

following example shows that this is not the case in E  for n > 3.

Example 2-2. Define sets Pi’ i=1,2, «ev3 7, 1in E3 as follows:

g
I

{(x,y,2): -l <x<1, -1<y<1, “1izil},

1 | |
P, = Py + (2,2,0), - ’ P, =P + (2,1,-1),
P, =P + (1,-1,1), : Po =P, + (2,-2,0),
P6 =hPl + (4,0,0), P7 = Pl + (3,0,2).
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Figure 9 represents the projection of Pi’ 1 <1i<6, into the
xy-plane, and the sets marked with an I are the sets which P7
intersects.

Let § = {Pl,Pz, cees P7}., Then ¢ is a family of mutually
parallel parallelotopes in E3 with both the (5,3)-property and the
(3,2)-propefty. Moreover, 8 i1s a family of translates of Pl such

that no four sets in §§ have a common point. Consequently, ]5] 23

Corolla;z 2-13.1. N3(5,3) = 3,

Proof: Let {§ = {Pl,Pz, cers Pm} be a finite family of mutually
parallel parallelotepes in E3 with the (5,3)-property. If 3 fails
to have the (3,2)-property, then Theorem 2~2 implies that |5| < 3. So
assume that {§ also has the (3,2)-property.

There exists a basis {x,y,z} for. g3 such that each P, e 3

has the form

_ 1 1 i i i i _
P, = {alx +ayy + ajz: Aj,:_qj :-Bj’ j=1,2,3}.
o : , 1 , i
Without less of generality, assume that~_Bl = mln{Bl: i=1,2, +v., m},

Let H denote the 2-dimensional hyperplane
1
{le + By + ez: B,€ are real}l.

If every set in {§ intersects H, then Theorem 2-13 implies that
]51_i~2. If some set in § fails to intersect H, let

3y = {Pe®d: PN H =0} and 81 ={Ped: PN H# @)}. Now either vﬁl
has the (5,3)-property and the (3,2)-property, or 81 fails to contain

five sets. Suppose 51 contains fewer than five sets. If 81
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contains fewer than four sets, it follows from the (3,2)-property of 3
that |Ell <2, If El = {Pl,Pi,Pj,Pk}, that is 81 consists. of four
sets, then we may assume Pl N Pi # 0. ‘If Pj N Pk # @, then clearly
,El] <2, If Pj n Pk = @, then because of the (3,2)-property it may
be assumed that Pl N Pj f,ﬁ. Now also beéause of the (3,2)~-property,
we have either P, N Pj #0 or P, NP # 0. 1If P, N P # @, then
clearly |8 | <2. If P . n P, #0, then ]{Pl,Pi,Pj}_], =1,
Consequently, ]3l]‘§_2. Thus, if 81 fails to contain five sets,
Iﬁl].i 2, If El contains at leést five sets, then Theorem 2-13
together with the fact that each set in 81 intefsects H implies
tac |3] < 2. |

Since each set in 82 fails to intersect P,, we have either ,82
has the (2,2)-property, or 82 fails to contain two sets. Theorem 2-1
implies IEZ] < 1l. Hence, [3] = J%l U 821 < 3. Therefore, [8] < 3
for any finite family § of mutually parallel parallelotopes in E3
with the (5,3)-property. Corollary 1-2.1 iﬁplies the same result for

infinite families. Thus, N3(5,3) < 3. Theorem 2-7 implies that

N3(5,3) > 3; hence, N3:(5,3) =3, M

Example 2-2 implies that there exists a family 3 of mutually
parallel parallelotepes in E3 with both ﬁhev(5,3)—properﬁy-and the
(3,2)-property such that ]EI >3, On the other hand, Theorem 2-13
implies that this is not the case in E2. Tﬁus, in some sense thé
situation in E° is quite different from thét of EZ.',HoweVer,,this_

difference is not expressed in ‘the equation N2(5,3) = N3(5,3) = 3,

Corollary 2-13.2. N2(6,3) = 4.
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Proof: Let {§ = {Pl’PZ""" Pm}ﬁ'be.a finite family of mutually
parallel parallelotopes in ,EZ with the (6,3)-property. If & fails
to have the (4,2)-property, then Theorem 2-2 implies ]3] < 4, So
assume that {8 also has the (4,2)-property.

There exists a basis {x,y} for E?‘ such that each P, ¢ 8 has

i

the form

Without loss of ggnerality, assume that 31 = min{Bi; i=1, ..., m}
Let H denote the line {Bix,f ay: o is réall. If every set in
intersects H, then it follows from Theorem 2-7 that |J| < 3. So-
assume that some set in ¥ fails to intersect H. Let

S, ={PeB:PNP, #0} and J, =1{P e PNP =@} The
definition of - H implies that each set in 81 intersects H. Also,
52‘# @, since there exists a set in & which fails to intersect H,.

we have either- S, has-

Since each set in 82 fails te intersect P )

1°
the (5,3)—property and the (3,2)-property, or 82 fails to contain five
sets. In either case, it follows from the proof of Corollary 2-13.1
and the conclusion of Theorem 2-13 that |[T,| < 2.

There are two cases ]821 =1 or 182| = 2. If '|82[v= 2, then
Theorem'é;z implies that_,%z- contains sets Pi énd Pj  with.
Pi n Pj = (. = Suppese now that- Sl contains a subfamily G consisting
of three pairwise disjoint sets. Then G (J {Pl} U {Pi,Pj}' is a family
of six sets from § no three of which have a common polnt. This
contradicts the fact that § has the (6,3)—property. Hence, either

81 has the (3,2)-property, or &, fails to contain three sets. If Sl

1
has the (3,2)-property, it follows from Theorem 2-7 and the fact that
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each set of 81 intersects H, that- [51] <2, 1If ﬁl fails to

contain three sets, then clearly [Ell <.2. Thus,
Bl = B ud,| <2+2=4

Suppose now ]EZL = 1, Recall 81» has the (4,2)-property, or El
fails to contain four sets. In either case, it follows that ]31[ < 3.
Thus, || = ,51 U 52] <3+ 1=4. Therefore, || < 4 for any-
figite family O of mutually parallel parallelotopes in . EZA with the
(6,3)-property. Corollary 1-2.1 implies the same result for infinite
families. Thus, N2(6,3)‘i 4, Theorem 2~7 implies that- N2(6,3) > 4

hence, N2(6,3) =4,

A technique will not be iliustrated which gllows one to determine
some of the numbers Nz(p,q) - and upper bounds on others which are.
smaller than these given previously ip this chapter.

First, it is shown_that,_N2(10,4) = 7. Theorem 2-7 implies that _
7 :_Nz(i0,4). Thus, it suffices to show that if - 8§ is a family of
mutually parallél parallelotopes in E2 Wiﬁﬁ-the~(10,4)—pr@perty, then -
]3] < 7. If 5 fails to have the (4,2)-property, then Theorem 2-9
with p=4, q=2, t=2 and m=4 dimplies that-

5] < 4

N2(6,3) = 4, Thus, "8] < 7. If ¥ has the_(4,2)—property,‘then,

2+ 1+ N2(6,3). However, Cor@lléry-2—13;2 implies that

I5] < N,(4,2). Corollary 2-12.1 implies that N,(4,2) < 6.
Consequently, IE[ <.7 which implies that N2(10,4) = 7.

Now it will‘be‘showﬁ ﬁhat_;N2(17,5) = 13. The technique .used to
do this may also be used together with the theorems of this chapter to

determine the values of Nz(p,q) - listed in Table I. Again; by
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Theorem 2-7, 13 < N,(17,5). Thus, it suffices to show that if 3 is
a family of mutually parallel parallelotopes in E2 with the
(17,5)-property, ‘then ’|5| < 13. If § fails to have the (7,2)-
property, then Theorem 2-9 with p =7, q =2, m=7 and t =3
implies that |5| <6+ N2(10,4) =13, If § fails to have the
(11,3)-property, then Theorem 2-9 implies that | <9+ N2(6,3)l’
However, Corollary 2-13.2 implies that__N2(6;3) = 43 thus, ISI < 13,
If § fails to have the (15,4)-property, then Theorem 2-9 implies that
8] < 12 + N, (2,2) = 13. Thus, assume that & has the (7,2), (11,3),
(15,4) and (17,5)-property.

Suppose ‘that - {5 fails to have the (l4,4)-property. Then there
exists a subfamily G of ¥ containing 14 sets, no four of which
have a common point. Consequently, 83 ~ G has the (3,2)-property.

The discussion folléwing Theorem 2—7 implies tﬁat N2(3,2) = 3; thus,
15 ~ Q|.i 3. Since § has the Qll,3)-property,‘soﬁe three sets from

q have .a common point. Hence, G contaiﬁs a subfamily ¥ which
contains three sets with a common point. The family G ~ ¥ is a

family of 11 sets and thus must contain a sﬁbfamily $ which contains

three sets with a common point. Consequently,

1@ ~® UGl < |S~G + G
3+ 4+ ]+ |G~ HU D

3+ 1+ 1+ (14 - 6) = 13.

3]

| A

I A

Thus, assume that ¢ also has the (14,4)fpropértya
If § fails to have the (10,3)-property, then there exists a
subset G of § containing 10 sets, no three of which have a common

point. Since § has the (l4,4)-property, the family 8 ~G has the
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(4,2)-property. Corollary 2-12.1 implies that |[§§ ~ G| < 6. Since §

has the (7,2)-property, G contains two distinct subfamilies H and

J each of which contains two sets with a common point. The family

G~ @UZ then consists of 6 sets. If some two sets of the family

G~ @®UJ have a common point, then |G >H U J| < 5. Consequently,

Sl < [5G+ ¥ + 2] + 6 ~GtUD|

<6+ 1+1+5=13.

" Thus, assume G ~ MH U #) consists of 6 pairwise disjoint gets. Let
G~HUZ = {AI, ""'A6} and & = {Bl,Bz}. Since ¥ has the
(7,2)-property, soeme two of the sets from the_family {Al, e ey A6;B1}
have a.common point. Without loss df generality, Bl n Ai # 0.
S$imilarly, B2 n Ai # ¢ for some 1, 1 <i<6. If 1i=1, then

By n B, N A # @. Consequently,

G~ ] < [€ay, ..y A + [1A;,B,,B,}] = 6.

If i # 1, then

IG ~ ¥] < |{a A oy A+ [{a],B Y]

20 crre Byl 1+1°

+ l{Ai,Bz}] = 6.
Thus, in either case |G ~¥| < 6. Consequently,
3] < I8 ~Gl+ [G~ s + |4 <6+6+1=13

Thus,'assumé that {§ also has the (10,3)-property.
If ¢ fails to have the (6,2)-property, then since 5 has the

(10,3)-property, Theorem 2-9 implies that |J| < 5 + N2(4,2). However,
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Corollary 2-12.1 implies that -N2(4,2) f__6l° Consequently, IEI <.11.
If § has the (6,2)~property, then Corollary 2-12.1 implies that

|3| < 13. Thus, this reduction process yields Igl < 13 1in each case,
Therefore,“ N2(17,5) = 13,

The qﬁmbér N2(19,5) may also be evaluated by this technique.
However, due to the length of the reduction process, N2(17,5) was
evaluated in detail instead of N2(19,5). The evaluatiOﬁ of NZ(IQ;S);
proceeds as follews, First, show that if § is a family of mutually
parallel parallelotopes in E2 with the (19,5)-preperty which fails to
"have thev(9,2),»(l3,3) or (17,4)-property, then |8l.i 15. Then show
that if { féils‘té have the (16,4),'(12;3)'0£ (8,2)~property, then
]3[ 5_15. The proof must show ﬁhat 3 fails‘to havé these properties
in the order in which they are listed. Next«sﬁow.that_if 8 fails
to have the (7,2), (15,4) or-(ll,3)—property; then '|6| < 15, Here
again the proof must follow the .erder in which the properties are
listed. Now if {§ fails to have the (6,2)-property, Theorem 2-9 with
p=6, q=2, t=1 and m=.4 implies that |3 <5+ N2(5;2).
Howe:ver, Corollary 2-12.1 impliés that N,(5,2) < 9. Thus, 13| < 14.
If 8 has the (6,2)-property, then Corellary 2—12.l-impiies that
|| < 13. Thus, in each case |3] < 15. Theorem 2-7 implies that
N,(1935) > 15; thus, N,(19,5) = IS,

If one tries to evaluate the number NZ(ZO,S) by this technique,
he obtains the following: If § is a family of mutiually parallel
parallelotopes in E2 with the (20,5)—propertf which fails to have the
(7,2)y (12,3) or (l6,4)—property, then 18|.i 16. Moreover, no further
reduction of these properties is possible with the previous technique.

Thus, one ‘is only able to conclude that N2(20,5) j_max{lG,N2(7,2)}.
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Since Corollary 2-12.1 only implies that N2(7,2)‘iw17, this
technique fails to determine N2(20,5) since Theorem 2~7 ‘gsays that
N, (20,5) > 16.

The values of Nz(p,q) which appear to the left of the dark stair
step curve in Table I are those given in Theorem 2-7 and were determined
prior to fhis study by Hadwiger and Debrunnor [5]. The values which
appear to the right of the stair step.curve are those which the author

has determined in this study.



CHAPTER III
FAMILIES OF COMPACT CONVEX SETS

In this chapter, the problem of determining whether or not ]8] is
finite for a family {§ of compact convex subsets of E® with the
(p,q)-property will be considered. This problem is motivated by a
theorem of Hadwiger and Debrunner [4], which implies that for certain
pairs of natural numbers p and q there exists a smallest natural
number Mh(p,q) such that [8] S_Mﬁ(p,q), for any finite family & of

compact convex subsets of E' with the (p,q)-property.

The (p,q,k)-property

The space Lt is defined to be RP with the norm whose unit ball

is the set

B = {(al, cevs ) -l <a, <1, i=1, ..., n}.
The norm for (a,, :.., o) € L© is then given by
1 n
”(ul, ey an)” = max{|ai|:'i =1, ..., nlt.

Since all norms on R® give an equivalent topology, the results of the

; R o}
previous chapter remain true when ET is replaced by L°. Henceforth,
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an'will,denote the above described normed linear space and B" the

unit ball of this space.
The following theorem is stated in Ln; however, the theorem also
holds in any complete normed linear space, a Banach space. Note also

that the sets in the family {§ need not be required to be convex.

Theorem 3-1. Let { = {Aa: o € A} be a family of compact sets in L™

with the (2,2)-property. If inf{diam(Aa): @ e A} = 0, then |8|‘= 1.

Proof: For Aa e g, let Ba = diam(Aa). There exlists a sequence.

i i %441 i %y
w,,. € A N A . Then
ij " Tay o,
1 J

{B } such that B >0 and B < B . Choose x, € A and
o " o - "o i

g = gl < fleg = wygll + fhogg = gl < 8+ oy

Since Ba + Ba >0 as 1 and j become large, it folloews that- {xi}
i j _
is a Cauchy sequence. Let x denote the point in- L% to which the

sequence {xi} converges.
Suppose that there exists X € A such that x # AA' Since AA is
a closed set, there exists an ¢ > 0 such that |[x -~ 4d| >¢ for all

ace AA' There exists an integer Nl such that if k > Nl’ then
B <e€/2., Also, there exists an integer N such.that';Hx - ka <€ef2
ak ‘ ‘ - 2 s

for all k > N

\

g+ Let k 3_max{Nl,N2}. Then for y € A,

= = ¥ <8 < €/2. Tous,

Iy == <y = x)l +llm - <§+§=e

Hence, a ¢ AA implies that ||x - a]| > €, and y e Aa implies that-
' : k
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”y-— ﬂ! <€, Consequently, Aa N A = @, a contradiction. Therefore,
k
X € Ax for all A, and hence it fellows that . IEI =1.m

The remainder eof this study concerns certain real numbers which can
be associated with a cempact convex set A. These numbers are defined

below.

Definition 3-1. Let ‘A be a nonempty compact convex set in L®. For
x e A, let I(x,A) = sup{r: x+ ABncz A} and

E(x,A) = inf{} > 0: Ae x + AB"}.

The sets {A: x + AB" c A} and {\ > O: AC x + AB"} are both
nonempty since 0 ¢ {A: x + AB" A}, and
diam A e {A > 0: Acx + AB" ). Thus, I(x,A) and E(x,A) are Eoth‘
nonnegative real numbers.

Since the set ,A: is compact, a simple sequence argument can be
conétructed to prove that x + I(x,A)Bn A and A C x + E(x,A)B", for
each x ¢ A, These facts will bé used extensively in .the sequel. .

A set A which has an empty -interior will have the preperty
I(x,A) = 0 for all x e A, while on the other hand if A has a
nonempty interior, A will contain at least one point x such that
I(x,A) > 0. If A is a nondegenerate set, thaé,is, A  contains .at-
least two-points,‘then E(x,A) > 0 for all x e A. Thus, if A is a
nondegenerate set, the ratio |

I(x,A)

E(x,A)

is &efined for each x ¢ A. This ratio will be of interest in the

sequel. Note that if A 1is a nohdegenerate set, then the inequality
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0 f-Ig‘x,AZ <1

E(x,A)

1s valid for all x e A,

If A=x+ aB®  for some o > 0, then it follows that I(x,A) = o,
E(x,A) = o and (I(x,A)/E(x,A)) =1 (c.f. Figure 10 for the case
n=2), If A denotes a circula% disk in L2- of raddus o > 0 with
center x, then I(x,A) = (¥2/2)a, E(x,A) = o. and
(I(x,A)/E(x,A)) = v2/2  (c.f. Figure 11). However, if y # x, then it-
is clear that I(y,A) < (V2/2)a, E(y,A) > o and
(I(y,A)/E(x,A)) < vV2/2. Thus, the ratio assumes its maximum at - x.

The following theorem implies the existence of such.a point for each set -
A. However, Figure 12 gives an example of a compact convex bedy . A

where the point X, given in the following theorem is not unique.

, . . , n
Theorem 3-2., Let A be a nondegenerate compact convex set in L.

There exists a point Xy € A such that-

I(x.,A)
T I(x,4A) | :
EREETKS-— sup B(x,A) X E‘A}.

Proof: Let b = sup{(I(x,A)/E(x;A)): xe A}, Then 0 <b < 1. Since
diam(A) # 0, there exists a number t >.0 such thét, r < E(x,A) for
all x & A. Without loss of genefality, assume that there exists a
sequence {xi} of points of A such that (I(xi,A)/E(xi,A)) + b,

X > X € A, I(xi,A) +~ 1 and E(xi,A) ~ E, for some real numbers I
ané E where E > 0. It will be shown that I = I(xO;A) and

E(XO,A) = E, which will complete the proof.
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'y K 2 4*_ 1 —ﬂ
N | 'T
AN t 1
1
L~ 1
// A
»

Figure 12. Nonuniqueness of Xy
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Suppose that I < I(x,,A). Let € =I(x,,A) - I. Then there
exists an integer N such that 1 > N implies that l[xo - xﬂ{ <€/2,
Let fk >N and x ¢ X + (I +-€2-ljBn. " Then

Ix = xfl <llx-xfl +llx - xfl cT+5+5=T+e = I(x,A.

Thus, x € X, + I(xO,A)BnI: A, which implies that =x'e¢ A. That is,
-1,.,n R . .

X, + (LI +€2 7)B "< A. The definition of I(xk{A) implies that
I(xk,A) > I+ <-22_l for k > N. This contradicts the convergence of the
sequence {I(xi,A)} to I; therefore, I(xO,A)_i I.

Suppoese now that I(xO,A) <I. Let € =1~ I(xo,A) > 0. There

, -1
implies that on - xk” < e4 7,

exists an integer N; such that k > N

1 1
Moreover, since-'I(xo,A) + 62-1 < I, there exists an integer N2 such
that k z_Nz implies that ‘I(xk,A) > I(xO,A) + €2fl{ Now - for
k 3_max{Nl,N2} and X € x5 + (I(xO,A) + €4—1)Bn, it follows that

2 = x|l <llx = =)l + %y = %]l < IGx,8) + f:+ o= Ilxg,a) + %—

S (EGg.A) - 5) + fz—'= L(x, ,A).

Hence, ||x ~_ka i_I(xk,A). This implies that x e x + I-‘(xk,A)Bn C A,

and  therefore, x,. + (I(xO,A)_+ €4_l)Bn'C'A,“ a contradiction to the

‘ 0
definition-of I(x ,A>i . Thus, wé_obtain I(xO,A) = I,

Since (L(x,,A)/E(x;,A)) <b and b = I/E, it follows that
(I(xO,A)/E(xO,A)).i I/E, that is, inverting gives E :ﬂE(xO,A), since
I = I(xO,A). Suppose‘ E < E(xO,A), Let “€ = E(xO,A) - E > 0. Then

there exists an integeﬁ N, such that k > N, implies that

1 I

implies that

”xo - Xl < €/4 and an integer N, such that' k > N,
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E(xk,A) < E +-e4—1. Then for k~3_max{Nl,N2} and x e A, 1t follows"

that

I A

I = =) < fl= ==l + 1% - =gl < B + G

1
£ 4+ £ = £ = = -
<E+ 5 + 5 E + 5 E + 5 (E(XO’A) E)

B(xy,A) + 3 (B = E(xy,A)) = E(xyoh) - § .

l..n

This implies that A < x. + (E(xO,A) - €277)BY, which is a contradiction

0
to the definition of E(xO,A). Therefore, E = E(xo,A).|l

Definition 3-2. Let p and gq be integers with p > q>2 and k a
real number with 0 <k < 1, A family g = {Aa: o e A} 1is said to have
the (p,q,k)-property in. " if and only if the fellowing two conditions .

are satisfied:

(1) 3 is a family of nondegenerate compadct céonvex sets in. i

with the (p,q)-property; and

(2) inf sup I(xiAa)
ae d) xeE Aa E(x,Aa) -

Theorem 3-3. A family 3 = {Aa: oe O} of ﬁohdegeﬁerate compact convex
subsets of L" has the (p,q,k)-property in i if and only if § has
the (p,q)-property, and for each Aa e § there exists a point X, € Aa

such that ‘(I(Xd’Aa)/E(xa’Aa))'iJk’

Proof:. The theorem follows directly from Definition 3-2 and Theerem 3-2.
-

A family of circular disks in L2 with thez(p,q)—property will

also have the-(p,q,/f?Z)—property in L2 as seen from Figure.l0. Thus,
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Figure .13 represents a family of sets with the‘(2,2,/§72)4property in.
Lz; If a family {§ of subsets of Ln has -the (p,q,l)-property, then-
it follows from Theorem 3-3 that for each A e §§ there exists a point
x € A such that (I(x,A)/E(x,A)) = 1. Thus, I(x,A) = E(x,A), from
which it follows that A .= x + I(x;A)B" (c.f. Figure 10 for the case
n =2). Hence, {§ is a family of mutually parallel parallelotopes in.
1" with the (p,q)-property. Figure 2 then represents a family with
the (3,2,1)-property in L2, and Figure 3 represents a family with the
(4,2,1)-property in. L2. On the other hand, however, every family of
mutually parallel parallelotopes in L" with the (p,q)-property does
not necessarilyfhave the (p;q,l)-property.

Figure 14 fepresénts tha sé;s, aAB2 aﬁd EABZ, 0 <a'<x e, If
A 1is any compact convex seé whidh_containSv 0 in L2 and w%ose
Boundary lies in the shaded portidn of Figure i4, thén-it is ‘true that
I1(0,A) > ax, E(0,A) < e and (I(O,A)/E(O,A))-ia/e. Thus;, if O is
a family of compact convex subsets of L2 with the (p,q)-property such
that for each Aed thére exists an x € A such that the boundary of -
A - x 1lies in fhis shaded region, then § has the (p,q,0/€)-property
in L2;

If 0<r<k<1l, and § 1is a family of subsets of L" with the
(p,q,k)-property, then it is clear that ¢ also has the
(p,q,r)-property. Moreover, if r > 0, then {§ is a family of compact"

‘ ; , n o . . . .
convex .bodies in L~, that is, each set in {§ has a nonempty interior. -

- The Function Pn(P,q,k)

A function Pn(p,q,k) of four variables will now be defined which

is similar to the aforementioned functions Nn(p,q) and Tn(p,q).



Figure 13. Sets with the (2,2,v2/2)-property.
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Definition- 3-2, Let p, q and n be positive integers with

P>4q>2, and let k be a real number with 0 < k < 1. Then
Pn(p,q,k) = sup{iglz.ﬁ has the (p,q,k)-property in L},

Note .that Pn(p,q,k) need not .be finite; in fact, it will be .
proven laﬁer that Pn(n,n,O) = o for all n > 2. However, if
Pn(p,q,k) -is finite, Fhen Pn(p,q,k) must-be ‘a positive integer.

If n=1, it follows that any family § in L' with the
(p,q,k)~property is a family of mutually parallel parallelotopes in Ll.<
Hence, from Theorem 2-7, it follows that P (p,ak) = N (p,q) =p - q+1
for all k. By a similar argument as that used in the proof of
Theorem 2-7, it can be shéwn that”_Pn(p,q,k) >p-g+ 1 for all
k ¢ [0,1] and all =n > 1.

It follows from Helly's theorem that Pn(n+;,n+l,k) =1 for all
k ¢ [0,1]. In the case when k =1 it is not &ifficult.to coﬁclude

that

Tn(PsQ) j_Pn(Panl) f“Nn(P’Q)-

Thus, Theorem 2-7 implies that if 2 < q < p < 2q - 2, then
Pﬁ(P’q’l) =p-q+1.
The following two theorems determine whether or not Pn(p,q,k) is -

finite for certain combinations of p, q, n and k.

]

Lemma 3—4.1; Let {Aa: o € A} be a family of sets with the

(p,q,k)-property in Lq and . X be a fixed point in L". Then for any
1]
fixed real number B > 0, the family 3 =-{x0 + BAa: o.e A} has the

(p,q,k)-property in L.
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Proof: Let o € A, Then Theorem 3-2 implies that there exists a point .

X, € Ad such that (I(xa,Aa)/E(xa,Aa)) > k. Now x, + I(xa,Ad)B c Aa‘

implies that x. + B(xa‘+LI(xa,Ad)Bn) c x: + BAG; similarly,

0 0

n .
x. + BAa c x. + B(xa + E(xa’Aoa)B ). That is,

0 0

n
(x. + Bxa) + B(I(xa’Ad)B ) C x. + BAa

0 0

and

‘ n
x, + BAd c (XO + Bxa) + B(E(Xa,Aa)B ).
Hence, I(x0+8xa,x0+BAa) Z_BI(xa,Aa) and E(x0+6xa,xo+BAa)‘§_BE(xa,Aa),

from which it follews that

I(XO+BXG’XO+BAC!) R BI (xd”Ad) ;
E6x6+8xa,xo+BAa) —-BE(xa,Aa)-—

k‘

\ B
It is also clear that § has the (p,q)-property. Thus, Theorem 3-2

) '
implies that § = {x

o tBA: e A} has the (p,q,k)-property in. L.

Theorem 3~4. Let P, q and n be positive integers with p >'q > 2
and k a real number‘with 0 <k < 1. Then Pn(p,q,k) - is finite.

Moreover, the following inequality is satisfied:

p-q+1 i'Pn(P’Qa-k)

n 2 71
_<_(P“°'1+1)<1E2k>+2n<1+k2+k)
k

Proof:. The fact that p. - q + l\j_Pn(p,q,k) was discussed after
Definition 3-2. Let Nl be the minimum number of translates of kB"

required to cover (1 + k)Bn and N2 the minimum number ¢f translates



‘of kz

bd[ (1 +\k)Bn]."Then it is not difficult to show that .

The théoxémiwill now fellow by éhowing that -

Po(Psdsk) < (p = g+ 1)(N) + N,).

: with centers on bd[(1 + k)Bn] required to cover
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To prove this, Corollary 1-2.1 implies that it suffices to show that if

8 is any finite family of sets in L" with the (p,q,k)-property, then

Bl < - a+ 1@ +N,).

Leté g = {A'l,

“os Am} be a finite family of subsets of . " with

the (p,q,k)-property. Theorem 3-3 implies that for each Ai e 8 there

exists a point xi,€ Ai such that (I(xi’Ai)/E(xifAi)) > k. Without

" loss of ‘generality, assume that E(xi’Al) = min{E(xi,Ai): i=1l; ...

, m}.

' ’ — -
Lemma 3-4.1 implies that 3 =.{(E(xl,Al)) lAi: i=1l, ..., m} has the

. 1]
(p,q,k)~property. It is also clear that_,lgl = IS l. Hence, we may

assume that - § has the property that-

E(xl,Al) = min{E(xi,Ai):‘i,= 1, eov, mt = 1,

By Lemma 3-4.1 we may also assume that- x, = 0.

Let - 31 =‘{Ai € O Ai n Al # @} and 52 ='£Ai e Ot Ai N Al = g},

We note that 52 may be empty; however, 81 # @ since Al € 51;\ It

will not be shown that ]31| <N+ Ny Let

G, =-{Ai € E&: Hxi”_i 1+ k} and Cé = {Ai € 8&: HxiH > 1+ kl,
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There exist Nl points (Zys sees Zy such that
1
n Nl

L+KB < U (2, + kB™).
i=1

For Ai_e C it follows that ki € zj + kB for some j, and

l’
I(xi,Ai) z_k(E(xi,Ai)) > k. This implies that

x, + kB" = x. + I(x ,A.)Bn c A,. Thus, x, € 2z, + an ~implies that
i i 174 i i h]

zg € %y + kB" < A Hence, each set in Cl contains one of the - N;

i.
+» Zy ; consequently, lcl[-i N, .

points 21’22’ L
It C, = @, then clearly l%l] SNt N2., If CZ # 0, let
n .,
Ai € Cz. Then HxiH > 1 + k. Since Ai N Al # ¢ and Al cB, it
follows that Ai N Bn'# #. Let . ¥y € (bd(Bn)) N Ai' Then
n

k=1+k-1c<]|x] - HyiH :_Hxi‘- yiH i_E(xi,Ai), Since y, € B~ and

il

”xiH > 1+ k, the set {Xxi + (1 - x)yi: 0 < A <1} intersects the
n- , - _

boundary of (1 + k)B~ at.some point LA Xoxi + (1 Xo)yi, for

~some 0 < AO < 1. The set

n.. a n
ko(xi + I(xi,Ai)B Y + (1 - Xo)yi = wiv+ XOI(xi,Ai)B

is contained in the convex hull of the set {xi + I(xi,Ai)Bn} U {yi},-

which is contained in Ai' Now
k thyi - Wi” = ”yi = Xoxi -1 ‘»XO)YiH = onyi - Xi” f.on(xi’Ai)’

which implies that (k/E(xi,Ai)) <A Hence,

0°
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k 2
Agl(xysA) > (E(x A )I(xi,‘Ai) > k™.
A R B¢
Therefore, w, + sznC w, + 2. I( LA )BnC A Let b
Yy SR e R £ it et ul’”""'uNz e

N2 points such that u, € bd((1 + k)Bn) and

N,

bd((l + kK)BY) = U (u, + k2B%).
i=1

Then for A, € C it follows that w, € u, + szn' for some j, which

2° i i
2.n

implies that uj € Wy + kB € Ai' Thereforé; each set in CZ contains

one of the N2 points Ups oo
3

= C,UC,, it follows that [81| <N+ N,

.y ; consequently, |C | < N,. Since
N, 2 2
1
To complete the preof we proceed by induction on s = p - q. If
s =0, then ¥ has the (p,p,k)-property. In this case it clearly
follows ‘that 32 = @, -Thus, . 13[ j_Nl + N2. Suppose now that it has
been shown that |3|.i‘(p0 -9, + l)(Nl.+ N2) for all O ijO - q0_< S,

and let p and q be such that p - q =.s. Since each set in_ 32

fails to intersect A

1» it follows that either 82 has the -

(p-1,q,k)-property, or 32 fails to contain p-1 sets. If 32 has
the (p-1,q,k)-property, then our induction hypothesis implies that

|82| < (- q)(Nl + N,). In this case

51 < 18,1+ 18,1 = (N + ) + (0 - QO+ N,)

= (p-q +.l)(N1 + Nz)'

If 52 fails to contain p-1 sets, let j denote the cardinality of -

32. Then 0 <-j <p=-1, If j =0, then 32 = @, and it follows"
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that [J| = lﬁll~i(p-q+Al)(Nl+"N2). If 0<j<p-=-gq, then

Byl cizp-as-@ +N) and

lgl = lgll + lgzl ‘<"Nl + N2 + (p - Q)(Nl + NZ)

= (p-q+ l)(Nl f N2).

Thus, assume that .p - q < j < p - 1. Theorem 2-3 implies that {$ has
the (j+1,q-p+j+l)-property. Since each set of 32 fails to intersect

A, B

1 has the (j,q-p+j+l)-property. Hence, some subfamily G of

2

82 containing q-p+j+l sets has a nonempty intersection. Hence,

A

1B, <16l + I8, ~Gl <1+3-(a-p+3j+1)

P-4q f:(? - q)(Nl + Nz)'

Thus , [Sl_i ]81] + ]52[ <(p-q+t l)(Nl + N2). By induction, it now
follows if § is any finite family of sets in L% with the
(p,q,k)-property, then ]8] <(p=-q+t l)(Nl + N2). The theorem now

fo l,‘lows .m

Note that it_iS‘shown-fn the proof of Theorem 3-4 that
Pn(P,q,kB < -q +.l)(N1 + Nz); In some cases, that is, wﬁen a
particﬁlar k 1is given, the number (p - q + l)(Niv+ N2), when
calculated, may be staller than the upper bound for Pn(p,q,k) which is
given in tie theorem. It can also be concluded from the proof of
Theorem 3-4 that if p > q, then Pn(p,q,k) < Pn(p—l,q,k) + (Nl + N2),
where Nl, and N2 depend on k. These upper bounds are probably:
rather large as compared to the value of Pn(p,q,k). The impertant

thing, hewever, is the fact that _Pn(p,q,k) is finite for 0 < k < 1.
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It should also be noted that Theorem 3-4 fails to give any
information about Pn(p,q,o). The next theorem partially answers the -

question as to whether or not- Pn(p,q,O) is finite.

Theorem 3-5. Let p>q>2 and n > 2 be integers. If q <n,

then P (p,q,0) = =.

Proof: Suppose first that p .= q = n. Let: gj‘ denote the linear

equation

where j 1is a positive integer. Let- Hj denote the hyperplane

- n - i1 ﬁ
(0!-1, e ey an) € L .): o:,iJ = §"
i=1
i !
and § = {Hj: i =1,2, ...}, Given n distinct equatiens gy
i =’il’ ceny iﬁ’ the~determinant formed by tﬁe coefficients of these

equations is knewn as the Vandermonde determinant, which is never zero
tb. 7Q, 7). Hence; any n distinét equations gj’ j= il’iz’ ooy in’
have a common solutién. "Hence, the family 8' has the (n,n)-property.
Let N be any positiveiinteéer and 8; = {Hji j=1,2, «.., nN}. Since
Sé is finite, it is possible te find an integer. m such‘that edach n
sets of 5; have a commen point in the set mB”, Let

3 = {ﬁj‘ﬂ mB™ : j=1, «..o nN}. Then ¢ has the (n,n)—préperty.
Moreover, & cdnsists of nondegenerate compéct‘convex sets.

Consequeritly, ¢ has the (n,n,0)-property in P, - Buppose some n+l

sets in Y have a nonempty intersection. - Then there exists a point
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(ug, vens ag) such that the polynomial -

agyi—l _ yn,== 0

I ~mB

i=1

is satisfied for n+l distinct;vaiués of y. However, this is
impossible since an nth degree‘polynomial has at mest n - zeros. Thus,
no ntl sets of § have a common point. Thus, if a subfamily G of.
8 has a nonempty intersection, then G contains at most n sets.
This implies ‘that |8| > N. Hence, Pn(n,njo) > N for every integer
N.  Thus, Pn(n;n,O) = =,

Theorem 2;3 implies ‘that every family ¢ with the‘<n,n,0)-property
in L also has thé (q,q,O)-prope?ty in. Lﬁ> where q‘j_n. Thus,
Definifion 3-2 implies that ,Pn(q,q,O) = foryéll .q with 2 < q < n.
Also, any family with the_(q,q,@)-property-in. Ln has the -
(p,q,0)-property in. L®; thus, Definition 3-2 implies that .

Pn(p,q,'O) =» for 2<q<p and g <n.M

Corollary 3-8.2 will further ‘answer.the question of the finiteness
of . Pn(p,q,O) for some. q > n. The follewing theorem describes how-
the function Pn(p,q,k) behaves relative to increasing one of the

variables while holding the others constant.

Theorem 3-6. Let p > q>2 and n > 1 be integers and k and kg

real numbers with 0 <k <1 and 0 < k, < 1. Then the following

1
results hold;

(a) If k; <k, <1, then P_(p,q,k;) > P (pyd,k,).

(b) 1If Py is an integer with p < Py» then -

P (p,q,k) < P (p;,q,k).
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(c)  1If q is an integer with 2‘§_ql < q, then
P (p,q;5k) > P (p,q,k).

(d) If d is an.integer with n < d, then-

Pn(p’q’ki) E_Pd(p,d,kl).‘

(e) 1If Pn(p,q5kl) is finite, then (b) and (c) remain true when

k is replaced by kl.

Proof; The parts (a)~(d) will be ‘proven.in order, and on (b) and (c)
part (e) wiii_be checked.

Let § be .a family of sets in L%, If U has the
(p,q,kz)—p;operty,‘then 3 also has the (p,q,kl)—p:operty. Hence,
Definition 3-2 implies ‘that Pn(p,q,kl) Z_Pﬁ(p,qgkz), which proves (a).
A proof similar to the proof of Lemma 2-9.1 -can be used to show that
Pn(p,q,ki) + (pl -.p) j_Pn;pl?q:kl). Thus, if Pn(p,q,kl) is finite,
we have Pn(P’q’kl) < Pn(pl,q,kl). Since Theorem 3-4 implies that
Pn(p,q,k) is finite, (b) foll@ws and also the;parﬁ of (e) which
concerns (b). Also a proof similar to the proof évaemma.2—9.2 can be
used to show that Pg(p,qi,kl) Z_Pﬁ(p,q,kl)_+ (q - ql). Thus, if -
Pﬁ(p,q,kl) is finite, then Pn<p’qlfkl) > Pn(p,q,kl). Since
Theorém 3-4 implies that Pﬁ(p,q,k) is.finife, (c) follows and also
the part of (e) thch concerns (c).

It new remains to prove (d), and te do this it suffices toe prove,
that _Pn(b,q,kl) j_Pn+i(p,q,kl). From Definition 3-2, we_seé that this
will follow if we can show thaﬁ.for each family 8 of sets with the
(??q,kl)—property in Ln,.vthere‘exists a famlily 3' of sets with the
(p,q,kl)—pfoperty.in L?+l such that |3] = lgvl. So let

3 = {Aa: a € A} be a family of sets with the_(p,q,kl)—property in L".
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Theorem 3-3 implies that for each a € A there exists a point x, € Aa

such that
I(xa’Aa),>.k
E(xa’Aa) -1
For each o € A define a set A&_ in Ln+-l by
| B . . . A
A, = {(al, cees an+l). (ql, vy an) e A, and lan+ll j;I(xaan)}.

, 4
Then the ‘family 5 = {A&: o €A} dis a family of nondegenerate compact .

. +:
convex sets in ® l. Since Au can be considered as a subset of A&,

|
it follows that {§ has the (p,q)-property. Let x&,= (Bl,....,‘Bn,O).

. _ ) '
Then if y = (nl,_..r, nn+l) €~Aa, we have

Iy = wgl = max | Gy = 805 2= 2 s w0 (D]

:fE(xa’Aa)'

Hence;-iﬁ follows that. E(xa,Aa) = E(x&,A&). Also, it follows frem the
definition of A& that I(xu’Au) ='I(x&,A&). Consequently,_Théorem 3-3
' I
implies that ¥ has the‘(p,q,kl)—property. Since
] ] ) . ! . . + ) -
(nl, cony nn+l) € Au implies that (nl, ey nn) € Au’ it follows that

1
lgl = ]5 l The theorem now follows. B
Theorem 3-7. Let p > q > 2 and n > 1 be integers, and

£(k) = P (p,q,k) for 0 <k <1, If 0<kjy<1, then

limit _
. kg f(k) = f(ko).
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Proof: If k < k', then any family {§ with the (p,q,k')~property also
has the (p,q,k)-property. Hence, f(k') < f(k), that is f is a
decreasing function. If k > kO’ then k > 0, and Theorem 3-4 implies
that £f(k) 1s finite., The theorem will -clearly follow if one can show
that f(ko) = gup{f(k): k > ko}.' Suppose that this is not the case.
Then sup{f(k): k > ko}‘< f(ko) (note, f(ko) may be infinity). Thus,
{f£k): k > ko} is a set of positive integers which is bounded above.
‘Let m = sup{f(k): k >'k0} = max{f(k): k > ko}. Then m is a positive
integer. Now Pn(p,q,ko) > m 1implies that there exists a family 5'

of sets in L" with the (p,q,ko)-property such that ]§'| > m.
Corollary 1-2,1 implies that there exists a finite subfamily

S = {Ai: i=1, ..., h} of 8'v such that [8] > m. We may also assume
thaé h > p, so that 8 also has the (p,q,ko)—property.

Theorem 3-3 implies that for each i = 1,2, ..., h there exists a

peint . X, € Ai such that . |

L(x;,4,) -
Let

8 = min [{E(xi,Ai) = IGegsA s BGegsA)) - 16,4, > 0 and 1 <4 < bl
U {1}]

Then 0 < B < 1. Let E =-max{E(xi,Ai): i=1, ..., h}. Then E > 0.
Choose a such that 0 < a < min{B/E,l—kO}. For each positive integer

j and A, € 3 let

&) = conv(a; U [x; + (I(x;,4;) + 65 DB,
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and

3 ='{A';]_: i=1, ..., h}.

3

. . \ n .
Then Ej is a family of compact convex sets in L. Moreover, since

AiC: Ai;' it follows that ﬁj has the (p,q)-property. Let Ai € gj'

Then X, + (I (xi’Ai) + Bj_l)Bn ot Ai;‘ consequently,
Ivo 10 4 ,~1 , _ \
I(xi,Ai) z_I(xi,Ai) + B3 ~. Also, if E(xi,Ai) I(xi,Ai) > 0, then it

follows that E(xi,Ai) - I(xi,Ai) > B/j, which implies that-

n
+ E(xi?Ai)B .

‘ .~l.-.n
'xi »+ (I(xi’Ai) + BJ )B i c Xi

Since we also have Ai c x, + E(xi,Ai)Bn; it follows that

i

n i
Ai c:xi + E(xi’Ai)B 5 consequeqtly, E(xi’Ai).5¥E(xifAi)' Thus,

A J v ~1
I(gi,Ai) , I(xi’Ai) + Bj

>
- E(xi’Ai)

3 z_k + =

If E(xifAi) = I(xi’Ai)’ then Ai_= Xy + I(xifAi)’ which implies that

- N L~1i.n - .
Ai, Xy + (I(xi’Ai)'+ Bj T)B. Hence,

Cady
I(xi,Ai)

Q.
=12k +a>ky+3

» h|
E(xifAi)

Let k; = kO + a/j. Then Theorem 3-3 implies that Ej has the

(p,q;kj)~property. Since k% >k it follows from the definition of

O’
m  that- f(k&) <'m. Hence, |5j| j_f(kj) j_m which implies that each

family Ej has the m-intersectiomnal property. For each integer j

there exists a set Dj containing m. points such that if. Ai € EE,
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then Airﬁ D, ¥ . The points of D, may also be chosen to lie in the

3 3

compact set U{Ai: i=1,2, ..., h} since A]‘-:Ai’ - for 1°< 3 <h.

i
In a manner similar te the proof of Theorem l-1, one can.construct

sets Dm

3%

j=1,2, ..., containing m points such that:

(a) each set of 3j contains a point of D?;

, i .
(b). there exist m convergent sequences {xj}, 1<4i<m,

with x; e.D? such that for i # t, x; #vx§;

(e) D? =vDi for some i.

Let Xt denote the point to which the sequence {x;} converges. It
will be shown.that each set in {§ contains ene of the points of the set

D = {xl,,...,vxmf,

This will then imply that . |3|;i m, which
contradicts the fact that |3 > m.

Suﬁpose that for some set Ai e &, A, ND = @. Let
§ = inf{||x - y”; xeA; and ye D}. Then l6 > 0, since A, and D

are disjoint compact sets, Let

c={y: [y - x|| < 8/2 for some x.e Ai}.

Then C 1is -a compact convex set; moreover, the definition of. §

1

implies that CN D =0. Let ye x, + (L(x;,A) + 85 )BY, with

y é xi.+ I(xi,Ai)Bn,( and

I(_xi’-Ai)
BRTRET

Then_,O < e<1l and ”exi + (1 - ey - xiH = (1 - 9y - xﬂ| = I(xi’Ai)'

This implies that ex, + (1 - €)y ¢ X, + I(xi,Ai)Bn<: Ai. “Also,

i
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lexg + @ =€)y =5 =ellx; =5l =[x, -5l - TCx;,A)) <873, Thus,

if B8/5 2.8/2, then X, + (I(xi,Ai) + Bj_l)Bn c C. Let N, be an

1

integer such that j > N, dimplies that B/j < §/2. Since C 1is a

1

compact set and CN D =@, there exists an integer N2 such that if

j> N2, then x§ #.C for all t:= i, eesy my, If F > max{Nl,Nz},
then it follows "that- X + (I(xi’Ai) + Bj_l)Bn c C, and clearly,

A, © C; hence, A] cC. Also, j >N, implies that . x§ 4 c for all

2
t=1, ..., m; consequently, x§ ¢ Ai' for t=1, ..., m. From (b)
it follows that D?'=.{x§, ...,.x?}j thus,. Ag N D? =.¢. However,

since Ai € 8j’ it follows from (a) that Ai N D? # . Thus, the
assumption that 1Ai ND=¢ must be false. Therefore, each set in ]

contains a point of the set D. The theorem now follows.M

For fixed p >q >2 and n > 1, let f£f(k) = Pn(p,q,k). Then = f
is a function defined for each vk e [0,1]. Theorem 3-4 implies that-
f(k) ~ is finite for all k with 0 < k < 1; consequently; f(k) is a
positive inﬁeger for each k ¢ (0,1]. Theorem 3-6(a) and Theorem 3-7
imply that f 1is a decreasing function on [0,l] and is continuous-
from the right at.-each k ¢ [0,1). In particular, this is understood to
mean that if £(0) = », then f(k) »» ag k -~ O+.v Thus, f can have

_at most a countable number of discontinuities in [0,l], and each
discontinuity of £  is a jump discontinuity. (Nete: f dis being
considered as an extended real valued function on [0,1] with its
relative topology.) Let D(p,q;n) denote the set of discontinuities
of f. Note that since. Pl(p,q,k) =p-q+ 1 for all k e [0,1],
D(p,q3;l) = @. Also, Helly's theorem implies that D(nt+l,n+l;n) = @
for n > 1. Theorem 3-5 implies that if q < n, then D(p,q;n) 1is an.

infinite set. If D(p,q;n) # @, then the fact that £ 1s continuous,



79

from the right at .each point of [0Q,l) implies that D(p,q;n) can be
written in the form_.{si(p,q;n): i e J}, where J is either the
positive integers or an initial segment of the positive integers, and
f(£i+l(p,q;n)) >_f(£i(p,q;n)). The set  D(p,q;n) 1s an infinite set if
and ‘only if. f(0) = » and . is a finite set.if and only if £(0) < «,

In the case when_ D(p,q;n) # @, the exact location of the points
Ei(p,q;n) are unknown.

Let f'(k) = P2(2,25k) -for ke [0,1] and Ei =.£i(2,2;2). Since
f'(0) = », the set D(2,2;2) = {Ei: i€ J} is an infinite set. It
will be shown later that 1f k < 1, then f'(k) > 3. Theorem 2-7
implies that £'(l) = N2(2,2) = 1; consequently, & = 1. Thus, f'
is not an onto map. The graph of f' looks something like Figure 15,

The proof of the following theorem is similar to thé proof of a

theorem of Hadwiger ahd Debrunner [4].

Theorem 3-8. Let p >q>2 and n>1 be integers. If § 1is a
finite family of compact .subsets of 1" with the (p+n,q+nﬁl)—property,
there exists a subfamily ¥ of ¥ such that 15 j_[ﬁ[ + 1, and

either ¥ has the (p,q)-preperty or ]H] <p=gq+1l.

Proof: Let = {A s A} be a finite family of compact subsets of

1°
L® with the (ptn,qtn-1)-property. Define a family C of suBsets of
L? by Ce C if and enly if € 1is a compact convex.set and

{Ai nc:i=1, ..., m} has the (ptn,gtn-1)-property. The set C is
nonempty since . 5 is finite, and there exists a compact convex set . C
which contains each set in 8. Let 8 be anest in C, that is, if

C,D € 8, then either C D or DcC. Let CO = N{C: C € 8}. Then

CO being the intersection of a'ﬁonotoﬁic family of compact sets ‘is .
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1 1
nonempty. Let § = {Aifﬁ €c.:i=1, ..., m}. Suppose that fails

0
! .
to have the (ptn,qtn-1l)-property. Then there exists a subfamily G of

.
3 containing ptn sets no gqtn-1 of which have a common .peint. Let

1
G ='{Ai; AN Cye G 1. Let- G ,‘Qr denote all possible -

10 e

subfamilies of G containing gq+n-1 - sets such that:

Hi,=f7{A: Ae Qi} #0 for 1 =1, ..., r. By our supposition,

Hi N =@ for i=1, ..., r. Thus, the family {Hi NC:Ce8} is

“
a monotonic family of compact sets with an empty intersection;
consequently, thexe>exists a set »Ci € 8 such that Hi N Ci = (. Since.
8§ is a chain,.there exists a set C' €8 such that C'c C; for

i=1, ..., r. The family {Ai nc':41=1, ..., m} has the
(p+n,q+n-1)-property; thus, some gq+n-1 sets from {AN C': A e G} has

a nonempty intersection. Any such.  g+n-1 sets must be of the form

{AnC': Ace Qi} for some i. Consequently,
g#nfanc:aeGl=c NI[N{A:AeGl]=c' NH,

for-soﬁe_ i. Ho%ever, c'n Hi c Ci N Hi =@, a contradiction. Thus,
8' has the (ptn,q+tn-1)-property. Hence, Cy € 8. The minimal-
principle [p. 33, 8] implies that there exists a set M'e C such that-
if CeC and Cc M, then C =M. It will be shown next that M 1is
a polytope.

Let_-_gl = {Ai nM:i=1, ..., m}.. Then -31 has the
(p+n,q+n—l)—properfy., Choose a point X, € Ai N M for each
i=-1, ..., m. Let %l, ey %ﬁ denote the collection of all
subfamilies of 817 containing gq+n-1 sets such that N{A: A e 51} #0
for ,i =1l, ..., t. Choose a point- ;€ N{A: A ¢ %i} for

i-= i, ..., t.o Let U denote the convex hull of the set-
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{xl, veey XYY vees yf}. Then 1t 1s easy to .see that
{Airﬁ U: 1 =1, .,,., m} has the (ptn,qtn-1)-property. Since Uc M,
it follows that U = M, Thus,- M 1s a polytope.

Let x . be a vertex of M. Then there exists a linear functipenal
f on L™ such that {w: f(w) = 1}N M = {x} and f£(y) > 1, for all
y € M. Let J denote the support hyperplane {w: f(w) = 1}, It will
now be shown that {x} =N{A: A ¢ 51 and x e A}, Let
Jr = {w: f(w) > 1 + r—;}. Then for each integer r > 0, Jr N M is a
proper subset of M; thus, Jr n M é C. Hence, for each r.  there
exists.a,subfamily Qr of {§ containing p+n sets no g+n~l. of
which have a .commen point in Jr N M. Since there are only a finite
number of ways of choosing p+tn sets of @, there exists a subfamily
G of containing ptn sets such that Qr =G for infinitely many r.
Since {Jr AM:r=1, ...} 1is a monotonic family of sets, it follows
that no q+n-1 sets of @ have a common point in J. NM for all r.
Hence, no  gq+n-1 set of G have a common point in
U{Ji NM:i=1, ...} ={w: £Gw) > 1} N M =M~ {x}. However, some’
gtn-1 sets of G must have a common point in M; consequently, the
intersection of some gqin-1 sets of G is {x}. This clearly implies
that . {x} = N{A: A € E& and x e A}.

Let Hi = {A, NM: x e A} and Hl = {Aivﬂ M: x é-Ai}. “Then -
E& = ﬁi U Hl agd NA: A e Hi}j= {x}. Suppose tﬁat each n sets of.

1 .
Hi have a common point in M which is different from x. Let

|

mi, cany m& denote all subfamilies of " ﬁi containing n sets. Choose
a point z, € N{AN (M~ {x}): Ace mi}’ Then there exists an integer
r > 0 such that f(zi) > 1 +.r”l for 1 =1, ..., k. Since

f(zi) > 1 +‘r-l > f(x) and x and zy both belong to .each set in Ri,



83

‘ it"folles;that.tﬁe‘sets.ih-nﬁi .havé é'COmﬁongﬁoint in
{w: f(w) =1 +r l} N M. Hence, every n sets of the family. Hl ‘have .
1

_a common point in the n-1 '&imensional-hyperplane C{we f(w) =147
Helly's theorem implies that there exists a point

1

: LI ! ' -
ye (N{A: Ae ﬁl}) N {f(w): f(w) =1+ r "}. This is a contradiction .

since N{A: A ¢ Hi} = {x} and x:¢ {f@w): f(w) =1+ r_l}.‘ Thus ,

elther Hl‘ fails to contain n sets, or the intersection of some. n

1
sets of Hif is {x}. In either case, there exlsts a subfamily Qb of

Hl containing j sets with j < n. such that N{A: A€ QO} = {x}.
Theorem 2-3 implies that- Sl has the (p+j,q+j-1)-property. If one
chooses p sets from {A: A e Hl} and j sets from QO’ some qtj-1l-
must. have a common point. However, this point cannet be x; thus, the-
p sets from {A: A e Hl}‘ must’gontain‘some q sets with a common "
point. Thus, either Hl has thé (p;q)-préperty, or ﬁl: fails to
contain ' p sets.. If ﬁl =fp, let ¥ consist of a single set of U..
Then |J| = 1; consequently, || < |H] + 1 where |¥] <p - q+ 1.

If o, # 0, let ¥ = {a; e 3: x € A/} and ¥ = {A é 3 x ¢ Al

Then each set of ¥ contains a set in Hi; consequently, ]ﬁ]_i:[ﬁl|.
If ﬁl fails to contain p sets, then it can be shown as in the proof
of Theorem 3-4 that ]ﬁl] <p-gq+1l. If Hl_ has the (p,q)-pr0pert§,
then the same is true of ¥. Thus, |J| j_]H'l,+ |#] = 1+ |H|, where

| <p~-q+ 1 or ¥ has the (p,q)-property and ¥H & S, .

Corollary 3-8.1. Let p >q>2 and n > 1 be integers. Then

Pﬁ(_pm,qﬁ-n—l,k)- <P (p;q,k) +1 for all k with 0 <k <L

Proof: If Pn(p,q,k) is infinite, then the result clearly follows. So

assume that" Pn(p,q,k) is finite. Let ¢ be any finite family of-
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subsets of e with the (p+n,qin-1,k)-property. Then Theorem 3-8

implies that there exists a subfamily H of. 8 such that .
I5] < 8| +1, and either ¥ has the (p,q,k)-property or

|ﬁ| <p-q+'1l, . Since by Theorem 3-4 Pn(p,q,k) >p-q+1,
follows that in .either case lﬂl j_Pn(p,q,k). Thus,

hy <P (p,q,k) + 1. Corollary 1-2.1 implies that

Pn(p,q,k) _<_’Pn(p,q,k) + 1.0

it

The follewing corollary is simllar to.a result of Hadwiger and

Debrunner [4]..

Corollary 3-8.2. If p>q>n+1>2 and nqg> (n~-1)p+n+1,

then Pn(p,q,k) =p-q+1 for all k e [0,1].

Proof: Theorem 3-4 implies that- Pn(p,q,k) >p-q+ 1 for all

k € [O,ll; thus, it suffices to show that Pn(p,q,k) <p-gq+1.

We proceed by induction on m=p.- q. If m=0, then
Pp=q>n+1, and Helly's theorem implies that Pn(p,p,k) =

all ke [0,1]. Suppose now that if p > q2>n'+ 1> 2,

nq>(-1p+n+l and 0<p-gq<m then B (p,q,0)

1l for

Pp-q+ 1

for all k ¢ [0,1]. Let  p and q be such that p > q.>n'+ 1 > 2,

ng > (a - 1)p+n +1 cand p - q = m. Corollary 3-8.1 implies that-

Pn(P »d5k) < Pn(p-n,q—(n—l) ,k) + 1. Moreover,

n(q -n+1) > (n (p -1n) +n+ 1.

The inequality n(q -n+.1) > (n - 1)(p ~n) +n+1 and the fact

m > 0 can also be used to show that.p - n >q-(@-1)>n

+ 1.

Since 0 < (p ~n) - (@ - n + 1) < m, our induction hypothesis implies
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that - Pn(p-n,q-(n-l),k) = p - q. Hence, Pn(p,q,k) <p-q+ 1.

Therefore, .Pn(p,q,k) =p-q+ 1.0

From Corollary 2-8.2 and the fact that Pl(p,q,O) =p=-q+1,. it
folléews that the simplest case, namely, the case with the smallest
values for p, q and n, in which the question 1s unanswered as to
whether or not Pn(p,q30) 1s ‘finite or not 1s that of p.= 4, q = 3,
and n = 2. From Theorem 2-7 it follows that N2(4,3) = 2, Moreover,
since 2 < 92(4,3,1) <N, (4,3), it follows that P,(4,3,1) = 2. 4An
example will now be given which shows that P2(4,3,k) > 3 and
P2(2,2,k) > 3 for all k with 0 <k < 1l.. Consequently, this implies .
that the equation Pn(p,q,k) =p-q+ 1 i1s not always valild for
qg>n. If- D(4,3;2) is the set defined in the discussion fellowing
Theorem 3-7, then this example will-also imply that - D(4,33;2) # § and

51(4,3;2)-- 1.

Example 3-1. Define points in L2> as follows:

- 1 , - i
An B ( " 2n°? 0 )’ By = ( 2n ° 0 )’
- (X zl-2n = -1
€ = <2n } 2 )’ Dy ( 0, n )’
2n
_ {1 1-2n _
En = ( n s 2 ), F = (l)O) s
2n
G = (-1,0) ' Ho= (1, =
= s ’ n = ’ n L]

= (1,-1), J=(-1,-1),

H
|
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' 1 1 -2
n” - 4n '+ 2
2
_ 1 -n . 1+ 3n - 2n 1l - 2n
Mﬁ : 2 : > ,.3 2 > Nnv= -1, 2n i
2n” - 2n - 2 2n™ = 2n" - 2n

R = (-1,2), P = (1,2).

Using the -above points, define sets in :Lz as follows: .

1

Sn = conv{R,P,F,Dn{G},

s? - conv{E ,F,I,L}

n i n’ 3 H L B

S3 = conv{D ,H ,I,L},

n A n’plee

st = conv{G,M ,L,J}

n 2 3 .n" H ’

85 = conv{G,C ,K ,N },-

n s L] n’ n’ n 3

86 = conv{A ,B ,E ,C }.

n n’n’n’n
Moreover, let 8n = {S;ﬁ_i =1, ..., 6} for n =3,4, ... . Figure 16

illustrates the family Sn for n = 4. For each n with n > 3, the
family gn has Both the (2,2)-property and the (4,3)-property.
Moreover, |8‘| = 3 for all n > 3. Note alse that as n becomes

n
large; S:, 1 <i <5, approaches a.square. Let x = (0,~1/2n).

Then it is not difficult to show that

I(xn,S

E(xn,S

)
-1 as n > o,

)

8 o8B o



Figure 16. The Family 84.
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Thus, given any k with 0 <k < 1, there exists an integer N such
that n > N - implies that Enf has both the (2,2,k)-property and
(4,3,k)-property. - Consequently, P2(2,2,k) > 3 and P2(4,3,k).1 3

for all k with 0 <k < 1.
Families of Homothetles and Applications

The following section 1s concerned with :families of homothetles in
L® with the (p,q)-property. At the end of the section are applicatiens-

of the theorems to transversal type.problems.

Definition 3-3., If B is a subset of a linear 'space, the set : x + AB,
for X # 0, 1s saild to be homothetic to B - and positively homothetic

if X > 0.

If 0 is a famlly of sets with the (p,q,l)fproperty in Ln, then -
it-haé already been noted that each set in & Has the form
X + I(}'{,A)Bvn for some x.. Consequently, each set in 3 is poesitively
homothetic to B . |

Let K be a compact convex subset of L®. Griinbaum t3] defined
H(K) = sﬁp{lgl} where &8 1is a family of homotﬁeties of . K with the
(2,2)-property and proved that Hn = max{H(X): K < *} is fin?te, The
following theorem implies that;the number Hn defined by Grinbaum

satisfies the inequality B j_Pn(2,2,l/2n).

Lemma 3-9.1. If K is a compact convex body in- L and 3 a. family
of sets with the (p,q)-property such that each set in- 3 is homothetic

to K, then ’lgl i,Pn(p,q,l/Zn).,
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Proof: ' Corollary 1-2,1 implies that it suffices to prove the theorem

for § finite. Let { = {x, + oK 4 =1, ..., m} be a finite family

i
of homotheties of K with the (p,q)-property. It has been shown by

Chakerian and Stein [2] that there exists a n~dimensional parallelotope

P. such that P for some y. The parallelotope

1 1 1

Pl has the form P1 =x + P where P 1s the parallelotope

€K and KCy + nP

with respect to some basgis {al, vens an} of 1", Let f be the
linear isomorphism of" L into Ln‘ such that

f(ai) = (0, «ovy 1,0, viey 0) where the one.is in the ith position.
Then £(P) =-B". Let 51 = {f(xi‘+ aiK): i=1, ..., m}. Since f 1is
a linear isomorphism, it follows that E§ has the-(p,q)—proﬁerfy.and
|3'| = |g. ﬂoreover, 3' is a family of hometheties of = £(K).
Without loss of generality, assume that x .= 0. Then P = Pl. Since

P cK and K cy + nP, it follows that B" £(X) and

f(K) c f(y) + nB®. Let z ¢ £(K). Then
12 <llz - @[ + [t <n + e

Since 0 e K and f(K) c f(y) + nB", it follows that lEW] < n.
Thus, ”z” < 2n for all =z e f(K). Comnsequently, £(K) c 2nB®. Let

1]
f(xi) + aif(K) €8 . Then‘.Bn c £(K) - implies that

n _ .n v _
£x,) + |ai|B = £(x;) +o;B C f(xi). +a, £(K).

Moreover, £(K) C 2nB# implies that .
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E(xy) + 0,£(0 € £(x,) + o, GmB" = £(x) + (20 |ay 87,

Thus,

I(E(xy ) E(x+a, £(R)) oy |
>

E(ECx,) £ (%, )70, E0) = Tala ] ~ 28 °

!
Theorem 3-3 implies that 0 has the (p,q,1/2n)~property. Thus,

3] = |5 | <®_(p,a,1/20) . m

The proof of the ‘above lemma .leads to the following discussion:

Let 8 be a-family of sets with the (p,q,k)-property in L” and £ be

t
a linear 1lsomorphism from i to Ln. Let S = {fCA): A € 5}. Then
t

t | B
§ has the (p,q)-property and |3 I = [3]. It is possible that 3

has the (p,q,r)~property witﬁ r > k. If the set D(p,qin) # @, let
Eiv= Ei(ﬁ,q;n) for -1 e J. If {Ei: Pn(p,q,gi) <;|5|} #0, let
Ej = min{gi; Pn(p,q,gi) <‘|8|}. Then r‘<e£j, for 1f this is net the
case, it would follow from Theorem 2-7(a) that .
Pn(P,q,Ej) > P (p,q,r) > |§|, contradicting the fact that
|8].> Pn(p’q’gj)' Thus, by means of a linear isomorphism it is
sometimes possible to transform a family with the (p,q.,k)-property
in L® into a family‘ 5' with the (p,q,r)-property in. L™ with
r > k. However, r must satisfy the inequality
r < min{gii Pn(p,q,gi) < |5[} whenever . the set
{g,: P _(p,a,8) < 3|} # 9.

The following theorem removes the restriction that K be a body

in the above. lemma.
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Theorem 3-9. If K 1s a compact .cenvex set in L® and 8 a family of
sets with the (p,q)-property such that each set in {§ is homothetic

to K, then |3] ian(p,q,l/2n).

Proof: Corollary 1-2.1 implies that it suffices to prove the theorem
for § finite. Let O = {xi toK:idi=1, ..., m} be a finite family
of homotheties of K with the (p,q)-property. Without loss of
generality, assume that O e K. ¥For each pesitive integer s and
i=1, ..., m; . let AS = x, + a, (K + s—an). Let

b i i
3 = {Ai:-i =1, ..., m}. Then 8s is a family of homotheties of the
1

n 8
B . Moreover, since x, + aiK C'Ai, 85

compact convex body K + s 1

has the (p,q)-property. Lemma 3-9.1 implies tHa;
]Esl ﬁ_Pn(p,q,l/Zn) for all s =1, ... . Theorem 3-4 implies that
Pn(p,q,l/2n) is -finite. Thus,'fsr each poesitive integer s there
exists a set’ D, containing Pn(p,q,l/2n) - points such that if
Ai € 55, then Ai n DS # @. The points of DS may alse be chosen to
lie in the compact set U{Ai: i=1, ..., m}.

Let r = Pn(p,q,l/Zn). In a manner similar to the proof of
Theorem .1-1 one can construct sets D:; s=1, ..., containing r

points such that:

(a) each set of SS contains a point of D:;

(b) there exists r convergent sequences {y;},- l<icx<r,
with y? € D§' such that for i # t, y; # yg;

(c). DX = DS for some s.

J

Let y" denote the point to which the sequence {y;} converges. It
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will be shown that each set in O contains one of the points of the

set D = {yl, ...,‘yr}. This will then imply that |{] j_Pn(p,q,l/Zn).A
Suppose that for some set x, + aiK €U, (xi + aiK) N D= 4.

Let § = inf{Hx -yl x e.x; + oK and y.e D}. Then & > 0 since

X + aiK and. D are disjoint compact sets. There exists a positive

, v ~-1l.ny
integer s such that lai]/so < &8, If xc¢ Xy + ai(K +“SO B"), then.

0
there exists a point =z € X, + uiK such . that 1Hx - z” j;|ai|/so < §.

-1.n, _ . -1 n
Consequently, .[x:L + ai(K + sg B'Y] ND=@g. Since _xi_+ ai(K + 50 B )
is ‘compact and contains no point of D, there exists an integer N

such that 1f j > N, then y§ ¢ xi'+ ai(K'+ saiBn) for all

t=1, ..., r. Thus, 1f 3§ > N, Xy + ai(K-+ saan) contains no points .
of the set Dg. Let J > max{N,s;}. Then
-1.n, -l:n
xi+ai(K+j__B)Cxi+ai(K+soB).

The definition of Dg implies that xi + ai(K +kj_an) N D§ # @. This
contradicts the fact that . yg ¢ Xy + ai(K + saan) for all

t=1, ..., r. Thus, if_xi+aK€3, then~(xi+aiK)ﬂ D##¢g.m

i

Additional information on the r-intersectional properties of
families of homotheties and translates -of compact convex sets in E®
with the (2,2)-property can be found in Hanner [6] and Chakerian and
Sallee [1].

The following theorem is an application of Theorem 3-9 to a

transversal type problem.

Theorem 3-10. Let p > q> 2 and 1l <m < n- be integers. Also, let

L be an m-dimensional subspace of " and 3= {Au: o€ A} a family of -
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homotheties of a compact convex set K . in L® with the property that
for each subfamily G of § which contains p sets, there exists a
point y'e L® such that y + L iﬁtersectS‘some q sets in Q.'~Then‘
there exist. r points Xys vevy X in- L% with

0 <r :_Pﬁ_m(ﬁ,q,(Zn-Zm)_l) such tﬁat if Au e U, then

(x, + L) N A # § for some 1 with 1 <1 < r.

Proof: There exists a linear isomorphism £ from. L* into - L" such .

that . £(L) 1s the span of the set {§ Gn}, where

n-mtl? ' _ .
Gi = (0, +esy 1,0, ... ) with the one in the ith position. Let
1]
L' = £(L), &§ = {£(A): @ € A} and K' = £(K). Then it follows that

1 1
8 1is a family of homotheties of K', and from each p sets of O

some ¢. sets are intersected by a single translate of L{. Let S
denote the span of the set {Gl,‘...,_én_m},, that is, L' & S = Lt
the direct sum of L' and S. For each a € A let

Ba ={xeS: (x+L")N f(A) # @} and let

B=+{xeS: (x+L')YNK #0}, If oeld, then A =y + MK for
some point y and some scalar X # 0. Thus,. f(Aa> = f(y) + AK'. Now
f(y) =-u:+ v for some ue S and velL'. Thus, f(Aa} =u+v+ iK',

Recall x € B if and enly if (x+L') N K# @ and x.¢ S. However,

(x+ L") NK' #¢ if and only if
(u+ xx+ v+ ALY N (u+ v + AK") # @. .

Since v e L', it follows that u+ Ax+ v+ AL' =u + Ax + L', Thus,
x.e B if anﬂ'only if (u+ xx+ L") N f(Aa> #¢ and =x € s, that is,
x € B if and only 1if u + Ax e Ba ~and x € s. Consequently,

Ba = x + AB. Let G = {Bd: o € A}. " Then- G is a family of hometheties
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of the set B, Since K' is compact, a simple sequence argument .can be
constructed to show that B 1s compact, Moreover, since from each »p
sets of E' some q sets are intersected by a single translate of L',
it follows that & has the (p,q)-property. Since S 1s linearly
isomorphic to Ln-m’ it follows from Theorem 3=9 that there exist r
points Xis veey X with r j_Pn_m(p,q,(Zn—Zm)_l) such that 'if o € A,

then x, € Ba. for some 1. Hence, if o € A, then

i
(xi +L"YN f(Aa) # § for some, 1 with 1 <4 <r. Since f 1s a
linear isomorphism, it follows that if o € A, then-

(ffl(xi) + L) N Aa_# § for some i with 1 <i <r.M

Let O denote the family of circular disks in L2. which are
illustrated in Figure.1l7. Then it is clear from the figure that if G
is a subfamily of {§ containing three sets, then some two sets of G
are intersected by a line with slope zero. Consequently, Theorem 3-10
implies that there exist Pl(3,2,l/2) = 2 lines with slope zero such
that each set in J is intersected by at least one of these lines.
Two such lines are shoewn .in thé'figure.

The following theorem yields results similar to those of

Theorem 3-10 when & is a family of parallel line segments in ",

Theorem 3-11. Let K be a compact line segment in - L? and 3 a

finite family of homotheties of K. If from each p sets of § some

q sets are intersected by a hyperplane, then there exisﬁ T

hyperplanes Qith T j_Pn(p,q,O) such that each set in {8 is intersected

by ene of these hyperplanes.
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Figure 17. Homotheties of a Circular Disk in LZ.

(m,b)-plane

A 4

Figure 18. The Set Ci'

v



96

Proof: By means of an affine transformation it suffices to prove the
theorem when K = {(0, ..., O,y): -1 <y < 1}. Let

3 = {Ai: i=1, ..., m}, Since each A, is homothetic to K, each Ay

i
i i ,
has the form Ay = {(xl, cees xn;l,y): o, < j_Bi} for some point
i i n '
(xl, ey xn_l,O) in L~ and seme.real scalars ay and Bif For each

i with 1 <1 <m let

n-1

i
Ci =_{i(al,_..., an)‘.‘ai j_an + jii ajxj :-Bi .

The set Ci is clearly a closed convex set, a clesed "strip" between

two parallel hyperplanes. A point (al,_..., an) e LV belongs to Ci

1f and only.if the hyperplane

{(xl’ sy xn) : (xl, sy xn) * (al’ seny 'an_.l,-l) = an}
n-1
= (X, 00y, X)X =a + I a,x
1 n’ " n Doy 3
intersects the set Ai' Consequently, the family C'_=.{Ci: 1l <1<m}

has the (p,q)-property. Figure 18 represents.the set Ci when

Ai»= {@,y): a <y <B}c L2. Since the family C' is finite, there.
exists an integer k such.that the family C = {Ci_n kB#:_l <1i<m}

is a family of nondegenerate compact convex sets with the
(ﬁ,q)—preperty in Ln.,,If Pn(p,q,O) = @, then the fact thaﬁ_,g is
finite clearly implies the exlstence -of the r 1in the theorem. So
assume that Pn(p,q,O) < «», Then there exist r points. (ai, PR ai),
l<j<r, with r j_Pn(p,q,O) - such that ‘if Ci N kBF g C, then-

(ai, ceey ai) € Ci N kB®  for some jo For 1 <j<r, let



97

3.0

Then each set in {§ 1s intersected by one of the hyperplanes Hj. m

It will now be.illﬁstratednhow Theorem 3-11 can be applied to an

approximation type problem. Let S =-{(xi,yi): i=1, ..., 8} denote

the set of points illustrated in Figure.l9 where the poilnts are
indexed in order from left to right. Let: € > 0 and
Ai = {(xi,y)::|y - yi] <€) 1 <1i< 8., Figure 20 represents the sets

Ai’ 1l <i < 8, One can now ask the following question: Does there

exist a line {(x,y): y = ax + b} such that- ]ax:L +b - yil < € for

all L with 1 <1 <8 ? That is, 1s there a line L which intersects

each of the sets ‘Ai? Since no éne line meets AS’ A6 and A7 the

above .question has a .negative answer. However, one may extend the -above

question as follows: Is it possible to find two lines Ll and L2

such that each A, 1s intersected by at least one of these two lines?

i
Coroliary 3-8.2 implies that P2(5,4,0) = 2. Consequently, if from

each five of the Ai some four are intersected by a single line, then

Theorem 3-11 would imply the existence of two éuch lines Ll. and L2.

The sets Ai illustrated in Figure 20 do indeed have the property .that.
from each five of the Ai some four are intersected by a line.
Figure 21 illustrates twoe lines _Ll and Lé such‘that each Ai is
intersected by at least one of these lines.

A situation in which the abeve.approximation type problem may

arise would be as follows: Suppose that we are given the set of data-

points S = {(xi,yi): 1 <41i<r} in the plane, where X, = xj if -and
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Figure 19. The Set S.
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Figure 20. The Sets Ai'

Figure 21. Lines L and L
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only if {1 = j, The real numbers x, are known with certainty but the

i
numbers y, are subject to an error .of €., The data may have been
gathered by several persons or by a single person at different -times;.
we do not know, but we would like to make a good guess about this.
Somehow we feel the phenomenon 1s linear in nature and thus our problem
is one of finding "linear patterns' in the data. Each linear pattern.
would represent a data gathering eplsode and, thus, give us clues about.
the number of sources from which the data came. Clearly, this is not.
the usual problem of linear regression whereby the method of least .
squares a line of best fit is found. Furthermore, whereas, any two
points determine a line it would be unreasondble to think of just twe
points determining a "linear pattern'. Intuitively we would feel like
we had discovered a '"linear patte;n" if there was a line L given by"
y = .ax + b. such that laxi + b - yil < € for each :(xi,yi)' belonging
to some sultably large subset S' of S. To get a well-defined
problem we would need to specify the number m of elements required in
S' and ask what is the minimum number of "linear patterns" determined
by the data S. The theorem gives a sufficient criteria-—one easily
anenable to computers—-for knowing that there exist less than

Pz(p,q50) lines such that one of the lines passes sufficiently close
to each data point. The problem of finding a set of such lines such

that each line would pass close to a sufficiently large number of

points of 8 would remain te be solved.



CHAPTER IV
SUMMARY AND CONCLUSIONS

The basic purpese of this study has been to examine certain
intersectional properties which- a famlly of subsets of a space X may
possess. The problem which was of primary interest was formulated first.
by‘HaQWiger and Debrunner [4], and is as follows: Given a family 3
of compact convex subsets of E® with the (p,q)-property, what can be
concluded about IGW, the minimum piercing number.

Corollary 1-2.1 implies that if 3 is a family of compact subsets
of E" such that |Q| < m for each finite subfamily G of 3, then
|3| < m. Consequently, many of the problems of the above type were
reduced to considering finite families of sets. .

In Chapter II famlilies of mutually parallel parallelotopes are
considered. The definition of the function Nn(p,q) 1is due td
Hadwiger and Debrunner [p. 32, 5], and the definition of Tn(p,q)
which is'similar to that of Nn(p,q) and is due . to the.authof.

Theorem 2-7 contains practically all the results which were known about
the number Nn(p,q) prior te ﬁhis,study. However, the upper bound
given .in Theorém 2-7 for Nn(p,Q) »is,considerabiy‘smaller than those
previously known [p. 32, 5]. Coroellary 2-12.l1 gives even smaller upper.
bounds for the numbers Nz(p,Z).- Theorems 2-10 and 2-11 give lower
bounds for the numbers Nn(p,Z) and Tn(p,2). These lower beunds are

considerably larger than these obtained by Hadwiger .and Debrunner.

100
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Corollaries 2-10.1 and 2~11l.]1 were stated in order to give rilse to
problems for further study. That is, if _3 1s a famlly of mutually
parallel parallelotopes in E® with the (p,2)~property and no three,
sets in U have a common point, then what is the maximal number hn(p)‘
of elements ¥ can contain. The number hn(p), clearly, satisfies
the inequality h (p) < 2(N_(p,2)). Also, from Corollary 2-11.1 it
follows thgt hn(p) > 4p - 8. The author has shown that hn<3) =5
and . hn(4) = 8 for n > 2; however, the proof of these results does.
not appear in this study. It is conjecturedvthat‘,hz(p) = 4p - 8 for
all p > 4; that is, Corollary 2-11.1 is the best poessible result in
E2 for p > 4. To go even.farther the authoer conjectures that
N,(p,2) = 1/2(h,(p)) for all p > 4.

The values of Nn(p,q) for q~3_3, which have been ‘determined.in
this study, all satisfy the equation Nn(p,q) =p-q+1,
Theorems 2-5 and 2-9, which considered families of mutually parallel
parallelotopes with the (p,q)—property which fail te have the
(pl,ql)—property for some- pl.j_p -~ 1 and q; 24 - 2, strongly
indicate that the equation Nn(p,q) =p~q+ 1 may be valid for all
q > 3. The difficulty in showing that_-Nn(p;q) =p-q+1 for q>3
seems to be .in showing that |5[ <P -q+ 1 whenever 3 is a family .
of-mutuaily parallel parallelotopes with the (p,q)—property.which also
has thé’(pl,ql)—property for some Py <P - 1 and q <q _.2' One
would think that the more properties ha&, the_sﬁaller |5] would .
be; however, the author has not been able ‘to conclude.this in general.
However, Theorem 2-13 gives a result of this type.

The problem of determining upper bounds -for |3| when & is an

arbitrary family of compact convex subsets of E" with the
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(p,q)-property 1s much more complicated than the one for mutually
parallel parallelotopes. It was known prior to this study that if
q < n there exists famllies 8 of compact convex sets in E® with
the (q,q)-property such that  |8| was arbitrarily large. Griinbaum [3]
discovered that 1if in addition to the (q,q)-property. 8 was required to
be a family of homothetles of a compact convex set K then |5| was
always bounded above.by a fixed finite number. However, requiring O
to be a famlly of homotheties was a rather strong restriction. The-
search for a more general restriction leads the author to define the
(p,q,k)-property. In some sense k is a measure of the 'squareness' of .
the sets of a family . The fact that _Pn(p,ﬁ,k) was finite for
0<k<1 and Pn(p,q,O) =« for q < n seemed to imply that the
definition of the (p,q,k)-property had some merit.

I£ was established that as a function of k; Pn(p,q,k) is a
decreasing function which is continuous from the right in k for
0 <k < 1. Also, several problems have been raised by considering
Pn(p,q,k) as a function of k. For example, for what-values-of‘ P> q
and n is-the-set‘ D(p,qsn) = @? Also, if D(p,q;n) # @, what are
the values Ei(p,q;n) and how do these values relate to the geometry of.
the sets in the families?

In the case k = 0, Corollary 3-8.2 can be shown to be eqﬁivalent
to a theorem of Hadwiger and Debrunmer-[4], which-contains practically
all the eariier known results in En, n > 2, about arbitrary families

of compact convex sets with the (p,q)-property.
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